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Preface

The 12th International Conference on Medical Image Computing and Computer-
Assisted Intervention, MICCAI 2009, was held in London, England at Imperial
College during September 20–24, 2009. The venue was situated in one of Lon-
don’s finest locations, adjacent to landmarks such as The Royal Albert Hall and
the Science, Natural History and Victoria and Albert Museums, with Hyde Park
just a short walk away.

Over the last decade, the MICCAI conferences have become a premier in-
ternational event, with papers of very high standard addressing the multidis-
ciplinary fields of biomedical image computing, computer-assisted intervention
and medical robotics. The conference has attracted annually leading scientists,
engineers and clinicians from a wide range of disciplines.

This year, we received a record submission of 804 papers from 36 differ-
ent countries worldwide. These covered medical image computing (functional
and diffusion image analysis, segmentation, physical and functional modelling,
shape analysis, atlases and statistical models, registration, data fusion and mul-
tiscale analysis), computer-assisted interventions and robotics (planning and im-
age guidance of interventions, simulation and training systems, clinical platforms,
visualization and feedback, robotics and human–robot interaction), and clinical
imaging and biomarkers (computer-aided diagnosis, organ/system specific appli-
cations, molecular and optical imaging and imaging biomarkers).

A careful, systematic review process was put in place to ensure the best possi-
ble program for MICCAI 2009. The Program Committee (PC) of the conference
was composed of 39 members, each with recognized international reputation in
the main topics covered by the conference. Each one of the 804 submitted papers
was assigned to two PC members (a Primary and a Secondary). At least three
external reviewers (outside the PC) were assigned to each paper according to
their expertise. These external reviewers provided double-blind reviews of the
papers, including those submitted by the conference organizers. All reviewers,
except a handful who provided last minute “emergency” reviews, refereed be-
tween 8 and 10 papers each, giving each reviewer a reasonable sample for ranking
the relative quality of the papers. Authors were given the opportunity to rebut
the anonymous reviews.

Then, each PC member graded (typically 20) papers as primary based on
the external reviews, the rebuttal and his/her own reading of the papers. In
addition he/she provided input, as Secondary PC, to typically 20 more papers
assigned to various Primary PCs. In summary, each paper was graded by two PC
members and three external reviewers (i.e., by five assessors). During a two-day
PC meeting involving the PC members held during May 17–18, 2009, papers
were selected in a three-stage process:
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– First stage: initial acceptance of those papers ranked very high and rejection
of those papers ranked very low. Eight groups were formed, each comprising
four or five PC members. The groups considered acceptance of the top three
papers from each PC member and rejection of the bottom eight. Any papers
in doubt were transferred to the second stage.

– Second stage: the same groups of PC members ranked the remaining papers
and accepted between 9 and 18 of the highest ranking papers per group and
rejected between 18 and 32 of the lowest ranking papers.

– Third stage: a different set of groups were formed and assigned the remaining
undecided papers to the “accept” or “reject” category through an iterative
process.

In all, we accepted 259 papers (32%) to be included in the proceedings of
MICCAI 2009. Of these, 43 were selected for podium presentation (5%) and 216
for poster presentation at the conference (27%).

The review process was developed from that used in previous MICCAI con-
ferences. In particular we are grateful to Rasmus Larsen for his input on the
statistical basis for the protocol. Each step of the process ensured that, for ran-
dom selections of papers to PC members, the probability of correctly assigning
rejections and acceptances was at least 95%. With the combined skill and ex-
pertise of the PC, we are confident that it exceeded this figure and that we ran
a robust system. Acceptance of papers at MICCAI is a competitive process and
with such a strong submission rate it is inevitable that many good papers were
not able to be included in the final program and we understand the frustration
of authors. We too have had many papers rejected. We congratulate those who
had papers accepted and encourage those who did not to persevere and submit
again next year.

We wish to thank the reviewers and the PC for giving up their precious time
ensuring the high quality of reviews and paper selection. These tasks are time
consuming and require skill and good judgment, representing a significant effort
by all. The continued improvement in the quality of the conference is entirely
dependent on this tremendous effort.

We particularly wish to thank James Stewart of precisionconference.com for
the efficient organization of the website and rapid response to any queries and
requests for changes, many of them totally unreasonable and at a very short
notice.

One highlight of MICCAI 2009 was the workshops and tutorials organized
before and after the main conference. We had a record number of submissions
which resulted in a very exciting, diverse and high-quality program. The work-
shops provided a comprehensive coverage on topics that were not fully explored
during the main conference, including “grand challenges,” and some emerging ar-
eas of MICCAI, whereas the tutorials provided educational material for training
new professionals in the field including students, clinicians and new researchers.
We are grateful to all workshop and tutorial organizers for making these events
a great success.
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We would also like to thank our two invited keynote speakers, Sir Michael
Brady, University of Oxford, UK, and Koji Ikuta, Nagoya University, Japan.
Their presentations on “Oncological Image Analysis” and “Nano and Micro
Robotics for Future Biomedicine” were both inspiring and entertaining.

The conference would not be possible without the commitment and hard
work of the local organizing team. In particular, we thank our Associate Edi-
tors Adrian Chung and Su-Lin Lee for their help in working with all authors
in improving the final manuscript, and Dominique Drai, Ron Gaston, Thomy
Merzanidou, Christiana Christodoulou, Karim Lekadir, Felipe Orihuela-Espina,
Lichao Wang, Fani Deligianni, and Dong Ping Zhang for checking the original
submissions and for assisting in the compilation of the proceedings.

We are grateful to Ferdinando Rodriguez y Baena for coordinating the corpo-
rate sponsorship and industrial/academic exhibitions, Dan Elson and Fernando
Bello for coordinating MICCAI workshops and tutorials, Eddie Edwards for
managing the conference registration and social events, and Raphaele Raupp
for assisting with all the conference logistics. We also thank Robert Merrifield
for his kind help in graphics design and George Mylonas for his huge effort in
designing and implementing the hardware/software platforms for the conference
e-Teaser sessions.

We are extremely grateful to Betty Yue, Ulrika Wernmark and their team for
their tireless effort in managing all aspects of the conference organization—it is
through their effort that we managed to have a seamless event on a busy campus
where many dedicated facilities including the fully equipped poster hall had to
be installed specially for the conference. We also thank all the session Chairs and
Co-chairs in managing and coordinating the presentations during the conference.

We would also like to thank the MICCAI Society for providing valuable
input and support to the conference, especially Guido Gerig for coordinating
the MICCAI Young Scientist Awards and Richard Robb for coordinating the
Best Paper Awards.

Last but not least, we would like to thank all our sponsors for their kind
support, particularly in this most difficult economic climate. Their generosity
ensured the highest quality of the conference and essential support to students
and young researchers.

It was our pleasure to welcome the MICCAI 2009 attendees to London. In
addition to attending the workshop, we trust that the attendees also took the
opportunity to explore the rich culture and history of the city. We look forward
to meeting you again at MICCAI 2010 in Beijing, China.

September 2009 Guang-Zhong Yang
David Hawkes

Daniel Rueckert
Alison Noble
Chris Taylor
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Abstract. The preferred method of treatment for Atrial Fibrillation
(AF) is by catheter ablation wherein a catheter is guided into the left
atrium through a transseptal puncture. However, the transseptal punc-
ture constrains the catheter, thereby limiting its maneuverability and
increasing the difficulty in reaching various locations in the left atrium.
In this paper, we address the problem of choosing the optimal transsep-
tal puncture location for performing cardiac ablation to obtain maximum
maneuverability of the catheter. We have employed an optimization al-
gorithm to maximize the Global Isotropy Index (GII) to evaluate the
optimal transseptal puncture location. As part of this algorithm, a novel
kinematic model for the catheter has been developed based on a con-
tinuum robot model. Preoperative MR/CT images of the heart are seg-
mented using the open source image-guided therapy software, Slicer 3,
to obtain models of the left atrium and septal wall. These models are
input to the optimization algorithm to evaluate the optimal transseptal
puncture location. Simulation results for the optimization algorithm are
presented in this paper.

1 Introduction

Atrial fibrillation (AF) is a type of arrhythmia where the atria beat irregularly
and out of coordination with the ventricles. When rate and rhythm control drugs
are ineffective in patients suffering from AF, catheter ablation is performed as
a standard method of treatment. More recently, a robotics based master-slave
approach for performing cardiac ablation has been introduced. At our insti-
tution, we have direct clinical experience with the Sensei robot from Hansen
Medical Inc. [1]. Although the robot is capable of precise catheter motions and
maintaining stable contact with the heart wall, the clinician often encounters
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2 J. Jayender et al.

Fig. 1. (a) Catheter entering the LA through the transseptal puncture, (b) Difficulty
in maneuvering the catheter due to improper transseptal puncture location, (c) Model
for the catheter

difficulty in maneuvering the catheter and approaching the desired point on the
heart at the required angle. The lack of dexterity of the catheter arises from
the constraint imposed on the motion of the catheter due to the transseptal
puncture [2], see Figure 1(a). The interatrial septal wall effectively acts like a
Remote Center of Motion (RCM) about which the catheter is manipulated. This
can severely affect the dexterity and maneuverability of the catheter (see Figure
1(b)), thereby affecting the clinician’s performance. In addition, there is also
danger of perforating the aortic arch with catastrophic results due to acciden-
tal needle puncture [3]. Therefore, it is of prime importance for the clinician to
puncture the transseptal wall at an optimal point to maximize the dexterity of
the catheter in the left atrium while minimizing the possibility of puncturing
the aortic arch. In this paper, we develop a computational algorithm to deter-
mine the optimal transseptal puncture location for performing cardiac ablation.
Once determined, the puncture location will be registered to the Intracardiac
Echo (ICE) image so that the clinician can guide the needle in real-time to the
optimal puncture location to obtain maximum maneuverability of the catheter,
while avoiding puncturing of the aorta. The problem of choosing the location of
the transseptal puncture bears similarity to the problem of choosing the ports
on the thoracic cavity for insertion of laparoscopic tools and endoscopes to per-
form Robot-Assisted Minimally Invasive Surgery (RA-MIS). Several researchers
have studied the problem of choosing the optimal ports to maximize the perfor-
mance of the robot (and surgeon) to perform RA-MIS [4]-[7]. In this paper we
have adopted the Global Isotropy Index (GII) [8], [5] to define the performance
measure for quantifying the dexterity of the catheter within the left atrium. We
have developed an optimization algorithm to maximize the GII for efficiently
maneuvering the catheter in the left atrium.

2 Modeling of Catheter

The catheter is considered as being made up of infinitesimal rigid links along
a backbone curve. The backbone curve is defined in terms of the Frenet-Serret
frame. The curve is represented in the parametric form, x̄ = x̄(s, t), where s is the
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parameter which represents the curve length and t is the time. The Frenet-Serret
frame is defined at each point σ(s, t) along the backbone curve and consists of
the tangent t̄(s, t), normal n̄(s, t) and binormal b̄(s, t) vector at point σ(s, t), as
shown in Figure 1(c). At any point σ along the curve x̄(s, t), the local frame
can be defined as Φ(σ, t). In terms of the Euler angles, the frame 0Φ(σ, t) can
be defined with respect to the base frame 0Φ(0, t) as a rotation of α about b̄(σ)
and β about n̄(σ) vector. Also the angles α and β can be defined in terms of the
curvature and torsion as follows

α =
∫ s

0
ς(σ, t)dσ β =

∫ s

0
τ(σ, t)dσ (1)

In this case, we assume that the curvature ς and torsion τ are constant. There-
fore, 0Φ(σ, t) can be written as

0Φ(σ, t) = Rot(b̄, α)Rot(n̄, β) i.e., (2)

0Φ(σ) =

⎡⎣ cos(σς) cos(στ) − sin(σς) cos(σς) sinστ
sin(σς) cos(στ) cos(σς) sin(σς) sin(στ)
− sin(στ) 0 cos(στ)

⎤⎦ (3)

The position vector p̄(σ, t) of a point σ on the curve relative to the origin p̄(0)
can be computed by integrating infinitesimal curve lengths along the tangent
vector. In order words, 0p̄(σ), which represents the position of a point σ on the
curve as viewed in the base frame 0Φ(0) is given by

0p̄(σ, t) =
∫ s

0

0Φ(η, t)êxdη (4)

Each segment of the catheter within the heart can be considered to consist of
two rotational joints and a prismatic joint. The joint angle vector can be written
as θ̄ = [0 ς τ ]t and the translational vector can be written as d̄ = [lx 0 0]t The
rotational velocity for a joint in the local Frenet-Serret frame with respect to
the base frame can be written as

0ω(σ) =
∫ σ

0

¯̇θσΦ(ν)dν(for a rotational joint) (5)

0ω(σ) = 0(for a prismatic joint) (6)

Similarly the translational velocities for the rotational and prismatic joints can
be written as

0v(σ) =
∫ σ

0

¯̇
θσΦ(ν) × (σp(ν, t)− σp(ν, t))dν(for a rotational joint) (7)

0v(σ) =
∫ σ

0

¯̇dσΦ(ν)dν(for a prismatic joint) (8)

Equations (5)-(8) together can be written in a compact form as[
0v(σ)
0ω(σ)

]
=
∫ σ

0

[
σΦ(ν, t) [p(ν, t)− p(σ, t)×]Φ(ν, t)

0 Φ(ν, t)

]
Ā

⎡⎣ ḋ
ς̇
τ̇

⎤⎦ dν (9)
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where

Ā =

⎡⎣1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤⎦T

and[a×] �

⎡⎣ 0 −az ay

az 0 −ax

−ay ax 0

⎤⎦ (10)

Using the standard robotics terminology, the Jacobian operator can be defined as

J (σ, t) =
∫ σ

0

[
σΦ(ν, t) [p(ν, t)− p(σ, t)×]Φ(ν, t)

0 Φ(ν, t)

]
Ā(.)dν (11)

From (4), we can estimate the position of the catheter with respect to the base
coordinates for a given configuration of the catheter. However, for the optimiza-
tion algorithm, we will assume that the catheter is in contact with a certain
point inside the left atrium while being constrained at the transseptal puncture
location. Therefore, this gives us the base and end-effector coordinates of the
catheter. It is required to solve the inverse kinematics problem to evaluate the
configuration of the catheter for the distal end of the catheter to be in con-
tact with a particular point inside the heart. The problem of solving the inverse
kinematics of the catheter is formulated as a dynamical problem which requires
only the computation of the forward kinematics, as determined by (4). Let us
represent the solution of the inverse kinematics problem as q̂(t) corresponding
to a trajectory x̂(t) which satisfies the forward kinematics given by (4). Let e(t)
represent the error between the desired Cartesian position x̂(t) and the actual
Cartesian position obtained from the state variable q of the iteration algorithm.
The error dynamics can be written as

ė(t) = ˙̂x(t) − ẋ(t) = ˙̂x(t) − J q̇ (12)

We choose a purely proportional control law to solve for q̇ as given by

q̇ = αJ T e (13)

It has been shown in [9] that by choosing a control law as given by (13), the
error e is bounded and can be made small with an appropriate choice of α, with
the added benefit of less computational complexity.

3 Global Isotropy Index

The Jacobian matrix relates the end-effector frame velocities ẋ and forces f to
the corresponding joint rates q̇ and torques τ , as given by the following equations

ẋ = J q̇ (14)
τ = J T f (15)

Condition number κ of the Jacobian J can be considered as the error amplifi-
cation factor from the joint space to the Cartesian space. Taking the norm on
both sides of (14), we obtain

‖δx‖
‖x‖ ≤ ‖J−1‖‖J ‖‖δq‖‖q‖ (16)

The condition number κ is, therefore, defined as [10]
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κ(J) = ‖J−1‖‖J ‖ =
σ(J(q))
σ(J(q))

(17)

where σ and σ represent the maximum and minimum singular values of J . The
condition number represents the dexterity of the robot at a specified point and
often, the inverse of the condition number is used since the value of κ(J)−1 ∈
[0, 1]. For a robot in a singular configuration, σ = 0, implying that for κ(J)−1 = 0.
The closer κ(J)−1 or κ(J) is to unity, the more accurate and dextrous the robot
is. A configuration of the robot is defined as an isotropic configuration, which is
the most dextrous configuration for the robot, when the condition number κ(J)
corresponding to this configuration is unity. Therefore, in order to ensure that
the robot (in our case the catheter) is well controlled in all regions of the left
atrium, we try to maximize the dexterity or a measure of isotropy. However, it
should be noted that the Jacobian is a function of the local position (in turn joint
variables), therefore the condition number is a local measure of the dexterity of
the robot at any position. The transseptal puncture location should be chosen
such that the dexterity of the catheter is maximized at all points in the left
atria. Therefore, there is a need to define the performance measure as a global
measure rather than a local measure. In [8], the Global Isotropy Index (GII) was
proposed to define the overall dexterity of the robot throughout the workspace.
The GII is defined as

GII(yi) =
min

x0∈Wi

σ(J (x0))

max
x1∈Wi

σ(J (x1))
(18)

where Wi = W (yi) = {xk− yi : xk∈Wa}, yi ∈ Ws. For our application, Wa ∈ �3

is the set of points on the left atrium and Ws ∈ �3 is the set of points on the
septal wall. It should be noted that GII is a global measure as compared to the
condition number which is a local measure. In addition, it should also be noted
that the GII is related to the inverse of the condition number rather than the
condition number itself, in order to restrict the values to the range [0, 1]. A GII
of 1 implies that the catheter is isotropic at every point in the workspace and
behaves uniformly in all directions, which is the ideal condition.

Since linear and circumferential lesions may be needed at most points in the
left atrium depending on the type of atrial fibrillation (persistant, paroxysmal
or permanent), we consider the surgical workspace to be the entire left atrium.
The workspace can be further reduced based on the clinician’s input in the
preoperative stage. The problem is to choose the transseptal puncture location
to maximize the dexterity of the catheter while accessing the surgical workspace.
The dexterity of the catheter in the surgical workspace is quantified in terms of
the GII. The optimization algorithm searches for the point yopt ∈ Ws, which
maximizes the GII, corresponding to the optimal location for the transseptal
puncture. This location constrains the catheter and can be considered as the
base coordinates of the catheter. The distal end of the catheter (considered as
the end-effector) touches the points on the left atrium. For each point on the left
atrium, the configuration of the catheter is estimated using inverse kinematics
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and the corresponding Jacobian J and singular values (σ, σ) are evaluated and
provided to the optimization algorithm.

4 Experimental Results

A pre-operative CT image was first loaded in Slicer 3. The CT image is a
contrast enhanced image consisting of 64 slices. The resolution of each slice
is 0.7mm×0.7mm×0.7mm. An expert radiologist was given the task of manually
segmenting the left atrium, the septal wall and the right atrium. The models
were then generated in Slicer 3 and the corresponding VTK file consisting of the
data points of the model was created. The file consisting of the coordinates of
the left atrium and the septal wall were input to the optimization algorithm. The
optimal transseptal puncture location algorithm was implemented using MAT-
LAB on an Intel Core2 Duo 2.00GHz machine with 1GB RAM. Figure 2 (a) and
(b) show the results of the variation of GII as a function of x and y coordinates
respectively. The minimum value of GII was 0.0112 and the maximum value was
0.4362, a location which provides the best isotropy and in turn dexterity of the
catheter. In addition, the GII values were converted to a scalar VIBGYOR color
map (red representing low GII and violet representing high GII) corresponding
to the points in the VTK file and displayed on the model of the septal wall in
Slicer, as shown in Figure 3(a). Since the catheter is constrained to the transsep-
tal puncture point, the catheter loses some dexterity and this can be noticed in
the low values of the GII at most points on the septal wall, represented by the
red color in Figure 3(a). The mean value of GII on the septal wall was 0.0327.
Figure 3(b) shows the location of the optimal puncture with respect to the left
and right atria. Figure 4(a) shows the mesh plot of the GII on the septal wall.
The colorbar reflects the values of the GII at different locations on the septal
wall.

In Figure 4(b), we have compared the condition number κ for six points on the
left atria corresponding to two transseptal puncture locations S1 and S2. It can
be seen that although the GII corresponding to the point S1 is larger than that

Fig. 2. (a) Graph showing the variation of GII as a function of the x-coordinate, (b)
Graph showing the variation of GII as a function of the y-coordinate
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Fig. 3. (a) Magnified view of the septal wall with the VIBGYOR color map representing
the GII at various locations. Red represents points with low GII while blue represents
points with high GII; (b) Segmented model of the LA, RA, PV and septal wall with
the color map representing the GII at different locations.

Fig. 4. (a) Mesh plot showing the color map overlaid over the septal wall with colorbar
representing the GII, (b) 3D view of 2 points chosen on the septal wall and 6 points
on LA. The condition number corresponding to each point is represented as x1/x2,
where x1 corresponds to the condition number of the point assuming that the catheter
is passing through the suboptimal port S2 and x2 corresponds to the condition number
of the point assuming that the catheter is passing through the optimal port S1.

corresponding to S2, the condition number at point A is smaller (1.01) for S2
compared to the condition number of 1.28 for S1. This implies that the control
of the catheter is more accurate at point A, if S2 is chosen as the transseptal
puncture location. As mentioned earlier, GII is a global measure of the dexterity
or isotropy of the catheter at all points in the left atria while the condition num-
ber is a local measure. It should also be noted that the result of the transseptal
puncture algorithm is highly specific to the patient and is dependent on the
shape and size of the left atrium, position and number of pulmonary veins and
the shape and size of the septal wall.

5 Conclusion

The objective of this work was to determine the optimal transseptal puncture
location and assist the clinician in guiding the needle in real-time to this location.
In this paper, we have developed an optimization algorithm based on the Global
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Isotropy Index (GII) to evaluate the optimal position of the transseptal puncture
for left atrial cardiac ablation. As part of this algorithm, we have extended the
continuum robot model to describe the kinematics of the catheter within the left
atrium. Based on this model, the configuration of the catheter was evaluated such
that the catheter makes contact with the desired points on the left atrium with
constraints imposed on its motion by the transseptal puncture. The choice of
the transseptal puncture location affects the uniformity of catheter manipulation.
The optimal puncture location ensures maximum dexterity of the catheter within
the left atrium and also ensures that the catheter has the capability of reaching
various locations in the heart. Successful implementation of this algorithm in
clinical practice will eventually lead to reducing the time necessary to complete
the procedure, improving access to difficult regions in the left atrium, reducing
the amount of manipulations of the catheter required to reach a point in the left
atrium and minimizing the amount of fatigue for the clinicians.
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6. Adhami, L., Coste-Manière, È., Boissonnat, J.-D.: Planning and simulation of
robotically assisted minimal invasive surgery. In: Delp, S.L., DiGoia, A.M., Jara-
maz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 624–633. Springer, Heidelberg
(2000)

7. Badani, K.K., Muhletaler, F., Fumo, M., Kaul, S., Peabody, J.O., Bhandari, M.,
Menon, M.: Optimizing robotic renal surgery: The lateral camera port placement
technique and current results. Journal of Endourology 22, 507–510 (2008)

8. Stocco, L., Salcudean, S.E., Sassani, F.: Fast constrained global minimax optimiza-
tion of robot parameters. Robotica 16, 595–605 (1998)

9. Sciavicco, L., Siciliano, B.: A solution algorithm to the inverse kinematic problem
for redundant manipulators. IEEE Transactions on Robotics and Automation 4,
403–410 (1988)

10. Merlet, J.P.: Jacobian, manipulability, condition number, and accuracy of parallel
robots. Journal of Mechanical Design 128, 199–206 (2006)

http://www.hansenmedical.com/


Towards Guidance of Electrophysiological
Procedures with Real-Time 3D Intracardiac

Echocardiography Fusion to C-arm CT

Wolfgang Wein1, Estelle Camus2, Matthias John3, Mamadou Diallo1,
Christophe Duong2, Amin Al-Ahmad4, Rebecca Fahrig4, Ali Khamene1,

and Chenyang Xu1

1 Imaging & Visualization Dept., Siemens Corporate Research, Princeton, NJ, USA
2 Siemens Healthcare, Ultrasound Business Unit, Mountain View, CA, USA

3 Siemens Healthcare, AX Business Unit, Forchheim, Germany
4 Department of Radiology, Stanford University, CA, USA

Abstract. This paper describes a novel method for improving the nav-
igation and guidance of devices and catheters in electrophysiology and
interventional cardiology procedures using volumetric data fusion. The
clinical workflow includes the acquisition and reconstruction of CT data
from a C-arm X-ray angiographic system and the real-time acquisition of
volumetric ultrasound datasets with a new intracardiac real-time 3D ul-
trasound catheter. Mono- and multi-modal volumetric registration meth-
ods, as well as visualization modes, that are suitable for real-time fusion
are described, which are the key components of this work. Evaluation on
phantom and in-vivo animal data shows that it is feasible to register and
track the motion of real-time 3D intracardiac ultrasound in C-arm CT.

1 Introduction

Pre- and intra-procedural imaging is an integral part of many cardiac inter-
ventions, both surgical and minimally invasive (percutaneous) ones. Regarding
high-resolution static pre- and intra-operative imaging, Computed Tomography
(CT), including C-arm CT, is most widely used for diagnosis and planning. How-
ever these imaging modalities do not have real-time capabilities. As a real-time
interventional modality, intra-cardiac echocardiography (ICE) is now widely used
in many cathlabs, e.g. for guidance of left atrial ablation procedures.

We have developed an intra-cardiac ultrasound catheter (Siemens ACUSON
AcuNavTM V), which is capable of acquiring ultrasound volumes from within
the heart in real-time [1]. This novel imaging modality may, on its own, have
an tremendous impact on intra-cardiac procedures. However, even 2D ICE tech-
nology, when used in the electrophysiology (EP) environment, has been found
to require adequate training and experience in order to fully exploit its benefits.
Finding the orientation of the ICE catheter within the body and recognizing
anatomical structures can be challenging, especially when the catheter is moved
quickly. The 3D capability of our new system allows fusion of real-time ICE

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 9–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Workflow overview

data with pre-operative or intra-operative high-resolution CT or MRI images,
potentially reducing procedure time and improving treatment outcome. Baseline
anatomical images can be combined with ICE imaging, which provides real-time
monitoring of morphological and functional changes of cardiac tissue.

The CartoSound module (Biosense Webster, Israel) allows to superimpose 2D
real-time ICE with an integrated magnetic position sensor to pre-operative infor-
mation. Related work regarding registration and overall fusion setup is described
in [2] (using heart surface points as registration features), and [3]. In the latter,
an ECG- and respiration-gated ICE sweep is registered to CT, by manual ini-
tialization and image-based refinement. Thereafter, the position sensor update
allows for live fusion of the 2D ICE with superimposed CT slices and segmented
structures.

In our work, we would like to take advantage of the capabilities of the novel
real-time 3D ICE catheter. In order to minimize set-up time, increase flexibility,
and ensure compatibility to any EP mapping solution used in clinical practice
we target a purely image-based technique for registration.

2 Methods

2.1 Proposed Clinical Workflow

In the following, we assume the case of an ablation procedure to treat atrial
fibrillation. The proposed workflow (as outlined in figure 1) can also be used
e.g. for guidance of transseptal punctures or guidance of intracorporeal devices
during cardiac interventions.

At the beginning of the procedure, a baseline cardiac C-arm CT reconstruc-
tion with contrast agent injection is performed. Optionally, automatic or semi-
automatic segmentation of the heart chambers (in particular of the left atrium)
and the esophagus may be performed. Then, the ICE catheter is inserted into
the body and guided to the heart (typically to the right side via the femoral or
jugular vein), if needed, under fluoroscopic guidance. The ICE-CT registration
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is initialized by locating the ICE catheter tip either in a bi-plane fluoro view,
or in a low-dose C-arm CT reconstruction. This data is in turn automatically
registered to the baseline volume. Next, an ICE acquisition is performed, typi-
cally by rotating the ICE catheter such that it covers the whole left atrium. This
recording is automatically registered to the baseline CT, using the algorithms
described below. After visual assessment, this process can be repeated depending
on the quality of the alignment. Thereafter, the actual EP procedure, which in-
cludes electromapping and ablation can be executed under fusion imaging. The
position of the ICE information within the C-arm CT volume can be updated
any time by image-based tracking and/or additional fluoroscopic acquisitions.

In the next section, we describe algorithms supporting this workflow by pro-
viding image-based registration and tracking of real-time 3D ICE within C-arm
CT.

2.2 Cardiac Phase Detection

Since the baseline CT data is only available in one cardiac phase (e.g. end-
diastole), only volumes of the live ICE data corresponding to that phase can be
considered for registration. ECG gating is a common solution; however the ECG
signal might be delayed with respect to actual cardiac motion, or, in the worst
case, not directly be related at all, in patients with heart arrhythmia. An image-
based technique for detecting periodic motion has therefore been chosen that
uses extrema of the cumulated phase shift in the spectral domain of successive
image frames [4]. End-diastole ICE frames are tagged with this method and then
used for image-based registration to the baseline data1.

2.3 Registration of Single Volume

In order to allow image-based registration of ICE to C-arm CT, the modalities
have to be made more similar in a pre-processing step, and then a nonlinear
optimization refines the transformation parameters with respect to a measure of
the alignment quality. For CT-ultrasound registration in the abdomen, the state-
of-the-art uses a simulation of ultrasonic echogenicity and reflection from CT,
and a specific similarity metric to overcome their unknown combination [5]. In
the case of echocardiography, only the reflection term is significant, showing the
myocardial walls of the cardiac cavities. The blood inside the chambers results
in completely hypoechoic regions. In addition, the diffusivity of the reflections
at cardiac walls is relatively high, and shadowing does not usually occur within
our anatomy of interest (i.e. imaging the left atrium from the right atrium). We
therefore drop the simulated echogenicity and orientation-dependency from the
approach in [5], and precompute a global simulated ultrasound reflection volume,
henceforth denoted R, from the baseline C-arm CT volume. The registration of
a single end-diastole ICE volume U to the baseline volume is then described as

arg max
φ

CC
(
U,R ◦ T−1(φ)

)
(1)

1 We would like to thank Hari Sundar from SCR for providing the phase component.
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where T is the rigid homogeneous transformation matrix mapping U on R, pa-
rameterized by a 6-vector φ. CC is the Pearson’s correlation coefficient, which we
use because it is independent of scale and bias between the simulated reflection
and actual ultrasound intensities. R ◦ T−1 denotes a resampling of R with the
transformation T−1. The scan lines of the ICE data are scan converted into a
cartesian grid, which both serves as a low-pass filter and makes the resolution
more isotropic.

An initialization is provided by manually extracting the position of the ICE
catheter from a bi-plane fluoroscopic acquisition, or a low-dose C-arm CT re-
construction. The optimization then consists of a global search on the rotation
around the catheter axis, followed by a Simplex direct search method.

2.4 Trajectory Registration

A single ICE volume provides a limited field of view within the cardiac anatomy,
potentially resulting in multiple ambiguous locations suggesting good alignment.
Because the physician is maneuvering the ICE catheter within the heart to image
different anatomical regions of interest, successive end-diastole ICE volumes can
be used to create an extended field-of-view volume. These volumes need to be
brought into correct alignment themselves. We simultaneously optimize mono-
and multi-modal similarity metrics for that purpose. Now the pose parameters
of a sequence of successive ICE frames are refined, until both the alignment to
the baseline C-arm CT, as well as their internal alignment are optimal:

arg max
φ

1
N

N∑
i=1

CC(Ui, R ◦ T−1
i )− α

N − 1

N−1∑
i=1

SAD(Ui, Ui+1 ◦ (T−1
i Ti+1)) (2)

As before, the correlation coefficient serves as multimodal measure. Sum of Ab-
solute Differences SAD(U, V ) = 1

|Ω|
∑
|ui − vi| works best for measuring the

alignment of successive ICE volumes, where the flexibility of CC is not needed.
Since it is a dissimilarity measure, we negate and weight it with a parameter α.
Rather than optimizing the unconstrained problem with N ∗ 6 degrees of free-
dom (DOF), we manipulate only the first and last transformation, assuming all
volumes are located on a linear trajectory:

φ =
(

φ0
φ1

)
; Ti = T (φ0) exp

(
i− 1
N − 1

log(T (φ0)−1T (φ1))
)

(3)

Here, Lie manifold based interpolation of transformation matrices is used; the
optimization problem is reduced to 12 DOF. Note that we do not have to weight
the individual SAD values with respect to volume overlap, because by using this
manifold interpolation all successive volumes will have equal overlap.

For arbitrarily long ICE sequences, or continuous motion tracking, the regis-
tration described by equation 3, is repeatedly applied to an overlapping subset
of all volumes.
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2.5 Implementation Details

We use a software framework developed in C++, OpenGL and GLSL. As is
common nowadays, we have accelerated scan-conversion, volume resampling,
similarity measure computation, and visualization, by implementing them on a
graphics processing unit (GPU). The incoming ICE volumes are immediately
uploaded to a ringbuffer of 3D textures in graphics memory.

The registration of a single catheter motion with 10 ICE volumes takes ≈ 0.6s
(where each ICE volume is used with ≈ 130K voxels) on an Nvidia GeForce 8800
GTX GPU, compared to 27s in a reference software implementation.

For enhancing the visual perception of the ICE data, an efficient shading tech-
nique is used for volume rendering, that does not require 3D volume gradients
[6]. The real-time visualization comprises three blended multi-planar reformatted
(MPR) slices of the C-arm CT volume and ICE superimposed in color, cropped
3D volume rendering, as well as mesh visualization of an optional four-chamber
segmentation of the heart, see figure 4(b).

3 Experiments

3.1 Phantom Data

We conducted phantom experiments with the Siemens ACUSON AcuNav V
ICE catheter submerged in an acrylic water container, which was cushioned
with rubber material to minimize acoustic reflections at the walls. It was placed
on the patient table of a Siemens Axiom Artis angiographic suite, such that
we could acquire 3D C-arm CT (software: syngo c© DynaCT Cardiac) at any
time. We attached a magnetic tracking sensor (Ascension MicroBird) to the ICE
catheter and recorded both static and dynamic sequences on clay phantoms (a
left atrium model and a small Halloween pumpkin, the latter chosen because of
its sharp facial imaging features, but also seasonally inspired).

In order to use the magnetic tracking information, spatial calibration has
to be performed to derive the location of the actual ICE catheter image with
respect to the tracking sensor’s coordinate system. Because of the unique imaging
characteristics of the novel real-time 3D ICE catheter none of the off-the-shelf
calibration techniques seemed appropriate. We decided to use a simultaneous
optimization of the calibration pose φC and registration φR, comparing 12 ICE
volumes from a wide sweep across the clay objects against the C-arm CT volume:

arg max
φ

N∑
i=1

CC
(
Ui, R ◦ (TR(φ1)T i

T TC(φ0))−1) ; φ =
(

φC

φR

)
(4)

where TC(φC) is the calibration transformation (ICE to sensor), T i
T the tracking

matrix (sensor to tracker reference), and TR(φR) the registration transformation
(tracker reference to CT). R is here replaced with the original C-arm CT volume,
because for such water/clay data the CT measurements correspond directly to
ultrasonic reflection. We verifed the calibration with a follow-up C-arm CT of
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Fig. 2. Evaluation on phantom data

the ICE catheter mounted in a still configuration. The result allowed us to depict
both static and dynamic real-time 3D ICE sequences fused with the respective C-
arm CT data (figure 2). We then evaluated the trajectory registration method
using the tracked and calibrated ICE as Ground Truth, on 18 volumes from
another sweep over both clay objects. For many algorithm executions, using
7−12 ICE volumes at a time for minimizing equation 3, advancing 1−4 volumes
in between, resulted in a mean accuracy in translation and rotation of 2.2mm
and 1.8◦ respectively over the entire motion. The weighting α interestingly has
minor influence, as long as it is not chosen to be extremely large. In that case,
the multi-modal component is ignored, and the registration of successive frames
creates a drift (error at last frame 7.4mm, 7.4◦).

3.2 Animal Studies

We are currently evaluating the real-time 3D ICE imaging modality itself and
our approach for ICE-CT fusion (works in progress) in a series of animal and
human studies. In the following, we report on initial results from data acquired
during an acute pig study2.

The baseline C-arm CT reconstruction was executed in forced breath-hold
and cardiac gating. All ICE recordings were done during normal respiration.
The used ICE catheter did not have a position sensor integrated in its housing.
Therefore, we defined quasi-ground truth registration on the recorded ICE se-
quences, using all the advanced visualization at our disposal (figure 4). Figure
3 depicts a comparison of physician-defined ground truth and the result of our
image-based registration (section 2.3). For four data sets (showing aortic valve,
left atrium, left ventricle), the average discrepancy between expert-defined and
image-based registration was 16mm and 11◦.

We also evaluated the trajectory registration on a recording where the ICE
catheter was rotated within the right atrium. The first volume was roughly
aligned by a physician, and the rotation direction of the trajectory indicated by
2 The procedure was performed on a 35-kg pig according to a protocol approved by

Stanford University’s Institutional Animal Care and Use Committee.
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(a) Ground Truth

(b) after automatic registration

Fig. 3. Cross-sections of CT reflection overlayed with single end-diastole ICE volume

manually dragging the series of end-diastole volumes. The automatic registration
then nicely pulls the whole sequence into good visual alignment, see figure 4(a).

4 Conclusion

We presented the first image fusion results with a novel real-time 3D intra-cardiac
ultrasound catheter. We showed that automatic registration to C-arm CT data,
and appropriate fused visualization for guiding EP procedures, are possible, af-
ter a rough registration initialization. The underlying technological novelties are
the use of an image-based detection of cardiac phase, an algorithm for simulta-
neous mono- and multi-modal registration of a trajectory of ICE volumes, and
dedicated real-time visualization. Furthermore, we detailed a workflow, which
could enable such a fusion system to be used in clinical practice in the future,
with all necessary imaging integrated in the interventional suite.

We evaluated our methods quantitatively on phantom data, and qualitatively
on in-vivo pig data. The trajectory registration technique can be used to track
cardiac end-diastole ultrasound volumes within a C-arm CT volume in real-
time, without additional position tracking hardware. A particular advantage is
that our registration is directly based on the anatomical structures in the two
modalities, which inherently compensates for residual cardiac and respiratory
motion. Given the limited field of view offered by the ICE catheter, accurate
registration of 3D ICE volumes with CT datasets is a difficult task. Therefore,
an extended-field-of-view acquisition, as proposed, is crucial for non-ambiguous,
more accurate alignment.
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(a) Trajectory Registration (b) 3D Visualization

Fig. 4. Left: Trajectory registration result of a rotation in a pig’s left atrium, with
ICE (yellow) superimposed onto the CT gradient volume in 3 MPRs, and their cor-
responding location in 3D. Right: 3D visualization of an ICE volume with C-arm CT
and outlines from a four-chamber segmentation (with 3 MPRs in the left column).

Further experimental investigations are needed in order to create proper
ground truth registration and refine our method in terms of robust, contigu-
ous tracking anywhere in the heart. Particularly, the limitations of the concept
of a linear motion trajectory needs to be assessed more precisely in the case of
the ICE catheter, and could be addressed with more powerful motion models.

References

1. Wilser, W., Barnes, S., Garbini, L.: Helical acoustic array for medical ultrasound.
United States Patent No. 20,080,125,659 (May 2008)

2. Zhong, H., Kanade, T., Schwartzman, D.: Virtual touch: An efficient registration
method for catheter navigation in left atrium. In: MICCAI 2006 proceedings (2006)

3. Sun, Y., Kadoury, S., Li, Y., John, M., Resnick, J., Plambeck, G., Liao, R., Sauer,
F., Xu, C.: Image guidance of intracardiac ultrasound with fusion of pre-operative
images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS,
vol. 4791, pp. 60–67. Springer, Heidelberg (2007)

4. Sundar, H., Khamene, A., Yatziv, L., Wein, W., Xu, C.: Automatic image-based
cardiac and respiratory cycle synchronization and gating of image sequences. In:
Yang, G.-Z., et al. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 381–388.
Springer, Heidelberg (2009)

5. Wein, W., Brunke, S., Khamene, A., Callstrom, M., Navab, N.: Automatic ct-
ultrasound registration for diagnostic imaging and image-guided intervention. Med-
ical Image Analysis 12, 577–585 (2008)

6. Sumanaweera, T.: Applying real-time shading to 3D ultrasound visualization. GPU
Gems, ch. 40 (2004)



Personalized Pulmonary Trunk Modeling for
Intervention Planning and Valve Assessment

Estimated from CT Data

Dime Vitanovski2,3, Razvan Ioan Ionasec1,5,�, Bogdan Georgescu1,
Martin Huber2, Andrew Mayall Taylor4, Joachim Hornegger3,

and Dorin Comaniciu1

1 Integrated Data Systems, Siemens Corporate Research, Princeton, USA
2 Software and Engineering, Siemens Corporate Technology, Erlangen, Germany

3 Chair of Pattern Recognition, Friedrich-Alexander-University, Erlangen, Germany
4 UCL Institute of Child Health & Great Ormond Street Hospital for Children
5 Computer Aided Medical Procedures, Technical University Munich, Germany

razvan.ionasec@siemens.com

Abstract. Pulmonary valve disease affects a significant portion of the
global population and often occurs in conjunction with other heart dys-
functions. Emerging interventional methods enable percutaneous pul-
monary valve implantation, which constitute an alternative to open heart
surgery. As minimal invasive procedures become common practice, imag-
ing and non-invasive assessment techniques turn into key clinical tools.
In this paper, we propose a novel approach for intervention planning
as well as morphological and functional quantification of the pulmonary
trunk and valve. An abstraction of the anatomic structures is represented
through a four-dimensional, physiological model able to capture large
pathological variation. A hierarchical estimation, based on robust learn-
ing methods, is applied to identify the patient-specific model parameters
from volumetric CT scans. The algorithm involves detection of piecewise
affine parameters, fast centre-line computation and local surface delin-
eation. The estimated personalized model enables for efficient and precise
quantification of function and morphology. This ability may have impact
on the assessment and surgical interventions of the pulmonary valve and
trunk. Experiments performed on 50 cardiac computer tomography se-
quences demonstrated the average speed of 202 seconds and accuracy of
2.2mm for the proposed approach. An initial clinical validation yielded
a significant correlation between model-based and expert measurements.
To the best of our knowledge this is the first dynamic model of the pul-
monary trunk and right ventricle outflow track estimated from CT data.

1 Introduction

Valvular heart disease (VHD) is an important cardiac disorder that affects a large
number of patients and often requires operative intervention. In most cases, pul-
monary abnormality occurs in conjunction with other heart diseases and can
� Corresponding author.
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be caused by congenital defects and pulmonary hypertension endocarditis. Such
conditions require constant monitoring and a complex clinical workflow which
includes: patient evaluation, percutaneous intervention planning, valve replace-
ment and repair and follow-up studies.

Until recently, the pulmonary valve replacement has been performed surgi-
cally on open heart [1], with all associated risks: high morbidity, incidence of
neurological damage, stroke and repeated valve replacement [2]. Minimal inva-
sive procedures for the pulmonary valve are less traumatic, reducing valve re-
placement risk [3]. Percutaneous pulmonary valve implantation (PPVI) [4] is a
new developed technique for transcatheter placement of a valve stent. The main
difficulties of PPVI are: the assessment of the pulmonary trunk and the right
ventricle outflow track (RVOT < 22mm) before treatment [4], the classification
of patients suitable for the procedure [5] and identification of the exact location
for anchoring the stent [6]. Hence, precise assessment of the morphology and
dynamics is crucial for the pre-procedural planning and successful intervention
of PPVI.

Cardiac CT imaging is often performed when high spatial resolution, soft tis-
sue contrast or dynamics is essential. The key advantage is the ability to acquire
multiple non-invasive and accurate scans required for evaluation. In standard
clinical settings these are the imaging techniques used to gain the information
about the shape of the RVOT and the pulmonary artery. The acquired data (4D
CT) is usually translated into sets of 2D planes for manual quantification and
visual evaluation due to the lack of appropriate methods and tools for processing
3D/4D information. Measurements are tedious to obtain and moreover known
to be affected by inaccuracies, as 2D alignment and sectioning is ambiguous and
might lead to misinterpretation and distensibility [4].

A dynamic personalized model is expected to enhance quantification accu-
racy and non-invasive visualization of the human pulmonary trunk and RVOT.
Recently, Schievano et. al. [5] proposed a patient specific 3D model manual ex-
tracted from MRI data. Although it may positively impact patient evaluation
and procedure planning, the modeling requires a long time, the accuracy is in-
fluenced by user experience, and does not include dynamics.

Within this paper we present a dynamic model of the pulmonary trunk au-
tomatically estimated from CT data. The segmentation task is performed by
fitting a 4D generic model to the patient specific image data. The proposed
workflow, from modeling to quantification, involves three stages. In the first
place, a generic model of the pulmonary artery is computed from a compre-
hensive training set (see Section 2). This is fitted to the available volumetric
scans using robust machine-learning methods in order to obtain a patient spe-
cific physiological model (Section 3). Finally, the morphology and function of
the artery is efficiently quantified from the personalized abstract representation
(Section 4.1).

Extensive experiments are performed on a data set of 50 CT patients (503
Volumes), which includes a diverse range of morphological and pathological vari-
ation and patients’ age. Results of the experiments demonstrated the average
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accuracy of 2.2mm and speed of 202 seconds for the proposed approach on car-
diac CT data (Section 4.2). An initial clinical validation performed demonstrates
a significant correlation between model-based and manually performed expert
measurements.

2 Model Representation

In order to accurately represent morphology and dynamics, our model design
is consistent with the anatomy and physiology of the pulmonary trunk. The
architecture of the model is anatomically oriented and includes all clinical rel-
evant structures. Geometries are represented parametrically using non-uniform
rational B-Splines (NURBS)[7], which is standard mathematical formulation in
computation modeling.

Initially, the pulmonary trunk is represented by five anatomical landmarks:
Trigone (Lt), RVOT (Lrvot), Main-Bifurcation (Lmb), Left-Bifurcation (Llb) and
Right-Bifurcation (Lrb). The Trigone defines the splitting point between the
right ventricle outflow track and the tricuspid valve plane. The RVOT land-
mark is located on the same plane as the Trigone, parallel to the tricuspid valve
plane. Main-Bifurcation defines the center of the trunk branching, while Left-
Bifurcation and Right-Bifurcation mark the branches’ end points (see Fig. 1(a)).

Constrained by the landmarks, the artery’s center lines form the second ab-
straction layer (see Fig. 1(b)). The Main Center Line is bounded by the RVOT
and Bifurcation. The Left and the Right Center Lines extend from the main
bifurcation landmark to the Left-Bifurcation and Right-Bifurcation landmark,
respectively.

The main pulmonary artery alongwith its bifurcations is modeled as parametric
closed surface similar to a deformed cylinder. NURBS are used as the parametric
representationdue to the compactmathematical formulation and convenient prop-
erties. The topology and morphology of the arterial structure is characterized and
constrained by the previously defined landmarks and centerlines. In order to ob-
tain the physiological model of the pulmonary artery, a cylindrical structure along
with the center line has been computed (see Fig. 1(c)).

Fig. 1. Model representation
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3 Model Estimation

The abstract parameters of the pulmonary trunk proposed in Section 2 are de-
termined for a specific patient from the available data (four dimensional CT).
A specific instance of the model is constrained in four-dimensional Euclidean
space by 5 landmarks, 3 centerlines (determined by 27 discrete points) and 3
surfaces (determined by 966 control points) cumulating into 5*T1 + 3*T*(9 +
322) parameters. The high dimensionality of the parameter space makes the di-
rect estimation in the original space a very difficult task. Therefore, we proposed
a four-step approach by first detecting a piecewise similarity transformation, fol-
lowed by landmark, center line and full dynamic model detection.

3.1 Similarity Transformation and Landmark Detection

For each landmark except the triagone, which is included into the RVOT box
θrvot), we define a corresponding bounding box, parameterized by an affine trans-
formation θ = (X,Y, Z, α, β, χ, Sx, Sy, Sz). Each box characterizes one anatom-
ical structure: RVOT plane is defined by θrvot with orientation given by the
center line’s tangent, θmb defines the main bifurcation plane with orientation or-
thogonal to the trunk, respectively θlb and θrb for the left and right bifurcation
plane.

As the object localization task is formulated as a classification problem, a
robust detector which uses 3D Haar and Steerable Features [8] is trained using
a PBT (Probabilistic Boosting Tree) [9]. In order to efficiently perform learning
in high dimension space, we marginalize the search space by means of MSL [10]
into subspaces which are gradually increased. Consequently, the parameter es-
timation problem is splitted into three steps where classifiers, parameterized by
the current subset of the affine values, are sequentially trained on the subspaces:
position, position-rotation and full affine transformation. A further speed im-
provement is achieved by using a pyramidal-based coarse-to-fine approach and
searching in low-resolution (3mm) volume.

The estimated parameters θi initialize the landmarks (Lt, Lrvot, Lmb, Llb, Lrb)
by its position and orientation and constrain the search domain Di by its scale.
A further accuracy improvement is achieved by learning a discriminative 2 Level
PBT classifier HL which learns the target distribution

p(Li|xl, yl, zl, I ) = H i(xl, yl, zl|I ), (xl, yl, zl) ∈ Di, i = 1..5 (1)

in 1mm volume resolution, where p(Li|xl, yl, zl, I) is the probability of the pres-
ence of Li at location (xl, yl, zl).

3.2 Center Line Detection

In this step we initialize the center lines by previously detected landmarks.
The main center line which goes through the center of the pulmonary trunk
1 T represents discrete time steps (10 for a regular 4D cardiac CT acquisitions).
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is bounded by the Lrvot and Lmb, whereas the left and right center lines are
constrained by the Llb and Lrb, respectively Lmb (see Section 2).

Automatic refinement of the center-line curves is achieved by applying a ro-
bust circle detector, which is trained using the PBT algorithm and Haar features.
In the learning phase positive and negative samples are generated in circular
form, following the annotated curves. In the detection stage, an incremental ap-
proach is used for searching 3D center points Qi on a series of parallel planes.
These are bounded by the corresponding landmarks, while their normal is given
by the initial center-line and updated after each detected center point.

A least-square approach is used to fit a parametric NURBS curve C to the dis-
crete set of detected center points Qi. The LSE problem is solved by minimizing
an objective function (Eq.2) with respect to the control points P k

E =
N−1∑
i=1

|Qi − C(ūi)|2, C(u)︸ ︷︷ ︸
u∈[0,1]

=
∑n

k=0 Nk,d(u)wkP k∑n
k=0 Nk,d(u)wk

(2)

3.3 Dynamic Model Detection

The full surface model is initialized by projecting a mean shape, averaged over
the whole annotations from the training set, into the patient specific anatomy.
The projection is achieved using a piecewise affine transformation defined from
the detected landmarks and center-lines.

A set of center-points Ci are equidistantly sampled along the detected center-
lines. At each location, we construct a local coordinate system, using the center-
line’s tangent and projected RVOT-Triagone to define the orientation. The control
points P k are associated to one of the local coordinate systems, based on their
Euclidean distance to the local origin. Using a coordinate system transformation
we map the mean-shape control points P k to the corresponding image location
(see Fig. 2).

The transformed mean model provides accurate global fitting into the pa-
tient’s specific anatomy. However, further local processing for precise object de-
lineation is required. A boundary detector, trained by PBT in combination with
steerable features, tests a set of hypotheses along the surface normal and moves
the shape towards position with highest boundary probability. Spatially smooth

Fig. 2. Piecewise mean model placement
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surface is obtained by projecting the detected surface into the corresponding
shape subspace [11].

Temporal consistency of the dynamic model is enhanced similar as in [12].
One-step-forward prediction approach is applied to estimate the motion prior
using motion manifold learning, which gives an appropriate initialisation for the
boundary detectors. Optical flow is fused with tracking by detection to achieve
temporal consistency.

4 Results

4.1 Results on Pulmonary Trunk Model Estimation

The performance of the proposed approaches is evaluated on 50 4D CT (503 vol-
umes) studies, associate with a manual annotation considered to be the ground
truth. Included data of patients with various ages (from 5 months infant to 65
years old adult) lead to significant differences in morphology and pathology of
the pulmonary trunk. CT data is acquired using different protocols, resulting in
volume sizes between 153x153x80 and 512x512x350 and voxel resolutions from
0.28mm to 2.0mm.

The accuracy of our detection framework is evaluated by using a three-fold
cross validation. Table 1 summarizes the results from the cross-validation for the
full model fitting. The detection error for the landmarks and the bounding box
is measured from the Euclidean distance between the ground truth and detected
landmarks, respectively bounding box corners. The point-to-mesh and point-
to-curve measurement error was used for the boundary and the center lines
detectors, respectively. As expected, the error constantly decreases with each
estimation stage. We obtain an average precision of 2.2 mm and computation
time of 202 sec on a standard 2.0GHz Dual Core PC.

4.2 Results on Clinical Evaluation

The accuracy of the automatic quantification of the pulmonary trunk is demon-
strated by comparing a set of morphological and dynamic based measurements
derived from the model to expert measurements and literature reported values.

Schievano et.al. [5] has proposed a set of measurements: max (RVOT) diam-
eter, min diameter and diameter at the main bifurcation region from which the
exact location for anchoring the valve stent is defined [6]. PPVI intervention

Table 1. Detection accuracy

Mean Error(mm) Median(mm) Std.Dev(mm)
Bounding box 6.5 7.1 2.7
Landmarks 3.9 4.5 2.1
Center Line 4.5 4.6 1.9
Boundary 2.2 1.1 2.1
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Table 2. Model-based quantification error with respect to literature(upper table) and
expert measurements(lower table)

(mm) Observed Literature
Bifurcation Diameter 30.2 ±1.6 30.7 ±3.6

(mm) Mean Err. Std. Dev.
Min Diameter 1.99 0.64
Max Diameter 4.06 2.09
Bifurcation Diameter 1.04 0.65

is avoided by patients with RVOT diameter > 22mm due to device limitation
[1,4,5]. Hence, the accuracy of the measurements is crucial for the success of
the PPVI. The evaluation results of the proposed model-based quantification
method are compared with results from the literature [13] and from experts (see
Table 2).

4.3 Results on Model Based Patient Selection Suitable for PPVI

The morphology of the pulmonary trunk is a major determinant of suitability for
PPVI [5]. Intervention in unsuitable patients exposes patients to unnecessary in-
vasive catherization. A valve stent placed in such patients has a high probability
of proximal device dislodgment. Schievano et.al. [5] proposed the classification
of various morphologies in five groups: pyramidal shape (type I), constant diam-
eter (type II), inverted pyramidal shape (type III), wide centrally but narrowed
proximally and distally (type IV), and narrowed centrally but wide proximally
and distally (type V). Patients from type I are considered to be unsuitable for
PPVI due to the narrow artery and high probability of device migration. Hence,
the main challenge lies in discriminating anatomies of type I from other classes.

Similar as in [14] we propose a robust shape-based patient selection for PPVI.
Shape features extracted from the estimated pulmonary trunk (see Section 2)
are used to learn a discriminative distance function using the Random Forest

Fig. 3. Left: examples of 3D models for each morphological type. Right: Model-based
patient classification: patient unsuitable (light cyan cluster) / suitable (light violet
cluster) for PPVI intervention.
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in the product space. This is applied to classify subjects into two classes: PPVI
suitable and PPVI unsuitable.

The results of our method are illustrated in Fig. 3. The accuracy of the model
based classification is validated by leave-one-out cross-validation. We observed
correct classification in 91% of the 50 cases. The proposed method has the po-
tential to significantly improve accuracy and reproducibility of patient selection
for PPVI.

5 Discussion

This paper proposes a novel dynamic model for morphological and functional
quantification of the pulmonary trunk and RVOT for PPVI intervention. Inte-
grating all the relevant data obtained during a CT scan in a holistic fashion, the
physiology of the patient’s anatomy is accurately represented. An efficient and
robust learning-based algorithm was proposed to compute a patient specific pul-
monary model from the available image data (CT). The estimated model can be
utilized to extract morphological information, direct measurements of the pul-
monary trunk and the pulmonary dynamics over the cardiac cycle. Automatic
model-based dynamic measurements improve the patient evaluation and selec-
tion as well as the planning of the interventional procedure. Shape-based mor-
phology type assessment in combination with RVOT size computation provides
precise selection of proper morphology appropriate for percutaneous implantable
pulmonary valves and avoids unnecessary patient catheterization.
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Abstract. The manipulation of fast moving, delicate tissues in beat-
ing heart procedures presents a considerable challenge to surgeons. We
present a new robotic force stabilization system that assists surgeons by
maintaining a constant contact force with the beating heart. The system
incorporates a novel, miniature uniaxial force sensor that is mounted to
surgical instrumentation to measure contact forces during surgical ma-
nipulation. Using this sensor in conjunction with real-time tissue motion
information derived from 3D ultrasound, we show that a force controller
with feed-forward motion terms can provide safe and accurate force sta-
bilization in an in vivo contact task against the beating mitral valve
annulus. This confers a 50% reduction in force fluctuations when com-
pared to a standard force controller and a 75% reduction in fluctuations
when compared to manual attempts to maintain the same force.

1 Introduction

Beating heart surgical procedures remove the need for cardiopulmonary bypass,
which has a number of well known and serious side effects for patients [1]. How-
ever, surgical manipulation inside the beating heart is challenging because heart
motion exceeds the approximately one Hz human tracking bandwidth [2]. The
mitral valve annulus, for instance, traverses most of its trajectory and undergoes
three direction changes in approximately 100 ms, making the application of a
constant, firm force for surgical tasks like mitral valve annuloplasty difficult [3].

These challenges have spurred recent interest in robotically-assisted inter-
ventions [3,4,5,6]. In prior work, we developed a 3D ultrasound-guided motion
compensation system that uses an actuated, handheld robotic instrument to
track beating intracardiac structures [3]. While this approach increases surgi-
cal capabilities in certain tasks [3,6], problems arise when the instrument comes
into sustained contact with tissue because small positional errors can lead to
significant forces and the deformation of tissue by the instrument reduces the
usefulness of subsequent position measurements. In this work we consider a more
direct approach by using force control of the instrument against the surgical tar-
get. We further show that feeding forward tissue motion information from 3D
ultrasound can improve the performance of a force controller in this application.
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Fig. 1. (A) System overview and (B) motion compensation instrument. The instrument
is controlled to a constant force against beating heart structures. Feed-forward motion
estimates are derived from a 3D ultrasound tissue tracker and predictive filter.

Beating heart force control requires the development of a force sensor that
can be used inside the heart. Force sensors have been developed for minimally
invasive investigations [7], but they are not capable of integration with existing
surgical instruments for simultaneous measurement and modification of beating
heart tissue. Safety is also an important consideration when robots are used
in surgery. While force control stability and performance have been studied in
general settings [8], they have not been examined for beating heart applications.

In this work, we present a robotic force stabilization system for beating heart
tissue manipulation (Fig. 1A). The system uses a novel, miniature uniaxial force
sensor that can measure contact forces inside the heart. It is mounted to an
actuated, handheld surgical instrument that we term the motion compensation
instrument (Fig. 1B) for interaction with moving intracardiac structures. We
describe the design of a feed-forward force controller for enhanced safety and
accuracy, with feed-forward information provided by real-time 3D ultrasound
tissue tracking. We validate the system in the context of beating heart mitral
valve annuloplasty in an in vivo experiment in a Yorkshire pig model.

2 Force Sensor Design

A number of considerations guide the design of the force sensor for our system.
First, the sensor should be located at the instrument tip to accurately measure
contact forces. Second, its use inside the heart dictates that it be small, com-
pletely sealed from blood, and electrically passive to avoid disrupting conduction
in the heart. Finally, to be useful in beating heart mitral annuloplasty, the sensor
must be compatible with the deployment of surgical anchors.

Optically-based sensing is attractive in this setting because it does not require
electrical trasmission to the sensor, has low noise, is readily miniaturized, and
permits inexpensive, disposable sensors. The sensing principle relies on measur-
ing small displacements of a reflective plate relative to the ends of optical fiber
pairs (Fig. 2). Three pairs of optical fibers, with each pair comprised of one
transmitting and one receiving fiber, are placed in an equilateral triangle for-
mation at the base of the sensor to ensure that the reflective plate deflection
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Fig. 2. Tip forces displace a reflective
plate and increase light intensity to the
receiving optical fibers
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Silicone Seal

Fig. 3. A 14 gauge needle passes through
the sensor to deploy surgical anchors

is captured entirely. An elastomer element is placed between the optical fiber
ends and the reflective plate to convert force to displacement. The displacement
modifies the light intensity measured by the receiving fiber, which is converted
to a voltage by a phototransistor circuit.

Figs. 1B and 3 show the prototype force sensor. It is built to encompass a
14 gauge needle for the deployment of surgical anchors. Polysiloxane elastomer
provides low modulus and hysteresis. The rigid housing is made of Delrin for
good appearance in ultrasound images. The external diameter and length of the
force sensor are 5.5 mm and 12 mm, respectively. A thin film of silicone seals the
exterior surface of the sensor to shield the internal components from fluid motion.
Characterization of the force sensor against a commercial sensor (ATI mini40)
indicates that our sensor has a 0.17 N RMS accuracy. This was determined by
applying 10 Hz bandlimited loads from 0-5 N and up to 30o incidence angle.
Calibration was performed in 37o C water to match in vivo thermal conditions.

3 Force Control with Feed-Forward Motion Information

Safety is a major concern when employing robotics in surgery. In particular,
a damped, stable system is desired to ensure that the robot will not oscillate
in response to sudden heart motions. Unfortunately, this is at odds with main-
taining fast system response to reject force disturbances. It can be difficult to
meet both criteria simultaneously when small, unknown time delays are present
in the system. Feed-forward target motion information can improve force con-
troller performance against a moving target [9] and in this section we explore its
use to enhance safety and performance in the context of beating heart surgery.

The motion compensation instrument may be modeled as a mass m and
damper b subjected to a commanded actuator force fa and environment con-
tact force fe. The damper b captures the effects of friction in the instrument,
friction at the insertion point to the heart, and fluid motion. Approximating the
environment as a spring of stiffness ke yields the following system dynamics

mẍ + bẋ = fa − ke(x − xe), (1)
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where x is the instrument tip position and xe would be the position of the tissue
target if it were not deformed. Now consider a standard force error negative
feedback control law [8]

fa = fd + Kf (fd − fe)−Kvẋ, (2)

where Kf and Kv are controller gains and fd is the desired force. For brevity, we
henceforth refer to the controller of (2) simply as force control. Combining (1)
and (2) and applying the Laplace transform gives the contact force relationship

Fe(s) =
ke

m (1 + Kf)
C(s)

Fd(s)−
kes(s + Kv+b

m )
C(s)

Xe(s), (3)

where C(s) = s2 + Kv+b
m s+ ke

m (1+Kf ) is the closed-loop characteristic equation.
Eq. (3) makes explicit that target motion xe is a disturbance that perturbs fe

from fd. Controller gains Kf and Kv must be chosen both for system stability
and good rejection of xe. The latter can be achieved by setting the natural
frequency of the system much greater than the motion bandwidth of xe. This
also makes the system vulnerable to high frequency noise.

Suppose we would like to set the damping coefficient ζ = 1.05 for a partic-
ular choice of the natural frequency fo using second order system design tech-
niques [10]. Viscoelasticity in the force sensor can result in small time delays that
severely reduce the actual ζ at large fo (Fig. 4). Noting that heart motion has
significant spectral components up to at least 10 Hz [4,5,6], it is clear that it is
difficult to obtain sufficient system bandwidth to safely reject xe without precise
knowledge of the time delay τ . Furthermore, empirically tuning the controller
during a procedure is unfeasible for safety reasons.

An alternative strategy employs feed-forward motion information in the con-
troller. Consider the control law

fa = fd + Kf (fd − fe) + Kv( ˆ̇xe − ẋ) + b ˆ̇xe + m ˆ̈xe, (4)

which is (2) augmented with feed-forward estimates of the target velocity ˆ̇xe and
acceleration ˆ̈xe. The contact force equation from (3) becomes

Fe(s) =
ke

m (1 + Kf)
C(s)

Fd(s)−
kes(s + Kv+b

m )
C(s)

(Xe(s)− X̂e(s)).
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Observe that the use of feedforward terms ˆ̇xe and ˆ̈xe enable the cancellation of
the disturbance xe without the need to greatly increase the natural frequency of
the system. The controller can then be designed with low natural frequency to
avoid the effects of delay on damping and stability.

4 Tissue Motion Estimation with 3D Ultrasound

To obtain the motion terms needed in the feed-forward controller, we must first
determine the position of the tissue in 3D ultrasound. To do this, we employ the
real-time tissue segmentation algorithm from [3], which uses the instrument to
designate a tissue target in the 3D ultrasound volumes. Fig. 5 depicts using this
method to track a point on the mitral valve annulus in a beating porcine heart.

As in previous work [6], we model heart motion as a time-varying Fourier
series with an offset and truncated to m harmonics

xe(t) = c(t) +
m∑

i=1

ri(t) sin(θi(t)),

where c(t) is the offset, ri(t) are the harmonic amplitudes, and θi(t)� i
∫ t

0 ω(τ)dτ
+ φi(t), with heart rate ω(t) and harmonic phases φi(t). Prior to contact, mea-
surements from the tissue tracker are used to train an extended Kalman filter
to provide estimates of the model parameters ĉ(t), r̂i(t), ω̂(t), and θ̂i(t). These
parameters are used to generate smooth feed-forward velocity and acceleration
terms for the force controller of (4) using the derivative equations

ˆ̇xe(t) =
m∑

i=1

r̂i(t)iω̂(t) cos(θ̂i(t)), ˆ̈xe(t) = −
m∑

i=1

r̂i(t)(iω̂(t))2 sin(θ̂i(t)).

Motion
Compensation

Instrument

Annulus
Point

Fig. 5. Real-time 3D ultrasound tissue
tracking. Squares denote instrument with
force sensor and the mitral annulus.

Fig. 6. In vivo experiment setup
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After contact, updates to the filter are stopped because the robot interacts with
the tissue, causing subsequent position measurements to no longer be represen-
tative of the feed-forward (i.e. desired) tissue motion trajectory.

5 In Vivo Validation

5.1 Experimental Setup

In vivo validation was performed in a beating Yorkshire pig heart model (Fig. 6).
The tip of the motion compensation instrument was inserted into the left atrial
appendage and secured by a purse-string suture. The 3D ultrasound probe
(SONOS 7500, Philips Medical) was positioned epicardially on the left side
of the heart to image the mitral valve and instrument. The surgeon was in-
structed to hold the instrument tip against the mitral annulus with a constant
2.5 N force for approximately 30 s under three conditions: manual (i.e. rigid
instrument with no robot control), force control, and feed-forward force con-
trol. Controller gains were designed for ζ = 1.05, fo = 8 Hz based on system
identification of the parameters m = 0.27 kg, b = 18.0 Ns/m, and preliminary
estimates of mitral annulus stiffness ke = 133.0 N/m. Contact forces were visu-
ally displayed to the surgeon during the task and recorded for offline assessment.
Three trials were attempted for each condition. The experimental protocol was
approved by the Children’s Hospital Boston Institutional Animal Care and Use
Committee.
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Fig. 7. Example contact forces for (A) manual, (B) force control, and (C) feed-forward
force control. Corresponding enlarged views of the dashed regions in (A, B, C) are
shown in (D, E, F). The desired contact force of 2.5 N is indicated (horizontal line).
Data was drawn from the trials with the lowest standard deviations.
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5.2 Results

Fig. 7 provides example force traces for the task executed manually, with force
control, and with feed-forward force control. Averaged across all trials, man-
ual contact with the annulus yielded force standard deviations of 0.48± 0.06 N
(mean ± std error). Force control reduced these deviations to 0.22±0.01 N with
clear statistical significance in a two-sided t-test (p = 0.012). Feed-forward force
control reduced the deviations to approximately 25% of the manual case (0.11±
0.02 N, p = 0.017). Statistical significance was also found between the force
control and feed-forward control conditions (p = 0.009). These results are
summarized in Fig. 8A. The third trial for the feed-forward force controller
is omitted because the animal showed reduced viability at the end of the ex-
periment. Performance was nearly equal to the standard force controller in this
trial.

Force and feed-forward force control also reduced peak-to-peak forces (Fig. 8B).
Manual use of the instrument gave swings in the contact force of 2.57± 0.29 N.
Force control and feed-forward force control reduced these values to 1.16±0.10 N
and 0.65±0.04 N, respectively. Statistical significance was found between all con-
ditions at p < 0.05.
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6 Discussion and Conclusions

In vivo results indicate that safe, accurate robotic force stabilization is feasible
inside of the beating heart. The system introduced here successfully exploits near
periodicity in heart motion to generate smooth estimates of tissue velocity and
acceleration from noisy 3D ultrasound imaging for a feed-forward force controller.
As discussed before, the use of such a controller enables conservative tuning for
increased stability and damping while allowing high bandwidth force disturbance
rejection. To the authors’ knowledge, this is the first in vivo demonstration of
force control in the beating heart.

Without robotic stabilization, placement of the instrument against the mi-
tral annulus gave peak-to-peak force swings of 2.57 N, which is large compared
to the desired 2.5 N force set point. Standard force error feedback control re-
duced this fluctuation by 50% and the full feed-forward controller using 3D
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ultrasound motion information reduced it by another 50%. In the case of the
feed-forward controller, the standard deviation of the contact forces was stabi-
lized to 0.11 N.

In all of the force control experiments, the surgeon expressed greater confi-
dence in instrument manipulation against the beating mitral annulus, with the
feed-forward controller subjectively better than the standard force controller.
These findings suggest that robotic force control may be an effective aid to the
surgeon for beating heart mitral annuloplasty. We note, however, that a potential
limitation of the current study is that manual tasks were done with a (nonac-
tuated) motion compensation instrument, which is heavier than typical surgical
tools. Also, an analysis of the feed-forward controller performance in conditions
of noisy force measurements and motion estimates is left for future work.

While this study focused on beating mitral valve annuloplasty, we envision
that the fusion of force and position sensing in a feed-forward force controller
will be amenable to other beating heart procedures where there is significant
and extended contact with tissue, such as catheter ablation treatment for atrial
fibrillation. It may also be useful for ongoing research in robotically-assisted
coronary artergy bypass graft [4,5], where small, delicate vessels are handled.

Acknowledgments. This work is supported by the US National Institutes of
Health under grant NIH R01 HL073647-06.
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Abstract. This paper presents a new method to reconstruct the beating heart 
surface based on the non-rigid structure from motion technique using preproc-
essed endoscopic images. First the images captured at the same phase within  
each heart cycle are automatically extracted from the original image sequence 
to reduce the dimension of the deformation subspace. Then the remaining re-
sidual non-rigid motion is restricted to lie within a low-dimensional subspace 
and a probabilistic model is used to recover the 3D structure and camera motion 
simultaneously. Outliers are removed iteratively based on the reprojection error. 
Missing data are also recovered with an Expectation Maximization algorithm. 
As a result the camera can move around the operation scene to build a 3D sur-
face with a wide field-of-view for intra-operative procedures. The method has 
been evaluated with synthetic data, heart phantom data, and in vivo data from a 
da Vinci surgical system.   

1   Introduction 

Minimally invasive cardiac surgery (MICS) offers great benefits to patients, such as 
smaller incisions and less tissue trauma, shorter hospital stays and lower infection 
risk. Avoiding the use of the heart-lung machine leads to less bleeding and blood loss 
related trauma, so the patient can return to normal life more quickly than those who 
have conventional open surgery. Recently telemanipulator assisted techniques have 
been applied to MICS. These can enhance the manual dexterity of the surgeons and 
enable them to more fully concentrate on the surgical procedure. Despite all these 
advantages, MICS still suffers from a number of problems, such as: narrow field-of-
view; restricted movement; and lack of 3D guidance information. 

These problems have raised concerns from both research and clinical communities 
and work has been done to provide 3D information from intra-operative endoscopic 
video [1-5]. For example, Devernay et al. addressed a multiple-step strategy to 
achieve 3D reconstruction of the operative scene, in which they intended to recon-
struct the organ surface from stereoscopy and then fuse these small patches from each 
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camera position to construct a larger surface [1]. Then Lau et al. published a stereo-
based tracking method for cardiac surface deformation and used B-splines to model 
the heart surface to reduce the number of parameters to be computed [2]. Recently, 
Bader et al. also used stereo reconstruction to recover the 3D position of markers on a 
pulsating membrane to estimate the heart motion based on a state motion model [3]. 
However a drawback of these methods is that the images captured for 3D reconstruc-
tion are from a fixed field-of-view, so they cannot offer 3D information of peripheral 
scenes around the operating field. Recently Mountney et al. employed the SLAM 
(Simultaneous Location and Mapping) technique to build a 3D map of the scene and 
estimate the camera movement [4]. However, this requires long term repeatable land-
marks to estimate the camera parameters, which are hard to obtain in dynamic scenes 
with soft tissue. More recently, Hu et al. proposed a new method to reconstruct inter-
nal organ surface based on the Structure from Motion (SFM) technique [5]. This can 
recover the 3D structure of the internal body from a moving endoscopic camera and 
so the reconstructed surface can cover a large area of the operation scene to provide a 
broader field-of-view for intraoperative procedures. However, this method does not 
allow for deformable objects and non-rigid modeling needs to be considered to im-
prove accuracy and robustness. 

This paper proposes a method to construct a heart surface from intra-operative en-
doscopic images of the beating heart. Our contributions are as follows. (i) The beating 
heart surface can be reconstructed with preprocessing using a non-rigid SFM tech-
nique. First, the beating heart cycle is robustly estimated using Hu’s algorithm based 
on geometric constraints [6]. Then the images captured at the same position of each 
cycle are selected for reconstruction in order to reduce the dimensionality of the de-
formation subspace. Then the deformable structure is restricted to lie within a low-
dimensional subspace and a probabilistic model is used to recover the 3D structure 
and camera motion simultaneously. (ii) The endoscopic camera can move around the 
operation scene. Thus, the reconstructed surface can cover a large area of the opera-
tive scene, and it can provide the surgeon with a wider field-of-view including 3D 
information. (iii) Outliers are removed from the feature dataset using an iterative 
algorithm based on the reprojection error. Outliers obtained from bad locations and 
false tracking can disturb the reconstruction so much that the fitting parameters be-
come arbitrary. To address this problem we compute the reprojection error of the 
features after each iteration, and remove the potential outliers.  

2   Methods 

2.1   Pre-processing  

First we calibrate the endoscope in order to have more information about the internal 
properties of the camera, especially the distortion parameters. Endoscopes are often 
designed to have barrel distortion to capture a large field of view in a single image. 
Barrel distortion introduces nonlinear changes to the image and would introduce large 
errors to the 3D reconstruction. Here we use Zhang’s planar calibration [7], which 
requires only a few images of a planar pattern from different unknown orientations.  
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Because of the complexity of the cardiac motion, it is difficult to model it directly 
using simple deformable modeling techniques. To reduce the complexity of the heart 
motion for 3D reconstruction we re-arrange the endoscopic image sequence. We first 
analyze the heart motion based on geometric constraints using Hu’s method and extract 
images from the same position of each heart cycle automatically for surface recon-
struction. Usually we extract the images captured at the end-diastole, and for each heart 
cycle, two or three images are chosen. Then we employ a non-rigid modeling algo-
rithm to model the residual cardiac motion remaining in the rearranged image sequence 
in order to reconstruct the heart surface. Thus we convert the difficult 4D (3D+time) 
dynamic reconstruction back to 3D reconstruction with small residual motion, which 
relatively is easier to solve. The electrocardiogram (ECG) signal could also be used to 
obtain the length of the heart cycle, however this requires extra hardware, an ECG 
machine, and synchronization between the endoscopic images and the ECG signal.  

2.2   Non-rigid Structure from Motion 

After the pre-processing, we employ the non-rigid structure from motion (NRSFM) 
[8-9] technique to reconstruct the beating heart surface using the re-arranged image 
sequence. Given a set of tracked feature points, the 2D and 3D locations can be re-
lated under weak-perspective projection as [10, 11] 

( )jj
i

jjj
i tXRx += λ                                                      (1) 

where ( )Tj
i

j
i

j
i yx  ,=x  is the projection of 3D point ( )T

iiii ZYX  , ,=X  ( ni  , ,1 L= ) onto the 
j-th ( m , ,1 L=j ) image plane. jt  is a 13 ×  translation vector, jR  is a 32×  projection 
matrix, jλ  is the weak-perspective scalar. The features tracked over n  frames are 
combined to form vectors 

( ) jjjjj NTXGx ++=                                                    (2) 
where jG  combines the matrix jj Rλ  and jN  is a noise vector added to the measure-
ment vector jx . So the deformable shape can be represented in a K-dimensional lin-
ear subspace 

jjj mVzXX ++=                                                       (3) 
where jm  is the noise vector. Each column of the matrix V  is a basis vector, and 
every entry of jz  is a corresponding weight that determines the contributions of the 
basis vector to the shape.  

Torresani et al. proposed a method based on the probabilistic PCA (PPAC) model 
to estimate motion and learn the deformation basis [11]. The distribution of the de-
formable shapes is described as 

( ) ( )( )IGIVVGTXGx 22 ;~ σσ +++Ν jT
m

Tjjjj                               (4) 

Then the EM algorithm is applied to estimate the PPCA model from feature points. 
That is, estimate the parameters n:1G , n:1T , X  and 2σ  from the given features n:1x . So 
the data likelihood can be described as 

( ) ( )∏= 22:1:1:1  , , , , , , , , σσ VXTGxVXTGx jjjnnn pp  
The EM algorithm alternates between two steps: in the E step, a distribution over the latent 
coordinates jz  is computed; in the M step, the other variables are updated. As to the miss-
ing data j

i
′
′x  in the measurement matrix, they are also recovered during the M-step by 

optimizing the expected log likelihood. The reader can refer to [9] for more details. 
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Fig. 1. Rearranged original image sequence. Images are extracted from the same phase in each 
beating heart cycle. 

2.3   Outlier Removal  

Outliers, which are caused by large errors in feature detection and tracking, are in 
gross disagreement with a specific postulated model and must be detected and re-
moved from the feature database. Usually, outliers detected using epipolar geometry 
are features with a large geometric error (epipolar distance or Sampson distance). 
RANSAC (Random Sample Consensus Paradigm) is often employed as an outlier 
removal method [12]. However, because of the motion of the beating heart, there is 
still some residual motion in the rearranged image sequence obtained from Section 
2.1. So the correspondences between the images do not satisfy the epipolar con-
straints. So rather than insisting on epipolar geometry, we use reprojection error to 
remove the outliers from the feature dataset. 

After the estimation of the shape basis and the motion parameters, we reproject all 
the 3D points iX  ( mi  , ,1 L= ) to each image plane  

( ) ( )jjjjjj
i

jjj
i tVzXRtXRx ++=+= λλˆ  

where j
ix̂  is the reprojection of point iX  on image j  ( nj  , ,1 L= ). Then we construct 

a weight matrix W  of size mn× , in which 0s correspond to missing elements, and 1s 
to the others. 

So the RMS error between the reprojection j
ix̂  and the measurement j

ix  for point 
iX  can be denoted as  
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where 
F

⋅  is the Frobenius norm. Then the decision rule for inliers and outliers can be 
expressed as  

⎩
⎨
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otherwiseoutlier

Eifinlier i γ
                                                (6) 

σγ 96.1=  is the threshold for considering the inliers, and the standard deviation σ  can 
be found as a maximum likelihood estimate using the median 

( ) ii Emedn )7(514828.1 −+=σ . An overview of the complete algorithm is given in Fig. 2 

2.4   Experimental Design 

In order to assess the performance of the proposed method, a beating heart phantom 
made of silicone rubber (The Chamberlain Group, Great Barrington, MA, USA) was 
employed to provide a gold standard for evaluation. The phantom is continuously 
inflated and deflated using an air pump with an integrated controller. In order to cre-
ate a beating heart model, it was scanned while beating at the rate of 55bpm with a 
Philips 64-slice CT scanner, producing 10 uniformly-spaced phases.  
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Fig. 2. Non-rigid reconstruction of the beating heart surface 

The first of these was manually segmented and converted into a tetrahedral mesh 
of 709 elements and 747 degrees of freedom. The Image Registration Toolkit [14] 
was then used to create a sequence of 3D tensor product cubic B-splines deforma-
tions, mapping the initial mesh onto each phase in turn. Fig. 3 (a) and (b) shows the 
heart phantom and resulting mesh respectively. The heart phantom was also scanned 
without beating and a 3D model was created using the marching cubes algorithm as 
shown in Fig. 3 (c).     

We have carried out experiments on three sets of data: synthetic test data, heart 
phantom data and in vivo data from endoscopic surgery. These sets of data and a de-
scription of the experiments are described in the following paragraphs. 

In synthetic data testing, 100 points were randomly selected from the beating heart 
model described in Section 2.4. For simplicity, we adjust the beating heart rate to 
60bpm (beats per minute). Then a moving camera was simulated with frame rate 25fps, 
and all these 3D dynamic points were projected to 50 image planes with different rota-
tion and translation parameters to generate sets of 2D image points. Instead of rearrang-
ing the image sequence, we used all the images created from different positions of the 
heart cycle for 3D reconstruction. So the 50 images included two heart cycles. 

   
                       (a)                                      (b)                                        (c) 

Fig. 3. Heart phantom. (a) Image of the heart phantom; (b) FEM mesh from CT data of the 
beating phantom; (c) 3D model from CT data of the phantom without beating. 
 

Input: Endoscopic image sequence of the beating heart 
Output: 3D shape and motion parameters 
 
Algorithm: 

Camera calibration based on Zhang’s method [7] 
Heart motion analysis based on Hu’s method [6] 
Rearrange image sequence 
Feature tracking using LK tracker [13] 
Feature point normalization 
while 0fnumOutlier  

Initialization with T&K’s method [10] 
Non-rigid structure from motion based on EM algorithm 

E-step: estimate the distribution over the latent coordinates jz   
M-step: update the motion parameters 

Outlier removal based on reprojection error 
end 
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The da VinciTM robotic system (Intuitive Surgical, Inc., Sunnyvale, CA, USA) was 
used to obtain images of the heart phantom. The beating heart rate was set to 75bpm and 
the endoscopic camera was moved around the scene. 250 images were captured with the 
frame rate 25fps and the first and last frames are shown in Fig. 5 (a) and (b) respectively.  

The in vivo data testing consisted of endoscopic images collected from a TECAB 
(Totally Endoscopic Coronary Artery Bypass) surgical procedure. Fig. 6 (a) and (b) 
show the first and last frames respectively. The recorded ECG signal was used as 
ground truth for heart motion analysis, which was 19.7fpc (frame per cycle).  

3   Experimental Results  

3.1   Synthetic Data 

10 different ranges of Gaussian noise were added to the image measurements, with a 
zero mean and standard deviation varying from 0.5 to 5.0 pixels. In addition, 20% of 
the image points were occluded for some fraction to simulate missing data. For each 
noise level, we ran 200 trials and the final results were the average of results from 
these 200 independent experiments. A graph of these results is shown in Fig. 4 (a). It 
can be noticed that the RMS error of the proposed method increases gradually with 
the increase of noise. As the problem becomes more difficult, i.e., corrupted with 
severe noise ( 5.3≥σ  pixels), the error increases more quickly. 

We also investigated the RMS error under different number of basis shapes as 
shown in Fig. 4 (b). The error decreases as the dimension K increases but it reduces 
more slowly when the dimension K is bigger than 4. All these indicate the proposed 
method can obtain an accurate result and is robust to missing data and the choice of K 
due to the implementation of the probabilistic PCA model and EM algorithm.  

3.2   Heart Phantom Data 

The first 100 images were employed to estimate the heart cycle using Hu’s method [6]. 
The experimental result was 20.2fpc (frame per cycle), which is close to the ground truth 
( ) 20257560 =∗ fpc. Because the estimated result is a real value, for each heart cycle, the 

two images closest to the end-diastole were chosen. So 20 images were extracted  
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Fig. 4. Experimental results of synthetic data testing. (a) Average RMS error under different 
noise level; (b) Average RMS error under different dimension of deformation subspace (K). 
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Fig. 5. Results using the heart phantom data. (a) and (b) show the first and last frames of the 
image sequence of phantom heart respectively; (c) and (d) display the reconstructed point cloud 
and its registration result to CT model. 
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Fig. 6. Experimental results of in vivo data testing. (a) and (b) show the first and last frames of 
the image sequence from TECAB surgery; (c) illustrate the data filling results of a feature; (d) 
displays the reconstructed point cloud using the proposed method. 

from the first ten heart cycles to generate the rearranged image sequence. Then the 
LK feature tracker was used to track 236 feature points. The missing data rate was 
27.3% because some features moved out of the scene due to the movement of the 
camera. Fig. 5 (c) displays the reconstructed 3D point cloud using the proposed 
method. Since we did not have a gold standard transformation between the 3D points 
and our CT image, we used the Iterative Closet Point (ICP) [15] algorithm to register 
the 3D points to the surface derived from CT to obtain a measure of 3D reconstruction 
accuracy. Fig. 5 (d) shows the final position after ICP registration. Most of the points 
lie on or are close to the surface and the mean residual is around 3.7 mm. Moreover, 
using visual inspection we can see that the positions of 3D points are overlaid on the 
CT surface after ICP registration in roughly the correct position. 

3.3   In vivo Data 

The estimated heart rate was 19.6fpc using Hu’s method. Then 20 images were ex-
tracted from 10 heart cycles based on the estimated result. 215 features were detected 
and tracked from the rearranged 20 images and on average 21.1% of data in the 
measurement matrix was missing. Fig. 6(c) shows the results of our missing data 
filling algorithm on the in vivo data. The measured features are marked with blue “o” 
and the reprojected points to those image planes are marked with red “x”. The feature 
point shown was detected and tracked until the 16th frame, however our method was 
able to recover its position accurately in frames 17 and 18. 

Since no ground truth data was available for this patient, we report the RMS error 
of the surface reconstruction instead. Before removing the outliers, the average RMS 
error for all the visible features was 2.9mm. This reduced to 2.4mm after 16 outliers 
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were detected and removed from the feature dataset. Fig. 6 (d) shows the point cloud 
reconstructed from the endoscopic image sequence. 

4   Discussion and Conclusions 

This paper proposes a non-rigid reconstruction of the beating heart surface for MICS. 
The original image sequence is rearranged to reduce the dimension of deformable 
subspace of the heart surface. Then a non-rigid structure-from-motion technique is 
applied to recover the 3D dynamic structure and camera motion simultaneously. Out-
liers are removed iteratively based on the reprojection error and missing data are re-
covered with the EM algorithm.  

Effort in the near future will focus on creating a series of 3D heart surfaces from 
different phases of the heart cycle to generate the whole dynamic heart surface. Incor-
porating a more sophisticated deformable model, e.g. a bio-mechanical model, for the 
non-rigid SFM is also an interesting direction. Currently it takes minutes to finish the 
whole estimation (pre-processing and non-rigid reconstruction), which could be a big 
problem to clinical utility. So we are going to use more efficient algorithms and 
Graphical Processing Unit (GPU) technology to achieve real-time computation. Our 
long term goal is to automatically reconstruct the surfaces of internal organs and reg-
ister these with the preoperative data (CT or MRI) to provide more information for 
intra-procedural targeting, monitoring and control.  
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Abstract. Image Guided Radiation Therapy (IGRT) improves radia-
tion therapy for prostate cancer by facilitating precise radiation dose
coverage of the object of interest, and minimizing dose to adjacent normal
organs. In an effort to optimize IGRT, we developed a fast segmentation-
registration-segmentation framework to accurately and efficiently delin-
eate the clinically critical objects in Cone Beam CT images obtained
during radiation treatment. The proposed framework started with de-
formable models automatically segmenting the prostate, bladder, and
rectum in planning CT images. All models were built around seed points
and involved in the CT image under the influence of image features us-
ing the level set formulation. The deformable models were then converted
into meshless point sets and underwent a 3D non rigid registration from
the planning CT to the treatment CBCT. The motion of deformable
models during the registration was constrained by the global shape prior
on the target surface during the deformation. The meshless formulation
provided a convenient interface between deformable models and the im-
age feature based registration method. The final registered deformable
models in the CBCT domain were further refined using the interaction
between objects and other available image features. The segmentation
results for 15 data sets has been included in the validation study, com-
pared with manual segmentations by a radiation oncologist. The au-
tomatic segmentation results achieved a satisfactory convergence with
manual segmentations and met the speed requirement for on line IGRT.

1 Introduction

One out of every four cancers diagnosed among American men is prostate cancer,
and prostate cancer is estimated to cause the death of 28, 660 males in North
American in 2008 [1]. Radiation Therapy (RT) has been widely accepted as an
effective treatment modality for prostate cancer. RT uses high energy photon
beams to deposit high doses of radiation in the prostate to kill tumor cells. How-
ever, high dose radiation can also cause short and long term toxicity to adjacent
normal organs, e.g., the rectum and bladder. Intensity Modulated Radiation
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Therapy (IMRT) [2] is a relatively new modality that uses multiple beams and
fluence modulations so that high dose is deposited to the prostate and relatively
low dose to adjacent normal organs. The RT is based on the position of the
prostate and surrounding organs at the time of CT simulation. Therefore, the
accuracy of subsequent RT treatments is predicated on reproducing the prostate
and surrounding organs’ position in space at CT simulation during the daily
RT treatment. The reproduction of the position is not trivial, as RT can last
for eight weeks or more. Errors can be introduced due to changes in patient
position, size of prostate, varying filling of the rectum or bladder. To guaran-
tee that the prostate receives adequate dose, a margin is added to the target
volume to form the Planned Target Volume (PTV), the volume to which high
radiation dose is directed. Increasing the margin to the PTV, while increasing
the odds of adequately treating the prostate, also adversely increases radiation
dose to surrounding normal organs. Hence the need for IGRT (Image Guided
Radiotherapy) [3] [4], which allows one to minimize the size of the PTV while
still ensuring high dose to the prostate. One means of IGRT uses state of the art
Cone Beam CT (CBCT) to acquire online treatment verification images. The
main drawback of this method is that it currently requires manual segmentation
and registration between the planning CT scan and the daily CBCT images, a
cumbersome and time consuming task. Therefore, a fast, efficient segmentation
and registration method would be extremely helpful clinically.

Many efforts have beenmade todevelopalgorithms for automaticCT andCBCT
prostate segmentation [5] [6] [7]. However, interactive manual segmentations us-
ing tools with graphics user interface are still assumed to be the most reliable and
time efficient means until now. Major difficulties that complicate the research in
this direction include: 1) low saliency of boundary between the prostate and the
adjacent organs; 2) gray scale inhomogeneity within the prostate; and 3) the visual
artifacts generated by implanted seeds. A particular problem in segmenting CBCT
images is that the noise-to-signal ratio is relatively high, and there is a strong de-
mand from clinicians for high speed segmentation in order to adjust treatment
plans in real time. Costa used [6] coupled deformable models to simultaneously seg-
ment the prostate and the bladder. However, the use of the Principal Component
Analysis was rather empirical without a solid validation considering the relatively
small testing group. Greene [8] developed a registration-segmentation framework
for aligning between the planning CT and the treatment CBCT, but no explicit
explanation was given regarding the segmentation method (especially for CBCT).
This raises questions regarding the applicability of the method for real time IGRT
data analysis. Another algorithm [9] used a Finite Element Method based frame-
work to segment and validate prostate cancer data. The method was based on a
mesh structure, which limited its flexibility when analyzing data with nonuniform
deformations. We propose in this paper a segmentation-registration-segmentation
framework to retrieve clinically critical objects in CT and CBCT data, in order to
augment the potential of IGRT for prostate cancer. We will elaborate our methods
in section 2 and present the experimental and validation results in section 3. We
make our conclusions in section 4.
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2 Method

In our framework, we focus on the segmentation of the prostate, bladder, and
rectum. All images are pre-processed so that air regions in the rectum are masked
with similar pixel values as the surrounding tissue during the registration. In CT
images, models are initialized at seed points in the target organs.

2.1 Multi-object Level Set Models in CT

Three objects (prostate, bladder, and rectum) are modeled as level sets [10] using
distance functions φ: which equals to 0 on the surface, greater than 0 inside and
less than 0 outside. The intensity distribution for pixels inside each object are
then calculated using nonparametric models in order to obtain the probabilistic
density functions pij of arbitrary pixel j belonging to object i. We also compute
the gradient map and the magnitude of gradient in the image domain. The
segmentation process is of multiple steps. In each iteration, to determine the
optimal classification, level set models representing different organs evolve and
compete with each other for pixels. Each model evolves under the impact of three
influences: 1) the inflation force based on the total gradient magnitude within
the model volume; 2) the local image force at each pixel based on the probability
function; and 3) the surface smoothness constraint based on the surface curvature
∇ · ∇φ

‖∇φ‖ . To make the segmentation process more efficient, the model evolution
and competition only take place in a narrow band around model surface, where
min(φi) < ε. We empirically choose ε = 2. For each pixel j in the narrow band,
the value for φ(j) is recomputed using the following equation:

dφi

dt
=
[
λ1Mi +∇λ2Pi · (

∇φi

‖∇φi‖
)− (λ2Pi + λ3)∇ ·

(
∇φi

‖∇φi‖

)]
δε(φi) (1)

where δε(φi) is the regularized delta function, Mi is the inflation term derived
from the gradient magnitude inside the object i, Pi is a function derived from
the intensity probability competition as described in the following paragraph,
and λ3 is the weight for the smoothness on the object surface.

The competition of models are reflected by the second term on the right hand
side of equation 1. The value of P is different from the probability of a pixel
j belonging to object i (denoted by pij). First the value of Pij is changed to
pij −max pkj , where k ∈ {1, 2, 3} and k �= i. Second, at pixels with more than
one φi > 0, which equivalent to the overlapping between models, a new negative
force source is introduced to locally decrease the value of both phii. The first
modification sets the priority of models in the competition for pixels. The sec-
ond modification enforces that there will be no overlapping in the segmentation
result. Also for images with implanted seeds, which appear as bright spots in
the image, we use local masks to block them so that λ2 = 0 around the seeds.
The segmentation results using the level set models can achieve a satisfactory
accuracy. They serve as starting points for the registration process.
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2.2 CT to CBCT Registration

Automating IGRT requires registration between CT and CBCT and also segmen-
tation in each CBCT data set. In a previous research paper [8], segmentations
of both the CT and the CBCT data were performed first, and then were used
to guide the registration. However, we chose to analyze the data in the reverse
order: registration first and the outcome is used to guide the CBCT segmenta-
tion. Major considerations behind our design are: 1) CBCT quality is typically
inferior to that of CT and may deteriorate the outcome if the unreliable CBCT
segmentation was used as input of registration. Therefore it is better to per-
form CT segmentation first, then register CT to CBCT, and finally improve the
CBCT segmentation. Doing CT and CBCT segmentation and then registering
would lead to error prone registration; and 2) registration provides an initializa-
tion close enough to the desired image feature, that it can speed up the CBCT
segmentation process and therefore improves the overall efficiency of the IGRT.

For registration purposes, both the CT and the CBCT were re-sampled into
voxels of the size of one cubic millimeter. In the experiments we presented in
this paper, pelvis data were cropped around the clinically relevant volume, which
included the prostate (and the surrounding PTV), the bladder, and the rectum.
The segmentation results via level set models were converted into volumes in
the format of binary voxel arrays. The segmented regions in CT images were
assumed to be accurate since they were obtained from the CT, which has less
noise and better contrast. In addition, the CT segmentation is part of the plan-
ning process, which usually does not have a time restriction, as does CBCT
segmentation. Therefore the results can undergo extra improvement procedure,
whether automatic or manual-based, before the registration.

The meshless model of each object is composed of sampling points on the sur-
face of the corresponding level-set-segmented volume. During the registration,
we denote the displacement at each sampling point as a combination of global
motion and local deformation. To determine the global motion in the current
iteration, we minimize the moving least square error at each point:∑

i

wi|fp(ui)− vi| (2)

where ui are initial location vectors of sampling points, vi are location vectors
of sampling points in the current iteration of the registration, fp is the global
transformation functions at points of evaluation, and wi are weights dependent
on the location of the point of evaluation p. In our approach, the points of
evaluation are more densely (compared to the sampling points) sampled on the
surface of the segmented clinical object. We define the global motion at these
points in the form of an affine transformation so that

fp(ui) = uiM + T (3)

Define u∗ =
∑

i wiui∑
i wi

and v∗ =
∑

i wivi∑
i wi

, and also ûi = ui − u∗ and v̂i = vi − v∗,
we can solve M and T using

T = v∗ − u∗M (4)
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M = (
∑

i

ûi
T wiûi)−1

∑
j

wj ûj
T v̂j (5)

The computational process for the global motion (i.e., M and T) is time efficient
since the locations of ui are fixed during the registration so that it is possible to
pre-compute some parts in equation 5 to promptly yield the global motion. The
computed global motion will be used as a global constraint to the registration.
The global constraints at points of evaluation are treated same as ’demons’
forces generated using local pixel gray scale. Both forces will undergo a diffusion
process to redistribute to every pixels in the image to be registered. We changed
the original equation of the registration force in Demons algorithm

ulocal = (m− s)×
( ∇s

|∇s|2 + α2(s−m)2
+

∇m

|∇m|2 + α2(s−m)2

)
(6)

by adding the global constraint in the region of the meshless model so that the
global and local influences work together to guide the registration process.

uall = λlocalulocal + λglobaluglobal (7)

where uglobal is derived from equation 5 via the diffusion, and λ are weights. We
set a threshold on the number of loops required by the registration, usually 100.

2.3 Meshless Segmentation in CBCT

The registration generated the displacement and hence the correlation between
the CT and CBCT, as well as meshless models registered into the CBCT do-
main. To further improve the accuracy of the convergence between the regis-
tered and the reference image. The meshless models underwent another round
of local deformation process. Each node of the meshless model deformed under
the influence of the image features in the CBCT data, but their deformations
were constrained by the internal structural constraint of each meshless model
and the external constraint between models. After all model nodes arrived at
equilibrium points in the CBCT domain, we computed the local deformation
at pixels belonging to the volume of the model. The displacement at each pixel
was calculated by minimizing the residue moving least square errors at points of
evaluation. To improve the efficiency, we can use the same pre-computed kernel
in the registration by using the same set of the sampling points.∑

i

wij |pj − qi| (8)

where qi are the local deformations at the sampling points of the meshless model,
pj are the displacements to be decided at object surface points of evaluation j,
wij are weights based on the relative distance between the pixel and model nodes.
The local deformation process was equal to the segmentation of the object in the
CBCT, and also helped to improve the registration between the CT and CBCT.
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3 Experiments and Validation

The proposed segmentation-registration-segmentation framework has been tested
on 15 data sets, each including both the planning CT and the treatment CBCT
from prostate cancer patients. CT image volumes were acquired from a Philips
CT scanner, while the CBCT data were acquired using a Varian On Board Imag-
ing (OBI) system for patients treated by linear accelerators. The original pixel
size for the CT data is a fixed 0.94 × 0.94 × 3mm, but the original pixel size
for CBCT images varies. The CT segmentation and validation take place in the
original CT image domain. The registration, the CBCT segmentation, and the
validation of both take place in the re-sampled image domain (1 by 1 by 1mm).

First we show the experimental results of CT segmentation. The segmenta-
tion results were compared with manual segmentations. The segmentation qual-
ity was evaluated based on the similarity between the manual segmentation and
the proposed segmentation method. We focused on the volumetric evaluation,
which was more relevant to the calculation of dose distribution, and was more
critical in IGRT. The three measurement we used were the False Positive (FP),
False Negative (FN), and True Positive (TP) of the pixels in the segmentation
results, using the manual segmentation as the ground truth. The final volume
similarity is computed using Svol = 2TP

2+FP−FN . An average of 93.2% volume
similarity has been achieved for CT segmentation in 15 cases. The registra-
tion was evaluated by measuring the difference between the registered volume
(from CT segmentation with manual revisions) and manual segmentation in the
CBCT data. It is shown in Table. 1 that after the registration, the registered
volumes retain a volumetric similarity of 91% to the manual segmentations of
prostates in CBCT. For bladders and rectums, the volumetric similarities are
less, but the averages are still over 85%. Some results are shown in Fig.1 and
Fig.2.

The CBCT segmentation used the registration results to determine the ini-
tial location and shape of meshless deformable models. The segmentation results
underwent a validation process similar to the CT segmentation. To verify the
impact of the accuracy of CT segmentation on the final outcome, we used both
manual and automatic CT segmentations as the input for the registration and
compared the quality of the final CBCT segmentation. An average of 95% volu-
metric similarity was achieved using the manual CT segmentation as the input
for the CT-CBCT registration. The average volumetric similarity was slightly
lower at 93% when we use automatic CT segmentations.

The proposed framework is implemented on a Dell Server PE2900 with Xeon
2.66GHz CPU and 8GB RAM using Matlab. The implementation is highly time-
efficient. The CT segmentation takes less than 3 minutes to segment the prostate,
bladder, and rectum simultaneously. The registration of a cropped region of
interest between the CT and CBCT domain takes 38 second in average for 15
cases. The CBCT segmentation takes less than one minute for the convergence
between models and desired image features. The framework also needs extra
time for the preprocessing of images, this usually takes another few more minutes
depending on the user proficiency. Notice in IGRT there is no time restriction on
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Table 1. The overall performance for prostate segmentation and registration. Column
’CT’ are similarity measures of the automatic CT segmentation results against manual
CT segmentations. CT Time is the time needed for CT segmentation. Column ’Reg-
istration’ shows the similarity measures of the registered automatic CT segmentations
against manual CBCT segmentations. Column ’CBCT’ shows the similarity measure
for automatic CBCT segmentations against manual CBCT segmentations.

data CT CT Time Registration Reg. Time CBCT CBCT Time
Set1 96% 152sec 91% 39sec 93% 57sec
Set2 92% 146sec 90% 42sec 92% 59sec
Set3 97% 137sec 94% 41sec 95% 58sec
Set4 94% 151sec 90% 35sec 92% 45sec
Set5 93% 120sec 91% 36sec 93% 48sec
Set6 91% 144sec 90% 40sec 93% 57sec
Set7 94% 141sec 92% 38sec 93% 50sec
Set8 89% 165sec 87% 37sec 89% 49sec
Set9 95% 138sec 90% 33sec 92% 42sec
Set10 90% 171sec 86% 39sec 90% 51sec
Set11 95% 152sec 92% 40sec 94% 53sec
Set12 93% 155sec 94% 36sec 95% 48sec
Set13 94% 146sec 95% 37sec 95% 47sec
Set14 95% 148sec 92% 36sec 94% 42sec
Set15 90% 160sec 91% 44sec 95% 61sec

Fig. 1. Transverse and sagittal view of
the registration results in the cropped im-
age volume around the prostate. A, D are
reference CT planning data; B, E are tar-
get CBCT images; and C, F shows the
registered CBCT data. In D, E, F, the
prostate regions are circled to show the
motion in the Superior/Inferior direction.

Fig. 2. Whole body registration of pelvis
data. A, D are reference images; B, E are
views of the target; C is a check display of
the registration with registered image su-
perimposed with the reference; and in D,
E, F the prostate areas are circled out to
show the motion in the Superior/Inferior
direction.

CT preprocessing and segmentation. Therefore for each new treatment CBCT,
with the help of previous CT segmentation, we can have clinical relevant objects
registered and delineated in less than two minutes.
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4 Conclusion

We have proposed a fast segmentation-registration-segmentation framework for
the analysis of CBCT treatment data in IGRT. The overall accuracy of the
framework is over 90% measured in shape similarity. The framework is capable
of generating segmentation results in CBCT data in less than two minutes, which
may inspire more IGRT applications with clinical importance.
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Abstract. Surgical aspirators are one of the most frequently used neu-
rosurgical tools. Effective training on a neurosurgery simulator requires
a visually and haptically realistic rendering of surgical aspiration. How-
ever, there is little published data on mechanical interaction between soft
biological tissues and surgical aspirators. In this study an experimental
setup for measuring tissue response is described and results on calf brain
and a range of phantom materials are presented. Local graphical and
haptic models are proposed. They are simple enough for real-time appli-
cation, and closely match the observed tissue response. Tissue resection
(cutting) with suction is simulated using a volume sculpting approach. A
simulation of suction is presented as a demonstration of the effectiveness
of the approach.

1 Introduction

Rapidly evolving surgical techniques, patient safety concerns, and the inherent
inefficiency of operating room training are strongly driving the need for innova-
tive simulation technologies [1,2,3]. Clinical adoption of virtual reality simulation
would result in accelerated training, rapid adoption of new techniques, better
surgeries with minimal risk and consequently improved patient care [4]. Our re-
search project aims to develop a simulator capable of training medical students
to perform surgical resection of brain tumors.

As a fundamental surgical device in neurosurgery [5,6,7], the surgical aspirator
must be accurately modelled. This tool has two main functions: (A) aspiration,
which is either the non-traumatic removal of blood and fluid or the removal of
soft tissue [8,9], and (B) tissue holding [5]. Surgical aspirators are included in
commercial simulators but studies on their mechanical behavior are scarce in
the literature and do not provide enough experimental data to develop a model
suitable for a simulator [10,11,12,13,14,15,16,17].

A surgical aspirator model is suitable for a simulator if it allows to perform
functions (A) and (B) in real time [18]. The objective of this study is (1) to
measure the interaction between the surgical aspirator and brain tissue, (2) to
propose a haptic and graphic model of aspirator tissue interaction based on
experimental evidence, and (3) to implement an algorithm for tissue holding and
removal with a virtual aspirator. Fluid removal is out of the scope of this paper.
As a secondary objective potential phantom material were also experimentally
tested in order to find a substitute for brain tissue mechanical testing.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 51–58, 2009.
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Fig. 1. a) Overview of the experimental setup. b) Photograph taken by the digital
microscope before the sample detaches in order to determine the local deformation
(white dotted line). Note the ruler used for calibration on the upper right corner. c)
Photograph taken by the digital microscope just after the sample detached from the
suction tube.

2 Experimentation

One calf brain was collected at a slaughterhouse, transported in PBS (phosphate
buffered saline) and frozen at −80◦C. It was then thawed 24h prior to the ex-
periment. The tests were carried out on the surface of the calf brain covered
by the pia matter with and without moisturizing. The pia matter was removed
and the test with moisturizing was repeated. Two phantom materials have been
tested: dessert gelatine diluted in boiling water with mass concentration of 5%,
10% and 15%; and two different brands of soft tofu.

The experimental setup, shown in figure 1 a, consisted of a movable platform,
a digital microscope and a 1.19mm diameter suction tube connected to a vacuum
pump. The vacuum hose featured a vent with a sliding cover to vary the suction
pressure and a manometer capable of recording negative pressures between 4kPa
and 80kpa with a 1kPa precision at the tip of the tube. A ruler was used for
photogrammetric calibration, as shown on the upper right corner of figure 1 b
and c.

The experiment proceeded as follows:

1. The material sample was put on the movable platform (see figure 1 a).
2. The vent was totally opened.
3. The sample was raised until it contacted the suction tube. The pressure was

recorded when the sample completely blocked the tube oppening.
4. The platform was lowered and photographs were taken at 1mm intervals in

order to record the shape of the surface in the vicinity of the suction tube.
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Fig. 2. Left: profile for different value of h along with fits with the function ||u(r)|| =
h2/(h + αr3) (see eq. 2) with αgrey matter = 0.07 and αgelatine 10% = 0.12. Right: Force
as a function of the vertical displacement h for different materials. The solid lines
are fits with the quadratic function βh2 (see eq. 1) with βgelatine 5% = 1.3 × 10−4,
βgelatine 10% = βgrey matter = 1.2×10−3, βgelatine 15% = 5.6×10−3, βtofu A = 2.2×10−2

and βtofu B = 3.8 × 10−2.

5. When the sample detached from the suction tube:
(a) If the surface of the sample was undamaged, a digital photograph was

taken. The vent was then further obstructed to increase the negative
pressure at the tool tip, and the process went back to step 3.

(b) If the surface of the sample was damaged, the rupture pressure was
recorded and the experiment ended.

Profiles obtained for gelatine 10% and moisturized calf grey matter without pro-
tective membrane are shown in figure 2. The distance h between the surface of the
sample and the extremity of the suction tube was measured on the photographs
taken just after the sample detached from the tube (see figure1 c). Knowing the
internal diameter of the suction tube d, the pressure p, and assuming frictionless
contact between the tube and the sample, the magnitude of the force f when
the sample detaches from the tube is given by ||f || = 1

4πd2p. The experimental
data obtained for various materials are shown in figure 2. It can be observed
that the calf grey matter has the same behavior as the gelatine 10% solution
with a lower rupture force (38mN ≡ 34kPa) that is further lowered by absence
of moisturizing (18mN ≡ 16 kPa) or the removal of the protective membrane
(9mN ≡ 8kPa).
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Fig. 3. The three different meshes used in the simulation

3 Simulating a Surgical Aspirator

The deformation caused by suction on tissue is both localized and large. It has a
typical shape which is important to render to achieve realism in the simulation.
Since the phenomenon is localised, a mixed model has been chosen. The global
displacement and force fields are given by a 3D explicit non-linear finite ele-
ment (FE) model1 the details of which are outside the scope of this article (see
e.g. [19,20] for representative examples). The models for the local displacement
and force fields are discussed below.

Tissue deformation can be simulated using FE models. However a FE model
would run too slowly to be used for haptics or detailed graphic rendering. There-
fore the use of three different models and corresponding meshes is proposed,
based on experimental results presented in section 2:

1. A 3D FE mesh is used for the deformation calculation.
2. A surface mesh which is a tesselation of an isosurface of a signed distance

field defined on the FE mesh, is used for collision detection and haptics
rendering.

3. A locally refined copy of the surface mesh is used for graphics rendering.

These three meshes are illustrated in figure 3. A overview of the complete suction
simulation is presented in algorithm 1.

3.1 Tissue Holding

At lower pressures, when close enough to the tissue, tissue is attracted and sticks
to the tip of the surgical aspirator. This exerts a force on the tissue, and may
be used to hold, or manipulate it. The force f sent to the haptic device, when
at distance h from local plane P (see figure 1), can be expressed as:

f(h) = −βh2n

1 Modelling the local surgical aspirator effect directly using a 3D FE model would
require a mesh of extraordinary detail, which would not run in real time.
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Algorithm 1. Providing haptic and visual feedback
Input: Haptic device position
Result: Visual and haptic feedback
while simulation is not over do

calculate the deformation of the FE mesh and update postion of surface
mesh;
if grabbed vertices is empty then

grab surface mesh vertices in the vicinity of the tool tip t ;
else

compute P : average position and normal of grabbed vertices;
compute haptic force f = −βh2n ;
if ||f || < ||f ||rupture then

apply force f
n

to the FE mesh grabbed vertices ;
locally refine and deform graphic mesh with u(r) = h2

h+αr3 n ;
else

cut FE mesh and extract new surface mesh;
end
empty grabbed vertices list ;
grab surface mesh vertices in the vicinity of the projection c of t ;

end

end

where β is a material parameter that increases with the stiffness. This model
shows good agreement with experimental data in figure 2. In addition to being
rendered by the haptic device, the force can be applied to the 3D FE model to
calculate a deformation. When ||f || is smaller than the experimentally measured
value ||f ||rupture, tissue will be held by the aspirator. Beyond this critical value,
the tissue breaks, and is removed by the aspirator as described in the next
section.

3.2 Tissue Removal

To enable modelling of tissue cutting while avoiding large changes to the 3D FE
mesh a volume sculpting approach [21] is used. The boundaries of soft tissues are
modelled as the zero isosurface of a distance field, F (x), defined on the nodes of
the 3D FE mesh. Tissue removal is modelled by changing the value of F based
on the position of the surgical aspirator. A similar approach has been used to
simulate cutting of the petrous bone in [22].

If the aspiration force is greater or equal than ||f ||rupture, a spherical cut-
ting region around the tool tip, t, becomes active. Tissue within this sphere is
removed. To do this, the distance field is updated according to:

Fnew(x) = min (Fold(x), ||x− t|| −R) (1)

where R is the radius of the cutting sphere.
Once this function is changed, it is necessary to tesselate the new zero iso-

surface. This is done using one of a family of algorithms, which we refer to as
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Fig. 4. Simulation of suction effect on tissue using a local rendering model. Left: screen-
shot from simulation; Right: same showing refined mesh near the surgical aspirator.

marching shapes [23], which tesselate each element given the field values at their
vertices. The generated surface consist of triangles, whose vertices lie on the
edges of the FE mesh. The most widely known such algorithm is the marching
cubes of Lorensen and Cline [24], but the same approach can be used on other
shapes, such as tetrahedra, octahedra, etc.

3.3 Graphics Rendering

The displacement of a point x on the brain surface due to suction is modelled
by the function:

u(r) =
h2

h + αr3 n (2)

where α is a material parameter, h is the distance between the tool tip t and
the local plane P , r is the distance between x and the projection c of t on P ,
and n is the normal to P (see figure 1 b). Figure 2 shows good agreement of the
model with the experimental data.

The triangle elements of the surface mesh that are close to the suction tool are
recursively subdivided into smaller triangles. All the nodes of the mesh are then
displaced according to the model. Figure 4 shows a screenshot of the simulated
interaction between surgical aspirator and brain tissue with a surface mesh that
is locally refined for graphics rendering. When cutting is taking place, the use
of this graphic model gives the appearance that the interior parts of the tissue
pops up into the aspiration tool.

4 Discussion

In this paper, we have described a model to simulate the effect of a surgical
aspirator on tissue. By separating the haptic and graphical models from the FE
model, the experimentally observed haptic and visual effects of aspirating tissue
were simulated in a computationally efficient manner.
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Fig. 5. Definition of P and h when the 3D FE mesh is a) coarse, b) fine

The experiments with phantom material suggest that gelatine (10% mass
concentration) could be an adequate substitute for brain for mechanical testing
purposes. This preliminary result must be validated using fresh brain tissue
since freezing can alter the properties of biological tissues [25]. Other work [26]
has shown that these effects can be compensated by applying a corrective factor.
Thus we think it likely that with further work a suitable concentration of gelatine
can be found to mimic the properties of fresh brain.

The proposed model is limited by the dependency of the definition of the local
plane P on the refinement of the 3D FE mesh (see figure 5). In the experiment
P (figure 1) is the average plane of the undeformed brain surface. In the model
P (algorithm 1) is the average plane of the surface of the deformed 3D FE mesh.
If the 3D FE mesh is coarse, compared to the local deformation caused by the
aspirator, the local deformation of the 3D FE mesh is small and the model P
is close to the experimental P . However if the 3D FE mesh is fine, its local
deformation will cause the model P to diverge from the experimental P which
affects the calculation of f(h). This problem is not a real concern in our case
since if the finite element mesh can be made fine enough for this problem to be
significant, the mesh would then be fine enough to avoid the need for this local
model altogether.

Future work will focus on modelling the interaction of other neurosurgical
tools such as the Cavitron Ultrasonic Surgical Aspirator (CUSA), as well as on
validating the proposed model against a FE simulation results obtained with a
fine mesh, and against experimental data obtained on fresh human brain tissue.
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Abstract. In prostate brachytherapy, x-ray fluoroscopy has been used
for intra-operative dosimetry to provide qualitative assessment of implant
quality. More recent developments have made possible 3D localization of
the implanted radioactive seeds. This is usually modeled as an assign-
ment problem and solved by resolving the correspondence of seeds. It is,
however, NP-hard, and the problem is even harder in practice due to the
significant number of hidden seeds. In this paper, we propose an algo-
rithm that can find an optimal solution from multiple projection images
with hidden seeds. It solves an equivalent problem with reduced dimen-
sional complexity, thus allowing us to find an optimal solution in poly-
nomial time. Simulation results show the robustness of the algorithm. It
was validated on 5 phantom and 18 patient datasets, successfully local-
izing the seeds with detection rate of ≥ 97.6 % and reconstruction error
of ≤ 1.2 mm. This is considered to be clinically excellent performance.

1 Introduction

Low dose rate permanent brachytherapy is widely utilized for low risk prostate
cancer, the success of which mainly depends on the ability to place an ade-
quate number (50–120) of radioactive seeds to deliver a sufficient therapeutic
dose distribution to the target gland while sparing adjacent organs from ex-
cessive radiation. During the procedure, the surgeon implants radioactive seeds
based on a pre-operative implantation plan under transrectal ultrasound image
guidance. However, it is not possible to accurately implant the seeds to the pre-
planned positions due to various reasons, e.g., patient motion, needle deflection
within prostate, and edema. In order to improve outcomes and reduce com-
plications, intra-operative localization of the seeds using x-ray fluoroscopy and
intra-operative dosimetry modifications have been previously proposed [1,2,3].

The seed localization problem from multiple fluoroscopy images are usually
modeled as an assignment problem [3]. This approach resolves which segmented
� This work has been supported by DoD PC050042 and NIH/NCI 2R44CA099374.
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seeds in each projection image correspond to the same physical seed. The 3D
locations of the seeds are determined by computing so-called symbolic intersec-
tion of the lines connecting the segmented seeds to the x-ray source positions
based on the revealed seed correspondence. However, this assignment problem
is NP-hard [3]. In addition, there exist a significant number of hidden seeds in
every image, thus making explicit segmentation of seeds in every image hard.
Such so-called hidden seeds are usually determined manually, and it is sometimes
impossible to recover them when one seed completely hides another. Therefore,
an algorithm that is computationally efficient and is able to solve the hidden
seed problem is essential to a clinically feasible system.

There has been some research on solving the hidden seed problem. Su et
al. [4] extended Fast-CARS [2], but the new algorithm was prone to reconstruct
a greater number of seeds than were actually present, an effect called “false
positive” seeds. Narayanan et al. [5] proposed a pseudo-seed-matching strategy
coupled with an epipolar geometry-based reconstruction. This method requires
at least one of the three images to be complete, however, or it may or may
not reliably reconstruct the 3-D seed positions of the hidden seeds. Su et al. [6]
proposed an adaptive grouping technique which divides the seed images into
groups for efficient seed reconstruction and solving the hidden seed problem.
Unfortunately, it may fail to detect overlapping seeds when the projection with
the largest number of seed images among the divided groups is incomplete. Also,
incorrect division of triplets may result in false positive seeds. Tomosynthesis [7]
and Hough trajectory [8] methods have also been proposed, but they require
unfeasibly large numbers of images in order to guarantee stable reconstruction.

We have previously proposed a dimension reduction approach for solving seed
matching problem [9]. However, it did not solve the hidden seed problem and
was not computationally efficient. In this paper, we present an algorithm that is
able to solve the hidden seed problem using dimensionality reduction to achieve
efficient cost computation. We also propose a pruning algorithm that yields a
dramatic reduction in computation time.

2 Method

2.1 Extended Assignment Problem

When at least three projection images are used and all the 2D seed locations are
identified in every x-ray image, the correspondence problem can be formulated as
a 3D assignment problem (3DAP) [3]. In reality, however, there are a significant
number of hidden seeds, resulting in a varying number of segmented seeds in
each image. Here, we describe an extended assignment problem (EAP) that is
able to reconstruct seed positions including hidden seeds.

In contrast to the 3DAP where exactly N implanted seeds are identified in
every image, we consider a different number Ni of identified seeds in each image
i with Ni ≤ N . For I(≥ 3) x-ray images, the EAP is defined as:

min
xi1i2i3...iI

N1∑
i1=1

N2∑
i2=1

N3∑
i3=1

· · ·
NI∑

iI=1

ci1i2i3...iI xi1i2i3...iI , (1)
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s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑N2
i2=1

∑N3
i3=1 · · ·

∑NI

iI=1 xi1i2i3...iI ≥ 1, ∀i1
...∑N1

i1=1
∑N2

i2=1 · · ·
∑NI−1

iI−1=1 xi1i2i3...iI ≥ 1, ∀iI∑N1
i1=1

∑N2
i2=1

∑N3
i3=1 · · ·

∑NI

iI=1 xi1i2i3...iI = N

(2)

where ci1i2i3...iI is the cost of matching point p1
i1 to points {p2

i2 , p
3
i3 , . . . , pI

iI
} and

xi1i2i3...iI is a binary variable deciding the correctness of the match 〈i1, i2, . . . , iI〉.
Since we use inequalities in the constraints (2) to handle the occurrence of hidden
seeds, a point can be chosen more than once in an image. The last equality forces
the total number of seeds to be N .

Let N ′ = N1N2 . . . NI , and x, c ∈ RN ′
be vector forms of xi1i2...iI and ci1i2...iI ,

respectively. Let M be a matrix form of (2) except for the last equation. Then
the EAP (1)–(2) can be formulated as the following integer program:

P : min
x∈C

ctx, (3)

with the constraint set C={x : Mx ≥ [1, . . . , 1]t,xt[1, . . . , 1]t = N, x� ∈ {0, 1}},
where x� is the �th element of x. Since the value of x� is either 0 or 1 and there
must be N 1’s, an optimal solution of (3) can be considered as choosing N cost
coefficients such that the cost is minimized while the constraint C is satisfied.

2.2 Dimensionality Reduction of EAP

Since the EAP has more feasible solutions than the 3DAP, it is not currently
possible to solve (1) within a clinically acceptable time. In this paper, we use the
same dimensionality reduction approach to the previous work [9], utilizing the
following observation: the optimal solution has a near-zero cost when the c-arm
pose error is low (it is zero when the pose is exactly known). This feature and
Lemma 1 in [9] yield a following equivalent problem of reduced dimensionality
(for proof, see [9, Sec. 2.2]):

P̃ : min
x̃∈C̃

c̃tx̃, (4)

where x̃, c̃ ∈ RK (K ≤ N ′) and C̃ = {x̃ : M̃x̃ ≥ [1, . . . , 1]t, x̃t[1, . . . , 1]t =
N, x̃� ∈ {0, 1}} with M̃ = MR and where R is the dimensionality reduction

matrix of size N ′ ×K such that
[
xi1 0 xi2 0 . . . xiK

]t = R
[
x̃1 x̃2 . . . x̃K

]t
.

Given a solution x̃∗ to the reduced problem P̃ , the optimal solution to the
original problem P is simply given by x∗ = Rx̃∗.

2.3 Cost Coefficients and Seed Reconstruction

To compute C, we need to compute the 3D intersection of the corresponding
lines in space. Due to various errors (e.g., c-arm pose error, seed segmentation
error, etc.), these straight lines never intersect, forcing us to compute a symbolic
3D intersection point. This point is typically defined as the global minimum of
an error function. In this paper, we use reconstruction accuracy (RA) based on
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the L2 norm of Euclidean distance from the intersection point to the lines as a
cost function. By using the RA cost, we can analytically compute a symbolic
intersection point using a few summations followed by a 3×3 matrix inversion [3].
Once the EAP is solved, 3D locations of the N implanted seeds can be determined
by the symbolic intersection points used to compute the N chosen RA costs in
the solution (those that correspond to 1’s in x).

The dimensionality reduction approach described in Section 2.2 requires only
the computation of K cost coefficients that are lower than a threshold. This
implies that the exact value of most of the cost coefficients is not required. An
efficient way to tell if a cost coefficient is higher than the dimensionality reduction
threshold would allow us to skip its exact computation. This unnecessary cost
computation can be avoided by utilizing the following Lemma.

Lemma 1. Let I be the total number of 3D lines, and li and pi be the unit
direction vector of line i and a point on the line i, respectively. Every RA cost
coefficient has the following lower bound:

2I(I − 1)RA ≥
∑

i1,i2∈{1,2,...,I}, i2>i1

d(li1 , li2)
2 (5)

where RA is defined as RA � 1/I
∑I

i=1 ‖(PI − pi) × li|2 and d(li1 , li2) is the
Euclidean distance of line i1 to line i2 and with I images.
Proof. Due to the lack of space, the proof is not detailed.

Based on Lemma 1, we propose the following pruning algorithm.

Pruning algorithm for efficient computation of RA costs:
1: Compute every possible d(li1 , li2)2 for I images.
2: For the first i images, we have c̃i1,i2,...,ii =

∑
i1,i2∈{1,2,...,i}, i2>i1

d(li1 , li2)
2 =

c̃i1,...,ii−1 +
∑i−1

i1=1 d(li1 , li)2. Thus, c̃i1,i2,...,ii increases as the number of image
i increases. When c̃i1,i2,...,ii > η, the computation of c̃i1,i2,...,iI is not required
and a large family of cost coefficients can be pruned. This favorable property
allows for a recursive algorithm where images are virtually added one at a
time and where a list of coefficients lower than η is updated.

3: Compute the RAs for indexes (i1, i2, . . . , iI) remaining from step 2.

More RA cost coefficients are actually computed from the indexes of coefficients
c̃1,2,...,I lower than the dimensionality reduction threshold η, than are strictly re-
quired because (5) is only an inequality. The performance of the pruning algorithm
directly depends on the ratio of the number of RA cost coefficients computed and
the number of those actually lower than η. In practice, we observed that this ratio
is in the range of 3 to 15, which is very compelling, due to its low cost.

2.4 Linear Programming

Based on the proposed dimensionality reduction, we solve our reduced integer
program (4) using linear programming. We have implemented the linear program
for the EAP using MATLAB command linprog followed by a test to confirm
that its solution is binary (up to numerical errors).
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3 Numerical Results

The algorithm was implemented using MATLAB 7.1 on a Pentium4 2.92 GHz
PC with 3.8GB RAM. For simulations, we assumed that the camera parameters
of the c-arm were known. For phantom and clinical datasets, we calibrated the c-
arm prior to the procedure and computed the c-arm pose using a tracking fiducial
that provides accuracy of 0.33◦ in rotation and 0.56 mm in translation [10].

3.1 Simulations

We performed simulation studies using synthetic projection images. We consid-
ered four cases with clinically realistic seed density of 2 and 2.5 seeds/cc and
prostate size of 35 and 45 cc, resulting in 72, 84, 96, and 112 seeds. For each case,
we generated three datasets. We generated six projection images on a 10◦ cone
along the AP-axis in each dataset. In each image, there were 1.7% on average
and up to 5.6% hidden seeds. We added random error to the pose, uniformly
distributed on [−h, h] (reported as h error). Rotation errors varied from 0◦ to
4◦, with 1◦ steps and translation errors varied from 0 mm to 10 mm, with 2 mm
steps. We exploited the fact that translation errors in depth are always signif-
icantly greater than those parallel to the x-ray image plane [3]. For each error
type, 240 (4 cases × 3 datasets ×C6

3 ) and 180 (4 cases × 3 datasets ×C6
4 ) recon-

structions were computed using three and four images, respectively. Shown in
Fig. 1, our results imply that the EAP algorithm reliably finds the correct match
and reconstruct the seeds with > 95% accuracy with up to 2◦ rotation error and
4 mm translation error even when only 3 images were used. When the c-arm pose
is exactly known, the algorithm can localize the seeds with detection accuracy
of > 99% and reconstruction error < 0.35 mm. We also conducted robustness
tests on calibration errors varying from 0 to 10 mm and angular capture range
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Fig. 1. Matching rates and reconstruction errors as functions of (a, c) rotation and
(b, d) translation pose errors
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Table 1. Phantom experiment results

Number Mean match Mean ± STD Mean computation
of seeds rate (%) reconstruction error (mm) time (s)

40 97.9 0.9 ± 0.7 1.1
55 100.0 0.6 ± 0.3 2.6
70 99.3 0.8 ± 0.3 3.9
85 97.6 1.1 ± 0.6 6.2
100 99.9 1.2 ± 0.5 10.8

varying from 5 to 25 degrees. Due to the limited space, we do not include the
resulting plots, but our method is very robust to the calibration errors and small
image acquisition angles achieving seed detection rate of > 99%.

3.2 Phantom Experiments

We evaluated the EAP algorithm on a precisely fabricated seed phantom assuring
ground-truth. There were five datasets with 40, 55, 70, 85, and 100 implanted
seeds (length of 4.9 mm and diameter of 0.8 mm, similar size to 125I seeds)
keeping seed density constant at 1.56 seeds/cc. For each dataset, we acquired six
images within a 20◦ cone around the AP-axis using a Philips Integris V3000. On
average, 5.5% and up to 22.5% of the seeds were hidden in each image. The EAP
algorithm used 20 combinations of three images from the six available images in
each dataset. It successfully localized the seeds with mean accuracy of ≥ 97.6%
and the mean reconstruction error of ≤ 1.2 mm within about 10 seconds or less
depending on the number of seeds. Table 1 summarizes the results and Fig. 2(a)
shows a phantom image example with re-projection of the detected seeds.

3.3 Clinical Experiments

We validated the EAP algorithm on six patient datasets. For each patient, we
acquired two sets of images during the procedure, and one set of images at the
end of the procedure using an OEC 9800 fluoroscope. The image acquisition
angle was about 20◦ around the AP-axis. Various number of 103Pd seeds with
length of 4.5 mm and radius of 0.8 mm were implanted (radio-opaque size of the
x-ray marker is about three times smaller than the seed size). There were 0.9% on
average and up to 7.8% hidden seeds in each image. Since we did not know the
exact locations of the seeds, we visually assessed the correspondence between
the projection of the estimated seeds and the actual seeds in the images and
computed projection errors. The EAP algorithm almost perfectly localized the
seeds using 3 images in all cases with mean projection error less than 1 mm within
10 seconds. We conservatively classified two seeds as mismatched, because the
projection of them look matched in some images but look ambiguous in others.
Thus, the true detection rate is between 98.1 % and 100 % - in either case, it
is a clinically excellent performance. The reconstruction results are shown in
Table 2 and Fig. 2(b) shows a fluoroscopy image example with re-projection of
the detected seeds.
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Table 2. Clinical experiment results

Patient Number Match Mean ± STD Computation
ID of seeds rate (%) projection error (mm) time (s)

22 100 0.5 ± 0.3 1.1
1 44 100 0.7 ± 0.4 2.2

66 100 0.4 ± 0.2 4.8
39 100 0.3 ± 0.2 2.5

2 82 100 0.3 ± 0.3 7.4
84 100 0.9 ± 0.5 8.7
33 100 0.2 ± 0.1 1.4

3 67 100 0.6 ± 0.5 3.5
70 100 0.6 ± 0.6 4.7
35 100 0.9 ± 0.5 1.5

4 68 100 0.2 ± 0.1 5.8
77 98.7 0.5 ± 0.3 7.3
24 100 0.6 ± 0.6 1.0

5 48 100 0.8 ± 0.6 2.4
53 98.1 0.6 ± 0.5 2.7
33 100 0.3 ± 0.4 1.6

6 61 100 0.1 ± 0.1 3.4
66 100 0.1 ± 0.1 7.9

(a) (b)

Fig. 2. Fluoroscopy images with the re-projection of the estimated seed centroids
(green dots). Red circles indicate overlapping seeds. (a) Phantom image with 100 seeds.
(b) Patient image with 70 seeds.

4 Conclusion

We developed a computationally efficient and clinically feasible seed-matching
algorithm for prostate brachytherapy seed localization. It automatically resolves
the correspondence of seeds from multiple projection images with hidden seeds.

Simulation results imply that the EAP algorithm is robust to realistic c-
arm pose errors with clinically acceptable accuracy. Especially in the phantom
study, we used seeds that have similar radio-opaque size to 125I seeds (about
three times larger than that of 103Pd seeds), thus creating more hidden seeds
(up to 22.5%). On average, the EAP algorithm was able to correctly find the
correspondence with matching rate of ≥ 97.6%. Even in the worst case where
22.5%, 7.5%, and 10.0% of the seeds are hidden in three images, it still achieved
92% correct matching rate. For clinical datasets, only 103Pd seeds were used,
thus having smaller number of hidden seeds than the phantom (125I seeds).
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The performance was almost perfect for all 18 datasets, and only two seeds were
mismatched in two cases. Small projection errors (< 1.0 mm) imply the accuracy
of our reconstruction. Note that a performance better than 97% detection rate
and 2 mm reconstruction accuracy is considered to be clinically excellent.

The computation time was significantly reduced by adopting a new pruning
method for efficient computation of the RA cost. Compared to the previously
developed dimensionality-reduction-based algorithm [9] which solves the 3DAP
in about 100 seconds, the EAP algorithm is more than 10 times faster and can
solve the hidden seed problem within about 10 seconds. This is comparable to
MARSHAL [3], one of the fastest seed-matching algorithms in the literature (and
it solves an approximate formulation leading to a suboptimal solution).

Finally, we note that although the EAP algorithm is formulated for any num-
ber of images, simulation, phantom, and clinical experiment results show that
three images are sufficient to achieve clinically adequate outcome in terms of
accuracy, robustness, and computation time.
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Abstract. Computer-assisted prostate biopsies became a very active
research area during the last years. Prostate tracking makes it possi-
ble to overcome several drawbacks of the current standard transrectal
ultrasound (TRUS) biopsy procedure, namely the insufficient targeting
accuracy which may lead to a biopsy distribution of poor quality, the very
approximate knowledge about the actual location of the sampled tissues
which makes it difficult to implement focal therapy strategies based on
biopsy results, and finally the difficulty to precisely reach non-ultrasound
(US) targets stemming from different modalities, statistical atlases or
previous biopsy series. The prostate tracking systems presented so far
are limited to rigid transformation tracking. However, the gland can get
considerably deformed during the intervention because of US probe pres-
sure and patient movements. We propose to use 3D US combined with
image-based elastic registration to estimate these deformations. A fast
elastic registration algorithm that copes with the frequently occurring
US shadows is presented. A patient cohort study was performed, which
yielded a statistically significant in-vivo accuracy of 0.83±0.54mm.

1 Introduction

Prostate biopsies are the only definitive way to confirm a prostate cancer hy-
pothesis. The current clinical standard is to perform prostate biopsies under 2D
TRUS control. The US probe is equipped with a needle guide for transrectal
access of the prostate. The guide aligns the needle trajectory with the US image
plane, which makes it possible to visualize the trajectory on the image for needle
placement control. Unfortunately, in particular mid- and early-stage carcinoma
are mostly isoechogenic, i.e. not visible in US images, which makes it necessary
to sample the gland according to a systematic pattern. It is common to acquire
10 to 12 systematically distributed biopsies, the standard pattern taking roughly
into account that most tumors (70%) develop in the peripheral zone of the gland.

� Thanks to the Agence Nationale de la Recherche (TecSan project, France), the
French Ministry of Health (PHRC program, France) and to Koelis S.A.S. (France)
for funding.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 67–74, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



68 M. Baumann et al.

The current standard biopsy procedure has several shortcomings: first, it is
difficult for the clinician to reach systematic targets accurately because he has
to move the probe continuously to place the needle; a constant visual reference
is hence lacking. Second, performing a non-exhaustive systematic search for an
invisible target implies that the target can be missed. Negative results leave the
clinician in a dilemma when the cancer hypothesis cannot be discarded: his only
option is to repeat the biopsy series. Furthermore, the location of the acquired
samples with respect to the patient anatomy is only very approximately known
after the intervention. Uncertainty about tumor location is the principal reason
why prostate therapy is in general radical.

In order to address these issues, Baumann et al. [1] and Xu et al. [2] simulta-
neously proposed to acquire a US volume before the intervention and to use it
as anatomical reference. The stream of US control images acquired during the
intervention is then registered with the reference volume, which allows to project
targets defined in the reference volume into the control images, and, conversely,
the biopsy trajectory, known in control image space, into the reference volume.
This technique makes it possible to improve biopsy distribution accuracy by
showing the current trajectory in a fixed reference together with the trajectories
of previously acquired biopsies, to aim targets defined in the reference volume
during a planning phase, and to know the precise biopsy positions after the
intervention. Non-US targets could originate from suspicious lesions in MR vol-
umes that are then multi-modally registered with the US reference volume. It
is also possible to derive targets from more sophisticated statistical atlases [3]
or, in the case of repeated biopsies, they could consist of previously unsampled
regions. After the intervention, the biopsy trajectories in the reference volume
can be combined with the histological results and used for therapy planning.

Xu et al. [2] acquire a freehand 3D US volume and use 2D control images
during the intervention. The 2D control images are tracked in operating room
space with a magnetic sensor on the probe. In a second step, image-based regis-
tration is performed to compensate for small organ and patient movements. A
similar approach was proposed by Bax et al. [4], who use an articulated arm for
2D US beam tracking. Bax does not compensate for patient and gland move-
ments. However, pain-related pelvis movements are frequent, since the patient
is not under total anesthesia. In that case, both methods risk to loose track of
the gland because the US beam is tracked in operating room space and not in
organ space, and a new reference volume has to be acquired. Baumann et al.
address this draw-back by using 3D US to obtain richer control images during
the intervention [1]. Instead of using a US beam tracking device to initialize local
image-based registration, they propose a kinematic model of endorectal probe
movements to compute anatomically plausible positions of the US beam with
respect to the gland, which is unaffected by patient movements.

However, probe movements during needle placement continuously deform the
gland. Deformations are strongest near the probe head and can reach 3 to 6
mm. They cannot be estimated with the presented systems. To address this is-
sue, we extend the 3D US rigid registration approach presented in [1] by adding
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a deformation estimation step to the registration pipeline. 3D US control images
provide the information required to estimate the deformation with acceptable
precision and accuracy. Inverse consistency and linear elasticity are used as de-
formation priors. A novel image distance measure capable of dealing with local
intensity shifts, frequent in US images, is presented. The clinical accuracy of
the presented algorithm is evaluated on a large number of patient data acquired
during prostate biopsy sessions.

2 Method

Non-linear registration of 3D US image streams is currently the most promising
approach to perform organ tracking with deformation estimation. The principal
challenges of image-based tracking systems are robustness and computational
efficiency. A technique to achieve both goals are coarse-to-fine registration strate-
gies that successively increase the degrees of freedom (DOF) of the transforma-
tion space and the image resolution. In this paper, we add an elastic registration
step to the 3-step coarse-to-fine rigid registration pipeline that we proposed in
[1]. The resulting pipeline is illustrated in Fig. 1.

2.1 Framework for Non-linear Registration

Image-based deformation estimation can be formulated as an optimization pro-
cess of a local distance measure. Let I1, I2 : R3 → R be images, ϕ : R3 → R3 the
deformation function and the functional D[I1, I2;ϕ] a measure of the distance
between I1 and I2 ◦ϕ. In contrast to parametric approaches that use basis func-
tions to build the deformation function, we will follow a variational approach and
define ϕ(x) = x + u(x), where u : R

3 → R
3 is assumed to be a diffeomorphism.

The deformation could then be estimated by solving the optimization problem

ϕ∗ = argmin
ϕ

(E [I1, I2;ϕ]) , (1)

Fig. 1. Registration pipeline. The dimensionality of the transformation space and the
image resolution are successively increased.
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where the registration energy E simply corresponds to D. Straightforward min-
imization of a distance measure yields, however, in general poor results due to
countless local minima, in particular in presence of noise, partial object occlusion
and other imperfections in the image data. Unfortunately, US is a particularly
noisy modality, which makes 3D US based deformation estimation vulnerable to
local misregistrations. This problem can be addressed by integration of a pri-
ori models of the expected deformation. This can be done implicitly by adding
further energy terms to the objective function. In this work, inverse consistency
and elastic regularization energies are added.

2.2 Inverse Consistency Constraints

In non-linear image registration, the forward estimation that minimizes E [I1, I2;ϕ]
does in general not yield the inverse of the backward estimation that minimizes
E [I2, I1;ψ], i.e. ϕ ◦ ψ �= Id with Id : R3 → R3, x �→ x. Introduction of Zhang’s
inverse consistency constraint [5]

I[ψ;ϕ] =
∫

Ω

||ψ ◦ ϕ− Id||2
R3 dx (2)

as additional energy penalizes solutions that lead to inconsistent inverse trans-
formations, where Ω ⊂ R

3 is the registration domain in image space. Estimation
of the forward and the backward deformations is coupled by an alternating it-
erative optimization

ϕk+1 = argmin
ϕ

(
E [I1, I2;ϕ] + I[ψk;ϕ]

)
, (3)

ψk+1 = argmin
ψ

(
E [I2, I1;ψ] + I[ϕk;ψ]

)
. (4)

Concurrent estimation with mutual correction reduces the risk of local misreg-
istrations.

2.3 Elastic Regularization

The deformation of the prostate caused by probe pressure is fully elastic, which
justifies the introduction of the linearized elastic potential [6]

E [ϕ] = E [u + Id] =
∫

Ω

μ

4

3∑
j,k=1

(
∂xjuk + ∂xk

uj

)2 +
λ

2
(div u)2 dx (5)

as additional energy, where λ and μ are the Lamé coefficients.

2.4 Image Distance Measure

The image distance measure is the driving energy of the optimization process.
Experiments on patient data have shown that the sum of squared distances (SSD)
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is a poor distance measure for deformation estimation on noisy US images. Local
intensity changes are frequent due to changing US beam angles with respect to
the tissues and probe pressure variations. The more robust Pearson correlation
coefficient (CC) requires the evaluation of a large neighborhood of every voxel
pair to yield statistically significant results, which is incompatible with deep
multi-resolution approaches that operate on very coarse levels.

We hence prefer an intermediate correlation model that filters low-frequency
intensity shifts, i.e. we assume that I1 ≡ I2 ◦ ϕ̂ + b, where ϕ̂ is the physical
solution of the registration problem, and where b : R3 → R3 models a local
intensity shift. The shift is estimated by

bσ[ϕ](x) = (I1 − I2 ◦ ϕ) ∗ Gσ(x) (6)

where G : R3 → R is a Gaussian with standard deviation σ. The image distance
energy is then

D[I1, I2;ϕ] =
∫

Ω

(I1(x)− I2(ϕ(x)) − bσ[ϕ](x))2 dx. (7)

The standard deviation σ controls the frequency range of the high-pass filter. If
σ gets smaller, the cropped frequency range gets larger, and registration conver-
gence rate decreases and may even stall if only high frequency noise like speckle
is left. When used with a multi-resolution solver on a Gaussian pyramid (cf. next
section), which implicitly performs a low-pass filtering of the intensity variations
on coarse resolutions, this approach transforms to a band-pass filtering on vary-
ing frequency bands. In this configuration it is sufficient to chose relatively small
standard deviations without risking registration inefficiencies.

2.5 Solver

Combination of the energy terms yields the alternating system

ϕ∗ = argmin
ϕ

(D[I1, I2, ϕ] + E [ϕ] + I[ψ;ϕ]) , (8)

ψ∗ = argmin
ψ

(D[I2, I1, ψ] + E [ψ] + I[ϕ;ψ]) . (9)

An iterative two-step minimization scheme is used to solve both objective func-
tions. The Euler-Lagrange equations of Eqn. 8 and 9 are rewritten as a fixed
point iteration

ϕk+1 − ϕk

Δt
= L[ϕk] + fD[I1, I2;ϕk] + fI [ψk;ϕk], (10)

ψk+1 − ψk

Δt
= L[ψk] + fD[I2, I1;ϕk] + fI [ϕk;ψk], (11)

where t ∈ R controls the discretization granularity, and with the elliptic partial
differential operator

L[ϕ] = L[u + Id] = μΔu + (λ + μ)∇div u, (12)
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which is obtained from the Gâteaux-derivative of E [ϕ][6]. The Gâteaux deriva-
tives of the energy term D at ϕ yields the force term

fD[I1, I2;ϕ] = (I1 − I2 ◦ ϕ− bσ[ϕ])(∇(I2 − bσ)) ◦ ϕ, (13)

and for I we get
fI [ψ;ϕ] = (ψ ◦ ϕ− Id)T (∇ψ) ◦ ϕ. (14)

An iterative algorithm is used to estimate the displacement fields:
1: while not converged do
2: compute fD[I1, I2;ϕk] and fI [ψk;ϕk]
3: compute fD[I2, I1;ψk] and fI [ϕk;ψk]
4: solve Eqn. 10 for ϕk+1

5: solve Eqn. 11 for ψk+1

6: end while
The forces are hence considered as constants for the resolution of the PDEs
10 and 11, and the forward and the backward estimation correct themselves
mutually at each force update. The PDEs are solved using Red-Black Gauss-
Seidel relaxation. Convergence is achieved if the difference of the L2-norm of
the total forces between two iterations is below a threshold for both the forward
and the backward estimation (oscillatory states are detected). The algorithm is
executed on various resolution levels of a Gaussian image pyramid [1] using the
full multigrid strategy [7]. Note that the algorithm derives from the multigrid
scheme by iterating until convergence on every grid level. This is necessary since
the relaxation is performed on fractional forces. Fixed edges and bending side
walls are used as border conditions [6]. The elasticity parameters are chosen
such that Poisson’s coefficient is zero, hence maximizing compressibility to allow
compensation of local model inadequacies. Young’s modulus is interpreted as a
free variable in function of Poisson’s coefficient and the PDE discretization Δt
since it has no physical meaning in image registration. The forces are capped to a
maximum length which makes it possible to control the maximum contributions
per iteration to the displacement field via Δt. Limiting the contributions to
less than 0.5 voxel side lengths ensures that the algorithm does not ’jump’ over
intensity barriers during optimization.

3 Experiments

The framework was validated on 278 registrations of 295 US volumes from 17
patients. The 17 reference images were acquired shortly before the intervention,
and the tracking images were acquired after a biopsy shot. The clinical protocol
was approved by the ethical committee of the XXX hospital, Town, Country, and
all patients consented to participate to the study. The images were acquired with
a GE Voluson and a RIC5-9 endorectal US probe. The algorithms were executed
on a 4-core 2.6Ghz processor. In order to provide a reference gold standard for
the evaluation of registration accuracy, experts manually segmented 467 point
fiducials that were clearly identifiable on multiple images (e.g. calcifications and
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Table 1. Accuracy study

mean standard max execution
distance deviation distance time (mean)

unregistered 13.76 mm 7.89 mm 51.61 mm -
rigid 1.33 mm 0.85 mm 4.19 mm 2.1 s

elastic 0.83 mm 0.54 mm 4.14 mm 6.8 s

(a) (b) (c) (d)

Fig. 2. Standard SSD failure case study. Fig. (a) shows a prostate volume with calci-
fications [1,2]. Fig. (b) shows a second volume with a low contrast zone [3] after rigid
registration with (a). Fig. (c) shows the 3D elastic registration with standard SSD and
without inverse consistency; the whole prostate is dragged towards zone [3]; the tissue
correspondences are worse than after rigid registration. Fig. (d) shows the 3D intensity
shift filtered, inverse consistent elastic registration; the strong intensity differences be-
tween both volumes are correctly handled, the calcifications make appearance at the
correct position (best viewed in PDF with zoom).

(a) (b)

Fig. 3. Tissue deformation corrected 3D biopsy maps in reference space

cysts). The distances between fiducial pairs were measured after registration
to estimate the local accuracy. Note that the unavoidable segmentation error
increases the measured error in average; this approach hence underestimates
accuracy. Accuracy was computed for all registrations that were qualified as valid
by experts after visual inspection, which represent 97,8% of the registrations. The
results for both rigid and elastic registration are given in Tab. 1, and a visual
illustration of the registration performance is given in Fig. 2. Fig. 3 shows 3D
biopsy maps created with our biopsy tracking system.
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4 Discussion and Conclusion

Deformation estimation achieves an overall accuracy of at least 0.83±0.54 mm on
real patient data. This corresponds to an error reduction of 40% when compared
to rigid 3D-3D registration. The average computation time of the registration was
only 6.8s. We are confident that the algorithm can be accelerated to below 1s on
the same machine with simple optimization and parallelization techniques, which
is sufficient for assisted needle placement. With specialized standard hardware
(GPUs), at least 5Hz should be feasible.

Biopsy tracking systems potentially add significant clinical value to prostate
cancer diagnosis and therapy planning. Immediate advantages are the possibility
to avoid resampling of already biopsied tissues when repeating a biopsy series,
interventional quality control of the biopsy distribution (e.g. detection of un-
sampled areas) and computer-assisted guidance to non-systematic targets. The
latter could for example be identified on MR/spectroMR images of the gland.
Moreover, the improved knowledge about the biopsy and thus the cancer posi-
tion could be used to implement focal therapy strategies for prostate cancer. 3D
US based elastic tracking can provide the precision required for such therapeutic
applications.
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Abstract. Defects in articular cartilage can be repaired through os-
teochondral transplantation (mosaic arthroplasty), where osteochondral
plugs from non-weight-bearing areas of the joint are transferred to the
defect site. Incongruity between the plug surface and the adjacent car-
tilage results in increased contact pressures and poorer outcomes. We
compare three methods to predict the desired repair surface for use in
computer-assisted mosaic arthroplasty: manual estimation, a cubic spline
surface, and a statistical shape atlas of the knee. The cubic spline was
found to most accurately match the pre-impact cartilage surface; the
atlas was found to match least accurately.

1 Introduction

Articular cartilage injuries are one of the most common injuries seen in or-
thopaedic practice. In a review of 31,516 knee arthroscopies, it was found that
cartilage defects appeared in 63% of these cases [1]. Damaged articular cartilage
in weight-bearing areas of the knee has a large effect on the activity level and
life style of the patient [2].

The limited self-healing potential of articular cartilage makes an operative
management the common treatment for isolated cartilage defects. One well ac-
cepted surgical technique today is osteochondral autograft transplantation. Dur-
ing this procedure, cylindrical osteochondral plugs are retrieved from relatively
non-weight-bearing areas of the knee and transplanted into the damaged regions.

For long-term success of this procedure, the transplanted plugs should recon-
struct the curvature of the articular surface. Plugs that are placed too high will
take a disproportionately large part of the joint load, which may lead to peak
loading and abrasion of the plug surface and damage to the opposing articu-
lar surface. On the other hand, insufficient plug height results in inappropriate
physiological pressure and may be disposed to late degradation [3].

Novel tools [4] and computer assisted procedures [5] have been used to achieve
better plug harvesting and placement. But, in the presence of a cartilage defect
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(and the absence of the original cartilage surface), it can be challenging to achieve
surface congruity due to lack of a good surface prediction mechanism, particu-
larly in larger defects. Many effective methods have been proposed to segment
cartilage from medical images (e.g. [6,7,8]), but we are not aware of any work to
predict the original cartilage surface over a defect site.

The goal of this study was to compare three different artho-CT based methods
for determining the desired articular repair surface for the use in computer-
assisted cartilage repair surgeries. The three methods used manual estimation,
a cubic spline, and a statistical shape atlas reconstruction. All methods were
tested with an in-vivo sheep model study.

2 Material and Methods

Sixteen sheep knees – one from each sheep – were used in the study. For each
knee, a CT scan was performed immediately after an intra-articular injection
of a contrast agent. All arthro-CTs were obtained with a Light-Speed Plus CT
(GE Healthcare, Waukesha, USA) in axial mode, with a slice thickness of 0.625
mm at 140 kpV. The sheep were positioned feet-first supine for the scan.

Three-dimensional surface models for bone and cartilage were manually built
using the commercially available software package Amira (Visage Imaging, Inc.,
Carlsbad, CA, USA). An initial threshold segmentation was performed on the CT
volume. This segmentation was manually refined using various editing functions.
Isosurface models for bone and cartilage were created and stored.

In a minimally-invasive surgical intervention, a cartilage defect on the medial
condyle of each knee was induced with a calibrated impact. Three months after
this cartilage damage, a second arthro-CT scan was obtained of each knee in-vivo
using the same scanner and protocol as the pre-defect scans. Using the procedure
described above, isosurface models for bone and cartilage were created. The three
month defects varied in size between 40 mm2 and 60 mm2.

In each of the 16 post-defect CT datasets, the outline of the cartilage defect
was manually defined and the desired articular surface over the defect area was
predicted using each of three methods: manual estimation; cubic spline sur-
face; and statistical shape atlas. We did not consider using the contralateral
knee as a model because the morphology of the two knees is not alway identical,
particularly when pathology is present.

The pre-defect and post-defect isosurfaces were co-registered using the iter-
ated closest point (ICP) algorithm [9]. The distance between each predicted
surface and the “gold standard” pre-defect isosurface was computed by selecting
50 points on the predicted surface and computing their root-mean-squared error
to the pre-defect surface.

2.1 Method 1: Manual Estimation

Custom software was developed based on the freely available visualization li-
brary Coin3D (www.coin3d.org). For each knee, the post-defect CT volume and



Prediction of the Repair Surface over Cartilage Defects 77

(a) (b)

Fig. 1. (a) Manual planner for cartilage plug placement. The cartilage surface is visible
below the light contrast agent in the CT slices. (b) The articular surface over the defect
is predicted by the surfaces of the lower plugs on the condyle. (The upper four plugs
are the corresponding donor sites.).

the 3D surface models for bone and cartilage were displayed to the operator.
Our operator had several years of experience planning orthopaedic surgeries,
including mosaic arthroplasty procedures. The operator identified the carti-
lage defect and created virtual cartilage plugs to reconstruct the articular sur-
face.

For each plug the radius, height, curvature, position and orientation could be
modified by the operator. The operator manipulated these parameters to best
fit the top of each cartilage plug to what the operator expected would be the
pre-defect surface. Each plug could also be shown on the volumetric dataset in
three orthographic planes, as shown in Figure 1(a). The operator did not see
the pre-defect CT scans during this procedure. The surgeon verified that the
planned plugs defined an acceptable articular surface over the defect.

Fifty evenly distributed points were automatically selected on the surfaces of
the planned plugs. The resulting points defined the manually estimated cartilage
surface and were compared with the gold standard surface.

2.2 Method 2: Cubic Spline Surface

A bicubic Hermite surface patch was applied over the defect site. This paramet-
ric patch, Q(s, t), was defined by: four points on the surface; two non-orthogonal
vectors, s and t, describing the direction between these points; the partial deriva-
tive with respect to s at each of those four points; the partial derivative with
respect to t at each point; and the partial derivative with respect to both s and
t at each point (this is called the “twist”).

Another operator, who had no previously experience in planning of articular
cartilage reconstruction, manually selected the four points p0, . . . , p3 counter-
clockwise on the post-defect cartilage surface of each knee in a rough rectangle
that completely surrounded the defect site, as shown in Figure 2. The vectors
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(a) (b)

Fig. 2. (a) Cartilage defect before patch is placed. (b) Four corner points are selected
by the operator to define a bicubic Hermite surface patch over the defect site.

s and t were defined as the direction between p0 and p1 and between p0 and
p3. The partial derivatives at each point were computed using a central finite
difference on the scanned cartilage surface, q:

δ

δs
q(s, t) ≈ q(s + Δs, t)− q(s−Δs, t)

2Δs
(1)

with a Δs approximately 5% of the length of the corresponding edge of the
rectangle. The twist vectors were set to zero, which results in a specific type of
bicubic Hermite patch, called a Ferguson patch [10]. The surface patch was then
constructed in the standard way (e.g. [11]):

Q(s, t) =

⎡⎢⎢⎣
F1(s)
F2(s)
F3(s)
F4(s)

⎤⎥⎥⎦
T ⎡⎢⎢⎣

q(0, 0) q(0, 1) qt(0, 0) qt(0, 1)
q(1, 0) q(1, 1) qt(1, 0) qt(1, 1)

qs(0, 0) qs(0, 1) qst(0, 0) qst(0, 1)
qs(1, 0) qs(1, 1) qst(1, 0) qst(1, 1)

⎤⎥⎥⎦
⎡⎢⎢⎣

F1(t)
F2(t)
F3(t)
F4(t)

⎤⎥⎥⎦ (2)

with s, t ∈ [0, 1] and F1(u) = 2u3 − 3u2 + 1, F2(u) = −2u3 + 3u2, F3(u) =
u3 − 2u2 + u, and F4(u) = u3 − u2.

For each knee, the fifty points from the manually estimated surface of the
same knee were projected onto the bicubic Hermite surface. These fifty projected
points were roughly evenly distributed; they were compared to the gold standard
surface.

2.3 Method 3: Statistical Shape Atlas

A statistical shape atlas was fit to the post-defect isosurface of the distal femur in
order to predict the cartilage surface over the defect. The atlas used segmented
geometric silhouettes from CT volumes containing the complete femur of 12
sheep cadaver legs (six left and six right). All 12 specimens came from sheep
similar in age to the 16 sheep of the study group, but none of the 12 legs was
from a sheep in the study group.
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To avoid segmentation errors, all femurs were scanned in air. Each femur was
dissected immediately after harvesting, keeping the cartilage on the knee intact.
The cartilage was continuously hydrated using a phosphate buffered saline. The
femur was scanned using a Light-Speed Plus CT (GE Healthcare, Waukesha,
USA) in axial mode, with a slice thickness of 0.625 mm at 140 kpV. The CT
images from left legs were mirrored.

Cartilage and bone were manually segmented from each of these training
datasets and a binary CT volume (consisting of “inside” and “outside” voxels)
was constructed for each knee. We used manual segmentation because the con-
trast agent is quite prominent in the image and varies substantially in location
and shape, making intensity-based registration quite difficult.

The atlas was built in two steps: data normalization and atlas construction.
During the data normalization step, all training datasets were transformed
into a common coordinate frame and decomposed into a mean shape plus a
transformation that determined the variation from the mean shape. This trans-
formation was modeled as the following sequential concatenation of transforma-
tions:

1. Rigid transformation for initial alignment: Each femur was reoriented such
that its principal axes were aligned with the coordinate axes.

2. Anisotropic scaling for mean size calculation: The scaling factors for each
femur were determined using the axis-aligned bounding boxes.

3. Rigid transformation and B-spline deformation for final alignment: A pair-
wise non-rigid registration was performed to generate the mean shape and
calculate the final alignment.

For the atlas construction step, the statistical information of the transfor-
mations was captured. For each training dataset, the inverses of the transfor-
mations were computed, parameterized, and concatenated to form one column
of a matrix, X . Since the inverse of a B-spline deformable transform is not
analytically available, we approximated the inverse by registering the mean
shape back to the training data. Finally, principal component analysis was
performed on X and each training dataset, xi, was projected into the eigen
space, ai = diag(δ1...δ12)([v1...v12]T xi), where v1, v2, . . . , v12 are the eigenvec-
tors computed from XXT , δ2

1 , δ
2
2 , . . . , δ

2
12 are the corresponding variances along

each eigenvector, and the ai are the 12-dimensional atlas coefficients correspond-
ing to xi. The convex hull of all coefficients contained all valid shapes the atlas
could generate, based on the set of training data.

To generate an instance of the atlas, a set of atlas coefficients was provided
and the inverse process was performed to compute a sequence of transformations.
These transformations were then applied in reversed order to the mean shape. To
reduce computational costs, we used only the first eight eigen modes to generate
an atlas instance, which accounted for about 85.5% of total variations in the
training data (computed as

∑8
i=1 δ2

i /
∑12

i=1 δ2
i )).

To fit the atlas to a specific target knee, the CT volume of the target
knee (which had already been segmented) was converted into a binary volume of
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(a) (b) (c)

Fig. 3. Samples of the atlas, as fitted to three different distal femurs. The atlas is
shown as transparent gray over the yellow bone-and-cartilage surface. The defect is on
the closer condyle of each femur. (a) and (b) show good fits, while (c) shows a poor fit
in which the atlas surface is too far above the bone-and-cartilage surface (as seen on
the silhouette).

“inside” and “outside” voxels. A rough initial alignment between the atlas mean
shape and the target knee CT volume was made manually with a graphical user
interface to bring the mean initial alignment RMS error to within 20 mm.

Then the CMA-ES optimization algorithm [12] was used to iteratively and
simultaneously (a) refine the initial rigid alignment (6 parameters) and (b) de-
termine the deformation of the atlas (8 parameters) using Mutual Information
as the similarity metric applied to 5% (randomly selected) of the voxels of the
target knee. The optimization algorithm used the extent of the target knee as
the region of interest; the five percent of voxels were taken from this region and
were drawn randomly with each iteration. Three sample results are shown in
Figure 3.

For each knee, the fifty points from the manually estimated surface of the
same knee were projected onto the atlas surface; the projected points, which
were fairly evenly distributed, were compared to the gold standard surface.

2.4 Evaluation

For each of the 16 sheep knees, the cartilage surface was predicted using the
three methods described above: manually, using a spline, and using an atlas.
Each of these 48 predicted cartilage surfaces was compared to the corresponding
true cartilage surface from the pre-defect arthro-CT scan of the same knee.

For each knee, the pre-defect and post-defect bone models were matched with
a transformation computed using ICP; the same transformation was applied to
the 50 points on each of the three predicted surfaces for that knee. The closest
distance between each such point and the cartilage surface of the pre-defect scan
was calculated and the RMS error of the 50 points computed.



Prediction of the Repair Surface over Cartilage Defects 81

Table 1. RMS errors, in mm, of the three methods on 16 knees

Method mean RMS error minimum maximum
95% confidence interval RMS error RMS error

Spline 0.27 ± 0.09 0.10 0.54
Manual 0.30 ± 0.14 0.08 1.04
Atlas 1.16 ± 0.33 0.28 2.22

3 Results

Table 1 shows the RMS error between the surface obtained from each of the
three methods and the pre-defect surface. The following conclusions were made
by applying Student’s t-test:

• The spline surface was more accurate than the atlas surface (p < .0001).
• The manual surface was more accurate than the atlas surface (p < .0001).
• The manual and spline surfaces had equivalent accuracy, considering an effect

size of 0.25 mm RMS error to be insignificant (p < .003) (computed using
the standard “two one-sided t-tests” method of testing for equivalence).

Also, we observed that the spline surface had a smaller variance in RMS error
and a much smaller maximum RMS error than did the manual surface.

We did not measure the time taken to build each surface, but our operators
reported the following estimates of time required to construct the predicted
cartilage surface from the segmented pre-defect isosurface: 5 minutes for the
spline surface; 20 minutes for the manual surface; and 110 minutes for the atlas
surface. The manual time estimate included only the time to position the plugs
on the defect site. The atlas time estimate used 80 iterations of the optimization
procedure.

4 Discussion

We conclude that both the manual surface and the spline surface provide ac-
curate reconstructions. The atlas surface, using our particular atlas, does not.
The spline surface has several advantages over the manual surface: It is more
consistently accurate, has smaller extreme variations, and is faster to use. Our
results suggest that the cartilage surface can be well approximated by a cubic
spline surface, similar to previous studies (e.g. [8]) that have used spline surfaces
to enforce smoothness of the segmentation of an existing cartilage surface.

The poor performance of the atlas might be attributed to the construction or
fitting of the atlas itself. More than 12 training knees would yield a better atlas.
Restriction of the atlas to just the affected condyle might improve the matching.
An atlas built from MR images has been shown [6] to provide excellent carti-
lage segmentation, and could be extended to predict the cartilage surface over
defects. But the spline surface would likely remain superior due to its simplicity
of implementation and fast surface construction time.
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The study reported in this paper is part of a larger project on automated
planning of computer-assisted mosaic arthroplasty. Any such automatic planner
will need a computer representation of the predicted cartilage surface. It appears
that a spline surface has the greatest advantages in such a system.
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Abstract. In this paper, we describe a rigid endoscope that transmits
a laser beam coaxially to arbitrary points in the endoscopic view, mainly
for treatment of twin-to-twin transfusion syndrome. The endoscope con-
sists of a hotmirror for coaxial transmission of visible light and a Nd:YAG
laser beam, and galvanometers for controlling the beam irradiation an-
gle. We evaluated the transmission efficiency of the laser power, the spot
size through the endoscope and accuracy in positioning the beam. The
maximum laser transmission efficiency was 39% and the spot diameter
was 2.2–3.2 mm at a distance of 10–20 mm. The positioning accuracy
was mostly within 1.0 mm in the endoscopic view at the distance. The
average laser power density on the spot was estimated to be 170–370
W/cm2, and a chicken liver was successfully coagulated by changing the
laser beam irradiation angle.

1 Introduction

Twin-to-twin transfusion syndrome (TTTS) occurs in about 15% of monochori-
onic twins, caused by imbalance in the net flow of blood between them across the
placental communicating vessels [1,2]. The mortality rate of these twins exceeds
80%, and the risk of disability in the survivors is estimated to be 15–50% if un-
treated [3]. As a treatment for TTTS, fetoscopic laser photocoagulation (FLP)
of the communicating vessels is widely accepted and the outcome showed that
at least one survivor rate reaches 80 %.

During surgery, surgeons operate a fetoscope and a laser fiber in a sheath to
navigate the laser guide-light to the communicating vessels. The laser is fired
with a distance of 10 mm between the laser fiber tip and the vessels [5]. The
operation requires skill, as it is necessary to avoid contact with the vessels or the
placenta, which bleeds easily. Bleeding disrupts clear fetoscopic view, resulting
in termination of the surgery. Surgeons have to stop bleeding as soon as possible.
There exist other difficulties in this system. The distance is not precisely known
from the fetoscopic image, and the vessels move as the mother breathes. In
addition, the orientation between the fetoscopic image and the laser fiber is not
easily identified.
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In related studies, a composite-type optical fiberscope with a laser fiber coaxi-
ally coupled with optical image fibers has been developed. This fiberscope makes
it easier to navigate the beam to the vessels because a laser beam is transmit-
ted to the center of the view [6]. However, surgeons have to manipulate the
fiberscope. The movement of the fiberscope must be small to avoid injuring
the chorion and amniotic membranes, that possibly causing preterm rupture of
the membranes. A safe treatment requires a technique for steering a laser beam
on arbitrary targets without moving an endoscope. Furthermore, a thin fiber-
scope has a limited resolution and a narrow viewing angle and requires high
illumination because light transmittance of the optical fiber is small. Surgeons
are concerned that high illumination will affect premature fetal eyes.

Another related study stated a laser-pointing endoscope system that can ac-
quire intraoperative 3D geometric information using two endoscopes, one projects
a laser beam and the other captures the endoscopic image [7]. The projection
point of the laser beam can be controlled using galvanometers. The laser source
is a red diode which is easy to handle because its collimated beam is thin and
the laser power is small. However, the system requires two endoscopes, which in-
creases the invasion and the risk of complications. Furthermore, the low-powered
laser doesn’t suit photocoagulation. Therefore, development of an endoscope in-
tegrated with a high-powered laser irradiation function for arbitrary targets is
important for treatment of TTTS.

We suggest a rigid endoscope that can transmit a laser beam to arbitrary
points within the view without moving the endoscope itself. The rigid endoscope
ensures a wide viewing angle and high transmittance of visible light.

2 Materials and Methods

2.1 Concept of Laser Endoscope

A rigid endoscope transmits a near-infrared laser beam for FLP, as shown in
Fig. 1. Therefore, each lens of the endoscope has an anti-reflective (AR) coating
for better transmission of visible and near-infrared light (VIS-NIR coating). For
coaxial transmission of the laser beam, a hot mirror, which reflects near-infrared
light and transmits visible light, is set between the endoscope and a camera. The
beam and guide light from a laser fiber are reflected by galvano mirrors toward
the hotmirror, which further directs this beam into the endoscope. The galvano
mirrors control the direction of the beam at the entrance to the endoscope,
then the beam is transmitted in a zigzag path around the optical axis of the
endoscope and finally projected from the endoscope tip to some direction. The
galvano mirrors and the camera are placed at optically symmetric points, which
are equal to the eye point of the endoscope, with respect to the hot mirror to
ensure a large range of the projection angle.

In clinical use, a surgeon selects a target point on the endoscopic image. the
direction from the endoscope tip to the target is calculated, and the galvano
mirrors rotate to appropriate angles to navigate the laser beam to the target.
After confirming the guide-light spot on the image, the surgeon fires the laser.
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Fig. 1. Concept of the endoscope which provides an endoscopic image and transmits
a laser beam coaxially to arbitrary target vessels in the endoscopic view

2.2 Design of the Laser Endoscope

To achieve a high laser power density in the spot, the laser spot should be
small. A small spot can be achieved when the laser fiber has a small core and a
small numerical aperture (NA) and the endoscope has object lenses with a small
viewing angle and relay lenses with a large NA.

We used a Nd:YAG laser and a laser fiber (Fibertom 5100 / E-4070-B, Dornier
MedTech) whose core diameter of 400 μm. The endoscope had relay lenses with
an NA of about 0.12 and object lenses with a viewing angle of over 60 degrees.
This design produced a spot as small as 2–3 mm in diameter at a distance of
10–20 mm from the endoscope tip with a changeable angle of the laser beam
of about ±15 degrees. The prototype endoscope consisted of concave or convex
lenses with a diameter of 6 mm. The endoscope had an outer diameter of 7 mm,
a viewing angle of about 70 degrees and an effective length of about 150 mm
(Fig. 2). Handling was easy because its controlling unit was small and weighed
as light as 450 g. The laser fiber tip was cooled by circulating water to protect
it from damage by heat.

Endoscope; 7 mm

Hot mirror
Camera

Laser fiberGalvanometer

150 mm

Fig. 2. Developed endoscope
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2.3 Positioning the Laser Spot

For controlling the laser spot to target points indicated by the surgeon on the
endoscopic image, it is necessary to calibrate the coordinates of the camera (or
image) and the galvano mirrors. We acquired the relationship of their coordinates
to the endoscope tip.

Camera Calibration. The relationship between a point q in the coordinates
of the image and a point p in the coordinates of the endoscope tip is represented
by a camera model with rotation R, translation t, scale factors λ and α, and
principal points uo and vo.

λ

(
q
1

)
=

⎡⎣αu 0 uo 0
0 αv vo 0
0 0 1 0

⎤⎦[ R t
O1×3 1

](
p
1

)
(1)

We took fifty different postures of a checker pattern whose pitch was known,
and calculated the coordinates and the distortion parameters by a flexible view
technique [8]. The technique also provided the coordinates of the checker pattern
to the camera. In addition, we used an optical tracking system (Micron Tracker
2, Claron Technology Inc.) to acquire the relationship between the camera and
the endoscope tip. The optical tracker obtained the marker coordinates at the
endoscope tip and the sheet where the checker pattern was written. The rela-
tionship between the checker pattern and the marker was known. Therefore, the
relationship between the camera and the endoscope tip was calculated.

Galvano Mirror Calibration. The two galvano mirrors were located at differ-
ent distances from the endoscope. We used a model, similar to the camera model,
to calibrate each coordinate of the X- and Y-axes independently. The relation-
ship between optical angle θ of the mirror and laser spot p in the coordinates of
the endoscope tip is represented as below.

λ

(
tan θ

1

)
= Cin

[
R t

O1×3 1

](
p
1

)
(2)

where

Cin−X =
[
αX 0 uo 0
0 0 1 0

]
, Cin−Y =

[
0 αY vo 0
0 0 1 0

]
(3)

A data-set of relations between the optical angles of the galvano mirrors and
the position of laser spots was required to calculate the parameters. We ab-
lated sheets fixed at some distances from the endoscope tip by rotating the
galvano mirrors. We used the tracking system and acquired the coordinates of
the markers on the sheets and the endoscope tip. The sheets were scanned and
the relations of the ablated spots and the marker were recorded. Then, the po-
sitions of the spots were transformed into the coordinate of the endoscope tip.
The transformation matrix from the target point to the angle of the mirrors was
calculated by a technique similar to the direct linear transformation method
after normalization of the data set [9,10].
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3 Experiments and Results

We evaluated the transmission efficiency of laser power, the spot size, positioning
accuracy of the spot and irradiated a chicken liver to test feasibility of the
system.

3.1 Transmission Efficiency of Laser Power

We measured the power of the laser beam on the optical axis through the en-
doscope using a power meter (30(150)A-HE/NOVA, OPHIR) to evaluate the
transmission efficiency. The laser power was set as 10–50 W at source. During
measurement, the cooling water flowed at a speed of 6 ml/s. We didn’t mea-
sure the power from the laser fiber directly at a source laser power of over 30
W because of the danger of breaking the fiber tip. Therefore, the transmission
efficiency was calculated with the source power over 30 W.

The maximum efficiency was 39.1% at a source power of 10 W (Table 1). The
efficiency decreased as the power increased. The maximum laser power from the
endoscope was 16.1 W at a source power of 50 W.

Table 1. Transmission efficiency of the laser endoscope

Source Laser fiber Endoscope Efficiency
10 W 10.9±0.1 W 4.3±0.2 W 39.1 %
20 W 20.5±0.1 W 7.9±0.1 W 38.6 %
30 W - 11.1±0.1 W 36.9 %
40 W - 13.6±0.1 W 34.1 %
50 W - 16.1±0.1 W 32.2 %
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Fig. 3. Knife-edge method for measuring laser beam radius. Left: Laser power with
blade displacement at a distance of 15 mm. Right: Laser beam radius from the endo-
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Endoscope

Coagulated points

Laser spot

a) Coagulated pointsb)

Fig. 4. Laser irradiation of a chicken liver. a) Changing irradiation angle; b) coagulated
points on the liver.

3.2 Laser Spot Size

We evaluated the laser beam radius on the optical axis through the endoscope
by the knife-edge method. A knife was set to cut the laser beam at a right angle
and moved in 0.1 mm steps. The power meter behind the knife measured the
portion of the laser not obstructed by the knife, and we captured the power shift
from the displacement of the knife. The laser beam radius d/2 was calculated
from displacement xh, xl at 90 and 10% of the maximum power (Fig. 3-left)[11].

d/2 = 1.561× |xh − xl| /2 (4)

At a distance of 10–20 mm from the endoscope, the radius was about 1.1–1.6
mm, which equals 2.2–3.2 mm in diameter, as shown in the right side of Fig. 3.

3.3 Positioning Accuracy

We evaluated accuracy in positioning the laser spot. Sheets which have a grid
with a pitch of 5 mm were placed at a distance of 10–20 mm from the endoscope
tip. We pointed to the grid points on the endoscopic image and fired the laser.
After irradiation, we scanned the sheet and measured the distance between the
target and the actually irradiated points. The errors were 0.4±0.3 mm at a 10
mm distance, 0.5±0.4 mm at a 15 mm distance, and 0.5±0.6 mm at a 20 mm
distance from the endoscope tip. The errors were mostly smaller than 1.0 mm
in the view except on the upper side.

3.4 In Vitro Irradiation to Phantom

We irradiated a chicken liver with the laser to evaluate the laser endoscope for
photocoagulation. A chicken liver is similar to a placenta in terms of the amount
of blood. The liver was fixed at a distance of 10–15 mm from the endoscope and
the laser source power was set as 50 W. We irradiated some points on the liver
for 3 sec by changing the irradiation angle (Fig. 4-a). All the irradiated points
were coagulated and the depths of coagulation were about 1 mm (Fig. 4-b).
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4 Discussion

The maximum efficiency was nearly equal to the ideal value of 41% based on
the transmission and reflection rates of the optical elements. Reduction in the
transmission efficiency from the ideal value was due to dirt on the elements and
power loss from the small galvano mirrors that could not use the full power
of laser beam. At higher power, bubbles were generated around the laser fiber
tip due to the cooling water, which diffused the beam. This resulted in loss of
efficiency.

The laser spot diameter at a distance of 10–20 mm was 2.2–3.2 mm, which
was suitable for coagulating placental vessels 1–2 mm in diameter. The distance
is further than that of conventional treatment, which reduces the risk of contact
with the placenta.

The laser endoscope achieved sufficiently high accuracy in positioning the laser
spot because most of the errors were smaller than the diameter of the placental
vessels in the target period for the surgery. In ordinary surgery, accuracy depends
on the surgeon’s skill, and there is risk in manipulating a fiberscope and a laser
fiber. This risk is eliminated in the laser endoscope because the laser spot position
can be controlled without moving the endoscope itself. The surgeon simply points
to targets on the endoscopic image. This capability makes the surgery easier and
safer.

Photocoagulation within a few seconds requires the power density of 100–1000
W/cm2 [12,13]. The average power density of the spot was 170–370 W/cm2 from
16.1 W at the source power of 50 W, that meets the minimum requirement. Fur-
thermore, the endoscope successfully performed photocoagulation of a chicken
liver.

For clinical use, we plan to miniaturize the endoscope by using smaller lens.
A small laser spot can be achieved by an appropriate design. For higher trans-
mittance, we optimize the selection of a laser and an AR coating and reduce
the amount of lenses because the main cause of the transmission reduction is
reflection of the laser beam on the surface of lenses.

5 Conclusion

We developed a prototype of a rigid endoscope that steers a laser beam on any
point in the endoscopic view without moving the endoscope itself, mainly for
treatment of TTTS. The maximum laser transmission efficiency was 39%. The
spot diameter was 2.2–3.2 mm at a distance of 10–20 mm, which reduces the
risk of contact with placenta. The positioning accuracy was mostly within 1.0
mm in the endoscopic view at the distance. The average laser power density at
a spot was estimated to be 170–370 W/cm2, and we successfully coagulated a
chicken liver by changing the irradiation angle.

Acknowledgments. This study was partly supported by Japan Society for
the Promotion of Science (JSPS, 21·9099) and Ministry of Education, Culture,
Sports, Science and Technology (MEXT).
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Abstract. Endoscopic endonasal skull base surgery (ESBS) requires high accu-
racy to ensure safe navigation of the critical anatomy at the anterior skull base.
Current navigation systems provide approximately 2mm accuracy. This level of
registration error is due in part from the indirect nature of tracking used. We pro-
pose a method to directly track the position of the endoscope using video data.
Our method first reconstructs image feature points from video in 3D, and then
registers the reconstructed point cloud to pre-operative data (e.g. CT/MRI). After
the initial registration, the system tracks image features and maintains the 2D-
3D correspondence of image features and 3D locations. These data are then used
to update the current camera pose. We present registration results within 1mm,
which matches the accuracy of our validation framework.

1 Introduction

Endoscopic endonasal skull base surgery (ESBS) has gained much interest recently over
traditional open surgical approaches as treatment for cancers of the sinus and pituitary
gland. Pituitary lesions, though generally benign, are the most common brain tumor.
These common pituitary lesions, as well as cancers of the nasal cavity, brain cancers
surrounding the nose, and cancers involving both the nose and brain are all treated with
ESBS. Treatment with traditional surgical approaches to the skull base are associated
with significant morbidities because healthy cranial nerves are sometimes damaged dur-
ing surgery. Unlike traditional approaches, ESBS is less invasive and is shown to reduce
operative time as well as decrease the length of hospital stay [1].

ESBS and traditional approaches are best contrasted with a clinical example. Figure
1 shows a coronal MRI scan of a patient with a pituitary macroadenoma. The central
location of this tumor makes it difficult to approach using traditional means. The tu-
mor is flanked by the carotid arteries and the optic chiasm, and the left optic nerve is
clearly compressed by tumor. This tumor was removed using an endoscopic endonasal
approach. The endoscopic image (insert) was taken just after the tumor was removed.
Notice that the optic nerve (ON) has dropped significantly in height–almost to the level
of the carotid artery (CA). Manipulating such high-value structures in cases like this are
the reason that ESBS remains a painstaking procedure that requires precise knowledge
of patient anatomy. Thus, surgical navigation is key for success, especially to aid junior
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surgeons and for complex cases [1], as it provides the surgeon a means to both maintain
orientation and monitor progress.

In current practice, the surgeon uses a pointer tool to interact with the navigation
system. The system tracks rigid-bodies attached to the tool and the patient. During
preparation for surgery the rigid-body attached to the patient is registered to fiducial
markers on the patient. The rigid-body defines the patient’s head in the navigation sys-
tem. The navigation system in turn calculates a rigid-body transformation between the
patient’s head and the tool to display the corresponding location in CT. A drawback of
the current procedure is that each rigid-body transformation measurement contributes
to localization error. In fact, localization error is typically quoted as 2mm with a good
registration, and can be far larger with a poor one [2]. Errors of this magnitude could
lead to surgical error resulting in high morbidity or in mortality.

Fig. 1. An example coronal
MRI of a patient and endo-
scopic image (insert) of how
clear identification of the
carotid artery and optic nerve is
crucial

To improve current navigation systems, we propose
a new system that utilizes endoscopic video data for
navigation. While endoscopic video presents many chal-
lenges including reflection, specularity, and low texture,
our system robustly handles these challenges and creates
a 3D reconstruction from video. Then the system regis-
ters the 3D reconstruction to a pre-operative CT scan.
After the initial registration the system tracks the cam-
era location by matching image features and performing
robust 2D-3D pose estimation. Instead of relying on the
long rigid-body transformation chain that current nav-
igation systems use, video-CT registration employs a
more direct accurate localization of the camera relative
to the patient. We show tracking results within millime-
ter mean error of an Optotrak (Northern Digital Corp.
Waterloo, Canada) measured camera motion used for
comparison.

Tracking the location of a camera relative to CT has been studied in other areas of
image-enhanced surgical navigation. In 2002, Shahidi et al. [3] presented a system for
endoscope calibration and image-enhanced endoscopy. They achieved millimeter accu-
racy for a system using passive optical markers for tracking. More recently, Lapeer et
al. [4] evaluated another similar system again using passive optical markers for track-
ing and reported that submillimeter accuracy still remains elusive. Video registration
has been previously applied to bronchoscopy [5] where normalized mutual information
was used to register to CT. In [6], visual tracking and registration was demonstrated on
a skull phantom.

2 Method

There are five major components in our system. Figure 2 shows an overview of the sys-
tem with the five components highlighted in blue. First, the system extracts SIFT fea-
tures [7] from the video data. Next, the motion between the images is estimated, after
which feature points are reconstructed. At the beginning of the video sequence, recon-
structed points from the first pair of images are registered to a segmented surface in the
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Fig. 2. System Overview

CT image. This initial registration is used to initialize a registration tracking algorithm
that makes use of feature matches in subsequent frames. Each of these components is
detailed in the following subsections.

2.1 Feature Processing, Motion Estimation and Reconstruction

Before reconstruction or registration, video data are processed to extract image features
using the Matlab implementation [8] of SIFT features [7]. We tested both the SIFT
feature matching technique suggested by Lowe and SVD SIFT matching technique [9].
While SVD SIFT provides more matches, the matches are not of the same accuracy as
Lowe’s. However, the larger number of matches increases the number of points in the
reconstruction. Figure 3 shows the difference in the two matching methods.

After the image features are detected and matched, the motion is estimated using the
robust technique of [10]. To reconstruct points in two or more images the rigid-body
transformation between the images must be computed. One 3D point imaged in two im-
ages separated by a rotation, R, and translation, t, forms the epipolar constraint. Given
a calibrated point in image 1, p1, and a calibrated point in image 2, p2, the epipolar
constraint is written as

p2Ep1 = 0 (1)

Where E = sk(t)R is known as the Essential Matrix and sk(t) is the skew-symmetric
matrix of t. Here, we solve (1) using the robust E-matrix estimator from [10] that uses
the five-point algorithm [11]. Motion is estimated by finding the E-matrix that best
matches a set of inliers.

Fig. 3. From left to right: SVD SIFT matches, SIFT matches, inliers of SVD SIFT matches and
inliers of SIFT matches
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Once the motion estimation is completed, the motion is used to reconstruct the 3D
structure. The first pair of images is reconstructed with triangulation and subsequent
pairs of images are reconstructed from the tracked image features. The image features
are tracked using SVD SIFT feature matches.

2.2 Registration and Tracking

The reconstructed 3D point cloud is registered to a surface segmented from a CT image
of the same patient. The surface is segmented by applying a threshold at the air/tissue
boundary and using marching cubes to create the isosurface. We applied a registration
algorithm described in [12] that is derived from Trimmed ICP (TrICP) [13] and extends
TrICP with scale [14]. The registration algorithm needs to estimate scale because the
true scale of the 3D world is lost in the epipolar constraint (1).

After the initial 3D-3D registration, the 2D-3D correspondence between image fea-
tures and the 3D surface of the CT is established. Now, a more efficient 2D-3D pose
estimator can be used to update the camera pose. Here we combine the robust sam-
pling method of [10] with the pose algorithm of [15] to create a robust 2D-3D pose
estimation method. In Algorithm 1, we present an overview of the complete system.
Rinit, tinit, sinit are the initial rotation, translation and scale respectively. points is
the initial sparse 3D reconstruction. F is a set of images from the video. mesh is the
surface mesh segmented from the CT data.

Algorithm 1. (R, t) = Tracking(Rinit, tinit, sinit, points, F,mesh)
R ← Rinit, t ← tinit, currentPoints ← sinitpoints
for all f1, f2 ∈ F where f1, f2 are 3 frames apart do

(f̂1, f̂2) =undistort( f1, f2 )
(sift1, sift2) = detect SIFT feature(f̂1, f̂2)
matches = SVDSIFT match(sift1, sift2)
(E, inliers) = robustMotionEstimator(matches)
currentPoints = tracker(matches,inliers,currentPoints)
(R̂, t̂) = robustPoseEstimator(currentPoints, matches,R, t)
reprojectedInliersPoints = reprojectPoints(currentPoints, R̂, t̂)
(R, t) = robustPoseEstimator(reprojectedInliersPoints,matches, R̂, t̂)
refinedPoints = refinePoints(reprojectedInliersPoints);
for all previous Ri, ti do

(Ri, ti) = robustPoseEstimator(refinedPointsi, matchesi, Ri, ti)
end for

end for

The system first undistorts the images, then SIFT features are detected and matched.
After finding the set of matched image features, these image feature points are used
to estimate the motion of the frame pair. The inliers of the motion estimation are then
tracked using the SIFT feature tracking method from [10]. Once the new camera pose
is estimated, we applied one of the following two methods to refine both the 3D points
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and pose estimates. Method I, applies all of the previously seen image features and pro-
jection matrices to determine the refined 3D point by setting up the following null space

problem. First, given a simple projection model
[
ui vi 1
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Ri ti
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Method II, uses the initially registered camera position to raycast image feature points of
the same 3D point onto the CT scan and calculates the mean of the projected points. We
compute each ray as follows. First given the camera’s intrinsic parameters, K , rotation,
R, and translation, t. We project a point, p, by applying the intrinsic parameters, pn =
K−1p. Then the ray is pr = (Rpn + t) − t. The refined points are then used with the
robust 2D-3D pose estimator to compute the new camera pose.

3 Experiments

3.1 Data Collection

We collected endoscopic ex-vivo porcine sinus video data. The video was captured at
640x480 using framegrabber attached to a Storz Telecam, 202212113U NTSC with
a zero-degree rigid monocular endoscope. Optotrak rigid-bodies were attached to the
endoscope and porcine specimen. The Optotrak and video data were simultaneously
recorded. The Optotrak motion data were used as the ground truth to compare with the
estimated endoscopic motion. Before the data collection, images of a checkerboard cal-
ibration grid were also recorded using the endoscope. We performed an offline camera
calibration of the endoscope using the Matlab Camera Calibration Toolkit [16]. After
the camera calibration, the hand-eye calibration between the Optotrak rigid-body and
the camera was estimated by solving the AX=XB problem using the method from [17].
The CT data used had 0.5x0.5x1.25mm voxels.

Our data collection had three major sources of error: one, the camera calibration;
two, the Optotrak to camera calibration; and three the Optotrak to CT registration. The
camera was calibrated within a pixel error of [0.38, 0.37]. The aforementioned Opto-
trak/camera configuration had an estimated position uncertainty in millimeters of the
camera center as measured by the Optotrak of [1.1, 0.4, 0.1]. Finally, the Optotrak to
CT registration was generally within .5mm RMS point distance error. Each of these
contributes to an overall location uncertainty of approximately 1.5mm in the absolute
position of the endoscope optical center, and approximately 1.1mm relative position
accuracy.

3.2 Results

We tested our algorithm on 14 randomly selected segments of video from a porcine sinus.
Each segment was from a different region of the sinus from anterior to posterior shown
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Fig. 4. From left to right the first image of video segments 1 through 4

in figure 4. Figure 4 also shows the challenges of these images including specularities,
highlights, motion blurring, lack of texture, and over saturation.

In figure 5 we present both our estimated and Optotrak measured trajectories as well
as error along the trajectories for video segment 1. The error is computed as follows.
Each image has both an estimated pose and pose measured by the Optotrak. For example
R1, t1 and RO1, tO1 where O denotes an Optotrak measurement. The error is then

given by Ferror =
[
RO1 tO1
0T 1

]−1 [
R1 t1
0T 1

]
. The translation error is the l2-norm of

the translation component of Ferror . The rotation error is the absolute sum of the Euler
angles of the rotation component of Ferror. The results are aligned to the Optotrak pose.

Of the 14 segments, one failed to maintain at least five points and three diverged.
The three that diverged did not have sufficient 3D structure in the scene for initial reg-
istration. The overall accuracy of the remaining 10 achieved by the proposed algorithm
is within approximately 1 millimeter of the Optotrak measurement of relative motion.
That is, our results are within the error envelope of our measurement system itself. The
quantitative tracking results are shown in table 1. We compare our method versus the
Optotrak visually in figure 6 which reveals that the Optotrak (the right of each pair)
does not align as well as the visually registered image.

Table 1. Mean pose error and standard deviation along of the trajectories

Trans. Error (mm) Rot. Error (deg)
Method 1 Method 2 Method 1 Method 2

Segment 1 0.83 (0.38) 1.08 (0.52) 1.42 (0.94) 1.39 (1.08)
Segment 2 0.90 (0.40) 0.94 (0.74) 1.07 (0.86) 1.80 (1.90)
Segment 3 0.94 (0.76) 0.51 (0.40) 0.66 (0.56) 1.46 (1.34)
Segment 4 1.24 (0.83) 0.96 (0.52) 1.79 (1.00) 0.91 (0.84)
Segment 5 0.64 (0.34) 0.58 (0.29) 1.14 (0.98) 0.65 (0.39)
Segment 6 0.41 (0.21) 0.75 (0.48) 1.93 (1.02) 1.49 (0.96)
Segment 7 1.32 (0.97) 2.5 (2.21) 3.68 (1.54) 6.29 (4.34)
Segment 8 0.40 (0.24) 0.33 (0.22) 1.79 (1.09) 1.54 (1.43)
Segment 9 1.03 (0.72) 0.43 (0.29) 0.59 (0.24) 0.66 (0.46)
Segment 10 0.56 (0.31) 0.55 (0.31) 2.94 (2.15) 0.90 (0.54)
Mean Error 0.83 0.86 1.70 1.71
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Fig. 5. Results from the video segment 1 with Method I (a) and Method II (b). Left:The trajec-
tories of our method (red) and Optotrak (blue), Right:frame to frame relative error along the
trajectories.

Fig. 6. Comparison of our method (Left) and Optotrak (Right). Left Pair, beginning of tracking.
Right Pair, end of tracking.

4 Discussion and Conclusion

Our results indicate that video-CT registration can be computed to within 1mm of our
ground truth validation system. Recall 1mm is the expected error of the Optotrak mea-
surements alone. We hypothesize that the video-CT solution is well below 1mm error
since we are within the error envelope of the Optotrak, and because visual inspection of
the registrations often shows a more consistent result from the video-CT algorithm. We
present relative error as we continue investigate a method that is more accurate than the
Optotrak tracking a rigid endoscope.

In future work, we will validate that we are indeed below 1mm error by using CT-
compatible screws that would be imaged in both the endoscope and CT. Using the
segmented location from both the endoscope and CT, a 2D-3D pose estimator can be
used to validate the registration error to within the resolution of the CT image itself.
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We will also investigate robust features to more accurately track over large transla-
tions. While SIFT features do offer image features to track, they do not track well over
large translation. SIFT features fail to track over large translation in endoscopy because
SIFT is not particularly robust to illumination changes. In endoscopy the light source
is collocated with the camera and thus the illumination is always changing as the cam-
era moves. For a more accurate reconstruction a large translation is preferred. Beyond
image features, the selection of image pairs to use for reconstruction can be automated.
It is important to select image pairs with motion greater than the noise of the image
features tracked to ensure accurate reconstruction.

The current system is implemented in Matlab and processes the data offline taking
about two minutes per frame pair. We focused on accuracy and robustness instead of
speed. This methodology is common to vision literature. With further engineering the
algorithm could be turned into an online system suitable for clinical use.

We also acknowledge that our algorithm does require that there be enough 3D struc-
ture and 2D texture in the scene to register and to track. If the endoscope is pointed at a
flat surface or in a textureless region, our algorithm would not perform well. However,
our algorithm could be used for local registration enhancement and would therefore
add higher accuracy capability to existing tracking systems. We envision a visual re-
registration feature that would offer surgeons the option to have higher accuracy for the
current scene.
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Abstract. Spectral domain optical coherence tomography (SD-OCT)
is an important tool for the diagnosis of various retinal diseases. The
measurements available from SD-OCT volumes can be used to detect
structural changes in glaucoma patients before the resulting vision loss
becomes noticeable. Eye movement during the imaging process corrupts
the data, making measurements unreliable. We propose a method to
correct for transverse motion artifacts in SD-OCT volumes after scan
acquisition by registering the volume to an instantaneous, and therefore
artifact-free, reference image. Our procedure corrects for smooth defor-
mations resulting from ocular tremor and drift as well as the abrupt
discontinuities in vessels resulting from microsaccades. We test our per-
formance on 48 scans of healthy eyes and 116 scans of glaucomatous eyes,
improving scan quality in 96% of healthy and 73% of glaucomatous eyes.

1 Introduction

Many ophthalmologists use optical coherence tomography (OCT) to improve
diagnosis of retinal diseases. OCT generates cross-sectional and 3D images of
retinal structure by detecting the magnitude and echo time delay of light. The
newest version of OCT, spectral domain OCT (SD-OCT) [1], detects all the light
echoes in a single axial scan (A-scan) in parallel. Cross-sectional images (B-scans)
are created by acquiring a series of A-scans as the OCT beam is scanned in the
transverse direction. SD-OCT can image the three-dimensional retinal structure
with an axial resolution of up to ≈ 2μm and an imaging speed of up to 50,000
A-scans per second.

An important application of retinal SD-OCT is the early diagnosis of glau-
coma, a progressive blinding disease. Early intervention has been shown to slow
progression [2], but early detection of the disease is challenging. The precise
structural measurements available from SD-OCT volumes (such as retinal nerve
fiber layer thickness maps [3]) can be used to detect structural changes before
they result in noticeable vision loss.
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A typical SD-OCT scan pattern contains 40,000 A-scans and takes between
1 and 1.5 seconds to complete. Any eye movement during imaging will corrupt
the data, making structural measurements and glaucoma diagnosis unreliable.
Eye movement during imaging is reduced by asking the subject to fixate on
a target; however, our eyes remain in motion even during conscious fixation,
undergoing fixational eye movements [4]. Fixational eye movements encompass
three different types of motion: ocular tremor, ocular drift, and microsaccades.
Microsaccades, which introduce the most severe motion artifacts, move the fix-
ated point around 30 arcminutes almost instantaneously and occur roughly once
per second in normal individuals.

Figure 1(a) shows a two-dimensional projection of an SD-OCT volume contain-
ing motion artifacts. Here, the axial dimension has been collapsed by summing
voxel intensities, resulting in a view of the eye (the en face image) analogous to a
traditional fundus image or other 2D imaging techniques. Note the discontinuity
in the vessels pointed out in the bottom half of the image. These discontinuities
indicate that microsaccades occurred during scan acquisition.

Coupling the imager to a tracker [5] results in an improvement in the OCT
data, but with high production costs and increased scanning time.

We take a complementary approach to eliminating transverse motion artifacts:
we correct motion artifacts after imaging is complete via image registration. Im-
mediately after capturing the SD-OCT volume, the OCT system captures an
scanning laser ophthalmoscopy (SLO) image of the retina (Fig. 1(d)). Because
capture of the SLO image is virtually instantaneous relative to time required
for OCT capture, we can treat the SLO image as an artifact-free reference im-
age. The OCT en face image should match the SLO image if the scan is also
artifact-free. Any structural misalignment indicates that the OCT volume con-
tains motion artifacts and does not accurately reflect the subject’s anatomy. We
remove these artifacts by warping the volume to make the corresponding en face
image match the SLO image as closely as possible.

Prior work on correcting motion artifacts in OCT volumes without requiring
active tracking registers consecutive B-scans by finding the shifts in the Z− and
X−dimensions that maximize cross-correlation between adjacent B-scans [6],
correcting transverse and axial artifacts resulting from ocular drift. While our
method does not correct axial artifacts, we surpass this method in correcting
transverse artifacts by allowing for more complex motions, including fast motion
during a single B-scan and motion in the Y−dimension.

2 Methods

We remove motion artifacts by registering the en face image constructed from
an SD-OCT volume to the SLO reference image and applying the resulting warp
to the volume at each depth. Registration proceeds in two steps. The first step
corrects for artifacts from tremor and drift; the last step, the main contribution
of our technique, corrects vessel discontinuities caused by microsaccades. Results
from each correction step on an example scan are shown in Fig. 1.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 1. Results of motion artifact correction on an example scan. The en face im-
age from the uncorrected scan (a) shows vessel discontinuities (arrow) resulting from
microsaccades. Correcting for tremor and drift (b) fails to correct these discontinu-
ities, but microsaccade correction does (c), matching the SLO reference image (d).
Images (e)-(g) show the en face image in the red channel and the SLO image in the
green channel before correction, after correcting tremor and drift, and after full correc-
tion, respectively. Correctly aligned regions appear yellow; arrows point to improved
alignment after drift correction.

2.1 Detecting Vessels

At each registration step, we focus on matching the location of vessels, the main
features in retinal images. Our vessel detection algorithm is a simplified imple-
mentation of the technique proposed by Lam and Yan [7], which uses hysteresis
thresholding to find ridges in the divergence of the image gradient. After scaling
the computed divergence to lie between 0 and 1, we use upper and lower thresh-
olds of 0.2 and 0.075, respectively, and discard regions containing fewer than five
pixels above the upper threshold.

2.2 Correcting Tremor and Drift

We correct for tremor and drift using the elastic registration technique of Peri-
aswamy and Farid [8]. Motion between the two images is described by an affine
transformation that may vary across the image but is assumed to be constant
within a local window, Ω. Specifically, we solve for the parameter vector m that
solves

m7I
SLO(x, y) + m8 = IOCT(m1x + m2y + m5,m3x + m4y + m6) (1)
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for all locations (x, y) ∈ Ω in the least squares sense. We define our window
to capture temporally distinct phenomena, including pixels corresponding to A-
scans taken within a time interval τ . We use the same window for every A-scan
in a given B-scan, drastically reducing the amount of computation required.

It is customary in motion estimation applications to estimate motion on a scale
pyramid. Because tremor and drift are both small amplitude motions resulting in
relatively small errors, we omit this coarse-to-fine scheme, eliminating the need
to smooth the images and recompute gradients at each level of the pyramid.
Instead, we vary the size of our window. This allows us to first compute a global
deformation that brings the two images mostly into alignment before focusing
on more localized motion artifacts.

After correcting for drift and tremor, we are left with en face images that are
well aligned with the SLO reference image except in places where a microsaccade
occurred. The result of tremor and drift correction is shown in Fig. 1(b). Note
that the drift correction has improved the alignment of most vessels (correctly
overlapping areas appear yellow in Fig. 1(f)), particularly in the top half of the
image, but the vessel discontinuities remain.

2.3 Correcting Microsaccades

The main contribution of our algorithm is the ability to correct vessel discontinu-
ities that result from primarily horizontal microsaccades. At a microsaccade, the
location of the eye between subsequent B-scans (and between different A-scans
within a single B-scan) changes significantly, causing the location of vessels in
the image to shift abruptly between two adjacent rows. The necessary correction
before and after the time of the microsaccade is drastically different, violating
the local smoothness assumption made by many motion estimation techniques.

We correct microsaccades by finding the horizontal shift at each pixel in the
scan that best aligns the result of tremor and drift correction with the SLO
image. We consider the results of the earlier correction and the SLO image as
signals in the time domain. We then find the least cost set of feasible corre-
spondences between the two signals. This procedure is commonly referred to as
dynamic time warping [9] in the signal processing community, and is also used
on corresponding scanlines to find dense disparity maps in stereo vision [10].
This procedure corrects horizontal microsaccades but ignores vertical motion.

Our cost function penalizes matches based on the squared difference in pixel
intensities. To force vessels to align properly, the intensity of pixels inside vessels
should be as different as possible from pixels outside the vessels. We also want
the non-vessel tissue to be as uniform as possible to avoid detecting spurious
saccadic events. As vessel detection is rarely perfect, we do not rely solely on
a binary mask. Instead, we apply a scheme that darkens pixels within vessels
and normalizes the intensity of non-vessel tissue while tolerating errors in ves-
sel detection. We replace the intensity at pixels detected as vessels with the
result of adaptive histogram equalization. This darkens vessels but does not
drastically alter the intensity of pixels incorrectly detected as vessels. We also
apply a linear transformation to the intensities of the remaining pixels so that
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a line fit to the intensities on each row is horizontal, with corresponding rows in
the SLO and en face images sharing the same mean and standard deviation in
intensities.

After adjusting pixel intensities, we convert the images to one-dimensional sig-
nals and find the lowest cost set of correspondences using dynamic programming.
The total cost is equal to the sum of the squared differences in intensity for each
pair of matched pixels plus a constant P (we use twice the standard deviation
in pixel intensity) for each unmatched pixel. The returned correspondences are
converted to horizontal shifts and used to warp the partially corrected en face
image. Finally, an additional iteration of tremor and drift correction removes
residual vertical motion artifacts, which could not be corrected on the first pass
due to the presence of significant saccades. The fully corrected en face image for
the example from Fig. 1(a) is shown in Fig. 1(c).

2.4 Preserving Optic Disc Contour

Microsaccade correction is sensitive to vessels that appear darker than the sur-
rounding tissue in the en face image but brighter than the surrounding tissue
in the SLO image. This is particularly common inside the optic disc and can
cause the optic disc contour to become distorted after motion correction. Be-
cause the optic disc contour is an important feature in glaucoma diagnosis, our
correction must never introduce errors in this region. We therefore disallow hor-
izontal shifts in the region surrounding the optic disc, which is automatically
detected by thresholding the distance to the top surface of the retina in the
volume.

3 Experimental Results

We implemented our algorithm in Matlab and tested it on 164 SD-OCT scans:
48 from healthy eyes and 116 from glaucomatous eyes. There are 24 healthy (the
H-D set) and 58 glaucomatous examples (the G-D set) containing noticeable
vessel discontinuities from microsaccades. The remaining examples (abbreviated
as the H-ND and G-ND sets) contain drift and tremor artifacts but no noticeable
microsaccades. Figure 2 shows en face images from each of the four sets before
and after correction. Each volume is 200×200×1024 voxels and takes at most
50 seconds to correct on a desktop PC (Intel Pentium 3.2GHz, 2GB RAM).

3.1 Qualitative Assessment

Two OCT experts independently compared the quality of each scan before and
after correction. They evaluated both the overall fit to the SLO reference image
(reflecting correction of tremor and drift artifacts) and the number of noticeable
vessel discontinuities (reflecting correction of microsaccades), classifying the cor-
rection as either improved, unchanged, or degraded in both areas. The two ex-
perts’ evaluations were combined into a consensus evaluation for each scan. For
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(a) H-ND before (b) H-D before (c) G-ND before (d) G-D before

(e) H-ND after (f) H-D after (g) G-ND after (h) G-D after

Fig. 2. Results of motion artifact correction on example scans from our four datasets
(abbreviations from Sect. 3). En face images for each example are shown both before
and after correction. Arrows point to vessel discontinuities before correction.

the corrected scan to be considered an improvement, at least one expert must
have rated the output as improved and neither can have rated it as degraded.

The results of the experts’ assessment are summarized in Table 1. Overall
fit improved in 45 of the 48 of the healthy examples, remaining unchanged in
the other three. In the glaucomatous examples, the overall fit improved in 96
of the 116 examples, remaining unchanged in 17 and deteriorating in 3. Of the
24 H-D examples, we improve vessel continuity in 19, leaving the remaining five
unchanged. We also improve vessel continuity in 45 of the 58 G-D examples,
leaving 3 unchanged and causing deterioration in the remaining 10. Ultimately,
we consider the total quality of a scan to be improved if either overall fit or
vessel continuity improved without either deteriorating. Our correction improved
the total quality of 46 of 48 healthy (96%) and 85 of 116 glaucomatous (73%)
scans.

Table 1. A summary of the qualitative evaluation of our performance. Experts assessed
improvement after correction in overall alignment (O) and vessel continuity (V). Be-
low, + indicates improvement, − indicates degradation, and = indicates no change
detected. The three bold columns are the evaluations considered to be improved total
scan quality.

Dataset
O+ O+ O= O= O+ O− O= O− O−
V+ V= V+ V= V− V+ V− V= V−

H-ND 0 22 0 1 1 0 0 0 0
H-D 17 5 2 0 0 0 0 0 0

G-ND 11 27 0 6 7 0 5 1 1
G-D 43 2 2 1 6 0 3 0 1
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Fig. 3. Percent overlap between corresponding vessels in en face image and SLO ref-
erence image before and after correction for the H-D set. Gray bars show overlap
before correction; black bars show overlap after motion artifact correction. Examples
are sorted in order of increasing overlap before correction. Examples 9 and 19 are those
judged by the experts to have no improvement in overall alignment after correction.
Example 6 is shown in Fig. 2(b) and (f). Example 13 is shown in Fig. 1.

3.2 Quantitative Assessment

We evaluate the performance quantitatively by computing the improvement in
overlap between vessels in the SLO image and vessels in the motion corrected en
face image. This single measurement combines the contributions of both tremor
and drift correction and the correction of any microsaccades. We define overlap
as the fraction of pixels belonging to each major vessel in the en face image that
also belong to the corresponding vessel in the SLO image (based on manually
labeled vessels). We use this variant of the Jaccard index to give a value of 1 for
vessels which are correctly aligned but appear thinner in the en face image than
in the SLO image due to the different imaging protocols.

Figure 3 shows the overlap improvement on the scans from the H-D set. In
every case, the overlap is greater after correction. The mean overlap before cor-
rection over these 24 examples is 0.6348, which increases to a mean of 0.7522
after artifact removal. For the other three sets of scans the mean overlap in-
creases from 0.6083 to 0.7403 (G-D), from 0.6396 to 0.7168 (G-ND), and from
0.6486 to 0.7469 (H-ND). Overlap decreases in only five examples, all in the
G-ND set.

4 Discussion

In this paper, we described a system that automatically corrects transverse mo-
tion artifacts in retinal SD-OCT after scan acquisition. Both qualitative and
quantitative evaluations show that our system improves the quality of the ma-
jority of scans, even in subjects with retinal diseases.

The main contribution of our technique is the ability to correct for artifacts
resulting from microsaccades. We use a more flexible motion model than previous
methods, allowing a different correction for individual A-scans within a single
B-scan. Ophthalmologists use vessel continuity as a key measure of scan quality
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and often discard scans containing discontinuities larger than the vessel diameter.
With our system, the majority of these previously discarded scans are now useful.

Limitations that remain to be addressed include our handling of the optic
disc and artifacts from vertical saccades. Because we disallow horizontal shifts
within the optic disc, we cannot correct saccades occurring at that point in the
scan. Applying more sophisticated shape analysis to the optic disc may allow
for saccade correction without distorting the optic disc contour. Although we do
correct smooth vertical motions, we do not specifically address vertical saccades.
It may be possible to consider the horizontal and vertical components of saccades
independently and correct each with our current saccade correction technique.
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Abstract. We present initial prototype and preliminary experimental demon-
stration of a new class of microsurgical instruments that incorporate common 
path optical coherence tomography (CP-OCT) capabilities. These instruments 
may be used freehand or with robotic assistance. We describe a prototype 25 
gauge microsurgical pick incorporating a single 125 μm diameter optical fiber 
interfaced to a Fourier Domain CP-OCT system developed in our laboratory. 
For initial experimentation, we have interfaced this instrument with an ex-
tremely precise, cooperatively controlled robot. We describe the tool, system 
design, and demonstration of three control methods on simple phantom models: 
1) enforcement of safety constraints preventing unintentional collisions of the 
instrument with the retinal surface; 2) the ability to scan the probe across a sur-
face while maintaining a constant distance offset; and 3) the ability to place the 
pick over a subsurface target identified in a scan and then penetrate the surface 
to hit the target. 

1   Introduction 

Vitreoretinal surgery addresses prevalent sight-threatening conditions such as retinal 
detachment, macular pucker, macular holes, and conditions in which epiretinal scar 
tissue is removed. The technical demands placed on the surgeon by these procedures 
are extreme. In current practice, retinal surgery is performed under an operating mi-
croscope with free-hand instrumentation. Human limitations include an inability to 
clearly visualize surgical targets, physiological hand tremor, and lack of tactile feed-
back in tool-to-tissue interactions. In addition, tool limitations, such as lack of prox-
imity sensing or smart functions, are important factors that contribute to surgical risk 
and reduce the likelihood of achieving surgical goals. Current instruments do not 
provide physiological or even basic interpretive information, e.g. the distance of the 
instrument from the retinal surface, the depth of instrument penetration into the retina 
or an indication of the force exerted by the instrument on the retinal tissues. Surgical 
outcomes (both success and failure) are limited, in part, by technical hurdles that 
cannot be overcome by current instrumentation. For example, in the most technically 
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demanding cases, there may not be a set of tools that allows the “typical” retina sur-
geon to remove sufficient epiretinal scar tissue to ensure surgical success.  

In this paper, we will use the peeling of epiretinal membranes (ERMs) from the 
surface of the retina as a motivating example. ERM peeling is a common and ex-
tremely demanding surgical procedure. ERMs are composed of scar tissue that forms 
on the surface of the retina, contracts and compromises retinal function. ERMs are 
present in 2-6.4% of people [1]. Visual dysfunction resulting from ERM includes: 
blurred vision, image distortion, and altered image size. Surgical removal of an ERM 
involves identifying or creating an “edge” that is then grasped and peeled. Some 
ERMs provide clear visual evidence of edges that may be grasped. Others require 
creation of an edge by the surgeon. This may be performed by incising the membrane 
surface, by bluntly creating an edge, or by gently grasping the membrane with a for-
ceps and creating a tear in the ERM. Each of these maneuvers requires excellent visu-
alization, high levels of manual dexterity and micro-instrumentation. Furthermore, 
this procedure is performed with a comparatively large metal instrument without 
tactile sensation. During this time, a patient’s involuntary and voluntary movement 
must be manually compensated for by the surgeon while the instrument is in direct 
contact with fragile intraocular tissue. Incorrect micron-magnitude movements can 
cause retinal tears, retinal detachment, visual field defects, retinal hemorrhage, local 
retinal edema, nerve fiber layer injury, and macular holes, all of which can contribute 
to blindness.  

Optical Coherence Tomography (OCT) -
provides very high resolution (micron scale) 
images of anatomical structures within the tissue. 
Within Ophthalmology, OCT systems typically 
perform imaging through microscope optics to 
provide 2D cross-sectional images (“B-mode”) 
of the retina. These systems are predominantly 
used for diagnosis, treatment planning and in a 
few cases, for optical biopsy and image guided 
laser surgery [3-6].    

Fig. 1 shows a typical OCT scan of an epireti-
nal membrane demonstrating multiple points of retinal attachment (arrows). ERMs 
are recognized by OCT as thin, highly reflective bands anterior to the retina. A poten-
tial dissection plane between the ERM and the retina is clearly visible in the scan, but 
is invisible to the surgeon through an operating microscope, even with very high 
magnification. In other work [7] our laboratory has explored registration of preopera-
tive OCT images to intraoperative microscope images to aid in identifying ERM 
edges for initiating ERM removal. However, ERMs can grow and further distort reti-
nal architecture. It is therefore, unclear whether preoperative images would provide a 
useful guide if the interval between the preoperative image acquisition and surgery 
allows for advancement of the ERM. Direct imaging of the ERM relative to the sur-
geon’s instruments would be very useful either as a replacement for or supplement to 
the preoperative OCT images. In addition, direct imaging of the local anatomy rela-
tive to the instruments can be used to provide feedback on tool-to-tissue distances and 
real-time updates during tissue dissection.  

 
Fig. 1. Preoperative OCT scan of 
multiple points of retinal attachment 
(arrows) by epiretinal membrane [2]  
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These considerations have led us to explore development of sub-millimeter di-
ameter microsurgical instruments incorporating OCT sensing capability for directly 
sensing tissue planes beyond the instrument tip. Our approach (illustrated in Fig. 2) 
relies on the use of common path OCT (CP-OCT) sensing through an optical fiber 
built into the instrument shaft. Compared to alternative approaches, CP-OCT is sim-
ple, robust, and affordable [8], and also permits an extremely compact tool design. 
This “A-mode” sensing capability can either be used with conventional free-hand 
instruments or (as here) can be combined with a robotic microsurgery platform such 
as the JHU EyeRobot [9] or the CMU Micron [10]. When integrated with a robot, this 
instrument may be scanned to produce images of the local anatomy or integrated in 
various ways to the control the robot. This integration will allow design of a system 
that will have safety barriers that prevent collision with the retina, be able to maintain 
a constant distance from the retina during scanning, and be able to promote accurate 
targeting of anatomic features within the retina.  

In this paper, we demonstrate integration of a single fiber OCT sensor into a 0.5 
mm diameter microsurgical instrument designed for vitreoretinal surgical interven-
tions. The instrument position is inherently registered to OCT by the fact that the 
surgical tip is visible in the OCT image. We have integrated this system into a robotic 
platform in order to investigate various control methods for its use in robotically as-
sisted microsurgery. 

2   Materials 

OCT Integrated Pick Instrument.  Vitreoretinal picks are commercially available in 
a variety of sizes with the most commonly used ranging from 25-20 gauge (0.5 mm to 
0.9 mm diameter).  Sharp picks are used to incise taut surface membranes and engage 
and elevate membrane edges for ERM peeling. The simplicity of this basic tool per-
mits the surgeon to quickly craft a sharp edged pick from an appropriately sized sur-
gical needle by bending the beveled tip with a needle holder.  The surgeon co-authors 
routinely use this method to create such picks. 

 

Fig. 2. Left: Proposed use of the instrument inside the human eye. Right: Axial OCT scan. 
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For our experiments, we have adapted this method to permit incorporation of a sin-
gle fiber OCT probe to enable simultaneous A-mode imaging and tissue manipula-
tion.  Our prototype picks were constructed from 25 gauge, 38mm surgical needles 
with 0.24mm ID and 0.5mm OD.  We bent the beveled point approximately 200-
300µm from the tip so that the tip intersected with the central axis of the needle  
lumen. A cleaved optical fiber stripped to glass cladding was inserted through the 
lumen, bonded in place approximately 135µm from the tip, and interfaced to the CP-
OCT system. The tip is visible in the OCT A-mode image, thus providing a reference 
point for the relative distance of the tool to tissue being scanned (Fig. 3).  

Optical Coherence Tomography System. The optical fiber from the tool is inte-
grated with a common path Fourier domain OCT system developed in our laboratory 
and is fully described in [8].  It is the simplest, most compact imaging technique of its 
kind.  This system is robust, inexpensive, and can utilize simple interchangeable 
probes.  Our system uses an SLED light source centered near 0.8-µm wavelength with 
a fiber optic directional 2x2 coupler, and a USB spectrometer (HR4000, Ocean Optics 
Inc.). The optical fiber probes presented here are a single mode fiber (NA 0.14) with 
~9µm core size, 125µm cladding diameter and ~245µm diameter outer polymer buf-
fer.  The imaging depth is 1-1.5 mm in tissue and somewhat less in our wax sample 
materials.  In air, the OCT beam diverges at an angle of 16 degrees and effective axial 
resolution is ~8.8µm.  In water or tissue the divergence is ~12 degrees with ~6.6 µm 
resolution.  A sample axial image (A-Mode) with zero reference point located at the 
tip of the fiber is shown in Fig. 2. By moving the probe laterally, a sample cross sec-
tion image is generated (B-Mode). 

The CP-OCT system provided the robot with the distance from the probe to the 
surface of the sample. Each axial scan was processed by first thresholding to remove 
baseline noise, and then smoothing with a Savitzky-Golay filter to preserve peak 
locations, amplitudes and widths. To locate the peaks, a simple zero-crossing of signal 
derivative was used. The acquisition time and signal processing yields a sampling rate 
of ~200Hz with approximate latency of one frame.   

Sample materials. We have developed two artificial phantoms for consistent evalua-
tion in these preliminary experiments. For the safety barrier and surface tracking 
tasks, we use a composite of three 60µm thick layers of scotch tape on a dense  

 

Fig. 3. Top Left: CAD side view of microsurgical pick with integrated fiber optic OCT probe. 
Bottom Left: Actual prototype.  Right: A-Scan image of a sample. 
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wooden plank. This provides a strong multi-peak axial scan signal that is analogous to 
that generated by the multilayered structures of the retina. For the targeting tasks, we 
needed a phantom with 100-300µm diameter cavities located near the surface and the 
ability to display any physical interaction with the sample. Sheet lining wax (McMas-
ter 8691K31) with a low softening point (135°C) was placed on an aluminum sheet 
and heated to boiling. Rapid cooling produces many thin-walled bubbles and any 
physical contact between the pick and sample surface leaves permanent marks visible 
in OCT.  

Experimental Setup. Our experimental setup is illustrated in Fig. 4.  The microsurgi-
cal instrument is mounted on an extremely precise Cartesian positioning robot con-
sisting of three orthogonally mounted linear stages. The position resolution is 1µm 
and measured repeatability is about ± 1 µm for range of motion required for this ex-
periment (<2mm).   This robot was chosen for experimental convenience, and would 
be replaced in actual practice by a system similar to [9-10].  The robot is interfaced to 
a PC workstation through a commercial motion controller (Galil DMC 1886).  A 
commercial 6 DOF force-torque sensor (ATI Nano43) is mounted on the robot and 
also interfaced to the PC as a user interface.  Open-source robot control software 
developed in our laboratory [11] is used to implement cooperative “hands on” control 
for the robot’s motion.  The OCT system is implemented on a separate PC and com-
municates to the robot PC via Ethernet. The test samples are mounted on a separate 
manually actuated micrometer stage placed beneath the probe. An inspection video 
microscope (Omano E-ZVU/V15) is positioned to simultaneously image the side 
view of the sample and probe at 90X magnification (not shown).  

3   Methods 

We have demonstrated our system in the context of three sample tasks: enforcement 
of safety barriers, “tracking” to maintain a constant distance from a surface, and accu-
rate placement of the probe on targets identified in a scanned OCT image. Relatively 

  
Fig. 4. Experimental system overview 
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low velocities were chosen based on surgical preference when operating close to the 
retina and the limited movement in the eye during surgery due to constraints by inser-
tion of tools through the sclera and effects of anesthetics. 

In the safety barrier task, the system enforced a safety constraint to prevent the 
probe from approaching the target surface closer than a specified threshold distance.  
The robot moved freely within the 1D workspace to comply with forces exerted by 
the user on the control handle, with the exception of the forbidden boundary sensed 
via the OCT. This “virtual wall” was reached when the tip of the probe was located 
~150µm from the sample surface. A bare optical fiber was used as a probe. Five trials 
were performed with different robot velocity limits: 100, 200, 300, 400, 500 µm/sec.  

In the surface tracking task, the sample surface was moved up and down with the 
manual micrometer stage while the robot was controlled to maintain a constant OCT-
reported distance of 150 µm from the sample surface. One intention for the surface 
tracking was to correct for retinal motion due to respiratory function, hence we chose 
the sinusoidal frequency to be around 0.2 Hz and magnitude that encompasses ex-
pected ranges of retinal motion. 

In the targeting task, the robot was instructed to scan the pick in 2µm increments lat-
erally across the sample surface.  The A-mode images from the OCT system were then 
combined to make a B-mode image.   The evolving B-mode image was displayed con-
tinuously to the user, who could use a mouse at any time to click on a target within the 
image.  The robot would then interrupt its scan, move back to a position over the identi-
fied target, and then slowly insert the pick tip to the depth of the designated target, based 
on depth feedback provided by the OCT system. The probe was then withdrawn and a 
second B-mode scan was taken to observe the created defect in the sample surface. 

4   Results 

The results for the safety barrier task are shown in Fig. 5(left).  The observed over-
shoot into the “unsafe” zone was negligible for robot speeds up to ~300 µm/sec and 
still quite modest up to ~500 µm/sec, using only a very naïve control method.  Further 
improvements are expected with our next generation OCT system (which has higher 
sample rate) and with refinements in the robot design and control.  

 

 
Fig. 5. Results: Left: Safety Barrier - Overshoot error vs. maximum allowable velocity. Right: 
Surface tracking with 150µm standoff.  
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The results of dynamic response when tracking sinusoidal surface motion are shown 
in Fig. 5(right).  We were able to keep the tool tip within about 10 μm of the desired 150 
μm standoff from the target surface while the surface moved at about 200 μm/sec. 

The results of the targeting task are illustrated in Fig. 6. The top B-Scan shows a sub-
surface bubble with 30-50µm membrane and the user specified incision location. The 
bottom shows the post-intervention B-Scan with an overlay depicting approximate 
orientation and location of the instrument tip at the target. The defect clearly resembles 
the geometry of the tip, as well as good alignment with planned incision position.  

5   Discussion and Future Work 

“Smart” instruments combining real time sensing with tissue manipulation have sig-
nificant potential to improve surgical practice, especially when combined with real 
time visualization, robotic devices, and computer-based decision support.  In this 
paper, we have introduced a new class of microsurgical instruments for retinal sur-
gery, incorporating fiber-optic common path Fourier domain OCT sensing.  Although 
the development of such instruments and techniques for using them is still in early 
stages, our initial experiments are very encouraging. 

We have found that very small instruments (~0.5mm diameter) incorporating fiber-
optic OCT can be constructed and used to identify tissue boundaries beyond the tip of 
the instruments.  Further, the instrument can be scanned laterally to construct 2D and 
3D images from the single A-mode images produced by the basic sensor.  We have 
demonstrated that the sensor can provide real time feedback on the distance from the 
tool tip to a surface and can be used to enforce safety barriers or support surface fol-
lowing with a robot. Finally, we have 
shown that these capabilities can be 
combined to enable user identifica-
tion of a subsurface target in a 
scanned image followed by auto-
mated placement of the instrument tip 
on the target.  All of these capabilities 
will be very useful in future clinical 
vitreoretinal systems. 

Further development will require us 
to address a number of technical and 
practical questions. The current ex-
periments were performed with the 
probe perpendicular to the sample 
surface.  Although OCT can identify 
layers while looking obliquely into 
tissue at the angles that will be en-
countered in retinal surgery, it is still 
necessary to account for approach 
angle to get correct range data. We are 
developing several approaches to 
address this, such as robot pose  Fig. 6. B-Mode scan before and after intervention 
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feedback and tracking of tools in the stereo video microscope.  Practical issues include: 
fabrication processes, optical path occlusion by stray particles in the microenvironment, 
improvement in the speed of OCT data acquisition, and interfacing to our surgical ro-
bots.  None of these seem insuperable, though experimentation and design iteration will 
be needed.  For example, we need to determine if particle occlusion is a problem within 
the aqueous environment of the eye, or if the particles simply wash off.  

In the immediate future, we will pursue several paths.  First, we have just com-
pleted a new CP-FDOCT system with considerably higher performance.  After repeat-
ing the experiments described above, we will begin evaluating the combined system 
with multiple tissue samples in our lab and will also interface the system to the micro-
surgical robots in our lab.  In the intermediate term, we will also develop methods for 
tracking instruments in the surgical microscope, for making the necessary depth cor-
rections, for producing B-mode images from the tracked tool positions, and for gener-
ating registered overlaid displays on the microscope.  
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Abstract. Fluoroscopic images contain useful information that is diffi-
cult to comprehend due to the collapse of the 3D information into 2D
space. Extracting the informative layers and analyzing them separately
could significantly improve the task of understanding the image content.
Traditional Digital Subtraction Angiography (DSA) is not applicable for
coronary angiography because of heart beat and breathing motion. In
this work, we propose a layer extraction method for separating transpar-
ent motion layers in fluoroscopic image sequences, so that coronary tree
can be better visualized.. The method is based on the fact that differ-
ent anatomical structures possess different motion patterns, e.g., heart
is beating fast, while lung is breathing slower. A multiscale implementa-
tion is used to further improve the efficiency and accuracy. The proposed
approach helps to enhance the visibility of the vessel tree, both visually
and quantitatively.

1 Introduction

Coronary angiography is an important enhancement method for the analysis
of coronary images and therefore has many clinician applications for cardiac
related diseases. However, the task is very challenging because images contain
overlaying structures besides blood vessel, e.g. Figure 1. Moreover, radiation is
kept low for patient’s health and thus blood vessels often have poor visibility.
Digital subtraction angiography (DSA) [7] has been widely used in interventional
radiology for enhancing the vessel structure. However, it meets difficulties when
applied to the coronary images due to the complicated motion induced by heart
beating and breathing.

In this paper we propose a new framework to solve the above problem us-
ing motion layer separation. The intuition is based on the fact that different
anatomical structure have different motion patterns. For example, lungs usually
move in a slow and simple way, heart beating causes much more complicated
vessel motion, while bones and spines usually remain static. Consequently, it is
natural to model an image sequence as a superposition of different motion layers
and then use motion separation to extract layers we are interested in. The basic

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 116–123, 2009.
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Fig. 1. Different anatomical structures in the scene have different motion patterns

idea is illustrated in Figure 1. The proposed approach is tested on both real and
synthetic sequences and demonstrated promising results.

There are several key ingredients in the proposed approach. First, the pro-
posed coronary extraction approach naturally uses motion layer separation. By
doing this, it not only avoids the challenging and error prone mask seeking proce-
dure used in traditional DSA approaches, but also achieves robustness by easily
integrating neighborhood information. Second, a multiscale scheme is adopted.
In addition to achieving better efficiency and accuracy, the multiscale framework
naturally maps different layers to different scales. Third, a dense motion field
is established by using thin plate spline (TPS) [4]. This enables us to handle
complicated vessel motions. Fourth, a quantitative measurement consistent to
human perception is introduced for evaluating visibility enhancement.

2 Related Work

Traditional motion estimation with adaptation [3] does not model the trans-
parency issue specifically. It does not work for general transparent motion.
Processing in Fourier space. As opposed to the traditional spatial domain
approaches, Shizawa and Mase [11] reports that the 3D Fourier transform of
a transparent sequence whose transparent layers are in constant translation is
made of different planes corresponding to different layers. However, this ap-
proach has a major drawback: it assumes a constant transparent motion over a
significant number of frames [8].
Explicit transparency modeling. This framework assumes constant motion
over three successive frames for two-transparent-layer case. The constraints be-
come cumbersome when we are dealing with more transparent layers. Many
classical motion estimation methods have been adapted to the transparency case
substituting the brightness assumption with some constraint equations. The pop-
ular methods that fall under this category are : block-matching techniques and
random fields [12], regularization [13], multi-resolution [1] etc.
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Algorithm 1. Multiscale Coronary Extraction
/*Motion layer separtion at low resolution of 128×128*/
Data initialization and motion field preparation at low resolution
Solve equation (4) for three layers: background, lung, and vessel
/*Motion layer separtion at middle resolution of 256×256*/
Upsample from low resolution and remove background layer
Data initialization and motion field preparation at middle resolution
Prepare motion field at middle resolution
Solve equation (4) containing two layers for lung, and vessel
/*Final result at high resolution of 512×512*/
Upsample from middle resolution and subtract lung layer at high resolution

Parametric models - The Chicken and Egg problem. The detection of
multiple motions can be addressed as a segmentation problem. However, the
optical flow-field segmentation problem is coupled with the estimation of the
flow itself which is a chicken-and-egg problem. If the flow were accurately given
everywhere then we can find the motion boundaries. These methods try to solve
the segmentation and estimations iteratively. The popular frameworks proposed
in the literature are the expectation-maximization framework [14], shift-and-
subtract strategy [2], temporal integration to blur the uninterested regions [6].
Repetitive motion. When the dynamics in one layer is assumed to be repeti-
tive, global-to-local space-time alignment can be used to extract the other layer
which can have arbitrary motion [9].

3 Our Approach

In this section we describe the proposed approach. We take a hierarchical frame-
work for both efficiency and effectiveness. In this framework, we first subtract
the background layer at low resolution. Then the lung and vessel layers are sep-
arated at middle resolution. Finally, the vessel layer is refined at the finest scale.
A summary of the approach is given in Algorithm 1.

3.1 Problem Formulation

Without loss of generality, we assume that our problem is to extract layers
from image sequences which consist of N layers overlapping with uniform trans-
parency, i.e., the contribution of each layer is 1/N . For X-ray image formation,
an exponential relationship exists between the incident and transmitted photon
fluence [10]. After passing through multiple layers of materials, the final amount
of photon fluence received by the detector which forms the X-ray image is:

Nx = N0e
∑

μixi , (1)

where μi is attenuation coefficient of the ith layer and xi is its thickness.
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Because of the exponential form of the X-Ray image formation, X-ray images
are usually manipulated in the logarithmic space. In the logarithmic image space,
the image can be written as a linear combination of the layers:

Im =
N∑

l=1

T m
l Ll, (2)

where Im is the mth observed image, Ll is the lth unknown layer. T m
l is the

motion field for the lth layer that maps Ll to Im. Refer to Sec. 3.3 for how the
motion field is constructed. Im and Ll have the same size. Denote W and H as
their width and height, respectively. Ll has W ×H pixels with unknown values.
Our goal is to find images of different layers by minimizing the reconstruction
error. For achieving robustness to noise, we use M(M > N) images to find a
least square solution to the following equation

min
M∑

m=1

‖
N∑

l=1

T m
l Ll − Im‖2 . (3)

To solve ( 3), it is transformed into a least square optimization form. We omit
the details because of the page limit.

arg min
x
‖Cx− d‖2 , (4)

where C ∈ RK×J is a matrix that is constructed based on the motion field,
x ∈ RJ is a vector that is the concatenation of all the unknown pixel values of
all N layers, d ∈ RK is a vector which is the concatenation of all the (known)
pixel values of all the M images. K = W ×H ×M and J = W ×H ×N .

In practice, the number of images M should be relatively big to tolerate small
shape deformation in one image. On the other hand, it should not be too big
because shape deformation would accumulate with more images, which would
violate the assumption that sum of all layers equal to the observed image. In our
experiments, we empirically found that M = 9 produces the best result. This
coincides with the fact that the number of frames per heart cycle is roughly 9.
The workflow is the following: for each image Im in the sequence, we use images
in a local time window Im−4, Im−3, . . . , Im+4 and the corresponding motion fields
to construct C and d in Equation 4. Once the optimization converges to a solution
x, we re-arrange x and obtain all the transparent layers in that image. After all
the images have been processed, a video sequence is obtained for each layer.

3.2 Multiscale Framework

The least squares problem (4) is very large in scale. For example, to estimate
3 layers for a sequence with image size 512×512, the number of unknowns is
786432. On the other hand, the matrix C is very sparse with most of its entries
to be zero. So we can resort to the iterative optimization technique to solve
the problem. Notice that the value of unknowns can not be negative, we are
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actually trying to solve a constrained optimization problem. In the current im-
plementation, the solution is found using a trust region method based on the
interior-reflective Newton method. In each iteration, an approximate solution is
obtained using the method of preconditioned conjugate gradients.

For the coronary angiography, we could assume that there are 3 layers in the
image: the static background like rib, the slow moving lung and fast beating
vessels. To reduce the complexity of the problem, we perform the estimation in
a pyramid. For the image of size 512 × 512, we build additional two levels of
size 256× 256 and 128× 128. Assuming that the background remain unchanged
through out the sequence, we estimate it first using the lowest resolution. Fol-
lowing the workflow mentioned above, we could get a sequence of estimated
background images. Most of them are quite similar but not necessarily the same.
There might be few erroneous estimates because of the correlation in motions
of different layers. Nevertheless, the median of of all those estimation gives a
reliable estimate of the overall background. Then the estimated background is
upsampled to 256 × 256 and we subtract the background from each image for
estimating the remaining two moving layers (vessel tree and diaphragm). As
Figure2 illustrated, only the moving objects are retained after subtracting the
background and they look more evident than in original image.

Now the new (foreground) sequence contains only two transparent layers. We
follow the same procedure to estimate the diaphragm layer and vessel layer in the
middle resolution (256× 256). After reducing the number of layers, the number
of unknowns in Equation 4 is now 256× 256× 2 = 131072. Then we upsample
the estimated diaphragm layer to 512× 512 and subtract it from the foreground
sequence, thus obtain the final vessel layer at the original resolution. By doing the
whole process in a pyramid, we keep pushing details into the vessel layer because
this is really what the clinician want. In addition, we avoid the big problem of
trying to optimize 786432 unknowns all together. This not only brings the huge
advantage in efficiency, but also helps to avoid some local maxima for the direct
optimization as mentioned above. The idea is to takes advantage of the fact that
the background layer is invariant across time and slow moving layer is relatively
invariant compared to vessel, so that a large part of the search space can be
eliminated.

3.3 Constructing Motion Field

The motion of vessels is very complicated, global transformation like affine trans-
formation [1] is therefore insufficient to model it. Instead, we use a dense motion
field to represent the vessel motion. Specifically, for any location with coordi-
nates (x, y) at layer Ll, the motion field at this particular coordinates T m

l (x, y)
maps (x, y) to a new position (x′, y′) in image Im.

An efficient way to construct the motion field is through the thin plate spline
(TPS) [4] interpolation. Given two point sets with correspondence between them,
TPS finds a nonlinear warping by minimizing a second order “bending energy”.
In our task, the TSP warping has the following formula
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{
x′ = axx + bxy + cx +

∑n
j=1 dx,jU((x, y) − (xj , yj))

y′ = ayx + byy + cy +
∑n

j=1 dy,jU((x, y)− (xj , yj))
, (5)

where {(xj , yj)}n
j=1 is the sparse anchoring point set; ai, bi, ci, di,j for i={x, y},

j = 1..n are warping parameters that are estimated from sparse motion vectors;
and U(.) is a Radial Basis Function. We use manually selected control points (e.g.
junction points on vessels) to get sparse motion vectors since this work focuses
on motion layer separation. For automatic estimation of sparse motion vectors,
We have developed techniques for automatic detection [15] and tracking [16] of
thin curved structures, which could be used for vessel detection and tracking in
low resolution images. The detection of junction points can be done using the
Marginal Space Learning Framework [17].

4 Experimental Results

4.1 Experiments on Real Sequences

We tested the proposed approach on two real sequences, one for vessel enhance-
ment and another for guidewire enhancement. Figure 2 shows the extracted three
layers for one image. As can be seen, static objects like bones are retained in
the background layer. Slow moving diaphragm is extracted in another layer. The
vessel tree we are interested in lies in its exclusive layer and is more visible than
that in the original fluoroscopic image. We also applied the method to separating
the guidewire and lung in another sequence and the result is shown in Figure 3.
Please refer to supplemental videos for more results.

4.2 Evaluation of Visibility Enhancement

While we can see the visibility improvement qualitatively, it’s desired to quanti-
tatively analyze the enhancement. A synthetic sequence is shown in Figure 4(a).

Fig. 2. Vessel tree separation. From left to right: input fluoroscopic image, background,
diaphragm, and vessel tree.
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Fig. 3. Guidewire separation. From left to right: original fluoroscopic image, back-
ground, lung, and guidewire. The guide wire is hard to see before separation.

(a) (b)

Fig. 4. (a) Synthetic image with moving background (left), extraction result (right).
(b) Quantitative evaluation of visibility enhancement.

The measurement we use is based on the Jeffries-Matusita distance, which mea-
sures the separability between two classes, vessel and background. The higher
the measure, the better the separability.

Jvb = 2(1− e−Bvb), Bvb =
(μv − μb)2

4(σ2
v + σ2

b + ε)
+

1
2

ln
σ2

v + σ2
b

2σvσb
, (6)

where μv and μb are means of vessel and background, respectively and σ is the
standard deviation. Note there is a term ε in the the formulation, which is added
to to make it consistent with the human perception. We have experimentally set
ε = 100 according to the input of multiple experts. For the synthetic image in
Figure 4(a), Jvb = 0.31, while the extracted result in the right has Jvb = 0.89.
The evaluation of the whole sequence is summarized in Figure 4(b). We have
carried out extensive experiments with different noise adding to the synthetic
image. They all exhibited clearly quantitatively enhancement.

5 Conclusion

In this paper, we propose a framework for separating transparent layers from
fluoroscopic image sequences, so that coronary tree can be better visualized. It
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utilizes motion information to decompose an image into different layers. The
proposed approach does not require any pre-selected mask, thus avoid the dif-
ficulties of the traditional DSA. The motion layer extraction is proceeded in
a hierarchical fashion to achieve both efficiency and robustness. The proposed
approach is tested on both real and synthetic sequences, and promising results
are observed. Our ongoing work focus on automatic motion vector detection and
learning-based tracking of vessel structures.
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Abstract. Obtaining detailed, patient-specific blood flow information
would be very useful in detecting and monitoring cardio-vascular dis-
eases. Current approaches rely on computational fluid dynamics to
achieve this; however, these are hardly usable in the daily clinical rou-
tine due to the required technical supervision and long computing times.
We propose a fast measurement enhancement method that requires nei-
ther supervision nor long computation and it is the objective of this
paper to evaluate its performance as compared to the state-of-the-art.
To this end a large set of abdominal aortic bifurcation geometries was
used to test this technique and the results were compared to measure-
ments and numerical simulations. We find that this method is able to
dramatically improve the quality of the measurement information, in par-
ticular the flow-derived quantities such as wall shear stress. Additionally,
good estimation of unmeasurable quantities such as pressure can be pro-
vided. We demonstrate that this approach is a practical and clinically
feasible alternative to fully-blown, time-consuming, patient-specific flow
simulations.

1 Introduction

High quality imaging of blood flow patterns can provide useful information for
understanding cardio-vascular pathologies, predicting their onset and choosing
an optimal therapy strategy. There is particular interest in measuring wall shear
stress (WSS) as this plays an important role in the development of atheroscle-
rosis and other flow-related diseases such as aneurysms. Unfortunately WSS is
extremely difficult to measure as it is related to the derivative of velocity close
to the wall, precisely where most conventional imaging techniques are least re-
liable. The use of both phase contrast magnetic resonance imaging (PC-MRI)
and Doppler ultrasound, which are able to resolve flow fields in vivo and non-
invasively in complex geometries have been studied extensively (e.g. [1] or [2]).
Although they are found to be well suited for estimating the approximate time
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and spatially-averaged WSS patterns, both these modalities suffer from poor res-
olution and, even more importantly, from inadequate accuracy near the wall due
to partial volume effects or wall motion induced artifacts, thus making them un-
able to provide high quality WSS estimates. However, these limitations can effec-
tively be overcome by using computational fluid dynamics (CFD) in conjunction
with medical imaging [3], which allows for very detailed flow field representations.
Moreover, CFD is able to provide any desired (and usually non-measurable) flow
quantities such as vorticity or pressure distributions which can be very useful
for, e.g., aneurysm rupture prediction. The richness of the CFD simulation data
has motivated a large research effort to investigate its use in patient-specific flow
imaging (see [4] for a review) and there is much hope that these results could
significantly contribute to the improvement of the diagnosis and treatment of
vascular diseases such as cerebral aneurysms [5]. However the use of computer
simulations requires in-depth numerical knowledge and enormous computational
power and time, which makes them impractical for routine patient care and has
kept them out of the clinics for the time being.

We have already proposed a clinically feasible approach to the combination
of patient-specific measurement data and CFD [6]. This previous work focussed
on exploring the potential of such an enhancement technique on a simplified 2D
case. We now evaluate the quality of such 3D flow field reconstructions using a
large database of abdominal aortic bifurcation geometries. We focus in particular
on the quality of the WSS estimations, as this type of secondary flow information
is extremely sensitive to measurement accuracy. Acquisition of several hundred
real patient cases is a dedicated effort in itself and is not the focus of our current
study. We therefore use artificially generated but statistically meaningful geome-
tries. This approach conveniently provides us with a ground truth to evaluate
our results and simultaneously reduces artifacts caused by faulty reconstruction
of the geometry. In practice, this measurement enhancement technique could be
applied to any imaging modality which is able to detect the geometry and prefer-
ably some flow velocity data, but we have chosen to focus on PC-MRI as this
can measure both geometry and time-resolved flow velocity fields non-invasively.

2 Methods

Enhancement method. The method is fully described in our previous work
[6] and will just shortly be summarized here for completeness. We use a large
database of pre-computed flow fields for a given anatomical location and use
these to perform an interpolation of actually measured, sparse and noisy velocity
data, allowing us to recover a patient-specific, high quality flow field. Principal
component analysis is applied to the database and the enhancement is performed
as an optimisation in frequency space, using the method proposed by Blanz and
Vetter [7], analogously to the procedure used in statistical shape models. For
a basic overview of this enhancement method see figure 1. The main difference
to our previous 2D implementation lies in the mesh generation, mesh mapping
and its associated coordinate transformation. Indeed, to achieve this in 3D with
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Fig. 1. Method flowchart

bifurcation geometries a radial coordinate system was used, the axial component
being recovered by solving the Stokes equations with constant pressure bound-
ary conditions at the inlet (p1 = 1) and both outlets (p2 = 0). In this way a
coordinate system common to all bifurcations could be generated, thus making
the velocity components comparable across geometries.
Building the database. As mentioned earlier, the database used here is built
entirely from artificial data for evaluation purposes. A base mesh having the
approximate physiological dimensions of an abdominal aortic bifurcation and
being symmetric with respect to the sagittal plane was first generated. This
was then deformed using 18 geometric parameters which were randomly varied
within healthy physiological variability as described by Sun et al. [8] to create
the various meshes. Additionally a random deformation field was applied to each
geometry thus perturbing the vessel wall with high frequency local variations.
Fifteen randomly selected bifurcations from the database can be seen in figure
4(f). Once the meshes became available, oscillatory flow simulations were per-
formed in each one, using velocity boundary conditions at the inlet and fixed
pressure at the outlet. Skewed parabolic velocity fields were used at the inlet,
randomly varied with respect to oscillatory frequency, skewness and amplitude
to mimic a variety of upstream conditions. The pressure was set to 0 at both
outlets, using the assumption that the downstream conditions are the same for
both iliac branches, which is physiologically reasonable. Each simulation was run
for 3 cardiac cycles so as to reduce transient effects and the results from the last
cycle were taken as our solutions. A total of 600 flow fields were generated in
this fashion, each having its own specific geometry and boundary conditions.
Recovering the pressure fields. In addition to the velocities, the pressure
fields were also stored in the database. This allows us to recover the patient-
specific pressure distribution at very little extra computational cost, which can
be interesting especially in the case of aneurysm rupture prediction, where the
local pressure field plays an important role.
Evaluating the accuracy of the method. In order to evaluate our method,
100 of the flow fields were randomly selected for leave-one-out tests and therefore
removed from the database. We then simulated PC-MRI measurements of each
of these test cases. This was done in two steps. First we defined a typical voxel



A Fast Alternative to Computational Fluid Dynamics 127

size of 1× 1× 4 mm and averaged the velocities inside each voxel for 20 equally-
spaced timesteps. Secondly, we added white Gaussian noise with a maximal
intensity of 5% of the velocity encoding value (VENC). At voxels which are on the
boundary, the partial volume effect typical to PC-MRI was simulated by adding
nodes with 0 value outside the geometry before averaging. We then compared the
velocity, WSS and pressure distributions obtained from both the simulated flow
measurements and from our enhancement method with the ground truth, given
by the original simulations. WSS was computed in all cases by using quadratic
shape functions of the tetrahedra having a face on the wall, so the acquisition
data had first to be interpolated onto the mesh, similarly to Cheng et al. [9].

3 Results

Having applied the enhancement for 100 test cases, the most obvious way to
present the results is a statistical evaluation: this can be found in table 1. For
each quantity of interest and for each case we performed a linear regression
analysis of the type seen in figures 2 and 3 to evaluate how well the measured
and the enhanced 1 values compared to the simulated ones. We then considered
the r2 correlations (the square of Pearson’s correlation coefficient) and the slope
of the fitted linear functions as these best characterize the fit. The closer both
these numbers are to 1, the better the observation matches the known data.
In addition to this statistical evaluation we show the simulated, measured and
enhanced flow, WSS and pressure fields for a representative case in figure 4.

Table 1. Mean values and standard deviations over the 100 test cases of the r2 corre-
lation coefficients and the slopes of the fitted linear curves relating both the measured
and the enhanced data to the simulations (ground truth) for all components of velocity
(u, v, w), the norm of velocity (|U |), the WSS and the pressure

Measured Enhanced
r2 slope r2 slope

u 0.873 / 0.024 0.818 / 0.028 0.896 / 0.058 0.897 / 0.051
v 0.897 / 0.017 0.834 / 0.022 0.917 / 0.053 0.915 / 0.050
w 0.883 / 0.023 0.876 / 0.018 0.980 / 0.012 0.971 / 0.014
|U | 0.842 / 0.029 0.871 / 0.020 0.976 / 0.013 0.974 / 0.013
WSS 0.824 / 0.023 0.359 / 0.023 0.947 / 0.059 0.929 / 0.048
pressure 0.996 / 0.007 0.938 / 0.131

Velocity. Figures 4(a), 4(b) and 4(c) show typical flow fields during end diastole.
This phase of the heart cycle was chosen as the velocities are low and recircu-
lations near the boundary take place. In all figures a detail of the streamlines
1 We will systematically refer the original (gold standard) simulation data as simulated,

to the simulated PC-MRI data as measured and to the measurement data after being
enhanced by our method as enhanced.
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Fig. 2. Correlation of the measured with
the simulated WSS

Fig. 3. Correlation of the enhanced with
the simulated WSS

is shown, demonstrating that these recirculations are not resolved by the mea-
surement, but do appear correctly in the enhanced flow field. However, despite
being sparser and noisier, the measured flow fields are still reasonably accurate,
as shown by the statistical data in table 1.
WSS. Measured, enhanced and simulated WSS distributions at peak systole and
end diastole are shown in figures 4(d) and 4(e) respectively. One may observe
that the WSS as postprocessed from the measurement is clearly underestimated.
However, its spatial distribution, which is difficult to perceive directly from this
illustration, is approximately correct. Figures 2 and 3 show the statistical cor-
relations between the measured and simulated and between the enhanced and
simulated WSS fields respectively for a representative case. It can be seen by the
slopes of the regression plots that the absolute values of the measured WSS are
significantly smaller than the simulated ones, whereas the enhanced ones are in
the correct range. This is mostly due to the partial volume effect which leads to
underestimation of the velocities close to the wall. The results were similar in all
cases, as shown by the poor slope value for the measured WSS in table 1. The
high correlation and slope values obtained by the enhancement method indicate
that it is able to reconstruct WSS patterns with very good accuracy and could
thus effectively replace full CFD simulations for this task.
Pressure. We show no data for the measured pressure fields, as there is no way
of measuring a full pressure field by any known in-vivo, non-invasive method.
Despite having no measured pressure information, the reconstructed pressure
fields were very well correlated with the simulated ones (see table 1) and the
close similarity of the pressure distributions at peak systole and end diastole
shown in figures 4(g) and 4(h) is typical for all cases.

4 Discussion

The fact that both the measured and enhanced velocities correlate well with
the simulated ones confirms the work of other authors (see e.g. [10] or [11])
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(a) Measured velocity. (b) Enhanced velocity. (c) Simulated velocity.

(d) WSS at PS. (e) WSS at ED.

(f) Some geometries. (g) Pressure at PS. (h) Pressure at ED.

Fig. 4. Streamlines of velocity (top row) at end diastole, with zoom on a recirculation,
WSS (middle row) and pressure (bottom row) at both peak systole (PS) and end
diastole (ED) and 15 geometries from the database (bottom left)
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who also conclude that PC-MRI is adequate for acquiring the velocity field.
However it must be remembered that the enhanced field can have any desired
spatio-temporal resolution, whereas the measured PC-MRI data is limited in this
respect. Also we focused here on the case of the abdominal aortic bifurcation
which is a relatively large vessel. In smaller vessels the resolution limits of this
modality will very quickly become prohibitive. However the inability to resolve
lower velocities and those near the endothelium has a disastrous effect on the
WSS predictions. As shown here and confirmed by others, [12] the WSS values
as obtained directly from PC-MRI are by far not accurate enough, in particular
with respect to their amplitudes. The approximate location of regions of low or
high WSS can be adequately obtained, but only time- and spatially-averaged
values can be considered. Should one desire a better quality WSS prediction,
information from CFD must be used and our method is able to provide this with
high accuracy, without needing the enormous computational resources required
for such simulations.

We focused here on two flow quantities other than velocity: WSS and pressure,
but obviously any other flow-related variable such as vorticity or oscillatory shear
index can also be addressed by this enhancement strategy. Another interesting
extension would be the integration of full fluid-structure interaction (FSI). In
this study we considered fixed walls, but adding FSI is possible in a straightfor-
ward manner. It would require much more computational effort to generate the
database but would have little or no impact on the speed of the enhancement
procedure while delivering a lot more information such as intramural wall stress.

We focused on healthy, i.e. relatively regular geometries which, while still
showing very complex flow patterns, have much less variability than patholog-
ical cases such as aneurysms. However, addressing these will not require any
modifications of the overall framework, only that the database be adequately
larger to account for the added variability.

5 Conclusions and Outlook

We have shown a 3D extension of our previously presented flow measurement
enhancement strategy and evaluated its performance using a large, representa-
tive, synthetic dataset. We were able to demonstrate that it provides reliable
predicions about flow and clinically important flow-related quantities, clearly
surpassing the quality of direct measurements. We conclude that this is an at-
tractive alternative to costly, fully-blown CFD simulations as it is able to achieve
similar quality while being orders of magnitude faster (minutes rather than hours
or even days). Future work in this direction will now focus on using real patient
data and pathological variability, both to build the database and to test the en-
hancement. However, this evaluation has shown that our approach is a significant
step towards bringing the full richness of CFD into daily clinical practice.

Acknowledgments. This work was supported by the Indo-Swiss Joint Re-
search Programme.
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Abstract. Anatomical and functional information of cardiac vascula-
ture is a key component of future developments in the field of inter-
ventional cardiology. With the technology of C-arm CT it is possible
to reconstruct intraprocedural 3-D images from angiographic projection
data. Current approaches attempt to add the temporal dimension (4-
D) by ECG-gating in order to distinct physical states of the heart. This
model assumes that the heart motion is periodic. However, frequently ar-
rhytmic heart signals are observed in a clinical environment. In addition
breathing motion can still occur. We present a reconstruction method
based on a 4-D time-continuous motion field which is parameterized by
the acquisition time and not the quasi-periodic heart phase. The out-
put of our method is twofold. It provides a motion compensated 3-D
reconstruction (anatomic information) and a motion field (functional in-
formation). In a physical phantom experiment a vessel of size 3.08 mm
undergoing a non-periodic motion was reconstructed. The resulting di-
ameters were 3.42 mm and 1.85 mm assuming non-periodic and periodic
motion, respectively. Further, for two clinical cases (coronary arteries and
coronary sinus) it is demonstrated that the presented algorithm outper-
forms periodic approaches and is able to handle realistic irregular heart
motion.

1 Introduction

One key component of future developments in the field of interventional cardi-
ology is three-dimensional image information before, during and after interven-
tional procedures, e.g. pacemaker implantations or ablation procedures. With
the technology of C-arm CT it is possible to reconstruct intraprocedural 3-D
images from angiographic projection data [1]. However, cardiac reconstruction
is yet a challenging problem due to the long acquisition time of several seconds
at which a couple of heart beats occur, leading to motion related image artifacts,
e.g. blurring or streaks.
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An established technique for time-resolved cardiac reconstruction is to record
the electrocardiogram (ECG) during the data acquisition. Based on the ECG-
signal a relative cardiac phase is assigned to each projection image assuming
a cyclic heart motion [2]. The phase information is used for a phase-correlated
reconstruction by gating or motion estimation and compensation. A gated recon-
struction takes only those images into account that lie inside a defined temporal
window, that is centered at the targeting reconstruction phase [3,4]. This is how-
ever not ideal in terms of missing data and residual motion. To increase the data
usage motion compensated reconstruction algorithms are applied. The phase in-
formation is used during motion estimation to parameterize a motion field that
maps every heart phase to the target phase by some kind of registration oper-
ation [5, 6, 7, 8]. The common problem of such approaches is that the averaged
periodic motion model does not necessarily represent accurately the actual heart
motion of each individual beat. Thus the quality of the motion correction and
periodicity assumption are correlated.

Accordingly, the previous methods were shown to provide reasonable results
in the presence of regular heart rates without breathing or other patient motion.
However, in the field of intraprocedural cardiac reconstruction, the patients suf-
fer from heart diseases and cannot completely hold breath, stay still or have
irregular heart beats. Those aspects do conflict with the periodicity assumption.
Up to now, these problems were addressed by approximate 2-D corrections in
the projection image. Blondel et al. [5] proposed to model breathing motion of
the heart as a translation mainly in axial direction. Hansis et al. [9] proposed to
cope with the problem by performing a 2-D/2-D registration of the projection
image with a forward projection of an initial reconstruction. However, none of the
methods can cope with the general case of non-cyclic 3-D motion. In this paper
a method for the 4-D reconstruction of selectively contrasted cardiac vascula-
ture without perodicity assumption is introduced. This is achieved by two major
contributions: First, the introduction of a time-continous motion field which is
parameterized by the acquisition time and not the periodic heart phase. Second,
the development of a theoretically founded, fast and robust motion estimation
algorithm which is based on an extension of a FDK reconstruction to dynamic
objects and thus couples motion estimation and reconstruction.

2 Methods

The presented motion estimation scheme is built up from two components. First,
an initial reference reconstruction is performed using an ECG-gated or even non-
gated reconstruction. This reference image is post-processed such that only the
vasculature is visible. Second, the parameters of the motion model are estimated
by optimizing an objective function. The objective function aims to maximize
the joint intensity of the reference image and the motion compensated FDK
reconstruction.

This part of the paper is organized to contain a step-wise development of
the required methods. In Sect. 2.1 the parametric motion model is presented.
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Next, the motion model is introduced into the FDK reconstruction in Sect. 2.2.
Prepared with both concepts, the objective function for motion estimation is
subject of Sect. 2.3. Finally, in Sect. 2.4 the optimization strategy is discussed.

2.1 4-D B-Spline Motion Model

We assume a time-continous motion model that maps a voxel x = (x0, x1, x2)T

to a new voxel location x′ for each projection image. It is conceptionalized by
a function M : N× R3 × P �→ R3 with M(i,x, r) = x′ transforming the voxel
coordinate x at the time of the i-th projection image. The mapping is based on
the motion model paramters r ∈ P. In this work, a 4-D B-spline is used. A set
of Cj × Ck × Cl × Ct control points is placed uniformly in space and time. Each
control point is assigned a displacement vector, forming the set of motion model
parameters P = {rjklt ∈ R3 | 1 ≤ j, k, l, t ≤ Cj , Ck, Cl, Ct}. Formally, the motion
model is then given by

M(i,x, r) = x +
∑

j,k,l,t

Bj(x0)Bk(x1)Bl(x2)Bt(i) rjklt ∀j, k, l, t , (1)

with {B·} being the set of cubic B-spline basis functions [10].

2.2 Dynamic FDK-Reconstruction

The formulation of our objective function for motion estimation (Sect. 2.3) is
based on a dynamic reconstruction algorithm f(x, r). The function f returns the
reconstructed object value at a voxel x based on the motion model parameters
r. In principle, any dynamic reconstruction algorithm could be used. In this
paper, an extension of the FDK reconstruction method for moving objets is
utilized [3,7].

Formally, the dynamic FDK reconstruction f : R3 × P �→ R is given by

f(x, r) =
∑

i

w(i,M(i,x, r))︸ ︷︷ ︸
=s1

· p(i, A(i,M(i,x, r)))︸ ︷︷ ︸
=s2

. (2)

The function w : N × R3 �→ R is the distance weight of the FDK-formula.
The pre-processed, filtered and redundancy weighted projection data is accessed
by the function p : N × R2 �→ R where p(i,m) returns the value of the i-th
projection image at the pixel m. The perspective projection is given by the
function A : N × R3 �→ R2, where A(i,x) = m maps a voxel x to a pixel
location m in the i-th projection image. The shortcuts s1, s2 are introduced for
convenience and are reused in Sect. 2.4.

2.3 Objective Function for Motion Estimation

The proposed approach for motion estimation is inspired by the works of Rohkohl
et al. [7] and Hansis et al. [9]. Their results suggest that a sufficient initial
reconstruction can be obtained by a FDK-like ECG-gated reconstruction which
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can be improved by motion estimation and compensation [7,9]. Our method also
requires such an inital reconstruction, which is post-processed such that only the
sparse and contrasted vascular tree is visible. It is obtained by applying a transfer
function in a volume renderer [7]. In the following the resulting reference image
is denoted fr. Regarding the quality of fr it is especially important that larger
structures are present. Due to the fact that the motion field is smooth in space
and time, smaller structures are likely to move in accordance with the larger
structures. Thus they will become visible in a motion corrected reconstruction.

Formally, motion estimation is formulated as a multi-dimensional optimization
problem where the motion model parameters r̂ ∈ P minimizing the objective
function O : P �→ R need to be estimated, i.e.

r̂ = arg min
r∈P

O(r) = arg min
r∈P

(L(r) +R(r)) , (3)

with R being a regularizer and L being a dissimilarity measure. We decided for
the dissimilarity function proposed by Rohkohl et al. [7]. It aims to maximize
the joint intensity of the reference image fr and another reconstruction – in our
case the dynamic reconstruction f(x, r). It is given by

L(r) = −
∑
x

fr(x) · f(x, r) . (4)

During the estimation of the motion model parameters, it needs to be ensured
that only plausible motions are considered, i.e. no rapid motion or folding. Nu-
merous regularizers have already been proposed for B-spline based motion mod-
els, e.g. [5,7] and hence will not be covered in this paper.

2.4 Optimization Strategy and Runtime Considerations

Many advanced optimization strategies require the gradient of (3), e.g. the L-
BFGS-B algorithm [11]. The derivative of (3) with respect to the motion model
parameters is given by

∂O(r)
∂r

=
∂L(r)

∂r
+

∂R(r)
∂r

= −
∑
x

(
fr(x)

∂f(x, r)
∂r

)
+

∂R(r)
∂r

. (5)

It contains the derivative ∂f
∂r of the dynamic reconstruction (2) with respect to

the motion model parameters. The derivative can be calculated analytically and
is given by

∂f(x, r)
∂r

=
∑

i

(
∂w

∂M
s2 + s1

∂p

∂A

∂A

∂M

)
∂M(i,x, r)

∂r
. (6)

The computation of the objective function and the corresponding derivative is
fast as only non-zero voxel of the reference image fr contribute to the objective
function value. In most cases the number of non-zero voxels is < 1%. This prop-
erty can be exploited for obtaining a fast implementation. Further, the dynamic
FDK reconstruction is highly parallelizable and can be efficiently implemented
on modern hardware, e.g. the GPU [12].
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3 Evaluation

3.1 Methods and Materials

Evaluation Strategy. In order to assess the performance of the proposed al-
gorithm, the reconstruction results of our method are compared to the approach
of periodic motion [7]. In the periodic approach, ECG-gated reconstructions of
several heart phases are registered with the reference image fr by maximiz-
ing the joint intensity. For the presented results, ten disjoint ECG-gated sub-
reconstructions have been performed using each 10% of all projection data. Both
algorithms are provided with equivalent parameter settings. As optimizer, the
L-BFGS-B algorithm [11] with a fixed number of 50 iterations was used. All
datasets were acquired on an Artis zee C-arm system (Siemens AG, Healthcare
Sector, Germany) covering an angular range of 200◦.

Physical Heart Phantom. A physical heart phantom has been built from an
elastic material filled with water. At a rate of 50 bpm the water is pumped in
and out causing an elastic motion. In addition, the phantom is mounted on a
compensator for a slow breathing motion of approx. 0.5 cycles per second. The
artificial heart is surrounded by tubular structures filled with contrast agent
mimicing the vascular system. An ECG-like signal is generated for the cardiac
motion.

In total, three different datasets have been acquired. Each dataset consists
of N = 133 projection images with an acquisition time of T = 5 seconds. The
first dataset is the static phantom. It is used to determine the ground truth
reconstruction. The second dataset is the moving phantom undergoing periodic
cardiac motion. It is used to test the algorithms on cyclic motion patterns. The
third dataset is the moving phantom undergoing a non-periodic combination of
cardiac and respiratory motion. It is used to assess the algorithm performance
on non-cyclic motion patterns.

For determing the quality of the reconstructions, a visual inspection of the
volume renderings of all datasets using the same window settings, is performed.
In addition, the vessel diameter, determined from MPR-views, is compared at a
representative vessel position.

Clinical Cases: Arterial and Venous Vascular System. In order to demon-
strate the clinical feasibility of the presented concepts, the algorithm is applied
to the reconstruction of the venous and arterial vascular system. The first case
is a coronary artery dataset with N = 133 and T = 5 seconds. The second case
is a coronary sinus dataset with an N = 397 and T = 8 seconds. For the latter
case, no ECG-signal is available due to a mislocation of the electrode. Periodic
approaches cannot handle this situation. Our approach is feasible when using
the non-gated reconstruction as reference image fr.
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(a) (b) (c) (d) (e)

Fig. Description Diameter Abs. Error Rel. Error
(a) gold standard (no motion) 3.08 mm - -
(b) periodic motion: classical method 3.24 mm 0.16 mm 5.19%
(c) periodic motion: proposed method 3.24 mm 0.16 mm 5.19%
(d) non-periodic motion: classical method 1.85 mm 1.23 mm 39.94%
(e) non-periodic motion: proposed method 3.42 mm 0.34 mm 11.04%

Fig. 1. Summary of the results of the phantom study. All volume renderings have
common visualization settings. Details for the vessel diameter measurements and for
the content of the images are listed in the table. The white arrow in the first image
points to the measurement area of the vessel diameter.

3.2 Results and Discussion

Physical Heart Phantom. The volume rendering of the reconstruction re-
sults and the vessel diameter measurements are depicted in Fig. 1. For the case
of periodic cardiac motion, both methods provide a similar reconstruction qual-
ity with a relative error of 5% in the vessel diameter. For the case of non-periodic
motion, the proposed method clearly outperforms the periodic method. The rela-
tive error of the vessel diameter could be decreased by 29% from 40% (1.23 mm)
to 11% (0.34 mm). This result is reasonable since our approach concerns the
non-periodicity of the motion.

Clinical Cases: Arterial and Venous Vascular System. The volume ren-
dering of the reconstruction results for the first case are shown in the upper row
of Fig. 2. It can be seen that both motion compensated reconstruction methods
are superior to the standard reconstruction without motion compensation. How-
ever, due to heart beat irregularities, our approach shows superior reconstruction
results in terms of detail level and image artifacts.

The volume rendering of the reconstruction results for the second case are
compared in the lower part of Fig. 2. It can be seen that the standard re-
construction shows blurring and artifical stenosises due to motion. The mo-
tion compensated reconstruction significantly reduces the motion artifacts and
provides a higher level of detail. Due to the missing ECG signal no motion
estimation and compensation could be performed with ECG-based perodic ap-
proaches.
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(a) standard reconstruction (b) classical estimation (c) proposed method

(d) standard reconstruction (e) proposed method (f) details

Fig. 2. Results for two clinical cases. The upper row depicts the volume rendering of
a coronary artery (CA) dataset with a good ECG-signal using three different recon-
struction methods. The images (d),(e) in the second row depict a coronary sinus (CS)
case without ECG-signal. In (f) a zoomed-in version of the areas indicated by a square
is depicted.

4 Conclusion and Outlook

The presented approach improves the reconstruction quality of dynamic high
contrast objects significantly. This is achieved by two main contributions. First,
the peridocity assumption was abandoned and replaced by a time-continous 4-
D motion model which is parameterized over the complete acquisition time.
Second, a method which couples dynamic reconstruction and motion estimation
was introduced. In our studies it proved to allow a robust estimation of the
motion model parameters.

In a phantom and two clinical cases it could be shown that our method clearly
improves the reconstruction quality in the presence of non-periodic motion and
outperforms periodic approaches. In a phantom study the relative error of the
vessel diameter could be decreased by 29% for non-cyclic motions.

The implications of our work for the development of future applications are
diverse. Foremost, the reconstruction quality and stability in an interventional
environment is increased. In long-term thinking, however, novel applications and
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diagnostic tools may be developed. A full 4-D model of the cardiac vasculature
motion could be computed for deriving functional information. E.g. cardiac dis-
functions could be detected by a 4-D animation over several heart beats. Further
investigations will be subject of our upcoming research.

Disclaimer: The concepts and information presented in this paper are based on
research and are not commercially available.
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Abstract. This paper presents a technique to recover dynamic 3D vas-
cular morphology from a single 3D rotational X-ray angiography acqui-
sition. The dynamic morphology corresponding to a canonical cardiac
cycle is represented via a 4D B -spline based spatiotemporal deformation.
Such deformation is estimated by simultaneously matching the forward
projections of a sequence of the temporally deformed 3D reference vol-
ume to the entire 2D measured projection sequence. A joint use of two
acceleration strategies is also proposed: semi-precomputation of forward
projections and registration metric computation based on a narrow-band
region-of-interest. Digital and physical phantoms of pulsating cerebral
aneurysms have been used for evaluation. Accurate estimation has been
obtained in recovering sub-voxel pulsation, even from images with sub-
stantial intensity inhomogeneity. Results also demonstrate that the ac-
celeration strategies can reduce memory consumption and computational
time without degrading the performance.

1 Introduction

One 3D rotational X-ray angiography (3DRA) acquisition provides a sequence
of 2D rotational X-ray angiographic images and an isotropic high-resolution 3D
volumetric image reconstructed from them. As the acquisition lasts for a few
seconds, the vascular motion occurring during the acquisition is captured in the
2D projections. However, since only a single volume is reconstructed, it does not
provide the motion in 3D. The objective of our work is to retrieve the dynamic
3D morphology of the imaged region from 3DRA by combining the volume, the
projections, and an additionally synchronized physiological signal. The latter
provides the temporal information of each projection in the cardiac cycles.

The application targeted in this paper is cerebral aneurysm wall motion
estimation. Cerebral aneurysms are pathological dilations of brain arteries com-
monly located at the Circle of Willis. When they rupture, spontaneous subarach-
noid hemorrhage usually follows, causing high morbidity and mortality rates [1].
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c© Springer-Verlag Berlin Heidelberg 2009



Estimating Continuous 4D Wall Motion of Cerebral Aneurysms 141

It has been observed that aneurysms pulsate over the cardiac cycle [2] and that
areas of higher pulsation coincide with the rupture sites [3]. However, the re-
covery of such pulsation is challenging because it is expected to be in the order
of the voxel size. Also, existing aneurysm wall motion studies suffer from either
strong artifacts [3] or partial motion estimation due to the use of a single pro-
jection view [4,5]. In our previous work [6], the aneurysm morphology at a given
time instant is estimated from its temporal vicinity by matching projections of
a deformed 3D reference volume to a sparse set of 2D projections in a weighted
scheme. Similar to traditional gated reconstruction techniques, this approach
approximates the spatiotemporal motion independently from one discrete time
point to another, but fails to fully address the nature of motion: temporal con-
sistency, that is, continuity over time.

In this paper, temporal consistency is achieved by formulating the inputs from
3DRA acquisitions into a 4D to multiple 2D image registration framework, which
can be also found in [7]. However, we propose to build a canonical cardiac cycle
and then match the forward projections of the temporally deformed 3D reference
volume to the 2D measured projection sequence. As a result, the dynamic mor-
phology of cerebral aneurysms could be described continuous and smooth both
spatially and temporally. However, the cost of memory storage and computational
time for processing a high-resolution 4D image and two large 2D image sequences
at the same time is very high. We therefore further introduce a joint use of two ac-
celeration strategies: semi-precomputation of forward projections and registration
metric computation based on a narrow-band region-of-interest (ROI).

2 Algorithm Framework

Building a Canonical Cardiac Cycle. During the rotation of the C-arm
gantry, the total angular coverage of the measured projections during each car-
diac cycle is 40-50◦. This small range of the projection views may be less infor-
mative about the motion along certain directions. This could be compensated
by introducing an additive constraint to the optimization process as in [7]. We
overcome this limitation by reordering all the projections into one canonical car-
diac cycle. Thus the projection viewing angle range in any temporal vicinity
is enriched, which subsequently ensures consistent 3D morphology estimation
from all directions. An illustration of this process is shown in Fig. 1(a). We
first normalize the period of each cardiac cycle to 1, according to the synchro-
nized physiological signal, e.g. electrocardiogram or pressure waveform. Hence
any projection is acquired within the [0, 1) interval. All the N projections are
then sorted by this normalized time to build one canonical cardiac cycle as
I = {Itk

(x) | k = 1 . . .N , x ∈ Sk ⊂ R3}, where Itk
(x) represents the measured

projection with the rotating field of view at projection plane Sk and at time tk,
0 ≤ tk ≤ tk+1 < 1.

4D to Multiple 2D Image Registration. As shown in Fig. 1(b), motion
throughout the cardiac cycle is estimated by a 4D deformation T with parame-
ters ω. And the 3D instantaneous morphology at time t is given by:
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Fig. 1. (a) Building a canonical cardiac cycle. (b) 4D to multiple 2D image registration.

Ṽt(p) = V (T (ω,p, t)), (1)

where p is a point on Ṽt, and V stands for the reference volume. The deformation
function T is chosen to be a B -spline based transformation [8]:

T (ω,p, t) = p +
∑

τ

∑
c

β

(
t− tτ

Δτ

)
B

(
p− pc

Δc

)
ωτ,c, (2)

where B(·) is the 3D tensor product of 1D cubic B -spline functions β(·), defined
on a sparse grid of 4D control points (pc, tτ ), being c the spatial index and τ
the temporal index, and (Δc, Δτ ) the width of the functions in each dimension.

For each Itk
a corresponding forward projection Ĩtk

, also called digitally recon-
structed radiograph (DRR), is generated to approximate the X-ray angiography.
The pixel value Ĩtk

(x) is calculated by integrating the voxel values of Ṽtk
along

the ray from the X-ray source s to x in the projection plane (see Fig. 2(a)):

Ĩtk
(x) =

∫
Ls,x

Ṽtk
(γ)dγ ≈

∑
p�∈Ls,x

α� V (T (ω,p�, tk)), (3)

where p� denotes the �th sampled point along Ls,x, and α� the sampling weight,
which is the distance between two consecutive sampled points p� and p�+1.
Similarly, we denote Ĩ as the DRRs sequence, which is iteratively modified to
match the measured projection sequence I for an optimal estimation with ω̂:

ω̂= argmin
ω

{
M(ω, I, Ĩ)

}
, (4)

where M is the similarity metric between two mapping regions. The L-BFGS-
B algorithm [9] was used as the optimizer, and mutual information [10] as the
metric function. Instead of computing the histograms individually for each pro-
jection pair, all sampled points from the entire sequence are considered as one
region, thus forming a single histogram. That is, M describes the similarity be-
tween two sequences. After obtaining ω̂, we could substitute it into Eq. 1 to
extract instantaneous motion at any given time instant.
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Fig. 2. (a) An illustration of DRRs computation. The sampling region SVR is the
projected volume-of-interest. We introduce two object-adaptive sampling regions: (b)
the aneurysm region SAR and (c) the aneurysm wall region SWR.

3 Acceleration Strategies

Dealing simultaneously with a high-resolution 4D image and two large 2D image
sequences, however, suffers from excessive memory requirements and computa-
tional load. For the method to be practically applicable, reducing both of them
without degrading the performance is highly desirable. The following two joint
strategies serve this purpose.

Semi-precomputed DRRs. A typical example of 3DRA patient data is shown
in Fig. 2(a), where the structure of interest (i.e. aneurysm) is in the order of
millimeters, occupying a very small part in the image. Thus, only this volume
of interest (VOI) is deformed and the rest of the volume remains unmodified.
On the other hand, in order to simulate X-ray projections, voxels of the entire
volume must be integrated at each iteration to update forward projections. In
order to avoid repeated computation, we precompute the voxel intensity integrals
outside the VOI at each projection view. For instance in Fig. 2(a), the changing
intensity sum of the sampled points on the ray Ls,x in the VOI is added at each
iteration to the precomputed sum of the remaining ones for the pixel value at x.

Narrow-Band Region-of-interest. Typically the projected VOI, denoted as
SVR (Fig. 2(a)), is used as the sampling region to compute the metric. In this pa-
per, we introduce two object-adaptive sampling regions: the projected aneurysm
(SAR) and the projected aneurysm wall (SWR), shown in Fig. 2(b) and (c), re-
spectively. Hence the image sequences in Eq. 4 are replaced by the sequences of
these sampling regions. According to a typical histogram of a 3DRA cerebrovas-
cular image, vessels belong to high intensity regions, among which the aneurysm
region has even higher intensities [11]. This property allows to roughly discrimi-
nate different regions based on intensity. SAR is obtained by first selecting a typ-
ical voxel value of the aneurysm dome, and then projecting only the points with
voxel values larger than it. Similarly, SWR is obtained by taking the non-shared
region of the two projected regions from typical voxel values of the background
and the dome. Currently, we assume for each individual image the typical in-
tensity values of the background and the aneurysm dome by sampling two small
patches from these regions, respectively. Additionally, using SAR instead of SVR
is to avoid possible influences of background structures on the estimation, and
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using SWR is to further avoid potential registration failures caused by intensity
inhomogeneity at the projected aneurysm dome.

4 Experiments and Results

Phantom and Image Acquisition. A typical 3DRA flat panel system like
Allura Xper FD20 (Philips Healthcare, Best, The Netherlands) acquires 120 X-
ray angiography images (resolution 10242 pixels with 0.152mm2/pixel), during
a four-second C-arm rotation of over 200 degrees. The images are then used
to reconstruct a 3D volume of 2563 voxels at resolutions of 0.33mm3. In our
experiments, 12 cases of digital phantom data were simulated to be consistent
with these imaging settings using computer synthesized irregular geometries of
dome diameter=8, 10, and 12mm and artery diameter=4mm. Maximum pulsa-
tion amplitudes were 1%-4% of the dome diameter (0.08-0.48mm). In order to
simulate realistic 3DRA data, we fused the phantom data into a clinical dataset
(Fig. 3). Details of this simulation are described in [6]. Physical phantom data
was obtained with a silicone side-wall aneurysm phantom (Elastrat, Geneva,
Switzerland), representing realistic dimensions of vascular structures in human
bodies: dome diameter=10mm and artery diameter=4mm. It was filled with
contrast agent (Iomeron 400, Bracco Imaging SpA, Milan, Italy) and connected
to a customized pulsatile pump. Images were acquired from an aforementioned
Allura Xper FD20 imaging suite.

Results. Experiments were executed on an Intel � CoreTM2 Quad CPU Q6600
2.40GHz with 4GB of memory and no parallelization was used. All the exper-
iments employed the semi-precomputed DRRs strategy, which essentially pro-
duced equal results but with a 3-4x speedup. This ratio is the proportion between
the ray path length of the full volume and that of the VOI. The B-spline control
point grid spacing was about 1.5mm for the spatial dimensions, and 12.5% of
the canonical cardiac cycle for the temporal dimension.

We first carried out digital phantom experiments for quantitative validation.
A set of deformed volume images at discrete time points were extracted according
to the estimated transformation. Then, a relative estimation error was measured
at each time point t as a percentage of the pulsation range: ε(t) =

(
mr(t) −

mg(t)
)
/m̂g × 100%, where mg(t) is the ground-truth pulsation measurement

(e.g., volume) at t, mr(t) the corresponding estimated measurement, and m̂g

the variation range of mg(t) over the canonical cycle. For each of the 12 cases in
Fig. 3, a boxplot is shown, indicating the relative error in volume changes, εV ,
at 16 equally distributed time points. Aneurysm volume was measured using a
similar strategy as in [12]. Except for two tests with maximum pulsation less
than 0.1mm, estimation errors were below 10%.

The following experiment aimed at analyzing the sensitivity to spurious pro-
jection intensity variations. Although it is mainly caused by blood turbulence
during contrast agent filling, the instantaneous local inhomogeneity is caused by
multiple factors. We have synthesized such pattern based on a clinical dataset
that presented substantial nonuniform contrast filling. For each of the digital
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Fig. 3. Boxplots of εV at 16 equally distributed time points for 12 digital phantom
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Fig. 4. (a) Projections with contrast inhomogeneity synthesized based on clinical data.
(b) The ground-truth shape (GT) at one time instant overlaid with (from left to right):
the reference shape (Ref), estimation using the method in [6], and our estimation. (c)
Comparison of εV between [6] and our technique with three sampling regions.

phantom projections, an image patch was taken from the aneurysm dome of
one different clinical projection and texture-mapped to the projected phantom
dome, see Fig. 4(a). Then, we performed motion estimation using our technique
with regions SVR, SAR, and SWR, and the method in our previous work [6]. As
shown in Fig. 4(b) and (c), a relative volume error εV below 10% was achieved
using our technique, whereas the method in [6] failed to properly retrieve the
motion. This suggests that our 4D smooth estimation is more robust to large
image intensity inhomogeneity both temporally and spatially. Additionally, a
slightly higher accuracy was obtained using the narrow-band ROI as most of the
inhomogeneous regions did not contribute to the metric computation.

In terms of computational efficiency, we investigated the effects of using differ-
ent sampling regions and angular resolutions along the C-arm gantry trajectory.
An example for a phantom having 10-mm diameter and 3% maximum pulsation
is given in Fig. 5, where εV is plotted together with the computational time for
the same number of iterations. The angular resolution of the measured projec-
tion sequence was downsampled by a factor of 1-4. Results show similar accuracy
(<5%) achieved from the three sampling regions combined with the angular res-
olution downsampling factor up to 3. However, the computational time can be
proportionally reduced due to both of them. Compared to the computational
time of 10-15 minutes for an estimation at a single time instant in our previous
work [6], we could obtain the motion over the whole cycle in 15-20 minutes us-
ing SWR with the angular resolution downsampling factor of 3. As a result, the
use of the narrow-band ROI combined with a subsampled projection set could
potentially save both memory and computational time without degrading the
performance.
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Fig. 6. (a) An X-ray projection image. (b,c) Checkerboard images of the measured and
the forward projection from the reference volume and our estimation, respectively. (d)
The volume variations along with the Doppler ultrasound velocity waveform.

We further tested the proposed technique on 3DRA data of the pulsating phys-
ical phantom acquired in a clinical environment. Due to the unknown ground-
truth, results are qualitatively evaluated. As shown in Fig. 6, our estimation
was able to correct the misalignment between the measured and the forward
projections. The volume variation waveform was also compared to a Doppler
ultrasound waveform measured at the parent vessel inlet. A similar pattern is
observed between them, which is in agreement with the findings in [13].

5 Discussion and Conclusions

We have demonstrated on digital and physical phantoms the performance of
the proposed technique in estimating continuous 4D cerebral aneurysm wall
motion from 3DRA. Accurate estimation has been obtained in recovering sub-
voxel pulsation, even from images with substantial intensity inhomogeneity. The
joint use of the acceleration strategies has shown a reduction of memory cost
as well as computational time (3-4x speedup from semi-precomputation and 10x
from narrow-band ROI), while preserving the accuracy of the motion estimation.
These results suggest its feasibility towards estimating 4D aneurysmal wall mo-
tion from patient data. Finally, the fact that motion is estimated from a single
3DRA acquisition dataset implies no additional radiation risk for the patient,
which facilitates its clinical take-up.
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Abstract. This article presents a new algebraic method for reconstruct-
ing emission tomography images. This approach is mostly an interval
extension of the conventional SIRT algorithm. One of the main char-
acteristic of our approach is that the reconstructed activity associated
with each pixel of the reconstructed image is an interval whose length
can be considered as an estimate of the impact of the random variation
of the measured activity on the reconstructed image. This work aims
at investigating a new methodological concept for a reliable and robust
quantification of reconstructed activities in scintigraphic images.

1 Introduction

In the field of nuclear medicine, the need for a reliable comparison of recon-
structed activities in two regions of interest often occurs when the question is
to decide whether the increase in the metabolism of a tissue is high enough,
compared with normal tissue in the neighborhood, to diagnose or to exclude
a particular disease. Since any reconstruction method tends to highly correlate
the acquisition error, a robust comparison of reconstructed activities in two (or
more) regions of interest leads to the need for a general methodology for reliably
predicting the noise and resolution properties in reconstructed images.

Several solutions have been proposed in the relevant literature for quantifying
the noise in the reconstructed slices. They generally assume that the recon-
structed image results from some optimization of a functional that takes into
account both a precise geometric description of the tomographic problem, a
model of the statistical properties of the measured projections and some a-priori
knowledge on the resolution of image to be reconstructed [1,2,3,4]. All these
works are based on an empirical or a numerical inversion of the Jacobian of
the functional, that is minimized by the reconstruction problem, to analytically
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deduce the statistical properties of the reconstructed image from a presupposed
Poisson noise in the projections. Such an inversion is hard to compute with accu-
racy for the ill-posed problem of tomography, especially when large image sizes
are used. This makes necessary to simplify the projection process, thus leading
to results whose accuracy and reliability is badly known and sub-optimal. Even
when strong simplifying hypotheses are put forward, the proposed methods are
generally too computationally expensive[1,2,3]. In [4], Budinger et al. propose an
empirical method for predicting the noise but this method concerns only recon-
struction algorithms that involve a single back-projection procedure (so mostly
filtered back projection).

In this article, we develop an efficient and faster approach for estimating the
image reconstruction error. This approach is based on considering a new projec-
tion operator whose output is interval valued. As shown in [5], the imprecision
of this output interval is highly correlated with the statistical impact of the
random variations of the measures. In the present work, we keep these quan-
tification properties by extending a classical algebraic reconstruction technique.
The error quantification ability of the proposed technique is highlighted through
a simulated experiment.

This paper will be structured as follows: Section 2 briefly describes the Si-
multaneous Iterative Reconstruction Technique (SIRT). In Section 3, we recall
some interval arithmetic operations. Section 4 presents the new interval valued
projection operator we use. Section 5 describes the NIBART approach. Section
6 presents an illustrative experiment highlighting the ability of the NIBART
approach to provide a noise quantification.

2 Algebraic Reconstruction Techniques

The reconstruction problem in emission tomography consists in determining the
activity distribution in each pixel of the image to be reconstructed by using noisy
discrete observations of its projection. Let I = (I1, . . . , IN ) be the activity vector
of the N pixels to be reconstructed and S = (S1, . . . , SK) denote the measured
activity associated to each of the K detector positions. If no noise is assumed
in the acquisition process, then the relationship between S and I, known as the
discrete Radon transform, is defined by:

Sk =
N∑

n=1

ρk,nIn = P(I), (1)

where P is a linear projection operator based on a K ×N Radon matrix. Each
{ρk,n} element of the Radon matrix can be considered as the probability of the
activity in the nth pixel to be detected by the kth detector. Reconstructing the
activity distribution I from the measurement distribution S consists in invert-
ing the hight dimensional ill-conditioned linear equation Eq.(1). Many algebraic
methods have been proposed in the relevant literature that consists in iteratively
modifying a guessed activity density to bring each reconstructed projection in
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agreement with the measured projections. The iterative modification can be ad-
ditive (see e.g. [6]) or multiplicative (see e.g. [7,8]). In this paper, we consider
the SIRT method which achieves a global additive modification of the activity
because its interval extension rather straightforward. Conventionally, the SIRT
algorithm can be defined by the following equation [9]:

∀n ∈ {1, . . . , N}, Ii
n = Ii−1

n + λ

K∑
k=1

ρk,n

K∑
j=1

ρj,n

(
Sk −

N∑
m=1

ρk,mIi−1
m

)
, (2)

where i is the iteration number and λ ∈ [0, 1] is a relaxation parameter.
For sake of simplicity, the SIRT algorithm (see Eq.(2)) can be reformulated

as :
Ii = Ii−1 + λB∗ (S− P(Ii−1)

)
, (3)

where B∗ is the linear normalized back-projection operator based on the trans-
posed Radon matrix. Using a SIRT-like algorithm to solve Eq.(1) can need a
very large number of iterations to complete the reconstruction. Though, when
used with noisy emission tomography measurements, the iterative reconstruc-
tion process leads to images with spurious features that rises owing to the ill-
conditionnedness of the problem. Moreover, the level of these spurious features
increases with the number of iterations. This last drawback can be a severe limit
for using such a method since the few techniques that are available to provides a
reliable termination criterion of the algorithm are rather intricate and generally
not used in clinical routine [10].

3 Interval Arithmetic

In this section, we briefly present the interval arithmetic operations that will be
used to extend the conventional SIRT to interval valued data. In the following,
[a] = [a, a] will denote a real interval whose lower (rsp. upper) value is a (rsp.
a). Let [a] and [b] be two real intervals, the extension of addition to intervals can
be achieved in two ways [11]:

– the Minkowski addition:

[a]⊕ [b] = [a, a]⊕ [b, b] = [a + b, a + b], (4)

– the dual Minkowski addition:

[a] � [b] = [a, a] � [b, b] = [min(a + b, a + b),max(a + b, a + b)]. (5)

The extension of subtraction is simply obtained by: [a] � [b] = [a] ⊕ (−[b]) and
[a] � [b] = [a] � (−[b]), (−[b]) being equal to [−b,−b].

Note that only one of the two equations [x]� [b] = [a] and [x]� [a] = [b] has a
solution and that this solution is [x] = [a]� [b]. Moreover, the following inclusion
is always true: ([a] � [b]) ⊆ ([a]⊕ [b]).



NIBART: A New Interval Based Algebraic Reconstruction Technique 151

The extension of these operations to interval valued vectors is straightforward.
Let [A] = [A,A] = ([a1], . . . , [aN ]) and [B] = [B,B] = ([b1], . . . , [bN ]) be two
N-dimension interval valued vectors, the arithmetic operation ◦ of [A] and [B]
is defined by:

[A] ◦ [B] = ([a1] ◦ [b1], . . . , [aN ] ◦ [bN ]), (6)

with ◦ ∈ {⊕,�,�,�}.

4 A New Projection Operator

In a recent paper [5] a new way for modeling the projection operators commonly
used in classical reconstruction algorithms has been proposed. This approach is
based on an attempt to overcome the classical problem of discretizing the con-
tinuous Radon transform by directly using a proper discrete transform called the
Hough transform. Applying the Hough transform formalism to emission tomog-
raphy induces a non-additive confidence measure, instead of the conventional
probabilistic confidence measure, to compute the relation between the activity
of a region of the image and the observed values measured by the tomographic
device. As an important consequence of this replacement, the output of the pro-
jection operator is interval-valued. Moreover, as shown in [5], the length of the
interval valued activity is highly correlated with the level of its random variation.
In the rest of the paper, the interval valued projection operator will be denoted
P:

[S] = P(I), (7)

[S] being the interval valued projection vector and I the activity vector. The
interval valued projection [S] can be thought as the convex set of all the val-
ues that would be obtained by using a coherent family of linear projector P ,
coherent meaning that they are based on the same geometrical model. We will
denote F(P) this family: F(P) = {P/∀I ∈ RN ,P(I) ∈ P(I)}. Since the op-
erator P preserves the order, this interval valued projector can be easily ex-
tended to an interval valued input: [S] = P([I]) = [S,S], with [I] = [I, I], S
being the lower value of P(I), S being the upper value of P(I). When con-
sidering the same geometrical modeling, an associated interval valued back-
projection operator B can be also easily derived which represents the set of all
the back-projection operators associated to each of the projectors of the family
F(P).

The most relevant explanation for the noise quantifying ability of this interval-
based projection operator is the following. F(P) is a coherent subset of linear
projector that should provide the same output when there is no random variation
in the data to be projected. When the data are noisy, then the dispersion of the
different output values given by using each P ∈ F(P) is a marker of the impact
of the noise level on the projection to be performed.
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5 A New Interval Based Algebraic Reconstruction
Technique (NIBART)

The challenge of NIBART is to provide an interval valued reconstructed activity
that keeps the noise quantification ability of the interval valued projection and
back projection operators presented in Section 4. Roughly speaking, NIBART
can be thought as a simple interval-based extension of the SIRT method dis-
played by Eq.(3). In fact, according to Eq.(3), at the ith iteration, the right
additive correction to apply to the guessed image Ii−1, for making an image
Ii whose projection is closer from the measured projection S, is likely to be
Di = λB∗ (S− P(Ii−1)

)
. In short, Di is the expected value of (Ii−1 − Ii).

Now, when considering the interval-valued projector and back-projector and
an interval valued previous guess [Ii−1], the interval valued vector [Di] defined by
[Di] = λB∗ ([S]� P([Ii−1])

)
is the convex subset of all the additive corrections

that can be applied to one I ∈ [Ii−1] when considering one P ∈ F(P) and
one B ∈ F(B). The NIBART challenge is now turned into finding the most
specific interval [Ii] that is in agreement with the equation [Di] = [Ii] � [Ii−1].
As mentioned in Section 3, this interval is given by:

[Ii] = [Ii−1] � [Di] = [Ii−1] � λB∗ (S� P([Ii−1])
)
. (8)

Note that the precise vector S in expression (8) can be replaced by an interval
valued vector [S] to account for a known error in the measurement (e.g. [S] is
the 99% confidence interval of the measurement vector S). Within the NIBART
method, a certain convergence criterion can be detected since empirical results
show that, after a few iterations, the measured interval [S] intersects the pro-
jected interval P([Ii]). This intersection expresses the fact that there is at least
one value S ∈ [S], one value I ∈ [Ii] and one projector P ∈ F(P) such that
S = P(I). We call it the weak adequacy.

What has been settled in the many experiments we carried out, and that will
be illustrated in the next section, is that, whatever the convergence conditions,
the reconstruction error due to statistical noise in the measurements is highly
correlated with the length of the reconstructed interval valued activity.

6 Experiments

This section aims at illustrating the ability of the NIBART method to provide
a reliable quantification of the reconstruction error induced by the statistical
noise in the measurements, whatever the convergence conditions. To achieve
this experiment, we have simulated 100 noisy projections of a 64 × 64 Zubal
phantom1 displayed in Fig.1(a). These noisy projections have been obtained by
corrupting a noise free projection of the phantom (total count per projection
≈ 10 kcounts) with a Poisson process. The 100 simulated 64 × 64 noisy sino-
grams will be considered as 100 realizations of the same projection. For each
1 Available at http://noodle.med.yale.edu/zubal/
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(a) Zubal phantom (b) 70 iterations (c) 400 iterations

Fig. 1. (a) The Zubal phantom and two reconstructed median images for 70 iterations
(b) and 400 iterations (c)

realization, the activity is reconstructed with the NIBART method for different
number of iterations. We account for the knowledge on the noise in the pro-
jections by considering [S] as being the 99% confidence interval under the hy-
pothesis of a Poisson noise. The relaxation parameter has been empirically set
to λ = 0.024 to ensure the convergence of the algorithm. Let [Is,t] = [Is,t, I

s,t
]

(s ∈ {1, . . . , 100}, t ∈ {10, 20, . . . , 400}) be the interval valued NIBART recon-
struction of the sth sinogram realization with t iterations. Let Ĩs,t = 1

2 (Is,t +I
s,t

)
be the median of [Is,t]. Let ΔIs,t = I

s,t − Is,t be the spread of [Is,t]. For each
pixel n (n ∈ {1, . . . , N}) we compute δt

n = 1
100

∑100
s=1 ΔIs,t

n the mean spread of
the nth pixel’s interval valued activity reconstructed with t iterations, and σt

n

the standard deviation of the median values (Ĩs,t
n )s∈{1,...,100}. This experiment

being simulated, the convergence of the reconstructed image to the original im-
age through the iterations can be easily depicted by computing the Euclidian
distance between those two images. This distance is plotted on Fig.2(a) for one
realization. For all experiments, the smallest Euclidian distance value is obtained
for t ≈ 70. We thus will consider that, after 70 iterations, the algorithm has con-
verged. The weak adequacy occurs after always before the real convergence. In
this experiment, the weak adequacy is obtained as soon as t ≥ 6

Fig.1 presents one of the reconstructed median images for 70 and 400, that
is for convergence and far from convergence. This figure shows that, since the
NIBART algorithm is not regularized, the spurious features increase with the
iterations.

We aim at testing wether δt
n∈{1,...,N} can be considered as a measure of

the noise level of the activity reconstructed activity. This is achieved by test-
ing wether the distributions σt

n∈{1,...,N} and δt
n∈{1,...,N} are correlated what-

ever the number t of iterations. Fig.3(a) plots the clouds of σ70
n∈{1,...,N} versus

δ70
n∈{1,...,N}. It shows a high correlation between the statistical reconstruction

error and its estimation by using the length of the reconstructed interval in con-
vergence conditions. Fig.3(b) plots the linear (Pearson) correlation coefficient
between σt

n∈{1,...,N} and δt
n∈{1,...,N} for different values of t. Fig.3(b) highlight

the fact that, as soon as the convergence is obtained (i.e. after 70 iterations), the
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Fig. 2. (a) Distance between the simulated activity and a reconstructed median image,
(b) Evolution of the mean length of the global interval valued activity through the
iterations
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Fig. 3. (a) The standard deviation of the reconstructed activity versus its estimation
by using the length of the reconstructed intervals for the 70th iterations, (b) Evolution
of the correlation coefficient through the iterations

standard deviation of the median value is highly correlated with the length of the
reconstructed interval. Moreover, this correlation remains high even when the
reconstructed image is far from convergence. In fact, when the convergence con-
ditions are not fulfilled, the average length of the interval-valued reconstructed
activity tends to increase (see Fig.2(b)), reflecting the fact that the influence
of the noise in the measurement on the reconstructed image increases with the
iterations. Note that, when the weak adequacy occurs, the correlation is already
high (here ≥ 0.77).
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7 Conclusion

In this paper, we have presented an interval based algebraic method for predicting
the noise in emission tomography reconstructed images. This method is based on
extending the SIRT method to account for the new modeling of the projection per-
formed by the tomographic device presented in [5]. The main characteristic of our
approach is that the reconstructed activity is interval valued. As highlighted in the
simulated experiment we report here, the length of the interval associated to each
pixel of the reconstructed image is highly correlated with the statistical variance of
its reconstructedvalue. Such anoise prediction canbenecessary formaking reliable
the comparison between the reconstructed activity in two regions of interest, this
comparison being the ground of nuclear imaging diagnosis. In future work, we will
consider extending this method to other iterative reconstruction techniques like
EM algorithm [12]. We will carry out experiments with real data obtained with a
physical phantom. We will also compare our approach to the method proposed by
Stayman and Fessler [2] on both simulated and real data.
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10. Mariano-Goulart, D., Maréchal, P., Gratton, S., Giraud, L., Fourcade, M.: A pri-
ori selection of the regularization parameters in emission tomography by Fourier
synthesis. Computerized Medical Imaging and Graphics 31, 502–509 (2007)

11. Danilov, V., Koshevoy, G.: Methods of least squares and SIRT in reconstruction.
J. of Math. Anal. and App. 247, 1–14 (2000)

12. Hebert, T., Leahy, R.: A generalized EM algorithm for 3-D bayesian reconstruction
from Poisson data using gibbs priors. IEEE Trans. Med. Imag. 8, 194–202 (1989)



A Log-Euclidean Polyaffine Registration for
Articulated Structures in Medical Images
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Abstract. In this paper we generalize the Log-Euclidean polyaffine reg-
istration framework of Arsigny et al. [1] to deal with articulated struc-
tures. This framework has very useful properties as it guarantees the
invertibility of smooth geometric transformations. In articulated regis-
tration a skeleton model is defined for rigid structures such as bones.
The final transformation is affine for the bones and elastic for other
tissues in the image. We extend the Arsigny el al.’s method to deal
with locally-affine registration of pairs of wires. This enables the possi-
bility of using this registration framework to deal with articulated struc-
tures. In this context, the design of the weighting functions, which merge
the affine transformations defined for each pair of wires, has a great
impact not only on the final result of the registration algorithm, but
also on the invertibility of the global elastic transformation. Several ex-
periments, using both synthetic images and hand radiographs, are also
presented.

1 Introduction

Image registration is the determination of a geometric transformation that maps
one image into another, aligning objects in both images. Registration within
medical imaging is of particular interest [2]. Methods proposed within this field
have been classified as frame-based, landmark-based, surface-based, and intensity-
based. With respect to the geometrical transformation, methods can be either
rigid (only rotations and translations) [3], non-rigid (including scaling, affine
transformations, projections and perspective) [4] and elastic transformations [5].
The latter are widely used since local features can be matched while continuity
and smoothness in the transformation is maintained.

Very few methods have been proposed in the literature to register images
including articulated structures. That is the case for medical images including
bones for which rigid transformations are required, but also including surround-
ing soft tissues for which elastic registration should be used. Papademetris et
al. [6] combine several rigid transformations of joints for lower-limb mouse im-
ages, obtaining a continuous overall transformation. Baiker et al. [7] propose
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a 3D hierarchical anatomical model in mice skeletal systems. Li et al. [8] pro-
pose an algorithm to register whole-body inter-subject volumes for mice and
humans. They register the bone structures and then this transformation is re-
fined for the other tissues. du Bois d’Aische et al. [9], present an articulated
registration method for the spine column, based on the finite elements method
for the elastic deformation outside rigid structures. No invertibility study for
these methods, nor an evaluation of the sensitivity of the results with respect
to the weighting functions used to fuse the set of rigid transformations are
presented.

Arsigny et al. [10] propose a method in which local rigid or affine trans-
formations are combined in a way that the overall transformation is invert-
ible. This is a very important property of the searched transformation. They
applied their method to the registration of histological images, arguing that
it could also be used for articulated structures. In [1], the authors propose a
Log-Euclidean polyaffine transformation approach where its inverse is always
guaranteed, being this inverse another Log-Euclidean polyaffine transformation.
The authors present a method to merge several affine transformations using
normalized weighting functions. Their work focuses on the determination of
the global transformation with special stationary properties which provides its
invertibility. In [11], the authors proposed Gaussian weights for the regions
of influence, where each weight is obtained by means of a mixture of Gaus-
sians placed at some anchor points. In [4], a general framework for articulated
registration of images with an inner bonny structure which guarantees exact
registration in bone axes while allowing smooth transformation of soft tissues
is presented. We propose an iterative process to obtain weights guaranteeing
this condition, but no study of the invertibility of overall transformation was
performed.

In this paper we generalize the Arsigny et al. [1] Log-Euclidean polyaffine
transformation scheme. This scheme guarantees the invertibility of the trans-
formation. However, it cannot be applied directly to articulated registration
problems as the affine transformations have to be defined in pairs of landmarks.
In the case of articulated registration, each rigid structure is modeled as a wire,
and the affine transformation should be applied to pairs of wires. Thus, we pro-
pose a generalization of this Log-Euclidean polyaffine transformation to deal
with affine wire transformations. This new framework is able to tackle articu-
lated structures such as the bone age assessment problem presented in [4]. We
also evaluate the influence of the weighting functions, needed to merge the affine
transformations, both in the registration results and in the invertibility of the
transformation.

The paper is structured as follows. In section 2 we review articulated regis-
tration as well as Log-Euclidean polyaffine registration. We also present novel
weighting functions to deal with articulated structures within this polyaffine
framework. In section 3 we present several experiments, making a brief dis-
cussion about the achieved results. Finally, in section 4 we give some
conclusions.
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2 Method

2.1 Articulated Registration

Let us briefly recall the articulated registration framework, described in [4].
The method is a landmark-based elastic registration procedure for anatomical
structures that bears an inner skeleton, such as the hand bones. The inner bone
skeleton is modeled with a wire model, where wires are drawn by connecting
landmarks located in the main joints of the skeletal structure to be registered
(long bones). The main feature of this registration method is that it allows to
perform affine and elastic transformations on the same image. In this way, in
points corresponding to the bone axes (specifically, where the wires are located)
an exact registration is guaranteed, while for the remaining image points an
elastic registration is carried out.

Fig. 1(a) and Fig. 1(b) show landmarks superimposed on two radiographs.
A wire model is built by joining with straight segments (rods) every pair of
consecutive landmarks in each finger, following bones axes, as shown in Fig. 1(c).

After obtaining an affine transformation matrix Mi for each rod, Ri, in the
model, in order to calculate the final articulated transformation, a weighting of
all the transformations is made, with wi(x, y) a measure of how the transfor-
mation of Ri influences pixel (x, y) in the image. These weights are function of
the distance of each image pixel to the rod. This operation can be expressed in
homogeneous coordinates as

(u v 1)T =

[
N∑

i=1

wi(x, y)Mi

]
(x y 1)T ,

where (u, v) and (x, y) are the Cartesian coordinates of each pixel in the moving
image before (input space) and after (output space) the transformation.

To obtain the elastic —articulated— transformation it must satisfy the fol-
lowing conditions [4] (numbered for future reference). (1) the transformation
must be affine for pixels nearby the wires, therefore in pixels on rod Ri, the
weight wi(x, y) corresponding to the i-th rod transformation must have a value
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Fig. 1. (a) Landmark positions superimposed on a radiograph (used as fixed in the
experiments); (b) Scheme of the wire model; (c) One example of moving image
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near 1. (2) in pixels on rod Ri the other weights, wj(x, y), j �= i, must have a
value near 0. (3) in order to obtain a smooth transformation in points (x, y) far
from the rods, the weight wi(x, y) should be defined in inverse proportion with
the distance di(x, y) of that pixel to rod Ri. (4) the sum of all the weights in
each pixel (x, y) must be unity. To satisfy this last condition, it is enough to
normalize, pixelwise, each weight with the sum of all of them.

2.2 Log-Euclidean Polyaffine Registration

In [1], the authors extend some previous works [10,11] dealing with polyaffine
transformation, a mixture of locally affine transformation which fuses to a glob-
ally elastic transformation, proposing a Log-Euclidean polyaffine framework for
registration. In particular, in [1], they proof that the transformation is invert-
ible, being this inverse a new polyaffine transformation. In addition, they show
that the transformation is invariant with respect to coordinate system. This two
properties are very desirable in general for the registration of medical images.

The Log-Euclidean polyaffine transformation is proposed as the solution of
the ordinary differential equation

d

dt
(x y 1)T = V (x, y) =

N∑
i=1

wi(x, y) log(Mi) (x y 1)T .

The solution of this equation is always well-defined. The transformed value is
given by integrating this equation between 0 and 1 with initial condition the
starting point. In case the weights are constant, the solution is exp

∑
i log(Mi),

i.e. the Log-Euclidean mean of the components. The solution of this equation has
very remarkable properties [1]. The implementation is given by means of the fast
polyaffine transform. The speed V (x) is scaled by 2N (infinitesimal deformation),
then a exponentiation is carried out (approximation) and the solution is given
by means of N squarings (N compositions of the infinitesimal solution). The
solution of the infinitesimal equation is approximated by

T(x, y) =
N∑

i=1

wi(x, y) exp
(

1
2N

log(Mi)
)

and then N compositions (squarings) of this transformation is the approximate
solution for the Log-Euclidean polyaffine transformation.

2.3 Weights Definitions

We propose different weight definitions suited for articulated registration that
can be used within the Log-Euclidean framework presented in section 2.2. All
the weighting functions depend on the distance di(x, y) of each pixel (x, y) to
each rod Ri. We recall to conditions (1)-(4) defined in section 2.1.

Arsigny et al.[11] modeled weights as a mixture of Gaussians located at sev-
eral anchor points considered as representative of each region. In our case, the
representative points of each region are the points on the rod, so we have gener-
alized the Gaussian model to depend on the distance map of each rod, di(x, y)
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with mean 0 and standard deviation σi, so that weight is maximum in rod pixels,
and decays with distance to it. These weights are defined as

wa
i (x, y) = G(0,σi)(di(x, y)),

where G(a,σ) is a Gaussian function with mean a and standard deviation σ.
These weights satisfy conditions (3) and (4) after normalization, but conditions
(1) and (2) are not satisfied as a Gaussian is only zero at an infinite distance.

In [12] we proposed a set of weights. These weights, after an iterative process,
satisfy approximately all the conditions (1)-(4). Initial weights wb

i,0(x, y) are
calculated as a distance transform, with a value of 1 on the rod and 0 at an
infinite distance from it, by means of

wb
i,0(x, y) = sigm

(
1

1 + di(x, y)

)
,

where sigm(·) is a sigmoid function, which smooths the slope of the weight
map near the wire. Finally weights are normalize to satisfy condition (4) using
wb

i,M (x, y), where M is the total number of iteration steps.
We present here three new weight models that satisfy conditions (1)-(4) by

definition, without the need of an iterative process

wc
i (x, y) = exp

⎛⎜⎝− di(x, y)∏
j 	=i

dj(x, y)
1

N−1

⎞⎟⎠ ,

wd
i (x, y) = exp

⎛⎝− di(x, y)
min
j 	=i

dj(x, y)

⎞⎠ , we
i (x, y) = G(0,1)

⎛⎝ di(x, y)
min
j 	=i

dj(x, y)

⎞⎠ ,

with N the number of rods. These three weights, wc
i , w

d
i , w

e
i , are inversely pro-

portional to di(x, y) (distance from its rod) and directly proportional to the rest
of distances. They have the advantage over wb

i , that they do not need the itera-
tive process to be, in these cases, exactly 1 on rod Ri, and 0 on the other rods,
and they do not need any parameter, while wb

i and wa
i do. Comparing wc

i and
wd

i , the first one is proportional to the geometric mean of the rest of distances,
while the second one is proportional only to the dominant one, i.e. the minimum
one, which has been proven to be more robust. Finally, we

i has lower gradient
for pixels near the rod in the same way as sigmoid function in weight wb

i .

3 Results and Discussion

We have applied the articulated registration with the Log-Euclidean polyaffine
framework to the synthetic images shown in Fig. 2, using all the weights defined
in section 2.3. The weight maps for the horizontal rod, R2, are shown in Fig. 3.
It can be observed that wa

2 does not satisfy conditions (1) and (2), and wb
2

satisfies them approximately, while the other three ones satisfy them exactly.
After normalization, weights wd

2 and we
2 are very similar.
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(a) Fixed image. (b) Moving image.

Fig. 2. Synthetic images with wire models superimposed in red and landmarks in blue

(a) wa
2 (x, y) (b) wb

2(x, y) (c) wc
2(x, y)

(d) wd
2(x, y) (e) we

2(x, y)

Fig. 3. Normalized weight maps corresponding to the horizontal rod R2 in Fig. 2(a)

(a) wa
i (x, y) (b) wb

i (x, y) (c) wc
i (x, y) (d) wd

i (x, y) (e) we
i (x, y)

Fig. 4. Direct transformation of moving image (upper row), inverse transformation
(middle) and difference of inverse transformation with fixed image for images of Fig. 2
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Table 1. Mean and standard deviation of the Mutual Information obtained from 5
radiographs for direct and inverse transformation, when using the different weights

Direct Inverse
Weight Mean Std dev. Mean Std dev.
wa

i (x, y) 1.32 0.11 2.65 0.32
wb

i (x, y) 1.34 0.08 2.68 0.30
wc

i (x, y) 1.06 0.10 2.96 0.21
wd

i (x, y) 1.47 0.07 3.27 0.38
we

i (x, y) 1.49 0.07 3.41 0.39

(a) Direct (b) Direct error (c) Inverse (d) Inverse error

Fig. 5. Graphical registration results for wa
i (x, y) (upper row) and we

i (x, y) (lower row)

Transformed and inverse transformed moving image are shown in Fig. 4 to-
gether with the difference between moving and inverse transformed image. For
the Log-Euclidean polyaffine algorithm N = 6 squaring steps are employed. It
can be seen that wa

i does not guarantee exact transformations of pixels near
the rods, while all the other ones do. wb

i produces the highest deformation in
the middle of the rods, causing some residual errors, and wc

i produces the most
abrupt direct transform. wd

i and we
i give similar results.

Finally, we have applied the method to five different hand radiographs which
have been registered using image shown in Fig.1(a) as fixed image. N = 6 squar-
ing steps are also employed. Table 1 shows numerical results of Mutual Informa-
tion (MI) obtained for direct and inverse registration. Fig. 5 shows the graphical
results when Fig.1(c) is used as moving image, with wa

i and we
i , where it can

be seen misregistration produced by wa
i . With regard to the direct registration,

we
i and wd

i show the best performance in terms of MI, while wc
i shows the worst

results. Regarding invertibility of the transformation, we
i shows the best perfor-

mance, while wa
i is the worst one. Graphical results confirm that registration

with we
i beats all the others in both directions.
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4 Conclusions

We have generalized the Log-Euclidean polyaffine registration framework to ar-
ticulated structures and compared different weight definitions. From the results
obtained we can conclude that Gaussian weights, wa

i , do not guarantee the rigid-
ity and accuracy of the transformations in the bonny skeleton, while all the oth-
ers do. Numerical and graphical results confirm that we

i outperforms the other
weights in direct and inverse transformations.
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Abstract. In this paper we present a method for nonrigid registration
of myocardial perfusion MR images. Instead of registering pairs of im-
ages within the observed sequence, we register the observed sequence to
a pseudo ground truth, which is a motion/noise-free sequence estimated
from the observed one. As the corresponding images of the two sequences
have almost identical intensity distributions, our method overcomes the
challenges arising from rapidly varying image intensity and contrast. The
pseudo ground truth and the deformation fields for the observed sequence
are obtained simultaneously by minimizing an energy functional integrat-
ing both the registration error and the spatiotemporal constraints on the
pseudo ground truth in an expectation-maximization fashion. We have
tested the proposed nonrigid registration method on real cardiac MR
perfusion scans, both qualitatively and quantitatively. Experimental re-
sults show that the proposed method is able to successfully compensate
for the heart motion during contrast enhancement.

1 Introduction

Myocardial perfusion magnetic resonance imaging (MRI) has demonstrated great
potential for diagnosing cardiovascular diseases. In a myocardial perfusion MRI
study, the heart is scanned along short-axis slices repeatedly at the same phase
of the cardiac cycle through electrocardiographic gating, following a bolus injec-
tion of a contrast agent. Patient breathing during image acquisition often causes
large variations in the position of the left ventricle (LV) in different frames. At
the same time, the shape of the heart may change during contrast enhancement
due to variations in heart rate. Therefore, it is desirable to perform nonrigid reg-
istration on time-series perfusion images to account for local elastic deformation.

The challenges in perfusion image registration mainly arise from rapid inten-
sity changes of the heart ventricles during the wash-in/wash-out of the contrast
agent. Mutual information (MI) [1] and normalized gradient fields [2,3] have been
used to account for time-varying intensity. However, these methods are either
computationally expensive or pure gradient based.

To minimize the intensity difference between the reference and floating images,
some approaches achieve registration of an image sequence by registering every
two consecutive frames [4,2]. However, this serial registration scheme tends to
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Fig. 1. Initial alignment of a myocardial perfusion MR image sequence

accumulate registration errors. In [3], Wollny et al. proposed to select the refer-
ence frame according to the breathing periodicity, but this method still requires
registration of images from different perfusion phases. To avoid this problem,
changes in image intensity were modeled by a Cluster-aware Active Appearance
Model built from an annotated training set [5]. In another approach, Indepen-
dent Component Analysis was used to generate a time-varying reference image
for motion compensation [6]. However, in the above two approaches, it is not
easy to choose the appropriate number of clusters or independent components.

In this paper, we propose a novel registration method that overcomes the
challenges arising from time-varying intensity by using pseudo ground truth.
The pseudo ground truth is an estimate of the image sequence that would have
been acquired without being affected by motion or noise. We design an energy
function that integrates both nonrigid registration and pseudo ground truth
estimation, which can be minimized iteratively by solving a system of linear
equations and applying nonrigid registration to corresponding pairs of images
between the observed sequence and the pseudo ground truth sequence. In con-
trast to pairs of images within the observed sequence, these pairs of images have
similar intensities, and the registration problem is therefore greatly simplified.

The rest of the paper is organized as follows. Section 2 describes our nonrigid
registration algorithm. Section 3 presents the experimental results on real patient
cardiac perfusion MRI data sets, followed by conclusion in Section 4.

2 Method

We propose to solve the nonrigid registration problem in three steps: 1) auto-
matic selection of one reference frame and detection of a region of interest (ROI)
that contains the LV; 2) initial alignment by identifying the global translation
of the ROI in each frame; and 3) estimation of local elastic deformation. For the
first two steps, we adopt the methods described in [7] and [8], respectively. In
the following sections, we focus on the last step, i.e., nonrigid registration.

Fig. 1 displays the results after initial alignment for 5 selected frames from
a myocardial perfusion MRI study, in which the bounding box of the ROI has
been shifted to the best match location in each frame. By aligning the ROI from
different frames, we obtain a roughly registered ROI sequence that still contains
residual motion incurred by the local elastic deformation of the LV.
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2.1 Energy Function for Nonrigid Registration

Instead of registering pairs of images within the image sequence, we propose to
register each image to its counterpart in a pseudo ground truth image sequence
that is assumed to be free of motion. This avoids the problem caused by unknown
intensity variations between different frames, because registration is between
images with almost identical intensity distributions.

Given an observed image sequence g, we solve for a pseudo ground truth
sequence f and a nonrigid deformation function H that minimize the following
energy functional:

E(H(g), f) = Ed(H(g), f) + αEs(f) + βEt(f), (1)

subject to the constraint on H that its underlying displacement field is zero
for the reference frame, and is smooth for the rest frames. In (1), Ed is the
data fidelity term that measures the difference between the pseudo ground truth
sequence f and the nonrigidly deformed sequence H(g); Es is the spatial smooth-
ness constraint penalizing the intensity difference between neighboring pixels of
the same tissue type; and Et is the temporal smoothness constraint penalizing
the second order derivative of the intensity-time curve of each pixel; α and β are
positive scalars that control the weights of different terms.

To rewrite the energy functional in matrix-vector form, each image sequence
is represented as a column vector, e.g., if g(i, j, t) is the intensity at pixel (i, j)
in MRI frame t, then the column vector g is given by:

g = vec (g) = [ g(1, 1, 1) . . . g(Ni, 1, 1) . . . g(1, Nj, 1) . . .

g(Ni, Nj , 1) . . . g(1, 1, Nt) . . . g(Ni, Nj , Nt) ]T,

where Ni and Nj are respectively the number of rows and columns of each image,
and Nt is the number of frames. Similarly, we define f = vec(f) as the column
vector of the pseudo ground truth f .

Data Fidelity Term. Let g̃ = H(g) denote the image sequence obtained by
deforming g with H . The data fidelity term Ed is the sum-squared intensity
difference between g̃ and f :

Ed(H(g), f) = Ed(g̃, f) = (g̃ − f)T(g̃ − f), g̃ = vec(g̃) = vec(H(g)). (2)

Spatial Smoothness Constraint. Motivated by the observation that pixels
of the same tissue type have similar intensities in each frame of the sequence, we
impose a spatial smoothness constraint on f by penalizing the sum of weighted
intensity differences between each pixel and its nearest neighbors:

Es(f) = Es(f) =
K∑

k=1

(Ds
kf)

TWk(Ds
kf), (3)

where K is the number of neighboring pixels being considered, and in this work
we use K = 4; Ds

k is the first order spatial derivative operator along the direction
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between each pixel and its kth neighbor, and Wk is the corresponding weight
matrix derived from the intensity-time curves, such that intensity differences
between neighboring pixels of different tissue types are not penalized.

Let Df (N) and Db(N) respectively denote the first order forward and back-
ward derivative operators of size N ×N . The four derivative operators are then
respectively given by Ds

1 = INt ⊗ INj ⊗ Df (Ni), Ds
2 = INt ⊗ INj ⊗ Db(Ni),

Ds
3 = INt ⊗Df (Nj) ⊗ INi , and Ds

4 = INt ⊗Db(Nj) ⊗ INi , where ⊗ represents
the Kronecker operator and IN denotes the identify matrix of size N ×N .

Another observation is that pixels of the same tissue type have intensity-time
curves that exhibit similar temporal dynamics. Therefore, we use the correlation
coefficients between intensity-time curves of neighboring pixels to set the weight
matrix Wk. Here the intensity-time curves are obtained from the deformed im-
age sequence g̃. Let ρijk denote the correlation coefficient between the intensity
vectors of pixel (i, j) and its kth neighbor, thus Wk = diag(vec(wk)) and

wk(i, j, t) =
{

ρijk, if ρijk > ρth

0, otherwise (4)

where ρth ∈ [0, 1) is a user-defined threshold to ensure that only intensity differ-
ences between neighboring pixels of the same tissue type are penalized.

Temporal Smoothness Constraint. As the contrast agent gradually perfuses
through the heart, generally the intensity increase/decrease step-size does not
vary much during the same perfusion phase. Therefore we impose a temporal
smoothness constraint on f by penalizing the second order time derivative of the
pseudo ground truth:

Et(f) = Et(f) = (Dt
2f)

T(Dt
2f). (5)

Let Dtt(N) denote the second order derivative operator of size N × N . The
second order time derivative operator is given by Dt

2 = Dtt(Nt)⊗ INj ⊗ INi .

2.2 Energy Minimization

In our implementation, the energy functional defined in (1) is minimized by
iteratively solving for the optimal H and f , in an expectation-maximization
fashion. In each iteration, first we keep H fixed, and estimate the pseudo ground
truth f by minimizing

E = (g̃ − f)T(g̃ − f) + α

K∑
k=1

(Ds
kf)

TWk(Ds
kf) + β(Dt

2f)
T(Dt

2f). (6)

This minimization requires solving a system of linear equations:[
I + α

K∑
k=1

(
Ds

k
TWkDs

k

)
+ βDt

2
TDt

2

]
f = g̃,

which can be solved by using Gaussian elimination and results in an estimate f̂ .
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Then we perform registration between the reference image (static image) in
g and its counterpart image (moving image) in f̂ and the resulting deformation
field is then applied to all the images in f̂ , which leads to a calibrated pseudo
ground truth image sequence f so as to ensure that the underlying deformation
field for the reference frame is zero. Next, we keep f fixed, and register each image
in g to its counterpart. The resultant deformation fields completely and uniquely
define the deformation function H , and hence g̃ can be updated accordingly.
Here we use the demons algorithm described in [9] to register corresponding
images. Nevertheless, this pseudo ground truth based approach can be used in
conjunction with many other registration methods.

The initial condition is g̃ = g, i.e., the original observed image sequence, which
implies the initial deformation function H is the identity. The weight matrices
Wk, k = 1, · · · ,K are re-estimated using the updated g̃ at each iteration. The
iteration continues until E cannot be further reduced.

3 Experimental Results

We have tested the proposed method on 9 slices of perfusion images from 7
patients. The images were acquired on Siemens Sonata MR scanners following
bolus injection of Gd-DTPA contrast agent. For all the data sets in our study, we
consistently observed monotonic decrease of the energy function, which had little
change after 3 or 4 iterations. Based on visual validation from video, the heart
in the registered sequence was well stabilized. Next, we present the experimental
results for a representative data set in two aspects: contour propagation and
comparison of intensity-time curves.

3.1 Contour Propagation

Given the contour that delineates the boundary of the LV blood pool in the
reference frame, one can propagate this contour to other frames according to the
deformation field obtained using the method described in Section 2. Therefore,
one way to evaluate the performance of the nonrigid registration algorithm is to
verify whether the propagated contour well delineates the boundaries of the LV
blood pool in other frames.

The first two rows in Fig. 2 compares the propagated contours before and
after applying nonrigid registration for 4 consecutive frames from a real cardiac
MR perfusion scan. These frames are chosen because the LV in these images
undergoes noticeable shape changes. As shown in the top row, the contours
before nonrigid registration do not lie exactly at the boundaries between the LV
blood pool and the LV myocardium, especially at the regions that are indicated
by the bright arrows. In contrast, the contours in the second row, after nonrigid
registration using the proposed method, delineate well the boundaries between
the LV blood pool and the LV myocardium.

To further demonstrate the performance of the proposed method, we com-
pare our results with those obtained by serial registration using the demons
algorithm [9], in which every two consecutive frames are registered to propagate
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Fig. 2. Contour propagation for 4 consecutive frames from a real patient cardiac MR
perfusion scan: contours before applying nonrigid registration (top row); contours prop-
agated by our method (second row), serial demons registration (third row), and MI-
based registration (bottom row)

from the reference frame to the rest of the sequence. As shown in the third row in
Fig. 2, the propagated contours in all four frames are away from the true bound-
aries in the bottom right region due to the accumulation of registration errors.
We have also applied the free-form deformation (FFD) registration method [10]
using MI as the similarity measure, in which the reference frame is used to reg-
ister all other frames in the sequence. As shown in the bottom row in Fig. 2,
the propagated contours do not delineate the boundaries as accurately as those
obtained by our method (see the second row in Fig. 2).

For quantitative evaluation, we manually drew the contours that delineate
the LV blood pool in each frame for one slice, and measured the maximum
and mean distances between the propagated contours and the corresponding
manually-drawn contours. For the four frames shown in Fig. 2, the maximum
distances were 2.9, 2.5, 1.7, and 1.7 pixels with only translation, as compared
to 0.8, 0.9, 0.7 and 1.1 pixel(s) after applying our registration method. Over the
entire sequence, the average mean distance was decreased from 0.70 pixel to 0.58
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Fig. 3. Comparison of the average intensity-time curves of four neighboring pixels
from the myocardium for the original (raw) data set, after compensating for global
translation, and after performing nonrigid registration

pixel. In contrast, using the serial demons registration and the MI-based method,
the average mean distance was increased to 1.40 and 1.95 pixels, respectively,
due to accumulation of registration errors and large registration errors in frames
having distinct intensity distributions from that of the reference frame.

3.2 Comparison of Intensity-Time Curves

In cardiac perfusion MRI, changes in pixel intensity corresponding to the same
tissue across the image sequence are closely related to the concentration of the
contrast agent. As the concentration of the contrast agent changes smoothly
during the perfusion process, the intensity-time curves should be temporally
smooth at pixels that are located on the LV myocardium.

We use a 2×2 pixel window to select a region in the LV myocardium, and the
window is chosen to be close to the LV blood pool such that the motion of the LV
can be reflected in the intensity-time curve of the window. Fig. 3 plots the aver-
age intensity-time curves within the window, for the original/raw data set (green
triangle), after compensating for global translation (blue cross), and after perform-
ing nonrigid registration (magenta circle). For the original image sequence, the
intensity-timecurve exhibits verybig oscillations in the secondhalf of the sequence,
inwhichtheglobal translation is largedue topatientbreathing.After compensating
for the global translation, the intensity-time curve becomes temporally smoother
but still has some oscillations, e.g., in frames 37− 40 and 52− 58. This is because
global translation is not capable of describing shape changes in these frames. How-
ever, after compensating for the local deformationby performingnonrigid registra-
tion, the intensity-time curve becomes smoother at frames when the LV undergoes
noticeable local deformation, with only small local oscillations due to noise.

4 Conclusion

This paper presents a novel nonrigid registration algorithm for cardiac perfusion
MR images. Unlike most registration methods that estimate the deformation
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between pairs of images within the observed perfusion sequence, we introduce a
pseudo ground truth to facilitate image registration. The pseudo ground truth
is a motion-free sequence estimated from the observed perfusion data. Since the
intensity distributions of the corresponding images between the pseudo ground
truth sequence and the observed sequence are almost identical, this method
successfully overcomes the challenges arising from intensity variations during
perfusion. Our experimental results on real patient data have shown that our
method is able to effectively compensate for the elastic deformation of the heart,
and that it significantly outperforms the serial demons registration method and
an MI-based method when registering myocardial perfusion images.

Acknowledgments. The authors thank Siemens Corporate Research, NJ, USA,
for providing the datasets, and acknowledge the support by NUS grant R-263-
000-470-112.
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Parallax-Free Long Bone X-ray Image Stitching
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Abstract. In this paper, we present a novel method to create parallax-
free panoramic X-ray images of long bones during surgery by making the
C-arm rotate around its X-ray source, relative to the patient’s table. In
order to ensure that the C-arm motion is a relative pure rotation around
its X-ray source, we move the table to compensate for the translational
part of the motion based on C-arm pose estimation, for which we em-
ployed a Camera Augmented Mobile C-arm system [1] and a visual planar
marker pattern. Thus, we are able to produce a parallax-free panoramic
X-ray image that preserves the property of linear perspective projection.
We additionally implement a method to reduce the error caused by vary-
ing intrinsic parameters of C-arm X-ray imaging. The results show that
our proposed method can generate a parallax-free panoramic X-ray im-
age, independent of the configuration of bone structures and without the
requirement of a fronto-parallel setup or any overlap in the X-ray images.
The resulting panoramic images have a negligible difference (below 2 pix-
els) in the overlap between two consecutive individual X-ray images and
have a high visual quality, which promises suitability for intra-operative
clinical applications in orthopedic and trauma surgery.

1 Introduction and Related Works

Orthopedic and trauma surgery rely heavily on intra-operative X-ray images to
visualize bone fracture configurations and to support repositioning and osteosyn-
thesis, especially in minimally invasive surgery. Mobile C-arms are an everyday
tool for acquiring X-ray images in the operating room during surgery. However,
X-ray images acquired by mobile C-arms have a narrow field of view and often
can not visualize the entire bone structure of interest within a single X-ray im-
age, especially in long bone fixation surgery. Determining the relative position
and orientation of bone segments across several individual images will definitely
result in a compromise of accuracy and may make the surgery more complex.
Panoramic X-ray images with exceptionally wide fields of view could be very
helpful in these cases, since they can show the whole bone structure in a single
image with a large field of view.

Panoramic X-ray images can be obtained by stitching many individual X-ray
images. For intra-operative X-ray stitching one method was proposed by Yaniv
and Joskowicz [2] using a standard mobile C-arm. This method introduces an
orthopedic radiolucent X-ray ruler placed along and parallel to the bones. It

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 173–180, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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uses the graduations of the ruler in the images to estimate the planar transfor-
mation by a feature-based alignment method and requires the user to manually
select the reconstruction plane in order to compensate for parallax effects on that
plane. However, this method requires overlapping areas between two consecutive
X-ray images to estimate the planar transformation and thus needs additional
radiation. Furthermore, it requires a fronto-parallel C-arm setup, i.e. the ruler
plane must be parallel to the detector plane of the C-arm. Wang et al. [3] pre-
sented a method to generate panoramic X-ray images intra-operatively using a
C-arm, to which a video camera was attached. This method does not require
overlapping X-ray images or special X-ray markers. It uses the video images in
combination with a visual marker pattern to estimate the planar transformation
for creating panoramic X-ray images. In order to reduce the parallax effects on
the bone plane, the marker plane and the bone plane need to be parallel to each
other and the distance between them has to be manually estimated.

Parallax effects will cause ghosting and misalignment in the panoramas (see
figure 1(a)). Although methods for reducing parallax effects on the bone plane
were described in [2,3], they require the bone segments to be on the same plane
and parallel to the plane used for estimating the transformation. In practice, it is
unlikely that the plane of the bone is exactly parallel to the plane of the ruler (or
marker pattern) due to the soft tissue around bones. Bone segments furthermore
may be on different plane levels due to fracture or inability to fully extend the
joints. For these complex situations, completely removing the parallax effects
in the panoramic images is impossible by using the early introduced methods
[2,3]. This will finally restrict the stitching approaches within clinical routine to
a limited number of cases.

The pure rotation of the mobile C-arm around its X-ray source is a basic re-
quirement for stitching individual X-ray images to a true parallax-free panoramic
X-ray image, which preserves the linear perspective projection. However, making
the mobile C-arm rotate around its X-ray source is impractical or even impos-
sible, due to the limitation of the mechanical configuration of mobile C-arms.
In this paper, we propose a new method for parallax-free X-ray image stitching
by making the C-arm rotate around its X-ray source, relative to the patient’s
table. This is achieved by moving the table to compensate for the translational
part of the motion based on C-arm pose estimation, for which we employed a
Camera Augmented Mobile C-arm (CamC) system and a visual planar marker
pattern. This CamC system that extends a standard mobile C-arm by a video
camera and mirror construction was first proposed for X-ray and video image
overlay [1]. Finally, we are able to generate a true parallax-free panoramic X-
ray image, independent of the configuration of bone structures and without the
requirement of a fronto-parallel setup or overlapping X-ray regions. This true
panoramic X-ray image now can be treated as a single image obtained by a C-
arm having an exceptional wide imaging field of view and also can be further
processed by various computer vision algorithms that assume linear perspective
projection.
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(a) (b)

Fig. 1. (a) Illustration of the parallax effects in the panorama of stitching two X-ray
images. From the left to right, the first image shows the construction of two metal keys
on two different parallel planes. The second image is the panorama generated using
the transformation for the plane of the smaller key, and the third image shows the
panorama generated using the transformation for the plane of the bigger key. The last
image presents a parallax-free panorama generated by the X-ray source undergoing
a relative pure rotation; (b) Available movements for C-arms. 3 rotations around 3
orthogonal axes R1, R2 and R3, 2 translations along 2 orthogonal axes T1 and T2.

2 System Setup

Our system is composed of a planar square marker pattern, a translatable op-
erating table and a CamC system built by attaching a video camera and mirror
construction to a mobile C-arm. Our designed visual square marker pattern (see
figure 2(a)) was printed in A2 size paper by a high definition printer. This marker

(a) System setup (b) Parallax-free stitching

Fig. 2. (a) The top image shows our square marker pattern. The bottom left image
shows the setup for X-ray image stitching. The bottom right image shows the attach-
ment of the marker pattern to the table back and our custom made camera and mirror
construction; (b) A parallax-free panoramic image of a plastic lumbar spine and sacrum
is generated by having the X-ray source rotate around its center relative to the object.
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(a) VDP implementation (b) Parallax-free Stitching Quantification

Fig. 3. (a) The left image shows four X-ray markers attached on the back of the mirror.
The right image shows the extracted centroids of the X-ray markers in the X-ray image
marked by red crosses with indices; (b) The left image shows a phantom of spherical
X-ray markers on three different planes. The right image shows that the extracted
centroids of the X-ray markers are marked by red and green crosses in the two X-ray
images stitched by using our method.

pattern was rigidly and flatly attached under the operating table. The mobile
C-arm will be positioned in the common setup, in which the X-ray source is
below the operating table (see figure 2(a)). In the method proposed by Wang et
al. [3], the marker pattern was placed above the patient and could occlude the
view onto the operation situs. Compared to their solution, our system setup does
not only make the marker pattern visible to the camera for pose estimation, but
also let the marker pattern be smoothly integrated into the surgical procedure
without disturbing the physician’s view. In order to reduce the error caused by
varying intrinsic parameters of C-arm X-ray imaging, we attached four spherical
X-ray markers with 1.5mm diameter on the back of the mirror, near the border
of and within the X-ray’s field of view (see figure 3(a)).

3 Method

The camera is attached to the C-arm such that its optical center virtually coin-
cides with the X-ray source. A planar homography then is estimated for X-ray
and video image overlay. This calibration enables that the X-ray source and the
video camera have the same intrinsic and extrinsic parameters [1]. Therefore, all
the poses and motions estimated using the video camera directly correspond to
that of the X-ray projection geometry.

The key step of image stitching is the estimation of the planar homography
to align images. The camera pose of acquiring the first image is defined as the
relative world coordinate system, and the second image is obtained after a rota-
tion R ∈ R3×3 and a translation t ∈ R3 of the camera. The planar homography
that aligns the first camera image to the second camera image is defined by
H = KRK−1 + 1

dKtnTK−1 where K ∈ R3×3 is the intrinsic matrix of the cam-
era. H is valid for all image points whose corresponding space points are on the
same plane, called stitching plane, defined by the normal vector n ∈ R3 and dis-
tance d to the origin in the world coordinate system [2]. However, any structure
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that is not within this stitching plane in 3D space will get ghosting or blurring
effects (see figure 1(a)) also refered to as parallax. H has two parts, KRK−1

and 1
dKtnT K−1, in which the second part relies on the plane parameters n and

d. In case that the camera motion only contains the rotation R, 1
dKtnT K−1 is

equal to zero. Then H is independent from the plane parameters, and thus it is
valid for all image points without the coplanar constraint on their corresponding
space points.

Parallax-Free X-ray Stitching. In real clinical cases, it is hard to assume that
the bone structure is a simple and planar structure. Rotating the mobile C-arm
around its X-ray source is an indispensable step for generating a panoramic X-
ray image without any parallax effect. However, it is difficult and even impossible
to make a pure rotation around the X-ray source, because standard mobile C-
arms have only 5DOF (3 rotations around axes R1, R2 and R3; 2 translations
along axes T1 and T2) and there is no direct control of the X-ray source (see
figure 1(b)). Therefore, we translate the patient’s table in order to compensate
for the translation of the X-ray source with respect to the table. The guidance is
supported by pose estimation using the attached video camera. We designed a
planar marker pattern, in which all the square markers can be uniquely detected
[4]. The corners of each square marker can be extracted with subpixel accuracy
and used as feature points. Having the marker pattern with known geometry,
we are able to establish point correspondences between the 2D image points and
3D space points at the marker pattern. Based on these point correspondences,
the pose of the camera (X-ray source) relative to the marker pattern (patient’s
table) is computed by using a camera calibration method [5]. The estimation of
the pose is performed with a frequency of 8-10 Hz in our implementation. This
can provide a continuous feedback for the translation of the table. Kainz et al. [6]
developed a method to do C-arm pose estimation using an X-ray visible planar
marker pattern attached to the operating table. It is not suitable as guidance for
positioning of the table, since a continuous X-ray exposure and therefore a large
amount of radiation is inevitable. After translation compensation, the rotation
R of the camera can be computed from pose estimation. K was obtained during
the CamC calibration. Therefore, the homography for aligning X-ray images
can be computed and it is valid for all image points. To generate a parallax-
free panoramic X-ray image, the first acquired X-ray image is defined as the
reference image, and all others will be registered into its coordinate system (see
figure 2(b)).

Model of C-arm X-ray Imaging with Fixed Intrinsic Parameters. The
X-ray source and the detector plane are loosely coupled, mounted on the opposite
sides of the C-arm. Due to gravity, it is hard to suppose a fixed relation between
the X-ray source and the detector plane, i.e. intrinsic parameters change, in
different C-arm orientations. However, the C-arm orientation must be changed
to achieve a parallax-free stitching. In order to reduce the error caused by the
changes of the C-arm orientation in the final panoramas, we adapted the idea
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of the Virtual Detector Plane (VDP) proposed in [7]. Four X-ray markers, at-
tached on the back of the mirror, are roughly fixed to the X-ray source in all
C-arm orientations. A homography Hvir ∈ R3×3 is estimated by the four X-ray
marker point correspondances in two X-ray images such that mref

x = Hvirmx,
in which mx is the image point in the current acquired X-ray image and mref

x is
the image point in the reference X-ray image acquired in the calibrated C-arm
orientation. We used the Normalized Direct Linear Transformation [8] to esti-
mate the homography Hvir . Before applying the planar homography computed
in the calibration of the CamC system, the X-ray image was first warped to the
virtual detector plane by Hvir in order to guarante fixed intrinsic parameters.

4 Experiments and Results

In our experiments, the image acquisition protocol was the following, after ac-
quiring the first X-ray image, the second X-ray image was acquired by first
repositioning the C-arm with its available rotations, then performing a guided
translation of the table following the feedbacks from pose estimation. Finally,
the relative X-ray source motion to the table was considered as a pure rotation if
the relative translation of the X-ray source was below 1 mm. All following X-ray
images were acquired in the same way like the acquisition of the second image.

In order to quantify the accuracy of the panoramic X-ray images generated by
our parallax-free X-ray image stitching method, we conducted an experiment to
compute the difference of the overlapping area of two stitched X-ray images. One
possibility to compute this difference is using similarity measurements. However,
very limited feature information and high noise in the bone X-ray images make
similarity measurements unreliable. This is the reason why others have employed
the ruler [2] or video images [3] for X-ray image stitching. We constructed a phan-
tom composed of spherical X-ray markers on three different planes (see figure
3(b)) and attached it to the operating table. We performed our method to stitch
two X-ray images, in the overlapping area of which at least two X-ray markers
on each plane were imaged. The centroids of these markers were extracted with
subpixel accuracy in the two X-ray images and used to compute the difference
of the overlapping area which is the distance between corresponding centroid
pairs (see figure 3(b)). This procedure was performed twice. We evaluated the
distances with and without applying the VDP method respectively. The overall
errors were found to be 1.93 ± 1.36 pixels without VDP and 1.76 ± 1.36 pixels
with VDP correction. The improvement of applying the VDP is negligible, since
the X-ray source undergoes very limited rotations (around 5◦).

Our parallax-free X-ray stitching was further validated in comparison to non
parallax-free X-ray stitching of a cow’s femoral bone. We implemented a similar
method [3] for non parallax-free X-ray stitching. In the experiment, the cow bone
was positioned on the operating table, and two metal tools were placed below
the bone. The bone was not exactly positioned parallel to the marker pattern
plane due to its big distal end. This setup is close to real clinical cases, in which
it is hard to assume that a long bone is placed parallel to the marker pattern
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(a) Setup (b) Panoramic X-ray Images

Fig. 4. (a) A real cow’s femoral bone and the setup for generating panoramic X-ray
images; (b) The top images show the parallax-free panoramic X-ray images generated
by parallax-free stitching. The bottom images show the panoramic X-ray images gener-
ated by non parallax-free stitching. In each row, the left and the right panoramas were
created by using the maximum pixel values and the average pixel values respectively
in the overlapping areas.

plane due to the soft tissue, muscle and fat around the bone. We created the
panoramic X-ray images by using maximum pixel values and average pixel val-
ues respectively in the overlapping areas. From visual inspection, the maximum
yields the most uniform image but hides the misalignments (parallax effects)
in the panoramas, and the average makes the individual X-ray images visible
in the panoramas. Figure 4(b) shows the resulting images. A non parallax-free
panoramic X-ray image was generated using the planar transformation computed
for the plane (marked by red dash lines roughly in figure 4(a)) intersecting the
middle of the bone horizontally and parallel to the marker pattern plane. This
panoramic image has minor discontinuities in the bone boundary and clear paral-
lax effects in the metal tools. Compared to non parallax-free stitching, parallax-
free stitching produced a true parallax-free panoramic X-ray image, in which the
cow bone and metal tools are almost perfectly aligned at the same time. Note
that, the overlap between the consecutive images is used to illustrate the quality
of the created panoramic X-ray image, and it is not necessarily required since
our stitching method is independent of X-ray images.

5 Discussion and Conclusion

We presented a novel method to generate parallax-free panoramic X-ray images
during surgery by using the CamC system and a planar marker pattern. How-
ever, our method is not limited to using the CamC system and can be easily
applied to other C-arm setups as long as the pose of the C-arm relative to the
patient’s table is available, such as using an external tracking system. In our
system setup, the marker pattern was attached under the operating table and is
thus invisible to surgical crew during the whole operation. This allows our so-
lution to be smoothly integrated into the surgical procedure. Our method does
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not rely on overlapping X-ray regions and does not require a fronto-parallel C-
arm setup. Unlike existing methods, we are able to generate a true parallax-free
panoramic X-ray image that can be treated as a single image obtained from a
C-arm having an exceptional wide imaging field of view. We additionally imple-
mented a method to reduce the error caused by varying intrinsic parameters of
C-arm X-ray imaging. The results show that the parallax-free panoramic X-ray
image generated by our method is accurate enough and has a high visual quality.
Trauma surgeons confirmed that, apart from long bone surgery, it will also sup-
port a wide range of potential intra-operative X-ray imaging applications such
as pelvic fracture or whole-spine imaging, since our method is independent of
the configuration of bone structures and suitable for any part of body. The table
motion in our experiments is mainly translational in forward-backward direc-
tion. Currently, surgeons need put additional efforts to move the table to the
correct position. However, motorized tables are already available in many clin-
ical sites, which could further support the translation of the table. We believe
that our solution for creating panoramic X-ray images has a high potential to be
introduced in everyday surgical routine, and will allow surgeons to validate the
quality of their treatment during orthopedic and trauma surgery with minimized
radiation.
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Abstract. We propose a novel method for deformable tensor–to–tensor
registration of Diffusion Tensor Imaging (DTI) data. Our registration
method considers estimated diffusion tensors as normally distributed
random variables whose covariance matrices describe uncertainties in the
mean estimated tensor due to factors such as noise in diffusion weighted
images (DWIs), tissue diffusion properties, and experimental design. The
dissimilarity between distributions of tensors in two different voxels is
computed using the Kullback-Leibler divergence to drive a deformable
registration process, which is not only affected by principal diffusivities
and principal directions, but also the underlying DWI properties. We in
general do not assume the positive definite nature of the tensor space
given the pervasive influence of noise and other factors. Results indicate
that the proposed metric weights voxels more heavily whose diffusion
tensors are estimated with greater certainty and exhibit anisotropic dif-
fusion behavior thus, intrinsically favoring coherent white matter regions
whose tensors are estimated with high confidence.

1 Introduction

Accurate registration of tensor fields is of great relevance in various stages of
Diffusion Tensor Imaging (DTI) analysis [1]. Because of the complex nature of
DTI data, cross–registration of DTI population data needed for longitudinal and
multi–site studies, and brain atlas creation requires specialized mathematical
tools. An accurate tensor interpolation scheme and a tensor dissimilarity metric
reflecting the tensor’s principal diffusivities and directions and uncertainty due
to noise are needed considering the large variability among DTI data and exper-
imental designs. Early registration approaches used derived scalar fields such as
Apparent Diffusion Coefficients (ADC), Fractional Anisotropy (FA), or individ-
ual tensor components. Next–generation registration methods operated on the
tensor manifolds and employed a metric to compute tensor distances such as the
Riemannian [2] or Log-Euclidean [3]. Zhang et al. proposed a locally affine reg-
istration algorithm based on diffusion profiles, as a function of spatial direction
[4]. Another work is from Cao et al. where the authors realize the registration by
optimizing for geodesics on the space of diffeomorphisms connecting two diffu-
sion tensor images [5]. The use of full tensor information for registration, along
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with metrics powerful enough to capture shape and direction information, has
been shown to lead to better registration accuracy [6] [7]. However, all these
approaches consider diffusion tensors as independent from the original DWIs. It
is crucial to note that diffusion tensors are obtained through an optimization
process on the DWIs and do not only reflect the underlying diffusion properties,
but also depend on the noise in the DWIs and gradient information.

In this paper, we propose a method that uses a dissimilarity metric that not
only makes use of the full estimated tensor data, but also uses the uncertainty
present in typical clinical DWIs. This causes the registration to favor direction-
ally more informative, more anisotropic and less noisy regions. To our knowledge,
this property of diffusion tensors has never been investigated and employed in
a registration procedure. For each voxel, a tensor–variate Gaussian distribution
is constructed with a mean and a covariance matrix obtained from the tensor
fitting function itself; the mean tensor provides the best estimate of the diffusion
tensor while the covariance matrix quantifies the uncertainty of estimated mean
diffusion tensors. The main contributions of this work are:

– using the uncertainty information present in DWIs in tensor distributions to
help the registration automatically favor brain regions with high anisotropy
and fiber coherence forming an internal skeleton that guides the registration.

incorporating an initial segmentation for a tissue adaptive registration.
–– providing analytically derived error differentials for faster convergence.

2 Registration Framework

The Kullback-Leibler (KL) divergence dissimilarity for tensor–variate Gaussian
distributions is used as a voxelwise dissimilarity metric in a hierarchical regis-
tration framework that starts with a coarse, rigid registration, continues with
affine, and finishes with a finely resolved B–splines deformable registration. A
6×6 covariance matrix is computed from the invariant Hessian of the non–linear
tensor fitting function along with each mean estimated diffusion tensor to con-
struct a Gaussian tensor–variate distribution. Figure 1 depicts the workflow of
the proposed framework.

Positive Definiteness and Distributions of Diffusion Tensors. Diffusion
tensors are predicted to have non–negative eigenvalues, representing the real
molecular water diffusion. However, in DTI, the diffusion tensors are obtained
through a physical setup not only affected by real water diffusion but also the
scan parameters. This results in generally non positive-definite tensors in typical
DTI scans (unconstrained fitting), especially in highly anisotropic regions such
as Corpus Callossum. In his work, Pasternak et al. considers diffusion tensors as
Cartesian physical quantities and shows that the Euclidean space is better suited
for diffusion tensors than affine–invariant Riemannian manifolds [8]. Pajevic et.
al. also shows through Monte–Carlo simulations mimicking physical imaging
setups, that tensor coefficients can be modelled with a Gaussian distribution over
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Fig. 1. The flow of the proposed registration algorithm

a wide range of SNR and the number of DWIs acquired. [9]. Aiming to cope with
uncertainties such as noise and artifacts in practical settings, it was preferrable
to use a tensor–variate Gaussian distribution in our framework, instead of a
Wishart distribution, which conserve positive definiteness.

3 Methodology

3.1 Tensor Fitting and Covariance Tensor Estimation

In a typical DTI experiment, the measured signal in a single voxel has the form
[1], s = S0 exp(−bgTDg), where the measured signal, s, depends on the diffu-
sion encoding vector, g, the diffusion weight, b, the reference signal, S0, and the
diffusion tensor D. Given n ≥ 7 sampled signals derived from six non–collinear
gradient directions and at least one sampled reference signal, the diffusion tensor
estimate can be found with non–linear regression with the following objective

function fNLS(γ) = 1
2

∑n
i=1

(
si − exp

[∑7
i=1 Wijγj

])2
. The symbol γ repre-

sents the vectorized version of diffusion tensor entries, si is the measured DW
signal corrupted with noise, ŝi(γ) = e

∑ 7
j=1(Wijγj) is the predicted DW signal

evaluated at γ, and W the experimental design matrix is presented in [10].
The fNLS function in Equation introduces the variability in the signal as ex-
plained in the design matrix, W. In [11], it is shown that the diffusion ten-
sors at each voxel can be considered as a normally distributed random variable
with the covariance matrix being a function of the Hessian matrix at the opti-
mum solution. Thus according to [11], the Hessian matrix can be computed as
∇2fNLS(γ) = WT (Ŝ2 − RŜ)W, where S and Ŝ are diagonal matrices whose
diagonal elements are the observed and the estimated DW signals, respectively,
and R = S − Ŝ. Then, the covariance matrix of a diffusion tensor can be esti-
mated as in [10]: Σγ = σ2

DW

[
∇2fNLS(γ̂)

]−1, where σ2
DW represents the variance

of the noise in the DWIs [10].
The covariance matrix is therefore a function of DWI noise , σ2

DW , the gradient
magnitudes and directions (embodied in the design matrix, W) and the tissue’s
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⎛⎜⎜⎜⎜⎜⎜⎝

λ + 2μ λ λ 0 0 0
λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 4μ 0 0
0 0 0 0 4μ 0
0 0 0 0 0 4μ

⎞⎟⎟⎟⎟⎟⎟⎠
a)Isotropic matrix form b)Slice 1 c)Slice 2

Fig. 2. Isotropic covariance structure in a) requires only 2 parameters. Deviations of
the original covariance matrices from the isotropic form are displayed in b) and c). The
images show that covariance matrices tend to be more anisotropic in WM regions.

underlying diffusion properties. The anisotropy, the norm, and the shape of this
6 × 6 matrix all provide insights on the reliability of the optimum diffusion
tensor solution and the tissue properties. Figure 2 b) and c) display maps of the
deviations from these matrices from the pure isotropic designs of Section 3.4,
thus displaying a measure of the shape of these matrices w.r.t. the tissue type.

3.2 Dissimilarity Metric

In this work, we propose a new metric function, F , for diffusion tensor field
registration. This metric uses the distribution of diffusion tensors obtained in
each voxel, arising from noise and tissue properties. F is based on the symmetric
KL divergence and can be described as:

F (If , Im, Θ) =
1
N

∑
p∈Ω

wp(If , Im)

⎛⎝ tr(Σ−1
m Σf ) + (γ′

m − γf )T Σ−1
m (γ′

m − γf )
+

tr(Σ−1
f Σm) + (γf − γ′

m)T Σ−1
f (γf − γ′

m)

⎞⎠ (1)

In Equation 1, γf signifies γf (p), the diffusion tensor on the fixed image at a
physical voxel location p; similarly Σf signifies the covariance at voxel location
p, i.e., Σf (p), and Θ symbolizes the transformation parameters. For the moving
image Im, the covariance matrix is obtained through interpolation so Σm cor-
responds to Σm(T (p,Θ)). Interpolation is done through a continuous B–splines
approximation framework [12]. Deforming a diffusion tensor, γm(p), with a (lo-
cally) affine transformation matrix, A, involves tensor interpolation followed by
reorientation. In this work, we follow the Finite Strain model proposed in [13]
then the interpolated and rotated diffusion tensor γ′

m(p) can be found to be
γ′

m(p) = RT γm(T (p,Θ))R. R is the rotation component extracted from the
affine matrix, A, and can be found to be R = (AAT )−1/2A. For the elastic
registration case, A is not constant throughout the image and can be locally
estimated from the displacement field, u, as A(p) = I + J(u(p)) where I is the
identity matrix, and J(u(p)) is the Jacobian of the deformation field at p.

Equation 1 is the Kullback-Leibler (KL) divergence symmetrized with re-
spect to both distributions. When the first part of the equation is examined,
1
2 (tr(Σ−1

m Σf ) + (γ′
m − γf )T Σ−1

m (γ′
m − γf ), it can be seen that the first term
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in the summation, tr(Σ−1
m Σf ), measures the similarities between the two co-

variance matrices; the second term is the standard Mahalanobis distance. The
overall metric for the registration is the weighted (wp(If , Im)) summation over
the KL metrics on all voxels, normalized by the number of voxels used.

3.3 Error Metric Differentials

Registration is mainly an optimization procedure, where the optimizers gener-
ally require partial differentials of the error metric with respect to the transfor-
mation parameters. Most of the DTI registration frameworks suffer from using
numerical approximations to these gradients [14], such as centered differences.
The problem with this approach is that it requires two metric computations per
transform parameter. For deformable registrations with very large parameter
space dimensionality, this approach is infeasible and an analytical solution for
the differential is required. In this section, we will analytically derive the error
metric gradient so that each partial differential involved has a simple form and
is easy to compute numerically. This way the metric evaluations are minimized
and the gradient computations are more accurate and faster. Let us have a closer
look at the first term of the error metric:

F =
1
2
(tr(Σ−1

m (T (p,Θ))Σf (p))+(γ′
m(p)−γf (p))T Σm(T (p,Θ))−1(γ′

m(p)−γf (p)))

Let f be the trace term, f = tr(Σ−1
m (T (p,Θ))Σf (p)), and g be the Mahalanobis

term, g = (γ′
m(p)− γf (p))T Σm(T (p,Θ))−1(γ′

m(p)− γf (p)). The differential can
be expressed as ∂F/Θi = ∂f/Θi + ∂g/Θi. From the chain rule, it follows that:

∂f/∂Θi =
6∑

j=1

6∑
k=1

∂tr(ΣfΣ−1
m (T (p,Θ)))

∂Σ−1
m{kj}

∑
x,y,z

∂Σ−1
m (T (p,Θ))
∂Tx,y,z

∂Tx,y,z

∂Θi
(2)

– The first differential term ,∂tr(ΣfΣ−1
m (T (p,Θ)))

∂Σ−1
f{kj}

, is just Σf{kj} from the sym-

metry of covariance matrices and the derivative of traces w.r.t the matrices.
Also note that the inverses of the covariance matrices are stored and used
as images, cancelling the need for the inverse operation for the differen-
tial. Additionally, as explained in Section 3.4 the isotropic covariance matrix
Σ−1

m (T (p,Θ)) is obtained only using interpolation but not reorientation due
to rotational invariance assumption, yielding a simpler formula [9].

The second partial in Equation 2 represents the image gradient of the maps
of each covariance components w.r.t. imaging directions. These gradients
need to be computed once at the beginning of the registration.

–– The last term ∂Tx,y,z

∂Θi
corresponds to the Jacobian of the transformation and

needs to be computed once per iteration.

The Mahalanobis part of the function F , i.e., the function g, has a more compli-
cated differential due to the rotation of diffusion tensors γm(T (p,Θ)) into γ′(p)
if an affine or deformable registration scheme is employed. Let a be a = γ′

m−γf ,
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then the Mahalanobis part g can be rewritten as g =
∑

j

∑
k ajakΣ−1

m{jk}. Then
the differential can be rewritten as:

∂g

∂Θi
=
∑

j

∑
k

∂aj

∂Θi
akΣ−1

m{jk} +
∑

j

∑
k

aj
∂ak

∂Θi
Σ−1

m{jk} +
∑

j

∑
k

ajak

∂Σ−1
m{jk}
∂Θi

The differential in the last term,
∂Σ−1

m{jk}
∂Θi

is the same as the one used in Equa-

tion 2, i.e.,
∑

x,y,z
∂Σ−1

m (T (p,Θ))
∂Tx,y,z

∂Tx,y,z

∂Θi
. With the finite strain model, a can be

described as a = RT γm(T (p,Θ))R− γf . Then the first differential becomes:

∂ai

∂Θz
=

∂RT

∂Θz
γm(T (p,Θ))R + RT ∂γm(T (p,Θ))

∂Θz
R + Rγm(T (p,Θ))

∂R

∂Θz
(3)

The second partial in Equation 3 can be found similarly to the covariance ma-
trix case and is

∑
x,y,z

∂γm(T (p,Θ))
∂Tx,y,z

∂Tx,y,z

∂Θi
. In the case of an affine transforma-

tion, where the parameters Θi corresponds to the entries in the affine matrix,
A, the partial derivative of the rotation matrix, R, with respect to the trans-
formation parameter, Θz, comes from the chain rule, ∂R

∂Θ = ∂R
∂A . For the elas-

tic registration case, the local affine matrix is estimated from the displacement
field, u, and the differential becomes ∂R

∂Θz
=
∑

j

∑
k

∂R
∂ujk

∂ujk

∂Θz
. For B–splines

registration of order 3, the displacement field can be written as, u(p, β) =∑
i

∑
j

∑
k βijkbi,3(px)bj,3(py)bk,3(pz), where βijk are B–splines weights corre-

sponding to parameters Θ and b.,3 are 3rd order spline basis functions. Then the
second partial derivative, ∂ujk

∂Θz
, is just bi,3(px)bj,3(py)bk,3(pz) for Θz = βijk. The

first term, ∂R
∂ujk

, can be found in in [14].

3.4 Covariance Matrix Dimensionality Reduction

Independent components of diffusion tensors (6) and covariance matrices (21)
generally yield a total of 27 dimensions, which poses problems in terms of mem-
ory and speed during registration. Being a function of the matrix W , the co-
variance matrix’s form depends on the number of gradients and the direction of
gradients used. In [9], it is shown that with sufficient number of diffusion gra-
dients sampling the unit icosahedron densely enough, the 4D covariance tensor
(3× 3× 3× 3) corresponding to the 2D covariance matrix tends to be isotropic
and rotationally invariant. These isotropic covariance matrix yield a specific 6×6
matrix structure, with the block matrix form shown in Figure 2 a).

3.5 Tissue Segmentation

The tensor covariance matrix provides additional information on the tissue type.
To further use this additional information for a more robust and faster regis-
tration, we perform a classical Expectation–Maximization (EM) segmentation
initialized with K-means clustering, with the distance function originating from
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our KL-metric and tensor–variate distributions derived from the mean and co-
variance matrices. This procedure is used in the registration initialization. For
each moving image, first a segmentation is carried out. The probability of a voxel
being a WM voxel obtained from the EM segmentation is used as the weight-
ing factor wp(If , Im) in Equation 1. Additionally, the segmentation labels are
used to build a multi–level grid for B–splines registration. A coarser B–splines
transformation grid is placed on CSF locations to decrease the computational
complexity, whereas a denser grid is used for WM.

4 Experiments and Results

We acquired data from six healthy subjects with DTI parameters, b=1000s/mm2,
72 diffusion gradient directions. Matrix sizes for all images were 128×157with 114
axial slices and 1.5mm isotropic voxel resolution. One of the images was chosen to
be the fixed image and the other five were used as moving images. For compari-
son, we implemented a benchmark multi–channel registration algorithm with six
channels for tensor components, including one channel for FA and one channel for
ADC. The benchmark method followed the same vector image registration steps.
Standard deviation maps of the FA maps were also computed from the registered
images. For the described dataset, the proposed registration pipeline with rigid,
affine, and B–splines transformations (maximum grid size 20× 20× 20), takes on
the average 30 minutes per image on a modern computer.

4.1 Segmentation Outputs

We segmented a brain image by using three different levels of information: the
isotropic covariance matrices (trace part of the error metric), only the full covari-
ance matrices, and full covariance matrices along with the diffusion tensors as
described by the error metric. Figure 3 displays the result of these segmentations.
The images in Figure 3 show that the tensor covariance information brings ad-
ditional information about the tissue type. With increasing complexity of the
covariance matrix structure, tissue layers can better be discriminated . The use
of full covariance matrix along with the diffusion tensor further improves the
segmentation (Figure 3 (d)).

Fig. 3. Segmentation results. (a) Fa image. (b)Segmentation with only isotropic co-
variance matrix. (c) Segmentation using full covariance matrix. Segmentation of white
matter improves using full covariance matrix and diffusion tensor information (d).
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Fixed Moving Registered Difference Reference

Axial

Sagittal

Fig. 4. Output of the registration algorithm. The fixed, moving, registered moving,
difference images, and FA standard deviation displayed in different columns.

4.2 Registration Results

Figure 4 displays the output of the registration algorithm. The metric proves to
perform well on white matter regions, as can be observed from the similarity of
the images in the first and third columns. The difference image of the registered
moving image and the fixed image is displayed on the fourth column, where it is
visible that the metric performs significantly better than the benchmark method
on the Corpus Callosum. The difference image for the benchmark method is
displayed in the fifth column. The sixth column, displays the standard deviation
of the FA maps of the five images registered with the proposed method. Note
that the performance of the algorithm on white matter is clearly visible.

5 Discussions and Conclusions

In this work, we proposed a novel, robust and fast approach for tensor–to–
tensor registration for Diffusion Tensor Image data, suitable for group analysis
and tensor atlasing problems. The proposed metric captures the uncertainty
of the diffusion tensors with a tensor-variate Gaussian distribution. Our future
research directions include the analysis of the shape and isotropy characteristics
of covariance matrices and testing of the algorithm with a larger population.
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Abstract. In this paper, we present a novel algorithm for non-rigidly
registering two high angular resolution diffusion weighted MRIs (HARDI),
each represented by a Gaussian mixture field (GMF). We model the non-
rigid warp by a thin-plate spline and formulate the registration problem
as the minimization of the L2 distance between the two given GMFs. The
key mathematical contributions of this work are, (i) a closed form ex-
pression for the derivatives of this objective function with respect to the
parameters of the registration and (ii) a novel and simpler re-orientation
scheme based on an extension to the ”Preservation of Principle Direc-
tions” technique. We present results of our algorithm’s performance on
several synthetic and real HARDI data sets.

1 Introduction

Diffusion-Weighted MR Imaging (DWMRI) is a unique non-invasive technique
that makes the MR signal sensitive to the water molecule diffusion in the im-
aged tissue and infer its structure in vivo. When using DWMRI in longitudinal
studies, multi-subject studies, and such tasks, non-rigid registration is essential
to quantify the differences between the acquired data sets.

The diffusivity function at a lattice point in a DWMRI when approximated
by a rank-2 symmetric positive definite tensor leads to what is popularly dubbed
a diffusion tensor image (DTI)[1]. Several DTI registration methods have been
reported in literature to date. Alexander et al. [2] developed a registration tech-
nique for DTI and observed that a re-orientation of the tensors was necessary as
part of the registration of the DWMRI data sets. Some existing methods [3,4,5]
used one or more rotation invariant characteristics of diffusion tensors to perform
the registration and thereby avoiding the re-orientation task at each iteration of
the registration algorithm. A variational model for the diffeomorphic DTI regis-
tration was proposed in [6] along with an analytic gradient of the Preservation
� Corresponding author.
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of Principle Direction (PPD) reorientation strategy, which is very complex and
cumbersome requiring substantial compute time. In [7] the analytic gradient of
the Finite Strain (FS) strategy was developed for diffeomorphic DTI registra-
tion. None of these methods are directly applicable to the case of registering
GMFs.

Rank-2 SPD tensors are a good approximation for the single fiber geometry.
However, this model is known to fail at the locations with complex tissue geom-
etry such as fiber crossings. Some higher order models [8,9,10,11,12] have been
reported in literature to tackle this problem. Research on registration of the re-
sulting representations from these methods has not been addressed to date with
the exception of work in [13] wherein, a piece-wise affine approximation to the
nonrigid registration of fourth order tensor fields was developed. Most recently, a
fluid-flow based model of the non-rigid transformation was introduced in [14] for
registering two given DTI data sets. Authors claimed that their work was easily
extendable to registration of higher order representations derived from HARDI
data but no such extension has been reported to date.

In this paper, we present a novel non-rigid registration method for HARDI
datasets represented by GMFs generated by using the algorithm described in
[9]. The non-rigid registration between the GMFs in this paper is represented
by a thin plate spline (TPS) and the dissimilarity between the GMFs being
registered is expressed by the L2 distance between Gaussian mixtures at corre-
sponding points between the image lattices, and can be viewed as an extension
of the work in [15]. The re-orientation operation is handled by a novel and sig-
nificantly improved extension (developed here) of the PPD strategy in [2]. The
key contributions of the work reported here are, (i) it is the first attempt at the
non-rigid registration of HARDI data sets represented by GMFs. (ii) An objec-
tive function involving the L2 distance between Gaussian mixtures is used that
leads to a closed form expression for the distance. (iii) A significant extension
of the PPD strategy is to handle re-orientation of Gaussian mixtures involving
a derivation of the objective function and its analytic gradient both of which
are in a much simpler form than those derived for DTI re-orientation in [6]. Ex-
periments on synthetic and real data along with comparisons demonstrate the
performance of our algorithm.

The rest of the paper is organized as follows: In section 2, we present regis-
tration framework including a derivation of the analytic form of the L2 distance
between two Gaussian mixtures and our re-orientation strategy. We then present
the TPS formulas followed by the derivation of a closed form expression of the
cost function derivatives w.r.t. the deformation parameters. In section 3, we
present synthetic and real data experiments along with comparisons to other
methods and conclude in section 4.

2 Non-rigid Registration of Gaussian Mixture Fields

There are several ways to represent the HARDI data and the choice depends on
the end goal. We choose to employ the diffusion propagator pdf P (r, t) – where r
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is the displacement vector from a given location at time t – as our representation
and compute this field from the given HARDI data. The reason for this choice
is the generality and accuracy of the continuous mixture model used here &
described in [8,9].

We now present our registration framework for GMFs obtained using the
method presented in [9]. Here a GMF is a map from R3 to the space of smooth
functions C∞. Given the target GMF I and the source GMF J , registration
can be described as a process of estimating the transform T : R3 → R3 from
the coordinates of I to the coordinates of J , which best aligns the two GMFs.
This can be done by minimizing the dissimilarity between the target GMF and
the transformed source GMF with respect to T . The energy function for this
optimization process can be written as

E(T ) =
∫

R3
dist2(IT (x), J(T (x)))dx (1)

where IT (x) and J(T (x)) for a fixed position x ∈ R3 are two zero mean Gaussian
mixtures(GMs), dist(◦, ◦) denotes the dissimilarity measure between the two
GMs and IT denotes the GMF I after re-orientation. The details of equation 1
are described in the remaining of this section.

L2 Distance Between Zero Mean Gaussian Mixtures: In this paper we
use the L2 distance as a measure of the dissimilarity between zero mean GMs.
Let f(r) = ΣM

i=1ηiG(r; 0,Σi) and g(r) = ΣN
j=1ρjG(r; 0,Γ j) be two GM density

functions, where r ∈ R3 is the displacement vector and ηi, ρj denote the mixture
weights of the corresponding Gaussian components G(r; 0,Σi) and G(r; 0,Γ j)
with covariance matrices Σi and Γ j respectively. The L2 distance between f
and g can be written as a quadratic function of the mixture weights

dist2(f, g) =
∫

R3
(f(r)− g(r))2dr = ηtAη + ρtBρ− 2ηtCρ (2)

where η = (η1, ..., ηM )t and ρ = (ρ1, ..., ρN)t are vectors representing the mixture
weights, and AM×M ,BN×N and CM×N are the matrices generated by the Gaus-
sian components, with their elements to be Aiii2 = ((2π)3det(Σi1 + Σi2))−1/2,
Bjij2 = ((2π)3det(Γj1 + Γj2 ))−1/2 and Cij = ((2π)3det(Σi + Γj))−1/2

If a 3D covariance matrix Σ has eigen values λ1 ≥ λ2 = λ3 (cylindrical
symmetry), its rank one decomposition can be written as Σ = (λ1−λ2)uut+λ2I,
where u is the principal eigen vector of Σ. Given another cylindrically symmetric
covariance matrix Γ = (ξ1 − ξ2)vvt + ξ2I, we can derive the following equation
after applying some matrix algebra,

det(Σ + Γ) = α− β(utv)2 (3)

where α = (ξ1 + λ2)(λ1 + ξ2)(λ2 + ξ2), β = (λ1 − λ2)(ξ1 − ξ2)(λ2 + ξ2). It
is reasonable to assume that all the Gaussian components in our GMFs are
cylindrically symmetric, as the fibers have approximately cylindrical geometry.
Thus, equation 3 can be used to compute the matrices A,B and C in equation 2.
Using equation 3, reorientation can be easily achieved and the registration
function along with its gradient can be simplified.
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Re-orientation: As a GMF is not rotation invariant, we need to perform a
re-orientation during the registration process. In this context, DTI reorientation
methods would be useful to consider and generalize. There are three DTI re-
orientation strategies reported in literature, namely, (i) Preservation of Principle
Directions(PPD) [2], (ii) Finite Strain(FS) [2] and (iii) Re-transformation [13].

In the PPD, the principle direction v of the 2rd order tensor D is trans-
formed to v̂ = Fv/|Fv| where F is the Jacobian of the transform T . In this
paper, we extend the PPD strategy to the mixture of Gaussians model in a
direct way by applying it to the covariance matrices of each Gaussian com-
ponent. With the cylindrical geometry assumption on the nerve fibers, let the
source GMF J(x) = ΣM

i=1ηi(x)G(r; 0, (λi
1 − λi

2)uiu
t
i + λi

2I) and target GMF
I(x) = ΣN

j=1ρj(x)G(r; 0, (ξj
1 − ξj

2)vjv
t
j + ξj

2I). Here we can assume λi
· , ξ

j
· ,ui,vj

to be constant across the lattice for simplicity. The re-orientation is applied to
the target GMF I by applying the Jacobian F to each of its covariance matri-
ces. Thus, IT (x) = ΣNx

j=1ρj(x)G(r; 0, (ξj
1 − ξj

2)vjFF tvt
j/||Fvi||2 + ξj

2I). Using
Equation 3, the energy function can be written as

E(T ) =
∫

R3
η(T(x))tAη(T(x)) + ρ(x)tBT ρ(x) − 2ηt(T(x))CT ρ(x)dx (4)

where CTij = k(ιij) and BTj1j2 = k(τjij2), with scalar ιij = (ut
iFvj)2/||Fvj ||2,

τjij2 = (vt
j1

FtFvj2)2/(||Fvj1 ||2||Fvj2 ||2), and k(t) = ((2π)3(α − βt))(−1/2), α
and β are scalar constants defined using the eigen values as in equation 3.

2.1 The TPS-Based Non-rigid Registration

We are now ready to present the estimation of the non-rigid registration T –
between the GMFs I ad J – represented by a TPS [15]. Let the set of control grid
points for computing the registration be {x1,x2, ...xn}, the transform is given
byT (x) = WH(x) + Ax + t, where Ax + t is the affine part, and WH(x) is the
non-rigid part. H(x) = (H1(x), H2(x).., Hn(x))t is a group of non-linear kernel
functions with Hi(x) = ri(x)2 log(ri(x)) in the case of 2D and Hi(x) = ri(x)3 in
the case of 3D, where ri(x) = ||x−xi||. This non-rigid transform is regularized by
minimizing the bending energy of the TPS given by trace(WKWt). Here K is
the dissimilarity matrix with elements Kij = ri(xj). To perform re-orientation,
the Jacobian matrix F at every image grid point also needs to be computed, and
is given by F = WJ(H(x)) + A, where J(H(x)) = (∇H1

t,∇H2
t, ...∇Hn

t)t|x is
the Jacobian of H(x). The non-rigid registration here involves minimization of
the energy function w.r.t. the parameters A, t and W. The affine parameters A
and t can be solved for via an affine registration technique prior to solving for
the non-rigid component W.

2.2 Analytic Derivative of the Objective Function

The derivative of the objective function is straight forward to compute by ap-
plying the chain rule. The partial derivative of the energy function (without
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the bending energy) w.r.t. the elements wkc in the matrix W (recall that W is
weight matrix of the non-rigid part of the TPS) can be written as:

∂E

∂wkc
=
∫

R3
2

∂Tt

∂wkc
∇ηtAη − 2

∂Tt

∂wkc
∇ηtCT ρ + ρt ∂BT

∂wkc
ρ− 2ηt ∂CT

∂wkc
ρdx

where the derivative of the TPS function ∂T
∂wkc

is a 3-by-1 vector, with its k-th
element being the c-th kernel function value at x, namely Hc(x), and two other
elements being zeros; the derivative of CT and BT can be computed as:

ρt ∂BT

∂wkc
ρ = Tr(

∂Ft

∂wkc

∑
j1,j2

ρj1ρj2

∂Bj1j2

∂F
); ηt ∂CT

∂wkc
ρ = Tr(

∂Ft

∂wkc

∑
i,j

ηiρj
∂Cij

∂F
)

where ∂Bj1j2
∂F = 2k′τj1j2(F(vjiv

t
j2

+ vj2v
t
j1

)/(vt
j1

FtFvj2) − Fvj1v
t
j1

/||Fvj1 ||2 −
Fvj2v

t
j2/||Fvj2 ||2),

∂Cij

∂F = 2k′ιij(uivj
t/ut

iFvj − Fvjvj
t/||Fvj ||2), and ∂F

∂wkc
=

ykc, where ykc is a 3-by-3 matrix with each element given by ykc
nm = ∂Hc

∂xm
δ(n−k)

and δ· being the discrete delta function.
Since we have the gradient of the energy function in the analytic form, any

of the gradient based optimization strategies in the literature can be applied to
optimize the registration cost function. In this paper we use the efficient limited-
memory Broyden-Fletcher-Goldfarb quasi-Newton technique [16]. Note that, as
claimed in [9], the weight vectors in the Gaussian mixtures are sparse. Thus, we
can just compute the elements of the matrices corresponding to nonzero weights.

3 Experiments

We now report the experimental results obtained on synthetic and real HARDI
datasets. In the synthetic data experiment, we registered two images with cross-
ing fiber bundles. Firstly, a 2D synthetic image with two crossing fiber bundles
was manually generated. Then, 20 randomly deformed images were generated
from the crossing bundles by applying a b-spline based non-rigid deformation and
a PPD based re-orientation scheme described here. The method described in [17]
was used to generate the simulated MR signals from the fiber bundles. Rician
noise was added to simulate data at 4 different noise levels with SNR = 50, 20, 10
and 5. The method in [9] was used to generate the GMF from the MR signals
with 46 Gaussian components at each voxel. After the data generation, we reg-
istered each of the randomly deformed source images to the fixed target image
separately. To evaluate the registration, the resulting deformation obtained from
the registration was applied to the noise free source image, and then the relative
dissimilarity between the deformed source and target image was computed as
the relative error in registration given by,

Err =

∑
x∈R

√∫
S2(Ix(r)− J ′

x(r))2dr∑
x∈R

√∫
S2(Ix(r))2dr

(5)
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Fig. 1. Experimental results on synthetic dataset. (a) is the source, (b) is the target
and (c) is the deformed source image. Figure (d) and (e) are the mean and standard
deviation of the error for the 20 registrations from all the three methods at different
noise levels computed using equation 5 in the two different ROIs.

where R is a user selected region to evaluate the errors; I, J ′ denotes the target
and deformed source image; Ix(r) and J ′

x(r) are the displacement probability
profiles (represented in spherical harmonic coefficients) at voxel x. Note that this
dissimilarity measure is different from the one used in our registration algorithm.
In this paper, two different regions are used for error computation: (1) The whole
fiber bundle region and (2) The region containing just the fiber crossings. Also,
a GA (generalized Anisotropy) based registration algorithm (using a sum of
squared differences cost) and the DTI based registration algorithm in [18] were
tested using the same data set for comparison purposes. The data sets and the
results are displayed in Figure 1. Figure (f) and (g) show that our method has
much lower mean and standard deviation of registration errors for both the
chosen ROIs for first three noise levels, and has a comparable error to other two
methods at SNR5 (which is very high amount of noise).

In the real data experiment, we used rat brain DWMRI. For data acquisition,
in each scan 27 diffusion gradients were used (with Δ and δ set to be 17.6ms and
4.8ms) with a b = 800s/mm2 for 21 of the 27 gradients and the remaining with
a b = 100s/mm2. The image size was 100 × 100 × 12, with each voxel of size,
0.3mm× 0.3mm× 0.9mm. In the first experiment, we show results from two dis-
tinct rats. For the second experiment, we depict results from a single rat, taken
at different time points after implanting electrodes used to stimulate injury that
results in the development of epilepsy. Consecutive scans were used in this regis-
tration experiment to capture structural changes via the non-rigid registration.

For the first real data experiment, the data and the registration result are
shown in a checker-board view in Figure2. (In the checker-board view alternate
blocks come from the source and target images respectively). From the figure
its evident that our registration algorithm successfully aligned the two given
HARDI data sets. In sub-figure (e) and (f), there is a fiber bundle from the
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Fig. 2. Real data experiments:(a) and (b) are the source and targets S0 images, (c)
checker-board view of source and target images, (d) checker-board view of the deformed
source and target images. (e) and (f) Displacement probabilities in the ROI shown in
(c) and (d) respec. Misaligned fiber tracts depicted in (e) are well aligned after the
registration shown in (f). (g) and (h) are error bars of consecutive HARDI scans with
red and blue bars denoting the error before and after registration. The labels on the
X-axis denote the scan dates of the input image pairs.

corpus callosum in the ROI, which contains most of the probability profile in
green and brown (the stream tubes are a result of the tracking results using a
simple vector field integration based tracker). In (e) (before registration) this
fiber bundle is shown disrupted and depicted as two distinct disconnected tracts
in the checker-board view, and in (f) (after registration) it is shown as one
coherent connected tract indicating the accuracy of the registration visually.

For quantitative evaluation, we compared the dissimilarity of the target and
source image pair before and after registration using equation 5. Then, we applied
our algorithm to consecutive DWMR time scans of the same rat, and plotted
the dissimilarity for the image pairs before and after registration. Plates (g)
and (h) in Figure 2 are the results for two different rats one with 9 consecutive
scans and the other with 6. From the figure, it is apparent that the dissimilarity
between them has decreased significantly after registration. This indicates the
effectiveness of our registration method on real data.

4 Conclusion

In this paper we presented a novel non-rigid registration algorithm for HARDI
data represented by GMFs. The non-rigid transformation is modeled using a
TPS function. The key contributions of this work are, (i) it is the first report on
non-rigid registration of GMFs representing HARDI data sets. (ii) A non-trivial
derivation leading to a closed form expression for the gradient of the registration
was presented. (iii) A novel extension of the PPD strategy of re-orientation and a
novel derivation of the reorientation that is simpler than the previously reported
closed form for PPD-based re-orientation of DTI. Both real and synthetic data
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experiments along with comparisons were presented depicting the effectiveness
of the presented registration algorithm.
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Abstract. Over the last decade, remarkable progress has been made in
the field of endovascular treatment of aneurysms. Technological advances
continue to enable a growing number of patients with cerebral aneurysms
to be treated with a variety of endovascular strategies, essentially using
detachable platinum coils. Yet, coil embolization remains a very complex
medical procedure for which careful planning must be combined with
advanced technical skills in order to be successful.

In this paper we propose a method for computing the complex blood
flow patterns that take place within the aneurysm, and for simulating
the interaction of coils with this flow. This interaction is twofold, first
involving the impact of the flow on the coil during the initial stages of its
deployment, and second concerning the decrease of blood velocity within
the aneurysm, as a consequence of coil packing. We also propose an ap-
proach to achieve real-time computation of coil-flow bilateral influence,
necessary for interactive simulation. This in turns allows to dynamically
plan coil embolization for two key steps of the procedure: choice and
placement of the first coils, and assessment of the number of coils neces-
sary to reduce aneurysmal blood velocity and wall pressure.

1 Introduction

Detachable coil embolization is a recent interventional technique for treating
aneurysms and other blood vessel malformations in the brain and other parts of
the body. The procedure uses the vascular network to reach the diseased vessel,
starting with the insertion of a catheter (a long, thin and flexible tube) into
the femoral artery. This catheter is then advanced through the arterial system
until the aneurysm location is reached. Once in position, the physician places
several coils through a micro-catheter into the aneurysm. The presence of coils
reduces blood flow and wall pressure within the aneurysm, thus creating a favor-
able hemodynamic environment for thrombus embolization. The formation of a
blood clot around the coil blocks off the aneurysm, thus considerably reducing
the risk of rupture. Although coil embolization is less invasive than open surgery,
such procedures are very difficult to perform and require careful planning and a
long experience to minimize the risks for the patient. Yet, even in the case of a
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successfully performed procedure, the choice of the coil (shape, length, diameter)
plays a key role in the long term success of the procedure. In this context, the de-
velopment of an interactive planning system, allowing interventional radiologists
to select different coils and test their behavior in a patient-specific environment,
could make a difference. This requires to not only model the behavior of a coil
in a patient-specific model of the aneurysm, but also to compute the interaction
between a coil and the complex flow occurring within the aneurysm.

Previous Work. Blood flow dynamics is starting to play an increasingly impor-
tant role in the assessment of vascular pathologies, as well as in the evaluation
of pre- and post-operative status. While angiography has been an integral part
of interventional radiology procedures for years, it is only recently that detailed
analysis of blood flow patterns has been studied as a mean to assess complex
procedures, such as coil deployment. A few studies have focused on aneurysm-
related haemodynamics before and after endovascular coil embolization. Gro-
den et al. [1] constructed a simple geometrical model to approximate an actual
aneurysm, and evaluated the impact of different levels of coil packing on the flow
and wall pressure by solving Navier-Stokes equations. Kakalis et al. [2] employed
patient-specific data to get more realistic flow patterns, and modeled the coiled
part, from a static point of view, as a porous medium. As these studies aimed
at accurate Computational Fluid Dynamics simulation, they rely on commercial
software, and the computation times (dozens of hours in general) are incom-
patible with interactive simulation or even clinical practice. Generally speaking,
accuracy and efficiency are two significant pursuits in numerical calculation, but
unfortunately always contradictory.

In the field of Computer Graphics, the main objective is to obtain efficient
computations, yet still be able to capture the main structures of fluid motion.
Stable fluids approach [3] was a significant milestone, as it brought in fluid advec-
tion and the Helmholtz-Hodge decomposition to ensure the mass conservation
law. However, this approach relies on a discretization of the Eulerian space by
a regular grid, thus making it inappropriate for simulations requiring irregu-
lar boundaries, as it is the case in medical applications. Recently, the Discrete
Exterior Calculus (DEC) [4] method settled this problem, providing a mean to
handle arbitrary meshes. This approach can be considered as an extension of
Finite Difference Method to an arbitrary discretization of space. By preserving
circulation at a discrete level it also guarantees a certain level of accuracy.

Regarding fluid/solids interaction, various models have been put forth. For
instance, Carlson et al. [5] solved this problem by considering rigid objects as
if they were made of fluid, and the rigidity was maintained by constraining the
velocity field in the object region. Robinson-Mosher et al. [6] proposed a two-way
solid/fluid coupling method to compute mutual effects separately at each time
step. The effect of the solid on the fluid is modeled by taking solid velocity as
a boundary condition, while the effect of the fluid on the solid is determined
by integrating the fluid pressure along the solid boundary. Considering the di-
mension of coils and their nest-shaped distribution in an aneurysm, a different
computational strategy is required in our case.
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Finally, previous work in the area of real-time simulation of interventional
radiology procedures mainly focused on training rather than planning (besides
the work of [7]) and has been limited to the simulation of flexible devices without
considering fluid interaction (see [8], or [9] for instance).

In this paper, we present a novel technique for accurately computing (eventu-
ally in real-time) the flow of blood within an aneurysm, as well as the interaction
between blood and coils. We rely on the Discrete Exterior Calculus method to
obtain an ideal trade-off between accuracy and computational efficiency. We also
propose to pre-compute the flow velocity field over a cardiac cycle to achieve real-
time computation of the interaction between coils and blood flow. Our results
show that our approach can describe the influence between coils and blood flow.

2 Modeling Interactions between Blood Flow and Coils

In this section, we first describe the computational approach for computing blood
flow in and around an aneurysm (section 2.1). To model the impact of the coil
onto the flow (as a change of flow pattern and a decrease of velocity) we then
introduce the notion of porous media, where coils are described from a statistical
point of view, translating the idea that, after deployment, coils are randomly
distributed in the aneurysm. We also show how the reverse effect, i.e., the drag
force applied onto the coil due to blood velocity, can be computed (section 2.2).
This is particularly important during the first stage of coil deployment.

2.1 Blood Motion

Porous Media Model. We divide the fluid domain D (2D or 3D) into 2
sub-domains, a coil-free and a coil-filled subdomain. Blood motion in both sub-
domains is described by a Navier-Stokes equation of Brinkmann type:

∂(ϕρu)
∂t

+ ρ(u · ∇)(ϕu) = −ϕ∇p + μ�(ϕu)− ϕ2μ

k
u− ϕ3CDρ√

k
u |u|

∇(ϕu) = 0
(1)

where u is the velocity of the fluid with density ρ and viscosity μ, and p is the
pressure. The porosity ϕ and the permeability k are constitutive characteristics
of the porous media, and CD is the drag factor. The porosity ϕ describes the
volume ratio of fluid to coil-filled subdomain, ϕ = 1 − Vcoil

Van
, where Vcoil is the

accumulated volume of all coils, and Van is the volume of the aneurysm. The
permeability k measures the fluid conductivity through porous media, k = ϕ3

cS2 ,
where c is the Kozeny coefficient (for cylinders, c = 2), and S is the ratio of the
surface area of all coils to the volume of the aneurysm. The drag factor CD can
be derived from the computation of a local Reynolds number. In order to get
rid of the pressure term, we take the curl of (1). As density and porosity remain
constant in each subdomain, we have

∂ω

∂t
+ Luω =

μ

ρ
�ω − μϕ

ρk
ω − ϕ2CD√

k
∇× b

∇(ϕu) = 0 ω = ∇× u b = u |u|
(2)
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Fig. 1. (Left): two-dimensional mesh and its dual mesh, (right): transition graph be-
tween variables at primal and dual primitives, and operators describing the transitions

where ω is the vorticity, Luω is the Lie derivative, equal in our case to u ·∇ω−
ω · ∇u, and b is the porous term.

Numerical Solution. As mentioned previously, the complex shape of aneurysms
requires an unstructured grid to describe the geometry. We rely on the DEC
method to provide a numerical framework for solving the fluid equations, by
discretizing the space as a simplicial complex, and computing its dual complex.
State variables are defined as discrete forms, i.e., integral values over elements of
these two meshes, complying with conservation laws at a discrete level, which is
a key point to get accurate and stable results. Since the mesh is static (Eulerian
approach), computation efficiency is obtained by pre-computing several vector
calculus operators such as gradient and Laplace, which are defined using basic
topological and geometrical operations (see [4] or [10] for details).

Discretization. In the following part, we limit our descriptions and illustrations
to the 2D case for simplicity, but definitions in 3D are similar. The domain D is
discretized as an oriented simplicial complex, i.e., a triangulation, referred to as
primal mesh. We denote the vertex set V = {vi}, the edge set E = {eij}, and
the triangle set T = {tijk}(0 � i, j, k � |V |).

The dual mesh of a triangulation is constructed as follows: dual vertices
correspond to the circumcenters of primal triangles, dual edges link dual ver-
tices located on neighbor triangles, and dual faces are defined as Voronoi cells.
More generally, a dual (n − p)-cell is associated to a corresponding p-simplex
(p = 0, 1, 2, n = 2 for 2D mesh) as depicted in Fig. 1. Problem variables are
defined as discrete p-forms, i.e., scalars associated to p dimension primitives
(p-cells) of either the primal or dual mesh.

Operators. All the vector calculus operators involved in our computation can
be derived from two types of fundamental operators: the discrete differentials
d and the hodge stars !. The former (d) maps between discrete forms on the
same mesh, represented by the transpose of the signed incidence matrix, while
the latter (!) transforms discrete forms from one mesh to the other, represented
by a diagonal matrix whose element equals to the volume ratio between the
corresponding dual and primal elements (see Fig. 1).
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C ← dt
0	1 // Load mesh and compute the operators

L ← dt
0 	1 d0

L′ ← LagrangeMultiplier(L)
loop // Time stepping �t

ĉ ← backtrackTriangleCenters(�t) // advect vorticities

v̂ ← interpolateVelocity(ĉ)
for each dual face f

Ωf ← 0
for each dual edge (i, j) on the boundary of f

Ωf ← Ωf + 1
2
(v̂i + v̂j)(ĉi − ĉj)

for each dual face f in the coil-filled subdomain // add porous terms

Ωf ← ρk
ρk+μϕ�t

Ωf + ϕ2CD√
k

�t (C × B)f

Ψ ← linearSolver( (	0 − μL�t)Ψ = Ω) ) // add viscous term

Ω ← 	0Ψ
τ ← setBoundaryConditions(t) // recover flux from vorticity

(Φ | λ) ← linearSolver( L′(Φ | λ) = (Ω | τ ) )
U = d0Φ
foreach triangle f do vf ← A−1

f Uf // velocity at triangle centers

B ← integrate(v)

Fig. 2. Pseudocode of Fluid Computation

Solving Fluid Equations. In DEC, velocity is described as flux, i.e., the mass
of fluid passing through each edge per unit time. Thus it’s a discrete 1-form
U, represented as a vector of size |E|. Similarly, the porous term b is defined
as a discrete 1-form B. In continuum fluid dynamics, vorticity measures the
local angular rate of rotation, defined as the circulation per unit area at a point.
Accordingly, we describe discrete vorticity Ω through the integral over faces, and
a natural choice is the dual face, in that we can easily get these values from U
as follows: !1 transforms U on primal edges to !1U on dual edges, and then dt

0
sums it on each dual faces by accumulating !1U on all incident dual edges, i.e.,
Ω = dt

0!1U, a dual 2-form. This explains how∇× is built by the basic operators.
Following similar principles, all operators (grad ∇·, curl ∇×, Laplace �) used
in (2) can be constructed from d and !: ∇· = d1, ∇× = dt

0!1, � = dt
0 !1 d0.

The vorticity-based equation (2), simply speaking, describes the idea that the
local spin is pushed forward along the direction of the velocity. This is consistent
with Kelvin’s circulation theorem: the circulation around a closed curve moving
with the fluid remains constant with time [10]. In our approach, the discrete
vorticity is conserved by extending Kelvin’s theorem to the discrete level: the
circulation around the loop of each dual face’s boundary keeps constant as the
loop is advected by fluid flow. We implement this by backtracking all the loops
into the previous time step [3]. Once the vorticity have been computed, the flux
is recovered by solving the Laplace equation, taking into account the varying
boundary conditions. Finally, the velocity at each triangle centers is computed
using the property that there is a unique vector at each dual vertex whose projec-
tion along the incident dual edges is consistent with the flux of the corresponding
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primal edges. This defines a projection matrix Af for each triangle f . The final
computation process is shown in Fig. 2.

2.2 Coil Motion

In the existing simulations of aneurysm embolization, the interactive force be-
tween blood and coil was only studied for the blood, while the reacting force on
coils was ignored. In fact, the last term of (1) is a description of the interactive
force, but treated as an averaged quantity. When computing the reaction on the
coil, we apply its local version, which is the drag force of flow over a cylinder:

FD =
1
2
CDρu⊥ |u⊥|Adh, (3)

where u⊥ is the velocity orthogonal to the coil, A is the cross-sectional area of
the coil, dh is the length of the coil section. The velocity parallel to the coil is
neglected, since it only produces shear force on the coil, which is insignificant
compared to the drag force. Hence, the reacting force on the coil only depends
on local fluid velocity. The coil model is based on the work of Dequidt et. al. [7]
where coils are modeled as a series of serially-linked beam elements. The defor-
mation of the structure is computed using a finite element approach which can
be optimized for real-time computation by taking advantage of the structure
(tri-diagonal band) of its stiffness matrix.

3 Real-Time Simulation

In this section, we show how the two previously described models can be com-
bined and used in a real-time simulation. For this we assume the simulation
is performed over a series of identical cardiac cycles. Periodically time-varying
boundary conditions are set at the inlet and outlet vessels around the aneurysm
for a duration covering a complete cardiac cycle. Using the method described
in section 2.1 we compute and store the velocity field for multiple time steps
within one cardiac period. This process can be done for different densities of coil
in the aneurysm. This database of velocity fields can then be used to interpolate
the velocity at the position of coil segments and apply appropriate drag forces.
It can also provide real-time feedback, at any step of the embolization, about
blood velocities inside the aneurysm. It should also be noted that most of the
computation time of our method comes from solving two linear sparse systems
of equations. Many numerical techniques can be used to improve the efficiency
of this process. When dealing with relatively small systems a direct inversion of
the matrices is often the best approach. The inversion of these matrices can be
performed only once, during initialization. This ensures real-time or near real-
time computation (which is typically the case when dealing with two-dimensional
problems). For larger systems, we rely on the offline computation of operators
and a pre-factorization of the sparse linear systems. This is however not always
sufficient to achieve real-time computation when high accuracy is needed.
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Fig. 3. (Left): velocity magnitude in aneurysm with no coil; (Right): with 16.8% of the
volume filled with coils. Aneurysm model composed of of 18K tetrahedral elements.

Fig. 4. (Left): Coil shape when the effect of blood flow is not taken into consideration;
(Right): Resulting shape when considering flow forces on the coil

4 Results

Our simulations are performed on an aneurysm of particular interest, with a
large sac of volume 8.976 · 10−7m3 and a wide neck of dimension 8.2 · 10−3m.
Such aneurysms are difficult to treat, as coils might be pushed out by the blood
flow during deployment. The aneurysm geometry is obtained from CT images,
and then discretized into a tetrahedral mesh.

The parameters of our model were set as follows: blood density: 1069kg/m3,
blood viscosity: 0.0035kg/ms, drag factor CD: 2.2, coil radius: 0.36 · 10−3m.
Fig. 3 shows the velocity magnitude contours before and after placement of coils
of total length 0.3m (ϕ = 83.2%). The decrease of velocity magnitude is obvious
and in accordance with recent results [2]. But we need only 25s of simulation for
a cardiac cycle of 1s (using a mesh of 18K tetrahedra and a time step of 0.002s).
Using a pre-computed time-varying velocity field for a complete cardiac cycle,
we simulated the influence of the flow on a typical coil (radius of 0.36 · 10−3m,
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Young modulus of 109Pa, length of 10cm) discretized using 100 elements. The
resulting simulation, illustrated in Fig. 4, was performed in real-time.

5 Conclusion

In this paper we present a method for efficiently and accurately computing blood
flow in aneurysms. More importantly we introduce parameters to account for the
presence of coils in the aneurysm in order to model their impact on the flow. We also
model the reciprocal effect, i.e. the impact of the flowonto the coil. Both aspects are
essential in the context of coil embolization planning. Our method is significantly
faster than previous approaches while providing similar results. We have assessed
our computation on an aneurysm presenting interesting clinical characteristics.

Regarding future directions, we acknowledge that further validation is re-
quired, however experimental data on flow patterns in aneurysms is challenging
to obtain. We also want to investigate more deeply various computational strate-
gies to obtain real-time (or near real-time) computation by using more advanced
numerical schemes. Also, using the DEC method, several steps of our computa-
tion depend only on topological neighbors. This could be leveraged to provide a
parallel implementation on GPU.
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Abstract. Real-time three-dimensional (RT3D) echocardiography is the
newest generation of three-dimensional (3-D) echocardiography. Segmen-
tation of RT3D echocardiographic images is essential for determining
many important diagnostic parameters. In cardiac imaging, since the
heart is a moving organ, prior knowledge regarding its shape and mo-
tion patterns becomes an important component for the segmentation
task. However, most previous cardiac models are either static models
(SM), which neglect the temporal coherence of a cardiac sequence or
generic dynamical models (GDM), which neglect the inter-subject vari-
ability of cardiac motion. In this paper, we present a subject-specific
dynamical model (SSDM) which simultaneously handles inter-subject
variability and cardiac dynamics (intra-subject variability). It can pro-
gressively predict the shape and motion patterns of a new sequence at
the current frame based on the shapes observed in the past frames. The
incorporation of this SSDM into the segmentation process is formulated
in a recursive Bayesian framework. This results in a segmentation of each
frame based on the intensity information of the current frame, as well as
on the prediction from the previous frames. Quantitative results on 15
RT3D echocardiographic sequences show that automatic segmentation
with SSDM is superior to that of either SM or GDM, and is comparable
to manual segmentation.

1 Introduction

Real-time three-dimensional (RT3D) echocardiography is a new imaging modal-
ity that can capture the complex three-dimensional (3-D) shape and motion of
the heart in vivo. To fully take advantage of the information offered by RT3D
echocardiography, a robust and accurate automatic segmentation tool for track-
ing the dynamic shape of the heart is indispensable for quantitative analysis of
cardiac function. Unfortunately, automatic segmentation of RT3D echocardiog-
raphy is challenging and depends on image quality.

The use of shape and temporal priors has proven effective for segmenting im-
ages with missing and misleading image information [1]. The most widely used
� This work is supported by the grant 5R01HL082640-03.
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shape model is probably the Active Shape Model (ASM), which uses Principal
Components Analysis (PCA) to describe the average shape and the most char-
acteristic shape variations of a set of training shapes. However, ASM is a static
model (SM) because it supplies a prior just for shape, but not for the motion of
that shape. Temporal models can take a number of forms. The simplest form is
one that insists on temporal coherence and smoothness. More complicated forms
approximate cardiac motion using a parametric model. However, these temporal
models do not include any prior knowledge of the shape.

To combine shape and temporal priors, researchers have proposed spatial-
temporal statistical models. For example, Mitchell et al. extended ASM to the
2-D Active Appearance Motion Model (AAMM) [2], which includes both mo-
tion and appearance information. It is difficult, however, to extend 2-D AAMM
to the segmentation of a full 3-D cardiac sequence because of the high dimen-
sionality involved. Perperidis et al. constructed a 4-D atlas using two separate
models, which accounted for inter-subject variability and cardiac temporal dy-
namics (intra-subject variability), respectively [3]. While these two models were
successfully applied to the classification of cardiac images from normal volunteers
and patients with hypertrophic cardiomyopathy, they are not related, making
them suboptimal for left ventricular (LV) segmentation.

Dynamical shape model is a recently proposed spatial-temporal statistical
model. It performs sequential segmentation using the cardiac dynamics learned
from a set of training samples. It is highly flexible, and can be applied to seg-
ment a full 3-D sequence. For example, Jacob et al. proposed a second-order
autoregressive model to approximate cardiac dynamics [4]. Sun et al. proposed
learning cardiac dynamics using a second-order nonlinear model [5]. While these
models are superior to SM, they are time homogeneous1 and therefore inad-
equate for describing complex shape deformations, such as cardiac dynamics.
In addition, since they supply a uniform model to all sequences, they ignore
the subject variations in motion patterns. This makes them generic dynamical
models (GDM).

In this paper, we present a subject-specific dynamical model (SSDM) to si-
multaneously account for the subject-specific variations in cardiac shape as well
as inhomogeneous motion patterns. To build this SSDM, we need to differentiate
two factors that cause cardiac shape variability. One is the inter-subject variabil-
ity, and the other is temporal dynamics caused by cardiac deformation during a
cardiac cycle, as shown in Figure 1. These two factors are interactive and cannot
be separated into two independent statistical models. Because conventional PCA
and Independent Component Analysis (ICA) can only focus on one factor at a
time, we extend them to higher orders by utilizing Multilinear PCA (MPCA) [6]
and Multilinear ICA (MICA) [7]. This allows us to decompose the training set
and to describe the interaction of inter-subject variability and temporal dynam-
ics. In addition, we design a dynamic prediction algorithm that can progressively

1 A dynamical model is time-homogeneous if the conditional probability of state t
given its previous states only depends on the time difference between those states,
i.e. P (st|st−1, st−2, ..., st−m) = P (st+n|st+n−1, st+n−2, ..., st+n−m), for all n and m.
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identify the subject vector associated with a new cardiac sequence and use this
subject vector to predict the subject-specific dynamics from the segmentations
observed in the previous frames. We formulate the integration of this SSDM
into a recursive Bayesian framework. This framework models the evolution of
the endocardial (ENDO) and epicardial (EPI) surfaces driven by both intensity
information from the current frame as well as the dynamical shape prior inferred
from the past segmentations, based on the knowledge learned from the training
set.

2 Method

2.1 The Construction of SSDM

Shape Alignment. Magnetic Resonance (MR) images have higher a spatial
resolution and signal-to-noise (SNR) ratio than RT3D echocardiography, and
therefore are appropriate for building the SSDM. We acquired 32 sequences of
electrocardiography (ECG)-gated canine short-axis MR images, with 16 tem-
poral frames per sequence. The in-plane resolution was 1.6 mm, and the slice
thickness was 5 mm. The ENDO and EPI surfaces were manually outlined by an
experienced cardiologist using the BioImage Suite software [8]. We first extracted
153 landmarks on the ENDO surface and 109 landmarks on the EPI surface in
the first frame of the first sequence. Then we propagated this set of landmarks
to all frames in each sequence by mapping those frames to the first frame of the
first sequence using inter- and intra-subject registrations, as shown in Figure 1.
We used an affine transform to account for the global shape difference, as well
as a shape-based non-rigid transform, as described in [9], to accommodate the
detailed shape differences. Thus, we obtained 262 landmarks for each frame.

Shape Decomposition. In this paper, we use MPCA and MICA to decompose
cardiac shapes (see [6,7] for an overview of MPCA and MICA). Here we denote
the aligned cardiac shapes as third-order tensor S ∈ RI×J×K , where I = 32 is
the number of subjects, J = 16 is the number of frames within a sequence, and
K = 262 × 3 = 786 is the dimension of landmark vectors. By applying MPCA
to tensor S, we have

S ≈ Z ×1 Usubject ×2 Umotion ×3 Ulandmark (1)

where Z ∈ R
P×Q×R is the core tensor, which represents the interaction of the

subject, motion, and landmark subspaces. Matrices Usubject ∈ RI×P , Umotion ∈
RJ×Q, and Ulandmark ∈ RK×R are the subject subspace, motion subspace, and
landmark subspace respectively. Matrix Usubject contains row vectors usubject

i ∈
RP (1 ≤ i ≤ I) of coefficients for each person i, and matrix Umotion contains row
vectors umotion

j ∈ RQ (1 ≤ j ≤ J) for frame j.
While it is reasonable to apply PCA in the subject subspace, it is inappropri-

ate to use it in the motion subspace because the deformation of cardiac shapes
does not have a Gaussian distribution. To handle this problem, we adopt ICA
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in the motion subspace to obtain a set of independent modes in the motion sub-
space [10]. We rewrite Equation 1 as S ≈ Z×1Usubject×2Umotion×3Ulandmark =
Z ×1 Usubject ×2 UmotionWT W−T ×3 Ulandmark = Z̃ ×1 Usubject×2 Ũmotion ×3
Ulandmark, where the core tensor Z̃ = Z×2 W−T , the column vectors of Ũmotion

are independent components of the motion subspace Ũmotion.
We have two steps to reduce dimensions. First, we select the complete eigen-

vectors in the motion subspace, i.e. Q = J , and perform MPCA in the subject
and landmark subspace to find the optimal P and R such that the approxima-
tion keeps more than 98% of the original energy. Second, we fix P and R, and
perform MICA in the motion subspace to find the modes that correspond to sig-
nificant shape variations. In practice, we reduced I = 32 to P = 5 and K = 786
to R = 11 in the first step, and further reduced J = 16 to Q = 3 in the second
step.

Dynamic Prediction. Given the segmentation of a new cardiac sequence from
frame 1 to t− 1, we want to predict its segmentation in frame t. The idea is to
first project the given segmentation from frame 1 to t−1 to the subject subspace
to identify the subject vector associated with this sequence, and then to use this
subject vector to predict the LV shape at frame t.

Let s1:t−1 = {s1, s2, ..., st−1} denote the observed segmentation of a new car-
diac sequence. We predict the segmentation at frame t using two steps: projection
and prediction. In the projection step, we estimate the subject vector associated
with this new sequence as ûsubject = s1:t−1 ·T−1

(1), where T(1) is the mode-1 un-

folding of tensor T = Z̃ ×2 ũmotion
1:t−1 ×3 Ulandmark. In the prediction step, we use

the subject vector estimated in the projection step to predict the segmentation
at frame t as s∗t = Z̃ ×1 ûsubject ×2 ũmotion

t ×3 Ulandmark.
As mentioned above, we used MR sequences to build the SSDM, and then used

this SSDM to predict the cardiac dynamics of a new RT3D echocardiographic
sequence. However, this sequence may have a different length of cardiac cycle
from the MR sequences. To handle this problem, we first align the end-diastolic

Cardiac dynamics

Inter-subject
variability

Fig. 1. The interaction of
cardiac dynamics (intra-
subject variability) and
inter-subject variability

Frame 1 Frame 2 Frame 3

Frame 1 Frame 2 Frame 3 Frame 4Interpolated

Fig. 2. Temporal interpolation to generate
time frames from sequence 2 which corre-
spond to those of sequence 1
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and end-systolic frames using ECG signals, and then use linear interpolation
to generate frames that correspond to the RT3D echocardiographic frames, as
shown in Figure 2.

2.2 General Formulation

Assume that we are given a cardiac sequence I1:t = {I1, I2, ..., It}, and let st ={
s+
t , s−t

}
be the segmentation at frame t, where s+

t is the ENDO surface, and
s−t is the EPI surface. The problem of segmenting the current frame t can be
addressed by maximizing the conditional probability

P (st|I1:t) ∝ P (It|st, I1:t−1)P (st|I1:t−1)
= P (It|st, I1:t−1)

∫
P (st|s1:t−1)P (s1:t−1|I1:t−1) ds1:t−1

(2)

In the following, we make two assumptions in order to lead to a computationally
more feasible problem [11]. (1) The images I1:t are mutually independent, i.e.
P (It|st, I1:t−1) = P (It|st). (2) The distributions of previous states are strongly
peaked around the maxima of the respective distributions, i.e. P (s1:t−1|I1:t−1) ≈
δ (s1:t−1 − ŝ1:t−1), where ŝi = argmaxP (si|I1:i) and δ (·) is Dirac delta function.

Thus, we have P (st|I1:t) ∝ P (It|st)︸ ︷︷ ︸
data adherence

P (st|ŝ1:t−1)︸ ︷︷ ︸
dynamical shape prior

. It is a recursive

Bayesian formulation, where the ENDO and EPI contours are driven not only by
the intensity information from the current frame, but also from the dynamical
shape prior from the past frames.

2.3 Data Adherence

An entire cardiac image is partitioned by the ENDO and EPI contours into
three regions: LV blood pool, LV myocardium, and background. The simplest
intensity distribution for B-mode images is Rayleigh distribution [1]. However,
Rayleigh distribution is only effective for fully-developed speckles. More compli-
cated models, such as the Rice distribution and the K-distribution, have been
proposed to account for the regular structure of scatters and low effective scatter
density [1]. Unfortunately, the analytical complexity involved with these distri-
butions is significant. In this paper, we utilize the Nakagami distribution [12],
a simpler generalized distribution which can handle simultaneously the situa-
tions of regularly-spaced scatters and varying scatter densities. Thus, the inten-
sity distribution for the LV blood pool and myocardium can be expressed as
Pl (I;μl, ωl) = 2μ

μl
l

Γ (μl)ω
μl
l

I2μl−1 exp
(
−μl

ωl
I2
)
, where μl is the Nakagami parame-

ter and ωl is a scaling parameter. For l = 1, it models the intensity distribution
in the LV blood pool. For l = 2 , it models the intensity distribution in the LV
myocardium.

Unlike the LV blood pool and myocardium, the background includes more
than one tissue (e.g. RV blood pool, RV myocardium, and other tissues). There-
fore, we use a mixture model and invoke the Expectation-Maximization (EM)
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algorithm to fit the background histogram. Under the mixture model, the back-

ground distribution is given as P3 (I;μ3, ω3) =
M∑

k=1
αkPk (I;μ3,k, ω3,k), where

M is the number of components, αk is the mixture proportion of component

k that satisfies
M∑

k=1
αk = 1, μ3,k and ω3,k are the parameters of its component

distributions. In the experiments, we set M = 2.
Let Ω1, Ω2, and Ω3 denote three regions: LV blood pool, LV myocardium,

and background, respectively. Then, the data adherence term can be defined as
follows

logP (I|s) =
3∑

l=1

∫
Ωl

logPl (I;μl, ωl) dx (3)

The maximization of Equation 3 can be interpreted as the propagation of s =
{s+, s−} that maximizes the piecewise homogeneities.

2.4 Dynamical Shape Prior

As shown in Section 2.1, we predict the ENDO and EPI contours at frame t
using the dynamic prediction algorithm. Thus, we define the dynamic prior as

P (st|ŝ1:t−1) ∝ exp
{
−α ‖st − s∗t ‖

2
/

2
}

(4)

where α is a weighting parameter, and s∗t is the predicted shape at frame t using
the dynamic prediction algorithm described in Section 2.1. In the experiments,
we found 1.5 ≤ α ≤ 2.5 is applicable to most of the data.

3 Results

Figure 3 represents the automatically segmented ENDO and EPI contours dur-
ing ventricular systole. To further quantify the segmentation results, we asked
two experts, blind to each other, to independently outline the ENDO and EPI
contours of all of the frames of the image sequences. We then compared the man-
ual results to the automatic results using three metrics: mean absolute distance
(MAD), Hausdorff distance (HD), and the percentage of correctly segmented
voxels (PTP). Let A = {a1,a2, ...,an}, B = {b1,b2, ...,bm}, we define MAD =
1
2

{
1
n

n∑
i=1

d (ai, B)+ 1
m

m∑
i=1

d (bi, A)
}

,HD=max
(
max

i
{d (ai, B)} ,max

j
{d (bj , A)}

)
,

where d (ai, B) = min
j
‖bj − ai‖. Let Ωa be the region enclosed by automatic seg-

mentation, and Ωm be the region enclosed by the manual segmentation, we define
PTP = Volume(Ωa∩Ωm)

Volume(Ωm) . While MAD represents the global disagreement between
two contours, HD compares their local similarities.

Table 1 compares the segmentation results of ENDO and EPI contours from
SM, GDM and SSDM. For ENDO contours, the automatic-manual MAD using
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Fig. 3. The automatically segmented ENDO- and EPI contours during ventricular
systole. Red: ENDO surface, Green: EPI surface.

Table 1. Comparison of automatic outline to two experts’ outline of ENDO and EPI
boundaries

MAD (mm) HD (mm) PTP (%)

ENDO

automatic-manual (SSDM) 1.41 ± 0.40 2.53 ± 0.75 95.9 ± 1.24
automatic-manual (GDM) 1.52 ± 0.46 3.25 ± 0.98 94.8 ± 1.56
automatic-manual (SM) 2.33 ± 0.67 4.31 ± 1.26 93.1 ± 1.51

manual-manual 1.37 ± 0.36 2.38 ± 0.65 95.8 ± 1.48

EPI

automatic-manual (SSDM) 1.74 ± 0.39 2.79 ± 0.97 94.5 ± 1.74
automatic-manual (GDM) 1.77 ± 0.41 2.91 ± 0.95 93.6 ± 1.78
automatic-manual (SM) 1.81 ± 0.65 3.18 ± 1.23 92.3 ± 1.91

manual-manual 1.73 ± 0.51 2.83 ± 1.50 94.5 ± 1.77

SM was 0.92 mm larger than that obtained using SSDM, although the automatic-
manual MAD using GDM was similar to that obtained using SSDM. This implies
that both SSDM and GDM are able to capture the global deformation of car-
diac shapes, while SM has tendency to get stuck in local minima because it does
not provides a prediction in time. We also observed that the automatic-manual
HD using SSDM was 0.72 mm larger than that obtained using GDM, and 1.78
mm larger than that with SM. This suggests that while GDM produced glob-
ally correct results, it failed to capture local shape deformations. Moreover, we
observed that the performance of the automatic segmentation using SSDM was
comparable to that of manual segmentation because similar MAD, HD, and PTP
were produced. For EPI contours, in comparison with SM, the GDM improved
the MAD by 0.04 mm, the HD by 0.13mm, and the PTP by 1.3%. When the
SSDM was applied, the MAD was further improved by 0.03 mm, the HD by
0.12 mm, and the PTP by 0.9%. The improvement of EPI segmentation was less
pronounced than that of ENDO segmentation. This is because the EPI surface
does not move as much as the ENDO surface. Furthermore, we observed that the
variability of manual-manual segmentation was smaller for the ENDO boundary
than for the EPI boundary. This is probably because the EPI boundaries are
more ambiguous for observers to detect, which was also the reason we used two
observers, instead of a single one.
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4 Conclusion

In this paper, we have presented a subject-specific dynamical model that utilized
MPCA and MICA to simultaneously decompose the cardiac shape and motion in
different subspaces. We then used a dynamic prediction algorithm to sequentially
predict the dynamics of a new RT3D echocardiograpic sequence from the shapes
observed in the past frames. Experiments on 15 sequences of echocardiographic
data showed that automatic segmentation using the SSDM produced results
that had an accuracy comparable to that obtained by manual segmentation.
Future work would include the extension of this SSDM to human data and other
modalities, and the development of an integrated framework that will combine
cardiac segmentation and motion analysis for RT3D echocardiography.
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Abstract. Patients with repaired Tetralogy of Fallot commonly suffer
from chronic pulmonary valve regurgitations and extremely dilated right
ventricle (RV). To reduce risk factors, new pulmonary valves must be
re-implanted. However, establishing the best timing for re-intervention
is a clinical challenge because of the large variability in RV shape and in
pathology evolution. This study aims at quantifying the regional impacts
of growth and regurgitations upon the end-diastolic RV anatomy. The
ultimate goal is to determine, among clinical variables, predictors for the
shape in order to build a statistical model that predicts RV remodelling.
The proposed approach relies on a forward model based on currents and
LDDMM algorithm to estimate an unbiased template of 18 patients and
the deformations towards each individual shape. Cross-sectional multi-
variate analyses are carried out to assess the effects of body surface area,
tricuspid and transpulmonary valve regurgitations upon the RV shape.
The statistically significant deformation modes were found clinically rel-
evant. Canonical correlation analysis yielded a generative model that was
successfully tested on two new patients.

1 Introduction

Tetralogy of Fallot (ToF) is a severe congenital heart defect that requires surgical
repair early in infancy. Yet, pulmonary valves may be damaged by the surgery,
causing chronic regurgitations. As a result, the right ventricle (RV) dilates ex-
tremely, its shape is altered and the cardiac function is impaired: new valves must
be implanted in adulthood to reduce risk factors [1]. Understanding and quanti-
fying RV remodelling in repaired ToF patients is crucial for patient management
and therapy planning. However, high variability in pathology course and in RV
anatomy makes difficult the decision of optimal timing for re-intervention [1].
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Contrary to the left ventricle, whose shape and deformations under patho-
logical conditions are well documented, RV anatomy is complex and can vary
tremendously among ToF patients. Several studies investigated possible correla-
tions between clinical parameters in ToF [1]. However, few works have quantified
the anatomical alterations of the RV and their evolution due to the disease [2,3].
In [2], the authors measure the most striking differences in RV shape with respect
to normals, quantifying some features of the complex RV remodelling observed
in ToF. However, only one-dimensional indices are considered despite the avail-
ability of 3D segmentations. In [3], the authors present a 4D Active Appearance
Model of the beating heart to segment RV in MRI. New indices based on the
shape modes are proposed to classify patients from normal. Yet, the authors do
not correlate their model with clinical features of ToF.

The clinical challenges raised by ToF encourage applying image-based shape
analysis techniques to model the RV anatomical alterations due to pathological
factors. These techniques generate a representative template of a population of
interest and assess how it deforms within this population [4,5,6,7]. Yet, corre-
lating shape with clinical variables require a rigourous framework: Biases may
appear if the template is not defined in a consistent way, which may yield drastic
differences in the statistical conclusions. Two strategies are available to create
the template. The backward approach consists in modelling the template as the
average of the deformed observations plus some residuals [4,5]. Such a template
can be computed efficiently but the model parameters, especially the residuals,
are more difficult to identify. The forward approach consists in modelling the ob-
servations as deformations of the template plus some residuals [6,7]. Computing
the template is more complex but model parameters can be faithfully estimated
from images and clinical data.

In view of assisting the cardiologists in establishing the best time for re-
intervention, we aim at statistically predict the RV remodelling in ToF. As a
first step, we propose in this work to quantify the regional impacts of growth
and regurgitations upon the end-diastolic RV anatomy of a cohort of 18 young
ToF patients. The main deformation modes are estimated using the forward
approach and analysed through cross-sectional multivariate methods. We then
derive a generative model of RV remodelling and test it on two new patients.

2 Methods

The right ventricle (RV) of multiple patients is segmented from cine-MRI as de-
scribed in Sec. 3.1. To analyse this population of shapes, an unbiased template is
first built. This template serves as reference atlas to determine the deformations
towards each individual shape. Then, Principal Component Analysis (PCA) is
applied on these deformations to extract the main deformation modes. The im-
portance of each mode is statistically assessed with respect to child growth and
valvar regurgitation severity, yielding a generative model of RV remodelling. Fi-
nally, we investigate how this model can predict the evolution of shape with
respect to body surface area.
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2.1 Unbiased Template of the Right Ventricle in Tetralogy of Fallot

The RV template is created using the forward strategy proposed by [7]. This
approach is particularly suited for our purposes as 1) it is non-parametric, shapes
are represented by currents; 2) model parameters are well-defined and can be
estimated from clinical data, thus enabling statistical analyses; 3) template and
deformations are computed simultaneously and consistently and 4) new patients
can be integrated in the study without re-estimating the template.

The RV surfaces T i, or shapes, are modelled as the sum of a diffeomorphic
deformation φi of the template T and a residual term εi standing for the shape
features that cannot be represented by the template (topology changes, acquisi-
tion artefacts, etc.): T i = φi.T + εi. Currents are used to represent the shapes,
the residuals and the deformations in the same common framework. They enable
the usual operations (mean, variance...) on shapes as they form a vector space.
Intuitively, currents can be seen as the flux of any vector field ω ∈ W across the
shapes. W is a vector space of infinite dimension generated by a Gaussian kernel
KW (x,y) = exp(−‖x − y‖2/λ2

W ) that defines an inner product in W (W is a
Reproducible Kernel Hilbert Space, RKHS). More precisely, a triangle centred
at x with normal α is represented by the Dirac delta current δα

x . Therefore, a
discrete mesh is encoded by the sum of the currents of its triangles T i =

∑
k δ

αi
k

xi
k

.

The residuals εi are modelled as a Gaussian distribution on the αi
k. The defor-

mation φi that registers the template T to the current T i is estimated using
the Large Deformation Diffeomorphic Mappings (LDDMM) framework [8]. φi

is parametrised by a smooth initial vector speed vi
0, which also belongs to a

Gaussian RKHS V with variance λ2
V . Moreover, this initial speed vector field is

completely defined by the moment vectors βi centred at the same point location
as the template moments: vi

0(x) =
∑

k KV (xk,x)βi
0(xk). Finally, the template

T and the deformations φi towards each patient are estimated by means of an
alternate two-step strategy, initialised with the mean current of the population.

2.2 Characterising Deformation Modes of RV Shapes in ToF

In this work we analyse the deformations φi only as we mainly focus on the
regional changes of the RV anatomy due to ToF. Principal Component Analysis
(PCA) is performed directly on the moments βi to extract the main deformation
modes. The elements of the covariance matrix Σ are given by Σij =< vi

0 −
v0,v

j
0 − v0 >V =

∑
xk,xl

(βi(xk) − β(xk))KV (xk,xl)(βj(xl) − β(xl)), xk being
the position of the kth Dirac delta current of T . Then, the moment vector γm of
the initial speed vector um

0 related to the mth deformation mode is given by γm =
β+

∑
i V

m[i](βi−β). In this equation, Vm is the mth eigenvector of Σ when the
eigenvalues are sorted in decreasing order. Finally, the RV shape of each patient
i is characterised by the shape vector si = {si

m}m=1..M computed from the M
first deformation modes, si

m =< vi
0,u

m
0 >V =

∑
xk,xl

βi(xk)KV (xk,xl)γm(xl).
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2.3 Can We Predict the Shape from Clinical Parameters?

First, cross-sectional analysis of the impact of growth on RV shape was per-
formed. Multiple linear regression between the shape vectors si and body surface
area (BSA) was carried out to exhibit the effects of BSA on each deformation
mode. An optimal set of modes was selected by iteratively removing the modes
with lowest significance, until the p-value of the regression overall significance
stopped decreasing. Canonical Correlation Analysis (CCA) was then applied to
quantify the amount of variation of each mode when BSA varies. Denoting R
the overall correlation coefficient between BSA and shape vectors and ρ the cor-
relation vector relating BSA to each deformation mode, the moments μ of the
generative deformation Φ are μ = R

∑
k ρ[k]γk. Deforming the template T with

Φ enables quantifying the average RV remodelling observed in our population.
Second, we assessed the impact of tricuspid and transpulmonary regurgita-

tions on each deformation mode. As regurgitations were quantified by ordinal
indices and only 18 subjects were available, we choose to perform two inde-
pendent and component-by-component analyses to maximise statistical power.
Rank-based Kruskal-Wallis analysis of variance was applied. If an effect was
found for some deformation modes, post-hoc two-sample rank-based Wilconxon
tests were used to determine which levels differed.

All the statistical tests were carried out using the shape vectors si (Sec. 2.2).
The level of significance was set at p < 0.1 and multiple comparisons were
corrected using Bonferroni adjustment.

3 Experiments and Results

3.1 Data Collection

Subjects and Image Preparation. We selected 18 young patients (8 males,
mean age ± SD = 15±3) with repaired Tetralogy of Fallot (ToF). Body-surface
area (BSA) was reported for each patient (Dubois formula, mean ± SD = 1.53±
0.3). Steady-State Free Precession cine MRI of the heart were acquired with
a 1.5T MR scanner (Avanto, Siemens). Images were acquired in the short-axis
view covering entirely both ventricles (10-15 slices; isotropic in-plane resolution:
1.1x1.1mm to 1.7x1.7mm; slice thickness: 6-10mm; 25-40 phases). Images were
made isotropic through tricubic resampling.
Surface Meshes Preparation. End-diastolic RV endocardium was segmented
on the MRI cardiac sequence by fitting an anatomically accurate geometrical
model. Its position, orientation and scale in the image was determined using
minimal user interaction. Then, local boundaries were estimated by training a
probabilistic boosting tree classifier with steerable features [9]. To reduce posi-
tioning effects in the shape analysis, the RV meshes were rigidly registered to a
representative patient of the dataset by using GMMReg1 [10]. The results were
visually inspected and remaining undesirable rotations were corrected manually
(Fig. 1, left panel).
1 http://code.google.com/p/gmmreg/
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Rigid alignment Non-linear registration to the template

Fig. 1. 3D RV meshes of 18 young ToF patients. Left panel: The meshes were rigidly
registered to a representative patient of the dataset. Observe the extreme variability in
shape (see companion video). Right panel: The same meshes registered to the template
using the non-linear deformations estimated during the template creation.

3.2 Statistical Shape Model of the Right Ventricles

Building the template T required setting two parameters (Sec. 2.1): λV , which
defines the “stiffness“ of the non-linear deformations (the higher is λV , the more
global are the transformations); and λW , which characterises the resolution of the
currents representation (low λW values enable analysing subtle shape features).
As we were mainly interested in the regional ToF alterations (dilation, valve
enlargement, regional bulging), these parameters were set to λW = λV = 15mm,
about the diameter of the RV outflow tract. Lower values would have been
inappropriate as the image slice thickness was approximately 10mm.

One iteration of the alternate minimisation was needed to reach convergence.
Yet, the resulting template T was well centred (mean over standard deviation
of the deformations was 0.8). The first 10 deformation modes were selected,
representing more than 90% of the total energy (Fig. 2).

Interestingly, the age of the closest patient to the template was 17 while his
BSA 1.76. Both indices were close to the observed mean, suggesting that in
our population, the mean shape was consistent with the mean BSA and age.
Furthermore, this patient only suffers from trace valvar regurgitations, which is
not surprising as no evident pathological bulging were visible in the template.

3.3 Statistical Model of RV Remodelling in ToF Patients

Patient growth was quantified by body surface area (BSA) index (correlation
with age in the data set: R2 > 0.5, p < 0.001). Table 1 reports the regression
coefficients al of the multiple linear regression between BSA and shape vectors s,
BSA = a0 +

∑10
l=1 als[l], the related t-values and the overall model significance.

The sign of the al relates to the direction of the deformation modes (negative
al meaning backwards deformations). Model reduction discarded all the non-
significant modes (Table 1). The remaining modes were found clinically pertinent
by an expert after visual inspection (Fig. 2). Mode 1 clearly represented the
overall RV dilation. Mode 2 seemed to model the dilation of the tricuspid annulus
and of the inflow tract. Mode 3, 6, 7 and 9 exhibited a dilation of a specific RV
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σ

σ

σ

σ

Fig. 2. 10 first deformation modes extracted by PCA on a population of 18 patients
suffering from repaired Tetralogy of Fallot

Table 1. Linear regression coefficients al between shape modes and BSA. In bold the
significant coefficients (p < 0.1). After model reduction (second array), coefficients stay
unchanged, confirming the stability of the statistical tests.

Significance a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Coef. ×10−5 R2 = 0.84, -2.9 6.4 -7.6 4.6 -1.0 -11.1 -11.9 7.0 -20.1 -15.4
t-values p = 0.04 -3.28 2.64 -2.04 1.13 -0.19 -1.93 -1.92 0.84 -2.15 -1.43

Coef. ×10−5 R2 = 0.75, -2.9 6.4 -7.6 -11.1 -11.9 -20.0
t-values p = 0.006 -3.27 2.63 -2.03 -1.92 -1.92 -2.14

region: apex (mode 3), basal area under the tricuspid valve (mode 6), apical area
of the outflow tract (mode 7) and outflow tract (mode 9), reflecting possible
direct impact of regurgitations on the neighbouring tissues.

Canonical Correlation Analysis (CCA) provided a generative model of the
RV remodelling observed in our population. Overall correlation coefficient with
BSA was R = 0.87, suggesting a strong correlation between these deforma-
tion modes and growth. The correlation vector of the deformation modes was
ρ = {−0.56, 0.45,−0.35,−0.33,−0.33,−0.37}.When BSA increases by 0.86, each
deformation mode m varies by its related coefficient ρ[m]. The model was found
clinically realistic by an expert (Fig. 3). As BSA increased, RV volume increased,
RV free-wall and valves dilated, and septum was more concave. Indeed, dilation
of the valves reduces the remaining pulmonary obstructions, thus decreasing the
RV pressure. As a result, left-ventricle pushes the septum towards the right ven-
tricle, making it more concave. However, as regurgitations are still present, the
RV still dilates by pushing the RV free wall outwards.

3.4 Quantifying the Impact of Valvar Regurgitations on RV Shape

Colour Doppler ultrasound (sweep speeds: 50-100 mm/s) was used to quantify
tricuspid (TriReg) and transpulmonary valve (TPVReg) regurgitations. To as-
sess the effects of TPVReg, patients were grouped into two different groups:
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σ) σ) σ) σ)

Fig. 3. Mean RV remodelling observed in our population when body surface area (BSA,
in m2) increases. RV dimensions globally increase while valves dilate. Simultaneously,
RV free wall becomes rounder and septum more concave (see companion videos).

trace TPVReg and severe TPVReg. Kruskal-Wallis analysis revealed a signif-
icant effect on deformation mode 2 (p < 0.1), which was confirmed by visual
inspection: this mode exhibited an elongation of the RV outflow tract (Fig. 2).

Evaluation of TriReg classified the patients into 3 groups: none, trace or mild
tricuspid regurgitations. Kruskal-Wallis analysis showed a significant impact of
TriReg on three deformation modes: 3 (p < 0.05), 6 (p < 0.1) and 8 (p < 0.1).
However, pair-wise Wilconxon tests showed that only mode 3 had two significant
different levels (trace TriReg versus mild TriReg, p < 0.1). Visually, deforma-
tion mode 3 exhibited a deformation of the tricuspid annulus, from circular to
triangular-shape, and a dilation of the RV inflow tract.

Interestingly, two deformation modes involved in the statistical model of RV
growth were also related to the regurgitations. This may suggest possible cross-
effects between growth and regurgitations on these specific shape variations.

3.5 Validating the Generalisation of the Statistical Models

Generalising a statistical model of RV remodelling is crucial for patient man-
agement and therapy planning. We thus tested the robustness of our model
on two new patients with matched age (13 and 16). The template was regis-
tered to the patients and the related shape vectors s were computed. BSA were
calculated from the optimal linear model estimated in Sec. 3.3. Results success-
fully compared with measured values (patient 1: estimated BSA: 1.61, measured
BSA: 1.49; patient 2: estimated BSA: 1.29, measured BSA: 1.16). This suggests
that the deformation modes involved in the RV remodelling model could be gen-
eralised, constituting potential quantitative parameters of remodelling in ToF.

4 Discussion and Future Works

In this study we investigated the impact of growth and valvar regurgitations
upon the end-diastolic RV anatomy of patients with repaired ToF. End-diastolic
time point was chosen as it is the time when the effects of the pathology are
the most evident [1,2]. Multivariate statistical analyses provided a generative
model of the observed RV remodelling. This model and the significant deforma-
tion modes were found clinically pertinent as they exhibited remarkably realistic
changes in RV anatomy. To design the model, the deformation modes and their
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directions were statistically determined to limit the effects of PCA rotatability.
Furthermore, the effects of regurgitation severity were analysed on a component-
by-component basis to preserve the statistical power of the tests due to the or-
dinal nature of the data. The groups were not sufficiently populated to apply
more comprehensive statistics. Incorporating more patients is now required to
confirm these findings and avoid possible over-interpretations. Various types of
RV remodelling could be identified (aneurysmal, with stiff myocardium, etc.),
which may constitute new criteria for valve replacement decision. Future works
also include analysing the 4D cardiac motion. To the best of our knowledge, this
study constitutes a first attempt at correlating 3D shape parameters to clini-
cal measurements in ToF. These analyses may yield quantitative image-based
predictors about RV anatomy and remodelling in ToF.
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Abstract. We propose a recursive Bayesian model for the delineation
of coronary arteries from 3D CT angiograms (cardiac CTA) and discuss
the use of discrete minimal path techniques as an efficient optimization
scheme for the propagation of model realizations on a discrete graph.
Design issues such as the definition of a suitable accumulative metric are
analyzed in the context of our probabilistic formulation.

Our approach jointly optimizes the vascular centerline and associated
radius on a 4D space+scale graph. It employs a simple heuristic scheme
to dynamically limit scale-space exploration for increased computational
performance. It incorporates prior knowledge on radius variations and
derives the local data likelihood from a multiscale, oriented gradient
flux-based feature. From minimal cost path techniques, it inherits prac-
tical properties such as computational efficiency and workflow versatility.
We quantitatively evaluated a two-point interactive implementation on
a large and varied cardiac CTA database. Additionally, results from the
Rotterdam Coronary Artery Algorithm Evaluation Framework are pro-
vided for comparison with existing techniques. The scores obtained are
excellent (97.5% average overlap with ground truth delineated by ex-
perts) and demonstrate the high potential of the method in terms of
robustness to anomalies and poor image quality.

1 Introduction

In many biomedical applications, the segmentation of vascular structures is an
important step towards diagnosis, treatment and surgery planning. Modern 3D
angiographic modalities produce increasingly large and detailed acquisitions.
This exacerbates the need for automated or semi-automated methods to reduce
the burden of manual delineation while increasing repeatability.

Among the rich literature on vascular segmentation [1], minimal path meth-
ods are particularly popular. They classically extract a vessel as a path between
two points on a regular lattice. The cost of a path is defined cumulatively by
a vessel-dedicated metric and optimized over the lattice by graph-based meth-
ods (e.g., Dijkstra-based and fast-marching algorithms for L1 and L2 metrics,
respectively). Recent works [2,3] have shown that the lattice is not necessarily
limited to the spatial positions of the vessel centerline and can be augmented
with dimensions such as the vessel radius. Key properties of minimal paths are
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their guarantee of global optimality, their computational efficiency and the con-
trol over boundary conditions. One can always find a path between two given
points or even search exhaustively, i.e., extract the paths from a single seed to
all the other points. Most drawbacks, such as so-called “shortcut” issues, come
from the practical difficulty of designing well-behaved cumulative metrics.

Another particularly active class of methods is the family of multi-hypotheses
tracking methods [4,5,6,7]. They increase the robustness of the local tracking
process by evolving several hypotheses in parallel. They differ on how hypotheses
are selected and evolved. Bayesian formulations such as particle filters [5] and
related schemes [6,7] have demonstrated their robustness and design versatility,
in particular in the integration of prior model-based knowledge. Unlike minimal
path techniques, they do not offer control over the exhaustiveness of the search,
but are designed to explore large search spaces in a sparse manner, focusing on
most promising areas. They are generally not dependent on the discretization of
the search space but can be computationally expensive.

In this paper, we introduce a recursive Bayesian model related to those un-
derlying multi-hypothesis probabilistic methods [5,6,7]. We discuss the use of
minimal path techniques as an efficient optimization scheme propagating model
realizations as paths on a discrete graph. We detail key design aspects such as the
definition of the data likelihood and the derivation of a cumulative metric from
the Bayesian formulation. Our approach was applied to the particularly chal-
lenging task of segmenting coronary arteries from 3D cardiac CTA. Qualitative
and quantitative evaluation is given on clinical data.

2 Geometric and Bayesian Models

A vascular segment is modeled as a discrete series of states Xt∈[0:T ] = {(pt, rt)},
composed of centerline points pt and associated radiuses rt (Fig. 1). Cross-
sections are assumed to be circular, a reasonable approximation for thin vessels
such as coronaries. Their local orientation is approximated by dt = pt−pt−1

|pt−pt−1| .
We are interested in X∗ = argmaxX P (X)P (Y |X), the maximum a posteriori

model realization given image observations Y = {Y j}. An observation Y j is
obtained as the response of a multiscale oriented feature, computed at location
pj , radius rj and direction dj (Sec. 4). The likelihood P (Y j |X = X i

[0:t]) depends
on whether an observation Y j is associated to the model realization X i

[0:t] or
not. A particularity of our model is to distinguish two distributions, Pv(Y j) and

Fig. 1. Geometric model and parameterization
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Pbg(Y j) for responses in vessels and in the background, respectively (similarly
to [8] for road tracking). Assuming conditionally independent observations given
a model realization, the joint likelihood of the observations is:

P (Y |X i
[0:t])=

∏
Y j∈Xi

[0:t]

Pv(Y j)
∏

Y j /∈Xi
[0:t]

Pbg(Y j) =
∏

Y j∈Xi
[0:t]

Pv(Y j)
Pbg(Y j)

∏
Y j ,∀j

Pbg(Y j)

where the (abusive) notation Y j ∈ X i
[0:t] indicates that Y j is associated to a cer-

tain state of X i
[0:t]. We note Y j = Y i

t if Y j is associated with the particular state
X i

t . Assuming a 1st order Markovian prior and omitting the terms independent
of the model realization, the recursive update of the a posteriori probability of
a model realization (also referred to as an hypothesis) is given by Bayes’ rule:

P (X i
[0:t]|Y i

[0:t]) ∝ P (X i
[0:t−1]|Y i

[0:t−1])P (X i
t |X i

t−1)
Pv(Y i

t )
Pbg(Y i

t )
(1)

This Bayesian model is similar to those used in recent works on vascular prob-
abilistic tracking [5,6,7]. The main difference is the integration of background
information in the likelihood expression, similarly to [8].

3 Graph Optimization for Hypothesis Propagation

The theoretical maximum a posteriori problem is generally intractable as the
search space grows exponentially with the length T of the model. In practice,
probabilistic multi-hypothesis methods adopt selection schemes to limit the num-
ber of hypotheses, e.g., stochastic resampling [5,7] or deterministic pruning [6].

As an alternative, we rely on the discretization of the search space, allowing
the use of an efficient and robust minimal path-like optimization scheme. Spatial
positions {pi

t} are discretized as the regular image grid and we use R different
radius values (see Sec. 4). Our approach thus explores a 4D space+radius graph,
where each node corresponds to a possible state Xk = (pi, rj). To value the edges
of the graph, we define our additive cost metric by noting that maximizing (1)
is equivalent to minimizing its negative logarithm:

C(X i
[0:t]) = C(X i

[0:t−1])−log(P (X i
t |X i

t−1))−log(Pv(Y i
t ))+log(Pbg(Y i

t ))−M (2)

where C(X i
[0:t]) = − log(P (X i

[0:t]|Y i
[0:t])) and M is a constant ensuring that

C(X i
[0:t]) remains positive or null1. This additive cost metric is directly suitable

for Dijkstra-like optimization. Our algorithm sorts the hypotheses in a min-heap
structure. When the heap root X i

t = (pi
t, r

i
t) is popped, we consider its neighbor

states, defined by the product set of the 26-neighboring positions {pi
t+1} of pi

t

and all possible scales. The cost of each neighbor is updated according to (2)
(details in Sec. 4). Propagation continues until the heap is empty (exploration

1 We set M = log(P min
bg ), with P min

bg = 10−6 in our implementation.
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of the entire grid) or when a given end position is popped (two-seed workflow).
The result path (points+radiuses) is simply backtracked from the end state.

Exploring the full 4D graph can be very costly in time and memory. To al-
leviate that cost, we propose to propagate only the H < R best hypotheses (of
different radiuses) first reaching each spatial position. H controls the local, dy-
namic radius selection scheme limiting scale-space exploration. For H = R, the
optimization would be globally optimal. With H = 1, only the locally best radius
is propagated. Using H > 1 increases robustness to scale-related ambiguities.

Our approach can be viewed as a generalization of [9]. We also derive edge
costs from an oriented, multiscale medialness feature, but our method uses the
feature response indirectly to value the likelihood terms, incorporates radiuses
in the optimization and controls the coherence of their variations through the
prior term (Sec. 4). From its space+scale minimal path approach, our method is
closely related to [3]. Where our Bayesian model yields an edge-based L1 metric,
authors in [3] prefer L2 optimization, arguably less sensitive to discretization. We
believe however that our metric is less parameter-dependent than the node-based
potentials proposed in [3]. More importantly, our algorithm does not explore
the 4D graph entirely and rather focuses on most promising radiuses, yielding
considerable memory and time gains in practice. For H < R, our optimization
scheme is heuristic and does not guarantee the extraction of the global maximum,
but it is computationally efficient, based on a sound theoretical framework and
particularly robust, as confirmed by the validation results from Sec. 5.

4 Implementation Details

Our implementation relies on an interactive workflow with user-provided start
and end points. The heap is initialized with the set of seed states X i

0 = (p0, r
i),

i.e. all possible radiuses ri for the start position p0. To cover the typical ra-
dius range of coronary arteries, we use R=16 radius values from rmin=0.3 to
rmax=5.1mm with a fixed step of 0.3mm.

The prior term P (X i
t |X i

t−1) in (2) constrains radius variations:

P (X i
t |X i

t−1) = P (ri
t|ri

t−1) =

{
(σ−

√
2π)N (ri

t|ri
t−1, σ

2−) if ri
t ≤ ri

t−1,
(σ+

√
2π)N (ri

t|ri
t−1, σ

2
+) if ri

t > ri
t−1.

(3)

where N (.|μ, σ2) is the Normal distribution of mean μ and variance σ2. We use
an asymmetric formulation to penalize widening models more than shrinking
models. We experimentally set σ−=0.4mm and σ+=0.2mm. These distributions
are kept unnormalized, as discussed at the end of the section.

Observations Y i
t are the responses of a multiscale oriented medialness feature:

Y i
t = MFlux(pi

t, r
i
t, d

i
t) =

2
N

N
2∑

k=1

min(〈∇I(xk), uk〉, 〈∇I(xπ
k ), uπ

k 〉) (4)

At cross-sectional contour points xk, MFlux[10] accumulates the projections of
the image gradient vectors ∇I(xk) on inward radial directions uk = pi

t−xk. The
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Fig. 2. Flux-based feature and likelihood distributions. (a) Detail of a dataset with
arteries running close to a heart chamber. (b) Response of the local cross-sectional
gradient flux (maximum over scales and directions for each voxel). (c) Response of
MFlux. (d) Examples of Pv and Pbg likelihood distributions.

sum of these projections corresponds to a measure of the local inward gradient
flux through the cross-section, which is maximal when the model cross-section
is well aligned with a vessel in the image. Instead of taking the sum, MFlux
retains the minimum contribution between diametrically opposed points xk and
xπ

k (see Fig. 1). This non-linear combination dramatically reduces false positive
step-edge responses caused by asymmetric flux contributions at locations such
as the surface of heart chambers (Fig. 2). MFlux enjoys a high discriminative
power over scales and positions while remaining computationally efficient. we
use N=8 cross-section points and precompute gradient vectors using Gaussian
derivatives with σg=0.3mm. Please refer to [10] for more in-depth discussion.

Observations are used to value the likelihood terms Pv(Y i
t ) and Pbg(Y i

t ) in
(2). The vessel likelihood Pv was learnt as the response histogram on 10 datasets
with ground truth segmentation (not included in the validation set of Sec. 5).
The background likelihood Pbg is dataset-dependent and is estimated through
feature responses at 106 randomly sampled parameters (p, r, d). It thus encodes
general information about the reliability of the data at hand, as it will vary as a
function of the image quality and noise. Pv and Pbg are generally well separated
thanks to the discriminative power of MFlux, as depicted in Fig. 2 (d).

We finally discuss the normalization of the distributions in (2), which can
be considered as an implicit parameterization of our metric. Although (2) is
defined up to an additive constant, the scaling of the distributions greatly influ-
ences how model realizations are compared. In particular, our algorithm deals
with hypotheses of different lengths competing for the same position. Instead of
classically normalizing each distribution so that it sums to unity, we scale them
so that their respective maximum is always 1. Consequently, an ideal model real-
ization will have a cumulative cost (log-probability) of 0 regardless of its length.
By limiting length-related penalization to its minimum, we effectively reduce the
risk of “shortcuts”, a classical issue of minimal path techniques.

5 Experiments and Validation

We first discuss some of the distinctive components of our approach. In general,
the background likelihood Pbg(Y i

t ) has a limited impact on the extracted result,
but it markedly decreases the extent of exploration needed to reach the end state
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Fig. 3. Effect of the background likelihood and scale prior terms. Left and middle:
search space explored to extract the red vessel. Highlighted in red: with background
likelihood Pbg (1.1×106 voxels visited). In dark: without Pbg (1.95×106 voxels). Right:
difficult case extracted without scale prior (top) and with scale prior (bottom).

Table 1. Summary of quantitative results (see text for details)

(a) Internal validation
Measure H=1 H=2 H=4
OV (avg.) 97.8% 99.1% 99.3%
AD (avg.) 0.375mm 0.365mm 0.365mm
AR (avg.) 0.195mm 0.192mm 0.191mm

(b) Results from the Rotterdam challenge [11]
Measure % / mm score

min. max. avg. min. max. avg.
OV 76.0% 100.0% 97.5% 39.7 100.0 81.5
AD 0.20mm 3.78mm 0.37mm 22.4 55.9 36.3

Fig. 4. Result samples (extracted centerlines and mask from local radius estimation).
(a) Full arterial tree extracted with one ostia seed and 9 distal seeds (in 57 sec. with
H = 4). (b) 3D and multi-planar reformation (MPR) views of a curvy, small secondary
vessel branching off the right coronary artery. (c) 3D and MPR views of a calcified left
coronary artery. (d) Low image quality and occluded right coronary artery.

(up to∼50%, see Fig. 3). By penalizing hypotheses in non-vascular areas, it yields
significant speed gains. The scale prior P (ri

t|ri
t−1) improves the robustness of the

extraction in presence of local anomalies and/or low image quality (see Fig. 3,
right) while still allowing smooth scale adaptations (Fig. 4 (b)).

Our algorithm was first validated on 51 CTA datasets of varying image quality
and pathologies (Fig. 4). This database counts 858 coronary branches manually
delineated by experts, including radius estimation. Table 1(a) shows quantitative
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results for different values of H . OV is the average overlap with ground truth,
i.e., the portion of ground truth and extracted points coinciding within radius
distance. The version with H=1 already obtains a high overlap score of 97.8%,
improved up to 99.3% for H=4. These results demonstrate the high robustness of
our approach and the relevance of keeping several hypotheses per spatial location.
Increasing H over 4 did not bring significant improvement in our tests. AD, the
average distance of the result centerline to the ground truth, is slightly larger
than the typical intra-slice data resolution (0.33mm per voxel). This accuracy
result is coherent with the discrete nature of our algorithm. The average radius
estimation error AR of 0.191mm is satisfyingly subvoxelic.

We additionally submitted results (for H = 4) to the publicly open Rotterdam
Coronary Artery Algorithm Evaluation Framework [11]. In Table 1(b), we report
the average overlap OV and average distance AD results for 24 testing datasets
(96 vessels). Other statistics are left out due to space restrictions [12]. Scoring
in [0, 100] is defined as follows: 50 for a result of the order of the inter-observer
variability, 100 for a perfect result. The good performance of our method is con-
firmed, with 97.5% average overlap, exceeding inter-observer overlap (score of
81.5). The average distance AD is slightly larger than inter-observer variability
(score of 36.3 < 50). Our primary focus being robustness, we consider this accu-
racy level to be satisfactory for initial delineation before subsequent refinement.
This evaluation also allows the direct comparison with other existing methods.
For instance, our algorithm brings a noticeable robustness improvement (97.5%
versus 91.9% OV) over the method from [13] which implements a classical two-
seed minimal path technique based on image intensity and a Hessian-based ves-
selness feature. To date, the only publicly ranked method to outperform our
approach in terms of robustness is [14], an adaptation of [4] supplemented with
minimal paths, which obtained OV = 98.5%. It is worth noticing that this method
required more interaction, with the use of intermediate seed points, where we
strictly limited ourselves to the provided start and end points.

Finally, we emphasize the computational efficiency of our approach. The effort
required to extract a vessel depends on several factors, such as the image quality,
the length and complexity of the target path and overall vascular network. In
order to extract the longest vessel branch, the algorithm will basically explore
the entire network (see Fig. 3). Consequently, the entire arterial tree can be
extracted for the same computational effort as its longest branch, by specifying
one seed at the ostium and one distal point per branch (see Fig. 4). With our
C++ implementation, the average vessel branch is extracted in about one minute
for H = 4 (less than 15 sec. for H = 1) on a 2.16GHz Core Duo CPU.

6 Conclusion and Perspectives

In this paper, we have presented a new algorithm for the segmentation of coro-
nary arteries from 3D cardiac CTA data. Our approach relies on a recursive
Bayesian model, from which it inherits its robustness, and is optimized by mini-
mal path-like techniques, from which it inherits its computational efficiency and
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workflow flexibility. In particular, our algorithm improves on classical minimal
path techniques by providing a sound theoretical framework for the definition of
the cumulative cost metric, whose different components were carefully studied.
The high practical robustness of our technique was demonstrated through an
extensive quantitative validation on clinical data.

The very promising results obtained by our proof-of-concept implementation
open several high-potential perspectives. One lead is to exploit the reliability of
the approach to improve overall clinical workflow for coronary disease assessment
through fast, intuitive and reliable interactive tools to extend and correct cen-
terlines for the most difficult cases. Another lead is further automation for full
tree extraction. The main difficulty in this case is the design of robust stopping
criteria for the propagation. We finally highlight the generality of the approach.
Within the same framework, we are currently evaluating other vascular applica-
tions by adapting components such as the prior and likelihood distributions.
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Abstract. Research has shown that tumor vascular markers (TVMs)
may serve as potential OCa biomarkers for prognosis prediction. One
such TVM is ESM-1, which can be visualized by staining ovarian Tissue
Microarrays (TMA) with an antibody to ESM-1. The ability to quickly
and quantitatively estimate vascular stained regions may yield an im-
age based metric linked to disease survival and outcome. Automated
segmentation of the vascular stained regions on the TMAs, however, is
hindered by the presence of spuriously stained false positive regions. In
this paper, we present a general, robust and efficient unsupervised seg-
mentation algorithm, termed Hierarchical Normalized Cuts (HNCut),
and show its application in precisely quantifying the presence and ex-
tent of a TVM on OCa TMAs. The strength of HNCut is in the use of
a hierarchically represented data structure that bridges the mean shift
(MS) and the normalized cuts (NCut) algorithms. This allows HNCut
to efficiently traverse a pyramid of the input image at various color reso-
lutions, efficiently and accurately segmenting the object class of interest
(in this case ESM-1 vascular stained regions) by simply annotating half
a dozen pixels belonging to the target class. Quantitative and qualitative
analysis of our results, using 100 pathologist annotated samples across
multiple studies, prove the superiority of our method (sensitivity 81%,
Positive predictive value (PPV), 80%) versus a popular supervised learn-
ing technique, Probabilistic Boosting Trees (sensitivity, PPV of 76% and
66%).
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1 Introduction

It is estimated 1 that 21,650 women will be diagnosed with and 15,520 women will
die of cancer of the ovary (OCa) in 2008. The 5-year survival rates of these women
are highly correlated to the early detection of OCa. Recent work [2] suggests that
specific tumor vascular biomarkers (TVMs) may be identifiable on OCa TMAs
that could have prognostic significance, helping to not only predict this survival
rate but also help determine a more specific course of treatment. It has also
been suggested that genes expressed uniquely by the vasculature of tumors may
provide important therapeutic targets. Biomarkers are typically discovered by
staining explicitly for TVMs of interest on OCa TMAs. ESM-1 is one such TVM
of interest in OCa, which can be visualized by staining the anti-body to ESM-1 in
TMAs with Diaminobenzidine. Precise quantification of the extent and intensity
of the stain could serve as a prognostic metric reflecting risk of disease recurrence
and patient survival. However, it is currently infeasible in terms of both time
and effort for an expert pathologist to perform this segmentation manually.

One of the issues to consider in the choice of a segmentation method is that it
should accurately and reliably distinguish true positive (TP) stains from other
structures in the tissue that pick up the D-benzidine stain, but are not part of the
vasculature. This produces a dataset that suffers greatly when operated on by
algorithms that are highly dependent upon initial conditions, such as k-means.
Since there is a significant amount of inter-sample and inter-study variability, a
more sophisticated algorithm must be employed. In addition, the need to pro-
cess several hundred cylinders quickly, with high accuracy, is another major
requirement. Probabilistic boosting trees (PBT) [3] are popularly employed for
classification and segmentation because they have the attractive property that
the posterior probability can be used as a threshold to balance between sensi-
tivity and specificity. Additionally, the method is relatively fast. Unfortunately,
one of the challenges in constructing a supervised classifier (such as PBTs) is the
difficulty in obtaining ground truth segmentations for classifier training for the
object, or region, of interest from experts. Creating enough acceptable training
samples is both costly and time consuming.

The mean shift (MS) algorithm was originally presented in [4] and revised
in [5] as an unsupervised technique aimed at mode discovery for use in place
of k-means. MS attempts to overcome its predecessors faults by searching for
the mean data point within a certain bandwidth (σ) setting. The improved Fast
Gauss Transform [6] implementation of MS allows computation times for large
images to become reasonable for use in clinical settings.

The Normalized Cuts (NCut) algorithm is among the final mature descendants
of a series of graph cutting techniques ranging from max cut to min cut [7]. It
is a popular scheme in spite of its main drawback: the large number of calcula-
tions needed for determining the affinity matrix and the time consuming eigen-
value computation. In large sized images the computation and overhead of these
border on the infeasible [8], leading to a significant amount of research in avoiding

1 Cancer Facts and Figures, American Cancer Society (ACS), Atlanta, Georgia, 2008.
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their direct calculations [9]. A standard approach in the NCut method is to make
the assumption that pixels in the same cluster are spatially located near each other,
resulting in a sparse matrix. In our specific case, this distance constraint cannot be
applied, thereby making a direct implementation of NCut essentially intractable.

Fig. 1. The input (left) with annotated ground truth in red. Notice the difficulty in
spotting stained cells with the untrained naked eye. Segmentation results (right) from
HNCut.

2 Novel Contributions of This Work

The major contribution of this work is a novel, hierarchical unsupervised seg-
mentation method termed HNCut. Additionally, to the best of our knowledge
the application of HNCut to precisely quantify a vascular marker on OCa TMAs
represents the first attempt at creating a quantitative, image based metric for
OCa prognosis and survival. The novelty of HNCut is the use of a hierarchically
represented data structure that bridges MS and NCut. The first component of
HNCut, namely MS, efficiently prunes down the total number of clusters for
the second component NCut. Unlike traditional clustering algorithms, our final
aim is to extract a single cluster pertaining to the stained region (Fig. 1), while
ignoring pixels in all other clusters. In traditional algorithms the pixels that nor-
mally should be removed are usually allocated to the least dissimilar cluster. In
contrast, our setup encourages cuts that confidently trim away these undesired
pixels. The unsupervised aspect of HNCut is particularly desirable for image
analysis applications in histopathology where obtaining annotated samples for
training a supervised classifier depends on the annotations provided by an ex-
pert and hence difficult to obtain. To summarize, the primary methodological
contributions of this work are,

A novel hierarchical segmentation approach (HNCut) that marries MS and
NCut. The affinity matrix can now take advantage of multiple features, and
multiple color spaces efficiently across large windows sizes.
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Parameter insensitive segmentation for large images and the ability of HN-
Cut to discriminate between regions with similar color values. The parame-
ter for the Gaussian kernel in the affinity matrix of NCut is automatically
computed. The parameters for MS are automatically adjusted based on the
variance of the output.

3 Hierarchical Normalized Cut

As mentioned earlier, our method has two broad components consisting of MS
and NCut. The intuition for these are first presented, followed by the complete
details in Section 3.4.

3.1 Mean Shift for Reducing Color Space Cardinality

MS is used to detect modes in data using density gradient estimation. With
an image defined as C = (C, f) where C is a 2D Cartesian grid of N pixels,
c ∈ C = (x, y) representing the Cartesian coordinates of a pixel, and f a color
intensity function associated with c, we have the fixed point iteration update
∀c ∈ C in MS as

fk+1(c) ←−
∑N

i=1 GσMS (fk(c)− fk(ci))fk(ci)∑N
i=1 GσMS(fk(c)− fk(ci))

(1)

where a Gaussian function, G, with a bandwidth parameter σMS, is used to com-
pute the kernel density estimate at data point c. k ∈ {1, . . . ,K} represents vari-
ous levels of color resolution produced at each iteration. The overall computation
time for Eq. 1 is O(N2). By employing the improved Fast Gauss Transform [6],
we can reduce the complexity to O(N) with minimal precision loss.

MS produces a feature-based pyramidal scene representation Cu = (C, fu),
where u ∈ {1, . . . ,K} represent levels of the pyramid of height K. This results
in a series of scenes Cu, all mutually aligned, but with a fewer number of colors
in the lower levels of the pyramid compared to the top. It is the fewer colors at
the lower levels that enable NCut to be tractable, however, the upper levels of
the pyramid are needed for high quality segmentation.

3.2 Normalized Cuts on Mean Shift Reduced Color Space

By setting the vertices (V ) to the basins of attraction from the MS (i.e., unique
color values), NCut can segment the data by representing it as a connected graph
(G=(E, V )), with edges (E) representing affinity or strength of connectivity. A
cut is the processes by which the removal of edges leads to two partitions. A
value of a normalized cut between two disjoint sets A and B is computed using

NCut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)
assoc(B, V )

(2)
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where cut(A,B) =
∑

ci∈A,cj∈B w(f(ci), f(cj)), i, j ∈ {1, . . . , N}. Additionally,
assoc(A, V ) =

∑
ci∈A,ck∈V w(f(ci), f(ck)), where i, k ∈ {1, . . . , N}. Also, A ∪

B = V and w(f(ci), f(cj)) is a function used to compute an affinity measure be-
tween ci and cj . Normally, in NCut, an additional spatial constraint is introduced
such that if ||ci − cj || ≥ θ,where θ is a spatial radius threshold, w(f(ci), f(cj))
is set to 0. Because of this spatial constraint, the affinity matrix W is normally
sparse, making the method tractable. The goal of NCut is to identify partitions
A,B such that the they have the most intragroup similarity, and the most in-
tergroup dissimilarity. This process can be recast [8] and solved as a generalized
eigenvalue system.

In our implementation of NCut we are concerned with partitioning the color
space and not the image pixels per se. Hence if the process of MS in Section 3.1
on C eventually results in M unique colors, V is the set of vertices corresponding
to these colors. Thus W ∈ RM×M in the first application of NCut.

3.3 Integrating Domain Knowledge to Guide Normalized Cuts

Our goal with NCut is to discard A or B. We therefore define a swatch (color
template) reflecting the attributes of the object of interest in the scene. We define
Q = {fα1 , fα2 , . . . , fαt} to represent the colors of the objects we seek. Note that
Q is trivially determined by annotating (manually) a few pixels from the object
of interest on a representative image and may be easily changed based on the
application. Hence HNCut is still an unsupervised algorithm.

3.4 The HNCut Algorithm

Reducing color space cardinality with MS enables NCut to be tractable (irrespec-
tive of the distance constraint). However, the first application of NCut resulting
in the sets A and B leaves us with too many false positives. We can overcome
this draw back by maintaining a pyramid as we perform MS, as detailed below.
Step 1: Generate a hierarchical color pyramid via MS: For any scene C,
corresponding scenes in the pyramid {C1, . . . , CK} of monotonically increasing
resolutions {M1,M2, . . . ,MK} are generated.
Step 2: Apply NCut on lowest level of pyramid: Apply NCut on CK to
partition the scene into two color sets AK and BK . Use in the affinity matrix
the values WK(β1, β2) = exp(− ||β1−β2||2

σ ) where σ is a scaling parameter.
Step 3: Use color swatch to identify unique color partition: Identify
which of AK and BK uniquely contains colors in the swatch Q. If Q ⊂ AK

and Q ∩ BK = ∅ then eliminate BK . If Q ⊂ BK and Q ∩ AK = ∅, similarly
eliminate AK . However if Q ∩ AK �= ∅ and Q ∩ BK �= ∅ then set σ = σ + Δσ
and repeat NCut on VK to obtain a new partition. Keep incrementing σ until Q
is uniquely contained within either of AK or BK .
Step 4: Repeat color partitioning at a fixed scale using NCut: Assum-
ing for some value of σ, Q is uniquely contained in AK , set V = AK and repeat
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NCut on V . Repeat steps 2 and 3 until no further partitioning of color space at
scale � = K is possible.
Step 5: Repeat NCut and color partitioning at higher image scales:
Migrate to the next higher image resolution, First, identify V as the set of
colors at resolution � = K − 1 but derived from the non-decomposable partition
� = K. Repeat steps 2-4 to identify a unique non-reducible color partition at
� = K − 1 that contains the swatch. Also, do this step for subsequent lower
values of � ∈ {1, . . . ,K − 2}

4 Experiment Setup and Methodology

Our database comprises of a total of seven digitized TMAs of OCa, in turn
comprising over 500 tissue cylinders. The TMAs were obtained by sampling
OCa tissue from over 100 patients and were stained for the presence of the TVM
ESM-1, resulting in vascular regions with the antibody to ESM-1 staining brown.
The TMA files are down-sampled and stored at 20x magnification, producing
images that are approximately 1300 x 1400. An expert pathologist annotated
100 cylinders. The exact regions highlighted by him were extracted and stored
separately, creating a binary map used as the ground truth.

Performance Metrics: Two different metrics were used to grade the perfor-
mance of the algorithms. A macro metric (region) matched minimum surface
area ellipses fit to both the test method and the ground truth to assess the cor-
rectness of region matching. A micro metric (pixel) was used to determine the
amount of overall correctness of pixel matching.

4.1 Comparison of HNCut to k-Means, PBT

All algorithms loaded the same image and converted it to YCbCr space. To en-
sure fair comparisons, each algorithm operated only with chromatic information.

k-means. Ten clusters were employed. The initial cluster centers were manually
chosen, by experimentation, to provide a good representation of the image.

Probabilistic Boosting Tree. PBT was implemented as described in [3], using
suggested default values for both θ and ε (.45 and .4, respectively). Each strong
Adaboost classifier was constructed using seven weak classifiers. The PBT per-
formed seven levels of dataset separation, in the prescribed tree like manner. The
training set was created by taking a 3 × 3 window around every c ∈ C, across
all 3 color channels in YCbCr space, resulting in a 27 dimensional vector. 1000
random positive (stained) samples and 1000 random negative (unstained and
spuriously stained) samples were selected from 25 randomly selected images, re-
sulting in a total training vector of size 27x50,000. 50 cross validation iterations
took place resulting in an average AUC of .9296 with a standard deviation of
.0039. The probability returned by the PBT was converted into a strong classifier
by taking the upper Otsu threshold.



236 A. Janowczyk et al.

HNCut. MS was performed using a σMS = .05, with the number of clusters
for the improved fast Gauss transform set to 350. NCut uses the Silverman
function [10] to determine its initial σ and then increases by a factor of 10 as
prescribed above. The domain knowledge is six pixels of shades of brown that
we find acceptable as stain.

5 Results and Discussion

The first column in Fig. 2 represents the original input image, with the boundary
of the ground truth highlighted by the pathologist labeled in red. The first row
illustrates a case where all of the algorithms performed as expected. The sec-
ond row illustrates an example where the HNCut algorithm performs optimally,
while both the PBT and k-means extract many miscellaneous false positives.
The hierarchical set of operations in HNCut is essentially a feedback loop that
enables the algorithm to operate extremely efficiently and accurately. The fi-
nal row is used to illustrate a scenario where false negatives (FN) occur for
all three methods. The middle region is correctly segmented in all algorithms,
while the three other regions are incorrectly rejected. The stain in those regions

Highlighted Input HNCut PBT k-means

Fig. 2. Selected examples are presented. The original input, with the annotated ground
truth in red, is presented on the left, followed by HNCut, PBT and k-means.
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Table 1. Performance measures for HNCut, PBT and k-means

Region Pixel
FN TP FP Sensitivity PPV Sensitivity Specificity

HNCut 217 920 224 80.9% 80.4% 73.8% 99.7%
PBT 265 869 456 76.6% 65.6% 67.4% 99.6%

k-means 264 873 1646 76.8% 34.7% 69.1% 98.3%

is only barely visible to an expert. Lastly, we can see that although k-means
does the best in attempting to detect those regions, the same setup results in
many false positives in other images. This is a result of the k-means requir-
ing all pixels to be assigned to a cluster, filling the stain cluster as it is the
most similar out of the candidates. Both PBT and HNCut determine, in most
instances, that these same values are simply too different to be considered as
stain.

Table 1 quantitatively illustrates that HNCut provides the best balance be-
tween sensitivity and specificity, providing 50% less false positives (FP) than
PBT and 86% less FP than k-means. All of the algorithms seem to do very well
in the specificity category, but this is a result of the vast number of true negative
pixels (TN) associated with the majority of the sample.

Using HNCut on 500 discs, about 10 of them failed to converge properly,
resulting in very poor segmentations. Interestingly, these 10 images all had little
to no stain present. This failure of convergence is due to the σMS for the MS being
inappropriately selected, in all experienced cases being too wide. The automatic
adjustment of the σMS took place, as described above, to a narrower setting
resulting in appropriate results in all of the experiments we ran.

6 Concluding Remarks

In this paper we have presented a novel unsupervised segmentation scheme called
Hierarchical Normalized Cuts (HNCut). The strength of HNCut is derived from
the fact that it integrates the best of both the Mean Shift and the Normalized
Cut algorithms. The presented algorithm is not only efficient and accurate but
not encumbered by the need for precisely annotated training data. While HNCut
could be applied to any general segmentation task, in this paper we evaluate it
in the context of identifying a vascular biomarker in OCa TMAs. Results on 100
images reveal that HNCut significantly outperforms both Probabilistic Boosting
Trees and k-means. The algorithm does use a color swatch but this involves
manual identification of half a dozen pixels to represent features of interest. The
swatch can be changed to suit similar biomedical segmentation problems swiftly.
The swatch does not require laborious, careful annotation by an expert, but is a
small sampling of the target class and may be provided by any user who is able
to partially identify the target class.
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Abstract. Segmentation of low contrast objects is an important task
in clinical applications like lesion analysis and vascular wall remodeling
analysis. Several solutions to low contrast segmentation that exploit high-
level information have been previously proposed, such as shape priors and
generative models. In this work, we incorporate a priori distributions of
intensity and low-level image information into a nonparametric dissimi-
larity measure that defines a local indicator function for the likelihood of
belonging to a foreground object. We then integrate the indicator func-
tion into a level set formulation for segmenting low contrast structures.
We apply the technique to the clinical problem of positive remodeling
of the vessel wall in cardiac CT angiography images. We present results
on a dataset of twenty five patient scans, showing improvement over
conventional gradient-based level sets.

1 Introduction

This paper introduces a method for segmenting low contrast regions in Com-
puted Tomography (CT) volumes by integrating local nonparametric intensity
statistics into the level set framework. The drive for early detection and quan-
tification of disease has greatly improved the spatial resolution and sensitivity of
CT scanners. This has led to the growing need for methods for sub-pixel accurate
segmentation and boundary delineation of small structures with volumes rang-
ing from 25 mm3 to 500 mm3, or equivalently, 200 to 4000 voxels. Segmentation
of such small structures is further complicated by low contrast, partial volume
averaging, and other imaging artifacts that make it difficult to robustly detect
the boundary between the object of interest and its background and surround-
ing structures (see Fig. 1). Furthermore, the underlying anatomical structures
of interest often have intensity distributions that are not robustly captured by
standard parametrizations or lower-order sufficient statistics, as shown in Fig. 2.
These factors motivate the importance of continued investigation into methods
for improving the segmentation of small, low-contrast structures with spatially
varying intensity information.
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Fig. 1. Examples of low contrast structures in CT images. The image on the left shows
a coronary artery with a thickened wall barely visible against the background cardiac
tissue. The image on the right shows a subsolid nodule that appears “translucent” and
diffuses into surrounding lung tissue.

Fig. 2. Left: Example of ramp intensity profile (yellow) and corresponding gradient
magnitude (blue) that causes gradient-based level set to propagate beyond the real
boundary given by the reference segmentation (green). Right: Histograms of pixel in-
tensities in vessel wall remodeling regions (blue) and in nearby cardiac tissue and back-
ground (red) were computed over 20 subjects. The histograms overlap considerably, but
have overall distinctive distributions. Note also that the cardiac tissue distribution is
not a Gaussian and difficult to parametrize.

Previously, approaches using parametric deformable surface models that prop-
agate by minimizing an energy functional which includes internal (stretching,
bending), image (usually gradient-based), and external (user-defined or derived
from priors) forces have been proposed [1,2]. These often produce accurate seg-
mentation but have limitations with respect to topological flexibility and the
segmentation of complex structures. These limitations are somewhat overcome
by level set methods, which represent the evolving surface implicitly. Early tech-
niques such as fast marching supported only monotonic motion [3] and were
followed by more sophisticated approaches such as shape-based segmentation
[4], geodesic active contours [5], or methods using prior shape statistics to reg-
ularize the level set formulation [6,7]. A solution for the piecewise constant case
of the Mumford-Shah functional [8] in the level set context was presented in [9],



Nonparametric Intensity Priors for Level Set Segmentation 241

but only accounted for first-order foreground and background statistics, approx-
imated using average intensities. In [10], a data consistency term was used to
incorporate local intensity information, but the method makes several assump-
tions: the overall image intensity distribution is assumed to be bimodal such
that it can be factored into underlying foreground and background distributions
which themselves are assumed to be unimodal, and whose parameters can be
recovered from an initial coarse segmentation. Recently, the Bhattacharyya dis-
tance, a nonparametric dissimilarity measure, was integrated into the level set
framework [11], but the method does not allow the use of prior statistics to drive
the segmentation process.

This paper introduces a technique that makes use of nonparametric prior mod-
els of intensity within the level set variational framework to accurately segment
low contrast regions. Reference segmentations provided by clinical specialists
were used to build nonparametric models of the intensity distribution of the ob-
ject of interest and its surrounding background. During segmentation, we first
estimate the dissimilarity of the local intensity distribution in the vicinity of
each voxel in the image to the two model distributions using Earth Mover’s
Distance (EMD) or the Mallows Distance [12,13] as a local indicator function
for the likelihood of the voxel belonging to the foreground. The local indicator
function is integrated with gradient-based information to define a new speed
term in the level set partial differential equation. There are two major contri-
butions of this work. First, it incorporates and balances both boundary and
texture information into the segmentation process, while retaining the topolog-
ical flexibility, sub-pixel accuracy, and boundary extraction capabilities of the
level set framework. Second, it uses prior statistical knowledge about the object
and background intensity distributions without imposing a specific parametriza-
tion, e.g., a Gaussian distribution, on the class models. In the remainder of this
paper, we provide the theoretical background, formulate our approach, present
a clinical application, and show experimental results.

2 Background: The Level Set Formulation

In level set approaches the propagating surface S(t) is represented by the zero
level set of a higher dimensional function ψ(ω(t); t) : IR3 → IR that evolves
with time in the Eulerian coordinate system, and may be defined as S(t) ≡
ψ(ω(t); t) = 0. The main benefits of the level set formulation are topological
flexibility and differentiability [3,4]. The basic equation of level set propagation
is given by:

∂ψ

∂t
+ F (ω(t); t) · |∇ψ| = 0, (1)

where F (·) is the speed function that controls the evolution of the level set and
ω(t) denotes the spatial coordinates in the d-dimensional space ω ∈ Nd that
varies with time t. Given an initial position of the surface, S(t = 0), a signed
distance transform is typically applied to generate ψ(ω(t = 0); t = 0). After
setting the initial conditions, the evolution of ψ(ω(t); t) and deformation of S(t)
are obtained by solving (1) at each time point t.
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In the conventional level set framework, surface evolution is governed by ge-
ometric and image-based features, such as the surface curvature κ, the gradient
magnitude of the image intensity I, and an external (inflation/deflation) driving
force c [4]. This can be expressed as

FG(ω(t); t) = [c + κ(ω(t); t))] · g(∇I) · ς(P ), (2)

where g(∇I) = 1/ (1 + |∇I ∗Gσ|) with Gσ being a Gaussian with standard de-
viation σ used to smooth out noise. P is an optional spatial prior term that may
be used if prior shape, size, or location information is available. Also, ς(X) is the
sigmoid function that normalizes the dynamic range of a feature X and is given
as ς(X) = Xmin +(Xmax−Xmin)/

(
1 + exp

(
−X−β

α

))
. When the boundary be-

tween the object and background is diffuse, as is often the case in biomedical
imaging, the edge profile follows a ramp model (see Fig. 2 (left)). In these cases,
gradient-based implementations as in (2) tend to propagate over the boundary,
leaking into the background. More accurate segmentation can be achieved by us-
ing prior statistical information about the intensity distribution of an object and
its surrounding area to complement the gradient information. However, first and
second order statistics or parametric representations of distributions are often
not sufficient for separation of the object from the background, as shown in Fig. 2
(right). We propose the integration of higher order intensity statistics into the
level set formulation via a nonparametric dissimilarity measure for segmenting
low contrast structures.

3 Incorporating Nonparametric Priors in Level Sets

A local indicator function, defined at each voxel and denoted by H(ω), that
expresses the likelihood of the voxel belonging to a foreground object can be
integrated in the level set formulation along with gradient magnitude and cur-
vature to define a new speed term FH as follows (with the help of (2)):

FH(ω(t); t) = FG(ω(t); t) · ς(H), (3)

where ς(·), again, is the sigmoid function. So far, the only requirement imposed
on H(·) is that it can be evaluated locally. Next, we define and derive a form
of H(·) in terms of a dissimilarity measure of a locally sampled intensity distri-
bution to nonparametric intensity distributions of foreground and background
classes established from exemplars.

We represent the prior statistical information of foreground and background
regions using normalized histograms of intensity. The histogram of foreground re-
gions was learned from clinical image datasets where the foreground regions were
delineated by clinical imaging experts. The histogram of the background was de-
rived from the same datasets by automatically selecting regions surrounding the
delineated foreground voxels. Fig. 2 (right) shows the histograms for remodeled
sections of coronary vessel wall and the nearby cardiac tissue over a set of twenty
CT volumes.
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The histograms of the foreground and background intensity models are used
to construct the indicator function H(·) in (3). At each voxel ω, a histogram
built from a small neighborhood about ω is compared to the model foreground
and background histograms using the Earth Mover’s Distance [12,13] as a well
defined norm on the differences between two distributions

D2(ω;Mi,N (ω)) =
∑

k

[CDF(k,Mi)− CDF(k,N (ω))]2 , (4)

where Mi is a model (foreground or background), N (ω) is a neighborhood about
ω, and CDF(·) is the cumulative probability distribution of intensity for a model
or over a neighborhood. The dissimilarity measures of the sample histogram over
N (ω) to each model histogram are combined into an indicator function given by

H(ω) = D2(ω;M1,N (ω)) −D2(ω;M2,N (ω))− T (5)

where M1 and M2 denote the background and object model respectively, and T
represents a difference between the prior probabilities of the two models. H(·)
can be plugged into (3) to give the nonparametric intensity-distribution weighted
speed function, FH .

4 Clinical Application: Vessel Wall Segmentation

The proposed algorithm was tested on cardiac CT angiography (CTA) datasets
in the context of vessel wall delineation for measuring positive remodeling. CTA
is a minimally invasive imaging procedure used to examine the health of blood
vessels in key areas of the human body such as brain, heart, lung, abdomen, and
kidneys. It involves injection of a contrast agent, usually iodine-based, to enhance
the image contrast inside the vessel lumen. This enables the segmentation of
the lumen using simple algorithms such as morphological operations or region
growing and is useful for detecting stenoses, i.e., narrowing of the vessel lumen.

Positive wall remodeling, on the other hand, is defined as an increase in the
vessel wall thickness, resulting in the bulging out of the outer boundary of the
vessel wall. This is usually observed at atherosclerotic lesion sites and often in-
dicates an unstable clinical presentation associated with high risk of an acute
cardiac event [14,15]. Accurate segmentation plays a significant role here because
the coronary vessel walls are thin, typically 2-5 pixels wide in state-of-the-art
CT. Unfortunately, compared to the vessel lumen, the image contrast of the ves-
sel wall is quite low. This is due to surrounding cardiac tissue, partial voluming,
and noise. Thus, accurate localization of the wall boundary using gradient-based
level sets is not possible. On the other hand, the intensity distribution of the pos-
itive remodeling voxels marked by clinical specialists was observed to differ from
that of its surrounding tissue and background, as shown earlier in Fig. 2. There-
fore, the proposed speed function given in (3) which incorporates nonparametric
intensity statistics should yield improved segmentation.
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5 Experimental Results

Preprocessing steps that are not the focus of this paper were used to isolate
the bright contrast-filled vessel lumen regions in CTA datasets. For evaluating
the proposed algorithm, we operated only on the vessel segments containing
examples of wall remodeling. A volume equal to three times the nominal diameter
of the vessel lumen was fixed as the domain for the level set propagation. A signed
distance function was computed from the lumen surface and the level set was
initialized at 0.5 mm outside the lumen.

Axial Coronal Cross-section Longitudinal

(a)

(b)

(c)

(d)

Fig. 3. Segmentation results. Row (a) Original CT intensity data, (b) reference stan-
dard showing positive remodeling regions overlaid on the CT data, (c) segmentation
using conventional gradient-based level sets (G-LS), and (d) segmentation results using
the proposed histogram-based level set (H-LS) approach. The first two columns show
axial and coronal views. For better visualization, the last two columns show reformat-
ted views across and along the vessel. G-LS propagates over the wall boundary into
the background areas, while H-LS produces more accurate delineation.
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Fig. 4. Scatterplot of segmentation costs produced by H-LS versus G-LS for 25 patient
CT scans (in blue). The segmentation cost is the root mean squared distance (RMSD)
of the segmented surface from the reference surface. Points below the diagonal red line
correspond to lower RMSD values of H-LS compared to G-LS, i.e., better segmentation
accuracy. We observe that H-LS outperforms G-LS in 21 out of 25 cases.

For the sake of brevity in the ensuing discussion, the level set scheme using
the proposed speed function (3) is referred as “H-LS” and the one using the
conventional speed function (2) as “G-LS”. Results for both algorithms were
evaluated against reference standard segmentations of positive remodeling wall
regions that were provided by clinical specialists. Representative segmentation
results are illustrated in Fig. 3 showing H-LS gives segmentations much closer
to the reference positive remodeling regions, while G-LS tends to leak and prop-
agate beyond the vessel wall boundary. We use the root mean squared distance
(RMSD) of the segmented surface from the surface of the reference segmenta-
tion to quantify performance. We add the vessel lumen to both the reference
and segmented volumes prior to calculating RMSD to mitigate large distances
from false vessel wall detections opposite to the actual positive wall remodeling.
Fig. 4 compares the RMSD values for G-LS and H-LS over twenty five datasets.
The proposed H-LS method consistently outperforms standard G-LS. The mean
RMSD over the twenty five cases was found to be 0.65 mm for G-LS and 0.47 mm
for H-LS, giving a 28% improvement on average. Furthermore, a paired t-test
between the RMSDs produced by H-LS and G-LS gives a p-value of 0.000032
suggesting statistically significant improvement.

6 Conclusion

We introduced a method for naturally incorporating nonparametric intensity
priors of foreground and background objects into a local, nonparametric dissim-
ilarity measure as a speed function term in the level set framework. The method
improves segmentation accuracy for low contrast regions by providing a counter-
balance to gradient-based front propagation. We demonstrated the method on a
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database of vessels with positive wall remodeling. While vessel lumen narrowing
or stenosis can be detected by directly analyzing the vessel lumen, our technique
allows for the accurate segmentation of the remodeled wall region, a necessary
step for quantifying pathology. Our approach is applicable to other low contrast
segmentation problems where exemplars are available. The low-level segmen-
tation scheme can also be viewed as an independent step or combined with
additional analysis and classification approaches to aid in diagnosis.
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Abstract. The diagnosis of colorectal cancer is usually supported by
a staging system, such as the Duke or TNM system. In this work we
discuss computer–aided pit–pattern classification of surface structures
observed during high–magnification colonoscopy in order to support dig-
nity assessment of colonic polyps. This is considered a quite promising
approach because it allows in vivo staging of colorectal lesions. Since re-
cent research work has shown that the characteristic surface structures of
the colon mucosa exhibit texture characteristics, we employ a set of tex-
ture image features in the wavelet-domain and propose a novel classifier
combination approach which is similar to a combination of experts. The
experimental results of our work show superior classification performance
compared to previous approaches on both a two-class (non-neoplastic vs.
neoplastic) and a more complicated six-class (pit–pattern) classification
problem.

1 Motivation

Recent statistics of the American Cancer Society reveal that colorectal cancer is
the third most common cancer in men and women and the second most common
cause of US cancer deaths. Since most colorectal cancers develop from polyps,
a regular inspection of the colon is recommended in order to detect lesions with
a malignant potential or early cancer. A common medical procedure to examine
the inside of the colon is colonoscopy, which is usually carried out with a con-
ventional video–endoscope. A diagnostic benefit can be achieved by employing
so called high–magnification endoscopes (aka zoom–endoscopes), which achieve
a magnification factor of up to 150 by means of an individually adjustable lens.
In combination with dye–spraying to enhance the visual appearance (chromo–
endoscopy) of the colon mucosa, high–magnification endoscopy can reveal char-
acteristic surface patterns, which can be interpreted by experienced physicians.
Commonly used dyes are either methylene-blue, or indigo–carmine, which both
lead to a plastic effect. In the research work of Kudo et al. [1], the macroscopic
appearance of colorectal polyps is systematically described and results in the so
called pit–pattern classification scheme.
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The contribution of this work is a novel way for classifier combination to
enhance the accuracy of differential diagnosis. We propose a fusion of three
approaches from classification research and show that by using several recently
proposed texture image features for endoscopy image classification, we achieve
a remarkable increase in overall classification accuracy.

The remainder of this paper is structured as follows: in Sect. 2, we review the
medical background an introduce the pit–pattern classification scheme. Section
3 discusses the feature extraction step as well as our classification approach. In
Sect. 4, we present the experimental results of our work and Sect. 5 concludes
the paper with a short summary and an outlook on future research.

2 Pit-Pattern Classification

Polyps of the colon are a frequent finding and are usually divided into meta-
plastic, adenomatous and malignant. Since the resection of all polyps is rather
time–consuming, it is imperative that those polyps which warrant resection can
be distinguished. Furthermore, polypectomy1 of metaplastic lesions is unneces-
sary and removal of invasive cancer may be hazardous. The classification scheme
presented in [1] divides the mucosal crypt patterns into five types (pit–patterns
I–V, see Fig. 1), which can be observed using a high–magnification endoscope.

While types I and II are characteristic of benign lesions and represent normal
colon mucosa or hyperplastic polyps (non–neoplastic lesions), types III to V rep-
resent neoplastic, adenomatous and carcinomatous structures. Our classification
problem can be stated as follows: the problem of differentiating pit–patterns I
and II from III–L,III–S,IV and V will be denoted as the two–class problem (non–
neoplastic vs. neoplastic), whereas the more complex and detailed discrimination
of all pit–patterns I to V will be denoted as the six–class problem. At first sight,
the pit–pattern classification scheme seems to be straightforward and easy to be
applied. Nevertheless, it needs some experience and exercising to achieve good
results. Correct diagnosis very much relies on the experience of the endoscopist
as the interpretation of the pit–patterns may be challenging [2].

Our approach is motivated by the work of Kato et al. [3], where the authors
state that assessing the type of mucosal crypt patterns can actually predict the
histological findings to a very high accuracy. Regarding the correlation between
the mucosal pit–patterns and the histological findings, several studies reported
good results, although with quite different diagnostic accuracies. A compara-
tive study by Kato et al. [4] shows that the classification accuracy in mag-
nifying colonoscopy ranges from 80.6% to 99.1%. Another extensive study by
Hurlstone et al. [5] report error rates of approximately 5%. In [6] the authors
claim 95.6% for chromoendoscopy with magnification in contrast to diagnosis
using conventional colonoscopy (84.0%) and diagnosis using chromoendoscopy
without magnification (89.3%). In addition to that, inter–observer variability of
magnification chromoendoscopy has been described at least for Barret’s esoph-
agus [7]. This inter–observer variability may to lesser degree be also present in
1 The process of removing polyps.
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(a) I (b) II (c) III-S (d) III-L (e) IV (f) V

Fig. 1. Schematic illustration of the pit–pattern characteristics (top row) together with
exemplary pit–pattern images obtained during high–magnification colonoscopy (bot-
tom row)

the interpretation of pit–patterns of colonic lesions. This work aims at allowing
computer–assisted pit–pattern classification in order to enhance the quality of
differential diagnosis.

3 Feature Extraction and Classification

We use a selection of texture feature extraction approaches in the wavelet–domain
which have already been successfully applied in the context of endoscopy image
classification. Our first feature set is computed using an approach presented in [8]
where the authors decompose each image using the Dual–Tree Complex Wavelet
Transform (DT–CWT) and model the absolute values of detail subband coeffi-
cients by two–parameter Weibull distributions. The Maximum–Likelihood esti-
mates of the Weibull scale & shape parameter of each subband are then arranged
into feature vectors for nearest–neighbor classification using the Euclidean dis-
tance. Although the work in [8] uses grayscale images, it can easily be extended
for color images by simple feature vector concatenation of separately computed
color–channel feature vectors. In another work [9], a set of image features is com-
puted from both the classic pyramidal (DWT) and undecimated wavelet transform
(SWT) by calculating so called color eigen–subband features (CES). The CES fea-
tures are essentially the eigenvalues obtained during PCA on the stacked wavelet
detail subbands of the color–channels. Since the study in [8] has shown that the
DT–CWT produces highly discriminative features, we have extended the CES ap-
proach to work with the DT–CWT. The last feature extraction approach we take
into account is presented in [10] and it based on the computation of so called color
wavelet–energy correlation signatures (WECS)betweenwavelet–decomposed color–
channels. The extension to the DT–CWT is again straightforward and the dimen-
sionality of the feature vectors is doubled. In the following, feature vectors will be
denoted by v ∈ F ⊂ Rd, where F denotes the feature space and d denotes the
feature space dimensionality.
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3.1 Classification Setup

We propose a fusion of three main approaches from recent work in classification
research. We combine nearest–neighbor (NN) classifiers in a One–Against–One
[11] (aka round–robing or pairwise coupling) setup and optimize each classi-
fier using sequential forward feature subset selection (SFFS) [12]. The different
class predictions are then combined using a voting–against approach and class
posterior probability estimation.

The One–Against–One Approach (OAO). The basic concept of the OAO
classification strategy is to split a multi–class problem into smaller binary prob-
lems with the ulterior motive that the decision boundaries for binary problems
are simpler and easier to learn than the decision boundaries in case of a multi–
class problem. In OAO classification, one classifier is trained for each possi-
ble pair of classes. Given a c–class problem, we thus have to train a total of
c(c − 1)/2 classifiers. In the training stage, each binary classifier is trained us-
ing only the examples of the two classes it has to discriminate. For example,
given that V := {vi}1≤i≤L denotes the complete set of training vectors and
γ : F → {1, . . . , c} denotes a function returning the true class membership of v,
then the binary classifier Cij : F → {i, j} – which discriminates between class i
and j – is trained using the training subset Sij := {vn|γ(vn) = i ∨ γ(vn) = j}.
Hence, we can view the OAO approach as some sort of expert system, where
each classifier is an expert in discriminating only two particular classes. In such
a classifier combining approach we require two important properties of the base
classifiers [13]: diversity and accuracy. First, diversity signifies that the errors
should be uncorrelated and second, accuracy refers to a classification accuracy
of at least 50%. In pratical use, we also require efficiency, which refers to low
computational cost. However, due to space limitations we will not deal with this
issue here.

Increasing Diversity. The problem of combining NN classifiers is particularly
interesting in the context of the diversity requirement, since the main approaches
of classifier combination to increase diversity, such as bagging [14] or boosting
[15] do not lead to the desired results. The root of the problem is the insensitivity
of the NN classifier to changes in the training patterns, which is essentially the
starting point for both bagging and boosting. In [16] this issue is discussed in
great detail and a new random feature subset selection approach is proposed,
where each classifier works on a random subset of all available features. Due to
the sensitivity of the NN classifier w.r.t. changes in the feature set, this approach
can increase diversity. Instead of using random feature subsets, we select each
subset by means of SFFS, imposing no limit on the size of the resulting subsets.
Starting with a subset of cardinality one, one feature is added in each iteration
in case this feature improves leave–one–out crossvalidation accuracy. By using
SFFS, we cover both requirements of accuracy and diversity at the same time.
In combination with the OAO approach, we obtain c(c − 1)/2 feature subsets
after the training stage.



Improving Pit–Pattern Classification of Endoscopy Images 251

Combining Class Predictions. Since each classifier in our OAO ensemble
will provide a class prediction, the question arises of how to combine the c(c −
1)/2 predictions. Although it seems straightforward to employ a simple majority
voting rule, this rule is logically incorrect w.r.t. OAO classification for one simple
reason: given an arbitrary sample v ∈ F , a classifier Cij will output either i or j
as the predicted class label. However, this prediction is convenient, if and only if
the sample v actually belongs to either class i or j. In that case the prediction is
termed a qualified prediction. Otherwise, the prediction is termed an unqualified
prediction. As a consequence, given that Cij(v) = i, we can at best conclude
that v is not a member of class j. This interpretation is known as voting against
[17] in contrast to voting for, which is correct only in case each classifier was
trained to discriminate samples from all classes. The final prediction is obtained
by counting the votes against each class and selecting the very one which received
the smallest number of votes–against. Although the idea of voting–against seems
to be pedantic at first sight, it allows a quite efficient way to compute the final
prediction [11] and enables us to compute a closed–form estimation of the class
posterior probabilities P (i|v) [17]. Given that εji is defined as the probability
P (Cij(v) = i|γ(v) = j) (i.e. classifier Cij outputs i though the sample belongs
to class j) and wi denotes the a–priori class probability of class i, the logarithm
of the class posterior probability of class i can be calculated by

log P (i|v) = K + log wi+∑
i	=j

log
(

εji, if Cij(v) = j;
1− εijwj

1− wj
if Cij(v) = i

)
+

∑
k,i	=j

log
(

1− εkjwj

1− wj
if Ckj(v) = k;

1− εjkwk

1− wk
if Ckj(v) = j

)
.

(1)

The error terms εji can be easily estimated in the training stage of the system
from the outputs of classifier Cij when presenting samples v, γ(v) �= i, j. Fur-
ther, the term K is simply a constant which is of no particular relevance for
determining the final prediction. By using (1) we determine the predicted class
label k (or equivalently the predicted in vivo staging of the endoscopy image) of
a feature vector v by k = argmaxi log(P (i|v)).

4 Experimental Results

Our image database contains 484 RGB images of size 256 × 256, acquired in
2005/2006 at the Department of Gastroenterology and Hepatology (Medical

Table 1. Number of image samples per pit–pattern

I II III–L III–S IV V

126 72 62 18 146 60
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Table 2. Classification accuracy results for six different feature sets and the two com-
bining approaches together with the McNemar–test results

Voting–Against Cutzu [17] Original Work

DWT & WECS [10] 90.08 91.53 + 79.96 ++
DT–CWT & WECS [10] 95.04 95.25 − 86.57 ++
DT–CWT & Classic [8] 96.69 97.11 − 93.18 ++
DT–CWT & Weibull [8] 97.11 97.31 − 94.01 ++
DT–CWT & CES [9] 97.31 97.73 − 88.84 ++
DWT & CES [9] 93.18 94.43 + 84.09 ++

University of Vienna) using a magnification endoscope (Olympus Evis Exera
CF–Q160ZI/L) with a magnification factor of 150x. To enhance visual appear-
ance, dye–spraying with indigo–carmine was applied and biopsies or mucosal
resections were taken to obtain a histopathological diagnosis (our ground truth).
For pit–patterns I,II and V, biopsies were taken, since these types need not be
removed. Lesions of pit–pattern types III–S,III–L and IV have been removed en-
doscopically. Table 1 lists the number of image samples per class. We use exactly
the same setup for feature extraction as presented in the original works [8,9,10],
discussed in Sect. 3. The maximum decomposition depth of the wavelet trans-
forms is set to J = 6. Regarding the dimensionality d of the resulting feature
spaces F (using the DT–CWT), we obtain d = 18J for [9], d = 36J for [8] and
d = 18J for [10]. In case the DWT is used for the WECS approach, we obtain
d = 9J . Table 2 lists the maximum leave–one–out crossvalidation accuracies for
all feature extraction approaches and the two classifier combining schemes com-
pared to the highest accuracies achieved in the original (color–extended) works.
Since most of the results – especially between the combining schemes – are very
similar, we conduct a McNemar–test [18] to test for statistically significant dif-
ferences at the 5% significance level. The null–hypothesis H0 is that there is no
significant difference. A ’+’ indicates a rejection of H0, while a ’−’ indicates that
H0 could not be rejected. Column four of Table 2 lists the McNemar–test re-
sults when comparing the combining schemes, column six lists the results when
comparing the original work to the voting–against (first ± entry) and class pos-
terior probability estimation (second ± entry) approach. As we can see, the best
overall accuracy is obtained by the DT–CWT & CES features with 97.73%. We
further notice that in the majority of cases, there is no significant difference be-
tween direct voting–against and class posterior probability estimation. However,
compared to the original works, the OAO results are significantly superior with
an average increase in leave–one–out crossvalidation accuracy of ≈ 8%. To get
an impression of the misclassifications per class, Table 3 shows the confusion
matrix of the DT–CWT & CES result. By breaking down the six–class problem
to the two–class problem (see Sect. 2) we obtain an overall leave–one–out accu-
racy of 99.59%, which is considerably higher than in the original works. As a last
note, we remind that although we use leave–one–out crossvalidation, all reported
accuracies are actually training accuracies. Since high–magnification endoscopy
is a rather new method for the diagnosis of colorectal cancer, there exists a
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Table 3. Detailed confusion matrix results for the DT–CWT & CES features using
Cutzu’s class posterior probability estimation

I II III–S III–L IV V

I 123 3 0 0 0 0
II 4 67 0 0 1 0

III–S 0 0 62 0 0 0
III–L 0 0 0 18 0 0
IV 1 0 0 0 145 0
V 0 0 0 0 2 58

lack of data material which prevents to separate an independent set of test–
images. As a result, it is highly probable that the accuracies are overestimated
in a sense. Nevertheless, our results clearly indicate that computer–assisted pit–
pattern classification based on the visual appearance of the colon mucosa can
predict the histological results to a large extent.

5 Conclusion

In this paper2, we have exploited the idea of combining a number of two–class
classifiers to obtain an diagnostic prediction for high–magnification colonoscopy
images. Our results show a remarkable improvement in leave–one–out crossval-
idation accuracy compared to previous works. Since most of the computational
effort (mainly feature selection) resides in the training stage there is no limiting
factor which might prevent practical application. Depending upon the availabil-
ity of a larger dataset, future research includes an evaluation of the approach
using clearly separated training and test sets which is currently impossible.
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Abstract. Automated segmentation of the esophagus in CT images is
of high value to radiologists for oncological examinations of the medi-
astinum. It can serve as a guideline and prevent confusion with patho-
logical tissue. However, segmentation is a challenging problem due to low
contrast and versatile appearance of the esophagus. In this paper, a two
step method is proposed which first finds the approximate shape using a
“detect and connect” approach. A classifier is trained to find short seg-
ments of the esophagus which are approximated by an elliptical model.
Recently developed techniques in discriminative learning and pruning of
the search space enable a rapid detection of possible esophagus segments.
Prior shape knowledge of the complete esophagus is modeled using a
Markov chain framework, which allows efficient inferrence of the approx-
imate shape from the detected candidate segments. In a refinement step,
the surface of the detected shape is non-rigidly deformed to better fit the
organ boundaries. In contrast to previously proposed methods, no user
interaction is required. It was evaluated on 117 datasets and achieves
a mean segmentation error of 2.28mm with less than 9s computation
time.

1 Introduction

The mediastinal region is of particular interest to radiologists for oncological
examinations [1]. For diagnosis and therapy monitoring, CT scans of the thorax
are common practice. Lymphoma, which is the second most common tumor in
the mediastinum, often affects regions close to the trachea and the esophagus as
these are natural gateways of the human body. While the trachea is very easy
to see in CT, the esophagus is sometimes hard to find in single slices. Especially
in coronal view, even experts have difficulties to see the boundaries, which is
one reason why interpretation of the images is tedious. Fast and automatic seg-
mentation of the esophagus can shorten the time a radiologist needs to read an
image.
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Fig. 1. Overview of the proposed method

Automated segmentation of the esophagus is challenging because of its com-
plex shape and its inhomogeneous appearance. As its wall consists of muscle
tissue, there is only little contrast if it is empty. Sometimes it is filled with air
bubbles, remains of oral contrast agent or both. Up to now, there are few publi-
cations on esophagus segmentation, and all of them require a significant amount
of user input. In [2], a probabilistic spatial and appearance model is used to ex-
tract the centerline. In a second step, the outer wall is approximated by fitting
an ellipse into each slice using a region-based criterion. However, the method
requires as input two points on the esophagus and furthermore a segmentation
of the left atrium and the aorta. In [3], a semi-automated method is proposed
that takes one contour in an axial slice as user input and propagates the contour
to other slices by registration using optical flow. The quality of the segmentation
was not evaluated quantitatively. Another semi-automated method is described
in [4]. The user draws several contours in axial slices. The segmentation is ob-
tained by interpolating the contours in the frequency domain. The image itself
is not used.

In this work, a method is proposed that first detects the approximate shape.
This is carried out in three sub steps, which are visualized in Figure 1 (a-c).
In step (a), for each slice a detector that was trained from annotated data is
run to detect weighted candidate esophagus segments, which are modeled as
ellipses. An ellipse in visualized by its bounding box. These candidates are
clustered to find modes in the distribution (b). Candidates of a cluster are
merged into a weighted cluster center. A Markov chain model is then used
to find the most likely path through the cluster centers. Prior shape knowl-
edge is incorporated into the Markov chain by learning the transition proba-
bility distribution from a slice to the next from annotated data. In the final
step (d), a surface is generated from the detected sequence of ellipses. A de-
tector is trained offline to learn the boundary of the esophagus. The surface
is deformed along its normals and smoothed to adapt the mesh to the organ
boundary.
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2 Esophagus Segmentation

2.1 Ellipse Detection

To approximate the contour of the esophagus, an elliptical model was chosen as
it can be described by a relatively low dimensional parameter vector e

e = (x, y, θ, a, b) (1)

where x and y are the coordinates of the center within an axial slice, θ is the
rotation angle and a and b are the semi-major and the semi-minor axis, respec-
tively.

Recently developed techniques in discriminative learning [5] and search space
pruning based on learning in marginal spaces [6] enable a rapid detection of
candidate model instances. A probabilistic boosting tree (PBT) classifier was
trained with a large number of positive and negative examples to learn the tar-
get distribution p(m = 1|e,v) which describes the probability that e is a correct
model instance in the currently observed image v. In order to accelerate search,
a detector was also trained on the subspaces (x, y) and (x, y, θ) of the full pa-
rameter space e to learn the distributions p(m = 1|(x, y)) and p(m = 1|(x, y, θ)).
This allows to reject wrong model instances at an early stage. As feature pool,
a combination of 3D Haar-like and steerable features were used [6]. Haar-like
features are computed by convolving the image with box filter kernels of differ-
ent size, position and weight. They gain their power from speed as they can be
computed in constant time even for large kernels using an integral image. They
are called Haar-like because of their similarity to the Haar wavelets. Steerable
features are simple point features like intensity and gradient and nonlinear com-
binations of those evaluated at a certain sampling pattern, which is a regular
grid of size 7×7×3 in this case. The final output are the N best model instances
e(i), i = 1 . . .N together with a score ς(i) = p(m = 1|e(i),v) for each one.

In order to reduce subsequent search effort and to detect modes in the distri-
bution of the candidates, they are clustered using an agglomerative hierarchical
average-linkage clustering algorithm until a distance threshold dmax is reached,
which was set to 10mm in the experiments. The distribution is now represented
by the cluster centers c(1) . . . c(K) with weights σ(1) . . . σ(K), where the weight
σ(k) of cluster center k is the sum of weights of all members.

2.2 Inferring the Path

So far, the axial slices of the volume image were treated separately. Shape knowl-
edge is incorporated into a Markov chain model [7] of the esophagus, which is
used to infer the most likely path through the axial slices. A graph of the Markov
model used is depicted in Figure 2 (left). The variables s1 . . .sT correspond to
the axial slices of the image. Possible states of a variable st are the ellipses cor-
responding to the cluster centers c

(k)
t , k = 1 . . .Kt of slice t. Each state variable

st is conditioned on the observed image slice vt. In Figure 2 (right), the factor
graph [8] of the Markov model is shown. The clique potentials (or factors) of the
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Fig. 2. Markov chain model of the esophagus along with corresponding factor graph

observation cliques are denoted with Φt. They are set to the score of the cluster
centers:

Φt(c
(k)
t ,vt) = σ

(k)
t . (2)

The clique potentials Ψt between adjacent state variables st, st+1 represent the
prior shape knowledge. They are set to the transition distribution from one slice
to another:

Ψt(st, st+1) = p(st+1|st). (3)

To simplify the transition distribution, it was assumed that the transition of the
translation parameters x, y is statistically independent from the other parame-
ters. The same was assumed for the scale parameters. As the rotation parameter
θ is not well defined for approximately circular ellipses, the transition of rotation
also depends on the scale parameters, but independence was assumed for rotation
and translation parameters. With these assumptions, the transition distribution
can be factorized and becomes

p(st+1|st) = p(xt+1, yt+1|xt, yt)p(θt+1|θt, at, bt)p(at+1, bt+1|at, bt). (4)

The translation transition p(xt+1, yt+1|xt, yt) is modeled as a 2D normal distri-
bution N (Δx,Δy|Σp,mp) and the scale transition p(at+1, bt+1|at, bt) as a 4D
normal distribution N (at+1, bt+1, at, bt|Σs,ms). The variance of the rotation
transition highly increases with the circularity of the ellipse as θ becomes ar-
bitrary for a circle. Therefore, p(θt+1|θt, at, bt) is modeled with ten 1D normal
distributions, one for a certain interval of circularity, which is measured by the
ratio b

a :

p(θt+1|θt, at, bt) = N
(

Δθ
∣∣∣σr

(
b

a

)
,mr

(
b

a

))
. (5)

The parameters of all normal distributions were estimated from manually anno-
tated data.

The a posterior joint distribution of all states p(s1:T |v1:T ) is then given by
the product of all factors of the factor graph. The maximum a posteriori (MAP)
estimate

ŝ
(MAP)
1:T = argmax

s1:T

(
Φ1(s1,v1)

T∏
t=2

Φt(st,vt)Ψt−1(st−1, st)

)
(6)
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can be computed efficiently using the max-sum algorithm, which is a variant of
the sum-product algorithm [8].

2.3 Surface Generation and Refinement

After the MAP estimate of the path has been detected, the sequence of ellipses
is converted into a triangular mesh representation by sampling the ellipses and
connecting neighboring point sets with a triangle strip.

The cross-section of the esophagus is generally not an ellipse, and the path
obtained in section 2.2 often contains some inaccuracies. Therefore, the mesh
model is further refined to better fit the surface of the organ.

A PBT classifier was trained to learn the boundary of the esophagus. The
classifier uses steerable features as proposed in [6]. As for ellipse detection, the
steerable features are sampled on a regular grid, but now with a size of 5×5×9.
For each mesh vertex, the sampling pattern is placed so that the vertex is in
the center of the pattern and the longest axis points in direction of the mesh
normal. Now the pattern is moved along the normal to find the maximal detec-
tor response and the new position of the vertex. Finally, the surface is passed
through a Laplacian smoothing filter. This process of deformation and smoothing
is repeated for a certain number of iterations.

3 Results

The proposed method was evaluated on 117 CT scans of the thorax using three-
fold cross-validation. Manual segmentation was available for each dataset. The
spatial resolution of the datasets was typically 0.72× 0.72× 5mm3. Among the
scans, 34 were taken from patients suffering from lymphoma, which often causes
enlarged lymph nodes in the mediastinal region. In some datasets, the esopha-
gus contained remains of orally given contrast agent. For evaluation, the datasets
were cropped around the region of interest.

Accuracy.The accuracy of the segmentation was evaluated by comparing the
result with the annotated ground truth. Mean mesh-to-mesh distance and Haus-
dorff distance (maximal mesh-to-mesh distance) were used as error measures.
Results are shown in Table 1. First, results are compared after the path infer-
rence step with surface refinement turned off (rows one to six). Accuracy was
measured for N = 100 and N = 200 model instance candidates e(i), i = 1 . . .N .
Additionally to a Markov model with a Markov order of one (M = 1), mea-
surements for M = 0 and M = 2 are also included. As a 2nd order Markov
chain over some alphabet is equivalent to a first order chain over the alpha-
bet of 2-tuples, the model of Figure 2 was used also for the 2nd order case,
but with a state space that consists of 2-tuples and with adapted transition
probabilities.

While there is a noticeable improvement with N = 200 compared to N = 100,
the Markov order has very little influence on the numerical results. However, the
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Table 1. Accuracy of the registration in mm

Method mean error Hausdorff distance
M = 0, no refinement, N = 100 2.81 ± 1.19 15.5
M = 1, no refinement, N = 100 2.85 ± 1.31 15.6
M = 2, no refinement, N = 100 2.86 ± 1.30 15.8
M = 0, no refinement, N = 200 2.78 ± 1.12 15.2
M = 1, no refinement, N = 200 2.80 ± 1.30 15.1
M = 2, no refinement, N = 200 2.80 ± 1.26 15.0
M = 1, refinement, N = 100 2.35 ± 1.61 15.2
M = 1, refinement, N = 200 2.28 ± 1.58 14.5
Particle filtering, refinement, 1000 particles 4.84 ± 5.01 22.67

Table 2. The computation time in seconds is shown for the different steps of the
algorithm with M = 1. N denotes the number of model candidates.

Method Model detection path inferrence surface refinement total
N = 100 3.67 0.0073 0.26 3.94
N = 200 7.99 0.0069 0.26 8.26

results generated with the Markov model turned on (M = 1 and M = 2) are
visually more appealing because they are smooth and look more anatomically
reasonable. As M = 1 and M = 2 produce very similar results, M = 1 is
proposed as it does not introduce unnecessary complexity. The boundary refine-
ment step significantly improves the segmentation error (rows seven and eight
of Table 1). With N = 200 and M = 1, the proposed method gives a mean
segmentation error of 2.28mm with a standard deviation of 1.58mm and a mean
Hausdorff distance of 14.5mm. For comparison, the path of the esophagus was
also detected using a particle filter approach [9] (last row of Table 1). Particle
filtering is commonly used for tracking applications and is also becoming popular
to detect tubular structures [10,11]. The Markov chain approach gives consider-
ably better results because the image is searched exhaustively and thus it is far
less prone to tracking loss.

Performance. Computation time was measured for the different steps of the
algorithm. The results are summarized in Table 2. Time was measured on a
2.2GHz Intel Core2 Duo processor with 2GB of RAM on a volume of size 79×
96 × 50 voxels. Most of the time is spent on the model detection step, because
here the volume is exhaustively searched. Computation time of this step increases
linearly with the number N of candidates. In total, segmenting the esophagus
takes 3.94s for N = 100 and 8.26s for N = 200.

Figure 3 (a-b) shows the segmentation error as a function of the number
N of candidates and the number of surface refinement iterations. A value of
N = 200 is a good trade-off between accuracy and speed, and two refinement
iterations are a reasonable choice. Examples of segmentation results are displayed
in Figure 3 (c-e).
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Fig. 3. (a-b): Segmentation error as a function of the number N of model candidates
and the number of surface refinement iterations. (c-e): Examples of segmentation re-
sults. The boxes are bounding boxes of ellipses and visualize the inferred approximate
shape. The final result after mesh generation and boundary deformation if shown in
blue. In (e), the green semitransparent surface is the ground truth segmentation.
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4 Discussion

The contribution of this work is twofold. First, the well known MAP framework for
Markov chains is combined with the powerful detector based on the PBT classifier
with Haar-like and steerable features [6]. Second, the method is extended with a
boundary detector and applied to the problem of automatic esophagus segmenta-
tion, which is challenging due to the versatile shape and appearance of the organ.

With a mean segmentation error of 2.28mm, the proposed method has a good
accuracy. Exhaustive search combined with a Markov model can well handle
regions with clutter and low contrast. Compared to particle filtering based tech-
niques, it is far less prone to tracking loss. Furthermore the method is fully au-
tomatic and very fast with a computation time of 8.3s. It can be easily adapted
to other tubular structures like the spinal canal or larger vessels.

In the future we will consider to integrate more prior knowledge into the
boundary refinement process. A local model seems most appropriate because
otherwise cases where the esophagus is only partially visible cannot be easily
handled any more.

References

1. Duwe, B.V., Sterman, D.H., Musani, A.I.: Tumors of the mediastinum.
Chest 128(4), 2893–2909 (2005)

2. Rousson, M., Bai, Y., Xu, C., Sauer, F.: Probabilistic minimal path for automated
esophagus segmentation. In: Proceedings of the SPIE, vol. 6144, pp. 1361–1369
(2006)

3. Huang, T.C., Zhang, G., Guerrero, T., Starkschall, G., Lin, K.P., Forster, K.: Semi-
automated ct segmentation using optic flow and fourier interpolation techniques.
Comput. Methods Prog. Biomed. 84(2-3), 124–134 (2006)
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Abstract. Automatic segmentation of structures with missing or in-
visible borders is a challenging task. Since structures in the lungs are
related, humans use contextual and shape information to infer the po-
sition of invisible borders. An example of a task in which the
borders are often incomplete or invisible is the segmentation of the pul-
monary lobes. In this paper, a fully automatic segmentation of the pul-
monary lobes in chest CT scans is presented. The method is especially
designed to be robust to incomplete fissures by incorporating contextual
information from automatic lung, fissure, and bronchial tree segmen-
tations, as well as shape information. Since the method relies on the
result of automatic segmentations, it is important that the method is
robust against failure of one or more of these segmentation methods.
In an extensive experiment on 10 chest CT scans with manual seg-
mentations, the robustness of the method to incomplete fissures and
missing input segmentations is shown. In a second experiment on 100
chest CT scans with incomplete fissures, the method is shown to per-
form well.

1 Introduction

In medical images, structures are often incomplete, missing, or barely visible,
so that they cannot be detected reliably by computer algorithms. In the lungs,
anatomical structures are related; the position and shape of one anatomical
structure provides information about the possible positions and shapes of other
anatomical structures. Therefore, when the borders of structures in the lungs
are not visible, human experts infer the position of the borders using anatomical
cues in a flexible manner.

An example of a segmentation task for which the borders are often missing or
hard to detect automatically is the segmentation of the pulmonary lobes. The
human lungs are divided into five lobes, there are three lobes in the right lung
and two in the left lung. The physical border between the lobes are the pul-
monary fissures, the major fissures separate the upper and lower lobes in both
lungs, the minor fissure in the right lung separates the middle lobe from the
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upper lobe. Several studies have shown that incomplete pulmonary fissures are a
very frequent phenomenon [1]. In this work we present a method for automatic
segmentation of the pulmonary lobes from computed tomography (CT) scans.
Our method combines multiple anatomical cues to arrive at a segmentation, in
an attempt to mimic the flexibility of human image understanding. A few pa-
pers concerning segmentation of pulmonary lobes have been published [2],[3],[4].
However, none of those papers present a completely automatic method for lobe
segmentation in cases with incomplete fissures. In [4], a lobe segmentation in
cases with incomplete fissures is presented that requires manual interaction in
25% of the cases.

Since fissures are often incomplete or hard to locate automatically, deriv-
ing a lobe segmentation from a fissure segmentation is not trivial. There are
several alternatives that can be used to infer the lobe borders. Important in-
formation can be extracted from the segmentation of the lungs since the shape
of the lobes is constrained by the shape of the lungs. In addition, the topol-
ogy of the bronchial tree can be exploited. The different lobes are separately
supplied by the first subdivisions of the bronchial tree after the main bronchi.
Therefore, given a division of the bronchial tree into its lobar bronchi, a seg-
mentation of the pulmonary lobes can be approximated by assigning each voxel
inside the lungs to the lobar label of the nearest bronchus. Next to anatomical
information, knowledge about the shape of the various lobes can be used. Ra-
diologists combine all this information when they infer the lobar boundary in a
CT scan.

We present a multi-atlas approach in which existing lobar segmentations are
deformed to unseen test scans in which the fissures, as far as possible, the lungs,
and the airway tree have been segmented. The key element of our method is
the design of a cost function that exploits information from fissures, airway tree,
and lung border in an effective way, such that less reliable information (lungs,
airways) is only used when the most reliable information (fissures) is missing. To
cope with the anatomical variation in the shapes of the lobes, an atlas selection
mechanism is introduced.

The proposed method is fairly complex, in the sense that it requires the out-
put of three segmentation algorithms as input. Each of these three tasks is not
trivial by itself, therefore, it is likely that they will fail occasionally. Moreover,
the most important information, derived from the detection of fissures, is often
incomplete due to fissural incompleteness. Therefore, we carefully evaluate in
this paper how robust the proposed method is to fissural incompleteness and
missing lung, airway tree, and fissure segmentations. This also serves as a vali-
dation of the rationale of our approach: if these three structures in concert are
indeed all important to infer the position of the lobar borders, leaving out any
of this information should decrease the performance of the method. In an ad-
ditional experiment on 100 chest CT scans, the performance of the method is
evaluated.
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2 Method

2.1 Overview

A multi-atlas lobe segmentation method was developed in which information
from scans with complete fissures is transformed to a test scan to obtain an
anatomically plausible lobe segmentation in the test scan. Since registering chest
CT scans from different subjects directly does not lead to satisfactory results
due to anatomical variations, anatomical information obtained from automatic
segmentations of the lungs, the fissures, and the bronchial tree are employed
during registration. The method requires a set of atlases with segmentations
of the lung borders, fissures, and lobes to be available (Section 3). For a test
image, the method consists of the following 5 steps: 1) the lung borders, fissures,
and airway tree are segmented. 2) the most appropriate atlas is automatically
selected. 3) the most appropriate atlas is registered to the test scan. 4) the lobe
segmentation is propagated. 5) the result is post processed.

2.2 Prerequisite Segmentations

The method starts by segmenting the lung borders, fissures, and approximated
lobe borders from the bronchial tree in the test image. The lung, fissure, and
bronchial tree segmentations applied in this paper are all based on previous work
([5], [6], [7]) and are therefore not described here. From the segmentation of the
lungs, the lung borders are extracted as those voxels in the lung segmentation
for which one of the 8-connected neighbors is outside the lung segmentation. The
segmentation of the bronchial tree is used to approximate the lobe borders. The
method described by [7] provides the anatomical labels for airway branches up
to segmental level. From these anatomical labels, the lobar label of each airway
segment is know. Given this labeled airway, the lobes can be approximated by
assigning each voxel in the lungs to the lobar label of the closest bronchi. Ap-
proximated lobar boundaries are extracted as those voxels for which one of the
8-connected neighbors in the lungs belongs to another lobe. The approximated
lobe borders are illustrated in Figure 1.

Fig. 1. Illustration of the approximated lobe borders from the bronchial tree. The
frames show the original slice, a rendering of the airways, the approximated lobes, and
the approximated lobe borders, respectively.
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2.3 Multi-atlas Lobe Segmentation

For the multi-atlas lobe segmentation it is assumed that a set of n atlases with
complete pulmonary fissures and corresponding segmented lungs, fissures, and
lobes are available (Section 3). For a test scan in which the lungs, fissures, and
airways have been automatically segmented, the following steps are performed:
1) the test image and atlases are prepared for registration. 2) all atlases are
registered to the test scan using a fast registration and the most promising atlas
is selected for further processing. 3) the lobes in the test scan are segmented by
accurately registering the selected atlas and propagating the lobe labels with the
resulting transformation, followed by a postprocessing.

Registration. In this paper elastix1 version 3.9 was used for registration. The
atlas-based lobe segmentation requires two registration methods to be available:
a fast (computationally cheap) method which is used to select the atlas that
is most similar to the test image, and an accurate (computationally expensive)
method which transforms an atlas image to a target image with high accuracy
for the final lobe segmentation. For both the fast and the accurate registration
SSD was used as a similarity measure. The images were first roughly aligned
with an affine transformation, followed by a non-rigid registration modeled by B-
splines. The difference between the fast and accurate registration is the number of
iterations used per resolution for the non-rigid registration: five resolutions were
used, the fast registration performed 100 iterations per resolution, the accurate
registration performed 600 iterations per resolution.

Input to Registration. The registration is performed for two images simulta-
neously: one image containing the lung border and the other image containing
the fissure segmentations. The cost function is calculated as a combination of
both registrations, giving them both equal weight. Since registration involves
an optimization towards a minimum of the similarity measure, not the binary
segmentations are used as input but the distance transform to those segmenta-
tions. This smoothes the cost function and ensures that the method is gradually
attracted to the correct position. The distance transforms to the different struc-
tures are cut off at 14 mm. For the test image, the fissure segmentations are
augmented with the approximated lobe border from the bronchial tree only on
positions where the fissures are not defined. This is achieved as follows: The
distance transforms to the fissures and the approximated lobe borders are calcu-
lated separately. Next, the values of the distance transform to the approximated
lobe border are added to the distance transform of the fissures only on those
positions where the fissure distance transform is not defined.

Since SSD is used as a cost function, different structures can be given different
weights during registration by multiplying their values by a weighing factor. For
the lobe segmentation, three parameters are introduced controlling the weights
of the different structures: ωf for the fissure, ωl for the lung border, and ωb for
the bronchial tree. The appropriate values for the different weights were found
1 elastix is publicly available at http://elastix.isi.uu.nl.
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to be ωf = 4, ωl = 1, and ωb = 1. This setting ensures that the fissures, when
available, are the most important information used during the registration.

Atlas Selection. An atlas selection is performed in which the atlas that is
anatomically most similar to the test scan is automatically selected. For this
atlas selection, all atlases are registered to the test scan using fast registration,
and the fissure segmentation of the atlases are transformed. The most promising
atlas for the lobe segmentation of a particular test scan is the scan for which the
fissures of the transformed scan line up best with the fissures of the test scan.
The atlas with the highest number of voxels of the transformed fissure within 1
mm of the fissure in the test scan is selected to be the most promising atlas for
further processing.

Lobe Segmentation. The lobes in the test scan are now segmented by register-
ing the selected atlas to the test scan using accurate registration, and transform-
ing the lobe segmentation available for the atlas to the test image. This results
in a lobe segmentation for the test image. Since the lung borders of the atlas and
test image are not forced to line up during the registration, a post processing is
necessary. Every voxel inside the lung segmentation of the test image that is not
assigned to a lobe after the transformation of the atlas lobes, is given the label
of the closest voxel in the transformed lobe segmentation.

3 Materials and Experiments

Atlases. A set of five atlases with complete pulmonary fissures was taken from
a lung cancer screening trial with low dose CT [8]. The lungs and fissures in the
atlases were automatically segmented. The results of the automatic methods were
visually checked and edited where needed by a human observer. Since the fissures
in the test scans were complete, a lobe segmentation was extracted directly from
the segmented fissures.

Test Data. Two test sets have been used in this paper, which we will refer to as
test set A and test set B. Test set A contains 10 normal dose (120 kV, 100 to 150
mAs) inspiration CT chest scans of 10 different patients. The scans were selected
to show (nearly) complete fissures in one of the lungs (visually confirmed). A
human observer manually indicated the fissures in every fourth coronal slice.
Test set B contains 100 low dose scans, selected by visual inspection to contain
substantially incomplete fissures. All scans were reconstructed to 512 × 512
matrices, slice thickness 1 mm. To evaluate the performance and robustness of
the automatic lobe segmentation three different experiments were performed:

1) To quantify the robustness of the automatic lobe segmentation to different
levels of incomplete pulmonary fissures, an evaluation was performed on the
scans from test set A. An experiment was setup in which parts of fissures were
automatically removed to simulate the fissures being incomplete, for each lung,
for each fissure separately. For a scan with complete fissures, the fissure was
automatically segmented. Next, a part of the fissure was automatically removed
from the hilum inward to mimic a scan with an incomplete fissure. Since the lobe
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Table 1. Mean distance (mm) between the manually drawn lobe border (complete
fissure) and the automatically found lobe border for different percentages of the fissure
removed, for different settings of the weights ωf , ωl, and ωb

ωf -ωl-ωb setting 0% 10% 20% 30% 40% 50% 60% 70%

Left major fissure

4-1-1 all structures 0.51 0.54 0.63 0.70 0.93 1.10 1.58 1.81
4-1-0 no airways 0.52 0.59 0.83 0.94 1.17 1.64 3.02 3.94
4-0-1 no lungs 0.48 0.56 0.67 0.73 0.99 1.27 1.68 1.99
0-1-1 no fissures 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52
4-0-0 only fissures 0.49 0.57 0.84 1.06 1.31 1.89 3.73 5.47
0-1-0 only lungs 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47
0-0-1 only airways 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28

Right major fissure

4-1-1 all structures 1.22 1.32 1.54 1.79 2.18 2.56 3.22 3.71
4-1-0 no airways 1.25 1.39 1.70 2.13 2.83 3.76 5.28 7.31
4-0-1 no lungs 1.21 1.34 1.57 1.78 2.08 2.58 3.31 3.90
0-1-1 no fissures 6.33 6.33 6.33 6.33 6.33 6.33 6.33 6.33
4-0-0 only fissures 1.25 1.41 1.74 2.15 2.70 3.66 5.41 7.52
0-1-0 only lungs 6.62 6.62 6.62 6.62 6.62 6.62 6.62 6.62
0-0-1 only airways 6.31 6.31 6.31 6.31 6.31 6.31 6.31 6.31

Right minor fissure

4-1-1 all structures 1.08 1.02 1.37 2.00 2.60 3.38 4.61 5.90
4-1-0 no airways 1.08 1.07 1.61 2.30 3.21 4.15 6.56 8.06
4-0-1 no lungs 1.06 1.02 1.38 1.98 2.68 3.40 4.81 6.11
0-1-1 no fissures 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23
4-0-0 only fissures 1.07 1.04 1.58 2.24 3.03 4.05 6.60 8.20
0-1-0 only lungs 6.93 6.93 6.93 6.93 6.93 6.93 6.93 6.93
0-0-1 only airways 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23

segmentation method does not use the original CT data, it does not benefit from
the fact that the fissure is actually complete. For the experiment, 10, 20, . . . 70%
of the fissures were removed. Both for the left and the right lung, six of the scans
showed complete fissures and were used for this experiment. The mean distance
between the manually defined fissures and the automatically determined lobe
border was used as an evaluation measure.

2) To investigate the robustness of the method against missing lung, fissure,
or airway segmentations, the first experiment was repeated using different set-
tings for the weights ωf , ωl, and ωb. The settings used are given in Table 1.
For example, setting ωf = 4, ωl = 1, ωb = 0, does not take into account the
approximated lobe border from the bronchial tree during the segmentation.

3) To evaluate the performance of the automatic lobe segmentation in a large
set of scans, an observer study was setup in which a radiologist visually scored
the performance of the lobe segmentation method for test set B. Each lobe border
was scored to be correct, almost correct, or incorrect.
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4 Results

In Table 1 the results for the first and second experiment are provided. Example
output of the lobe segmentation for different percentages of fissures removed are
provided in Figure 2. The results of the observer study in test set B were as
follows: for the left major fissure, 79% of the lobe borders were scored as correct,
the other 21% as almost correct. For the right major fissure and right minor
fissure those numbers are 89%, and 11%, and 76%, and 22% respectively. For
the right minor fissure two lobe borders were scored as incorrect. In both cases,
the fissure was completely absent.

Fig. 2. Example output of the experiment in which parts of fissures were automatically
removed to test the robustness of the automatic lobe segmentation against incomplete
fissures. The first row shows the original image with the fissure segmentations, in the
second row the resulting lobe segmentations are shown. The first column shows the
ground truth. The next columns show the results for 0%, 10%, 30%, 50%, and 70% of
the fissures removed, respectively.

5 Discussion and Conclusion

Complete fissures are rare, which makes automatic lobe segmentation challeng-
ing. In this paper, a completely automatic lobe segmentation method robust
against the presence of incomplete pulmonary fissures was presented. By using
an atlas based approach in which information from scans with complete fissures
are transformed to test scans with incomplete fissures, the fissures are extended
in an anatomically plausible manner. The methodology applied in this paper
is similar to the methodology humans use when segmenting lobes manually:
when the fissures are complete, they define the lobe borders. When no fissure is
present, knowledge about the shapes of the various lobes as well as anatomical
information, such as the bronchial tree, are used.

The results of the first two experiments clearly show that the presented auto-
matic lobe segmentation performs well in cases with incomplete fissures. From
Table 1 it can be seen that even when 70% of the fissures were removed, the
automatically extracted lobe border was still within 4 mm of the real lobe bor-
der for the major fissures and within 6 mm for the right minor fissure, which
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are clinically acceptable results. The accuracy of the automatic lobe segmenta-
tion gradually decreases when less fissures are present. In addition, the results
shown in Figure 2 show that the lobe segmentation remains similar to the lobe
segmentation with complete fissures even after removing 70% of the fissure.

The results in Table 1 also show the contribution of the different segmented
structures used during registration. The first observation that can be made is
that when the fissures are complete, they provide enough information to obtain
an accurate lobe segmentation. Secondly, it can be seen that adding the approxi-
mated lobe border from the bronchial tree where fissures are incomplete leads to
better performance: for all fissures, the performance decreases when ωb is set to
0. In addition, when only the approximated lobe border from the bronchial tree
is used, the average error is still within 7 mm for each fissure, indicating that
it is a reasonable approximation of the position of the true lobe border. From
Table 1 it can also be appreciated that the method is in general robust against
missing input segmentations.

Overall, using the fissures, lungs, and bronchial tree as input gave the best
results. Which confirm the rational behind our method that combining informa-
tion from the fissures, lungs, and airways leads to superior results. This setting
was used for a visual evaluation in the 100 scans from test set B. This evalua-
tion showed that a radiologist agreed with the automatic result in 81% of the
cases on average, only for two cases, only for the minor fissure, the segmentation
was judged as incorrect. It is important to realize the difficulty of the task of
automatic lobe segmentation with incomplete fissures. The scans in test set B
were selected to show substantially incomplete fissures. As a comparison, Ukil et
al [4] performed a similar evaluation for scans with incomplete fissures in which
40% of the lobe segmentations were judged as correct.

To conclude, an automatic lobe segmentation method was presented that was
specifically designed to be robust against incomplete fissures by incorporating
contextual information from automatic segmentations of other anatomical struc-
tures. Next to good performance in cases with incomplete fissures, the method
was shown to be able to handle missing input segmentations.

References

1. Aziz, A., Ashizawa, K., Nagaoki, K., Hayashi, K.: High resolution CT anatomy of
the pulmonary fissures. Journal of Thoracic Imaging 19(3), 186–191 (2004)

2. Kuhnigk, J.M., Dicken, V., Zidowitz, S., Bornemann, L., Kuemmerlen, B., Krass,
S., Peitgen, H.O., Yuval, S., Jend, H.H., Rau, W.S., Achenbach, T.: New tools for
computer assistance in thoracic CT part 1. Functional analysis of lungs, lung lobes
and bronchopulmonary segments. Radiographics 25(2), 525–536 (2005)

3. Zhang, L., Hoffman, E.A., Reinhardt, J.M.: Atlas-driven lung lobe segmentation in
volumetric x-ray CT images. IEEE Transactions on Medical Imaging 25(1), 1–16
(2006)

4. Ukil, S., Reinhardt, J.M.: Anatomy-guided lung lobe segmentation in x-ray CT
images. IEEE Transactions on Medical Imaging 28(2), 202–214 (2009)



Automatic Segmentation of the Pulmonary Lobes 271

5. van Rikxoort, E.M., de Hoop, B., Viergever, M.A., Prokop, M., van Ginneken, B.:
Automatic lung segmentation from thoracic ct scans using a hybrid approach with
error detection. Medical Physics 36(7) (2009)

6. van Rikxoort, E.M., van Ginneken, B., Klik, M.A.J., Prokop, M.: Supervised en-
hancement filters: application to fissure detection in chest CT scans. IEEE Trans-
actions on Medical Imaging 27(1), 1–10 (2008)

7. van Ginneken, B., Baggerman, W., van Rikxoort, E.M.: Robust segmentation and
anatomical labeling of the airway tree from thoracic CT scans. In: Metaxas, D.,
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Abstract. Spatial priors, such as probabilistic atlases, play an impor-
tant role in MRI segmentation. However, the availability of comprehen-
sive, reliable and suitable manual segmentations for atlas construction
is limited. We therefore propose a joint segmentation of corresponding,
aligned structures in the entire population that does not require a proba-
bility atlas. Instead, a latent atlas, initialized by a single manual segmen-
tation, is inferred from the evolving segmentations of the ensemble. The
proposed method is based on probabilistic principles but is solved using
partial differential equations (PDEs) and energy minimization criteria.
We evaluate the method by segmenting 50 brain MR volumes. Segmen-
tation accuracy for cortical and subcortical structures approaches the
quality of state-of-the-art atlas-based segmentation results, suggesting
that the latent atlas method is a reasonable alternative when existing
atlases are not compatible with the data to be processed.

1 Introduction

Probabilistic atlases are crucial for most MR segmentation methods due to the
absence of well defined boundaries. Derived from comprehensive sets of manually
labeled examples, atlases provide statistical priors for tissue classification and
structure segmentation [1,9,13,14,18]. Although atlas-based segmentation meth-
ods often achieve accurate results, the need for spatial priors can be problematic.
First, the availability of suitable atlases is limited since manual segmentation of a
significant number of volumes requires expensive effort of an experienced physi-
cian. Second, the suitability of existing atlases for images from different popula-
tions is questionable. Examples include using normal adult brain atlas for brain
parcellation of young children or patients with severe brain pathologies.

Recently, a few methods have been proposed to reduce or avoid the dependency
on possibly incompatible atlases. In the atlas-based segmentation method in [3],
topological constraints are used to avoid possible bias introduced by the atlas.
In [19], manually labeled structures are used to support the automatic segmen-
tation of neighboring structures within the same image. Tu et al. [17] propose a
discriminative approach for the segmentation of adjacent brain structures using
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a set of discriminative features learned from training examples. Lord et al. [11]
suggest a group-wise smoothing, segmentation and registration method for cross
sectional MR scans. Bhatia et al. [5] update an initial atlas constructed from a
different population using the evolving segmentations of multiple images.

Here we propose and demonstrate a method that does not use a set of training
images or probabilistic atlases as priors. Instead we extract an ensemble of cor-
responding structures simultaneously. The evolving segmentation of the entire
image set supports each of the individual segmentations. In practice, a subset
of the model parameters, called the spatial parameters, is inferred as part of
the joint segmentation processes. These latent spatial parameters, which can
be viewed as a ‘dynamic atlas’, are estimated exclusively from the data at hand
and a single manual segmentation. The latent atlas is used as a Markov Random
Field (MRF) prior on the tissue labels. The main novelty of the method with
respect to other group-wise segmentation methods such as [11,5] is the consistent
statistically-driven variational framework for MR ensemble segmentation.

Our contribution is two-fold. We introduce a level set framework, that is
based on probabilistic principles, in which segmentation uncertainty is expressed
by the logistic function of the associated level set values, similar to [15]. We
then use it for group-wise segmentation. We evaluate our method by segmenting
the amygdala, temporal gyrus and hippocampus in each hemisphere in 50 MR
brain scans. The dice scores achieved by our method approach the atlas-based
segmentation results of [14].

2 Problem Definition and Probabilistic Model

Our objective is to segment a particular structure or region of interest in N
aligned MR images. Specifically, we consider the 2-partition problem where each
voxel in image In (n = 1 . . .N) is assigned to either the foreground (structure of
interest) or the background.

Let each image In:Ω → R+, be a gray level image with V voxels, defined on
Ω ⊂ R3 and Γn:Ω → {0, 1} be the unknown segmentation of the image In. We
assume that each Γn is generated iid from a probability distribution p(Γ | θΓ )
where θΓ is a set of unknown parameters. We also assume that Γn generates
the observed image In, independently of all other image-segmentation pairs,
with probability p(In|Γn, θI,n) where θI,n are the parameters corresponding to
image In. We assign a specific set of intensity parameters to each image since
the acquisition conditions might vary across subjects.

Let {I1 . . . IN} be the given set of aligned images that form the observed vari-
able in our problem and let Γ = {Γ1 . . . ΓN} be the corresponding segmentations.
The joint distribution p(I1 . . . IN , Γ1 . . . ΓN |Θ) is governed by the composite set of
parameters Θ = {θΓ , θI,1 . . . θI,N}. Our goal is to estimate the segmentations Γ .

We jointly optimize for the segmentations Γ and the parameters Θ, assuming
that I1 . . . IN are independent:

{Θ̂, Γ̂} = arg max
{Θ,Γ}

log p(I1 . . . IN , Γ1 . . . ΓN ;Θ) (1)
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= arg max
{Θ,Γ}

N∑
n=1

log p(In, Γn;Θ) (2)

= arg max
{Θ,Γ}

N∑
n=1

[log p(In| Γn; θI,n) + log p(Γn; θΓ )] . (3)

We propose to alternate between estimating the maximum a posteriori (MAP)
segmentations and updating the model parameters. For a given value of the
model parameters Θ̂, Equation (3) implies that the segmentations can be esti-
mated by solving N separate MAP problems:

Γ̂n = argmax
Γn

[log p(In| Γn; θI,n) + log p(Γn; θΓ )] . (4)

We then fix Γ̂ and estimate the model parameters Θ = {θΓ , θI,1, . . . θI,N} by
solving two ML problems:

θ̂I,n = arg max
θI,n

log p(In| Γn, θI,n) (5)

θ̂Γ = argmax
θΓ

N∑
n=1

log p(Γn| θΓ ). (6)

In the following sections we present a level-set framework that is motivated by
this probabilistic model. We reformulate the estimation problem stated in Eq. (4)
such that the soft segmentations p(Γn) rather then the Γn are estimated.

3 Probabilistic View of the Level Set Framework

Now we draw the connection between the probabilistic model presented above
and the level set framework for segmentation. Let φn:Ω → R denote a level set
function associated with image In. The zero level Cn = {x ∈ Ω| φn(x) = 0}
defines the interface between the partitions of In. Vese and Chan [6] represent
the image partitions by a regularized variant of the Heaviside function of φn,
e.g., H̃ε(φn) = 1

2 (1 + 2
π arctan(φn

ε )). Alternatively, we can use the hyperbolic
tangent to achieve the same goal:

H̃ε(φn) =
1
2

(
1 + tanh

(
φn

2ε

))
=

1
1 + e−φn/ε

. (7)

For ε = 1, the function H̃ε(·) is the logistic function. Similar to [15], we define the
level set function φn using the log-odds formulation instead of the conventional
signed distance function:

φn(x) � ε logit(p) = ε log
p(x ∈ w)

1− p(x ∈ ω)
= ε log

p(x ∈ ω)
p(x ∈ Ω \ ω)

. (8)
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The scalar ε determines the scaling of the level set function φn with respect to
the ratio of the probabilities. Substituting this definition into Eq. (7) we obtain

H̃ε(φn(x)) =
1

1 + p(x ∈ Ω \ ω)/p(x ∈ ω)
= p(x ∈ ω), (9)

which implies that the function H̃ε(φn(x)) can be viewed as the probability that
the voxel in location x belongs to the foreground region. The functions H̃ε(φn(x))
and H(φn(x)) therefore represent soft and hard segmentations, respectively. To
simplify the notation we omit the subscript ε in the rest of the paper.

In the following subsections we relate the terms in Eq. (3) to the energy terms
in the classical level set functional.

3.1 Image Likelihood Term

Let us first consider the image likelihood term in Eq. (3):

log p(In| Γn, θ̂I,n) =
∑

{v|Γ v
n=1}

log pin(Iv
n; θI,n) +

∑
{v|Γ v

n=0}
log pout(Iv

n; θI,n), (10)

where pin and pout are the probability distributions of the foreground and back-
ground image intensities, respectively.

Let EI
∼= − log p(In| Γn, θ̂I,n) define the energy term associated with the

image likelihood term. Using the level-set formulation and replacing the binary
labels Γn in Eq. (10) with a soft segmentation represented by H̃(φn), we get:

EI(φn, Θ) =−
∫

Ω

[
log pin(In; θI,n)H̃(φn(x))+log pout(In; θI,n)H̃ (−φn(x))

]
dx.

(11)
If we use, for example, Gaussian densities for pin and pout we get the familiar
minimal variance term [6,12]. Here, we use a Gaussian mixture to model the
background, as described later in the paper.

3.2 Spatial Prior Term

We define the prior probability p(Γn| θΓ ) to be a Markov Random Field (MRF):

p(Γn|θΓ ) =
1

Z(θΓ )

V∏
v=1

(θv
Γ )Γ v

n (1− θv
Γ )(1−Γ v

n )e−f(Γ v
n ,ΓN(v)

n ), (12)

where Z(θΓ ) is the partition function and N (v) are the closest neighbors of
voxel v. The function f(·) accounts for the interactions between neighboring
voxels. If we omit the pairwise term in Eq. (12), the prior on segmentations
p(Γn|θΓ ) reduces to a Bernoulli distribution, where the parameters θΓ represent
the probability map for the structure of interest. The introduction of the pair-
wise clique potentials complicates the model but encourages smoother labeling
configurations.
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Using the continuous level set formulation with soft segmentation, we define
the spatial energy term. as follows:

ES(φn, Θ) = −
∫

Ω

[
log θΓ (x)H̃(φn(x)) + log(1 − θΓ (x))H̃(−φn(x))

]
dx (13)

As in [4] we ignore the partition function, approximating the MRF model above.
The logarithm of the pairwise clique potential term f(·) can be configured
to act as a finite difference operator approximating the gradient of Γn at the
voxel v [10]. It can be therefore viewed as an approximation of the continuous
term

ELEN(φn) =
∫

Ω

|∇H̃(φn(x))|dx, (14)

which is the commonly used smoothness constraint as reformulated in [6].

3.3 The Unified Energy Functional

We now construct the cost functional for φ1 . . . φN and the parameters Θ by
combing Eqs. (11),(13) and (14):

E(φ1 . . . φN , Θ) = γELEN + βEI + αES , (15)

where α = 1−β− γ. As in [16] we tune the weights such that the contributions
of the energy terms ELEN, EI and ES to the overall cost are balanced.

4 Alternating Minimization Algorithm

We optimize the unified functional (15) in a set of alternating steps. For fixed
model parameters Θ, the evolution of each of the level set functions φn follows
the gradient descent equation:

∂φn

∂t
= δ̃(φn)

{
γ div (

∇φn

|∇φn|
) + β

[
log pin(In(x); θ̂I,n)− log pout(In(x); θ̂I,n)

]
+ α

[
log θ̂Γ − log(1− θ̂Γ )

]}
, (16)

where δ̃(φn) � δ̃ε(φn) = dH̃ε(φn)
dφn

is the derivative of the Heaviside function, i.e.,

δ̃ε(φn) =
1
2ε

sech(
φn

2ε
) =

1
ε cosh(φn

ε )
.

For fixed segmentations φn the model parameters are recovered by differentiating
the cost functional (15) with respect to each parameter.
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4.1 Intensity Parameters

We assume that the intensities of the structure of interest are drawn from a
normal distribution, i.e., pin(In; θI,n) = N (In;μn, σ2

n). The distribution mean
and variance of the foreground region of In are updated at every iteration. The
intensities of the background tissues are modeled as a K-Gaussian mixture:

pout(In; θI,n) = GMM(μ1
n · · ·μK

n , σ1
n · · ·σK

n , w1
n · · ·wK

n ),

where wk
n is the mixing proportion component k in the mixture. The Gaus-

sian mixture model parameters are estimated using expectation maximization
(EM) [7].

4.2 Spatial Parameters

We estimate the spatial function θΓ (x), constructing a dynamically evolving
latent atlas, by optimizing the sum of the energy terms the depend on θΓ :

θ̂Γ =arg max
θΓ

N∑
n=1

∫
Ω

[H̃(φn(x)) log(θΓ (x)) + (1− H̃(φn(x))) log(1 − θΓ (x))]dx,

yielding θ̂Γ (x) = 1
N

∑N
n=1 H̃(φn(x)).

5 Experimental Results

We test the proposed approach on 50 MR brain scans. Some of the subjects in
this set are diagnosed with the first episode schizophrenia or affective disorder.
The MR images (T1, 256× 256× 128 volume, 0.9375× 0.9375× 1.5mm3 voxel
size) were acquired by a 1.5-T General Electric Scanner. The data was origi-
nally acquired for brain morphometry study [8]. In addition to the MR volumes,
manual segmentations of three structures (superior temporal gyrus, amygdala,
and hippocampus) in each hemisphere were provided for each of the 50 indi-
viduals and used to evaluate the quality of the automatic segmentation results.
MR images are preprocessed by skull stripping. The volumes were aligned using
B-spline registration according to [2].

Assuming that the manual segmentation of a single instance is given, we ini-
tialize the latent atlas θΓ by the Heaviside function of a single manual segmenta-
tion smoothed with a Gaussian kernel of width σ (σ = .35 in our experiments).
We ran the experiments twice, initializing the level-set functions of the signed
distance function of the given manual segmentation or a sphere, with center and
radius corresponding to the manually segmented structure. The results obtained
using the first mode of initialization were slightly better. We excluded the image
associated with the given manual segmentations from the ensemble. The algo-
rithm was implemented in Matlab and ran on the average 7.5 minutes for 50
cropped volumes, excluding the time of the initial estimate of the background
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Fig. 1. The mean and standard deviation of the Dice scores calculated for six structures
in the ensemble. The latent atlas segmentation (green) is compared to the atlas-based
segmentation (blue) reported in [14] and to the segmentation obtained by using a single
manual segmentation as an atlas (red).

Coronal Sagittal Axial Atlas Coronal
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Fig. 2. Three cross-sections of 3D segmentations of Hippocampus, Amygdala and Su-
perior Temporal Gyrus in the left and right hemispheres. Automatic segmentation is
shown in red. Manual segmentation is shown in blue. Fourth column: Coronal views of
the resulting atlases for each pair of structures.

intensity of the Gaussian mixture. About 7 iterations were needed until conver-
gence which was obtained when the update of the level-set functions did not
induce changes in the corresponding boundaries.
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We used the Dice score to evaluate segmentations. The results are shown in
Figure 1. In contrast to [14] we do not use spatial priors, neither do we use hier-
archical multi-stage segmentation model. Nevertheless, the Dice scores obtained
by our method approache the state-of-the-art atlas-based segmentation results
reported there. To exemplify the significance of a latent atlas, generated concur-
rently with the segmentation, we also show a comparison to the segmentation
results obtained by using an atlas constructed from a single manual segmentation
smoothed by a Gaussian kernel, without the update procedure. Figure 2 shows
segmentation examples of the three pairs of structures in representative individ-
ual brains. Coronal views of the resulting 3D atlases for each pair of structures
are shown in the fourth column of Figure 2.

6 Discussion and Conclusions

We presented a level set framework for segmentation of MR image ensembles,
that is motivated by a generative probabilistic model. Unlike most previous
methods, we do not use spatial priors in the form of a probabilistic atlas. Instead,
spatial latent parameters, which form a ‘dynamic atlas’, are inferred from the
data set through an alternating minimization procedure.

The quality of the segmentation results obtained for ensembles of brain struc-
tures shows that the proposed method presents a reasonable alternative to stan-
dard segmentation techniques when a compatible atlas is not available.

An on-going research is now conducted to demonstrate the ability of the
proposed algorithm to handle pathological cases (e.g., in a longitudinal or a
multimodal study) where the atlas-based approach still fails.
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Abstract. We propose a novel parametric deformable model controlled
by shape and visual appearance priors learned from a training subset
of co-aligned medical images of goal objects. The shape prior is derived
from a linear combination of vectors of distances between the training
boundaries and their common centroid. The appearance prior considers
gray levels within each training boundary as a sample of a Markov-Gibbs
random field with pairwise interaction. Spatially homogeneous interac-
tion geometry and Gibbs potentials are analytically estimated from the
training data. To accurately separate a goal object from an arbitrary
background, empirical marginal gray level distributions inside and out-
side of the boundary are modeled with adaptive linear combinations of
discrete Gaussians (LCDG). Due to the analytical shape and appearance
priors and a simple Expectation-Maximization procedure for getting the
object and background LCDG, our segmentation is considerably faster
than with most of the known geometric and parametric models. Exper-
iments with various goal images confirm the robustness, accuracy, and
speed of our approach.

1 Introduction

Parametric and geometric deformable models are widely used for image seg-
mentation. However, in many applications, especially in medical image analysis,
accurate segmentation with these models is a challenging problem due to noisy
or low-contrast 2D/3D images with fuzzy boundaries between goal objects (e.g.,
anatomical structures) and their background; the similarly shaped objects with
different visual appearances, and discontinuous boundaries because of occlu-
sions or the similar visual appearance of adjacent parts of objects of different
shapes [1,2]. Prior knowledge about the goal shape and/or visual appearance
helps in solving such segmentation problems [2].

Relationship to the Prior Works. Initial attempts to involve the prior shape
knowledge were built upon the edges. Pentland and Sclaroff [3] described an
evolving curve with shape and pose parameters of a parametric set of points
matched to strong image gradients and use a linear combination of eigenvectors
to represent variations from an average shape. A parametric point model of Staib
and Duncan [4] was based on an elliptic Fourier decomposition of landmarks.
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Model parameters ensure the best match between the evolving curve and points
of strong gradients.

More efficient results were obtained by learning the priors from a training
set of manually segmented images of goal objects. Pizer et al. [5] and Styner
et al. [6] segment 3D medical images by coarse-to-fine deformation of a shape-
based medial representation (“m-rep”). A deformable model of Huang et al. [7]
integrates region, shape and interior signal features assuming an approximate
region shape is a priori known and aligned with the image to initialize the model.
Leventon et al. [8] and Shen et al. [9] augment a level set-based energy function
guiding the evolution with special terms attracting to more likely shapes specified
with the principal component analysis (PCA) of the training set of goal objects,
while Chen et al. [10] use a geometric model with the prior “average shape”.
The most advanced level set-based geometric model of Tsai et al. [1] evolves
as zero level of a 2D map of the signed shortest distances between each pixel
and the boundary. The goal shapes are approximated with a linear combination
of the training distance maps for a set of mutually aligned training images.
High dimensionality of the distance map space hinders PCA, and to simplify
the model, only a few top-rank principal components are included to the linear
combination [11].

Our approach follows the same ideas of using both the shape and appear-
ance prior knowledge [1,13,12], but differs in the three aspects. First, instead
of using the level set framework with linear combinations of the distance maps
or statistical classifier (e.g., support vector machine), we use a simple paramet-
ric deformable model. Both the model and each goal shape are represented by
piecewise-linear boundaries with a predefined number of control points. Corre-
sponding points are positioned on roughly equiangular rays from the common
center being the centroid of the control points along each boundary. A robust
wave propagation is used to find correspondences in an aligned pair of the bound-
aries. Secondly, visual appearance of the goal objects is roughly described by
characteristic statistics of gray level co–occurrences. Grayscale object pattern
is considered as a sample of a spatially homogeneous Markov-Gibbs random
field (MGRF) with multiple pairwise interaction. The interaction parameters of
MGRF are estimated analytically. Third, the evolution is also guided at each
step with a first-order probability model of the current appearance of a goal
object and its background.
Basic Notation.

◦ (x, y) – Cartesian coordinates of
◦ R = [(x, y) : x = 0, . . . , X − 1; y = 0, . . . , Y − 1] – a finite arithmetic lattice

supporting digital images and their region maps.
◦ g = [gx,y : (x, y) ∈ R; gx,y ∈ Q] – a grayscale digital image taking values

from a finite set Q = {0, . . . , Q− 1}.
◦ m = [mx,y : (x, y) ∈ R;mx,y ∈ L] – a region map taking labels from a binary

set L = {ob, bg}; each label mx,y indicates whether the pixel (x, y) in the
corresponding image g belongs to a goal object (ob) or background (bg).
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◦ b = [pk : k = 1, . . . ,K] – a deformable piecewise-linear boundary with the
K control points pk = (xk, yk) forming a circularly connected chain of line
segments (p1,p2), . . . , (pK−1,pK), (pK ,p1).

◦ d = [d2
k : k = 1, . . . ,K] – a vector description of the boundary b in terms

of the square distances d2
k = (xk − x0)2 + (yk − y0)2 from the control points

to the model centroid p0 = (x0 = 1
K

∑K
k=1 xk, y0 = 1

K

∑K
k=1 yk), i.e. to the

point at the minimum mean square distance from all the control points.
◦ S = {(gt,mt,bt,dt) : t = 1, . . . , T} – a training set of grayscale images of

the goal objects with manually prepared region maps and boundary models.
◦ |A| – the cardinality of a finite set A.

2 Shape Prior

To build the shape prior, all the training objects in S are mutually aligned to
have the same centroid and unified poses (orientations and scales of the objects
boundaries) as in Fig. 1(a). For the definiteness, let each training boundary bt ∈
S is represented with K control points on the polar system of K◦ equiangular
rays (i.e. with the angular pitch 2π/K◦) emitted from the common centroid
p0. The rays are enumerated clockwise, with zero angle for the first position
pt,1 of each boundary. Generally, there may be rays with no or more than one
intersection of a particular boundary, so that the number of the control points
K may differ from the number of the rays K◦. Because the training boundaries
bt ∈ S; t = 1, . . . , T , share the same centroid p0, any linear combination d =∑T

t=1 wtdt of the training distance vectors defines a unique new boundary b with
the same centroid. Typically, shapes of the training objects are very similar, and
their linear combinations could be simplified by the PCA to escape singularities
when adjusting to a given boundary.

Let D = [d1 d2 · · ·dT ] and U = DDT denote the K × T matrix with the
training distance vectors as columns and the symmetric K × K Gram matrix
of sums of squares and pair products

∑T
t=1 dt,kdt,k′ ; k, k′ = 1, . . . ,K of their

components, respectively. The PCA of the matrix U produces K eigen-vectors
[ei : i = 1, . . . ,K] sorted by their eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λK ≥ 0. Due
to identical or very similar training shapes, most of the bottom-rank eigenval-
ues are zero or very small, so that the corresponding “noise” eigenvectors can
be discarded. Only a few top-rank eigenvectors actually represent the training
shapes; the top distance eigenvector e1 corresponds to an “average” shape and
a few others determine its basic variability. For simplicity, we select the top-
rank subset of the eigenvectors (ei : i = 1, . . . ,K ′); K ′ < K by thresholding:∑K′

i=1 λi ≈ θ
∑K

i=1 λi with an empirical threshold θ = 0.8 . . . 0.9.
An arbitrary boundary bc aligned with the training set is described with the

vector dc of the squared distances from its control points to the centroid. The
prior shape approximating this boundary is specified by the linear combination of
the training vectors: d∗ =

∑K′

i=1 w∗
i ei ≡

∑K′

i=1

(
eT

i dc
)
ei. Each signed difference
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(a) (b)

Fig. 1. (a) Mutually aligned training
boundaries and (b) searching for corre-
sponding points between the mutually
aligned training boundaries

(a–b) (a–c)

Fig. 2. Corresponding points found by
SIFT in each pair (a,b), and (a,c) shown
in red and yellow, respectively

Δk = d∗k − dc,k determines the direction and force to move the boundary bc
towards the closest shape prior b∗ specified by the distance vector d∗.
Search for Corresponding Points is performed to suppress local “noise” (spu-
rious deviations) in the training boundaries. The corresponding points are found
in the aligned training boundaries by a robust wave-propagation based search
(see Fig. 1(b)). An orthogonal wave is emitted from a point in one boundary,
and the point at which the maximum curvature position of the wave front hits
the second boundary is considered as the corresponding point.
SIFT-based Alignment. Just as the conventional level-set based geometric
models with the shape priors, e.g. in [1], our approach depends essentially on
accuracy of mutual alignment of similar shapes at both the training and segmen-
tation stages. In the latter case the deformable model is initialized by aligning an
image g to be segmented with one of the training images, say, g1 ∈ S, arbitrarily
chosen as a prototype.

First we use the scale invariant feature transform (SIFT) proposed by Lowe [14]
to reliably determine a number of point-wise correspondences between two im-
ages under their relative affine geometric and local contrast / offset signal distor-
tions. Then the affine transform aligning g most closely to g1 is determined by
the gradient descent minimization of the mean squared positional error between
the corresponding points.

Figure 2 shows correspondences found by SIFT in Dynamic Contrast En-
hanced Resonance Imaging (DCE-MRI) images of human kidneys. The result-
ing affinely aligned goal shapes have roughly the same center and similar poses
(orientations and scales). Quality of such alignment is evaluated in Fig. 3 by

(a) (b) (c) (d) (e)

Fig. 3. Mutually aligned images shown in Fig. 2 (a, b, c), and overlaps of the training
region maps before (d) and after (e) the alignment
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averaging all the training region maps mt; t = 1, . . . , T , before and after the
training set S is mutually aligned. It is clear that the alignment step reduced
the variations between the co-aligned objects, SIFT based registration approach
results in more accurate average shape model that is useful e.g. in any shape
based segmentation framework.

3 Appearance Models

MGRF-based Appearance Prior. Our appearance prior is a rough descriptor
of typically complex grayscale patterns of goal objects in terms of only second-
order signal statistics. Each goal image is considered as a sample of a pairwise
Markov–Gibbs random field (MGRF).

Let N = {(ξi, ηi) : i = 1, . . . , n} be a finite set of (x, y)-offsets specifying
neighbors {((x+ ξ, y + η), (x− ξ, y− η)) : (ξ, η) ∈ N} ∧ R interacting with each
pixel (x, y) ∈ R. Let Cξ,η be a family of pairs cξ,η;x,y = ((x, y), (x + ξ, y + η))
in R with the offset (ξ, η) ∈ N , i.e. the family of translation invariant pairwise
cliques of the neighborhood graph on R. Let V be a vector of Gibbs potentials
for gray level co-occurrences in the neighboring pairs: VT =

[
VT

ξ,η : (ξ, η) ∈ N
]

where VT
ξ,η =

[
Vξ,η(q, q′) : (q, q′) ∈ Q2

]
. A generic MGRF with multiple pairwise

interaction on R is specified by the Gibbs probability distribution (GPD)

P (g) =
1
Z

exp
∑

(ξ,η)∈N

∑
cξ,η;x,y∈Cξ,η

Vξ,η(gx,y, gx+ξ,y+η) ≡ 1
Z

exp |R|VTF(g) (1)

Here, Z is the partition function, FT(g) is the vector of scaled empirical proba-
bility distributions of gray level co-occurrences over each clique family: FT(g) =
[ρξ,ηFT

ξ,η(g) : (ξ, η) ∈ N ] where Fξ,η(g) = [fξ,η(q, q′|g) : (q, q′) ∈ Q2]T and

ρξ,η = |Cξ,η|
|R| is the relative size of the clique family.

To identify the MGRF model described in Eq. (1), we have to estimate the
Gibbs Potentials V. In this paper we introduce a new analytical maximum like-
lihood estimation for the Gibbs potentials (the mathematical proof for this new
estimator is shown on our website).

Vob;ξ,η(q, q′) = λ
(
fob;ξ,η(q, q′)− 1/Q2) (2)

where λ is the analytically computed common scaling factor: λ ≈ Q2 if Q " 1
and ρob;ξ,η ≈ 1 for all (ξ, η) ∈ N .
LCDG-models of Current Appearance. Non-linear intensity variations in
a data acquisition system due to a scanner type and scanning parameters affect
visual appearance of the object to be segmented. Thus, in addition to the learned
appearance prior, we describe an on-going object appearance with a marginal
intensity distribution within an evolving boundary b in g. This distribution is
considered as a dynamic mixture of two probability distributions that charac-
terize the object and its background, respectively, and is partitioned into these
two models using the EM-based approach in [15].
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4 Model Evolution

The evolution bτ → bτ+1 of the deformable boundary b in discrete time, τ =
0, 1, . . ., is determined by solving the Eikonal equation |∇T (pk,τ )|F (pk,τ ) =
1; k = 1, . . . ,K, where F (p) is a speed function for the control point p = [x, y]
of the current boundary. Our speed function depends on the shape prior, the
LCDG-model of current appearance, and the MGRF-based appearance prior:

F (p) = e−β|Δ|ppix,ob(gx,y)πx,y(gx,y|S) (3)

Here, Δ is the signed distance between the current control point p ∈ bτ and
the like one in the closest shape prior along the ray from the current boundary
centroid. The constant factor β determines the evolution speed (0 < β < 1 for a
smooth propagation). The marginal probabilities ppix,ob(q) and ppix,bg(q) of the
gray value gx,y = q are estimated with the LCDG-submodels for the object and
its background, respectively. The prior conditional probability πx,y(q|S) of the
gray value gx,y = q in the pixel p = (x, y), given the current gray values in its
neighborhood, is estimated in line with the MGRF prior appearance model:

πx,y(gx,y|S) =
(
exp (Ex,y(gx,y|S))

)
/
(∑

q∈Q
exp (Ex,y(q|S))

)
where Ex,y(q|S) is the pixel-wise Gibbs energy for the gray value q in the
pixel p = (x, y), given the fixed gray values in its characteristic neighborhood:
Ex,y(q|S) = ∑

(ξ,η)∈N′
(Vob;ξ,η(gx−ξ,y−η, q) + Vob;ξ,η(q, gx+ξ,y+η)) .

5 Experimental Results and Conclusions

Performance of the proposed parametric deformable model was evaluated on a
large number of dynamic contrast-enhanced MRI (DCE-MRI) of human kidneys
with the ground truth presented by a radiologist. The DCE-MRI are usually
noisy, with continuously changing and low contrast. Note that about 20% of
images were used to learn the prior models for the kidney. Basic segmentation
stages of the algorithm are shown in Fig. 4. A comparative results in Table 1 for
4000 kidney DCE-MR images confirm accuracy and robustness of our approach.
It is clear from Table 1 that the statistical analysis using a two tailed t-test
shows that there is a significant difference (P < 10−4) between the error gener-
ated by our segmentation approach and the error generated by the algorithm in
[1] or ASM algorithm in [16]. Experiments with these DCE-MRI kidney images
provide support for the proposed parametric deformable model guided with the
learned shape and appearance priors. Our approach assumes that (i) the bound-
aries of the training and test objects are reasonably similar to within a relative
affine transform and (ii) SIFT reliably detects corresponding points to automat-
ically align the goal objects in the images despite their different backgrounds.
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Table 1. Accuracy and time performance of our segmentation in comparison to Tsai et
al.’s approach [1] and active shape model (ASM) [16]. One fifth of the kidney and corpus
callosum images are used as training sets. Note that the training sets must contain all
possible shape variability including pathology if it exists. Note that all these statistical
results are calculated with respect to radiologist segmentation (ground truth).

Seg. algorithm

Our [1] [16] Our [1] [16]

Images(number) Kidney (4000) Corpus Callosum (200)

Minimum error, % 0.25 3.9 1.3 0.11 1.9 0.9
Maximum error, % 1.5 8.3 10.6 0.47 4.1 4.9
Mean error, % 0.83 5.8 5.95 0.27 3.1 3.71
Standard deviation,% 0.45 1.5 3.7 0.21 0.97 1.17
Significant difference, P-value < 10−4 < 10−4 < 10−4 < 10−4

Average time, sec 23 253 7 11 153 3

(a) (b) (c) 0 50 100 150 200 250
0
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(e) (f) (g) (h) (i)

Fig. 4. Chosen training kidney prototype (a), an image to be segmented (b), its align-
ment to the prototype and initialization (in blue) (c), LCDG-estimates (d) of the
marginal gray level distributions ppix,ob and ppix,bg, final segmentation (in red) of the
image aligned to the training prototype (e), the same result (f) after its inverse affine
transform to the initial image (b) (the total error 0.63% comparing to the ground truth
in green (i)), the segmentation (g) with the algorithm in [1] (the total error 4.9% com-
paring to the ground truth (i)), and the segmentation (h) with the algorithm in [16](the
total error 5.17% comparing to the ground truth (radiologist segmentation) (i)). Note
that our results obtained using 140 points describing kidney shape.

Although these assumptions restrict an application area of our approach com-
paring to the conventional parametric models, the latter typically fail on the
above and similar images. More accurate level set-based geometric models with
linear combinations of the training distance maps as the shape priors also rely on
the mutual image alignment. Compared to these models, our approach escapes
some of theoretical inconsistencies, is computationally much simpler and faster,
and has the similar accuracy on high-contrast images, but notably better perfor-
mance on low-contrast and multimodal ones. Due to space limitations, similar
results for more complex medical images such as corpus callosum (see Table 1),
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brain stem, and brain ventricles, are presented on our web site1. Also, we will
post on our web site more results that demonstrate the effect of each model
in the proposed segmentation framework. The proposed approach is suitable to
segment pathological organs but a sample these pathological conditions must be
included in the training data sets to be included in the prior shape model.
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Abstract. Modeling and analysis of MR images of the early developing
human brain is a challenge because of the transient nature of different tis-
sue classes during brain growth. To address this issue, a statistical model
that can capture the spatial variation of structures over time is needed.
Here, we present an approach to building a spatio-temporal model of
tissue distribution in the developing brain which can incorporate both
developed tissues as well as transient tissue classes such as the germinal
matrix by using constrained higher order polynomial models. This spatio-
temporal model is created from a set of manual segmentations through
groupwise registration and voxelwise non-linear modeling of tissue class
membership, that allows us to represent the appearance as well as disap-
pearance of the transient brain structures over time. Applying this model
to atlas-based segmentation, we generate age-specific tissue probability
maps and use them to initialize an EM segmentation of the fetal brain
tissues. The approach is evaluated using clinical MR images of young
fetuses with gestational ages ranging from 20.57 to 24.71 weeks. Results
indicate improvement in performance of atlas-based EM segmentation
provided by higher order temporal models that capture the variation of
tissue occurrence over time.

1 Introduction

This work is motivated by the study of early human brain development in utero
from fetal magnetic resonance (MR) imaging. Automated labeling of tissues is
a key initial step in the accurate quantification of brain development. This allows
us to model the normal development process and to extract rules to detect growth
patterns that may be related to abnormal outcomes. In order to meaningfully
label tissues present within a given brain image, it is necessary to interpret the
anatomy in relation to its developmental stage. As identified by previous studies
of neonates [1,2], infants [3], young children [4] and adults [5], the use of an
age-specific atlas can significantly improve the results of automated analysis of
brain image data.
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The key challenges in segmentation of the early developing brain, as opposed
to the developed adult brain, are the dramatic changes occurring over very short
timescales [6]. These impose not simply shape changes but underlying changes
in morphology whereby transient tissue classes appear and then disappear from
different brain regions over time. Such cases would require the construction of
many distinct atlases for different weeks of brain development.

Instead, here we describe an approach to modeling a complete 4-dimensional
atlas of tissue distribution within the human fetal brain which can describe not
only the variation in the presence of tissues, but also the appearance and com-
plete disappearance of tissues classes over time through a temporally parame-
trized probability distribution for each voxel in the brain. Specifically, the
approach makes use of a polynomial temporal models of tissue probabilities
that can capture peaks in the occurrence of given tissue types over time.

In order to construct such a model, repeated serial imaging of the same
anatomy is not a viable route. It is not feasible to repeatedly image pregnant
women with a short enough time interval to capture subtle changes in morphol-
ogy and morphometry. As a result, we have to use a large deformation groupwise
diffeomorphic registration to bring collections of images of different fetuses with
different ages into correspondence and construct models of common variation of
tissue types over time.

2 Methods

2.1 MR Image Acquisition and Processing

Fetal MR imaging is performed in our institution on a 1.5T scanner without
sedation or contrast agent administration. For each subject, multiple stacks of
single-shot fast spin-echo (SSFSE) T2-weighted slice images (in plane resolution
0.469mm× 0.469mm, slice thickness ≈ 3mm) are acquired in the approximately
axial, sagittal and coronal plane with respect to the fetal brain. The MR sequence
parameters (TR = 4000−8000ms, TE = 91ms) were originally designed for clin-
ical scans and cannot be adjusted for image analysis purposes. After acquisition,
image stacks are registered using an intersection-based technique [7] to account
for spontaneous fetal movement during scanning and reconstructed into 3D vol-
umes with isotropic resolution 0.469mm× 0.469mm× 0.469mm. Reconstructed
volumes are manually segmented into regions of cortical grey matter (GM), white
matter (WM), the germinal matrix (GMAT) and ventricles (VENT).

2.2 Groupwise Registration of Segmentations

In order to relate data from multiple fetal subjects with different anatomies
and tissue morphologies, a groupwise registration is performed between the tis-
sue segmentations of the training dataset. Each base WM map is first globally
aligned to the WM map of one of the subjects using an affine transformation of
each anatomy driven by maximization of the normalized mutual information [8].
This provides a starting estimate for further collective alignment of the subjects
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into a common average space. In order to avoid extreme warping between sub-
jects with and without the germinal matrix in different brain regions, only two
basic tissue classes are used for this registration – grey matter (GM), and white
matter/germinal matrix combined (WM+GMAT). Each binary tissue region in
each subject s is blurred and used to form a smooth map of tissue probability
ps(x) =

[
pGM,s(x) pWM+GMAT,s(x)

]
with components varying between 0 and 1

and representing the presence or absence of GM and WM+GMAT, respectively.
A combined registration metric

Ds(x) = −|ps(x + us(x)) − p̄(x)|2 (1)

describing the similarity between each set of subject tissue maps ps(x) and
the current group-averaged tissue map p̄(x) is formed from the sum of squared
differences in probability of the two tissue classes in each pair of subjects. The
derivative of (1) with respect to the spatial mapping us(x) between subject maps
is used as a force to drive a symmetric groupwise multiple-elastic registration
algorithm. The tissue content difference force is balanced by a linear elastic
energy

μ∇2us(x) + (λ + μ)∇(∇T us(x)) + βSs(x) = ∇uDs(x) (2)

where μ and λ are constants determining the strength of the regularization. The
resulting set of diffemorphic maps provides mapping between the average shape
of the group and each of the training anatomies.

2.3 Voxelwise Statistical Modeling

After spatial normalization, we perform statistical modeling to create a prob-
abilistic spatio-temporal model of tissue distribution in the fetal brain. Based
on a set of s segmented images corresponding to gestational ages ts, the model
uses the age of the fetus as an independent variable and tissue class probabilities
pks(x) derived from manual segmentations as target values for each voxel x in
the average shape space. As statistical modeling directly in probability space
may result in values that are not valid probabilities as shown in Fig. 1, we use
an alternative LogOdds representation of probabilities [9].

The LogOdds L(pks(x)) of a probability pks(x) is the logarithm of the odds
between the probability pks(x) and its complement p̄ks(x) = 1− pks(x).

L(pks(x)) = logit(pks(x)) = log
(

pks(x)
1− pks(x)

)
= lks(x) (3)

In the context of brain segmentation, pks(x) is the probability that voxel x in
subject s is assigned to tissue class k whereas its complement p̄ks(x) is the prob-
ability of the assignment to any other tissue type. The inverse of the LogOdds
function L(·) is the standard logistic function

L−1(lks(x)) = logsig(lks(x)) =
1

1 + exp(−lks(x))
= pks(x) (4)
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Fig. 1. An example of fitting a 3rd degree polynomial to probabilities of two mutually
exclusive classes k1 and k2 (dots) directly in probability space (dashed line, note invalid
probability values p < 0 and p > 1) and in the space of LogOdds (solid line)

A spatio-temporal atlas is created by temporal modeling of changes in tissue
probabilities pks(x) at each point x of the average shape space. For each x,
tissue class probabilities pks(x) (k ∈ {1, 2, . . . ,K}) are transfered first to the
space of LogOdds using (3). Then, a temporal model ˆlks(x, t) is obtained by
interpolation between values of lks(x) corresponding to gestational ages ts of
the s subjects. Time-related changes in probabilities pk(x) are modeled using a
D-th degree polynomial in the space of LogOdds

l̂k(x, t) =
D∑

d=0

akd(x)td (5)

with coefficients akd(x) found through least squares fitting. To obtain a full
probabilistic spatio-temporal model p̂(x, t) =

[
p̂1(x, t) p̂2(x, t) . . . p̂K(x, t)

]
, all

l̂k(x, t) need to be transfered back to probability space using (4) and normalized
across K tissue classes to assure that p̂k(x, t) are legitimate probabilities.

p̂k(x, t) =
L−1(l̂k(x, t))∑
k L−1(l̂k(x, t))

(6)

The spatio-temporal model p̂(x, t) can be used for generation of age-specific
probabilistic atlases p̂(x) for any value of gestational age t. Such tissue prob-
ability maps may serve as sources of spatially varying priors for atlas-based
segmentation of the fetal brain.

3 Results

3.1 Population

Clinical MR imaging was performed on a 1.5T scanner for a group of 10 fetal
subjects with normal brain development. The gestational ages of the fetuses were
almost uniformly distributed between 20.57 and 24.71 weeks (Fig. 2). For each
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20.57 weeks 21.28 weeks 21.57 weeks 21.86 weeks 22.43 weeks

22.57 weeks 23.14 weeks 23.28 weeks 24.00 weeks 24.71 weeks

Fig. 2. Axial views of rigidly aligned reconstructed MR images of 10 fetal subjects
(20.57 − 24.71 weeks GA) demonstrating variability in brain size and shape

subject, a high-resolution volume was reconstructed and manually segmented
into regions of grey matter (GM), white matter (WM), the germinal matrix
(GMAT) and ventricles (VENT). The resulting tissue label maps were veri-
fied by pediatric neuroradiologists with experience in fetal imaging and served
as reference for further experiments. The reconstructed volumes were spatially
normalized by groupwise registration of their respective manual segmentations
as described in Section 2.2. After registration, the tissue label maps were trans-
formed to the average space using nearest-neighbor interpolation.

3.2 Model Construction and Generation of Age-Specific Atlases

Based on the values of pks(x) and the corresponding gestational ages ts of the
10 fetal subjects, we created a spatio-temporal model p̂(x, t) with D = 0. This
is equivalent to simple averaging of spatially normalized tissue label maps as
is conventionally performed in atlas construction. The spatially varying tissue
probability maps generated from such a model are not time-dependent and are
shown in Fig. 3. To model dynamic changes in tissue presence at different ges-
tational ages, we also created spatio-temporal models p̂(x, t) with D = 1 and
D = 2 (higher order models with D > 2 were unstable for the available number
of training subjects). From these models, we generated sets of age-specific prob-
abilistic atlases p̂(x), examples of which are shown in Fig. 4. Visual inspection of
these tissue probability maps confirms that higher order spatio-temporal models
correctly capture age-related changes in the morphology of the fetal brain such
as the rapidly decreasing volume of the germinal matrix (especially in the ar-
eas of the occipital lobes) and shrinking of ventricles with respect to the overall
brain volume.
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GM WM GMAT VENT

Fig. 3. Tissue probability maps generated from a spatio-temporal model with D = 0.
This is equivalent to simple averaging of spatially normalized tissue label maps.

3.3 Application to Atlas-Based Tissue Segmentation

Based on previously reported results for infants [3] and young children [4], we
expected that the use of age-specific atlases may also improve the performance of
atlas-based segmentation of the fetal brain. To verify this hypothesis, we trans-
formed MR images of the 10 fetal subjects to the average space and automatically
segmented them using conventional EM algorithm [10,11]. For each subject, we
generated age-matched probabilistic atlases p̂(x) from spatio-temporal models
p̂(x, t) with D = 0, D = 1 and D = 2 and used them as sources of spatially-
varying tissue priors to drive the segmentation process.

21 weeks 22 weeks 23 weeks 24 weeks

Fig. 4. Age-specific tissue probability maps for white matter (top row) and the germinal
matrix (bottom row) generated from a spatio-temporal model with D = 2
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Table 1. Average DSC performance of atlas-based EM segmentation of 10 fetal sub-
jects with probabilistic atlases generated from spatio-temporal models of degree D.
The p values represent the significance of improvement vs. simple averaging (D = 0).

Structure
D = 0 D = 1 D = 2

DSC DSC p DSC p

GM 0.834 ± 0.014 0.835 ± 0.013 0.168 0.836 ± 0.013 0.180
GMAT 0.642 ± 0.131 0.752 ± 0.069 0.012 0.761 ± 0.081 0.011

WM 0.905 ± 0.012 0.917 ± 0.014 0.038 0.918 ± 0.014 0.034

VENT 0.857 ± 0.040 0.862 ± 0.029 0.411 0.867 ± 0.029 0.099

For quantitative evaluation, we calculated the values of the Dice similarity
coefficient (DSC) [12] between the results of automatic segmentation and re-
spective manual segmentations of each subject. Table 1 presents the average
DSC performance of automatic EM segmentation with probabilistic atlases gen-
erated from spatio-temporal models with D = 0, D = 1 and D = 2 for four
different types of fetal brain structures. For D = 1 and D = 2, the significance
of DSC improvements with respect to D = 0 was determined by a paired t-test.

For all degrees of the spatio-temporal model, automatic atlas-based EM seg-
mentation yields acceptable performance (DSC > 0.8) for grey matter, white
matter and ventricular CSF. Similar DSC values were previously reported for
automatic brain segmentation in neonates [1,2] and infants [3]. The inferior av-
erage performance for the germinal matrix (DSC = 0.642) for D = 0 arises
mainly from oversegmenting of this tissue type for subjects older than 23 weeks.
For these subjects, up to 8% of voxels actually representing white matter is in-
correctly assigned to GMAT, bringing down the average performance for this
subgroup (DSC = 0.475).

The use of age-specific atlases generated from spatio-temporal models with
D = 1 and D = 2 improves the DSC performance for all four brain structures
and statistically significant changes can be observed for the germinal matrix and
white matter. Moreover, the standard error for GMAT is reduced almost by half,
from 0.131 for D = 0 to 0.069 for D = 1, thanks to more consistent performance
of GMAT segmentation across all gestational ages.

4 Conclusions

We presented an approach to building a spatio-temporal model of tissue dis-
tributions in the developing fetal brain which can incorporate both developed
tissues as well as transient tissue classes such as the germinal matrix. The model
is created from a set of manual segmentations through groupwise registration
and voxelwise non-linear modeling of tissue class membership, that allows us to
represent the appearance as well as disappearance of brain structures over time.

Based on the spatio-temporal model, we generated a set of age-specific tissue
probability maps and used them as sources of tissue priors for atlas-based EM
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segmentation. Experiments performed using clinical MR scans of 10 fetal sub-
jects demonstrated that the use of age-specific atlases improves the performance
of automatic brain segmentation as measured by the average DSC values.

The presented study will be extended by spatio-temporal modeling of tissue
contrast changes in fetal MR images. This will allow us to create age-specific
synthetic MR images that can be used as targets for registration of new sub-
jects to the average shape space before they can be segmented with age-specific
probabilistic atlases generated from the spatio-temporal model.

Acknowledgments. This work was primarily funded by NIH Grant R01 NS
55064. The work of Orit A. Glenn and imaging studies were funded by NIH
Grant K23 NS 52506.
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Abstract. We propose a new methodology to analyze the anatomical
variability of a set of longitudinal data (population scanned at several
ages). This method accounts not only for the usual 3D anatomical vari-
ability (geometry of structures), but also for possible changes in the
dynamics of evolution of the structures. It does not require that sub-
jects are scanned the same number of times or at the same ages. First
a regression model infers a continuous evolution of shapes from a set of
observations of the same subject. Second, spatiotemporal registrations
deform jointly (1) the geometry of the evolving structure via 3D defor-
mations and (2) the dynamics of evolution via time change functions.
Third, we infer from a population a prototype scenario of evolution and
its 4D variability. Our method is used to analyze the morphological evo-
lution of 2D profiles of hominids skulls and to analyze brain growth from
amygdala of autistics, developmental delay and control children.

1 Methodology for Statistics on Longitudinal Data

Many frameworks has been already proposed in medical imaging to analyze the
anatomical variability of 3D structures like images, curves or surfaces. Less at-
tention has been paid to the variability of longitudinal data (several subjects
scanned several times). In [1], the evolution between two shapes is modeled
by a geodesic deformation, which cannot be used for more than two data per
subjects. In [2], shape growth is measured via the evolution of extracted fea-
tures like volumes, shape or pose parameters. In [3,4], a temporal regression is
proposed globally for a population, but this does not allow inter-subject com-
parisons. In cardiac motion analysis [5,6], spatiotemporal registration relies on
3D-registrations between images of the same moment of the cardiac cycle and
between two consecutive time-points. These works rely on time-point correspon-
dence and do not call the labels of the time-points into question. By contrast,
in longitudinal studies, subjects are scanned at ages which do not necessarily
correspond. Moreover, evolutions may be delayed or advanced within a popu-
lation, a key feature that we precisely aim at detecting. In [7,8], deformation
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Fig. 1. Skull profile of five hominids (in red). The regression model estimates a con-
tinuous evolution (in blue) of the Australopithecus, which closely matches the data.

of cardiac motion are proposed both in space and time but they require a fine
temporal sampling of the motion, whereas only few acquisitions per subjects are
available in most longitudinal studies. In this paper, we propose to use a regres-
sion model to estimate a continuous evolution from data sparsely distributed in
time and spatiotemporal deformations which register jointly both the 3D geom-
etry and the scenario of evolution. Geometrical data are modeled as currents
to avoid assuming point correspondence between structures. Large deformations
are used which gives a rigorous framework for statistics on deformations and at-
las construction [9,10,11]. From longitudinal data, we estimate consistently the
most likely scenario of evolution and its spatiotemporal variability within the
population.

In this paper, we call longitudinal data a set of geometrical data (curves or
surfaces, called here shapes), acquired from different subjects scanned at several
time-points. We assume that the successive data of a given subject are temporal
samples of a continuous evolution. We propose therefore a regression model
which computes a continuous evolution which matches the data of the subject
at the corresponding time points (Fig. 1). This continuous evolution allows us to
compare two subjects at a given age, even if one subject has not been scanned at
this age. We can also analyze how the shape varies near this age to detect possi-
ble developmental delays. We define then the spatiotemporal deformation of
a continuous evolution, which consists of two deformations: (1) a morphological
deformation (of the 3D space) which changes the geometry of every frame of
the evolution independently of the time point and (2) a time change function
(deformation of the time interval) which changes the dynamics of the evolu-
tion without changing the geometry of shapes. To avoid time-reversal, the time
change function must be smooth and order preserving: it is a diffeomorphism of
the time interval of interest. A 4D registration between two subjects looks for
the most regular spatiotemporal deformation, such that the deformation of the
continuous evolution inferred from the first subject maps the successive target
data (Fig. 2). Eventually, we use this 4D registration framework to estimate
a spatiotemporal atlas from a population, based on an 4D extension of the
statistical model of [11]. We look for a template and a continuous evolution of
this template (called mean scenario of evolution), so that data of each subject
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Fig. 2. Registration of the evolution {Homo habilis-erectus-neandertalensis} (in red)
to the evolution {Homo erectus-sapiens sapiens} (in green), shifted to start at the same
time. Top row: Regression of the source data (red) gives the continuous evolution in
blue. Middle row: The geometrical part φ is applied to each blue frame. This shows
morphological changes: the skull is larger, rounder and the jaw less prominent. Bottom
row: The time change function ψ is applied to the evolution of the second row. The
blue shapes are moved along the time axis (as shown by dashed black lines), but they
are not deformed. Black arrows show that a better alignment is achieved when one
accounts both for morphological changes and a change of the evolution speed.

are temporal samples of a spatiotemporal deformation of the mean scenario. A
Maximum A Posteriori estimation enables to estimate consistently the template,
the mean scenario and the spatiotemporal deformations of this mean scenario
to each subject.

We present the regression model in Sec. 2, 4D registration in Sec. 3 and
atlas construction in Sec. 4. We focus here on the methodology and refer the
reader to [12] for more computational details. In Sec. 5, we apply our method
on 2D profiles of hominids skulls and amygdala of children scanned at 2 and 4
years.

2 Regression Model for Shape Evolution

We want to fit a continuous shape evolution to a set of shapes (Si) of the same
subject acquired at different time points (ti). Without loss of generality, we can
assume that tmin = 0 and tmax = T . This evolving shape is equal to the baseline
M0 at time t = 0, which may be the earliest shape of this subject or a template as
in Sec. 4. The evolution has the form: Mt = χt(M0) where t varies continuously
in the time interval [0, T ]. For each t, χt is a diffeomorphism of the 3D space, such
that χ0 = Id (which leads to χ0(M0) = M0). The regression (Mt) must match
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the observation Si at the time-points ti, while a rigidity constraint controls the
regularity of the regression. This is achieved by minimizing:

J(χ) =
∑
ti

d(χti(M0), Si)2 + γχReg(χ) (1)

where d is a similarity measure between shapes, Reg(χ) a regularity term and
γχ a trade-off between regularity and fidelity to data. Among other possible
choices, we use here the large deformations of [13], and model curves or surfaces
as currents [14,10]. Therefore, d is the distance between currents and χ is the
solution of the partial differential equation : ∂χt(x)/∂t = vχ

t (χt(x)) with initial
condition χ0 = Id. The regularity term Reg(χ) is given by

∫ T

0 ‖vχ
t ‖

2
dt. In the

setting of [14], J depends on time-dependent momenta αk(t) at each samples of
Mt’s, which are used as variables for the gradient descent [13,12].

As a result, for all t, χt depends on all the constraints in the past and future.
This differs from pairwise registrations between consecutive time-points. The
function χ is piecewise geodesic and can be extended at all times by assuming
vχ

t = 0 (and hence χt constant) outside [0, T ]. This is useful to compare this
evolution with another subject which may have data outside the time interval.

3 Spatiotemporal Pairwise Registration

We assume now that we have successive shapes for the source subject (S(ti))i

and for the target (T (tj))j . As in Sec 2, we perform a regression on the source
shapes which leads to a continuous evolution S(t)t∈[0,T ]. Our goal is to find a
diffeomorphism of the 3D space φ and a diffeomorphism of the time-interval ψ
which deform the source evolution S(t) into S′(t) = φ(S(ψ(t))) such that S′(tj)
match T (tj). Thanks to the regression function, no correspondence is needed
between the time points ti and tj . Formally, we minimize:

J(φ, ψ) =
∑
tj

d(φ(S(ψ(tj))), Ttj )
2 + γφReg(φ) + γψReg(ψ) (2)

The spatial (resp. temporal) deformation φ (resp. ψ) is solution at parameter
u = 1 of the flow equation ∂uφu(x) = vφ

u(φu(x)) (resp. ∂uψu(t) = vψ
u (ψ(t))). The

norm of the speed vector fields vφ
u and vψ

u integrated for u ∈ [0, 1] defines the reg-
ularity terms Reg(φ) and Reg(ψ) respectively. As in Sec 2, the geometrical (resp.
temporal) deformation is parametrized by momenta α (resp. β) at the points of
S(tj) (resp. at the tj), which are used as variables for the gradient descent.
∇αJ(α, β) is computed as for the registration of the collection of φ(S(ψ(tj))) to
the (Ttj ) [14,10]. To compute ∇βJ , we need to derive the matching term with
respect to the time-points t′j = ψ(tj) [12]. We use here a centered Euler scheme:
∇t ‖φ(S(t))− T ‖2 ∼ 〈φ(S(t)) − T, φ(S(t + δt))− φ(S(t− δt))〉 /δt, where δt is
the discrete time step. We used here the fact that the shapes are embedded with
a vector space (the space of currents) provided with an inner product. Note that
we minimize J with respect to the geometrical and the temporal parameters
jointly. We do not performed alternated minimization.
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4 Spatiotemporal Atlas Construction

We assume now that we have a set of N subjects (Si), provided each with
temporal observations (Si(tij))j . We are looking for a template M0 and a mean
scenario of evolution of this template M(t) = χt(M0), such that the observations
correspond to particular moments of a spatiotemporal deformation of the mean
scenario. This means that φi(M(ψi(tij))) match Si(tij) for each subject i and
time tij . Maximum A Posteriori estimation in the same setting as in [11], leads
to the minimization of J(ψi, φi, χ,M0) =

N∑
i=1

⎧⎨⎩∑
ti
j

d(φi(χψi(ti
j)M0), Si(tij))

2 + γφReg(φi) + γψReg(ψi) + γχReg(χ)

⎫⎬⎭
We perform a 3 step alternated minimization. If the template M0 and the
regression χ are fixed, the minimum is achieved for N registrations of the
mean scenario χt(M0) to each subject’s set of data Si(tij), as in Sec. 3. If we
fix the N spatiotemporal deformations (φi, ψi) and the regression χ, we need
to minimize

∑
i,j d(Φi,j(M0), Si(tij))

2, where the Φi,j = φi ◦ χψi(ti
j)

are 3D-
diffeomorphisms. This is exactly the estimation of an unbiased template in the
setting of [11], when the deformations are given by Φi,j . When the template M0
and the N spatiotemporal deformations (φi, ψi) are fixed, we need to minimize∑

i,j d(φi(χψi(ti
j)

M0), Si(tij))
2 + γχReg(χ). This is not the regression problem

stated in Sec. 2 because of the deformation φi in the matching term. To turn it
into regression, we approximate the matching term d(φi(χψi(ti

j)
M0), Si(tij)) by

d(χψi(ti
j)

(M0), (φi)−1(Si(tij))) (subject’s shapes are matched back to the mean
anatomy). This approximation is valid only for diffeomorphisms φi whose Jaco-
bian is close to the identity. To initialize the minimization, we set M0 as the mean
current of the earliest data and set the diffeomorphisms χ, φi, ψi to identity.

5 Numerical Experiments

Experiments on 2D curves relates to Sec.2 and 3, those on surfaces to Sec. 4.

Evolution of 2D Curves. We have five 2D-profiles of hominids skulls which
consist of six lines each (source: www.bordalierinstitute.com). Our regression
framework infers a continuous evolution from the Australopithecus to the Homo
sapiens sapiens which matches the intermediate stages of evolution in Fig. 1.

Then, we register the evolution {Homo habilis-Homo erectus-Homo neander-
talensis} to the evolution {Homo erectus-Homo sapiens sapiens} in Fig 2. The
geometrical deformation shows that during the later evolution the jaw was less
prominent and the skull larger and rounder than during the earlier evolution. The
time change function shows that the later evolution occurs at a speed 1.66 times
faster than the earlier evolution. This value is compatible with the growth speed
of the skull during these periods (See Fig. 3): between Homo erectus and sapi-
ens the skull volume growths at (1500 − 900)/0.7 = 860cm3/106years, whereas
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a- time change function b- skull volume evolution

Fig. 3. A- time change function ψ(t) of the registration in Fig. 2 (in black the reference
ψ(t) = t). The slope of the curve measures an acceleration between evolutions, which is
compatible with the growth of skull volume in b (source: www.bordalierinstitute.com).

Fig. 4. Mean Scenario of the right Amygdala (right lateral part). Arrows measures
the differences between age t+0.2 and age t in the space of currents as in [16]. From
age 2 to 2.8, the evolution is mainly a torque at the posterior part; then the structure
becomes thicker, mostly at the superior part between age 2.8 and 4 and at the inferior
between age 4 and 6; from age 6 the evolution is a mainly a torque at the anterior part.

between Homo habilis and neandertalensis, it growths at (1500 − 600)/1.7 =
530cm3/106years, namely 1.62 times faster.

Evolution of 3D Surfaces. We use here meshes of amygdala of the right hemi-
sphere from 4 autistics, 4 developmental delay and 4 control children scanned
twice [15]. Age distribution is shown in Fig 5-a. From these data registered
rigidly, we infer a template, a mean scenario of evolution of this template and
the spatiotemporal evolution of this mean scenario to each subject. In the set-
ting of [13,10], the diffeomorphisms are controlled by the standard deviation of
Gaussian kernel set to 15 mm for χ, φ and 1 year for ψ; the typical scale on
currents is set to 3 mm. Trade-off γχ, γφ were set to 10−3 and γψ to 10−6. An
amygdala is typically 10 mm large. The discrete time step is set to 0.2 years.

By inspection of the companion movie of the mean scenario, one distinguishes
4 phases during growth (See also Fig. 4). Preliminary tests do not show cor-
relations between the morphological deformations and the pathology. From the
time change functions shown in Fig. 5, we cannot conclude that a subject with
pathology is systematically delayed or advanced compared to controls, even at a
given age. However, the curves show that the growth speed seems to follow the
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Fig. 5. Temporal deformation of the mean scenario Left: distribution of original
(top) and registered (bottom) ages. Middle: time change functions for the 12 subjects.
Right: First mode of variation at ±σ of the time change functions for each class.
Autistics and controls show the same evolution pattern, but shifted in time.

same pattern, mainly an acceleration between age 2.5 and 3.5 for the autistics
and between age 4 and age 5 for controls. The developmental delay also have
such pattern but it occurs at a very variable age. These results suggest that
the discriminative information between classes might not be inferred from the
anatomical variability at a given age, but rather from variations of the growth
process. These results, however, must be strengthen using larger database. The
more time-points per subjects, the more constrained the mean scenario estima-
tion. The more subjects, the more robust the statistics.

6 Discussion and Conclusion

In this paper, we present a generic framework to analyze variability of longi-
tudinal data. A regression model fits a continuous evolution to successive data
of one subject. 4D registrations decompose the difference between two sets of
longitudinal data into a geometrical deformation and a change of the dynam-
ics of evolution. The more acquisitions per subjects, the more constrained this
decomposition. However, no constraint is imposed in terms of number and corre-
spondence of measurement points across subjects. These pairwise registrations
are used for group-wise statistics: ones estimates consistently a template, the
mean evolution of this template and the spatiotemporal variability of this evo-
lution in the population. Then, statistical measures can be derived, like the first
mode of temporal deformation in Fig. 5. Further experiments have still to be
performed to give more quantitative measures of variability. However, these first
results suggest that pathologies might be characterized more by a particular sce-
nario of evolution than by the anatomy at a given age. Our methodology can
be used therefore to drive the search of new anatomical knowledge and to give
characterization of pathologies in terms of organ growth scenario. This may be
applied to the study of degenerative diseases or cardiac motion disorders.
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Abstract. This paper investigates an approach to model the space of
brain images through a low-dimensional manifold. A data driven method
to learn a manifold from a collections of brain images is proposed. We
hypothesize that the space spanned by a set of brain images can be
captured, to some approximation, by a low-dimensional manifold, i.e.
a parametrization of the set of images. The approach builds on recent
advances in manifold learning that allow to uncover nonlinear trends in
data. We combine this manifold learning with distance measures between
images that capture shape, in order to learn the underlying structure of
a database of brain images. The proposed method is generative. New
images can be created from the manifold parametrization and existing
images can be projected onto the manifold. By measuring projection
distance of a held out set of brain images we evaluate the fit of the
proposed manifold model to the data and we can compute statistical
properties of the data using this manifold structure. We demonstrate
this technology on a database of 436 MR brain images.

1 Introduction

Recent research in the analysis of populations of brain images shows a pro-
gression: from single templates or atlases [1], to multiple templates or stratified
atlases [2], mixture models [3] and template free methods [4,5,6] that rely on a
sense of locality in the space of all brains. This progression indicates that the
space of brain MR images has a structure that might also be modeled by a rela-
tively low-dimensional manifold as illustrated by Figure 1. The aim of this paper
is to develop and demonstrate the technology to learn the manifold structure of
sets of brain MR images and to evaluate how effective the learned manifold is
at capturing the variability of brains.

Manifold learning [7] refers to the task of uncovering manifolds that describe
scattered data. In some applications this manifold is considered a generative
model, analogous to a Gaussian mixture model. In this context, we assume
that the data is sampled from a low-dimensional manifold embedded in a high-
dimensional space, with the possibility of noise that sets data off the surface.
For this work, we consider the space of all images which can be represented as
smooth functions. Virtually all manifold learning techniques published to date
assume that the the low-dimensional manifold is embedded in a Euclidean space.
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Fig. 1. (a) Illustration of image data on a low-dimensional manifold embedded in a
diffeomorphic space. (b) A set of images consists of random length/position segments
form a spiral. (c) The Fréchet mean in the diffeomorphic space is not like any example
from the set. (d) Fréchet mean on data-driven manifold reflects the image with average
parameter values.

Nearby samples lie in the tangent space of the manifold, and thus their differ-
ences can be evaluated by Euclidean distance in the ambient space. The space
of brain images on the other hand does not fit directly into this paradigm. A
great deal of research on brain image analysis shows that the L2 distance is
not suitable for measuring shape changes in images [8], but that the metric for
comparing brain images should account for deformations or shape differences be-
tween images. For example, computational anatomy, used for population analysis
and atlas building, is based on a metric between images derived from coordinate
transformations [2,9,3].

The low-dimensional manifold of brain images we aim to learn is embedded
not in Euclidean space, but in the space of images with a metric based on co-
ordinate transformations. For this work we adapt the image metric based on
diffeomorphic coordinate transformations [10,11,12] to manifold learning. Often
the stratification induced by the diffeomorphic image metric is described as a
manifold—in this paper we refer to the manifold of brain images as described by
the data. Our hypotheses are that the space of brain images is some very small
subspace of images that are related by diffeomorphisms, that this subspace is
not linear, and that we can learn some approximation of this space through a
generalization of manifold learning that accounts for these diffeomorphic rela-
tionships. Figure 1 illustrates these concepts on a simple example.

A manifold learning algorithm of particular interest to this work is isomap [13].
Isomap is based on the idea of approximating geodesic distances by the construc-
tion of piecewise linear paths between samples. The paths are built by connecting
nearest neighbors, and the geodesic distance between two points is approximated
on the the linear segments between nearest neighbors. Thus, isomap requires only
distances between nearby data points to uncover manifold structure in data sets.
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The reliance on only nearest neighbor distances is important for this paper. The
tangent space to the space of diffeomorphic maps is the set of smooth vector
fields. Thus, if the samples from the manifold are sufficiently dense, we can com-
pute the distances in this tangent space, and we need only to compute elastic
deformations between images.

Isomap, and several other manifold learning algorithms, assign parameters to
data points that represent coordinates on the underlying manifold. This paper
introduces several extensions to this formulation,which are important for the anal-
ysis of brain images. First is an explicit representation of the manifold in the
ambient space (the space of smooth functions). Thus, given coordinates on the
manifold, we can construct brain images that correspond to those coordinates. We
also introduce a mechanism for mapping previously unseen data into the manifold
coordinate system. These two explicit mappings allow to project images onto the
manifold. Thus we can measure the distance from each image to the manifold (pro-
jected image) and quantitatively evaluate the efficacy of the learned manifold. In
comparisonwith previous work, on brain atlases for example, this work constructs,
from the data itself, a parametrized hyper-surface of brain images, which repre-
sents a local atlas for images that are nearby on the manifold.

2 Related Work

The tools for analyzing or describing sets of brain image demonstrate progres-
sively more sophisticated models. For instance, unbiased atlases are one mech-
anism for describing a population of brains [14,15,16]. Blezek et al. [2] propose
a stratified atlas, in which they use the mean shift algorithm to obtain mul-
tiple templates and shows visualizations that confirm the clusters in the data.
In [3] the OASIS brain database is modeled through a mixture of Gaussians. The
means of the Gaussians are a set of templates used to describe the population.
Instead of assuming that the space of brain images forms clusters, we postulate
that the space of brains can be captured by a continuous manifold.

An important aspect of our work is the ability to measure image differences
in a way that captures shape. It is known that the L2 metric does not ade-
quately capture shape differences [8]. There are a variety of alternatives, most of
which consider coordinate transformations instead of, or in addition to, inten-
sity differences. A large body of work [10,11,12] has examined distances between
images based on high-dimensional image warps that are constrained to be dif-
feomorphisms. This metric defines a infinite dimensional manifold consisting of
all shapes that are equivalent under a diffeomorphism. Our hypothesis, however,
is that the space of brains is essentially of significantly lower dimension.

Several authors [17,9,6] have proposed kernel-based regression of brain images
with respect to an underlying parameter, such as age. The main distinction of
the work in this paper is that the underlying parametrization is learned from
the image data. Our interest is to uncover interesting structures from the image
data and sets of parameters that could be compared against underlying clinical
variables.
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Zhang et al. use manifold learning, via isomap, for medical image analysis,
specifically to improve segmentation in cardiac MR images [18]. Rohde et al. [19]
use isomap in conjunction with large deformation diffeomorphisms to embedded
binary images of cell nuclei in a similar fashion to the proposed approach. In
addition to the embedding we provide a generative model that allows to quan-
titatively evaluate the manifold fit.

3 Formulation

We begin with a description of the image metric between nearest neighbors in the
space of smooth images. A diffeomorphic coordinate transformation between two
images is φ(x, 1), where φ(x, t) = x +

∫ t

0 v(φ(x, τ), τ)dτ, and v(x, t) is a smooth,
time varying vector field. The diffeomorphic framework includes a metric on
the diffeomorphic transformation ||φ(x, t)||L =

∫ t

0 ||v(x, τ)||Ldτ which induces a
metric d between images yi and yj :

d(yi, yj) = minv

∫ 1
0 ||v(x, τ)||Ldτ

subject to
∫

Ω
||yi(x + φ(x, 1)) − yj(x))||22dx = 0

(1)

The metric prioritizes the mappings and, with an appropriate choice of the differ-
ential operator L in the metric, ensures smoothness. We introduce the constraint
that the transformation must provide a match between the two images:

||yi(φ(x, 1)) − yj(x)|| =
(∫

Ω

(yi(φ(x, 1)) − yj(x))2dx
) 1

2

< ε. (2)

where ε allows for noise in the images.
For two images that are very similar, φ and v are small, and because the

velocities of the geodesics are smooth in time [20], we can approximate the
integrals for the coordinate transform and geodesic distance:

φ(x, 1) ≈ v(x, 0) = v(x), and d(yi, yj) ≈ minv ||v(x)||L,
subject to

∫
Ω ||yi(x + v(x)) − yj(x))||22dx < ε

. (3)

Thus, for small differences in images the diffeomorphic metric is approximated
by a smooth displacement field. In this paper we use the operator L = αI +∇,
where α is a free parameter and the resulting metric is ||v(x)||L = ‖Lv(x)‖2.
To minimize deformation metric for a pair of discrete images, we use a gradient
descent. The first variation of (3) results in a partial differential equation, which
we solve with finite forward differences to an approximate steady state. For
the constraint, we introduce a penalty on image residual with an additional
parameter λ, which we tune in steady state until the residual condition in (2) is
satisfied or until the deformation metric exceeds some threshold that disqualifies
that pair of images as nearest neighbors. We use a multiresolution, coarse to fine,
optimization strategy to avoid local minima.

Next we present a formulation for representing the structure of the manifold
in the ambient space and for mapping unseen data onto this intrinsic coordinate
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system. First, we propose the construction of an explicit mapping f : P → A
from the space of manifold parameters P to the high dimensional ambient space
A. Let X = {x1, . . . , xn} be the parameter values assigned to the image data
sets Y = {y1, . . . , yn}; isomap gives the discrete mapping xi = ρ(yi). Inevitably
there will be a distribution of brain images away from the manifold, and the
manifold should be the expectation [21] of these points in order to alleviate
noise and capture the overall trend in the data. That is f(x) = E(Y |ρ(Y ) = x).
In the discrete setting the conditional expectation can be approximated with
Nadaraya-Watson kernel regression:

f(x) = argmin
y

∑
i∈Xnn(x) K(x, xi)d̃(y, yi)∑

i∈Xnn(x) K(x, xi)
, (4)

which we compute, in the context of diffeomorphic image metrics using the
method of [9], which iteratively updates f(x) and the deformation to f(x) from
the nearest neighbors starting with identity transformations. This kernel regres-
sion requires only the nearest neighbors Xnn(x) of xi ∈ X . This constrains the
regressions to images similar in shape since locality in X implies locality in
Y . Using this formulation, we can compute an image for any set of manifold
coordinates, and thus we have an explicit parametrization of the manifold.

For the assignment of manifold parameters to new, unseen images we use
the same strategy. We represent this mapping as a continuous function on the
ambient space, and we compute it via a regression on parameters given by isomap

ρ′(y) =

∑
i∈Ynn(y) K(y, yi)xi∑
i∈Ynn(y) K(y, yi)

, (5)

with Ynn(y) the nearest neighbors of y. The projection of a new image onto the
manifold is the composition of these mappings p(y) = f(ρ′(y)).

For K we use a Gaussian kernel for the mappings with a bandwidth selected
based on average nearest neighbor distances. The number of nearest neighbors
for the regression is selected based on the resulting bandwidth for the kernel K,
such that all points within three standard deviations are included.

4 Results

In section 1 we illustrated the idea of the paper on a simple examples on
2D images of spiral segments. The image data set used consists of 100 im-
ages of segments with varying length and location of the spiral in Figure 1.
Figure 2 shows images constructed by the proposed approach by sampling the
learned manifold representation of the image data. Thus the images depict sam-
ples on the manifold embedded in the ambient space. Figure 1 also shows the
Fréchet means for the diffeomorphic space and for the manifold learned from the
data.
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Fig. 2. Reconstructed images along the first dimension of the manifold learned from
spiral segments as illustrated in Figure 1

(a) (b)

Fig. 3. (a)2D parametrization of OASIS brain MRI. The insets show the mean (green),
median (blue) and mode (red) of the learned manifold and the corresponding recon-
structed images. (b) Reconstruction errors against manifold dimensionality.

We apply the proposed approach to the open access series of imaging studies
(OASIS) cross-sectional MRI data set. The images are gain-field corrected and
atlas registered. We use 380 of the 436 images to learn the manifold and evaluate
reconstruction errors on the left out 56 images.

Figure 3 (a) shows axial slice 80 for a 2D parametrization (manifold coordi-
nates) obtained by the proposed method. A visual inspection reveals that the
learned manifold detects the change in ventricle size as the most dominant pa-
rameter (horizontal axis). It is unclear if the second dimension (vertical axis)
captures a global trend. Figure 3 (b) shows reconstruction errors on the held out
images against the dimensionality of the learned manifold. The reconstruction
error is measured as the mean of the distances between the original brain images
and their projection on to the learned manifold scaled by the average nearest
neighbor distance, i.e. error =

∑
i d(f(ρ′(yi)),yi)∑

i d(nn(yi),yi)
. The reconstruction errors are

smaller than the average one nearest neighbor distance. An indication that the
learned manifold accurately captures the data. The reconstruction errors sug-
gest that the data set can be captured by a 3D manifold. We do not postulate
that the space of brains is captured by a 3D manifold. The approach learns a
manifold from the available data and thus it is likely that given more samples
we can learn a higher dimensional manifold for the space of brains.

Figure 4 shows axial slices of brain images generated with the proposed
method on a regularly sampled grid on the 2D representation shown in
figure 3(c), i.e. we have sampling of the learned brain manifold. The first
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Fig. 4. Reconstructions on a grid on the 2D representation shown in figure 3(c)

dimension (x1) clearly shows the change in ventricle size. The second dimen-
sion (x2) is less obvious. A slight general trend observable from the axial slices
seems to be less gray and white matter as well as a change in lateral ventricle
shape (from elongated to more circular).

The method is computationally expensive because of the pairwise distance
computations, each requiring an elastic image registration. The registration takes
with our multiresolution implementation about 1 minute on a 128 × 128 × 80
volume. Pairwise distances computations for the OASIS database running on a
cluster of 50, 2Ghz processors, requires 3 days. The reconstruction by manifold
kernel regressions requires about 30 minutes per image on a 2 Ghz processor.

5 Conclusions

Quantitative evaluation illustrates that the space of brains can be modeled by
a low dimensional manifold. The manifold representation of the space of brains
can potentially be useful in wide variety of applications. For instance, regression
of the parameter space with clinical data, such as MMSE or age, can be used
to aid in clinical diagnosis or scientific studies . An open question is whether
the manifolds shown here represent the inherent amount of information about
shape variability in the data or whether they reflect particular choices in the
proposed approach. In particular implementation specific enhancements on im-
age metric, reconstruction, and manifold kernel regression could lead to refined
results.
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12. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation
metric mappings via geodesic flows of diffeomorphisms. IJCV 61(2), 139–157 (2005)

13. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290(550), 2319–2323 (2000)

14. Lorenzen, P.J., Davis, B.C., Joshi, S.: Unbiased atlas formation via large defor-
mations metric mapping. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS,
vol. 3750, pp. 411–418. Springer, Heidelberg (2005)

15. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construc-
tion for computational anatomy. NeuroImage 23 (2004)

16. Avants, B., Gee, J.C.: Geodesic estimation for large deformation anatomical shape
averaging and interpolation. NeuroImage 23(suppl. 1), S139–S150 (2004)

17. Hill, D.L.G., Hajnal, J.V., Rueckert, D., Smith, S.M., Hartkens, T., McLeish, K.:
A dynamic brain atlas. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS,
vol. 2488, pp. 532–539. Springer, Heidelberg (2002)

18. Zhang, Q., Souvenir, R., Pless, R.: On manifold structure of cardiac mri data:
Application to segmentation. In: CVPR 2006, pp. 1092–1098. IEEE, Los Alamitos
(2006)

19. Rohde, G., Wang, W., Peng, T., Murphy, R.: Deformation-based nonlinear dimen-
sion reduction: Applications to nuclear morphometry, pp. 500–503 (May 2008)

20. Younes, L., Arrate, F., Miller, M.I.: Evolutions equations in computational
anatomy. NeuroImage 45(1, suppl. 1), S40–S50 (2009)

21. Hastie, T.: Principal curves and surfaces. Ph.D Dissertation (1984)



G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I,  LNCS 5761, pp. 313–320, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Gyral Folding Pattern Analysis via Surface Profiling 

Kaiming Li1,2, Lei Guo1, Gang Li1, Jingxin Nie1, Carlos Faraco3, Qun Zhao4,  
Stephen Miller3, and Tianming Liu2 

1 School of Automation, Northwestern Polytechnical University, Xi’an, China 
2 Department of Computer Science , The University of Georgia, Athens, GA, USA  

3 Department of Psychology, The University of Georgia, Athens, GA, USA  
4 Department of Physics and Astronomy, The University of Georgia, Athens, GA, USA 

likaiming@gmail.com 

Abstract. Human cortical folding pattern has been studied for decades.  This 
paper proposes a gyrus scale folding pattern analysis technique via cortical sur-
face profiling. Firstly, we sample the cortical surface into 2D profiles and 
model them using power function. This step provides both the flexibility of rep-
resenting arbitrary shape by profiling and the compactness of representing 
shape by parametric modeling. Secondly, based on the estimated model pa-
rameters, we extract affine-invariant features on the cortical surface and apply 
the affinity propagation clustering algorithm to parcellate the cortex into re-
gions with different shape patterns. Finally, a second-round surface profiling is 
performed on the parcellated cortical regions, and the number of hinges is de-
tected to describe the gyral folding pattern. Experiments demonstrate that our 
method could successfully classify human gyri into 2-hinge, 3-hinge and 4-
hinge gyri. The proposed method has the potential to significantly contribute to 
automatic segmentation and recognition of cortical gyri. 

1   Introduction 

The cerebral cortex of human brain is highly convoluted and folds itself into gyri and 
sulci during brain development. As an essential characteristic of geometry of human 
cerebral cortex, the folding, however, has shown quite variable patterns on even major 
gyri and sulci across subjects [1]. Though the mechanisms of cortical folding are still 
largely unknown [2], evidence has shown that the folding pattern of human cerebral 
cortex may predict its function [3]. Recently, the quantitative description of folding 
patterns has emerged as an important research goal [4-6]. 

The folding pattern of cerebral cortex is a multi-scale concept whose research scope 
can vary from a very small neighborhood to a whole brain cortical surface (Fig. 1). Cur-
rently, there are two major streams of cortical folding pattern analysis. One is based on 
the very local descriptor curvature and its derivations and whose scope is usually a small 
neighborhood that is one ring away from the focused vertex (Fig. 1a).  In contrast, the 
other main stream is a quite global one. These latter studies use gyrification index [4] or 
spherical wavelets [5] to analyze the folding pattern of the whole cortical surface, or at 
least a certain lobe of human brain (Figs. 1e and 1f).  Both techniques have been studied 
for decades, and have generated many successful applications [7-8]. However, neither of 
them represents the cortical folding pattern comprehensively and systematically, since 
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essentially cortical folding is a multi-scale concept. One would get quite different de-
scriptions if he/she focused on different scales for the same cortical surface.   

This paper proposes a method to analyze the folding pattern of gyri via surface pro-
filing. This is a hybrid parametric method and profiling method in the sense that it com-
bines both advantages of a parametric method (achieving compact representation of 
shape) and a profiling method (achieving flexibility of arbitrary shape representation). 
The basic idea is to represent 3D shape information of cortical surface patches with 
modeling parameters of a series of 2D profiles, and to cluster the cortex into regions 
with this shape information. Then a second round surface profiling is performed on the 
gyrus crown of the parcellated cortex, and the number of hinges is detected to describe 
the folding pattern of the gyrus (please see Fig. 3c for the definitions of a gyrus crown 
and a hinge).  With surface profiling on gyri crowns, we can extend cortical folding 
analyses from localized parametric representations to gyrus-scale representations.  
 

Fig. 1. Multi-scale description of cortical 
folding patterns. (a): micro-scale (red 
area, described by curvature); (b): meso-
scale (yellow area, described by 
polynomial model or Bezier surface 
model); (c): gyrus scale (blue patch, our 
method); (d): sulcus scale (by [9]); (e): 
lobe scale (by gyrification index [4]); (f): 
global scale (by spherical wavelets [5]).  
 

Fig. 2. Flowchart of our surface 
profiling method. (a): Original 
cortical surface; (b): Profiles on the 
original cortical surface; (c): 
Parcellated cortical surface; (d): 
Feature surfaces with shape 
information; (e): Gyral folding 
pattern surface; (f): Profiles on 
parcellated cortical surface. (1): 
Profiling; (2): Model fitting; (3): 
Feature extraction; (4): Affinity 
propagation clustering;(5): Profiling; 
(6): Hinge detection. 

 

2   Method 

2.1   Overview of the Method  

As shown in Fig. 2, our method for gyral folding pattern analysis includes the following 
steps. Firstly, for each vertex of a reconstructed human brain inner surface, we sample the 
corresponding patch into a series of 2D profiles, and model these profiles using power 
function, which is a popular model in structural geology study [12]. The shape information 
of the current surface patch then is encoded in the parameters of the power function.  
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Secondly, based on the model parameters and profiling information, we define several 
affine-invariant features to represent each vertex’s folding information, and use these 
features to cluster the whole cortical surface by the affinity propagation algorithm; this 
step segments the surface into several major cortical regions, including gyri crowns. Fi-
nally, a second round profiling is applied for vertices of gyri crowns on the parcellated 
cortex, and the number of hinges for each gyrus is detected to represent its folding pattern.  

2.2   Profiling of the Cortical Surface  

To profile the cortical surface, we first build a 3D coordinate system that combines a 
3D Cartesian coordinate system [13] and a 2D polar coordinate system. For any ver-
tex O on the cortical surface, we use its normal direction N as the Z direction in a 3D 
Cartesian coordinate system, and build a polar coordinate system in its tangent 
plane P . Then, we start profiling from an arbitrary direction in plane P , and stop 
profiling for current direction when samples reach a certain maximum M . Profiling is 
performed every θ  degree in plane P . Fig. 3 is an example of profiling.    

  
                        (a)                                             (b)                                                 (c)  

Fig. 3. (a) and (b): An example of profiling.  (c): Definition of a gyrus crown and a hinge. 

The essence of surface profiling here is to simplify a 3D profiling problem down to 
a collection of 2D profiling problems. This simplification is founded on the fact that 
the human brain is highly convoluted and surface patches can have very complex 
shapes.  However, current popular models for 3D shapes like polynomials and ellip-
soids are symmetric or might be too simple to capture such complex shapes. Thus, the 
advantage of 2D profiling is the flexibility to describe an arbitrarily shaped cortical 
surface patch.  The disadvantage along with the simplification is the possible loss of 
3D shape information. However, the 360 degrees of profiling still captures a great 
deal of 3D information, especially when we model the profiles and connect corre-
sponding model parameters of all profiles together to form a circle curve.  

2.3   Model Fitting  

The essential idea of model fitting for profiles is to encode the shape information into 
a couple of parameters compactly.  The model we use in this paper is the power func-
tion, a popular model in 2D Geology study because of its simplicity and intrinsic 
physical meaning [12].  The power function is expressed as:  

                                                          ( )0 0/
n

y y x x=                                               (1) 
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Here, 0 0,  and x y n  are parameters to describe a profile shape; 0 00, 0 and 0y x n≠ > > . 

The parameters of this model can be evaluated in a sense of least-square using the 
Levenberg-Marquardt algorithm. Given N sample points of a profile, the parameters 
are those that minimize the fitting residuals:  

                                                  2

1

ˆ ( )arg min
N

i pi
iP

P y y
=

= −∑                                 (2) 

Here, P denotes the three parameters to be evaluated, piy  is the model output at the 

-i th point with P given, and iy  is the profile measurement at the -i th point. 

2.4   Feature Extraction and Clustering  

After the model fitting step, we extract several affine-invariant features to represent the 
shape information of a surface patch. Among the model parameters, the ratio R  be-
tween 0y and 0x  and the power n are very information-rich descriptors of the profile 
shape, especially the ratio R which has proven to be more stable and changes more 
smoothly between adjacent profiles than the power n . The definitions and descriptions 
of features that we extract based on model parameters and profiling information are as 
follows. 1) SulciOrGyri: a vertex that has more profile points above its tangent plane 
would be considered as on a sulcus. Otherwise, it is on a gyrus. 2) AverRatio: the aver-
age R of all profiles for the current vertex. 3) AverMinR: average of Rs that correspond 
to local minimums at R curve. 4) AverMaxR: average of Rs that correspond to local 
maximums at R curve. 5) AllDis: sum of distances between neighboring local maximum 
and minimum. 6) AverDis: average of distances between neighboring local maximum 
and minimum. 7) MaxDis: maximum of distances between neighboring local maximum 
and minimum. 8) AverSampleDis: average of the first order moment of all profiles 
about the tangent plane. 9) MaxSampleDis: maximum of the first order moment of all 
profiles about the tangent plane. 10) AverPower: average of the power n  for all profiles.  

Based on the above 10 features, we apply the unsupervised clustering algorithm af-
finity propagation [14] to the vertices of a cortical surface. The similarity ( , )S i j  of 

two random vertices  and i j is defined as the minus weighted Mahalanobis distance:  

                                  1( , ) ( ) ( )T
i ij jS i j V V Cov W V V−= − − −

uv uuv uv uuv
                              (3) 

Here iV
uv

 and jV
uuv

 are the feature vector defined above; W  is a weighting diagonal 

matrix with iiW  as the weight for the -i th feature; Cov  is the feature covariance.  
 

Fig. 4. The five parcel-
lated cortical regions 
and their typical corre-
sponding patches: gyrus 
crown (red, a), sub 
gyrus crown (yellow, 
b), central area (green, 
c), sub sulcus basin 
(light blue, d), and 
sulcus basin (blue, e) 
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An example of the clustering result is shown in Fig. 4. The clustering step has two 
important contributions.  First, the cortical surface is automatically parcellated into 
distinct regions corresponding to gyral and sulcal regions, as well as transitional re-
gions between them. Second, the transition between different cortical regions is 
smooth. If we walk from gyrus crown to sulcus basin along any path, we will very 
likely cross the same three transitional cortical regions. These two properties signifi-
cantly help us profile the gyrus crown on the parcellated cortex and analyze gyral 
folding patterns. 

2.5   Profiling on Gyrus Crown and Hinge Detection 

To profile the gyrus crown of the parcellated cortex, we first assign a label to each 
parcellated cortical region. The assigned labels could reflect the layout and transition 
between different cortical regions. In this paper, gyri crowns are assigned with a value 
1 whereas sulci basins are assigned with a value 5, and other regions are assigned 
with values according to their transitional levels on the parcellated cortex.   

Then, a feature f is created for each profile of gyrus crown in order to measure the 

profile depth, as well as the number of different regions the profile crosses. The fea-
ture is defined as: 

                                                           1
1 N

iif f
N == ∑                                             (4) 

Here N  is the number of points on the profile, and if  is the label of the region to 

which point i belongs. For example, if point i  is on the gyrus crown, if  is 1.  

Following the above two steps, we detect hinges of the gyrus on which the current 
vertex sits. After 360 degree profiling, the feature values of all profiles for the current 
vertex will be combined together to form a ring curve (see Fig. 5d). Local minima of 
the curve correspond to the hinges of the gyrus, and the number of the local minima is 
the number of hinges of the gyrus. For example, vertex A in Fig 5 has a very clear 
folding pattern (three local minima) to indicate that it is on a 3-hinge gyrus.   

 
Fig. 5. Profiling of 
a gyrus crown on 
parcellated cortex. 
(a): the parcellated 
cortex;  (b): profil-
ing on a gyrus 
crown; (c): de-
tected patterns 
(yellow for 3-hinge 
gyri, and green for 
2-hinge gyri);  (d): 
the feature curve 
for vertex A. 
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3   Results  

3.1   Gyri Pattern Detection 

In this section, we applied the above method to 10 constructed cortical surfaces. Our 
experimental results demonstrate that human gyral folding patterns can be divided 
into 3 classes according to their number of hinges: 2-hinge, 3-hinge and 4-hinge gyri. 
Fig. 6a shows examples of the three folding pattern categories and Fig. 6b shows their 
corresponding feature curves respectively. As we can see from the figure, the hinges 
of gyri correspond well to the local minima of the feature curves (Fig. 6b). The num-
ber of local minima of the connected feature curve, therefore, is considered as the 
number of hinges for the current gyrus. Besides the number of local minima of the 
connected feature curve, the distance between local minima is also an important fea-
ture that could be used to further classify the detected gyral folding patterns. This 
distance actually represents the degree of how much the gyrus bends itself. Take the 
2-hinge gyrus in Fig. 6a3 as an example, its bending degree is apparently larger than 
Fig. 6a1 and Fig. 6a2 in the same category. We can also see the differences from the 
feature curves in Fig. 6b, that is, the distance of the two local minima in Fig. 6b3 is 
larger than those of the other two gyri in Fig. 6b1 and Fig. 6b2.  

Fig. 6c provides the gyri pattern detection result on a whole cortical surface. Ap-
parently, most of the gyri patterns are correctly detected, indicating reasonably good 
performance of the proposed method. In particular, the detected 4-hinge patterns are 
highlighted by dashed circles. One zoomed example is shown in Fig. 6d.   

     

Fig. 6.  Pattern detection result. (a): Examples for each detected pattern. Small triangles denote 
the centers of detected gyri patterns. 1-3: 2-hinge gyri; 4-6: 3-hinge gyri; 7-9: 4-hinge gyri. (b): 
Corresponding feature curve for each sample. (c): Detected patterns on a whole cortical surface. 
The three patterns are color-coded. (d): An example of detected 4-hinge gyri.  
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3.2   Accuracy 

To quantitatively evaluate the accuracy of our proposed method, we have two experts 
manually label the detected patterns, and count the number of two types of detection 
errors: Type1 error (false positive) and Type2 error (false negative). We express the 
accuracy as:  

1 2
(1 )*100%

Type Errors Type Errors
DetectionAccuracy

AllDetectedPatterns

+= −                        (5)  

The detection accuracy of the 3-hinge gyri pattern for the randomly selected 10  
cortical surfaces is summarized in Table 1. The average accuracy is over 90%. The 
algorithm has similar accuracy performance for the 2-hinge and 4-hinge gyri pattern 
detections.  

Table 1. Detection accuracy for 3-hinge gyri pattern 

Expert 1 Expert 2 Subject 
ID 

Error1 Error2 Error1 Error2 

Detected 
Patterns 

Accuracy 
(%) 

Sub 1 8 6 7 5 184 92.93 
Sub 2 5 9 6 11 196 92.09 
Sub 3 6 4 8 3 170 93.82 

Sub 4 4 11 4 9 143 90.21 
Sub 5 10 9 9 9 168 88.98 
Sub 6 6 4 6 5 181 94.19 

Sub 7 1 8 3 9 146 92.80 
Sub 8 9 3 7 3 203 94.58 

Sub 9 10 11 8 10 154 87.34 

Sub 10 7 3 5 5 165 93.93 
Total 58 70 63 69 1410 90.78 

4   Discussion and Conclusion 

In this paper, we propose a method to analyze gyral folding pattern via surface profil-
ing.  The method focuses on hinge numbers of gyri, and has been applied to 10 nor-
mal human brain MR images. Our preliminary results demonstrate that the proposed 
surface profiling method is able to accurately classify gyri into three folding patterns 
according to the number of gyral hinges.   

In the extant literature, several methods have been proposed to automatically label 
human brain surface into gyri and sulci [10-11].  In comparison, our segmentation of 
the cortical surface is based on clustering using profile shape information, and 3 more 
classes besides gyrus crown and sulcus basin are segmented to fill the transition area 
from gyri to sulci.  Though the segmented gyrus crown might be broken somewhere, 
it seems that these breaks have little impact on the final results of gyral folding pat-
terns. This robustness may come from the profiling method itself. Since we profile the 
cortical surface at a macro level, small breaks of a gyrus crown probably would not 
change the fact that the majority of the profile is on a gyrus.  
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Our research on gyral folding pattern analysis has shown that 3-hinge and 4-hinge 
gyri (Fig. 6d) are common across different subjects, and the distribution of them 
among individuals can vary significantly. This result puts forward new challenges for 
registration-based analysis of the human brain. For example, how to establish corre-
spondence between different patterns of gyri, e.g., 3-hinge gyri and 4-hinge gyri, in 
brain registration remains a challenging and open problem.    

Currently, our method only classifies gyral folding patterns into 3 broad classes: 2-
hinge, 3-hinge, and 4-hinge gyri. A more detailed classification of the folding pat-
terns, however, is possible via surface profiling.  For the 2-hinge gyri, we could use 
the angle between local minima to recognize whether it is a “−” shape gyrus or “U” 
shape gyrus.  For the three-hinge gyri, we could also use the angle information to 
further classify the gyri into “Y” shapes and “T” shapes.  The more detailed classifi-
cation of 2-hinge gyri and 3-hinge gyri could potentially provide additional important 
features for self-contained parcellation of the cerebral cortex into anatomically mean-
ingful regions, as well as for automatic recognition of them.  
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Abstract. It has been shown that brain structures in normal aging un-
dergo significant changes attributed to neurodevelopmental and neurode-
generation processes as a lifelong, dynamic process. Modeling changes in
healthy aging will be necessary to explain differences to neurodegenera-
tive patterns observed in mental illness and neurological disease. Driving
application is the analysis of brain white matter properties as a function
of age, given a database of diffusion tensor images (DTI) of 86 subjects
well-balanced across adulthood. We present a methodology based on con-
strained PCA (CPCA) for fitting age-related changes of white matter dif-
fusion of fiber tracts. It is shown that CPCA applied to tract functions
of diffusion isolates population noise and retains age as a smooth change
over time, well represented by the first principal mode. CPCA is therefore
applied to a functional data analysis (FDA) problem. Age regression on
tract functions reveals a nonlinear trajectory but also age-related changes
varying locally along tracts. Four tracts with four different tensor-derived
scalar diffusion measures were analyzed, and leave-one-out validation of
data compression is shown.

1 Introduction

Unlike earlier hypothesis that brain anatomy and major functions are pretty
much established after adolescence and would not change significantly until
late adulthood, there is increasing evidence of dynamic, lifelong changes of
brain structures and thus plasticity. To examine correlation of age-related brain
changes, volumetric measurements such as brain tissue [1] or cortical thickness [2]
were proposed. Regression on brain MRI has been used by Davis et al.. [3] to
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depict age-related shape and volume changes. White matter changes in diffusion
tensor imaging (DTI) due to aging were reported by analyzing changes of scalar
diffusion measures such as fractional anisotropy (FA) and mean diffusivity (MD)
in manually selected brain [4,5] or tract regions [6]. Analysis was most often per-
formed by regional measurements of FA or MD across different age groups, or by
linear regression of such measurements versus age. Whereas most of this previous
analysis uses manually selected regions of interest strategically placed in subre-
gions of known fiber tract locations, clinical research is often interested in the
analysis of whole fiber tracts associated with specific tasks or cognitive function.
Age-related changes of tract diffusion properties should therefore be represented
at various positions of tracts, informing researchers about anatomical location
and type of diffusion changes. This paper presents a methodology for age re-
gression of fiber tract diffusion properties. We follow the work of Goodlett et
al.[7] where fiber bundles are parametrized with arc-length and attributed with
local diffusion properties summarized across perpendicular cross-sections. These
parametrized representations with diffusion attributes can thus represented by
functions whose shape represents variation of diffusion as a function of locality,
f(s), with s = [0 . . . l]. Diffusion is a scalar derived from tensors, so that f(s)
can be a function of FA or MD, for example. Measuring such tract functions
from subjects with different age t results in a set of functions parametrized as
f(t, s). Using a constrained PCA technique (CPCA), we demonstrate how the
complex shape and time change information encoded in f(t, s) can be simplified
to a model where regression on one coefficient efficiently represents locality, type
and magnitude of age-related diffusion changes.

This paper is organized as follows: Section 2 describes the concept of con-
strained PCA. The processing pipelines for population-based segmentation of
fiber tracts and for analysis of age-related diffusion changes of tracts are de-
scribed in section 3. Section 4 summarizes results on several tracts from the
healthy aging study, followed by validation experiments (section 5).

2 Constrained Principal Component Analysis (CPCA)

Our problem is defined as follows: Given a set of parametrized functions of diffu-
sivity attributed with age, f(t, s), we would like to isolate the major systematic
change of functional shapes with respect to age from population noise. Such a
dimensionality reduction cannot be optimally achieved by principal component
analysis (PCA) since any decomposition to modes of major variability would
not consider the time attribute. We therefore fit the set of functions into a space
that is constrained to a smooth change with time. The first or first few of the
resulting coefficients can then be used for age regression via polynomial fit.

We propose the use of constrained Principal Component Analysis (CPCA)
[8,9] to perform data reduction that incorporates the age or time effect in the
observed data. For a set of discretized functions f(t, s) that represents the ob-
served population data at different points of time, we first construct a data
matrix Zt,s indexed by time t along the row and indexed by the tract spatial
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parametrization s along the column (as in standard PCA). CPCA linearly sepa-
rates the data matrix given multiple constraint variables or external information
about the structure of the data along the row or columns of the observations.
For constraint variables α1, · · · , αj , a data matrix M is rewritten as:

M = M̃(α1) + · · ·+ M̃(αj) + R (1)

where R is the residual data matrix. Unlike standard PCA, CPCA decomposes
the individual data matrices for each constraint variable rather than the original
unconstrained data matrix. This ensures that the subspaces generated by CPCA
encode the effects of the constraint variables. In our tract analysis, we have one
constraint variable along the row (time) and Z can be formulated as:

Z = Z̃(t) + R (2)

where Z̃(t) is a projection of each individual function onto the space of polynomi-
als a0+a1t+ · · ·+akt

k that smoothly varies with time and R is the residual data
matrix. We have chosen the projection to the space of polynomials to constrain
the analysis to changes that vary smoothly with time and exclude noise and
population variability. Given a matrix of polynomial basis functions B and the
matrix of polynomial coefficients that best fit the observed data C, Z̃(t) = BC
and Z = BC + R.

Within the constrained CPCA framework, all analysis of the diffusion proper-
ties is performed within the subspaces of the constrained data matrix BC and we
exclude the residual matrix to ensure that noise is not attributed as age effect.
A polynomial up to a degree 4 was used in our experiments.

3 Application to Age-Related White Matter Tract
Changes

Driving Application: White Matter Change in Healthy Aging. We have
access to a database of high-resolution, 3-Tesla MR images of 100 healthy subjects
aged 20 to 76, with 20 subjects per decade divided equally by gender. All subjects
are carefully screened for the presence of brain-related disease. Images acquired in-
clude T1, T2, MRA, and diffusion tensor images. After screening for image quality
of successful DTI scans, 86 DTI could be selected for this study. DTI was done on a
Siemens Allegra 3T head-only scanner: One image without diffusion gradients to-
gether with diffusion weighted images along six gradient directions with a b-value
of 850, repeated 2 times for averaging. TR/TE were 7500/73ms, the matrix size
was 64x64, and voxel resolution was isotropic with 2x2x2mm3.
Atlas Building of Tensor Images. The images are initially aligned by affine
registration of the non-diffusion weighted images to a template T2 (MNI) image
using mutual information, which ensures mapping into a normative brain space.
A scalar feature, the greatest eigenvalue of the Hessian of the FA image, is
computed for each subject [7]. A diffeomorphic, fluid registration is computed
for the set of feature images [10] using the affine alignment as an initalization.
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The result of the registration is a set of transformations that smoothly map each
subject image into a common atlas coordinate system and can also be used to
map structures from the atlas back to each subject’s native space. All tensor
images deformed into the atlas space are averaged to produce a template tensor
image for the atlas, which is used to extract fiber tracts for the white matter
structures of interest. We extracted the four bundles genu, splenium, mid corpus
callosum (mid-cc) and motor-sensory via fiber tractography in atlas space to
ensure correspondence across subjects (Fig. 1 right), using a standard streamline
integration method. These tracts were then mapped back into each subjects
native space to obtain diffusion measures for that subject. This results in a set of
tracts in the atlas space with equivalent geometry but diffusion values extracted
from each subject. Validation and comparison to individual tractography has
been done, but space constraints prohibit inclusion in this paper. Since subjects
have different ages equally distributed between 19 and 68, we therefore get sets
of functions represented as f(t, s) with s representing parametrization by arc-
length and t subject age. The scalar diffusion measures f can be chosen as FA,
MD (trace), axial diffusivity (AD, λ1) and radial diffusivity (RD, (λ2 + λ3)/2).
CPCA on a Set of Functions. Figure 2 illustrates the example of FA of the
mid-cc tract represented by a set of functions coded with age. We can observe
that FA at the middle part close to the corpus callosum does not change strongly
with age but that the sidelobes, i.e. bundle locations close to the cortex, show
significant decrease of FA with age. The complexity of age change and the type
and amount of change at different tract locations are not visible due to large
population variability. We then applied constrained CPCA to the set FA(t, s)
in order to decrease dimensionality and determine major shape variation of the
FA functions with age. Standard PCA is applied for comparison.

Figure 3 illustrates results for PCA (top) and CPCA (bottom) for the mid-
cc tract. Plots in the left column show samples projected into the space of the
first two principal components and age. Samples are color-coded with age. As
expected, PCA does not present obvious structure versus age but CPCA results
in a low-dimensional continuous path for the 86 samples. The middle column
illustrates projection to only the first component versus age, with overlay of 4th-
order regression on age. Again, PCA does not depict a clear relationship to age,
but age regression of CPCA (middle, bottom) illustrates a nonlinear continuous
change with age, with large changes between age 20 and 30, than flattening
till age 50, and accelerated change thereafter. The right column displays the
FA tract functions reconstructed from the first component for all 86 subjects.
Unlike PCA, CPCA encodes age change of the FA functions, clearly visible as
the systematic age-sorted coloring of CPCA and random coloring of PCA.

Our main aim is a simplified model of changes of diffusion functions with
respect to age. As seen in Fig. 4(b) left for the mid-cc tract, most energy is
concentrated on the first component of CPCA. Moreover, age correlation is very
strong for the first component but nonsignificant for the others. PCA is shown for
comparison. We therefore chose to model the diffusion changes by age regression
within the subspace of only the first component. Here, we fit a polynomial up to
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Fig. 1. DTI population atlas: Left Tensor field of atlas computed over 86 subjects:
Middle: FA map calculated from tensor atlas. Right: Typical fiber bundles used in this
study. Mid corpus callosum, sensory-motor and genu tracts are color-coded with FA,
with [0 · · · 1] ranging from dark blue over yellow to red.

Fig. 2. Plot of all mid-cc tract functions of FA shaded by age (left) and 3D represen-
tation of the age set sorted by age (young to old from right to left)

a b c

Fig. 3. Results of the analysis of FA of the mid-cc tract with standard PCA (top) and
constrained CPCA (bottom). Age is encoded in color. a) The first two modes plotted
against age. b) Only first mode versus age with overlay of 4th order age regression.
c) FA functions of 86 subjects projected onto the first component. Columns b and c
demonstrate that data reduction by CPCA does encode a strong age-related relation-
ship not seen in PCA (see random coloring in PCA versus age-sorted coloring in CPCA
in column c).
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FA MD AD RD
(a) Reconstruction of diffusion properties of the mid-cc tract using polynomial age
fitting within the first subspace generated by CPCA. Age is encoded in different shades
of gray amd shown for years 20,30,40,50 and 60. We display the evolution of diffusion
properties as a function of age for FA, MD, AD and RD.

CPCA PCA
Mode %eval corr %eval corr

1 66.20 0.978 24.25 0.069
2 23.68 0.032 20.82 -0.496
3 7.78 0.020 12.86 0.145
4 2.33 0.203 10.81 -0.047

CPCA %eval
Mode FA MD AD RD

1 66.20 80.98 55.40 64.91
2 23.68 15.91 21.92 25.93
3 7.78 2.54 19.70 6.87
4 2.33 0.56 2.96 2.27

(b) Left: Normalized eigenvalues and age correlation of first four CPCA and PCA modes
on the set of functions of FA along the mid-cc tract, illustrating the stronger compres-
sion of CPCA but also concentration of age-correlation on the first component. Right:
Normalized eigenvalues of CPCA for FA, MD, AD and RD diffusion measures.

Fig. 4. Results of mid-cc tract for four different diffusion measures

a degree 4 to the projections of the functions to the first component (see Fig. 3
column b). Using this polynomial fit, we can then reconstruct the expected
diffusion properties for each age in the range of interest. Fig. 4(a) illustrates the
reconstructions for ages 20,30,40,50 and 60 and for various diffusion properties
(FA, MD, AD, RD) along the mid-cc tract. Age is encoded using a gray-scale
color map. The figures show nonlinear differences across age and also variations
of change patterns as a function of tract location.

4 Results

The CPCA analysis has been applied to the major four fiber tracts genu, sple-
nium, mid-cc and motor-sensory. Fig. 5 displays age-related changes as calculated
for these four tracts. We illustrate the reconstructed diffusion functions of FA
and MD for age 20, 30, 40, 50 and 60, using projection onto the first CPCA
component and 4th-order regression. The plots clearly illustrate that the age-
related trajectory of white matter diffusion is nonlinear, i.e. different decades
present different changes, and second that diffusion changes vary significantly as
a function of tract location. FA in genu, splenium and mid corpus callosum, for
example, shows only minor age change in the center region but significant FA
decrease in the peripheral parts close to the cortex. The motor-sensory tract (arc-
length left to right presents superior to inferior tract location, see also Fig. 1)
also demonstrates age-changes of FA close to the cortex but large MD changes
along the middle part between cortex and internal capsule. The splenium tract
showed much more population variability than the genu, which is reflected in
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motor-sensory mid corpus callosum genu splenium

Fig. 5. Reconstructed functions of FA (top row) and MD (bottom row) for four fiber
tracts. Age is encoded as gray-scale for years 20, 30, 40, 50, and 60. Age-correlation of
CPCA was significant for all 4 tracts (0.93, 0.98, 0.85 and 0.95).

the MD analysis. Major conclusions related to the specific age study might be
too preliminary, but this discussion demonstrates how the results could be inter-
preted by clinical researchers. The caption in Fig. 5 also lists the age correlation
for the first component of CPCA which is highly significant for all 4 tracts.

5 Validation

We validate the choice of an age-constrained subspace by leave-one-out cross
validation. Given a set of N functions, we perform leave-one-out analysis by
excluding one function from the set followed by performing data reduction and
regression using the reduced set. We then project the one excluded function to
the computed first principal component, and compare the projected score against
the expected score from the polynomial fitting. We decided to use this approach
to validate the data reduction by projection to a lower dimensional subspace
and also the age-based fitting within this subspace. This analysis was performed
on the subspaces computed by CPCA and regular PCA. The values for the
average of the sumx|proj(x)− fit(x)|2 measure for motor-sensory, mid-cc, genu
and splenium are (0.01975, 0.02298, 0.01698, 0.03778) for CPCA and (0.02499,
0.03051, 0.02367, 0.12504) for PCA. As seen, the CPCA consistently provides
lower prediction error compared to the unconstrained PCA. The prediction error
for PCA is higher for the noisy diffusion data in the splenium tract.

6 Discussion

We present a methodology for analyzing age-related changes of white matter
measured along fiber tracts. The framework includes population-based map-
ping of DTI to a common coordinate space, tractography, and representation of
tensor-derived scalar diffusion measures along tracts. CPCA constrained to age
is then applied to the sets of diffusion functions to reduce dimensionality to the
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first principal mode. The PCA projections are performed on the curves recon-
structed from the polynomials. We thus enforce the dominant eigenvectors to
be strongly driven by time and not necessarily be the original eigenvectors. We
preferred this global approach versus regression at each spatial position to ac-
count for along-tract correlation. Results on major tracts demonstrate feasibility
and represent type of changes of FA and MD as reported elsewhere. However,
our preliminary analysis predicts that age changes might not be simplified to
linear regression but show more complex time and space variations. The strong
dimensionality reduction while still encoding age-related changes as a function of
tract location might be a benefit for biostatisical analysis. We plan to apply the
method to clinical studies of aging and early brain development, with testing for
group differences of change trajectories of white matter diffusion. A limitation
might be the independent analysis of tensor-derived diffusion parameters. In the
future, we will explore joint analysis of multiple features, e.g. FA and tensor
norm or AD and RD, or even full tensors.
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Abstract. This study aims to identify the minimum requirements for
an accurate model of the diffusion MR signal in white matter of the
brain. We construct a hierarchy of two-compartment models of white
matter from combinations of simple models for the intra and extra-
cellular spaces. We devise a new diffusion MRI protocol that provides
measurements with a wide range of parameters for diffusion sensitiza-
tion both parallel and perpendicular to white matter fibres. We use the
protocol to acquire data from a fixed rat brain, which allows us to fit,
study and compare the different models. The results show that models
which incorporate pore size describe the measurements most accurately.
The best fit comes from combining a full diffusion tensor (DT) model of
the extra-cellular space with a cylindrical intra-cellular component.

1 Introduction

Over the last 15 years diffusion-weighted MRI (DW-MRI) has become popular
because it provides unique insight into brain tissue microstructure and connectiv-
ity. The technique has become an essential probe for highlighting and monitoring
tissue microstructure changes in development and disease.

The simplest and most commonly used model for relating the DW-MRI signal
to diffusion in tissue is the diffusion tensor (DT) [1]. The model provides useful
microstructural markers of tissue integrity such as fractional anisotropy (FA)
and mean diffusivity (MD). However these indicators are non-specific, because
many features of the microstructure can affect them. To address this limitation,
the recent trend in diffusion MRI [2,3,4] is towards more direct microstructure
imaging via more descriptive models of tissue that relate specific parameters,
such as cell size and density, directly to the signal.

To trust the parameter estimates we obtain from fitting these models, we must
ensure that they include all the important physiological parameters of the tissue
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that affect the signal. In this work, we study one important class of models:
two-compartment models with no exchange, which model the signal as the sum
of signals from water inside and outside impermeable cells. The class of models
includes the ball and stick model [2], CHARMED [4] and the simplified version
of CHARMED in [3], each of which uses different intra-cellular (IC) and extra-
cellular (EC) models. We construct a hierarchy of two-compartment models from
combinations of these IC and EC models. We define a new diffusion MRI protocol
to allow evaluation and comparison of the models for parallel and perpendicular
signals in brain white matter over a wide range of scan parameters. Such a study
is challenging in brain tissue because fibre orientation varies, so most previous
studies use simpler tissue samples such as spinal cord. The new protocol enables
extension of these studies to the brain. Here we acquire data from an ex vivo
rat brain that has been perfusion fixed. The data set contains a much more
comprehensive set of measurements than we can acquire on live subjects but is
rich enough to ensure good fit of the models, identification of important effects
and thus reliable selection of appropriate models for sparser in vivo data.

Section 2 gives some background on diffusion MRI models. Section 3 intro-
duces the hierarchy of models to test, the MRI acquisition protocol and the
model fitting procedure. Section 4 describes the experiments and results.

2 Background

Diffusion tensor imaging (DTI) [1] models the displacement of spins in 3D with
a zero-mean Gaussian distribution by fitting the apparent diffusion tensor D, to
six or more normalised DW images via

S(G, Δ, δ) = S0 exp(−bĜ
T
DĜ), (1)

where S is the DW signal, S0 is the unweighted signal, b is the diffusion weight-
ing factor, equal to (Δ− δ/3)(γδ|G|)2 for the pulse-gradient spin-echo (PGSE)
sequence , G is the gradient vector with strength |G| and direction Ĝ, Δ is the
time between the onsets of the two pulses, δ is the pulse gradient duration and
γ is the gyromagnetic ratio. A big limitation of the DT model is that it does not
account for restricted diffusion within cells so the signal departs from the model
even in single fibre populations especially as b becomes large.

Two-compartment models overcome the limitations of the DT model to some
extent by modelling restriction within cells. Often they assume hindered diffusion
in the EC space and restricted diffusion in the IC space. The signal attenuation
is given by

S(G, Δ, δ) = S0

(
fSh(G, Δ, δ) + (1− f)Sr(G, Δ, δ)

)
, (2)

where f is the volume fraction of the restricted IC compartment, Sh and Sr are
signals from the hindered and the restricted compartments respectively.

In Behrens’ ball and stick model [2] both Sr and Sh have the form of Eq. 1.
For Sr, D = dnnT where d is the free diffusivity and n is the fibre direction, so
water moves only in the fibre direction. For Sh, D = dI, where I is the identity
tensor, so diffusion is isotropic.
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Alexander [3] models the EC space using Eq. 1 with a cylindrically symmetric
tensor, so D = αnnT + βI. The model for the IC space accounts for non-zero
pore size, unlike Behrens’ stick model. Sr comes from Van Gelderen’s model [5]
for signal attenuation from diffusion perpendicular to the axis of a restricting
cylinder and accounts for finite pulse width.

Assaf’s CHARMED model [4] also assumes cylindrical restriction in the IC
space. They use Neuman’s expression [6] for diffusion in cylindrical confinement
for a PGSE experiment, which assumes short gradient pulses (δ # Δ). Unlike
Alexander’s model, which assumes a single cylinder radius, the model assumes
cylinders with gamma distributed radii which introduces one extra parameter.
The hindered compartment uses the full DT model constrained only to have
principal direction aligned with the cylinder axis.

Other methods describe diffusion with three or more compartments and allow
exchange between them. For example, Stanisz et al. [7] construct a three-pool
model with prolate ellipsoidal axons and spherical glial cells each with partially
permeable membranes. However, fitting such models requires very high quality
measurements, typically using NMR spectroscopy rather than MRI. We limit
investigation here to simpler two-compartment models with no exchange.

3 Methods

This section describes the hierarchy of two-compartment models, the details of
the new acquisition protocol and the model fitting procedure.

3.1 Model Hierarchy

There are many options in the literature for models of the Sr and Sh components
from which we can combine any pair to create new two-compartment models.

We investigate two models for the restricted compartment. The first is Behrens’
“stick” model [2] which has n and d as parameters. This describes diffusion in a
zero radius cylinder. The second is Van Gelderen’s model [5], as used in [3], which
accounts for non-zero cylinder radius. We refer to this model as the “cylinder”.
This model has an extra parameter, R, the axon radius. We assume a single R
as in [3].

We investigate three models for the EC compartment. Each is a DT model
with different constraints. The first, the “ball”, is isotropic, D = dI, as in [2]
and has only one parameter, the diffusivity d. The second has a DT which is
anisotropic, but cylindrically symmetric, as in [3] and we call this a “zeppelin”.
The model has parameters: n, d‖ which is the diffusivity parallel to the fibre
direction and d⊥ perpendicular to it.

Finally we consider a full tensor. This model has three diffusivity parameters:
parallel diffusivity d‖ and d⊥1 ,d⊥2 perpendicular with d⊥1 �= d⊥2 . It has an
additional three degrees of freedom for the orthogonal eigenvectors n, n⊥1 and
n⊥2 . The form of the DT is

Dh = d‖nnT + d⊥1n⊥1n
T
⊥1

+ d⊥2n⊥2n
T
⊥2

. (3)
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We refer to this EC model as a “boat”. We use combined terms to refer to
specific two-compartment models, for example “zeppelin and stick” assumes zero
radius cylinders for the IC space and cylindrical symmetry for the EC space.
Where appropriate we further constrain the EC models so that the DT’s principal
direction is equal to the IC cylinder axis and the EC diffusivity is d‖.

3.2 MRI Acquisition

We are interested in diffusion in the brain in directions parallel and perpendicular
to the fibre orientation, since these directions reveal most about the underlying
brain microstructure. However, it is challenging to acquire such measurements
from brain tissue, because fibre orientation varies throughout the white matter.
Our approach is to pick one central parallel direction and several perpendicular
directions and identify voxels in which the fibres align with those directions after
imaging. We focus analysis only on these voxels and discard all others.

We acquire diffusion-weighted MR images of a perfusion-fixed male rat brain,
using a small bore 9.4T scanner (Varian) with maximum gradient strength
400mT/m. We use a five direction-encoding scheme and place the sample in
the scanner oriented to ensure that some fibres in the Corpus Callosum (CC)
are parallel to our central direction. We choose four evenly spaced directions
perpendicular to the central direction in our chosen voxels (see Figure 1). We
use a PGSE sequence for 70 diffusion weightings: five diffusion times Δ = 10,
20, 30, 40, 50ms, gradient durations δ = 3 ms for all Δ and δ = 30ms for Δ
= 40, 50ms, gradient strength |G| varied from 40 to 400mT/m in ten steps of
40mT/m. Measurements with b value greater than 7.7×1010 sm−2 were not per-
formed due to poor SNR (< 2.6 i.e all combinations with |G| = 200 to 400mT/m
and δ = 30ms). In total we acquired images with 59 diffusion weightings in each
direction. In figure 2 we plot the parallel and the mean of the four perpendicular
directions of the log signal from voxels in the region of interest (see section 4)
in the CC and demonstrate MRI images for various b values.

We use minimum echo times (TE) to maximise SNR and repetition times (TR)
to minimise gradient heating effects. For each combination of diffusion weighting
parameters we acquire b = 0 images to correct for T1 and T2 dependence. We
also perform a separate DTI acquisition using a 42-direction scheme with b value
4.5×109 sm−2 and six b = 0 measurements. The in-plane field of view is 2 cm,
matrix size 256× 256 and slice thickness 0.5mm.

3.3 Model Fitting

We fit each model to the data using an iterative optimization procedure and
synthesise diffusion-weighted data from the fitted models. We minimize the sum
of squared errors using a Levenberg-Marquardt algorithm. Fits of the simplest
models are relatively independent of starting position. More complex models
are more sensitive and we use parameter estimates of simpler models to provide
initial estimates. We choose the best fit parameters from the models after 500
perturbations of the starting parameters to ensure a good minimum. Fitting
procedures are implemented in Camino [8].
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Fig. 1. The red arrow in-
dicates the central gradi-
ent direction used for the
encoding scheme and the
blue arrows indicate the
four directions perpendicu-
lar to the central one

Fig. 2. Plot of the parallel and the mean of the four perpendicular directions of the log
signal from voxels in a region of interest in the CC and demonstration of MRI images
for various b values

4 Experiments and Results

To study parallel and perpendicular signal attenuation we choose a region of
interest (ROI) with fibre direction aligned to the central direction. We manually
segment the CC on a FA map from the DTI acquisition and threshold for voxels
with FA > 0.5 in which the principal direction of the DT is parallel to the
central gradient direction within 2 ◦. We average the data contained within all
the resulting 21 voxels of the ROI.

The best fit microstructure parameters from the models are shown in table 1.
We see that the “cylinder” models give higher values for the volume fraction f
and diffusivity parameters and consistently estimate R around 2 μm, which is a
reasonable estimate of mean axon radius. All the models give good estimates of
the left-right fibre direction.

The Bayesian information criterion (BIC) [9] evaluates the models and ac-
counts for varying complexity. Table 2 shows the mean-squared error (MSE)
and BIC for all the models. As expected, MSE decreases with model complexity,
but the BIC reveals which reductions are significant. The “boat and cylinder”
model minimizes the BIC.

Figure 3 shows the fit of each model to the data. The top right panel shows
scan data and the other panels compare predictions from each model with fitted
parameters. The plots actually show the mean signals over 500 trials adding inde-
pendent Rician noise at approximately the level in the scan data. This procedure
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Fig. 3. Results of data synthesised from the analytical models and the scan data from
the PGSE experiment. The normalised signal S/S0 is plotted for all the values of Δ, δ
as a function of the gradient strength |G| for the parallel and the mean of the four
perpendicular directions.
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only significantly affects the measurements with very low signal. We compare
data synthesised from the models by plotting the normalised signal S/S0 at all
values of Δ and δ as a function of the gradient strength G for the parallel and
perpendicular directions. The DT model shows a significant departure from the
scan data and confirms expectations that the model is poor for high b value data,
because it does not account for restriction. In contrast, all the two-compartment
models capture the broad trends of the data and the anisotropy that separates
the parallel and perpendicular signals. The subtle variations that improve the
fit for cylinder and anisotropic models are difficult to observe qualitatively.

Table 1. Fitted parameters for each model

Models f d‖ (m2s−1) d⊥1 (m2s−1) d⊥2 (m2s−1) R (m) θ ϕ

DT n/a 2.494×10−11 1.781×10−11 1.660×10−11 n/a 1.570 4.712
Ball and stick 0.429 3.211×10−10 n/a n/a n/a 1.570 4.712

Ball and cylinder 0.503 3.389×10−10 n/a n/a 2.058×10−6 1.518 4.753
Zeppelin and stick 0.408 3.3676×10−10 2.914×10−10 n/a n/a 1.491 4.790

Zeppelin and cylinder 0.503 3.387×10−10 3.396×10−10 n/a 2.059×10−6 1.518 4.754
Boat and stick 0.410 3.363×10−10 3.772×10−10 2.179×10−10 n/a 1.682 4.704

Boat and cylinder 0.499 3.381×10−10 4.442×10−10 2.405×10−10 2.101×10−6 1.579 4.707

Models MSE ×104 BIC ×10−3 No. parameters
DT 1025.4 -0.7651 7

Ball and stick 34.5 -1.9768 5
Ball and cylinder 30.8 -2.0116 6
Zeppelin and stick 33.3 -1.9832 6

Zeppelin and cylinder 30.8 -2.0058 7
Boat and stick 30.3 -2.0051 8

Boat and cylinder 27.4 -2.0349 9

Table 2. Mean-squared
fitting error, Bayesian
information criteria and
the number of parameters
(with S0) for each model

Fig. 4. Plot of the normalised
signal for the parallel direc-
tion at δ = 30ms and Δ =
50 ms from the scan data and
the “boat and cylinder” model
against the gradient strength.
The error bars indicate the min-
imum and maximum signal over
500 Rician noise trials

The biggest departures are for large δ in the parallel direction. We hypoth-
esise that these departures are not solely due to noise. Figure 4 compares the
normalised signal S/S0 for the scan data and the “boat and cylinder” model
with δ = 30ms and Δ = 50ms for the parallel direction indicating the range of
Rician noise over 500 realisations, confirming this.

5 Conclusions

We have constructed, evaluated and compared a hierarchy of two-compartment
models for the DW-MRI signal in white matter. Previous studies of this type [4,7]
have been limited to non-brain tissue, such as spinal cord or nerve tissue samples,
because of the difficulty of obtaining parallel and perpendicular measurements
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consistently from the brain. The new imaging protocol we devise provides parallel
and perpendicular signals from brain tissue.

The models we present here are applicable and feasible for whole-brain imag-
ing but the acquisition protocol is purposefully not. The aim of this work is to
compare models with fixed orientation, which allows many more measurements
to support the model comparison. Once we have established appropriate mod-
els, subsequently we can find more economical protocols for whole-brain imaging,
using for example the ideas in [3].

The key conclusion is that the effects of restriction are extremely important
for modelling diffusion in white matter. The simple two-compartment models we
study here explains the data remarkably well. Even the simplest four-parameter
(excluding S0) ball and stick model captures the broad trends in the data where
the six-parameter DT model completely fails. The model comparison in table 2
clearly demonstrates that the data supports the non-zero axon radius parameter,
adding credence to techniques that estimate the parameter [3,4,7], as well as
anisotropy of the EC compartment. The departure of the signals from the model
in the parallel direction most likely comes from a small amount of restriction
parallel to the fibres from glial cells and/or non-parallel fibres, which supports
Stanisz’s findings in [7], or from effects of tissue fixation.

Future work will extend the hierarchy to other IC and EC models and compare
models that include exchange between compartments and different diffusivity and
relaxivity in each compartment, as in [7]. Inparticular, we could include the gamma
distributionmodel of the cylinder radii in [4].The imagingprotocolandmethodswe
use here extend easily to support comparisons of an extended hierarchy of models.
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Abstract. Here we introduce multivariate tensor-based surface mor-
phometry using holomorphic one-forms to study brain anatomy. We
computed new statistics from the Riemannian metric tensors that re-
tain the full information in the deformation tensor fields. We introduce
two different holomorphic one-forms that induce different surface confor-
mal parameterizations. We applied this framework to 3D MRI data to
analyze hippocampal surface morphometry in Alzheimer’s Disease (AD;
26 subjects), lateral ventricular surface morphometry in HIV/AIDS (19
subjects) and cortical surface morphometry in Williams Syndrome (WS;
80 subjects). Experimental results demonstrated that our method power-
fully detected brain surface abnormalities. Multivariate statistics on the
local tensors outperformed other TBM methods including analysis of the
Jacobian determinant, the largest eigenvalue, or the pair of eigenvalues,
of the surface Jacobian matrix.

1 Introduction

Surface-based methods have been extensively used to study structural features
of the brain, such as cortical gray matter thickness, complexity, and deformation
over time [1]. Also, deformation-based morphometry (DBM) [2] directly uses 2D
or 3D deformations obtained from the nonlinear registration of brain images
to infer local differences in brain volume or shape. Tensor-based morphometry
(TBM) [3] tends to examine spatial derivatives of the deformation maps reg-
istering brains to a common template, constructing morphological tensor maps
such as the Jacobian determinant, torsion or vorticity. DBM, by contrast, tends
to analyze 3D displacement vector fields encoding relative positional differences
across subjects. One advantage of TBM for surface morphometry is that surfaces
are commonly parameterized using grids from which local deformation tensors
can be naturally derived - TBM can even make use of the Riemannian surface
metric to characterize local anatomical changes.

In computational differential geometry, a holomorphic one-form [4] can be
represented as a pair of scalars on each edge of a discrete mesh structure. The
holomorphic one-form is an intrinsic, coordinate-free formulation. It provides a
practical way to induce conformal parameterizations on surfaces and compute
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surface-to-surface registrations. The holomorphic one-forms are computed by
solving linear systems so the computation is very stable.

In this paper, we present a multivariate TBM framework and apply it to
detect abnormal areas on anatomical structures in the brain represented as
surfaces, parameterized using differential forms (holomorphic one-forms). We
performed three empirical studies of brain abnormalities in Williams syndrome
(WS), Alzheimer’s Disease (AD), and HIV/AIDS. We studied hippocampal sur-
face deformation associated with AD, and lateral ventricular surface deformation
associated with HIV/AIDS. The proposed multivariate TBM detected areas of
statistically significant deformation even in relatively small test datasets - one
compares 12 subjects with AD to a group of 14 matched healthy controls and the
other compares 11 subjects with HIV/AIDS to 8 matched healthy controls. We
also detected regions with statistically significant abnormal surface morphology
in cortical data from 40 individuals with WS versus 40 matched healthy controls.
For comparison, we also applied another three map-based surface statistics to
the same three brain anatomical surface datasets. Our goal was to show that
the proposed multivariate TBM had more detection power by detecting consis-
tent but more statistically significant areas of abnormal brain structure. Also
note that the proposed multivariate TBM framework is simple and general. The
Jacobian matrix can be easily computed by Equation 1. Potentially it can take
results from any surface registration methods for further morphometry study.

2 Methods

Holomorphic one-forms, a structure used in differential geometry, can be used
to generate both canonical conformal parametrization [5] and slit conformal
parameterization [6] on 3D anatomical surfaces. The obtained parameterization
maximizes the uniformity of the induced grid over the entire domain (see [5,6]
for a more detailed algorithm description).

Suppose φ : S1 → S2 is a map from surface S1 to surface S2. The derivative
map of φ is the linear map between the tangent spaces, dφ : TM(p) → TM(φ(p)).
In practice, smooth surfaces are usually approximated by triangle meshes. The
derivative map dφ is approximated by the linear map from one face [v1, v2, v3] to
another one [w1, w2, w3]. First, we isometrically embed the triangle [v1, v2, v3],
[w1, w2, w3] onto the plane R2; the planar coordinates of the vertices of vi, wj are
denoted using the same symbols vi, wj . Then we explicitly compute the linear
matrix for the derivative map,dφ, which is the Jacobian matrix of φ,

dφ = [w3 − w1, w2 − w1][v3 − v1, v2 − v1]−1. (1)

In our work, we use multivariate statistics on deformation tensors [7] and adapt
the concept to surface tensors. Let J be the derivative map and define the
deformation tensors asS = (JT J)1/2. Instead of analyzing shape change based
on the eigenvalues of the deformation tensor, we consider a new family of metrics,
the “Log-Euclidean metrics” [8]. These metrics make computations on tensors
easier to perform, as they are chosen such that the transformed values form a
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vector space, and statistical parameters can then be computed easily using the
standard formulae for Euclidean spaces.

We apply Hotelling’s T 2 test on sets of values in the log-Euclidean space of the
deformation tensors. Given two groups of n-dimensional vectors Si, i = 1, ..., p,
Tj, j = 1, ..., q, we use the Mahalanobis distance M to measure the group mean
difference, M = (logS̄ − logT̄ )Σ−1(logS̄ − logT̄ ), where S̄ and T̄ are the means
of the two groups and Σ is the combined covariance matrix of the two groups.

3 Experimental Results

We applied the multivariate TBM method to various anatomical surfaces ex-
tracted from 3D MRI scans of the brain. For registering anatomical surfaces
across subjects, we found that conformal slit mapping works well for cortical sur-
face registration because the overall shape of a cortex is close to a sphere and the
landmark curve locations are generally similar to each other. On the other hand,
holomorphic flow segmentation works better for parameterizing long, cylinder-
like shapes, such as hippocampal and lateral ventricular surfaces. In the light of
this observation, we used a canonical holomorphic one-form to conformally map
hippocampal and lateral ventricular surfaces to a set of planar rectangles (sub-
section 3.1 and 3.2); and we used slit map conformal parameterization to con-
formally map cortical surfaces to multiply connected domains (subsection 3.3).
Through the parameter domain, we can register surfaces by using a constrained
harmonic map [5].

In this paper, the segmentations are regarded as given, and results are from
automated and manual segmentations detailed in other prior works [9,10,11].

3.1 Multivariate Tensor-Based Morphometry on Hippocampal
Surfaces: Application to Alzheimer’s Disease

The hippocampal surface is a structure in the medial temporal lobe of the brain.
Parametric shape models of the hippocampus are commonly developed for track-
ing shape differences or longitudinal atrophy in disease. Many prior studies,
e.g., [9], have shown that there is atrophy as the disease progresses. In our
method, we leave two holes on the front and back of the hippocampal surface,
representing its anterior junction with the amygdala, and its posterior limit as it
turns into the white matter of the fornix. It can then be logically represented as
an open boundary genus-one surface, i.e., a cylinder. Its canonical holomorphic
one-form can be easily computed. By integrating this holomorphic one-form, it
can be conformally mapped to a rectangle and registered by using a constrained
harmonic map.

Figure 1 (a)-(d) illustrate our experimental results on a group of hippocampal
surface models extracted from 3D brain MRI scans of 12 AD individuals and 14
control subjects [9]. After surface registration, we ran a permutation test with
5000 random assignments of subjects to groups to estimate the statistical sig-
nificance of the areas with group differences in surface morphometry. We also
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Fig. 1. (a) & (b) illustrate canonical conformal parameterization results. (c)-(j) show
statistical p-map results of various TBMs on (1) a group of hippocampal surfaces from
12 AD patients and 14 matched controls((c)-(f)); (2) a group of lateral ventricular sur-
faces from 11 HIV/AIDS patients and 8 matched controls((g)-(j)). On the color-coded
scale, non-blue colors denote the vertices where there is a significant statistical differ-
ence, at the p = 0.05 level. Multivariate TBM detected anatomical differences more
powerfully than other TBM statistics. Overall statistical significance values (corrected
for multiple comparisons) are listed in Table 1.

used a statistical threshold of p = 0.05 at each surface point to compute the
supra-threshold surface area, and we estimate the overall significance of the ex-
perimental results by using a non-parametric permutation test to establish an
empirical null distribution for this surface area [10]. Although the samples sizes
are small, we still detected relatively large statistically significant areas, consis-
tent with prior findings [9]. The overall statistical significance p-values, based
on permutation testing (and therefore corrected for multiple comparisons), were
0.0198 for the left hippocampal surface and 0.0410 for the right hippocampal
surface (Figure 1 (a)).

3.2 Multivariate Tensor-Based Morphometry of the Ventricular
Surface in HIV/AIDS

The lateral ventricles - fluid-filled structures deep in the brain - are often enlarged
in disease and can provide sensitive measures of disease progression [11]. Ventric-
ular changes reflect atrophy in surrounding structures, so ventricular measures
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and surface-based maps provide sensitive assessments of tissue reduction that
correlate with cognitive deterioration in illnesses. However, the concave shape,
complex branching topology and extreme narrowness of the inferior and pos-
terior horns have made it difficult for surface parametrization approaches to
impose a grid on the entire structure without introducing significant area dis-
tortion. To model the lateral ventricular surface, we automatically locate and
introduce three cuts on each ventricle. The cuts are motivated by examining the
topology of the lateral ventricles, in which several horns are joined together at
the ventricular “atrium” or “trigone”. We call this topological modeling step,
interpreting the ventricles as a set of connected, simpler surfaces, a topology
optimization operation. The topology optimization helps to enable a uniform
parametrization in some areas that otherwise are very difficult to capture with
usual parametrization methods. After the topology is modeled in this way, a
lateral ventricular surface, in each hemisphere, becomes an open boundary sur-
face with 3 boundaries. We computed the canonical holomorphic one-form [5].
With holomorphic flow segmentation [5], each lateral ventricular surface can
be divided into 3 pieces. Although surface geometry is widely variable across
subjects, the zero point locations are intrinsically determined by the surface
conformal structures, and the partitioning of the surface into component meshes
is highly consistent across subjects. The automatic surface segmentation result
for a lateral ventricular surface is similar to the manual surface segmentation
results used in prior research [11]; even so it improves on past work as it avoids
arbitrarily chopping the surface into 3 parts using a fixed coronal plane. Af-
ter the surface segmentation, each lateral ventricular surface is divided to three
surfaces, each topologically equivalent to a cylinder. For each piece, we again
applied the holomorphic flow algorithm to it and conformally mapped it to a
rectangle. Then we registered each part by a constrained harmonic map. Since
all ventricle surfaces are similar and the critical graph is intrinsic to surface,
the surface segmentation results are very consistent. It provides a stable surface
registration scheme for lateral ventricular surfaces.

In our experiments, we compared ventricular surface models extracted from
3D brain MRI scans of 11 HIV/AIDS individuals and 8 control subjects [11].
After surface registration, we computed the surface Jacobian matrix and ap-
plied multivariate tensor-based statistics to study differences in ventricular sur-
face morphometry. We ran a permutation test with 5000 random assignments
of subjects to groups to estimate the statistical significance of the areas with
group differences in surface morphometry. We also used a statistical threshold
of p = 0.05 at each surface point to estimate the overall significance of the
experimental results by non-parametric permutation test [10]. The experimen-
tal results are shown in Figure 1(e). Although sample sizes are small, we still
detected large statistically significant areas, consistent with prior findings [11].
The overall statistical significance p-values, based on permutation testing, were
0.0022 for the left lateral ventricle and 0.008 for the right lateral ventricle.
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3.3 Multivariate Tensor-Based Morphometry on Cortical Surfaces
of Subjects with Williams Syndrome

We also applied our framework to a cortical surface morphometry study of the
brain. We analyzed cortical surface models extracted from 3D brain MRI scans
of 40 WS individuals and 40 healthy control subjects [10]. We selected a set of
10 landmark curves: the Central Sulcus, Superior Temporal Sulcus Main Body,
Inferior Frontal Sulcus, Middle Frontal Sulcus, Inferior Temporal Sulcus, Sec-
ondary Intermediate Sulcus, Transverse Occipital Sulcus, Inferior Callosal Out-
line Segment, Superior Rostral Sulcus, and Subparietal Sulcus. The definitions
of these anatomical lines are reported in [12]. After we cut the cortical surface
open along the selected landmark curves, a cortical surface became topologically
equivalent to an open boundary genus-9 surface. With holomorphic one-forms,
the surface can be conformally mapped to an annulus with 8 concentric arcs [6].
Based on surface conformal parameterization, we use the landmark curves as
the boundary condition and perform a constrained harmonic map to register
the cortical surfaces. For each point on the cortical surface, we ran a permuta-
tion test (non-parametric t test) with 5, 000 random assignments of subjects to
groups to estimate the statistical significance of the areas with group differences
in surface morphometry. Also, given a statistical threshold of p=0.05 at each
surface point, we applied permutation test to the overall rejection areas (i.e.,
using the suprathreshold area statistic) to evaluate the overall significance of
the experimental results [9].

After fixing the template parametrization, we used Log-Euclidean metrics to
establish a metric on the surface deformation tensors at each point, and con-
ducted a permutation test on the suprathreshold area of the resulting Hotellings
T 2 statistics. The statistical map is shown in Figure 2(a). The threshold for sig-
nificance at each surface point was chosen to be p=0.05. The permutation-based
overall significance p values, corrected for multiple comparisons, were p=0.0001
for the right hemisphere and 0.0002 for the left hemisphere, respectively.

3.4 Comparison with Other TBM Methods

To explore whether our multivariate statistics provided extra power when run-
ning TBM on the surface data, in each experiment, we also conducted three addi-
tional statistical tests based on different tensor-based statistics derived from the
Jacobian matrix. The other statistics we studied were: (1) the pair of eigenvalues
of the Jacobian matrix, treated as a 2-dimensional vector; (2) the determinant of
Jacobian matrix; and (3) the largest eigenvalue of Jacobian matrix. For statistics
(2) and (3), we applied a Students t test to compute the group mean difference
at each surface point. In case (1), we used Hotelling’s T 2 statistics to compute
the group mean difference. For the three new statistics, their calculated statis-
tical maps are shown in Figure 1(b)-(d), 1(f)-(h), and 2 (b)-(c), respectively.
For each statistic, we also computed the overall p-values (see Table 1). In each
experiment, the overall localization and spatial pattern of surface abnormali-
ties detected by different tensor-based surface statistics were highly consistent.
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Fig. 2. (a)-(d) illustrate the slit map conformal parameterization on a right hemisphere
cortical surface with 10 selected landmark curves. (e)-(h) are illustrative the statistical
p-map results of multivariate TBM and other surface TBM for a cortical surface dataset
from 40 WS patients and 40 matched control subjects. The color-coded scale is the
same as the one in Figure 1, where non-blue colors denote the vertices where there is
a significant statistical difference, at the p = 0.05 level. Multivariate statistics on the
surface Jacobian matrix tend to detect group differences with the greatest effect sizes.
Overall statistical significance values (corrected for multiple comparisons) are listed in
Table 1.

Table 1. Permutation-based overall significance p value for three experiments. (J is
the Jacobian matrix and EV stands for Eigenvalue. To detect group differences, it was
advantageous to use the full tensor, or its two eigenvalues together; with simpler local
measures based on surface area, group differences were missed.).

Full Matrix Determinant of J Largest EV of J Pair of EV of J

Left Hippo Surface 0.0198 0.1446 0.1016 0.0474
Right Hippo Surface 0.0410 0.3600 0.3492 0.0688
Left Vent Surface 0.0028 0.0330 0.0098 0.0084
Right Vent Surface 0.0066 0.0448 0.0120 0.0226
Left Cortex 0.0002 0.1933 0.1627 0.0003
Right Cortex 0.0001 0.1366 0.1201 0.0002
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The experiments also strongly suggested that the newly proposed multivariate
TBM method has more detection power in terms of effect size (and the area
with suprathreshold statistics), probably because it captures more directional
and rotational information when measuring geometric differences.

Acknowledgments. This work was funded by National Institute of Health
through the NIH Roadmap for Medical Research, Grant U54 RR021813 entitled
Center for Computational Biology (CCB).

References

1. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis I: segmentation
and surface reconstruction. Neuroimage 9, 179–194 (1999)

2. Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C., Friston, K.:
Identifying global anatomical differences: deformation-based morphometry. Human
Brain Mapping 6(5-6), 348–357 (1998)

3. Chung, M., Dalton, K., Davidson, R.: Tensor-based cortical surface morphometry
via weighted spherical harmonic representation. IEEE Trans. Med. Imag. 27(8),
1143–1151 (2008)

4. Guggenheimer, H.W.: Differential Geometry. Dover Publications (1977)
5. Wang, Y., Gu, X., Hayashi, K.M., Chan, T.F., Thompson, P.M., Yau, S.-T.: Brain

surface parameterization using riemann surface structure. In: Duncan, J.S., Gerig,
G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 657–665. Springer, Heidelberg (2005)

6. Wang, Y., Gu, X., Chan, T.F., Thompson, P.M., Yau, S.T.: Conformal slit mapping
and its applications to brain surface parameterization. In: Metaxas, D., Axel, L.,
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Abstract. We introduce a framework for computing geometrical prop-
erties of white matter fibres directly from diffusion tensor fields. The key
idea is to isolate the portion of the gradient of the tensor field correspond-
ing to local variation in tensor orientation, and to project it onto a co-
ordinate frame of tensor eigenvectors. The resulting eigenframe-centered
representation makes it possible to define scalar geometrical measures
that describe the underlying white matter fibres, directly from the diffu-
sion tensor field and its gradient, without requiring prior tractography.
We define two new scalar measures of (1) fibre dispersion and (2) fibre
curving, and we demonstrate them on synthetic and in-vivo datasets. Fi-
nally, we illustrate their applicability in a group study on schizophrenia.

1 Introduction

Despite the advent of high angular resolution diffusion imaging techniques, dif-
fusion tensor (DT) data continues to be commonly acquired and utilized in a
variety of studies in neuroscience and medicine, in particular in clinical set-
tings. Empirically established connections between biological tissue properties
and diffusion tensor measures exist. Such tensor measures include e.g. fractional
anisotropy (FA), orientation etc., and have been the topic of several studies (e.g.
[1,2]). However, few methods consider the differential structure of tensor prop-
erties, as introduced in e.g. [3]. In this article we focus on tensor orientation,
and perform a differential analysis of diffusion tensor fields which leads to novel
methods for the recovery of a variety of white matter geometrical measures, or
indices. By isolating the portion of the gradient of the tensor field corresponding
to local variation in tensor orientation, and by projecting it onto a coordinate
frame of tensor eigenvectors, we achieve an eigenframe-centered representation
of local tensor field configurations. Given that the principal eigenvector generally
represents the dominant orientation of the underlying fibre population [4], this
allows us to define measures of fibre curving and fibre dispersion. The advantage
of this approach is the recovery of fibre geometry measures directly from the
tensor field, without requiring prior tractography as in e.g. [5].

As scalar measures, these indices can be used to study local fibre organisa-
tion in the context of population studies. As a proof-of-concept, we carry out a
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group study which finds certain differences in local fibre geometry between pa-
tients with schizophrenia and normal controls. Other potential applications, to
be pursued in future work, include their use in tractography (e.g. as geometrical
priors), as well as in a context of registration as geometrical landmarks.

2 Mathematical Model

2.1 Rotation Tangents: Background

Our method is based on the mathematical framework developed in [6]. Let F :
R3 �→ Sym3 be a diffusion tensor field, such that F (x) = D. Here Sym3 denotes
the set of symmetric tensors (D = D�) in R3⊗R3. Consider the tensor rotation
function ψ which rotates D with rotation matrix R ∈ SO3, the group of rotations
on R

3:
ψ(R,D) = RDR� . (1)

In [6], the rotation tangent Φi(D) associated with eigenvector ei of diffusion
tensor D is defined as the change of tensor value due to infinitesimal rotations
around ei:

Φi(D) =
∂ψ(Rei(φ),D)

∂φ

∣∣∣
φ=0

, (2)

where Rei
(φ) denotes rotation by angle φ around ei. The rotation tangent Φi(D)

is a second order gradient tensor onto which the tensor field gradient can be
projected, in order to obtain three spatial gradients of orientation [6]:

∇φ̂i(x) = Φ̂i(F (x)) : ∇F (x) . (3)

Here “:” is the tensor contraction operator (analogous to the vector dot product),
Φ̂i are unit-norm rotation tangents, and ∇φ̂i are vectors that indicate in R3 the
direction in which the tensor orientation around eigenvector ei varies the fastest.
In our work, we compute tensor field gradients as described in [6], by convolving
the tensor field with partial derivative kernels of a uniform cubic B-spline.

2.2 Scalar Geometric Measures

The work presented in [7] argues for the representation of white matter fibre
geometry (and that of sets of 3D curves in general) in terms of local coordinate
frames. The idea is to capture the differential geometry of 3D curves by mea-
suring changes in the tangent vector orientation in three mutually orthogonal
directions provided by the tangent, normal and bi-normal vectors of a local coor-
dinate frame. The projection of the change of tangent vector orientation in these
three directions results in three curvature functions which characterize locally
the differential geometry of 3D curve sets.

Motivated by this approach, in this paper we consider the projection of the
three∇φ̂i (3) into the local coordinate frame provided by the tensor eigenvectors.
One can form a total of nine such projections ∇φ̂i · ej , i, j ∈ {1, 2, 3}. We
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(a) ∇bφ2 · e1 (b) ∇bφ3 · e1 (c) ∇bφ2 · e2 (d) ∇bφ2 · e3 (e) ∇bφ3 · e2

Fig. 1. Examples of local tensor field configurations that are characterized by a par-
ticular projection of the form ∇φ̂i · ej

choose the eigenframe as a projection basis due to the biological significance
of tensor eigenvectors. It is commonly accepted that the principal eigenvector is
aligned with the underlying white matter fibre tract in voxels where the diffusion
anisotropy is strong enough (e.g. [4]). We can thus relate patterns of tensor
organisation to the geometry of white matter fibres.

Given the assumption that e1 represents the local fibre tangent direction, one
can establish correspondences between observed tensor configurations and local
fibre configurations. For example,∇φ̂2 ·e1 and∇φ̂3 ·e1 measure tangential change
in tensor orientation (i.e. change in the tensor field seen by an observer displacing
locally in the direction parallel to e1), which is analogous to the classical Frenet
curvature, or the tangential curvature [7], of the underlying fibre. On the other
hand, the projection of∇φ̂2 and∇φ̂3 in the plane spanned by e2 and e3 measures
fibre orientation changes in directions orthogonal to e1. This is analogous to the
normal and bi-normal curvatures of [7]. Finally, tensor rotations around e1,
captured by ∇φ̂1, would correspond to fibre twist.

Figure 1 illustrates a variety of local tensor configurations characterized by ori-
entation change, consisting in tensor rotation around an eigenvector ei observed
in the direction of another eigenvector ej . For each example configuration, the
projection ∇φ̂i · ej will result in a high value (the specific values for i and j are
indicated for each case).

Figure 2 illustrates these projections on a 2D synthetic diffusion tensor field
with gradients in tensor orientation. Note that the projections are dependent
on tensor shape. For instance, rotations around e1 do not result in significant
change with nearly cylindrical tensors (i.e. λ2 = λ3), hence ∇φ̂1 ·e1 gives smaller
values in the bottom left part of Fig. 2(b) as the tensors become more cylindrical.
Similarly, as the tensors approach a disk shape (i.e. λ2 = λ3), rotation around
e3 loses any effect, and ∇φ̂3 and its eigenframe projections go to zero, as can be
seen in the upper right part of Fig. 2(d).

We formalize the above observations by defining a local scalar index of fibre
curving, C, and a local scalar index of fibre dispersion, D:

Fibre curving: C(D,x) =
√(

∇φ̂2∇φ̂�
2 +∇φ̂3∇φ̂�

3

)
:
(
e1e�

1

)
(4)

Fibre dispersion: D(D,x) =
√(

∇φ̂2∇φ̂�
2 +∇φ̂3∇φ̂�

3

)
:
(
e2e�

2 + e3e�
3

)
(5)
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(a)

(b) i = 1 (c) i = 2 (d) i = 3 (e) C (f) D

Fig. 2. (a) A 2D synthetic diffusion tensor field. (b,c,d) Results of projecting ∇φ̂i onto
the local tensor eigenframe. Red: ∇φ̂i · e1. Green: ∇φ̂i · e2. Blue: ∇φ̂i · e3. (e) Curving
index. (f) Dispersion index. In (b)-(f), pixel intensity is proportional to index value.

The indices in (4) and (5) combine the rotation tangents ∇φ̂2 and ∇φ̂3 into a
single second order tensor (∇φ̂2∇φ̂�

2 +∇φ̂3∇φ̂�
3 ), which is then projected onto

another second order tensor that represents the fibre tangent direction in the
case of the curving measure (4), or the plane orthogonal to that direction in the
case of (5). The use of outer products and tensor contractions sidesteps the sign
ambiguity inherent in both the eigenvectors and the rotation tangents of [6].

In this paper, we do not consider measures involving∇φ̂1. Unlike the geometry
captured by ∇φ̂2 and ∇φ̂3, tensor rotations around e1 do not reflect a change in
the fibre tangent direction. Rather, they capture rotations of the diffusion profile
around the fibre tangent. Such rotations may be particularly sensitive to noise,
and their biological meaning is not immediately clear. We thus leave their study
for future work.

3 Experiments and Results

3.1 Synthetic Data Validation

We computed the curving (4) and dispersion (5) indices on the synthetic dataset
shown in Fig. 2(a). It is divided in three vertical regions of rotation, one for each
eigenvector. Eigenvalue mean and variance are constant throughout the field,
and mode [6] increases smoothly from top to bottom. The results are shown in
Fig. 2(e,f). As expected, the fanning tensor configurations in the central and
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(a) (b)

(c) (d)

Fig. 3. Streamline DT tractography colored by dispersion index (a,c) and curving
index (b,d). Red indicates high index values. The T2-weighted image is shown in the
background for reference. Note the consistent behaviour of the pre-computed dispersion
and curving indices with respect to the tractography results. The regions in the green
boxes are discussed further in the text. Some of the strong dispersion regions in the
internal capsule (c) are due to fibre fanning orthogonal to the image plane.

right-hand side vertical bands have a high dispersion index. The immediately
adjacent regions exhibit a high curving index, which is consistent with the un-
derlying geometry. Note that the two measures are not mutually exclusive, and
some locations can have both high dispersion and high curving indices.

3.2 In-vivo Data Validation

Diffusion-weighted images were acquired on a 3T scanner (General Electric Com-
pany, Milwaukee, WI, USA) using an echo planar imaging (EPI) sequence, with
a double echo option to reduce eddy-current related distortions. To reduce the
impact of EPI spatial distortion, an 8 Channel coil and ASSET with a SENSE-
factor of 2 were used. The acquisition consisted in 51 directions with b=900, and
8 baseline images with b=0. The scan parameters were: TR=17000 ms, TE=78
ms, FOV=24 cm, 144 × 144 encoding steps, 1.7 mm slice thickness. A total of
85 axial slices covering the whole brain were acquired.

The geometric indices were computed only in voxels where the FA value was
above 0.2, in order to avoid tensors with uncertain eigenvector directions, and
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(a) (b)

Fig. 4. Sagittal slices through a patient’s right hemisphere, with the ROIs overlaid on
an FA map. The results reported in Fig. 5(a,b) pertain to the frontal corona radiata
ROI, shown in light green in (a). Those presented in Fig. 5(c,d) pertain to a segmen-
tation of the uncinate, which combines the light and dark green ROIs in (b). Note the
ROIs are 3D volumes, only a slice through which is visible here.

CSF or grey matter voxels. Prior to computation of the geometrical indices,
tensors were normalized by dividing by tensor norm (see e.g. [6] for a definition
of tensor norm). After computation of the indices, standard streamline tractog-
raphy [8] was run to help visualize in three dimensions the behaviour of the
indices relative to well-known fibres. The resulting tracts were colored with the
pre-computed scalar indices, as shown in Fig. 3. Note how the dispersion in-
dex captures the local fanning of fibres passing through the internal capsule in
Fig. 3 (a). The fibres run parallel in the bottom part of the green box in Fig.
3(c) and the dispersion index is low. In the upper part of the box, however,
the fibres fan, which is characterized by higher index values. While assessing
visually these results, it is important to remember that fibre dispersion is a 3D
phenomenon.

Note how the curving index results in Fig. 3(b,d) are consistent with the
geometry of the recovered fibre tracts. An exception is seen in the small region
enclosed by a green box in (b), where the low index values do not appear to match
the geometry of the strongly curved fibre. It appears here that the tractography
algorithm wrongly “jumped” onto the cingulum after initially following a callosal
fibre. This example shows how our geometrical indices could potentially be used
as priors to direct tractography and remove incorrect paths.

3.3 Group Study on Schizophrenia

Diffusion MRI data from 20 normal controls (NC) and 23 schizophrenic patients
(SZ) was acquired and preprocessed as described in Section 3.2. The deep white
matter structures were segmented in regions of interest (ROI) by registering the
ICBM-DTI-81 atlas [9] with the diffusion baseline of each subject using non-
linear registration [8].

We computed the dispersion (5) and curving (4) indices in ROIs that segment
the frontal part of the corona radiata (CR), as well as the uncinate fasciculus
(UN), in both hemispheres. A slice through each ROI in one patient is illustrated



Local White Matter Geometry Indices from Diffusion Tensor Gradients 351

NC SZ NC SZ
0.025

0.03

0.035

0.04

0.045 L
p = 0.0020

R
p = 0.0116

(a) Dispersion, frontal part of CR.
NC SZ NC SZ

0.015

0.02

0.025

0.03

0.035

L
p = 0.2773

R
p = 0.0814

(b) Curving, frontal part of CR.

NC SZ NC SZ
0.025

0.03

0.035

0.04

L
p = 0.7902

R
p = 0.7398

(c) Dispersion, uncinate.
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Fig. 5. Comparison between NC and SZ through scatter plots of mean index value for
each individual. Top row: results from the frontal part of the corona radiata. Bottom
row: results from the uncinate fasciculus. Left column: dispersion index. Right column:
curving index. Blue: NC. Red: SZ. Horizontal black lines: population mean. The error
bars indicate ± 1 standard deviation. L: left hemisphere. R: right hemisphere. The
p-values are computed with a paired-value T-test, and those that satisfy a significance
threshold of 0.05 are given in red font.

in Fig. 4. The CR is characterized by dispersion, whereas the UN is a curving
tract. We thus hypothesized that the dispersion index in the CR case and the
curving index in the UN case may reveal certain population differences. The
results are presented in Fig. 5. The difference between the NC and SZ populations
is significant in the case of the dispersion values in the frontal CR, shown in Fig.
5(a). The curving index comparison in Fig. 5(b,d) shows a trend towards the
SZ group having higher index values in the UN, and lower values in the CR.
Thus, the population differences are reflected mainly in the dispersion index in
the frontal CR. As for the curving index, it reveals an interesting left vs. right
asymmetry in the UN.

These results are preliminary, and further study is required before clinical
significance claims can be made. For instance, a better ROI definition scheme
may be required. Nevertheless, these results serve as a proof of concept and
demonstrate that geometrical indices can recover population trends.
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4 Conclusion

This paper introduced novel scalar indices of white matter dispersion and curv-
ing. Since they are computed directly from the tensor field, without requiring
prior tractography, these indices simplify the geometrical analysis of white mat-
ter and make it insensitive to possible tractography errors. Traditionally, clinical
DTI studies focus on anisotropy, but our results demonstrate that geometrical
measures may also be important. Clearly, our region-based comparison results
depend on the quality of white matter segmentation. We will address this issue
as part of future clinical comparison studies. In work not reported here, we ex-
perimented with in-vivo datasets where all tensors with anisotropy higher than a
threshold were transformed to a cylindrical shape, by assigning the same eigen-
values to all such tensors, with the idea of removing the influence of tensor shape
on the geometrical index values. The results were surprisingly similar to those
reported here, and will be discussed in future extensions of this work. Finally, we
intend to address applications in fibre tractography and DT image registration,
as well as the extension of our indices to a multi-scale framework.
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Abstract. With increasing demand on intra-operative navigation and motion 
compensation during robotic assisted minimally invasive surgery, real-time 3D 
deformation recovery remains a central problem. Currently the majority of ex-
isting methods rely on salient features, where the inherent paucity of distinctive 
landmarks implies either a semi-dense reconstruction or the use of strong geo-
metrical constraints. In this study, we propose a gaze-contingent depth recon-
struction scheme by integrating human perception with semi-dense stereo and 
p-q based shading information. Depth inference is carried out in real-time 
through a novel application of Bayesian chains without smoothness priors. The 
practical value of the scheme is highlighted by detailed validation using a beat-
ing heart phantom model with known geometry to verify the performance of 
gaze-contingent 3D surface reconstruction and deformation recovery. 

1   Introduction 

In robotic assisted minimally invasive surgery (MIS), the ability to reconstruct 3D 
tissue deformation in real-time is required for the prescription of dynamic active con-
straints [1], motion stabilisation, and intra-operative image guidance. Recently, it has 
been shown that it is possible to recover the 3D shape and morphology of soft-tissue 
surfaces using a stereo-laparoscope for anatomical regions with distinctive appear-
ance. However, to recover 3D structure from homogeneous tissue areas with limited 
texture details, strong geometrical constraints such as hierarchical piecewise bilinear 
maps, B-splines and thin-plate splines have been used to provide dense disparity maps 
[2-4]. With these approaches, surface discontinuities and specular highlights are sig-
nificant problems as is the assumption that the scene is composed of a single smooth 
surface. Alternative techniques based on photometric algorithms forgo the need for 
explicit feature mapping: by assuming an a priori physical image formation model, 
particularly the co-axial arrangement of the endoscope camera and light-source, dense 
3D reconstruction is feasible. The uniqueness of viscosity solutions to a Hamilton-
Jacobi equation for the perspective projection case can be established but most  
methods assume uniform albedo and a Lambertian reflection model [5]. Systems 
integrating multiple visual cues through inference over Markov Random Fields 
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(MRF) for 3D reconstruction have been demonstrated [6, 7]. However, their computa-
tional complexity limits their applicability in scenarios requiring real-time perform-
ance and high precision. 

Recently, the concept of gaze-contingent perceptual docking through binocular 
eye tracking has attracted extensive interest [8]. Current results suggest that 3D re-
covery and motion stabilisation in the fovea is sufficient, while stabilisation in the 
periphery does not affect user and visual perceptual quality [9]. The strength of the 
gaze-contingent method is that it relies on the innate ability of the human vision, in-
dependently from the geometrical characteristics of the scene presented.  

The purpose of this paper is to present an interactive gaze-contingent approach to 
dynamically reconstruct the 3D structure of the surgeon’s area of interest. Surface 
recovery is formulated as an inference problem combining stereo disparity estimation 
and surface shading for increased robustness. Computational complexity is limited by 
considering only the surgeon’s area of interest, and by a novel usage of Bayesian 
chains instead of MRFs for propagation without smoothness constraints. A fast regu-
larisation scheme ensures all information available is used without loopy propagation, 
enabling real-time operation. 

The proposed method, called i-BRUSH (Bayesian Reconstruction Using Stereo 
and sHading), is validated on a da Vinci surgical robot using a beating heart phantom 
with known geometrical and temporal ground truth data for surface reconstruction and 
tissue deformation recovery.     

2   Method 

The proposed method consists of four distinct processes. First, the surgeon’s fixation 
point is localised on the left and right channels of the input video stream from the 
endoscope through the use of a binocular eye-tracker fully integrated with the da 
Vinci surgical robot’s master console. The eye-tracker consists of a pair of near infra-
red sensitive cameras, an array of externally switchable miniaturised IR emitting 
diodes at 940nm and a pair of dichroic beam splitters with cut-off wavelength at 
750nm. This allows both eyes to be tracked at 50 fps after a short eye calibration 
procedure as outlined in the work by Mylonas et al. [10]. 

Then, stereo reconstruction is employed to provide a semi-dense estimation of the 
surface within the small area of high visual acuity corresponding to roughly 3 to 5 
degrees of visual angle. This is achieved by using a Shi-Tomasi detector followed by 
pyramidal Lucas-Kanade tracker for matching. This sparse 3D information is then 
locally propagated, yielding a semi-dense reconstruction. Independently from the 
stereo reconstruction process, local surface orientation expressed as the surface direc-
tional gradient vectors (pi, qi) is estimated for each pixel mi by approximating the 
image irradiance equation based on Lambertian reflection and the geometrical con-
straints of the endoscope camera and light-sources as described in [11]. 

The final stage of the proposed method focuses on fusion of the semi-dense stereo 
map with the p-q surface gradient to obtain a dense reconstruction of the area. To this 
end, a Bayesian inference scheme is used. While a grid network would have to be 
solved through approximate methods, thus introducing excessive computational bur-
den, a polytree is used instead for efficient inference at each image element. This  
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Fig. 1. Network topologies depending on the number of stereo-reconstructed points present 
along the horizontal and vertical directions. Stereo reconstructed points are shown in blue, the
point to be inferred in red and points with only p-q information are shown in grey. (a) The 
network contains only one stereo point along the horizontal or vertical direction; (b) two points 
along the same direction; (c) three chains; and (d) four chains, respectively. The chains may not 
be symmetrical as the first stereo pixel along a given direction is taken. 

 
structure consists of a maximum of four Bayesian chains in a star configuration, each 
starting from a separate stereo-reconstructed point and terminating at the pixel to be 
inferred. These Bayesian chains represent the shortest direct path between the point to 
be inferred and the stereo-reconstructed points, with the terminating points imposing 
depth constraints and the nodes along the chain providing the natural encoding of the 
p-q gradient derived from local surface shading. Four different topologies are possible 
depending on the number of stereo points, and these are illustrated in Fig. 1.  

The problem of exact inference along causal polytrees, such as the ones illustrated 
in Fig. 1, is well studied and requires a computationally intensive Belief Propagation 
(BP) message passing scheme. It can be shown that without the use of smoothness 
constraints, the problem can be reduced to a simple recursive scheme. 

Let us define the problem of finding the Maximum A Posteriori (MAP) estimate 
of the distance from the camera centre Dk for the kth element along one chain, with 
upstream information being propagated from N chains. The information propagated 
consists of ΔDn+ and pqn+, as the depth gradient and p-q information propagated from 
the nth upstream chain. Since a node is conditionally independent on all others given 
its own Markov blanket, the MAP estimate can be written as: 
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which can be solved with belief propagation requiring likelihood information to be 
passed to all nodes along the chain. Since Dk = Dk-1 +  ΔDk, (2) can be rewritten as: 
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The normalisation constant β is equal to the reciprocal of the number of chains. As the 
surface gradient at the kth node is independent from its neighbours’ gradient -unless 
surface smoothness is assumed- the gradient can be inferred from the likelihood rela-
tionship with the instantiated value of the surface gradient: 

( ) ( ) 1| n
k k k k

n N

P D P D pq Dβ
+

+
−

∈

′ = Δ + ∑  (4)

The recursion can be expanded up to the terminal points of the chain, which propagate 
the initial stereo values. The MAP estimate of the gradient can then be obtained from 
likelihood data correlating surface gradient and p-q values combined with depth in-
formation from the terminal nodes. The matrices are obtained for each image frame 
by discretising the range of values, obtained from the stereo and p-q measurements, 
into a number of bins sufficient for maintaining precision while guaranteeing real-
time performance.  

Local inaccuracies in the p-q and stereo reconstructions are mitigated by the use of 
global per-frame statistics, however, errors in the instantiated values during inference 
can result in a cumulative error. By assuming that the error at each step is normally 
distributed, the estimation error of kD can be reduced by setting it as the weighted 
average of the estimates 1

n
kD +

− from the N converging chains. The weighting factor is 
determined by the number of nodes Kn along the chain as a fraction of the total num-
ber of nodes K from all chains. Thus, for the point to be inferred, the normalisation 
constant β can be set as a weighted average accordingly, yielding: 
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The normalisation constant 1/Z ensures the weights add up to one. While (5) can be 
used to recover the depth of the point mi to be inferred, it does not address how to use 
the other estimates obtained along the chains. Such information can be used to update 
the local frame statistics if it is regularised to reflect the new weighted average esti-
mate of mi. To regularise the estimates without explicit smoothness constraints, the 
chain can be modelled as a spring series fixed at one end. The stiffness constant of 
each spring is inversely proportional to the number of nodes in the chain, since the 
confidence of the estimate decreases with each inferential step, and the one-
dimensional relaxed position of the kth spring joint along the nth chain is equal to its 
MAP estimate. The difference between the weighted average and the estimate for 
each chain n

imΔ can be then represented as the result of a constant force F acting on 
the spring system. The force is distributed along the springs according to their relative 
stiffness constants, where the compressed position of the kth spring joint is equal to the 
new depth estimate at the corresponding node along the chain. The force is calculated 
from the displacement of a single equivalent spring: 
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Since the force is constant at each joint, the displacement of each node along the nth 
chain n

kmΔ can be calculated by equating the force on the equivalent spring with the 
force at each joint and solving for n

kmΔ . The likelihood matrices for the elements 
along each inference chain are then updated to integrate the new evidence for subse-
quent iterations involving any subset of the inferred nodes. Once all points not previ-
ously reconstructed have been inferred, their depth is converted into 3D coordinates 
by projecting a ray of length equal to the estimated depth from the camera centre 
through the 2D point mi on the retinal plane. 

3   Experimental Setup and Results 

To evaluate the accuracy of the proposed depth reconstruction scheme, a silicone 
phantom heart (Chamberlain Group, MA, USA) has been recorded at 25 fps using the 
stereo laparoscope from a da Vinci system integrated with the 3D binocular eye-
tracker as described earlier. To facilitate the registration process during validation, the 
phantom heart was augmented with 15 silicone fiducials visible on its surface and 
scanned with a Siemens Somatom Sensation 64 CT scanner. The image resolution 
was 0.41×0.41×0.5 mm and the temporal resolution was 0.33s. In this experiment, the 
heart rate was set to 90bpm, yielding twenty 3D volumes covering the entire cardiac 
cycle. To ensure the accuracy of the ground truth data, the cardiac volumes and the 
fiducials were segmented interactively and the spatial coordinates of the fiducials 
were tracked. An image of the phantom together with a 3D rendering of one cardiac 
phase indicating the location of the fiducials is shown in Fig. 2. 

Two sets of experiments were performed to illustrate the potential applications of the 
proposed method. First, the operator was asked to fixate on the surface of the static 
phantom describing continuous paths in order to demonstrate the method’s accuracy in  
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(e) (f) 

 

Fig. 2. (a) The heart phantom and (b) its corresponding 3D rendering from the 4D CT data. 
Fiducial locations are highlighted in red on the epicardial surface. (c), (e) Image frames from 
LAD and left ventricle sequences, fiducials highlighted in light blue. (d), (f) Registration of 
ground truth data to camera coordinates of (c), (e) respectively using manually-tracked fiducial 
locations. 
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recovering 3D information for large smooth featureless areas. Second, the operator 
was required to perform fixations on different regions of the epicardial surface of 
the beating heart phantom to evaluate the accuracy of real-time dynamic motion 
recovery. 

For each experiment, two video sequences were recorded from different view-
points, the first focusing on the left ventricle and the second surrounding the mid-
segment of the left anterior descending artery (LAD) The global pose alignment of the 
heart with the CT data for validation was based on the fiducials located on the epicar-
dial surface. To calculate the optimal registration between the two coordinate systems 
knowing the correspondence between fiducials, the absolute orientation method by 
Horn [12] was used.  The average alignment error was estimated to be of 1.30 mm 
and 1.18 mm for the sequences (c) and (e) shown in Fig. 2. 
 
Static Surface Reconstruction. For the static sequences, paths of different lengths 
were visually delineated on the epicardial surface, both on uniform areas and on parts 
of the surface presenting distinctive landmarks. To estimate the performance numeri-
cally, the reconstruction error for each 3D point Mi is given as the distance between 
Mi and the closest point belonging to the ground truth set lying along the ray passing 
through Mi and the camera origin. To this end, a ray-casting method has been imple-
mented to recover the barycentric coordinates of the intersection point between the 
ray and a triangular facet described by three vertices on the CT volume. In Fig. 3, the 
paths reconstructed are overlaid on the original image frames together with a graphi-
cal representation of the error distribution for each frame. 

It is evident that the frequencies in Fig. 3(b) and (e) show that most reconstruc-
tion errors lie in the range 0-3.5mm with the outliers present in some frames signifi-
cantly affecting the standard deviation of the error shown in Figs. 3(c) and 3(f). The 
outliers occur due to occasional drifts between the recorded left and right fixations 
producing incorrect stereo matches. However, as a significant proportion of the recon-
structed area consists of overlapping regions between consecutive frames, the impact 
of outliers can be easily removed by averaging of all the estimates obtained for a 
given point. The average error for the overall reconstructed surfaces in Figs. 3(a) and 
(d) is of 2.30 mm and 2.03 mm respectively, with a standard deviation of 2.51 and 
3.64 mm. Such values are in line with the initial alignment error estimated in the pre-
vious section, suggesting the potential of the method for accurate dense 3D estimation 
of static scenes. 
 

Dynamic Depth Recovery. The proposed method was also applied to motion estima-
tion on the beating phantom. Evaluation was performed as previously indicated with 
the temporally aligned and spatially registered CT data. The accuracy of the recon-
structed area was in line with that of the static experiments. The per pixel error ap-
pears to be uniformly distributed between positive and negative values, yielding an 
estimated average distance closer to the ground truth. Discrepancies between ground 
truth and recovered motion are a consequence of the inability to visually track fast 
moving objects with small displacements, and it would be alleviated at lower beat 
rates. A summary of the overall error assessment is presented in Table 1.  
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(a)                                                  (b)                                                     (c) 

(d)                                                  (e)                                                     (f) 

 

Fig. 3. (a) Left ventricle and (d) LAD section sequences, the traces of fixations along paths are 
shown in red. (b), (e) Per-frame reconstruction error frequency of (a), (d). (c), (f) Average and 
standard deviation of reconstruction error for each frame from (a), (d). 

 

   

   

(a)                                                  (b)                                                     (c)  

(d)                                                  (e)                                                      (f)  

 

Fig. 4. (a) Left ventricle and (d) LAD sequences, the fixation area is highlighted in blue. (b), 
(e) Per-frame average depth of the reconstructed and ground truth fixation area. (c), (f) Per-
frame average error and standard deviation.  

 
Table 1. Summary of results for static and dynamic sequences 

Sequence Length 
(frames) 

Avg. distance 
(mm) 

Avg. error 
(mm) 

Standard 
deviation 

Avg. error 
(%) 

Left ventricle (static) 70 53.493 2.302 2.509 4.30 

Left ventricle (dynamic) 80 53.081 1.809 2.036 3.41 

LAD (static) 85 67.837 2.029 3.641 2.99 

LAD (dynamic) 100 63.793 2.936 2.331 4.60 
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4   Discussion and Conclusions 

In this paper, we have presented a new framework for intra-operative 3D reconstruc-
tion from multiple depth cues for addressing the problem of dense reconstruction 
without imposing prior geometric constraints. The reconstructed surface is limited to 
the surgeon’s main area of interest, thus facilitating real-time implementation with no 
detrimental effect on perceptual quality. It has been further demonstrated that with the 
proposed method the removal of explicit smoothness constraints has no adverse effect 
on the reconstruction accuracy while reducing computational complexity. Experimen-
tal results from a phantom model with known ground truth highlight the value of the 
technique for both static and dynamic scenes, with potential applications in image 
guidance, motor channelling and motion compensation. Future work will explore the 
inclusion of multiple reflectance models to better represent the material properties and 
temporal cues for added robustness.   
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Abstract. In image-guided interventions, anatomical models of organs
are often generated from pre-operative images and further employed in
planning and guiding therapeutic procedures. However, the accuracy of
these models, along with their registration to the subject are crucial for
successful therapy delivery. These factors are amplified when manipulat-
ing soft tissue undergoing large deformations, such as the heart. When
used in guiding beating-heart procedures, pre-operative models may not
be sufficient for guidance and they are often complemented with real-time,
intra-operative cardiac imaging. Here we demonstrate via in vitro endocar-
dial “therapy” that ultrasound-enhanced model-guided navigation pro-
vides sufficient guidance to preserve a clinically-desired targeting accuracy
of under 3 mm independently of the model-to-subject misregistrations.
These results emphasize the direct benefit of integrating real-time imaging
within intra-operative visualization environments considering that model-
to-subject misalignments are often encountered clinically.

1 Introduction

The development of minimally invasive alternatives to conventional cardiac in-
terventions are under active investigation to reduce trauma and recovery time
[1,2,3]. To accelerate the progress toward the ultimate, least invasive treatment
approach — beating heart intracardiac therapy, robust intra-operative visualiza-
tion is crucial. These environments need to faithfully represent the surgical field,
assist the surgeon with correctly identifying the targets to be treated, and guide
the clinician to accurately navigate the instruments to the correct location [4].

Registration is a critical component of image-guided surgery, as it enables ac-
curate “blending” of all disparate pieces of information (pre- and intra-operative
data, the patient, and surgical tools) into a common framework. Due to their
mathematical complexity and computational inefficiency, some registration al-
gorithms may not be suitable for use in time-critical interventional applications
in the operating room (OR). Instead, fast, simple, and OR-friendly registration
techniques are employed, often at the expense of misalignments (Fig. 1) present
in the visualization environment [5].
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Fig. 1. a) AR environment used to guide an in vivo off-pump procedure in a porcine
subject, showing pre-operatively generated anatomical model, tracked 2D US image,
and virtual tool models; b) Pre-operative model registered to intra-operative US image,
and c) error map showing misalignments across the surface model

Recently, Ma et al. [6] proposed a feature-based registration technique that re-
lies on the alignment of the left ventricular surface and centerline of the descend-
ing aorta to fuse pre- and intra-operative data using a weighted iterative closest
point (ICP) registration approach; similarly, we have shown clinically-suitable
fusion of pre-operative models and intra-operative US data via aligning recon-
structed valve annuli et al. [7]. While the features driving the registration are
different, both techniques provide comparable anatomical alignment (4-5 mm)
of the pre- and intra-operative data. However, although clinically favourable,
the achieved alignment may not be suitable for model-guided therapy, without
“refined guidance” provided via real-time intra-operative imaging.

We employ an augmented reality (AR)-assisted image guidance platform [8]
that integrates real-time trans-esophageal echocardiography (TEE), enhanced
with pre-operative heart models, and surgical instrument localization. This plat-
form allows clinicians to explore the intracardiac environment using the pre-
operative models as guides for tool navigation [9], but therapeutic success may
be subject to the model-to-subject registration accuracy.

The goal of this work is to mimic in vitro model-to-subject misregistrations
similar to those encountered in cardiac applications and show how our guid-
ance platform provides sufficient navigation information to maintain accurate
targeting, in spite of slight misregistrations. This work demonstrates the value
of pre-operative models as a means of quickly navigating to the neighbourhood
of the target, with real-time US used to refine the targeting operation.

2 Materials and Methods

We mimicked in vitro endocardial ablation procedures in a beating heart phan-
tom. To demonstrate the robustness of our surgical platform, we then altered the
position and orientation of the pre-operative phantom model in the visualization
environment with respect to its real-world counterpart. This procedure enabled
us to simulate misalignments similar to those observed in clinical applications
and quantify the success of “therapy delivery” to specific endocardial targets.
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Fig. 2. a) Beating heart phantom setup, with catheter and US probe; b) Endoscopic
view of the endocardial surgical targets; c) Virtual surgical field (phantom model,
tracked 2D US probe and fan), accompanied by a cut-away endocardial view showing
targets and virtual catheter tip

2.1 Experimental Design

The study was performed on a pneumatically-actuated beating heart phan-
tom (The Chamberlain Group, Great Barrington, MA, USA). Ten CT-visible
fiducials were attached onto the epicardial surface of the phantom to assist
with the model-to-phantom registration. Four surgical targets (3.2 mm Teflon
spheres) were implanted into the endocardial surface, mimicking right atrial
pathology. Their position was tracked throughout the cardiac cycle using 5
degree-of-freedom NDI Aurora magnetic sensors embedded within each sphere.
Therapy delivery consisted of users navigating the tip of a tracked catheter to
each target (Fig. 2).

2.2 Image-Guidance Platform

Model-guided Visualization. In a typical procedure, a pre-operative image
or model of the patient’s heart featuring the surgical targets is registered to the
patient in the OR. To mimic the clinical work flow, we first acquired a gated (60
bpm) cine CT dataset (0.48 x 0.48 x 1.25 mm3) that depicts the phantom at 20
phases over the cardiac cycle. Using segmentation tools available in the Vascu-
lar Modeling ToolKit (http://www.vmtk.org), we reconstructed virtual surface
models at each cardiac phase and rendered them in “cine” mode for dynamic
visualization (Fig. 2).

Real-time Imaging. TEE is extensively used in interventional guidance thanks
to its excellent real-time capabilities and OR compatibility. A distinct feature
of our surgical platform consists of the acquisition of tracked 2D TEE images
in real-time, enabling their display within anatomical context provided by the
virtual model and relative to the tracked surgical tools. While most of our work
is based on tracked TEE for intra-procedural imaging, similar results can be
achieved using intracardiac or laparoscopic US imaging as shown in [10]. Here
the TEE transducer is tracked using a 6 DOF magnetic sensor attached to the
probe and calibrated using a Z-string technique [11].

Virtual-to-Real World Registration. The key to building accurate naviga-
tion environments lies within the registration of all components into a common
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Fig. 3. a) Well-registered and (b) misregistered phantom model w.r.t. its physical coun-
terpart (note epicardial contour in US image); c) Superimposed well-aligned (red wire-
frame) and translated (yellow surface) models, and d) Superimposed well-registered
(red) and rotated (blue) model, mimicking clinically encountered misalignments

framework. The virtual models of surgical tools, US transducer and echo images
are intrinsically registered to the tracking coordinate system and to each other
via their respective “tool-to-sensor” calibration transforms.

The challenging step is registering the patient (in this case the heart phantom),
initially in tracking coordinate system, to that of the pre-operative model. In the
clinic this step is achieved via either landmark- or feature-based registration, and
resulting misalignments further propagate and impact targeting accuracy. We
used a point-based registration algorithm involving epicardial fiducial markers
to register the virtual model to the physical phantom. Temporal alignment was
achieved by synchronizing the “model heart rate” with the ECG signal driving
the actuator, resulting in nearly real-time visualization.

Inducing “Model-to-Subject” Misregistrations. Most image-guided car-
diac procedures, including those performed on the open heart, suffer from mis-
alignments between the pre- and intra-operative data. Surgical target locations,
although accurately labeled pre-operatively, may not align with their intra-
operative location, and may even show as situated outside the cardiac chamber,
in which case careless navigation could lead to severe outcomes (Fig. 3).

We simulated two misalignment scenarios often encountered in the OR. The
former mimics a translational misalignment, similar to that observed after the
pericardial sac is opened to access the heart; the latter mimics a rotational
misalignment, arising due to a slightly different orientation of the heart between
imaging and intervention. For this study, the phantom model was mapped to its
“new” location using the misalignment transforms explored above. Hence, the
position and orientation of all tracked tools and US probe remained the same
with respect to one another and to the physical phantom, but their location with
respect to the model displayed in the visualization environment was changed.

2.3 Surgical Guidance

To evaluate the effect of model-to-subject misregistration on targeting accuracy,
we conducted several experiments where users relied solely on model-guided
visualization or VR-enhanced US guidance for therapy delivery, under both
well-aligned, as well as misaligned conditions. In a previous study, the same
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Fig. 4. US enhanced model-assisted guidance work flow: a) initial navigation via vir-
tual anatomy and tool model using two orthogonal views (b), followed by US model
enhancement (c), and final target identification and tool tip positioning performed
under real-time US guidance (d)

experiment was performed under US image guidance alone to illustrate the limi-
tations of 2D imaging regarding tool navigation. Moreover, to establish a baseline
(i.e., positive control) with respect to targeting accuracy, therapy delivery was
also conducted under endoscopic guidance. While not suitable for visualization
in blood-filled cavities, endoscopic guidance closely mimics a direct vision pro-
cedure and its outcomes.

Users were blinded to whether or not the model was properly registered to
the phantom, so relying on the model alone might not have led to accurate
targeting. Therefore, they adopted a “therapy delivery work flow” where the
initial tool to target navigation was performed under model-assisted guidance.
Once on target, the display of the model was dimmed, while the tracked 2D
US image was emphasized, allowing users to identify the true target location
and refine their tool location based on the virtual tool representation and the
real-time US image (Fig. 4).

3 Evaluation and Results

Three novice users conducted the in vitro catheter navigation on four surgical
targets, whose positions were tracked simultaneously. The four targets were ap-
proached in sequence, and the order of the targets was arbitrarily generated
for each sequence. Each user attempted to localize the targets in 4 trials un-
der virtual model guidance alone (VR), as well as US-enhanced model guidance
(VR-US), with no prior knowledge of the model-to-phantom registration. In a
previous study, the same three users performed the similar task under endo-
scopic and US image guidance alone. Prior to acquiring the measurements, each
user was allowed a short training period to become accustomed to the “surgical
navigation” technique. The procedure outcome was assessed according to tar-
geting accuracy — the distance between catheter tip and surgical target when
in contact (Table 1).

We performed an analysis of variance (ANOVA) followed by a Tukey’s post-
hoc test (GraphPad Prism 4.0) to identify significant differences in procedure
accuracy with respect to the guidance modality employed and to evaluate the
effect of the model-to-phantom registration on targeting accuracy.
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Table 1. RMS targeting accuracy (mm) w.r.t. guidance modality and model alignment

Guidance Registered Model Translated Model Rotated Model
Modality ENDO US VR VR-US VR VR-US VR VR-US

Global 0.5 14.8 0.9 0.7 2.9 1.1 3.4 1.4
Target 1 0.4 13.4 0.8 0.8 3.2 0.9 3.1 1.1
Target 2 0.3 14.8 1.0 0.8 2.4 1.2 3.2 1.7
Target 3 0.5 20.3 0.7 0.7 2.9 1.4 3.4 1.6
Target 4 0.6 9.4 1.1 0.5 3.1 0.8 3.7 0.9

4 Discussion

Our study following accurate model-to-phantom registration [12] showed that
both the model-assisted (VR) and US-enhanced model-assisted (VR-US) guid-
ance led to significantly more accurate targeting (p < 0.001) than 2D US imaging
alone; moreover, no significant difference was observed between the endoscopic
and the two model-assisted guidance modalities (p > 0.05) (Fig. 5). Model-
assisted guidance also reduced the “procedure” time in half [12].

Next, we analyzed the effect of model-to-subject registration on the guid-
ance modality employed. The chosen “misalignment transforms” induced a
surgical target “shift” of 3-5 mm depending on their locations. Following model-
assisted guidance, we observed a significant decrease in targeting accuracy (p <
0.001) compared to that recorded under well-aligned conditions (Fig. 5). On
the other hand, while targeting accuracy was inadequate, targeting precision
was maintained; by mapping the “targeted sites” using the inverse of the mis-
alignment transforms, we were able to reconstruct the “true” locations of the
surgical targets. Hence, these navigation errors were induced by the misleading
environment.

However, once model-assisted guidance was augmented with real-time US,
we observed a significant retrieval of targeting accuracy. For the translational
misalignment case, targeting accuracy achieved under model-assisted guidance
alone dropped to an overall 3 mm RMS; however, it was restored to an overall 1.1

Fig. 5. Superior targeting accuracy is achieved under AR-assisted vs. US imaging alone;
however, accuracy of model-only guidance (VR) is greatly reduced under misalignments
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Fig. 6. US-enhanced model-assisted guidance (VR-US) shows consistent targeting ac-
curacy independently of model-to-subject registration. Note the significantly improved
accuracy with US-enhanced model-assisted (VR-US) guidance under misregistration.

mm RMS error via US-enhanced guidance (p < 0.001). Similarly, model-assisted
guidance accuracy was significantly improved with the addition of US imaging,
from 3.1 mm targeting error to 1.4 mm RMS (Fig. 5). Moreover, virtual reality-
enhanced US guidance maintained a high level of accuracy regardless of the
model-to-subject registration (p < 0.001) (Fig. 6).

For qualitative evaluation, we recorded “targeting maps” after each “ther-
apy delivery” session. A compact distribution of targeted sites was observed
under endoscopic guidance, and maintained under both model-assisted and US-
enhanced model-assisted guidance. The main drawbacks of US image guidance
arose due to limited information provided for navigation; the lack of context
and poor instrument perception, 2D US alone cannot adequately portray the
3D surgical environment. US image guidance alone hampers the navigation
step, leading to large targeting errors, while model-assisted guidance alone ham-
pers the positioning step, leading to precise, but insufficiently accurate
targeting.

5 Conclusions

This study is key for evaluating our AR-assisted surgical guidance platform. We
have shown that despite slight misalignments between the virtual model and
the subject, real-time US does provide sufficient information to identify the true
target location and compensate for the navigation errors, ultimately enabling
consistent targeting accuracy on the order of 1-1.5 mm.
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Abstract. We present an approach to derive patient specific coronary
models from ECG-gated CTA data and their application for the
alignment of CTA with mono-plane X-ray imaging during interventional
cardiology. A 4D (3D+t) deformation model of the coronary arteries is
derived by (i) extraction of a 3D coronary model at an appropriate car-
diac phase and (ii) non-rigid registration of the CTA images at different
ECG phases to obtain a deformation model. The resulting 4D coronary
model is aligned with the X-ray data using a novel 2D+t/3D+t reg-
istration approach. Model consistency and accuracy is evaluated using
manually annotated coronary centerlines at systole and diastole as refer-
ence. Improvement of registration robustness by using the 2D+t/3D+t
registration is successfully demonstrated by comparison of the actual
X-ray cardiac phase with the automatically determined best matching
phase in the 4D coronary model.

1 Introduction

Coronary artery disease is one of the main causes of death in the world [1].
Atherosclerotic plaque build-up in the coronary arteries leads to vessel narrow-
ing and occlusion, which may eventually cause heart failure. An often applied
therapy to reopen occluded vessels is coronary angioplasty. During these proce-
dures X-ray imaging is applied to visualize the arteries and guide wires. This
modality unfortunately lacks depth information due to its projective nature, and
only visualizes the vessel lumen, which makes the visualization of total occlu-
sions impossible. Coronary CTA, on the contrary, also allows the visualization
of coronary plaque and total occlusions. Integration of this information into the
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interventional scene may thus improve the treatment of these disorders. This
is, for example, especially important when an ablating catheter is needed to
open occlusions, making correct positioning of the catheter essential to prevent
perforation of the vessel wall.

The goal of our work is therefore to integrate pre-operative CTA data into
the interventional scene. Due to cardiac motion, the coronary arteries are under
continuous deformation during therapeutic procedures. A rigid registration ap-
proach is therefore not sufficient to align the CTA data with the intra-operative
X-ray images. Moreover, diagnostic CTA scans are generally reconstructed at
those phases of the cardiac cycle where the deformation of the coronary arteries
is minimal. In other phases, image quality is not only degraded by more excessive
motion of the coronary arteries, but also due to lowering the tube current by
ECG-derived pulsing windows which aim to minimize effective patient dose.

In this work, we employ the phase with minimal coronary motion for 3D coro-
nary reconstruction, and use the lower quality phases for defining a deformation
model. Together, this yields a 4D (3D+t) coronary model, which can be applied
to make high quality information available over the complete cardiac cycle. This
information can be used to improve the robustness of CTA/X-ray alignment,
which is useful for improved navigation in interventional cardiology. To this end,
we propose a novel 2D+t/3D+t registration approach.

Related work with respect to the 4D model building has, for example, been
presented by Wierzbicki et al., who present an approach to derive heart motion
from CTA and MRA data by means of a non-rigid registration procedure [2].
To the best of our knowledge, the application of this approach to derive patient
specific 4D coronary models has not been reported previously. Moreover, we
show the application of these models for the registration of CTA data to intra-
operative X-ray data; this 2D+t/3D+t registration approach is also novel.

Static registration of simulated X-ray images and CTA data has been per-
formed by Turgeon et al., who presented results on both mono- and biplane
registration at end-diastole [3]. Deformable 2D/3D registration of vasculature
was presented by Zikic et al., who constrained the deformation of the vessels
based on a priori information about plausible deformations [4]. Especially for
mono-plane X-ray imaging, these free-form deformations can in theory intro-
duce ambiguity, i.e. multiple 3D deformations can result in similar projection
images. The approach presented in this work is different in two aspects: (i) the
movement of the 3D vasculature is restricted to patient specific deformations de-
rived from ECG-gated CTA data and (ii) a window of multiple sequential X-ray
images is simultaneously aligned to a window of multiple sequential 4D coronary
model positions.

2 Method

The method consists of a number of steps. First, A 3D centerline or lumen model
of the coronary arteries is derived manually or semi-automatically from a phase
in the cardiac cycle with minimal motion. Deformation of the coronary arteries is
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subsequently derived from the 4D CTA data by means of a non-rigid registration
procedure. We assume that the coronary arteries move with the larger structures
in the image to which they are attached, such as the heart chambers, which is
especially advantageous in those phases of the cardiac cycle where the arteries
are not well visible due to motion artifacts. Finally, the resulting 4D coronary
model is applied in a new 2D+t/3D+t registration procedure for the dynamic
alignment of CTA with X-ray data. The overall method is depicted in Fig. 1;
details of the different steps are presented below.

4D CTA

2D+t X-ray

w

Apply Ti→f

15 fps

20 phases

Derive Ti→f

Fig. 1. Overview of 4D model creation and 2D+t/3D+t registration approach

2.1 Deriving the 4D Coronary Model

The registration approach applied to derive the coronary deformation from the
4D CTA data is similar to the one proposed by Wierzbicki et al. [2]. The 4D
datasets are divided into n different 3D images, denoted Ii, where i ∈ {0 . . . n−1}
indicates the phase in the cardiac cycle, further referred to as time-point. A 3D
model of the coronary arteries is derived manually or semi-automatically from
one of these images, e.g. at end-systole or end-diastole where image quality is
in general higher than in other parts of the cardiac cycle. This 3D coronary
centerline/lumen model is subsequently mapped to the other time-points by
applying deformations that are derived by a non-rigid registration procedure.
The image at the time-point in which the 3D model is defined is chosen as
reference image (If ) as we want to minimize the error of the registration to
this time-point in order to find the model deformation as accurate as possible.
All other time-point images Ii	=f are subsequently registered to this fixed image.
Registration starts using If+1 as moving image and the resulting transformation
Tf+1 is used as the initial transformation for registration of the next time-point
image If+2.

Registration is performed using a multi-resolution approach in which Gaussian
filtering is applied to reduce the scale of the image in the resolution steps. The
optimal B-spline deformation is searched using a stochastic gradient descent opti-
mization approach in which mutual information is used as similarity measure [5,6].

Using the transformations Ti	=f→f resulting from the registration approach,
the 3D coronary model is deformed to all time-points of the 4D CTA data. As
these time-points do not necessarily match the frame rate of the X-ray data
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acquired during the intervention, spline interpolation is applied to derive inter-
mediate coronary model positions.

2.2 2D+t/3D+t Registration Procedure

For the alignment of the CTA with the X-ray data, a rigid intensity-based reg-
istration framework is applied [7]. Instead of matching one time-point of the 4D
coronary model with one X-ray image, we propose to match multiple sequen-
tial time-points of the 4D coronary model in a window w to multiple sequential
X-ray images simultaneously. This window includes the time-point we want to
match and the w − 1 previous time-point positions, mimicking the clinical sit-
uation. This approach is expected to improve the robustness of the registration
procedure as there is additional information in the time-dimension of the data,
which is especially useful in the case of mono-plane X-ray imaging.

On the X-ray series, static structures are removed by subtracting from each
pixel the average pixel intensity of this pixel over time. Before registration, the
4D model of the coronary arteries is automatically positioned with its center
of mass on the isocentre of the X-ray coordinate system. Manual initializa-
tion is subsequently performed by applying one 2D translation in the plane
orthogonal to the projection line for the complete cardiac cycle. Optimization
is performed using a multi-resolution gradient ascent procedure. For every pose
estimation, digitally reconstructed radiographs (DRRs) of the coronary lumen
model are rendered on the graphical processing unit and compared with the real
X-ray images using normalized cross correlation (NCC). The resulting NCC val-
ues are averaged over the time window w to derive the quality of the current
pose.

3 Experiments

3.1 CTA and X-ray Data

CT coronary angiography for thirty-one patients with known or suspected coro-
nary artery disease was acquired using a dual-source CT system (Somatom Defi-
nition; Siemens Medical Solutions, Forchheim, Germany). No beta-blockers were
administered in preparation for the scan. The entire volume of the heart was
scanned in one breath-hold, while simultaneously recording the ECG trace. An
optimized heart-rate-dependent ECG pulsing protocol was applied. Outside the
ECG pulsing window a tube current of 4% was used in order to reduce the ef-
fective dose of the CT examination. Multi-phase 4D datasets were reconstructed
at 5% steps from 0% to 95% of the RR-interval, with a slice thickness of 3
mm and slice increment of 1.5 mm. Voxelsizes of the reconstructed volume are
approximately 0.7x0.7x1.5 mm3.

X-ray data was acquired with an AXIOM-Artis C-arm system (Siemens
Medical Solutions, Forchheim, Germany). The pixel size of these images is
0.22x0.22 mm2.
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3.2 4D Coronary Model Consistency and Accuracy

The 4D coronary models were evaluated using manually annotated coronary cen-
terlines at both systole and diastole of the cardiac cycle. In every dataset one of
the following vessels was randomly selected for annotation: right coronary artery
(RCA), left anterior descending artery (LAD) or left circumflex artery (LCX).
In total 11 LADs, 11 LCXs and 9 RCAs were annotated. Two experiments were
conducted: one to assess model consistency and one to assess model accuracy.

Consistency was measured as follows. First, coronary deformation was derived
using the approach described in section 2.1. This deformation was also derived
by applying the registration procedure in reverse order, viz. by registering image
If−1 to If , followed by a registration of If−2 to If using Tf−1→f as initial defor-
mation, etc. The two 4D coronary centerline models are compared by measuring
the average distance between the resulting centerlines at every time-point, which
is defined as the area between the centerlines divided by the length of the anno-
tated centerline. This experiment is performed using both the image at systole
and diastole as reference image in the registration procedure.

The accuracy of the 4D coronary models was determined using the same cen-
terlines as used for the consistency experiment. By applying the deformations
resulting from the registration procedure to the centerlines annotated at systole,
a deformed version of these centerlines at diastole is derived and compared to
the actually annotated centerline at this time-point. Centerlines are clipped at
their distal parts, as it is not always possible to annotate them equally distal in
both images, due to low resolution of the data and motion artifacts. Clipping is
performed by determining the Euclidian closest points on both centerlines and
disregarding all points distal from these points in the evaluation. Accuracy is
measured by computation of the average distance between the clipped center-
lines. The same procedure is applied for the centerlines annotated at diastole.

3.3 2D+t/3D+t Registration

To demonstrate an improvement in registration robustness using the proposed
2D+t/3D+t registration approach, a 4D coronary lumen model was constructed
for one dataset for which X-ray data was available. This was performed by man-
ual extraction of the centerlines of the vessels at diastole, followed by automatic
segmentation of the lumen [8], and subsequent manual correction of the segmen-
tation results.

One RR-interval of the X-ray data was selected and the 4D coronary lumen
model was matched using a 2D/3D+t approach (w = 1) and the proposed
2D+t/3D+t approach (w = 4). For both approaches and for each X-ray image in
the RR-interval, we search exhaustively for the best matching time-point position
in the 4D coronary lumen model, by consecutively registering the 3D coronary
lumen model at each time-point position to the 2D X-ray image. Subsequently,
the best matching time-point is selected as the one yielding the maximum NCC
value. In the ideal situation, resulting coronary lumen model time-point positions
should exactly match the actual X-ray time-point positions.
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Fig. 2. Model consistency: the average distance between the centerlines is plotted
against the time-point index number. Each line represents a dataset (blue=LAD,
red=LCX and green=RCA). The median over all centerlines is plotted in black.

4 Results and Discussion

4.1 4D Coronary Model Consistency and Accuracy

Graphs showing the results for the model consistency experiment can be found
in Fig. 2. Results for both using the image at systole and diastole as reference
image in the registration procedure are presented. The average distance between
the centerlines is plotted against the time-point index number. Each line in the
plot represents a dataset. The thick black line represents the median distance
over all datasets, which is below 1 mm for both the systolic and diastolic exper-
iment. Model accuracy is presented in Fig. 3, which displays a boxplot of the
distance between the centerlines at systole and diastole before (I) and after (R)
registration, and the difference between these two (D). Distances are averaged
over systolic and diastolic measurements. Results are presented for all vessels
combined and for the LAD, LCX and RCA separately. It can be noticed that
the LAD shows the least deformation during the cardiac cycle and the RCA the
most. The median accuracy is approximately 1 mm.

4.2 2D+t/3D+t Registration

Results of the 2D+t/3D+t experiment are shown in Fig. 4. X-ray time-point
positions are plotted against the best matching CT time-point. The dashed line
shows the results for w = 1 and the solid line for w = 4. It can be noticed that
using a larger window in the registration procedure results in a much better time-
point position derivation than the 2D/3D+t procedure. For some time-phases
at the end of the RR-interval, registration ended up in a local optimum, caused
by using the same manual initialization for the complete cardiac cycle, which is
for some phases outside the capture range of the registration procedure. This
may be solved in the future by using the resulting optimal pose for the previous



Patient Specific 4D Coronary Models from ECG-gated CTA Data 375

I R D
0

2

4

6

8

10

12

14
A

ve
ra

ge
 d

is
ta

nc
e 

(m
m

)

All
I R D

LAD
I R D

LCX
I R D

RCA

Fig. 3. Accuracy of 4D coronary mod-
els. (I)nitial distance between sys-
tole and diastole centerlines, after
(R)egistration, and (D)ifference (I-R).

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Timepoint X−ray

Ti
m

ep
oi

nt
 b

es
t m

at
ch

 4
D

w=1
w=4

Fig. 4. X-ray time-point positions
plotted against best 4D model time-
point position resulting from the
2D+t/3D+t registration procedure

25% 45%

Fig. 5. Examples of 2D+t/3D+t registration results at 20% and 40% of the RR inter-
val. Projected coronary model boundaries are overlayed on the background-subtracted
X-ray images

time-point as initial pose for the time-point under consideration. Illustrations
with registration results at two phases in the cardiac cycle are shown in Fig.
5. Although this experiment was limited to one dataset, it demonstrates the
feasibility of this approach. Moreover, it indicates that registration of CTA and
mono-plane X-ray images, which is an ill-posed problem, can benefit from the
information in the time dimension of the imaging data. Some misalignment is
still visible in Fig. 5, which may be caused by irregular heart deformation, inac-
curate reporting of the projection geometry of the X-ray system in the DICOM
headers, errors in the 4D coronary model, or non-rigid deformation caused by
the breathing cycle. The registration procedure for derivation of the 4D coronary
model still needs some improvements, especially to be better able to handle the
more excessive motion of the RCA. It can, for example, be advantageous to take
the cyclic behavior of the heart motion into account or to imply a smoothness
constraint on the registration in the time-dimension of the image. Furthermore,
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as we discretized the 4D coronary model in the time dimension, there may still
exist a small time mismatch between the X-ray time-point and coronary model
time-point.

5 Conclusions

We presented a method to derive patient specific 4D coronary models from
ECG-gated CTA data and demonstrated the usefulness of these models for
better relating pre-operative CTA to intra-operative X-ray images, which can
improve guidance during interventional cardiology procedures. Hereto, a novel
2D+t/3D+t registration procedure was developed and we demonstrated that
this procedure was better able to determine the correct CTA time-point posi-
tion for the X-ray phase of interest, which is an indication that registration ro-
bustness can be improved compared to a 2D/3D+t approach. We conclude that
the combination of the 4D coronary models and the 2D+t/3D+t registration
method is a promising approach for improved image guidance in interventional
cardiology.
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Abstract. Many vascular pathologies can now be treated in a mini-
mally invasive way thanks to interventional radiology. Instead of open
surgery, it allows to reach the lesion of the arteries with therapeutic de-
vices through a catheter. As a particular case, intracranial aneurysms
are treated by filling the localized widening of the artery with a set of
coils to prevent a rupture due to the weakened arterial wall. Consider-
ing the location of the lesion, close to the brain, and its very small size,
the procedure requires a combination of careful planning and excellent
technical skills. An interactive and reliable simulation, adapted to the
patient anatomy, would be an interesting tool for helping the interven-
tional neuroradiologist plan and rehearse a coil embolization procedure.
This paper describes an original method to perform interactive simula-
tions of coil embolization and proposes a clinical metric to quantitatively
measure how the first coil fills the aneurysm. The simulation relies on
an accurate reconstruction of the aneurysm anatomy and a real-time
model of the coil for which sliding and friction contacts are taken into
account. Simulation results are compared to real embolization procedure
and exhibit good adequacy.

1 Introduction

Intracranial aneurysms are abnormal bulges of the arterial wall that may oc-
casionally rupture, causing hemorrhage, stroke or death. The coil embolization
technique involves approaching the aneurysm by navigating through the vascular
network using a catheter until the diseased blood vessel is reached, thus avoiding
the need to open the skull. Once the aneurysm is reached, a micro-catheter is
then partially inserted inside the aneurysm, and the coil is carefully deployed
using a guidewire pushing the coil out of the micro-catheter. Usually, several
coils are deployed to fill the aneurysm, allowing to clot and eventually to stop
blood from entering the aneurysm.

Although the overall morbidity and mortality associated with endovascular
repair is lower than for surgery (9.5% at one year, compared to 12.2%) the
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technical challenges associated with coil embolization remain important. It was
however shown recently that the risk of complications with coil embolization
of unruptured aneurysms decreases dramatically with physician experience [1].
Indeed, complete embolization is usually determined by subjective assessments
of radiologists. Although several objective criteria have recently been introduced
to help radiologists during the procedure [2] simulation systems can offer more
functionalities and can be used for physician training as well as for pre-operative
planning.

Previous work in the area of real-time or near real-time simulation for inter-
ventional radiology has mainly focused on training. For instance, Li et al. [3],
Hoefer et al. [4], Alderliesten et al. [5], or Cotin et al. [6][7] have proposed dif-
ferent approaches for modeling either catheter deformation and more generally
catheter navigation in vascular networks. Regarding the planning of interven-
tional radiology procedures, the most representative work was in the area of
stent deployment. Laroche et al.[8] proposed a finite element model for a patient-
specific planning of balloon angioplasty and stent implantation. Complex device-
artery interactions occurring during stent deployment were computed, however
the simulation was not performed in real-time.

The objective of the work described in this paper is to provide a tool that can
be used for planning the procedure. This involves selecting the proper character-
istics of the coil based on the patient anatomy, but also interactively deploying
the virtual coil(s) to plan or rehearse the procedure. The interactive aspect in
this planning plays a key role as the interventional radiologist constantly con-
trols the motion of the coil and as such influences the final coil placement within
the aneurysm.

Section (2) presents the different models used for the simulation: the recon-
struction of vascular networks based on rotational angiography and the coil
model based on beam elements. The contact modeling to tackle interactions be-
tween the aneurysm and the coils as well as self-collision of the coils are described
in section (3) which also introduces the optimizations allowing interactive simu-
lations of coil embolization procedure. Finally, simulation results are presented
in section (4) where we introduce a clinical metric in order to compare the sim-
ulation to actual coil deployments in patient-specific aneurysms.

2 Models

A complete coil embolization consists in coils with specific rest shapes conforming
to the geometry of an aneurysm. To reproduce this matching problem within a
simulation, accurate models are required. This section describes the modelling
stage of our framework which aims at virtually reproducing the most important
features of real data (such as geometry for the vascular network or mechanical
properties for the coils).

Patient-Specific Aneurysm Model. The input of our algorithm is a volumet-
ric 3D Xray (3DXA) angiography of the brain. Such 3D images are recognized
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as being of a daily clinical usefulness for the planning and follow-up of the treat-
ment of cerebral pathologies [9]. In order to use deformable active surfaces to
segment the aneurysm, an initial surface has to be defined. This region of interest
is obtained by thresholding the volumetric data with an appropriate value given
by the user. The triangulated initial surface is the boundary of this region and
is classically obtained using a marching cube algorithm [10]. This first guess is
obviously not accurate due to the use of a global threshold. Deformable triangu-
lated surfaces are then used to recover a precise shape of the aneurysm starting
from the initial shape.

The method used for the 3D reconstruction of the aneurysm shape from the
initial guess V originates in [11]. Let vi be the vertices of the triangulated mesh.
The shape of the aneurysm is defined as the set of vertices V which minimizes
the energy term E =

∑n
i=1 Einternal(vi) + λEexternal(vi) where Einternal(vi) =

|vi − v̄i| imposes smoothness constraints on the surface (v̄i being the average
set of vertices connected to vi) and Eexternal is the force field created by the
image gradient: Eexternal(vi) = −|∇I(vi)| where I(vi) is the 3DXA intensity at
vertex vi.

Using active surfaces not only improves the segmentation of the aneurysm
but also provides a smooth surface representation, presenting better character-
istics for further processing during the simulation. In particular, the computa-
tion of the interaction between the coil and aneurysm wall requires a smooth
surface. We obtain a more regular representation than what can be obtained
using a marching cubes algorithm [10], even when applying a post-processing
smoothing.

Coil Model. There are different types of detachable coils but most of them
have a core made of platinum, and some are coated with another material or a
biologically active agent. All types are made of soft platinum wire of less than
a millimeter diameter and therefore are very soft. The softness of the platinum
allows the coil to conform to the arbitrary shape of an aneurysm.

The deformation model of the coil is based on the recent work of Dequidt et.
al. [12]. Coil dynamics is modelled using serially linked beam elements:

Mv̇ = p− F (q,v,q0) + Hf (1)

where M ∈ R(n×n) gathers the mass and inertia matrices of the beam elements.
q ∈ Rn is the vector of generalized coordinates (each node at the extremity
of a beam has six degrees of freedom: three of which correspond to the spatial
position, and three to the angular position in a global reference frame). The rest
position q0 depends on the family of coil to be simulated: helical shape or 3D
shape consituted of omega loops (see figure 1). v ∈ Rn is the vector of velocity.
F represents internal visco-elastic forces of the beams, and p gathers external
forces. f is the vector of the contact forces with the aneurism wall, and H gathers
the contact directions. To integrate this model we use backward Euler scheme
with a unique linearization of F per time step.
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Fig. 1. Example of coils used in our simulations, left: Boston Scientific helical coil GDC
10, right: 3D GDC built with omega loops [13]

3 Simulation of Coil Deployment

3.1 Modeling Contacts with Aneurysm Walls

Simulating coil embolization requires to accurately model contacts that occur
between the coil and the wall of the aneurysm. This contact model must account
for the stick and slip transitions that take place during the deployment of the
coil. The model also includes a compliant behavior of vessel wall that is close to
Boussinesq model [14]. For modeling contacts with friction, we use two different
laws, that are based on the contact force and on the relative motion between the
coil and the aneurysm wall. The contact law is defined along the normal n and
the friction law, along the tangential (t, s) space of the contact.

The contact model, based on Signorini’s law, indicates that there is com-
plementarity between the gaps δn and the contact forces fn along the normal
direction, that is:

0 ≤ δn ⊥ fn ≥ 0 (2)

With Coulomb’s friction law, the contact force lies within a spacial conical region
whose height and direction are given by the normal force, giving two comple-
mentarity conditions for stick and slip motion:

[δt δs] = 0 ⇒ ‖[ft fs]‖ < μ ‖fn‖ (stick condition)
[δt δs] �= 0 ⇒ [ft fs] = −μ ‖fn‖ [δt δs]

‖ [δt δs]‖ (slip condition)
(3)

Where the vector [δt δs] provides the relative motion in the tangential space
and μ represents the friction coefficient.

The obtained complementarity relations could create singular events when
it changes from one state to an other: For instance, when a collision occurs at
instant t�, the velocity v(t�) of the coil, at that point, changes instantaneously.
The acceleration could then be ill-defined and we can observe some quick changes
in the dynamics. Each friction contact creates three nonholonomic constraints
along the normal and tangential directions. Our approach allows for processing
simultaneously multiple friction contacts, including self-contacts on the coil.

3.2 Simulation Steps

The processing of one simulation step begins by solving equation (1) for all
forces except contact forces (f = 0). This free motion corresponds essentially to
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the deformation of the beam elements under gravity and user force input. Once
the free motion has been computed, collision detection computes the contact
points between the coil model and the aneurysm surface and the points of self-
collision. When collisions are detected, the contact response is computed. This is
a complex aspect that influences greatly the overall behavior of the coil model.
To describe the mechanical behavior during contact, the mechanical coupling
between the different contact points is modeled. This information is provided by
evaluating the compliance matrix in the contact space, called W, for both the
coil and the aneurysm. Let’s consider a contact α on the node i of the coil (with
one constraint along the contact normal n and two along the tangential friction
directions t, s). Hα is the matrix of the frame [n t s]. The mechanical coupling
of this contact with a contact β (with frame Hβ) on node j can be evaluated
with the following 3× 3 matrix:

W(α,β) = HT
α

(
M
h2 +

dF

hdv
+

dF

dq

)−1

(i,j)
Hβ = HT

αC(i,j)Hβ (4)

where C(i,j) is the 3 × 3 sub-matrix of global compliance matrix C (inverse
of tangent matrix) at the rows of node i and the columns of node j. For the
aneurysm wall, the formulation of the coupling is simpler:

W(α,β) =
g(dij)

e
HT

α Hβ (5)

where e is an elasticity parameter that is homogeneous to Young modulus and
g(dij) is a Gaussian function of the distance, defined on the surface, between con-
tact points i and j. The Gaussian function allows a fall-off of the coupling with
increasing distance between the contact points. This model is close to Boussi-
nesq’s approximation which provides a distribution of the normal contact stress
from the elasticity of the surface, around a point of contact [14].

The result of the contact response consists in finding the friction contact
forces that respect Signorini’s and Coulomb’s laws. Several works [15] or [6]
present Gauss-Seidel iterative approaches that solve this problem. The solver
needs an evaluation of a global compliance matrix W, which is the sum of the
compliances of the coil and the aneurysm wall. It also needs the value of the
relative displacement of the contacting points during the free motion δfree. When
the contact forces are found, during the last step, called contact correction we
compute the motion associated to the contact forces.

4 Validation and Results

The main contribution of this work is not to provide an extensive study on simu-
lated coil deployments but rather to introduce a global approach, from segmen-
tation to simulation of the coil embolization procedure. This approach includes
a validation step, for which we propose an adapted clinical metric. Examples
provided in the paper serve as preliminary results and exhibit the relevance of
the chosen metric.
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Fig. 2. Examples of our simulation results: (left) real coil embolization (right) our
simulated coil embolization with 3D coils

Clinical Metric. As pointed out in the introduction, a successful embolization
procedure is determined by the subjective assessment of radiologists and an ob-
jective measure known as Coil Embolization Ratio (CER) [2]. CER quantifies the
amount of coil material that fills up the aneurysm volume. Usually a CER be-
tween 20% and 33% is a good value for a complete embolization. The validation
proposed in this paper focuses on the deposit of the first coil, which is known to
be the most difficult to place and plays a key role in the procedure as it serves
as a framework for further embolization. Comparison between final shapes of
the real coil and simulated coils is not a suitable solution in this context. Indeed
coil deployments are hardly reproducible even with the same initial conditions
because they depend of many parameters such as radiologist input, irregular-
ities of the aneurysm surface and can lead to very different final shapes (thus
justifying the clinical use of CER for complete embolization). Even experienced
interventional radiologists can hardly estimate how the first coil will finally be
placed inside the aneurysm. They do however have some criteria to select the
first coil [16]: an appropriate size (diameter of the coil has to be close to the
aneurysm fundus and larger than the neck), its deployment should cover a large
surface of the aneurysm (to serve as a basket in which the subsequent coils will
be deposited) and some loops should extend across the neck of the aneurysm.
Therefore, we propose in this paper to use a clinical metric derived from the work
of Cloft et. al. [16]: the coil embolization surface ratio (CESR) that defines the
amount of the aneurysm wall covered by the first coil. The choice of the CESR
is twofold: first, it translates into a metric the qualitative criteria proposed by
Cloft et. al. and second is less sensitive to small perturbations that could lead to
very different shapes. During the beginning of the embolization procedure, the
physician constantly evaluates the CESR by watching the 2D fluoroscopic image
of the coil deployment. We can obtain easily a measure of CESR and CER of the
simulation results but the lack of 3D view of the real coil deployment prevents
from having a precise metric on patient data. For a preliminary assessment, we
perform the validation of the simulation data by evaluating the CESR on 2D
fluoroscopic views as it is widely done by neuroradiologist during procedure.

Simulations. The simulations have been performed using two reconstructed
patient aneurysms. For each aneurysm, deployments of a first coil have been
simulated. The coil was modeled using 200 beam elements with Young modulus
= 75 GPa and Poisson ratio = 0.39. The smooth surface model of the aneurysm



Towards Interactive Planning of Coil Embolization in Brain Aneurysms 383

Table 1. CESR measure for the two procedures. Comparable CESR values are obtained
when using the same coil as the real procedure. When simulating a helical coil (which
is not relevant for this shape of aneurysm), we notice a lower CESR, which is consistent
with what would happen in an actual procedure. This shows the predictive nature of
our simulation.

CSER Error in %
First Patient, experimental data (3D Coil) 81% 0

First Patient Aneurysm with 3D Coil 68% 16
First Patient Aneurysm with Helical Coil 55% 32

Second Patient, experimental data (3D Coil) 24% 0
Second Patient Aneurysm with 3D Coil 17% 30

Second Patient Aneurysm with Helical Coil 11% 54

walls allowed for the simulation of the fast stick and slip transitions that can
be observed in actual coil embolizations. Using the shape functions of the beam
elements to interpolate the contact points, we obtain a precise auto-collision re-
sponse. The implicit integration of the coil dynamics allows for a stable behavior
of the coil model even during highly constrained transitory motions. The com-
putation time is quite fast at the beginning of the simulation (30 ms for the first
loops) but slows down when the contact points become numerous. In order to
provide the same initial conditions for the real procedure and the simulated one,
the catheter tip is positioned and oriented using a 3D triangulation of 2D orthog-
onal fluoroscopic images allowing good accuracy (0.2mm) and is less invasive on
the deployment than EM trackers. The simulation of the coil is interactive and
is controlled using an optical device to acquire the motion induced made by the
user. The blood flow resistance has not been taken into account as its influence
is said to be negligible by radiologists.

Error Measurement. Our validation tests consist in measuring the CSER
metric and computing the relative error with respect to the value obtained from
experimental data. The CSER of the experimental data is estimated from 2D
images so is a bit overvalued compared to the CSER of our simulations where
an accurate area computation of the aneurysm volume covered by coils can
be obtained. A summary of the results appears on table 1 and exhibits good
adequacy of the behavior of our simulated coils with respect to real ones: indeed
our simulated 3D coils provide CSER values close to the experimental values
whereas helical coils induce a lower CESR which is consistent with what would
happen in an actual procedure.

5 Conclusion and Future Work

In this paper, we have presented a global approach for performing simulation
of coil embolization on a patient dataset. The geometric reconstruction of the
aneurysm shape is adapted to the simulation requirements. An efficient dynamic
coil model is combined with physically based processing of contacts with the
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aneurysm wall and the coil itself. The methodology includes a validation process,
based on clinical metric. The preliminary results we have obtained are very
encouraging, as they illustrate the potential of our approach to capture the
key characteristics of this complex procedure and demonstrate a behavior that
matches experimental data.

Our next step is to optimize the collision detection and response pipeline in
order to obtain real-time performance during a simulation of a whole emboliza-
tion. We also plan to extend the validation on more patients in order to evaluate
the potential use of such a simulation during the planning process of a coil
embolization.

Acknowledgments. We would like to thank René Anxionnat, Juan Pablo De
la Plata and Frederick Roy for their help on this work.
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Abstract. We present a method for realtime online 3d reconstruction
of a guide-wire or catheter using 2d X-ray images, which do not have to
be recorded from different viewpoints. No special catheters or sensors are
needed. Given a 3d patient data set and the projection parameters, we
use recursive probability density propagation to estimate a probability
distribution of the current positions of guide-wire parts. Based on this
distribution, we extract the optimal guide-wire position using regulariza-
tion techniques. We describe the guide-wire position by a uniform cubic
B-spline. Experiments on simulated and phantom data demonstrate the
high accuracy and robustness of our approach.

1 Introduction

Most of the interventions of vessel diseases are performed by using catheters or
guide-wires. One of the main difficulties is the navigation of these wires through
the vessel system to the affected vessel. The common way of doing this is using
a contrast agent and subtracted 2d X-ray images from a multi-axis angiography
system (Fig. 2, left). Obviously, navigating a wire in a complex vessel system
(e. g. brain, Fig. 2, middle left) using 2d X-ray images is not an easy task. Very
good anatomic knowledge and a proper spatial sense are required, since the X-
ray images do not contain any depth information. A 3d reconstruction of the
current wire position inside of a 3d patient data set would be a great support
for this difficult navigation task. Uncertainties during the navigation could be
easily dissolved by rotating or zooming the 3d reconstruction.

We present a method for realtime online 3d reconstruction of a wire in a
3d patient data set (3d rotational angiography, 3DRA) using subtracted 2d X-
ray images. The projection parameters are well known and the X-ray images do
not have to be recorded from different viewpoints. This is very important since
physicians do not want to change their current projection to get a 3d recon-
struction of the guide-wire. They expect the reconstruction to be an additional
feature of the single position fluoroscopy. Furthermore, we do not need special
catheters or sensors. Given the reconstructed 3d patient vessel system, we use
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Fig. 1. Guide-wire in a vessel phantom (phantom1): native X-ray image (left), sub-
tracted X-ray image (middle left) and two views of the 3d reconstruction of the esti-
mated wire in a 3DRA (middle right, right)

recursive probability density propagation [1] to build a 3d probability distribu-
tion of the current 3d position of wire parts. The representation and temporal
update of this distribution is performed by using a particle filter [2]. We ex-
tract the optimal 3d wire position using regularization techniques [3] based on
this probability distribution. The wire is represented by uniform cubic B-splines
[4]. Fig. 1 shows an X-ray image (left), the subtracted image (middle left) and
the resulting reconstruction of the estimated 3d wire position inside of a 3DRA
(middle right, right).

In the literature, one can find different approaches for the reconstruction of
wires in a 3DRA. Solomon et al. [5] and Woods et al. [6] use special catheters
and sensors to determine and visualize the 3d position of a catheter tip. Bender
et al. [7] use two or more X-ray images from different viewpoints to build a
3d reconstruction of the guide-wire. By manually providing a starting point and
direction of the wire, they reconstruct it iteratively using backprojection and
comparing the backprojection to gradient images of the X-ray images. Baert
et al. [8] use a calibrated biplane angiography system for 3d reconstruction of
the guide-wire by triangulation. Therefore they need an accurate tracking of the
guide-wire in the 2d X-ray images. Point correspondences for triangulation are
extracted by using the epipolar constraint. By using an angiography system and
a 3DRA van Walsum et al. [9] estimate the 3d guide-wire position by reprojecting
the segmented wire from the 2d X-ray image. In opposite to our work, they do
not use any temporal information for the 3d position estimation. We also do not
need any special hardware, manual interaction, or an accurate 2d segmentation
of the wire.

The remainder of this paper is structured as follows: In section 2 we describe
our approach for estimating the 3d position of a wire using 2d X-ray images.
We present different experiments on simulated and phantom data in section 3.
Conclusions are given in section 4.

2 Method

The method we propose consists of two parts. First, we build with every new
X-ray image a probability distribution of the currently possible 3d positions of
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wire parts using the 3DRA, the prior knowledge of the wire position, i. e. the
probability distribution of the last timestep, and the prior 2d X-ray images. This
is done by recursive probability density propagation using a particle filter [2].
In combination with a state estimator (e. g. maximum a posteriori or maximum
likelihood), a particle filter is a powerful tool for state estimation. Platzer et al.
[10] use a particle filter for 3d blood flow reconstruction from 2d angiograms.
Unfortunately, using a particle filter for state estimation is – due to practical
reasons – only possible if the state space is low dimensional. Since a generic,
complex 3d path of a wire cannot be described by just a few parameters, it is not
promising to apply regular state estimation techniques. However, a particle filter
still provides an efficient way to describe and update multi-modal probability
distributions. The second part of our method consist of extracting the optimal
wire position from this probability distribution using regularization techniques.

2.1 Probabilistic Estimation of the 3d Wire Position

Projecting 3d data into a 2d image plane causes information loss and creates
ambiguities. Recursive probability density propagation [1] allows dissolving such
ambiguities by integrating temporal information. In the context of our problem,
it can be written as

p (xt | 〈o〉t) ∝ p (ot | xt)︸ ︷︷ ︸
likelihood

∫
p
(
xt | xt−1, 〈o〉t−1

)︸ ︷︷ ︸
update

p
(
xt−1 | 〈o〉t−1

)︸ ︷︷ ︸
recursion

dxt−1. (1)

Where xt ∈ R3 is some point in the 3DRA and 〈o〉t = 〈o1,o2, . . . ,ot〉 are the
observations, i. e. subtracted X-ray images of the wire, until some point in time t.
Recursive probability density propagation consists of three parts. The recursion
p(xt−1 | 〈o〉t−1) is the reason why only the current observation is needed to
update the distribution, i. e. the knowledge of the last timestep. Due to a lack
of information we choose the initial 3d wire distribution p(x0) to be a uniform
distribution inside of the patient vessel system.

In order to predict, where wire parts could move to in the next time step, the
update probability distribution

p
(
xt | xt−1, 〈o〉t−1

)
∝

N
(
d(xt,xt−1) | μ, σ2

)∫
ε∈Ω

∫
N (d(xt,xt−1) | μ, σ2) p

(
xt−1 | 〈o〉t−1

)
dxt−1 dε

,

(2)
is used. In the literature [1], the update distribution does not depend on the old
observations 〈o〉t−1. However, eq. (1) can be easily transformed to integrate the
old observations into the update distribution. The normal distribution in the
numerator and denominator with mean μ and variance σ2 describes where wire
parts could move to, given their current position. Important for this distribution
is the shortest distance d(xt,xt−1) between the past and the current point con-
sidering the vessel structure. This shortest distance calculation is based on the
3DRA using graph-theoretical methods. Since we suppose that the wire never
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leaves the vessel system, the distance to some point xt outside of it is infinite.
The denominator of eq. (2) prevents single high peaks in the 3d wire probability.
This is achieved by decreasing the probability that wire parts move to positions
where the 3d wire probability is already high. This normalization is restricted
to a local space Ω around xt. The size of this space affects the smoothing. Note
that this is very important, since otherwise single parts of the wire would get a
much higher probability than other parts, which conflicts the prior information
that each part of the wire should have the same probability. For the realisation
using a particle filter, this means that it might happen that the particles tend
to cluster at a small space instead of along the complete wire. This is because
with every iteration more particles are drawn from the area with the higher
probability.

The third part of the recursive probability density propagation is the likelihood

p(ot|xt) ∝ max
(i∗,j∗)

ot (i∗, j∗)N (i− i∗, j − j∗ | 0,Σ) (3)

which is used to integrate the actual observation ot, i. e. the subtracted X-ray
image, into the 3d wire probability distribution. Where (i, j) are the image coor-
dinates of the projected 3d point xt and ot (i, j) is the gray value of the observa-
tion at this position weighted by a Gaussian kernel N (·, · | 0,Σ). The projection
parameters are known by the angiography system which recorded the 2d X-ray
image. In order to prevent higher probabilities in areas where the projected wire
is crossing itself, we use the maximum instead of a sum.

2.2 Extraction of the Optimal Wire

We use uniform cubic 3d B-splines [4] SC(r) : [0, 1] → R3 to describe the 3d wire
position. The appearance of a B-spline is defined by the position of its control
points C = {c0, c1, . . . , cm}, ck ∈ R3. As start and end of the spline, we use the
first and last control point, respectively: SC(0) = c0, SC(1) = cm.

Given the probability distribution p(xt | 〈o〉t), which is caused by the wire, we
want to extract the 3d wire position, i. e. the spline control points. Obviously this
is an ill-conditioned problem which cannot be solved without specifying further
constraints. But it can be solved using regularization techniques [3]. We search
for the optimal spline control points

Ĉ = argmax
C

1∫
0

log p (SC (r) | 〈ot〉) dr

︸ ︷︷ ︸
probability

+α

1∫
0

|S′
C (r)| dr

︸ ︷︷ ︸
length

−β

1∫
0

S′′
C (r)2 dr

︸ ︷︷ ︸
smoothness

(4)

by maximizing an objective function which consists of three parts. The searched
spline should stride an area with high probability and maximize length and
smoothness. The parameters α and β weight the different parts of the objec-
tive function. Since the probability of any 3d point outside of the vessel system
is zero, the spline cannot leave it. We use Powell’s method [11] for optimization.
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3 Experiments

We tested our method on two simulated sequences based on the 3DRA of a half
brain (sim1 and sim2, 300 images each) and on two sequences using real X-ray
images (Fig. 1, left) of a vessel phantom (phantom1, 186 images and phantom2,
231 images). Fig. 2 (middle left, middle right) shows the two 3d data sets. Each
of these data sets is scaled to a size of 2563 voxels resulting in a voxel size of
0.765mm for the phantom and 0.539mm for the brain data set. An impression of
the different sequences is given in Fig. 1 and Fig. 2 (right). Each of these images
shows the estimated 3d wire position after the last image from the viewpoint
where the 2d X-ray images of the respective sequence are taken. The 3d data
sets and the X-ray images are recorded on a Siemens Artis zee C-arm system
(Fig. 2 (left), image resolution: 1240 × 960, pixel size 0.308mm × 0.308mm).
We use a 33 × 33 Gaussian kernel to build the 2d probability distribution of
eq. (3). We choose μ = 7.5 and σ2 = 2.5 for eq. (2) and our particle set consists
of 15000 particles. To reach realtime performance in our experiments, we use
a graph, which is based on the thinned vessel system of the 3DRA, for the
distance calculation inside of the vessel system. This graph is also used to find the
longest possible wire given the 3d wire probability distribution what simplifies
the extraction of the optimal wire and to decide how many spline control points
are necessary for the wire representation.

In order to show the accuracy of our method, we analyze the error of the
wire tip and the complete wire. The ground truth 3d and reprojected 2d wire
position of the simulated sequences are well known. For the phantom sequences
only the manually extrated 2d ground truth is given. Thus we analyze just the
accuracy of the reprojected wire of these sequences. We calculate the 2d and 3d
Euclidean distance between the estimated wire tip and the ground truth wire tip.
To evaluate the error of the complete wire, we calculate the shortest Euclidean
distance between each pixel (voxel) of the estimated wire to some pixel (voxel) of
the ground truth wire. Note that this evaluation rates an estimated wire which
is too short in comparison to the ground truth wire too good. However, this case

Fig. 2. Siemens Artis zee C-arm system (left, www.siemens.com). 3d half brain data
set used for the simulated (middle left) and the 3d phantom data set used for the
phantom sequences (middle right). 3d visualization of the estimated wire after the last
image of the sequence sim1 of subtracted X-ray images (right). The viewpoint of this
image is similar to the viewpoint where the X-ray images are taken.
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Fig. 3. Quantile plots of the 2d and 3d (only simulated sequences) error of the wire
tip (top left) and the complete wire (top right) of each sequence. Error of the wire tip
for each timestep of the sequences phantom1 (bottom left) and sim1 (bottom right).
The overall median (quantile 0.5) error for the wire tip is 2.52 mm and 0.47 mm for the
complete wire. Explanations for temporarily larger errors are given in section 3.1.

is handled by the wire tip error. Since the metric sizes of each pixel and voxel
are known, we present the distances in millimeters.

Fig. 3 shows quantile plots of the wire tip error (top left) and of the complete
wire error of each sequence (top right). An overview of the median (quantile 0.5)
errors of each single sequence and of all sequences (all) is presented in Table 1.
The median error of the reprojected wire tip is 2.52mm and 0.47mm for the
complete wire. In section 3.1, we describe reasons for temporarily larger errors.
Our approach takes 1.48 seconds for processing a timestep on an Intel Pentium
4 2.8 GHz with 1 GB RAM. Note that since a particle filter can be completely
parallelized, much better runtimes are possible on a modern multi core system
using an optimized implementation.

3.1 Reasons for Inaccuracies

A reason for small errors are ghosting artefacts. These artefacts are created by
the X-ray detector due to a temporal averaging of the X-ray images. An example
for a ghosting artefact is displayed in Fig. 4 (left). Because the wire is moved
quite fast it seems to have two tips. Also most of the time the estimated wire
tip position is slightly in front of the real wire tip position, since eq. (4) benefits
long wires and the observation is slightly blurred.



392 M. Brückner, F. Deinzer, and J. Denzler

Table 1. Median errors in millimeters for each single and for all sequences (all)

error [mm] phantom1 phantom2 sim1 sim2 all

cath. tip 2d (3d) 2.27 3.24 2.22 (1.71) 2.90 (1.98) 2.52 (1.88)
catheter 2d (3d) 0.14 0.64 0.52 (0.55) 0.47 (0.45) 0.47 (0.50)

Fig. 4. Ghosting artefact (left), example for an ambiguity in phantom1: X-ray image
(middle left), (incorrectly) estimated wire (middle right, right)

Most of the larger errors can be explained by ambiguities of the 3d catheter
position in the 2d X-ray images. Fig. 3 (bottom left) shows the 2d error of the
wire tip for each timestep of the phantom1 sequence. Most of the time, this error
is really low, but in the second part of the sequence, the error gets suddenly very
large. The reason for this is the ambiguity shown in Fig. 4 (middle left). Because
of an overlapping vessel, the 3d position of the wire cannot be estimated correctly.
The (incorrectly) estimated wire is shown in Fig. 4 (middle right, right). Fig. 3
(bottom right) shows the 2d and 3d error of the wire tip in sequence sim1. At
the start and in the middle of this sequence, the 3d error suddenly increases,
while the 2d error stays low. The reason for this is that the wire is moving in
the direction of the optical axis of the X-ray detector. Hence the 3d position of
the wire tip cannot be estimated correctly. However, the reprojected 2d position
is still quite accurate.

Note that in each of these cases our method is robust enough to return very
quickly to a high accuracy as soon as the ambiguities are resolved. Furthermore,
many of these ambiguities can easily be resolved by using a second pair of X-ray
source and detector with a different viewpoint, which could be easily provided
by a biplane system. In this case, the likelihood in eq. (1) would consist of two
observations.

4 Conclusions

We presented a new approach for realtime online 3d guide-wire reconstruction
using 2d X-ray images, which do not have to be recorded from different view-
points. This meets the clinical needs since physicians do not want to change their
current projection to get a 3d reconstruction of the guide-wire. By using recur-
sive probability density propagation, we built a 3d probability distribution of the
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positions of wire parts based on a 3d patient data set and 2d X-ray images. In
order to represent and update this multi-modal distribution, we used a particle
filter. To extract the optimal 3d wire position from this distribution, we applied
regularization techniques. We described the 3d wire position by a uniform cubic
B-spline. Our method does not need any special catheters or sensors. Performing
different experiments on simulated and phantom data showed the high accuracy
of our method (Table 1). We achieved a median error of the reprojected wire tip
of 2.52mm. The median error of the reprojected complete wire was 0.47mm. The
achieved median 3d error is 1.88mm for the tip and 0.50mm for the complete
wire.

In our future work, we will improve the accuracy of our approach by using a
biplane angiography system. In order to better model the guide-wire behaviour
we will also add a speed estimation of the guide-wire tipp. We will also implement
our approach using multi processing techniques. The clinical evaluation of our
approach is imminent.
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Abstract. Radio-frequency catheter ablation of the pulmonary veins
attached to the left atrium is usually carried out under fluoroscopy
guidance. Two-dimensional X-ray navigation may involve overlay im-
ages derived from a static pre-operative 3-D volumetric data set to add
anatomical details. However, respiratory motion may impair the utility
of static overlay images for catheter navigation. We developed a system
for image-based 3-D motion estimation and compensation as a solution
to this problem for which no previous solution is yet known. It is based
on 3-D catheter tracking involving 2-D/3-D registration. A biplane X-ray
C-arm system is used to image a special circumferential (lasso) catheter
from two directions. In the first step of the method, a 3-D model of the
device is reconstructed. 3-D respiratory motion at the site of ablation
is then estimated by tracking the reconstructed model in 3-D from bi-
plane fluoroscopy. In our experiments, the circumferential catheter was
tracked in 231 biplane fluoro frames (462 monoplane fluoro frames) with
an average 2-D tracking error of 1.0 mm ± 0.5 mm.

1 Introduction

Atrial fibrillation (AF) is one of the most common heart rhythm disorders and a
leading cause of stroke. Radio-Frequency catheter ablation (RFCA) has become
an accepted option for treating AF in today’s electrophysiology (EP) labs, in par-
ticular, if drug treatment has become ineffective. RFCA of the pulmonary veins
(PVs) is usually carried out under fluoroscopy guidance. Unfortunately, X-ray
projection images cannot distinguish soft tissue well. To address this issue, fused
visualization combining pre-operative high-resolution 3-D atrial CT and/or MR
volumes with the fluoroscopic images has been developed (fluoro overlay image
guidance) [1]. Current fluoro overlay techniques are however usually static, i.e.,
they do not follow the heart while it beats and moves through the breathing
cycle. This effect may impair the utility of fluoro overlays for catheter naviga-
tion. By synchronizing the fluoroscopic images with electrocardiogram (ECG),
cardiac motion can be eliminated, and respiratory motion can be isolated for
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the fused visualization. While it has been widely recognized that motion com-
pensation is crucial for fluoro overlays, image-based 3-D motion-compensation
methods designed for EP applications are not yet known, mainly due to the
fact that there are few discernible features in typical EP fluoro images. Motion
compensated navigation for coronary intervention using magnetic tracking was
suggested in [2], but it requires special catheters equipped with an electromag-
netic sensor at increased cost. Only vertical motion in the imaging plane was
compensated in [3] and [4] for liver embolization and hepatic artery catheteri-
zation, respectively. But the left atrium undergoes a three dimensional motion
during respiration, as shown in [5]. This paper describes a novel image-based
method to detect and compensate respiratory motion in 3-D using a biplane C-
arm fluoroscopy device. Such an X-ray system has two imaging planes commonly
referred to as A-plane and B-plane, respectively. To perform motion estimation,
we track a commonly used EP catheter, the ring-shaped spiral catheter. This
catheter is of unique shape and represents a good feature for tracking and motion
estimation, as it is typically fixed at the ostium of the PV that is to be ablated.

2 Three-Dimensional Lasso Model Initialization

Our algorithm is based on the assumption that the perspective projection of a
lasso catheter, when fit to the pulmonary veins, can be approximated as a 2-D
ellipse. In turn, the lasso catheter is reconstructed in 3-D from biplane X-ray
projections that are taken simultaneously using a calibrated biplane C-arm X-
ray system. The lasso catheter itself can be approximated as an ellipse in 3-D,
because a 3-D elliptical object remains elliptical when perspectively projected
onto a 2-D imaging plane. Under some special view orientations, the ellipse
can, however, collapse to a line. As a consequence, our algorithm is designed to
reconstruct a 3-D lasso model either from 2-D ellipses extracted from biplane
X-ray views, or from one ellipse and one line (Fig. 1).

2.1 Two-Dimensional Ellipse Extraction

The projection of the lasso catheter on the imaging plane is first extracted by
manual clicking followed by fast marching in one frame of the fluoroscopy se-
quence, as explained in [6]. A 2-D ellipse is then fitted using the method described

Fig. 1. 3-D lasso model initialization from two views. a) The 3-D model is found by
the intersection of two 3-D elliptical cones. b) The model is found by intersecting the
3-D elliptical cone with the plane determined by the 2-D line and the optical center.
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in [7]. Specifically, the method uses a least square estimation of the ellipse param-
eters f = (a, b, c, d, e, f)T of the ellipse equation au2 +buv+cv2+du+ev+f = 0
with the 2-D coordinates u and v. Given a set of points pi = (ui, vi)T with
i = 1, . . . , N , these can be combined in a measurement matrix M with the i-th
row M(i, :) = (u2

i , uivi, v
2
i , ui, vi, 1) [8]. As the points may not necessarily lie

exactly on the ellipse to be fitted, we are looking for the ellipse parameters f̂
that minimize f̂ = arg minf ||Mf ||22 subject to ||f ||2 = 1. Since the constraint
||f ||2 = 1 does not guarantee an elliptic solution, the method presented in [7] is
used to assure the correct solution by enforcing the condition b2 − 4ac < 0.

2.2 Three-Dimensional Ellipse Reconstruction

A 3-D point is projected onto an imaging plane as a 2-D point p = (u, v)T by p̃ =
P ·w. This equation holds in homogeneous coordinates where w = (x, y, z, 1)T

and p̃ = (uw, vw,w)T . The projection matrix P ∈ R3×4 is defined by P =
K [R|t] with the matrix K ∈ R3×3 representing the intrinsic camera parameters,
and the matrix R ∈ R3×3 and the vector t ∈ R3 comprising the extrinsic camera
parameters for rotation and translation, respectively. A 3-D elliptical cone can
be spanned considering an imaging plane with the projection matrix P and the
ellipse within that plane parameterized by C ∈ R3×3. The base of the elliptical
cone is the ellipse in the imaging plane and the vertex is the optical center that
can be calculated as o = −R−1t. It can be shown that the elliptical cone can be
represented by Q = PT CP in matrix presentation [9]. For the regular case, the
3-D ellipse representing the 3-D lasso catheter is reconstructed by intersecting
the two elliptical cones QA and QB corresponding to plane A and plane B of a
biplane system respectively. The solution is found by calculating η so that the
quadric Q(η) = QA + ηQB is of rank 2 [9]. From a mathematical point of view,
there are two feasible solutions, as illustrated in Fig. 1 a). In our application, we
utilize our prior knowledge about the pseudo-circular shape of the lasso catheter
and select the result that is more circular. For the special case where the lasso
catheter is projected as close to being a line in one view, the method in [9] is not
numerically stable. The special case is detected by considering the rank of the
measurement matrix containing the first and second order point coordinates. A
rank deficiency (ill-conditioning) indicates a linear dependency and therefore an
ellipse that collapsed to a line. In this case, we propose to reconstruct the 3-D
lasso model by the following procedures. First, a line is fitted to the line-like
projection of the lasso catheter. It is calculated as the the principal axis of the
points obtained by fast marching. Two arbitrary but distinct points q1 and q2
are then randomly selected on the fitted line and are connected to the optical
center. The projection plane in which both the X-ray source and the fitted line
lies is then determined by the two rays q1,o and q2,o. In the second and final step,
the 3-D lasso model is obtained by intersecting this plane with the elliptical cone
defined by the ellipse from the second view. We propose the following method to
calculate the analytical formulation of the conic section that intersects a plane
ñ = (xn, yn, zn, dn)T with an elliptical cone Q. The key idea is to transform the
original coordinates, taken with respect to the iso-center of the C-arm system, to
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new coordinates, in which the transformed x-y-plane coincides with the cutting
plane ñ. The transformation is given as

S =
(

u v n 0
0 0 dn 1

)
(1)

where n = (xn, yn, zn)T is normalized to unit length, and u and v can be any
pair of unit length vectors lying in the cutting plane that are orthogonal to each
other. S therefore presents a standard rigid-body transformation matrix after
which the conic section w′ = Sw lies in the transformed x-y-plane with z′ = 0.
In addition, since

(w′)TUw′ = 0 with U = ((S−1)T QS−1) (2)

and considering z′ = 0, the parameters of the analytical formulation of the
conic section can be obtained straightforwardly from the matrix U by â = u1,1,
b̂ = 2u1,2, ĉ = u2,2, d̂ = 2u1,4, ê = 2u2,4, f̂ = u4,4 where ui,j represents the
element of the i-th row and j-th column of matrix U. The model points in the
transformed coordinate system are given as w′

i (in homogeneous coordinates),
i = 1, . . . , L, with the number of model points L, and are calculated using the
estimated ellipse parameters â, b̂, ĉ, d̂, ê, f̂ as explained above. The 3-D points for
the model of the lasso catheter in the C-arm isocenter coordinate system, wi (in
homogeneous coordinates), are then calculated by wi = S−1w′

i.

3 Three-Dimensional Lasso Model Tracking

After the 3-D lasso model has been generated from the first frame of the fluoro
sequence, it is tracked in 3-D throughout the remainder of the biplane sequence.
To speed up the computational efficiency and to minimize the influence of periph-
eral structures that could interference with lasso tracking, the region of interest
(ROI) for tracking is restricted to 400 X 400 pixels (on the 1024 X 1024 image)
around the center of the tracked lasso catheter in the previous frame. Histogram
equalization is further applied on the ROI to enhance image contrast. In addi-
tion, a vesselness filter [10] is used to enhance line-like structures such as the
lasso catheter. The feature image is then binarized using Otsu’s algorithm [11].
Finally, a distance map is calculated from the binarized image [12]. A distance
map encodes the distance from a point to its closed feature point, that is the
nonzero point representing the extracted lasso catheter in our binarized feature
image. The distance transform offers an important advantage. It provides a de-
noised representation of the fluoro image with a pronounced minimum around
the 2-D shape of the lasso catheter. This way, we can still reach a good registra-
tion, even if we have a small 3-D model error, or if we start from a position that
is somewhat away from the lasso catheter to be tracked. Lasso model tracking
in 3-D is achieved by performing 2-D/3-D registration. To this end, the recon-
structed 3-D lasso model is rotated by R and translated by T in 3-D first. Then
it is projected onto the two imaging planes of the biplane C-arm system. The
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Fig. 2. a) Tracked ellipse (red) in plane A has an average distance to the manual
segmentation (blue) of 1.0 mm (model error 0.5 mm). b) In this particular frame, the
tracking error (0.6 mm) is all due to the model error (0.6 mm). c) Ellipse with center
(circle), focal points (dots) and normals.

average distance between the projected points and the closest feature point (i.e.
the lasso catheter) in fluoroscopic images is efficiently calculated using the dis-
tance map introduced above. A suitable rotation and translation is found by
optimizing

R̂, T̂ = argmin
R,T

∑
i

IDT(PA ·T ·R ·wi) +
∑

i

IDT(PB ·T ·R ·wi). (3)

However, due to the fact that the shape of lasso catheters may not always be
exactly elliptical, a simple elliptical 3-D model may not fit perfectly. To still ob-
tain robust tracking, the distance of a forward projected 3-D point to the closest
feature point is calculated as the smallest distance among all the points along
the normal direction within five pixels from the projected point. An illustration
of the normals to an ellipse is given in Fig. 2 c). A best neighbor optimizer is used
to iteratively optimize the translational and rotational parameters. Registration
is performed in two steps. In the first step, only the translation is considered,
whereas in the second step a fully six-dimensional optimization is performed.
Two-step registration is implemented to increase performance by lowering the
number of iterations required for optimization.

4 Results

We evaluated our algorithm by calculating the tracking error for each of the
imaging planes throughout seven different clinical fluoro sequences that were ac-
quired during EP procedures on an AXIOM Artis dBA C-arm system (Siemens
AG, Healthcare Sector, Forchheim, Germany). The system was calibrated using
the method presented in [13]. We focus on a typical setup involving one lasso
catheter and one ablation catheter. The presence of other structures should not
decrease the accuracy of our method, because we use a unique elliptical structure
for registration. Model generation was experimentally evaluated by adding Gaus-
sian noise with a standard deviation of 5 mm to 2-D forward-projected (3-D)
ellipse points. In this case, we found the average distance between the resulting
3-D model and the initial 3-D model to be 3.2 mm. To calculate the tracking
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Table 1. Average tracking error for the clinical sequences used. The last row shows an
average over all the 7 sequences for plane A and plane B, respectively.

No. Plane A Plane B
Mean Std. Model Error Mean Std. Model Error

1 1.0 mm 0.3 mm 0.8 mm 1.0 mm 0.4 mm 0.5 mm
2 1.1 mm 0.3 mm 0.5 mm 0.7 mm 0.2 mm 0.6 mm
3 0.9 mm 0.3 mm 0.4 mm 0.9 mm 0.4 mm 0.3 mm
4 1.0 mm 0.2 mm 0.6 mm 1.8 mm 0.4 mm 1.1 mm
5 1.1 mm 0.2 mm 0.8 mm 2.1 mm 1.0 mm 0.7 mm
6 1.0 mm 0.6 mm 0.5 mm 0.8 mm 0.2 mm 0.6 mm
7 1.0 mm 0.2 mm 0.5 mm 1.1 mm 0.2 mm 0.7 mm
Σ 1.0 mm 0.5 mm 0.6 mm 1.0 mm 0.5 mm 0.6 mm

Fig. 3. Two-dimensional tracking error in mm for one sequence (No. 7) frame by frame.
The A-plane and B-plane model errors are 0.5 mm and 0.7 mm, respectively.

error, we forward projected the 3-D catheter model, computed from first frame,
into both planes of the biplane imaging system after 2-D/3-D registration had
been performed. In each frame, we calculated the average distance of the forward
projected 3-D catheter model to a manually segmented lasso catheter. The man-
ual catheter segmentation was supervised by a cardiologist, and we consider it
our reference. This distance of the forward projected 3-D model to the reference
was averaged over all frames of a particular sequence to arrive at an overall 2-D
tracking error for each sequence. Both A-plane and B-plane tracking results for
each of the seven test sequences are summarized in Table 1. The mean average
over the mean tracking errors was 1.0 mm ± 0.5 mm for plane A and 1.0 mm
± 0.5 mm for plane B. An example for one frame of one sequence is given in
Figs. 2 a) and b). Our method currently achieves a frame rate of 3 frames-per-
second using a (single threaded) CPU implementation. Since this frame rate is
clinically used for EP procedures to keep X-ray dose low, real-time tracking can
be achieved in such a situation. In addition to the tracking error, a model error
can be calculated. The model error can be obtained from the first image of a
sequence as no registration was performed in this particular frame. A detailed
frame-by-frame 2-D tracking error for sequence no. 7 is given in Fig. 3.

5 Discussion and Conclusions

Our experiments on clinical EP fluoro sequences show that the tracking error
averages 1 mm including an average model error of 0.6 mm. The real tracking
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Fig. 4. a) Frame of a non-motion compensated sequence with fluoro overlay. b) The
same sequence with motion compensation. Note how well both lasso catheter and
contrast agent are matched to the morphology of the left atrium.

accuracy is therefore sub-millimeter. Considering that breathing motion in typ-
ical EP fluoro images is in the range of 15 mm and for some patients can be
up to 40 mm for deep breathing, our method has the potential to significantly
improve the accuracy of fluoro overlay images for EP navigation. To the best
of our knowledge, this is the first image-based method that is specifically de-
signed for the challenging task of 3-D breathing motion compensation during
EP applications. The proposed method offers several advantages. First, it is
workflow-friendly and does not require fiducial markers or additional contrast
agent to be administered. Second, breathing motion is estimated directly in 3-D
and right at the ablation site, meaning that motion estimation and compen-
sation is essentially done in one step. There is no ambiguity coming from the
inference of the real motion from surrogate motion estimates. Third, we esti-
mate the motion online and update it constantly from fluoroscopy. Therefore
we do not rely on a predefined motion model from which the real motion may
deviate significantly during the procedure. Fourth, there are no restrictions for
the 3-D data set that can be used as a fluoro overlay. In other words, the 3-D
data set could come from MRI, CT or C-arm CT, e.g., syngo DynaCT Cardiac
(Siemens AG, Healthcare Sector, Forchheim, Germany). Since the motion of the
left atrium can be approximated by a rigid-body transform [5], it is possible to
apply the motion estimate obtained by 3-D catheter tracking to the static flu-
oro overlay. This way, we can obtain an animated version of our initial overlay
that moves in sync with the real anatomy. Fig. 4 a) represents the conventional
overlay technique without motion compensation, while Fig. 4 b) shows an an-
imated fluoro overlay with motion compensation. With motion compensation,
3-D fluoro overlay and lasso catheter, fixed at the PV ostium, remain in sync. In
addition, the contrast enhanced upper pulmonary vein, shown on the left side of
the fluoro image in Fig. 4 b), remains well aligned with the corresponding vein
of the volumetric data. Since simultaneous biplane imaging for EP applications
is usually performed with both imaging planes set orthogonal to each other,
tracking in 3-D should be even more accurate than suggested by our 2-D error
analysis.
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7. Haĺır, R., Flusser, J.: Numerically Stable Direct Least Squares Fitting Of Ellipses.
In: Proceedings of the 6th Conference in Central Europe on Computer Graphics
and Visualization, University of West Bohemia, Campus Bory, Plzen - Bory, Czech
Republic, February 1998, pp. 253–257 (1998)

8. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd
edn. Cambridge University Press, Cambridge (2004)

9. Quan, L.: Conic Reconstruction and Correspondence From Two Views. IEEE
Transactions On Pattern Analysis And Machine Intelligence 18(2), 151–160 (1996)

10. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig,
G., Kikinis, R.: 3D Multi-Scale Line Filter for Segmentation and Visualization of
Curvilinear Structures in Medical Images. Medical Image Analysis 2(2), 143–168
(1998)

11. Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Trans-
actions on Systems, Man, and Cybernetics 9(1), 62–66 (1979)

12. Breu, et al.: Linear time Euclidean distance transform algorithms. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 17(5), 529–533 (1995)

13. Rougee, A., Picard, C.L., Trousset, Y.L., Ponchut, C.: Geometrical calibration for
3D x-ray imaging. In: Kim, Y. (ed.) Medical Imaging 1993: Image Capture, For-
matting, and Display, Newport Beach, CA, USA, SPIE, February 1993, vol. 1897,
pp. 161–169 (1993)



G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I,  LNCS 5761, pp. 402–409, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

System Design of a Hand-Held Mobile Robot for 
Craniotomy 

Gavin Kane1, Georg Eggers1, Robert Boesecke1, Jörg Raczkowsky2, Heinz Wörn2,  
Rüdiger Marmulla1, and Joachim Mühling1 

1 Klinik und Poliklinik für Mund-, Kiefer, und Gesichtschirurgie, University of Heidelberg, 
Heidelberg, Germany 

2 Institute for Process Control and Robotics, University of Karlsruhe, Karlsruhe, Germany 

Abstract. This contribution reports the development and initial testing of a 
Mobile Robot System for Surgical Craniotomy, the Craniostar.  A kinematic 
system based on a unicycle robot is analysed to provide local positioning 
through two spiked wheels gripping directly onto a patients skull.  A control 
system based on a shared control system between both the Surgeon and Robot 
is employed in a hand-held design that is tested initially on plastic phantom and 
swine skulls.  Results indicate that the system has substantially lower risk than 
present robotically assisted craniotomies, and despite being a hand-held mobile 
robot, the Craniostar is still capable of sub-millimetre accuracy in tracking 
along a trajectory and thus achieving an accurate transfer of pre-surgical plan to 
the operating room procedure, without the large impact of current medical ro-
bots based on modified industrial robots. 

1   Introduction 

There are a number of surgical craniotomy procedures in which it is desired for a pre-
cise pre-surgical plan to be accurately transferred to the Operating Room (OR), such 
procedural examples include minimally invasive neuro-surgical procedures where the 
desired entry hole is pre-planned, frontal orbital advancement procedures for maxillo-
facial surgery where the desired cranium advancement is pre-planned, or in a more 
recent example the milling of bone surfaces in plastic surgery according to a three 
dimensional operation plan [1] or CAD/CAM prefabricated skull implants requiring 
accurate bone resection for placement [2].  In support of this requirement for accurate 
transfer, many research groups have developed robotic solutions to address the spe-
cific challenges associated with the conduct of a craniotomy procedure [2], [3], [4].  
To date, none of these solutions have been accepted for commercial use in performing 
craniotomys, it is assessed due to three facts: 

• The surgical robotic systems presented are modified industrial robots whose im-
pact within the OR in terms of footprint and the required changes to surgical 
workflows and procedures is quite considerable. 

• The risk inherent with the demonstrated robotic craniotomys are considerably 
large, with respect to cutting too deep, causing meninges tears, and possibly 
thereafter damage to the brain. 
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• The robotic solutions offered are all supervisory controlled interventions where, 
by the definition of Nathoo et al. [5], the robot performs the pre-planned and pro-
grammed movements autonomously, thus removing the surgeon from the proce-
dure.  This occurring at the key time when his / her years of experience and 'feel' 
for the operation are most valuable. 

Shared control is not a new concept in Surgical Robotics.  Synergistic control was 
proposed by Taylor et al. [6] as early as 1991.  Recent examples of this control in sur-
gical robots include the Acrobot [7] and the PADyC system [8].  However, these two 
systems are still modified industrial robots, whose large footprint and individualized 
workflows still create a substantial impact to the OR.  There are also no similar sys-
tems developed for the conduct of craniotomys. 

There is an alternate trend in development, which is heading towards the minimisa-
tion of the impact of robotics in the OR: through the use of intelligent hand-held tools.  
Example projects in this area include the Precision Freehand Sculptor (PFS) by Bris-
son et al. [9] and the Sicherheits Trepenation System (STS) by Follman et al [10].  
The PFS demonstrates how bone segments, such as those for knee implants, can be 
accurately removed according to a pre-planned model.  On the other hand, the STS 
demonstrates how a normal hand-held drill can be enhanced for safety with the addi-
tion of both intrinsic and extrinsic system sensors.  Unfortunately, this second system 
is limited to safety enhancement, and is not capable of any assisting the Surgeon in 
achieving an accurate pre-planned trajectory in line with the previously stated re-
quirements. 

From all the above examples, there is still no developed capability for a safe shared 
control system for craniotomys, specifically capable of accurately milling pre-planned 
trajectory in the OR with minimal impact on OR footprint and workflows.  The solu-
tion presented here is a novel approach to Surgical Robotics, which addresses the fol-
lowing hypothesis: 

1. A mobile robot, built around a standard craniotomy drill piece, hand-held by the 
surgeon, can drive the drill piece around a skull, on a pre-defined trajectory. 

2. The system shall be capable of achieving surgical accuracy with the use of spiked 
wheels to ensure the skull remains a non-slip surface for dynamic analysis. 

3. The control system supporting the robot is capable of guiding the surgeons hand 
during a procedure, but is not to remove him/her from complete control.  i.e. This 
is to be a shared control system by the definition in [5]. 

In this paper we present the design, theory and performance testing of the prototype 
robot system, the 'Craniostar' shown in Fig. 1. 

2   Methods and Materials 

One of the concepts for using a mobile hand-held robot discussed above was the 
minimisation of the impact into the Operating Room.  The components accepted as 
standard for Image Guided Surgery (IGS) include a tracking system and imaging sup-
port (GUI).  All attempts were then made to minimise additional footprint require-
ments (that of the robot and robot control) but maximise the integration of the system 
into the existing OR.  A key component of this integration was the generation of an  
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Fig. 1. (a) The prototype mobile hand-held surgical robot, 'Craniostar' being tested on a ca-
daver, and (b) a CAD drawing showing the principle forces used to ensure traction 

intuitive Human / Computer Interface (HCI).  The HCI is based on employing three 
inputs for the robot, from components already existing inside the OR.  The first is the 
use of the Navigation System.  The navigation system detecting minor tilts of the ro-
bot, occurring when the Surgeon pushes the robot forward implying an intent to move 
faster, or pulling the robot backwards implying an intent to slow down or stop. The 
second and third inputs are from the existing high speed drill, the foot pedal input for 
the desired speed of the drill, and the torque feedback of the drill for the difficulty the 
robot is facing in cutting.  By integrating this control into the system, [11] showed 
that a minimal impact, intuitive shared control could be achieved. 

The overall concept for employment follows a generalised IGS workflow with 
commencement of pre-surgical imagery and planning.  Here a CT is employed to 
support the surgeons planning the Craniotomy through the KASOP software[12].  The 
location for the start of the Craniotomy is determined using the GUI and either an 
optically tracked pointer or the tip of the Craniostar itself, and the first burr hole is 
made.  If required the Dura matter can be partially separated from the underside of the 
skull.  If a circular craniotomy is desired, no further burr holes are required, and the 
tip of the Craniostar is inserted facing roughly in the correct direction.  For a two 
ended craniotomy, a second bore hole is required at the finish location.  The control of 
the movement of the Craniostar along the trajectory is discussed in the following sec-
tions on steering and control. 

Firstly, this chapter will discuss how this system was achieved through a custom 
mechanical design, and then the control system is discussed. 
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2.1   Mechanical Design 

The concept for the mobile robot, shown in Fig. 1, comprises a platform (robot body), 
two wheels, and the craniotomy high speed drill directly at the centre of the wheels' 
axis, with an optical tracking marker placed on the top of the robot.  The high speed 
drill (Aesculap AG, Tuttlingen, Germany) is held in a brace in the centre of the plat-
form.  The brace rests on two spring supported sliders, allowing the highspeed drill to 
move up and down tracking the base of the skull.  The spring force generated on the 
sliders has two purposes, firstly to prevent the drill and Dura Guard being pushed hard 
against the Dura, and secondly in order to transfer force to the wheels of the robot, 
supporting the friction of the wheels and hence the traction.  The required spring 
strength was calculated based on the ability of the Dura Guard to track the bottom of 
the skull, with depth changes to a maximum of 9mm while moving up to a maximum 
cutting speed of 5mm/s.  The Dura Guard being a small metal hook that extends un-
derneath the drill piece, preventing the drill from cutting into the Dura. 

The motor drive is achieved through two 25W Motors (Maxon Motors GmBH,, 
Sexau, Germany) with embedded position encoders providing velocity and position 
feedback.  To ensure the drive is capable of sub-millimeter positioning accuracy, the 
drive was engineered with two gearing stages.  Firstly internal to the motors are 19:1 
planetary gearboxes, with an average backlash under no load of 1.2°.  A second stage 
involves a worm wheel drive to an anti-backlash gear with a 60:1 reduction.  With 
this final gear connected directly to the wheel (Ø40mm), the final play in the system 
equates to a theoretical positioning ability of 0.006mm.  Secondly, with a wheel axle 
separation of 24mm, a theoretical forward angle alignment of 0.014° is achieved. 

Unfortunately greater inaccuracies in the system lie in two fundamental areas, the 
ability of the wheels to maintain traction on the skull, and in the position feedback of 
the robot and patient tracking.  The second inaccuracy relies on the Polaris Optical 
Tracking System (Northern Digital Inc., Ontario, Canada), which has known inaccu-
racies of 0.4mm.  The first inaccuracy the traction; however, is more complex and the 
larger unknown to the system. 

The ability of the robot to maintain traction on the skull is unfortunately open to a 
great deal of unknowns, the skulls curvature or anomalies or contaminates (eg. water, 
blood or other fluids).  Prior to modeling these factors, it was decided to make an 
overall conceptual test of the friction available from two possible wheel models, 
shown in Fig. 2: design 1 with an ability to penetrate through any possible surface 
contaminates, and design 2 for possibly softer, thinner bone (eg children) with a 
safety flange to prevent complete penetration should too much pressure be placed on 
the wheels.  The result of the testing is discussed in the next section. 

Fig. 2. Two separate wheel designs were prepared for testing on a Swine skull.  Design 1 (left) 
had 2mm spikes, Design 2 (right) had 1mm spikes, with a safety flange to prevent excessive 
penetration. 
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2.2   Steering Control System 

The required control system here appears similar to that of the collaborative robots 
(COBOTs) in the work by Peshkin et al. [13].  However, Peshkin defines COBOTs as 
intrinsically passive devices using “steerable” non-holonomic joints.  Instead the Cra-
niostar was designed with driven wheels, providing steering and additionally a greater 
level of support with the surgeon’s choice of speed, assisting in the forward move-
ment of the device within a set tilt limitation.  This tilt limitation also ensures that the 
cutting tool is used only when very close to vertical; these capabilities would not have 
been possible through the application of the COBOT control methods.  Instead dy-
namic path following control methods were analysed from a number of papers e.g. 
[[14],[15],[16]].  The choice was made to test the control algorithm proposed by Seo 
K. et al [15] for a number of reasons.   

• Firstly, the approach does not assume perfect system performance and is de-
signed to cope with uncertainty in dynamics arising from path following. 

• Secondly, the approach is not restricted to constant path curvature. 
• Thirdly, the algorithm provides the mechanism for definition of a safety bound-

ary.  In the initial definition, this safety boundary is an area where the mobile ro-
bot may move free from collisions; however, when employing the algorithm in a 
medical application, the safety boundary is redefined as the area within which it 
is 'safe' to operate. 

A lot of research into unicycle kinematics of mobile robots, is based on the movement 
of the wheels over a flat surface defined in terms of x and y coordinates, for example 
see [[14]-[16]].  Fig. 3 (left) shows some of the standard parameters for a unicycle 
robot.  Unfortunately this simplistic 2D view of the surface is not perfectly compati-
ble with highly curved and irregular surfaces (eg a skull).  An initial experimentation 
with translation to spherical coordinates was made on a standard model phantom 
skull.  It was determined that the simplistic solution was feasible; however, on com-
plexities that arise out of abnormal skull shapes, such as those found in surgeries re-
quiring birth defect or accident trauma cranial reconstruction, this did not work. 

Fig. 3.  Original 2D parameters (left)(Duplicated with permission from Seo K.) and the 3D 
derivation (right) of the parameters for the Craniostar involving the projection of virtual vectors 
through the cutting axis of the robot and the closest trajectory segment to this vector. 
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Instead, we used an approach that entirely ignored the surface.  All control parame-
ters were extracted from abstract virtual 3D vectors based on the position of the robot, 
and the trajectory.  Equations to determine the control parameters, discounted the ac-
tual intersection with the skull, and for example, looked more directly at the 3D clos-
est segment between two lines such as the closest trajectory segment, and a virtual 
projection through the drilling axis.  The trajectory is known to lie on the skull, and it 
is known the robot operates with both wheels on the skull, therefore, it can be as-
sumed that the closest line between these two aforementioned vectors will closely 
approximate the lateral distance on the skull.  Fig. 3 displays some of these abstrac-
tions.  These parameters were then employed in accordance with [15], the key equa-
tions being duplicated here: the steering controller in Equation 1, and the sliding 
mode between safety regions defined in Equation 2.  The parameters are defined as 
per Fig 3, with tuneable parameters k, b1, and є defining the path approach. 

(1) 

(2) 

3   Results 

The testing of the Craniostar robot to meet the system requirements, in terms of accu-
racy, feasibility and safety has commenced in two separate phases. 

• The accuracy of the control system was tested initially on flat surfaces and then 
on phantom skulls, and 

• The feasibility and safety aspects were tested under OR conditions on Swine 
skulls.  See Fig. 1. 

The tests on the accuracy of the control system are outlined in table 1.  Two known 
inaccuracies lead to less than 100% of the accuracies under the ±0.5mm region.  The 
first in the initial placement of the robot, while the software's visual GUI can guide 
the surgeon in its placement, it is still found quite difficult to place the robot truly 
precisely.  The recovery from this initial placement occurs quickly, within approxi-
mately 2mm of travel.  But it is accepted that the initial hole size for inserting the 
Craniotomy Tool Piece with Dura Guard is larger than this inaccuracy, and is there-
fore deemed negligible.  This is seen in Fig. 4(a) where an initial placement offset was 
quickly recovered. 
 

Table 1.  Average accuracies achieved by the Craniostar on different trajectories 

  Average accuracy achieved 
Surface Trajectory ±0.5mm ±1mm 

Single straight 5cm segment 97.20% 100.00% 
Single curved 90° segment with 4cm  radius 98.15% 100.00% 

Flat Wood 

Two 5cm segments joined with 45° join 97.60% 100.00% 
Single straight 5cm segment 97.00% 100.00% 
Two 5cm segments joined with 45° join 95.00% 100.00% 

Plastic  
Phantom 
Skull Single curved 90° segment with 4cm  radius 95.60% 100.00% 
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Fig. 4. Tracking examples.  (a) The lateral distance (error) of a 5cm straight track showing an 
initial placement error of the Craniostar, and the following robots correction.  Noise in graph is 
primarily due to Optical Tracking.  (b) The 3D Track plot of two joined segments, curving over 
the surface of the phantom skull (red line, planned trajectory, green line tracked, distances mm) 

The second error lies in the nature of the 
shared control of the system.  The hand-held 
device is by nature prone to noise, specifically 
in external forces from the surgeons hand.  
Fig. 4(b) show a trajectory being tracked by a 
Surgeon over a skull.  The intersection be-
tween the two segments has a slight distur-
bance in the middle due to the requirement for 
sharp turning at the segment intersection.  In 
order to achieve the desired ±0.5mm here, 
took a degree of education for the user into 
knowing what the robot is likely to do, this 
required enhancements to the Graphical User 
Interface, feeding back to the Surgeon to give advanced warning of such likely intent. 

The testing on a Swine skull in phase two involved the impact on the skull and fric-
tional testing. The results of this testing demonstrated no ability of the spiked wheels 
to damage the skull, though superficial tracks did remain on the skull immediately 
following the robots movements, visible in Fig. 5.  The testing also confirmed the 
robot's ability to move over the skull without any wheel slippage, thus supporting the 
choice of control theory with non-sliding kinematics. 

4   Conclusion 

In this paper, a new concept of surgical robotics was proposed and developed using a 
hand-held mobile robot to aid the surgeon in the conduct of a craniotomy.   It shows 
the possibility for achieving precision pre-surgical planning to OR transfer, without 
removing the Surgeon from the procedure, and without a large impact on OR foot-
print and surgical workflows.  Future work still includes minaturisation of the gearing 
section and development of a more precise friction model of the skull for refining the 
control system prior to moving towards clinical trials. 

 

Fig. 5. The superficial marks of the Cra-
niostars motion over the swines skull 
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Abstract. In robot-assisted procedures, the surgeon’s ability can be enhanced 
by navigation guidance through the use of virtual fixtures or active constraints. 
This paper presents a real-time modeling scheme for dynamic active constraints 
with fast and simple mesh adaptation under cardiac deformation and changes in 
anatomic structure. A smooth tubular pathway is constructed which provides 
assistance for a flexible hyper-redundant robot to circumnavigate the heart with 
the aim of undertaking bilateral pulmonary vein isolation as part of a modified 
maze procedure for the treatment of debilitating arrhythmia and atrial fibrilla-
tion. In contrast to existing approaches, the method incorporates detailed geo-
metrical constraints with explicit manipulation margins of the forbidden region 
for an entire articulated surgical instrument, rather than just the end-effector it-
self. Detailed experimental validation is conducted to demonstrate the speed 
and accuracy of the instrument navigation with and without the use of the pro-
posed dynamic constraints. 

1    Introduction 

Robotic-assisted minimally invasive cardiac surgery has been the major aim of many 
robotic platforms. The tight confines of the thoracic cavity and mediastinum however, 
challenge even the most skilled surgeons as limited field-of-view and restricted ma-
neuverability command advanced manual dexterity and hand-eye coordination. These 
difficulties become even more evident during beating heart surgery, raising critical 
issues with respect to procedural safety and precision. This is of particular concern 
during procedures such as minimally invasive bilateral pulmonary vein isolation per-
formed as part of the modified maze approach, to the treatment of chronic and parox-
ysmal atrial fibrillation when the heart is not only in motion but also beats  irregu-
larly. The maze procedure describes the transmural epicardial ablation of a complete 
circle around the pulmonary veins, an area of the heart known to generate aberrant 
arrythmogenic electrical activity central to the pathophysiology of atrial fibrillation. 
Currently, the treatment of atrial fibrillation is through an endovascularly approached 
endocardial ablation or during open heart surgery with poor response rates [1]. The 
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maze procedure is more effective but requires either a median sternotomy or multiple 
small incisions on both the left and right sides of the chest to ensure that complete 
encirclement of the vessels has been correctly affirmed [2]. For access via a mini-
mally invasive approach, a catheter is required to pass through two narrow spaces 
posterior to the heart, tightly bordered by the great vessels. These spaces are roofed 
by the approximated pericardium. The challenge of ensuring the path for the catheter 
is accuracy, reflecting upon both the lack of visual field and maneuverability within 
these spaces. The risk of accidental instrument injury is hampering its uptake despite 
recognized beneficial patient outcomes. 

In robot-assisted procedures, the surgeon’s ability can be enhanced by augmented 
manipulation guidance such as virtual fixtures or active constraints to enhance human 
sensory feedback and limit aberrant instrument maneuvers [3, 4]. Such concepts have 
been used to guide the cutting of the tibia and the removal of the blockages within a 
permitted region in orthopedic knee surgery [5] and endoscopic sinus surgery [6], 
respectively. They enable the operator to manipulate the tool tip along the desired 3D 
path without applying excessive force on the contact surface of delicate surroundings. 
For complex geometries, spatial motion constraints have to be adapted in real-time, 
making them suitable for surgical interventions. Previous work has so far mainly re-
lied on the preoperative segmented image data or an anatomical model. Moreover, the 
constraints are assumed to be static throughout the operation. This, however, is not 
practical especially in cardiac procedures, which involve large respiratory and cardiac 
induced tissue deformation. The future clinical impact of active constraints or virtual 
fixtures requires not only flexibility in updating the constraints, but also the ability to 
react to changes in tissue morphology intra-operatively. Recently, virtual fixtures 
have addressed dynamic surgical scenes where tissue deformation is present. For ex-
ample, Ren et al. [7] proposed dynamic 3D virtual fixtures for beating heart ablation 
procedures. The work complements manipulation guidance with intra-operative sens-
ing data. The dynamic virtual fixture model is defined based on the pre-operative 
data, then registered to intra-operative images. Most of the existing methods, not ex-
cluding [6], are concerned with confining the motion of a single-point end-effector 
rather than the instrument body, even if it is rigid. Current research into robotic-
assisted cardiac surgery has been focused on developing more flexible hyper-
redundant devices to overcome the problem of safe access and navigation within the 
tight confines of the chest cavity and pericardial space [8, 9]. Deformation of the heart 
can have a profound effect on spatial constraints. To overcome these difficulties, dy-
namic active constraints could permit rapid and safe transthoracic and intrapericardial 
navigation without injuring the surrounding tissue or organs. 

The purpose of this paper is to introduce a real-time modeling scheme for dynamic 
active constraints with adaptation to cardiac deformation and anatomic structure 
changes. A smooth and dynamic cylindrical pathway with detailed geometrical con-
straints defines the explicit manipulation margin of the forbidden region for an entire 
articulated surgical instrument (e.g. a snake robot) rather than just the end-effector 
itself. Detailed experimental validation is conducted to demonstrate the speed and 
accuracy of the instrument navigation with and without the use of the proposed dy-
namic constraints. 
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2   Method 

2.1   Construction of Dynamic Active Constraints 

Dynamic active constraints are pre-determined constraining pathways that adjust to 
tissue deformation in real time. This method helps the surgeon by constraining the 
motion within a safety margin for a prescribed path rather than discrete points. First, 
an obstacle-free centerline is generated as a collection of reference control points that 
describe the convoluted path. By using a 3D coordinate input device, the operator can 
place a series of control points which determine a space curve. Because of manual 
point placement, a refined adjustment and increment of points is conducted automati-
cally by checking collision with the anatomical model. 

(a) (b)  

Fig. 1. (a) Triangular mesh formed between two adjacent rings of the model for active con-
straints; (b) the constraint represented as a tube-pathway mesh boundary along the parametric 
centerline 

Each control point can be expanded spherically in 3D space, i.e., a margin is de-
fined by the control radius of a sphere; considering the dimension of the adopted ar-
ticulated instrument. If the distance to the epicardial surface is larger or smaller than 
the margin, the locations of the control points are readjusted towards the centre of the 
sphere. When the instrument manipulation is to follow a path within a prescribed 
boundary, a parametric centerline is defined as C(s):s∈[0,1]→ℜ3. Hermite curve 
(cspline) is used in this study to represent the centerline determined by Nc control 
points. The advantage of using cspline over other types of approximation is that it 
provides intuitive geometric manipulation for adjusting a set of parameters by which 
the generated curve can be adapted to the dynamic environment. For interpolation 
with the control points, the polynomial curve segment Ck at s∈(0,1) is defined as 

          
0,0 1,0 0,1 1 1,1 1

( ) ( ) ( ) ( ) ( )
k k k k k

C s h s p h s m h s p h s m
+ +

= + + +       (1)  

where k = 1,…,Nc-1, h0,0, h1,0, h0,1 and h1,1 are 3rd-order polynomial functions with 
respect to s. pk and pk+1 are the start and end points of the curve and mk and mk+1  are 
the corresponding tangential values at these points, where m1=p2–p1,, mNc=pNc–pNc-1 
and mk=(pk+1–pk-1)/2, for k≠1 and k≠Nc. Tangent Mk(s) at intermediate point Ck(s) is  
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interpolated as Mk(s)=(1-s)mk+s(mk-1). Fig. 1(a) illustrates the rings centered at 
Ck(s) and their orientations conformance to Mk(s). Each ring is represented by a 
polygon of radius r. N number of polygon vertices are aligned in an anti-clockwise 
direction. Before being transformed along the curve, the polygon vertices are posi-
tioned on the X-Y plane and centered at the origin. The coordinates of the vertices, 

i
X , are determined by Eq. (2). To align the Z-axis of the polygonal coordinate frame 
parallel to Mk(s), the equivalent rotation matrix R(κ,θ) has to be computed, which 
denotes the rotation about a unit vector κ by an angle of θ  calculated in Eq. (3). 
Therefore, the Cartesian coordinates of polygon vertex 

ki
X ′  relative to the global co-

ordination frame can then be obtained in Eq. (4), such that the vertices are centered at 
point Ck(s) and along the curve segment k. 

           ( ) ( )sin 2 / , cos 2 / ,0
T

i
X r i N i Nπ π⎡ ⎤= ⎢ ⎥⎣ ⎦       (2) 

   ( ) ([0, 0,1] ( ))T
k k

s norm M sκ = ×   and  ( )1( ) cos ( ) [0, 0,1] / ( )T
k k k

s M s M sθ −= ⋅   (3) 

               ( )( ) ( ), ( ) ( )
ki k k i k

X s R s s X C sκ θ′ = +       (4) 

The algorithm for mesh generation interconnects the vertices between two adjacent 
rings, thus forming a triangular mesh structure. To provide a smooth boundary, colli-
sion checking between two adjacent rings is performed. If the two adjacent rings are 
found to be colliding with each other, the interconnection will be formed by choosing 
another ring with larger separation. As shown in Fig. 1(b), a smooth cylindrical path-
way describing the active constraint is constructed. Since only point-to-object colli-
sion checking is involved, the adjustment is fast and can be conducted in real time. 
The objective of active constraints is to confine the instrument manipulation with the 
margins of the forbidden region being extended cylindrically along the centerline. The 
cylindrical radius is a variable that can be adjusted to allow for movement of the robot 
within the tunnel. It is determined by the dimension of the flexible robot and the re-
quired volumetric tolerance. For this study, it was set to 2mm for all experiments. 
Furthermore, the upper constraints can extend beyond the pericardium to accommo-
date stretching. 

 
            (a)                        (b)       (c) 

Fig. 2. The 3D auto-stereoscopic environment used for surgical navigation: (a) front view; The 
dynamic active constraints generated on heart model: (b) shown with the lung model and (c) 
viewed from top 
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2.2   Experimental Setup 

A high resolution 3D auto-stereoscopic display system (IRIS-3D, UK) was used to 
provide a navigation environment as shown in Fig. 2(a). The operator can view stereo 
images while navigating through the anatomical pathways. A synthetic simulation 
environment with a deforming heart and lung model was created. The 3D model was 
reconstructed from the CT data of a cardiac phantom (Chamberlain Group, MA, 
USA). The method was validated by recruiting nine subjects to assess the perform-
ance of the dynamic active constraints. Subjects were asked to operate a phantom tool 
device (Omni Phantom, SensAble Tech. Inc., USA) and trace a desired path on the 
beating heart model. To simulate ablation pathways similar to a maze procedure, dy-
namic active constraints were constructed and wrapped around the heart as shown in 
Fig. 2. To simulate realistic cardiac motion, interpolation was used between pre-
scribed key frames including static heart reference H, deforming long L and short S 
cardiac axes. These were superimposed as described by Eq. (5). 

     ( ) ( )sin(2 ) 1 sin(2 ) 1
( )

2 2
S L

H S H L H

f t f t
V t V V V V V

π π+ +
= + − + −      (5) 

where VH, VL and VS denote the vertices location at the key frames. In this experiment, 

the two modes of deformation were set to repeat at a rate of fS Hz and fL Hz, with fS=2fL 

(e.g. fS =1, 60 bpm (beats per minute)) in order to provide realistic periodic motion. In 
all experiments, 60 bpm was chosen as the reference heart rate as the average heart rate 
of a healthy adult at rest is around 60 to 80 bpm. Subjects were required to operate the 
surgical tool tracing a desired ablation path on the heart model with (60 bpm) and with-
out cardiac motion. Each subject performed the task twice by using free-hand manipula-
tion and constrained by forces generated by the phantom device. The order of the permu-
tation was randomized to prevent bias due to learning effects. Six performance indices 
were recorded. They include task completion time, the maximum and average depth of 
collision onto the heart model, the number of collisions recorded, the total distance trav-
elled during collision (collision path length) and the average of the total distance when 
the tool deviated from the desired trajectory (path deviation). Data analysis was per-
formed by using a between-group comparison statistical test (One-Way ANOVA with 
Bonferroni test, SPSS Inc., Chicago, IL). Four groups were compared: 1) Static heart 
without constraints; 2) Static heart with constraints; 3) Heart beating at 60 bpm without 
constraints; 4) Heart beating at 60 bpm with constraints. Each of them is mutually inde-
pendent among the six performance indices. The main purpose of the performance met-
rics is to demonstrate the confidence gain by the use of dynamic active constraints. These 
metrics are related to the deviation of the instrument from the ideal path. Instrument-
tissue forces were not rendered in the case of free-hand operation. In order to assess how 
the heart rate affects the accuracy of manipulation, the experiment as described above 
was also conducted with the heart beating rate varying from 60 to 120 bpm. 

3   Results 

Using multiple comparison tests, statistically significant differences (α<0.05) oc-
curred between the four groups among all six performance indices. More specifically, 
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obtained α-values ranged within [0, 0.008]. The mean and standard deviation of the 
six performance indices for all subjects, with and without the use of constraints, are 
summarized in Table 1.  It is evident that with the introduction of dynamic active con-
straints, the overall performance has been improved significantly. For both static and 
dynamic experiments, improved scores are obtained for all indices when active con-
straints are activated. No collision was found when subjects traced a desired path on 
the static heart model with constraints. Overall, navigation with constraints has shown 
reduced task completion time and path deviation. Furthermore, this performance gain 
seems to be independent of the static or dynamic environment, showing less than 1% 
variance. Fig. 3(a) illustrates the path deviation for one of the subjects studied. It can 
be seen that path deviation with constraints is less than that without constraints, main-
tained at a steady level of 2mm. This was attributed to the fact that the subject fol-
lowed the inner surface of the pathway during operation. With the use of constraints, 
the reduced path variation reflects the confidence of the operator during 3D maneu-
ver. Fig. 3(b) shows that the path-to-path variance of path deviation for the entire ex-
periment was less than 1mm. Unsurprisingly, the trajectory of the tool tip while per-
forming path following with constraints is close to the desired path as shown in Fig. 
3(c). These experiments were repeated with a range of heart rates (60 to 120 bpm) and 
the corresponding results are shown in Table 2, where the values shown are normal-
ized performance gains for each index with the use of constraints. 

Standardization of data was achieved at different frequencies from a single subject. 
In Table 2, the percentage change was calculated by using the performance indices of 
free-hand operation (i.e., without the use of active constraints) as the reference. It is 
evident from these results that the overall performance gain is maintained as the heart 
rate increases. During high-frequency motion, the overall hand-eye coordination is 
generally deteriorated, highlighting the need of virtual motion stabilization in these 
cases. To better visualize the change in the margins associated with these gains, Fig. 4  
 

Table 1. Summary of changes in performance indices with and without the use of dynamic 
active constraints (averaged across the nine subjects studied) 

 Without constraints With constraints 
 Static 

heart 
Beating heart 

(60 bpm) 
Static 
heart 

Beating heart 
(60 bpm) 

 mean SD mean SD mean SD mean SD 
Completion time (sec) 35.9 (15.3) 37.6  (16.6) 12.9  (10.1) 11.0  (5.1) 
Max collision depth, mm 14.6  (8.5) 15.0  (11.8) 0.0  (0.0) 0.7  (0.9) 
Mean collision depth, mm 7.5 (4.8) 6.8  (5.6) 0.0  (0.0) 0.7  (0.8) 
No. of collisions 5.0 (2.4) 7.0  (2.6) 0.0  (0.0) 0.7  (0.9) 
Collision path length, mm 123.8 (59.7) 112.0 (90.9) 0.0  (0.0) 2.9  (3.9) 
Path deviation, mm 8.4 (4.6) 12.8  (9.4) 2.0  (0.0) 1.7  (0.3) 

Table 2. Percentage change in performance indices for varying heart rate (60-120 bpm) 

Heart rate  (bpm) 60 70 80 90 100 110 120 
Completion time (%) 60.1 60.3 59.0 45.3 66.7 76.8 50.1 
Path deviation (%) 23.9 84.6 42.9 34.0 58.3 63.8 31.0 
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(a)                        (b)                (c) 

Fig. 3. Example path deviation plots for one of the subjects studied, showing the absolute path 
deviation and variance throughout the procedure with and without constraints when the heart is 
static (a) and beating (b). (c) Trajectory of the virtual tool tip in following the desired path. 
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Fig. 4. Percentage change in task completion time (a) and average path deviation (b) with and 
without the use of constraints normalized against the respective indices at 60 bpm 

illustrates the trend of the task completion time and average path deviation with in-
creasing heart rate. In this figure, the percentage change is calculated by using the 
respective performance indices at 60 bpm as the reference. In Fig. 4(a), a decrease 
(more negative) in task completion time implies that shorter time is required to com-
plete the task for both cases. Similarly, increased path-following errors are indicated 
by the percentage increase of path deviation as shown in Fig. 4(b). This can be attrib-
uted to the fact that motor tracking is worse while the desired path is moving faster at 
higher heart rates. As a result, the subject was not able to perform detailed tracking of 
a particular region. 

4   Discussion and Conclusions 

In this paper, a real-time modeling scheme for dynamic active constraints is proposed. 
Validation through the use of a simulated beating heart model demonstrates its ability 
in adapting to changes of tissue morphology. Experimental validation has shown  
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statistically significant improvement in terms of speed, accuracy and minimized tissue 
damage when dynamic active constraints are introduced. The clinical relevance of the 
study is that in many cardiac intervention procedures, particularly the maze proce-
dure, it is not appropriate to use the pericardium and the heart itself as a physical con-
straint to limit the motion of the robotic probe normal to the epicardial surface. Forces 
normal to the epicardial surface can penetrate the myocardium injuring coronary ves-
sels or perforating the pericardium and damaging sensitive nerves such as the phrenic 
nerve. In this case, flexible, non-articulated devices may not provide accurate 3D 
navigation. This has motivated the development of hyper-redundant flexible robots 
with 3D dynamic active constraints. The proposed motion constraints concept can 
readily incorporate manipulation margin of long articulated surgical instruments 
rather than just the end-effectors. Such a scheme is also suitable for integrating other 
navigation schemes, e.g., gaze contingent motor channeling [10], for further enhanc-
ing the surgeon’s hand-eye coordination. 
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Abstract. We developed a nonmagnetic rigid and flexible outer sheath with 
pneumatic interlocking mechanism using flexible toothed links and a wire-
driven bending distal end. The outer sheath can be switched between rigid and 
flexible modes easily depending on surgical scenes, and the angle of its distal 
end can be controlled by three nylon wires. All components of flexible parts are 
made of MRI-compatible nonmagnetic plastics. We manufactured the device 
with 300-mm long, 16-mm outer diameter, 7-mm inner diameter and 90-mm 
bending distal end. Holding power of the device in rigid mode was maximum 
3.6 N, which was sufficient for surgical tasks in body cavity. In vivo experi-
ment using a swine, our device performed smooth insertion of a flexible endo-
scope and a biopsy forceps into reverse side of the liver, intestines and spleen 
with a curved path. In conclusion, our device shows availability of secure ap-
proach of surgical instruments into deep cavity. 

1   Introduction 

Minimally invasive surgery (MIS) is in favor of closed or local surgery with fewer 
traumas unlike conventional invasive open surgery. In MIS, endoscopic devices and 
instruments are usually used to enable remote control surgical procedures with indi-
rect observation of the surgical field through patients’ body surface such as abdominal 
wall and chest wall into their body cavity, or through natural orifice such as mouth, 
urethra and anus. MIS allows patients to have shorter hospitalization time, outpatient 
treatment and earlier rehabilitation into society. 

Various endoscopic devices and instruments have been researched and developed 
to improve surgical dexterity, and to reduce specific risks and difficulties in  
endoscopic surgery. For example a dexterous robotic manipulator added multiple 
degrees of freedom (DOFs) to operation of the instruments and thus it improved 
surgical performance [1-3]. So-called master-slave robotic manipulators, such as 
previously-commercialized da Vinci® Surgical System, enable surgeons to work 
with precise operation [4]. However, some problems remain unsolved in these sur-
gical robotic systems. First, familiar laparoscopic surgery, which is one of the endo-
scopic surgeries, requires a sufficient space below the abdominal wall for surgical 
procedures. A pneumoperitoneum is commonly used to secure the space, but some 
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complications have been reported from this method such as compression of organs 
by filled gas and solve out of CO2 gas into vessels. Second, laparoscopic surgery is 
useful when the affected area can be approached from the anterior of the body, 
however, it is difficult to approach the target in a deep and narrow area or reverse 
side of organs. Some research groups have developed flexible manipulators with a 
large curved radius. Ikuta et al. developed a micromanipulator to approach inacces-
sible regions [5]. Other flexible manipulators have been developed using shape 
memory alloys [6] or a wire-driven mechanism [7]. These manipulators can be 
inserted in the narrow space and approach affected area, however stabilized path 
and local surgical space can not be secured for other instruments such as a laparo-
scope, a forceps etc.  

To solve this issue, some systems with lockable sheaths or hybrid locking and re-
laxing function have been developed. Robert et al. applied this idea to medical appli-
cations [8]. Snake shaped robot, called HARP, was also developed [9]. Yagi et al. 
developed a guiding device including an inner channel, which uses flexible manipula-
tors to approach deep regions [10]. These manipulators have some limitations because 
their mechanisms of distal bending part are very complicated and their diameters must 
be larger than the size required for laparoscopic surgery. Moreover, it is difficult to 
make their components nonmagnetic material to realize MRI-compatibility. MRI-
guided surgery is effective for such as minimally invasive therapy of tumors through-
out the body [11]. 

On inserting an instrument into the area of interest without any damages to around 
tissues, surgical instruments require special function to switch a flexible mode for free 
insertion and a rigid mode for stabilizing the outer sheath. In this study, we developed 
a rigid and flexible outer sheath with pneumatic locking mechanism using flexible 
toothed links and with wire-driven active-bending distal end for laparoscopic surgery.  

This paper reports on (1) the mechanism switching between a flexible and a rigid 
modes, (2) a prototype of the outer sheath device with an active-bending distal end 
and (3) mechanical performance evaluation of the device. Moreover, we evaluated it 
(4) in vivo experiment using a swine.  

2   Materials and Methods 

2.1   Outer Sheath Design 

The outer sheath provides a secure approach path for the other surgical instruments 
inside the human body. The sheath can be flexible and twisted into any shape pas-
sively and can still retain its shape against external forces or insertion frictional force 
from inserted instruments. Before inserting flexible surgical instruments, the surgeon 
inserts the outer sheath with flexible mode manually through the narrow gap between 
the safety areas under endoscopic or MRI-guidance. When insertion direction of the 
outer sheath should be controlled, its wire-driven distal end is bent selectively. After 
the sheath approaches the target, the surgeon locks the shape and then inserts flexible 
instruments easily through the internal path made by the sheath. 
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Fig. 1. Switching mechanism of the outer sheath between a flexible and a rigid modes. When 
there is no vacuum, the toothed links and the bellows tube can take any shape in a sealed clear-
ance space. On the other hand when the pneumatic pump creates a vacuum, the links are 
pressed and meshed with the ditch of the tube, locking the shape of the sheath. 

The outer sheath can be switched between a flexible and a rigid modes easily  
(Fig. 1). This mechanism consists of three flexible toothed links, a centered bellows 
tube and a surrounding sealed cover. In the flexible mode, inside air pressure between 
the bellows tube and the sealed cover is equal to atmospheric pressure. Because there 
becomes a sealed clearance space between the bellows tube and the sealed cover, 
teeth of the toothed links disengage from chased external surface of the bellows tube. 
In the rigid mode, sealed clearance space between the bellows tube and the sealed 
cover is evacuated by discharging the internal air, and the atmospheric pressure 
presses the toothed links into the external surface of bellows tube. These interlocked 
links and bellows tube lock the shape of the outer sheath. And three nylon wires are 
passing through the clearance space along the bellows tube to bend the distal end of 
the outer sheath. These wires are covered with unshrinkable fluorocarbon tubes. 

2.2   System Configuration 

System configuration of the prototype of the outer sheath is shown in Fig. 2. The 
outer sheath has an outer diameter of 16 mm, inner diameter of 7 mm, length of 300 
mm and can achieve a minimum curvature radius of 45 mm. The outer sheath, as 
described above, consists of three flexible toothed links, a bellows tube, three nylon 
wires covered with fluorocarbon tubes and a polyethylene sealed cover. The toothed 
links and bellows tube are flexible, and their shapes are free and changeable. The 
three toothed links are placed 120 degrees apart, making it possible to lock the outer 
sheath in any direction in three-dimensional space. The ticks of the bellows tube are 2 
mm apart, and the locking teeth on the links are 17 mm apart. All parts of the outer 
sheath are made of plastic, ensuring MRI-compatibility. The bellows tube is con-
nected to a vacuum pump (DTC-41, ULVAC KIKO INC., Japan) and switching con-
troller (V030E1, Koganei, Japan) to change condition of the outer sheath between  
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Fig. 2. System configuration of the outer sheath device. Rigid and flexible modes can be 
switched by the vacuum pump and controller. Bending angle of the distal end is controlled by 
three sets of ultrasonic motors. The outer sheath is 1-m separated from other parts for  
cleanness. 

a flexible and a rigid modes. In the rigid mode, flexible toothed links engage the bellows 
tube and they are locked by the vacuum. The shape of the outer sheath can be locked 
even with a twisted shape. When the vacuum is released, the sheath switches back to the 
flexible mode. Using this mechanism, it is possible to maintain a rigid shape for the 
outer sheath whenever a vacuum is continuous. In addition the device has a 90-mm 
wire-driven distal end. The three nylon wires, which are also placed 120 degrees apart, 
drive bending angle of this part to arbitrary direction by ultrasound motors (USR30-
E3N, Shinsei Corporation, Japan) with couplings and feed screws. Surgeons can control 
bending angle by rotational three knobs. Materials of the linear-guides are also plastic to 
realize MRI-compatibility. The outer sheath is specifically separated from the actuators’ 
part and the vacuum pump to be cleanable and sterilizable for clinical use. 

2.3   Wire-Driven Bending Mechanism 

Each nylon wire is passed through spacers aligned around the bellows tube. When the 
wire is pulled, length of the wire at one unit between adjacent two spacers is li 
changes to li’ depending on the bending angle θi (Fig. 3(A)). Relationship between li 
and li’ are described by an equation (1) with geometric relations in Fig. 3(A).  
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Relationship between total bending angle and total wire displacement is shown in Fig. 
3(B) with 8 units including 4-units distal end of the prototype shown in Fig. 2. Each 
bending range of one unit is about 22.5 degrees and in case of bending with only the 
distal end part, maximum bending angle is about 90 degrees. On the other hand bend-
ing of the whole device with eight units achieves about 180 degrees. 
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Fig. 3. (A) Wire-driven bending model at one unit between adjacent two spacers. Pulling wire 
performs each unit’s bending motion. (B) Relationship between bending angle and wire dis-
placement of only with the distal end and the whole device. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Active-bending characteristics of the outer sheath by pulling one wire. (A) Result in 
flexible mode. (B) Result in rigid mode.  

3   Results 

3.1   Mechanical Performance Evaluations 

First, we examined bending characteristics by pulling wire in the flexible and the rigid 
modes. In the flexible mode, only one wire was used to bend whole outer sheath in-
cluding the distal end. In the rigid mode, the active-bending distal end was only bent. 
In the flexible mode, bending angle of 180 degrees was achieved with 85-mm wire 
displacement and 11.7-N wire tension (Fig. 4(A)). In the rigid mode, bending angle of 
90 degrees was achieved with 40-mm wire displacement and 16.6-N wire tension 
(Fig. 4(B)). Second, we examined limited holding powers of outer sheath as keeping 
its shape using only the toothed links interlocking mechanism in rigid modes. Limited  
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Fig. 5. Measurement of holding power in rigid mode. (A) Load on direction B from direction A 
in straight condition (0°). (B) Load on direction B from direction A in curved condition (90°). 

 
 
 
 
 
 
 
 
 
 

Fig. 6. Laparoscopic broad views with fiberscope local views using our device inserted into 
abdominal cavity of swine. (A) Colon observation with a widely curved distal end inserting a 
fiberscope, which shows reverse side of the colon. (B) The outer sheath goes into the gap be-
tween liver and abdominal membrane. Fiberscope shows space between liver and abdominal 
membrane. (C) Liver lobes clamping image by a biopsy forceps inserted the outer sheath. Fi-
berscope shows clamped liver lobes. (D) The outer sheath goes into the gap between spleen, 
liver and stomach. Fiberscope shows between their organs. 

holding powers were values where the loaded outer sheath’s shape started to deform, 
that is, the toothed links started to be unlocked, and we could observe it by the eye. The 
outer sheath was fixed at the second spacer from based side and measured in two cases, 
one was in straight condition (0°) (Fig. 5(A)), and the other was in curved condition 
(90°) (Fig. 5(B)). Loaded direction was downward vertically in both cases. Maximum 
load without deformation of the shape were 1.6 N in case (A) and 3.6 N in case (B). 

3.2   In vivo Experiment 

In in vivo experiment, we tested usability of the device in the abdominal cavity of a 
swine (male, 45.5 kg). Inserted instruments into the outer sheath were a 2.8-mm fiber-
scope (SUMITA Optical glass, Inc., Japan), a 6-mm high resolution fiberscope (VH-
F61, KEYENCE CORPORATION, Japan) and a 1.75-mm biopsy forceps 
(BF1812SF, FUJINON TOSHIBA ES SYSTEMS CO. LTD, Japan). A 2.8-mm fiber-
scope and a 1.75-mm biopsy forceps could be inserted at the same time. We used a 
normal laparoscope to observe and confirm position and shape of the device. 

First, we tried observation of the colon from the back side with a 2.8-mm fiber-
scope (Fig. 6(A)). Second, we inserted the device into the gap between liver and ab-
dominal membrane to observe a back side of the liver with a 6-mm fiberscope (Fig. 
6(B)). Third, we clamped liver lobes surface by a biopsy forceps with a 2.8-mm  

(A) (B)

(A) (B) (C) (D)
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fiberscope view (Fig. 6(C)). Fourth, we inserted the device into the gap between 
spleen, liver and stomach. These tasks were not supported by any forceps (Fig. 6(D)). 

4   Discussion 

In mechanical performance evaluations, we confirmed that our device performed large 
bending angle in both flexible and rigid modes, which enabled switching between 0 ~ 
±180-degrees bending of the whole device in the flexible mode and 0 ~ ±90-degrees 
bending of the distal end of the device in the rigid mode depending on various surgical 
cases. In this study only a 90-mm distal end could be actively bent in the rigid mode, if 
the length of this part is variable, our device may enable more dexterous and secure ap-
proach to apply to complicated deep cavity. And if the number of active DOF increases, 
the wire-driven mechanism would become more complex, however its appearance is not 
so changed because the wires are thin to the outer sheath. More in vivo experiments 
should be needed to evaluate the suitable constitution of active-bending parts and passive 
flexible parts for various surgical applications. About holding powers of outer sheath to 
keep its shape in the rigid mode, it is said that 5-N is required for forceps power in gen-
eral laparoscopic surgery to raise and hold heavy organs [12]. However our device pur-
poses only insertion of flexible instruments into gap between organs, therefore even 1.58 
N in straight shape and 3.58 N in 90-degrees curved shape may be sufficient against 
external pressure from organs and internal pressure from inserted instruments through the 
bellows tube, and this validity was proved in in vivo experiment. 

Result of in vivo experiment indicated usability of our device in practical clinical 
condition. The outer sheath could go into gaps between organs, abdominal wall and 
membranes in deep cavity with wire-driven bending motion of the distal end as 
switching the flexible and the rigid modes, and flexible instruments such as fiberscope 
and biopsy forceps could be passed through the bellows tube into target deep space. 
On the other hand in manipulation of biopsy forceps, low resolution of the 2.8-mm 
fiberscope was not enough to observe local operative fields. And some methods of 
real-time secure detection of position and shape of the device were thought to be 
needed besides a normal laparoscope. In the outer sheath, some small magnetic posi-
tioning sensors are mountable to track approach path of the device. Or more specifi-
cally, MRI-guided surgery is possible due to MRI-compatibility of the device. 

Moreover our device is useful for natural orifice transluminal endoscopic surgery 
(NOTES) with improvements to downsize the outer diameter under 10 mm and to dilate 
inner channel. In NOTES, transluminal approach path is generally twisted up in 3D 
space and it is significant to transport required flexible instruments to deep operative 
field in safely. Our device can provide an arbitrary secure path for various flexible in-
struments by itself, and size of inner channel diameter, total length and length of active-
bending distal end are customized freely for on demand minimally invasive surgery. 

5   Conclusion 

In order to secure an approaching path for minimally invasive surgical instruments 
especially used in deep operative fields, we developed a nonmagnetic rigid and flexible 
outer sheath with pneumatic interlocking mechanism using flexible toothed links and an 
active-bending wire-driven distal end. We evaluated mechanical performances of bend-
ing angle and holding power of the device to use in practical clinical condition. In vivo 
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experiment using a swine indicated validity of large bending angle up to ±180 degrees 
and sufficient holding power up to 3.6 N in the flexible and the rigid modes, and that 
some flexible instruments can be inserted into deep areas in abdominal cavity. These 
results show sufficient possibility of use of the device in NOTES with some improve-
ments in tracking method for minimally invasive image-guided surgery. 
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Abstract. This paper addresses automatic skill assessment in robotic
minimally invasive surgery. Hidden Markov models (HMMs) are devel-
oped for individual surgical gestures (or surgemes) that comprise a typi-
cal bench-top surgical training task. It is known that such HMMs can be
used to recognize and segment surgemes in previously unseen trials [1].
Here, the topology of each surgeme HMM is designed in a data-driven
manner, mixing trials from multiple surgeons with varying skill levels,
resulting in HMM states that model skill-specific sub-gestures. The se-
quence of HMM states visited while performing a surgeme are therefore
indicative of the surgeon’s skill level. This expectation is confirmed by the
average edit distance between the state-level “transcripts” of the same
surgeme performed by two surgeons with different expertise levels. Some
surgemes are further shown to be more indicative of skill than others.

1 Automatic Skill Assessment in Robotic Surgery

Robotic minimally invasive surgery (RMIS) has experienced rapid development
and growth over the past decade, and the da Vinci robotic surgery system has
emerged as the leader in RMIS [2]. Training for RMIS has often been cited
as challenging, even for experienced surgeons [3]. One approach to overcome
this challenge is develop techniques for automatic assessment of surgical skills
during the performance of benchmark tasks, such as suturing or knot-tying, that
simulate live tasks used for clinical skill evaluation [4]. This paper presents such
techniques based on gesture recognition using hidden Markov models (HMMs).

RMIS is uniquely amenable to automatic skill assessment. The robot func-
tions as a measurement tool for dexterous motion. As part of its run-time sys-
tem, the da Vinci exposes an application programming interface (API) which
provides accurate and detailed kinematic motion measurements, including the
surgeon console “master” manipulators and all patient-side tools. We use these
measurements to recognize individual surgical gestures [1]. Using both surgeon-
and patient-side kinematics may seem redundant. But since one may carry some
information that the other doesn’t, (e.g intended v/s actual tool motion ), we
use both, and apply data-driven dimensionality reduction techniques to remove
such redundancies.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 426–434, 2009.
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Dosis et al [5] have used hidden Markov models to model hand manipulations
and to classify simple surgical tasks. Richards et al [6] have demonstrated that
force/torque signatures may be used in RMIS for two-way skill classification.
Rosen et al [7] have used HMMs to model tool-tissue interactions in laparo-
scopic surgery; a seperate HMM for each skill level was trained using a pool of
surgeons, and a statistical distance between these HMMs was shown to correlate
well with the learning curve of these trainee surgeons. In these and other reported
efforts, the automatic assessment is for entire trials, while the work presented
here assesses finer grained segments, namely individual surgical gestures.

Lin et al [8] have used linear discriminant analysis (LDA) to project the high-
dimensional kinematic measurements from the da Vinci API to three or four
dimensions, and used a Bayes’ classifier to segment surgical gestures from the
low-dimensional signal. Reiley et al [1] replace their Bayes classifier with a 3-
state left-to-right HMM for each gesture, and demonstrate improved accuracy
on unseen users. The work presented here improves upon [1] by performing LDA
to discriminate between the kinematical signal of sub-gestures – modeled by
individual HMM states – rather than between the signal of entire gestures.

The distinguishing contribution of this work is the application of the HMM
methodology to gesture-specific skill assessment. A data-driven algorithm is used
to design the HMM topology for each gesture. As a consequence, in addition to
automatic detection and segmentation of surgical gestures, one is able to compare
individual gestures of expert, intermediate and novice surgeons in a quantitative
manner. For instance, some gestures in a suturing task, such as navigating a nee-
dle through the tissue, are demonstrated to be more indicative of expertise than
others, such as pulling the thread. Such fine grained assessment can ultimately
lead to better automatic surgical assessment and training methods.

This paper is organized as follows. We begin in Section 2 with a background
review of the suturing task and the use of HMMs for gesture recognition and
segmentation. We then describe the two technical novelties in the use of HMMs,
namely state-specific LDA and data-derived HMM topologies, in Section 3. This
leads to improved gesture recognition accuracies. In Section 4, we demonstrate
how paths through the HMM state space are indicative of the expertise with
which the gesture has been performed, leading to the main contribution of the
paper: a framework for automatic, gesture-level surgical skill assessment.

2 Surgical Gesture Recognition Using HMMs

2.1 The Surgeme Recognition Experimental Setup

Kinematic Data Recordings : We recorded the kinematic measurements from 2
expert, 3 intermediate and 3 novice surgeons performing a bench-top suturing
task—four stitches along a line—on the teleoperated da Vinci surgical system.
The average duration of a trial is 2 minutes, and the video and kinematic data are
recorded at 30 frames per second. The kinematic measurements include position,
velocity, etc. from both the surgeon- and patient-side manipulators for a total
of 78 motion variables. We use {yt, t = 1, 2, . . . , T} to denote the sequence of
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kinematic measurements for a trial, with yt ∈ R78 and T ≈ 3400. A total of 30
trials were recorded, roughly four from each of the eight surgeons.

Manual Labeling of Surgemes : Each trial was manually segmented into seman-
tically “atomic” gestures, based on the eleven-symbol vocabulary proposed by
[1]. Following their terminology, we will call each gesture a surgeme. Typical
surgemes include, for instance, (i) positioning the needle for insertion with the
right hand, (ii) inserting the needle through the tissue till it comes out where
desired, (iii) reaching for the needle-tip with the left hand, (iv) pulling the su-
ture with the left hand, etc. We use {σ[i], i = 1, 2, . . . , k} to denote the surgeme
label-sequence of a trial, with σ[i] ∈ {1, . . . , 11} and k ≈ 20, and [bi, ei] the begin-
and end-time of σ[i], 1 ≤ bi < ei ≤ T . Note that b1 = 1, bi+1 = ei + 1, ek = T .

The Surgeme Recognition Task : Given a partition of the 30 trials into training
and test trials, the surgeme recognition task is to automatically assign to each
trial in the test partition a surgeme transcript {σ̂[i], i = 1, 2, . . . , k̂} and time-
marks [b̂i, êi]. Trials in the training partition are used to train the HMMs, as
described below. We report results with three different training/test partitions.

Setup I: Of the 30 trials, 8 have some minor errors by the surgeons during su-
turing. These are excluded altogether in Setup I. Leave-one-out cross-validation
is carried out with the remaining 22 trials, so that each trial is once in the test
partition. The test results of all 22 folds (22 trials) are aggregated.

Setup II: The training partition in Setup II comprises the 22 “good” trials,
while the test partition comprises only the 8 “imperfect” trials.

Setup III: User-disjoint partitions of the 30 trials are created in Setup III.
An eight-fold cross validation akin to Setup I is carried out, except that in each
fold, all the trials of 1 surgeon are in the test partition and all trials of the
remaining 7 surgeons are in training. Test results of all 30 trials are aggregated.

Setup I is relatively the easiest, with 22 good test trials and the surgeon of each
test trial seen in training. Setup II is harder, with seen surgeons but with test
trials that have some visible errors, a situation not dissimilar from recognition
of slightly disfluent speech. Setup II is most similar to the multiple-user results
in [1, Table 3], with which we make direct comparisons. Setup III is the hardest,
because all trials of the test surgeon have also been removed from training.

Recognition accuracy is measured as the fraction of kinematic frames that are
assigned the correct surgeme label by an automatic system. Formally,

Accuracy of test trial {y1, . . . , yT } =
1
T

T∑
t=1

I (σt = σ̂t) , (1)

where σt = σ[i] for all t ∈ [bi, ei] and σ̂t = σ̂[i] for all t ∈ [b̂i, êi]. This measures
the goodness of both the labels and the segmentation proposed by {σ̂t}.

2.2 HMM-Based Surgeme Recognition

Dimensionality Reduction: Before surgeme recognition, the 78-dimensional kine-
matic data are reduced to d # 78 dimensions via LDA [9]. Specifically, each
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block of 2p + 1 frames in the training partition is converted into a data-label
pair

(
[yT

t−p . . . yT
t−1 yT

t yT
t+1 . . . yT

t+p]
T, σt

)
, and a d × 78(2p + 1) projection ma-

trix A is computed that maximizes the ratio of between- and within-surgeme
scatter of the projected data xt = A[yT

t−p . . . yT
t . . . yT

t+p]
T. Typically, p = 5 and

d is 3 to 10. The {xt} are used everywhere subsequently, instead of {yt}.
Surgeme Modeling: The likelihood of the kinematic signal {xt, t = bi, . . . , ei} of
a surgeme σ[i] = σ is modeled via a HMM as

Pσ(xbi , . . . , xei) =
∑

sbi
∈Sσ

∑
sbi+1∈Sσ

· · ·
∑

sei
∈Sσ

ei∏
t=bi

p(st|st−1)N (xt ; μst , Σst), (2)

where Sσ denotes the hidden states of the model for surgeme σ, p(s|s′) are the
transition probabilities between these states, and N (· ; μs, Σs) is a multivariate
Gaussian density with mean μs and covariance Σs associated with state s ∈ Sσ.

Parameter Estimation: Kinematic data from all training samples of a surgeme σ
are modeled by the same HMM (with states Sσ), and each surgeme is modeled
by a different HMM. Model parameters are chosen to maximize the likelihood
(2) of the training data {xt} via the standard Baum-Welch algorithm [10].

Surgeme Recognition: A surgeme (HMM) is permitted to be followed by any other
surgeme during recognition, and the Viterbi algorithm [10] is used to find the
sequence {ŝt ∈

⋃
Sσ, t = 1, . . . , T} of HMM states with the highest a posteriori

likelihood given a test trial {xt}. The surgeme sequence {σ̂[i], i = 1, 2, . . . , k̂} and
time-marks [b̂i, êi] are a byproduct of the Viterbi algorithm.

3 Improved Dimensionality Reduction and Modeling

3.1 Linear Discriminant Analysis Based on HMM States

The primary purpose of LDA is to reduce the dimensionality of {yt} without
losing information necessary to discriminate between gestures σt. Note, however,
that each surgeme is modeled by a HMM with several states s ∈ Sσ, each of
which models a sub-gesture—called a dexeme to connote small dextrous motions.
It is natural, therefore, to investigate whether it is better to perform LDA to
discriminate between dexemes rather than entire surgemes. An immediate hurdle
we face is that the manual segmentation of {yt} is only up to surgemes, and
not at the finer resolution of dexemes. But the HMM formalism provides a
workaround.

Using the d-dimensional training data {xt} derived from surgeme-level LDA,
we first estimate surgeme HMMs as described above, and use the Viterbi algo-
rithm to obtain a forced alignment of {xt} with the states of the surgeme HMMs.
This results in a dexeme-level segmentation of each surgeme. We use the result-
ing dexeme label ŝt of each block [yT

t−p . . . yT
t−1 yT

t yT
t+1 . . . yT

t+p]T to compute a
new projection matrix A and use that for all subsequent experiments.



430 B. Varadarajan et al.

The dexeme-level LDA is better able to preserve information that distin-
guishes temporal sub-gestures of a single gesture, as well as stylistic variations
between samples of the same gesture, as will be demonstrated in Section 3.3.

3.2 Data-Derived HMM Topologies

In the work of [1], and in our initial work here, we used a 3-state left-to-right
HMM to model each gesture. However, each gesture has not only temporally
distinct sub-gestures—which would be well modeled by states of a left-to-right
HMM—but also contextual variability in sub-gestures. Some of the latter vari-
ability is due to the skill level of the surgeon, some due to the dynamics of a
previous or subsequent gesture, while some depends on where in the suturing
task (e.g. on the first or fourth stitch) the gesture is being performed. We inves-
tigate induction of an optimal HMM topology directly from the data to model
such variability.

Formally, we wish to find the topology of a surgeme HMM that maximizes
the likelihood (2) of the training data {xt}. Finding the optimal HMM topology,
however, is computationally intractable: given n = |Sσ|, one must find, separately
for every n-vertex directed graph, the HMM parameters that maximize (2).

In Speech recognition, HMM topologies are derived for capturing context-
dependent (allophonic) variations of phonemes using greedy algorithms. We ap-
ply one such algorithm by Varadarajan et al [11], called the modified successive
state splitting (SSS) algorithm, to our problem. We begin with a single-state
HMM for each surgeme, and iteratively estimate the HMM parameters and in-
crement the number of HMM states via SSS .

Data-derived HMM topologies yield accurate models for surgeme recognition,
and also capture sub-gesture patterns indicative of skill, as shown in Section 4.

3.3 Surgeme Recognition and Segmentation Results

We performed surgeme recognition experiments with the training/test partitions
described in Section 2.

We first estimated a 1-state HMM per surgeme. In this case, there is no differ-
ence between surgeme-level and dexeme-level LDA. The 70% to 74% accuracy
for Setup II reported in Table 1(a) may therefore be directly compared with the
results of [1], who report accuracies of 64% to 72%.

Next, we estimated a 3-state left-to-right HMM for each surgeme. With
surgeme-level LDA, [1] report accuracies of 72% to 77%. In comparison, the
dexeme-level LDA provides up to 86% accuracy, as shown in Table 1(b). We
also see from Table 1(b) that maximum accuracy is achieved when the number
of dimensions d is between 9 and 17 indicating the need for more dimensions to
differentiate between the finer grained motions represented by dexemes.

Modeling a surgeme as a temporal sequence of 3 dexemes (left-to-right HMM
states) is better than a single-state HMM, but still ad hoc. Determining the HMM
topology from data permits modeling both temporally distinct sub-gestures and
contextual variability of gestures, as discussed in Section 3.2. Therefore, we use
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Table 1. Surgeme Recognition Accuracies with Dexeme-level LDA
(a) A 1-state HMM per Surgeme

LDA d Setup I Setup II Setup III
3 75% 75% 58%
5 81% 72% 69%
7 81% 70% 72%

(b) A 3-state HMM per Surgeme

LDA d Setup I Setup II Setup III
3 79% 70% 73%
5 82% 76% 73%
7 82% 83% 81%
9 82% 86% 78%
17 87% 83% 81%

(c) Data-derived HMM Topology

LDA d Setup I Setup II Setup III
3 69% 67% 64%
4 73% 73% 70%
10 83% 82% 73%

15 86% 82% 71%
20 87% 83% 70%

the SSS algorithm to evolve a 6-state HMM for each gesture. Table 1(c) shows
recognition results for the different setups. The recognition accuracies remain high
for Setup I and II using data-derived HMMs. The maximum recognition accuracy
is obtained when the number of dimensions d is 20, indicating the need for more
dimensions needed to differentiate between the larger number of dexemes. We also
note that the accuracies drop considerably for Setup III. We conjecture that in
addition to expertise-dependent dexemes, the data-derived HMMs may also be
modeling user-specific dexemes. This leads to improved recognition when a new
trial of a seen user is presented, but also to some overfitting to seen users.

The optimal LDA dimension is empirically seen to be proportional to the
number of classes: 5 for 1-state HMMs (discriminating 8 surgemes), 9-17 for
3-state HMMs (24 dexemes), and 15-20 for data-derived HMMs (48 dexemes).

4 Surgeme-Level Skills Revealed in Dexeme-Sequences

To illustrate how data-derived HMM topologies encode dexterity information,
consider Figure 1, which shows a 5-state HMM derived via the SSS algorithm
for surgeme #3 corresponding to the act of “inserting needle through the tissue.”.
Training samples of surgeme #3 were aligned with this 5-state HMM, and the
state-level time marks were used to isolate individual dexemes corresponding to
the HMM states a, b, c, d and e ∈ S3.

We studied the endoscope video to understand what the segments that align
with each dexeme (HMM state) represent, and observed the following.1

Dexemes a, b and c: They all constitutes rotating of the right hand patient-side
wrist to drive the needle from the entry- to the exit.
Dexeme c versus a and b: All examples that aligned to c were from novice sur-
geons. Examining the videos revealed that c corresponds to a sub-gesture where
the novice hesitates/retracts while pushing the needle to the exit point. In most
cases, c is followed by a or b, in which the trainee surgeon eventually performs
1 Video corresponding to these dexemes is available at
www.clsp.jhu.edu/~balakris/MICCAI2009/

www.clsp.jhu.edu/~balakris/MICCAI2009/
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the task (inserting the needle till it exits) correctly. States a and b appear to be
indistinguishable, except for some stylistic differences.

Dexeme d: It represents the left arm reach-

Fig. 1. The Data-derived HMM
for n = 5 States for Gesture #3

ing for the exiting needle. Often, when the
left arm is already positioned near the exit
point, this gesture is omitted. This explains
the transitions from states a and b directly to
state e.

Dexeme e: It represents firmly gripping the
needle with the left arm.

These observations reinforce the claim that
SSS provides a means for automatically in-
ducing meaningful units for modeling dexter-
ous motion. While not demonstrated here, it may be applied to entire trials,
automatically discovering and modeling gestures without requiring any manual
labeling!

4.1 Measuring Expertise by Aligning Dexeme-Transcripts

To compare how dissimilar two instances of a surgeme are, we compute an edit
distance between their dexeme transcripts as described below.

Let {x1
t , t = b̂i, . . . , êi} and {x2

t , t = b̂j, . . . , êj} denote two automatically seg-
mented and labeled realizations of the surgeme σ, i.e. σ̂[i] = σ̂[j] = σ. We use
the Viterbi alignment of {x1

t} with the states Sσ of the surgeme HMM to obtain
the sequence {ŝ1

t , t = b̂i, . . . , êi}, and similarly {ŝ2
t , t = b̂j , . . . , êj} from {x2

t}. We
then obtain the sequence of HMM states visited by {x1

t} (resp. {x2
t}) by simply

compacting each run of state labels. In other words, we ignore how many con-
secutive frames are aligned with a state, counting them collectively as one “visit”
to the state. Let {ŝ1

[i], i = 1, . . . , k̂1} and {ŝ2
[j], j = 1, . . . , k̂2} denote the dexeme

transcripts of the two gestures generated in this manner.
We then align {ŝ1

[i]} and {ŝ2
[j]} using Levenshtein distance, and each element

in the two sequences is marked as matched if it is aligned with the an identical
element in the other sequence. Inserted, deleted and (both sides of a pair of) mis-
matched symbols are marked as mismatched. The similarity of the realizations
σ̂[i] and σ̂[j] is defined as the number of matched dexemes divided by k̂1 + k̂2. A
similarity of 1 corresponds to identical dexeme sequences: k̂1 = k̂2 and ŝ1

[i] = ŝ2
[i]

for each i. Otherwise similarity ranges between 0 and 1.
We calculate the average edit distance between realizations of σ drawn from

different expertise levels for the four most frequent gestures: σ = 2, 3, 4 and 6.
Note from Tables 2(a), 2(b) and 2(c) that some surgemes (e.g. #2 : “posi-

tioning the needle at the entry point” or #3 : “inserting the needle through the
tissue”) show low expert-novice similarity compared to expert-expert, indicating
the need for skillful execution. In comparison, surgeme #6 (pulling the suture)
in Table 2(d) exhibits significant similarity even between experts and novices.

The correlation between expertise level and edit distance is clearly evident.
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Table 2. Dexeme Similarity of Surgemes Performed with Different Skill Levels

(a) Similarities in Surgeme #2

Expert Inter. Novice
Expert 0.65 0.55 0.55

Intermediate 0.55 0.50 0.53
Novice 0.55 0.53 0.46

(b) Similarities in Surgeme #3

Expert Inter. Novice
Expert 0.69 0.60 0.53

Intermediate 0.60 0.51 0.50
Novice 0.53 0.50 0.50

(c) Similarities in Surgeme #4

Expert Inter. Novice
Expert 0.71 0.57 0.54

Intermediate 0.57 0.58 0.58
Novice 0.54 0.58 0.51

(d) Similarities in Surgeme #6

Expert Inter. Novice
Expert 0.74 0.69 0.68

Intermediate 0.69 0.65 0.67
Novice 0.68 0.67 0.61

5 Concluding Remarks and Potential Applications

We have demonstrated the utility of sub-gesture-level LDA in improving dimen-
sionality reduction for HMM-based gesture recognition. We have also shown that
data-derived HMMs automatically discover and model skill-specific sub-gestures,
leading to a natural metric (dexeme edit distance) for comparing surgical ges-
tures for skill assessment. Since the dexemes are data-derived, such comparison
may be feasible even if the manual labeling of surgemes is very coarse grained
or absent. Finally, dexeme edit distance based alignment may be transferred to
synchronize the surgical video, opening up immense possibilities for training.
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Abstract. Evaluating surgical skill is a time consuming, subjective, and difficult
process. This paper compares two methods of identifying the skill level of a sub-
ject given motion data from a benchtop surgical task. In the first method, we build
discrete Hidden Markov Models at the task level, and test against these models. In
the second method, we build discrete Hidden Markov Models of surgical gestures,
called surgemes, and evaluate skill at this level. We apply these techniques to 57
data sets collected from the da Vinci surgical system. Our current techniques have
achieved accuracy levels of 100% using task level models and known gesture seg-
mentation, 95% with task level models and unknown gesture segmentation, and
100% with the surgeme level models in correctly identifying the skill level. We
observe that, although less accurate, the second method requires less prior label
information. Also, the surgeme level classification provided more insights into
what subjects did well, and what they did poorly.

1 Introduction

Human motion is stochastic in nature. A person performing a repeatable task multi-
ple times (e.g. drawing a straight line) would generate different motion measurements
(ie. forces, velocities, positions, etc.) despite the fact that the measurements represent
the the same task performed with the same level of skill. The goal of skill modeling
is to uncover and measure the underlying characteristics of skill hidden in measurable
motion data. In this paper, we focus on modeling and assessing surgical technical skill.
Current techniques for surgical skill assessment include descriptive statistics (time, path
length, number of motions), morbidity rates, and checklists [1,2]. However, these meth-
ods require manual interpretation, lack flexibility, and are time consuming and labor
intensive. We note that, robotic surgery, in particular, is known to have a steep learning
curve and be difficult to teach [3]. However, robotic surgery is reported to be the fastest
growing segment of computer aided surgical systems - an industry expected to grow to
$2 billion by the year 2010 [4]. Thus, automated assessment and training will have a
potentially high impact in this area.

In what follows, we make extensive use of Hidden Markov Models (HMMs) for sta-
tistical modeling of time-series motion data as a basis for skill assessment. HMMs are
statistical models used to determine hidden parameters from observed data. An HMM
can either be continuous or discrete. A discrete HMM, which is used in this work, is
represented by λ = (A,B,Π) where A is the state transition probability distribution
matrix, B is the observation symbol probability distribution matrix, and Π is the initial
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state distribution [5]. They are extensively developed in the area of speech recognition
[5] and have proved useful in studying teleoperation and human skill evaluation for non-
surgical tasks [6,7,8,9]. Recently, HMMs have been used in laparoscopic [10] and vir-
tual simulators [11,12] to classify the skill of a surgeon. Motivated by these studies, we
propose building HMMs driven by expertise examples on teleoperated robotic systems.

Surgeme Level S2

Task Level

P1

S1 S3

Procedure Level

S5S4 S6

T1 T2

Dexeme Level m4m1 m2 m4m5 m3

Fig. 1. A hierarchical decomposition of sur-
gical motion. Modeling can be done on
tasks (e.g. suturing), their decomposition into
surgemes (e.g. needle pulling), and even more
primitive motion elements called dexemes.

Fig. 2. Flowchart of building skill evaluation
models

In prior work [13,14], it has been proposed that surgical tasks can be broken down
into a hierarchy of more primitive gestures, sometimes referred to as “surgemes” (Fig-
ure 1). To the best of our knowledge, this is the first work that has analyzed surgical
models on the surgeme level. Thus, we are evaluating if skill at the task level or at the
surgeme level provides more accuracy or information. At either level, we may also ex-
plore whether knowing the underlying surgeme information at training and/or testing
[10] provides significant additional information. Figure 2 is a general block diagram of
building skill models.

Table 1. Possible combinations of labeling information
and level of skill evaluation

Training Labeled Labeled Unlabeled
Testing Labeled Unlabeled Unlabeled
Surgeme Level 1a 1b 1c
Task Level 2a 2b 2c

In this paper, we develop
skill-dependent HMM models
for three levels of surgical
expertise, novice, intermediate,
and expert. We define an ex-
pert as a practicing surgeon with
more than 100 hours of clinical
surgical robotic experience. An
intermediate as either a fellow or resident surgeon with less than 100 hours of surgical
robotic experience, and a novice as a non-surgeon with no prior robotic experience. As
shown in Table 1 this leads to six possible approaches to surgical skill evaluation. We
then explore the relationships between three of these problem settings:
Experiment 1: Surgeme-Level Hidden Markov Models (1c - states: unknown dexemes)
vs. Task-Level Hidden Markov Models (2c - states: unknown surgemes). We hypothe-
size that modeling skill on the surgeme level may provide insight to what portions of a
task a subject performs proficiently or where he/she performs like a novice.
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Experiment 2: Task-Level Hidden Markov Models With Known States (2a - states: mo-
tion surgemes defined in Experimental Setup) vs. Task-Level Hidden Markov Models
With Unknown States (2c). Here, we investigate whether raw motion data can be mod-
eled and evaluated for skill level without prior manual labeling.

2 Experimental Setup

Exit Point Entry Point

Fig. 3. (top) Experimental setup
displaying surgeme 1 (reach for
needle) in our motion vocabulary.
(bottom) Example of manually la-
beled trial using surgemes

Surgical Platform. The da Vinci surgical system by
Intuitive Surgical Inc. [15] is a clinical, teleoperated
robot used in operating rooms worldwide. It is a two
handed manipulator with 7 degrees of freedom each.
Due to its immersive interface, it provides a struc-
tured, well instrumented, unobtrusive environment for
studying surgical motions. Using the da Vinci applica-
tion programming interface (API), synchronized high-
resolution video and motion data were recorded at 23
Hz and resampled to 40 Hz for data analysis. For the
results reported below, we use a 14 variable subset of
the available motion channels comprising of six joint
velocity values and gripper information of the patient-
side left and right robotic manipulators. Fifty seven tri-
als of a four-throw suturing task were collected from a
group of nine different surgeons categorized into three
different expertise levels; 19 trials each for expert, in-
termediate, and novice. (Fig. 3).

We make use of the motion vocabulary defined in [13] which consists of (0) idle
position, (1) reach for needle, (2) position needle, (3) inset needle through tissue, (4)
transferring needle from left to right, (5) moving to center with needle in gripper, (6)
pulling suture with left hand, (7) pulling suture with right, and (8) orienting needles. Idle
motion time at the start and end of the trial (motion 0) was not used for data analysis.
In order to have ground truth for training and validation, our data set was manually
segmented based on the above surgeme motions. Not all trials were required to use all
surgemes in the motion vocabulary. Trials times varied between 45 to 130 seconds.

3 Task-Level Skill Modeling

The aim of this paper is to create an HMM λ = (A,B,Π) that describes the surgical
performance made by surgeons of various skill levels and to create a metric to evaluate
surgical performance.

Data Preprocessing. The 14 vector continuous motion observations were postpro-
cessed into a discrete alphabet using vector quantization techniques similar to [6]. We
first apply a Short Time Fourier Transform (STFT) on each of the 14 velocity signals,
x(t), over a 400 ms window every 200 ms to filter the high frequency data.

STFT {x(t)} ≡ X(t, ω) =
∫ ∞

−∞
x(t′)w(t′ − t)e−j2πft′ dt′ (1)
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where w(d) = 1 if 0 < d < 200ms and 0 otherwise. The STFT was chosen because it
is able to extract useful features from time series data and, when applied over a sliding
window in the time domain, was able to retain the time localization of events from the
original data. The amplitudes of the lower 4 STFT coefficients were then concatenated
to form a new 56 (14 velocity channels by 4 STFT coefficients) dimensional feature
vector. Then we used the K-means algorithm [16] to search for a small number of cluster
centers within each of the 9 states. These cluster centers form a so-called codebook. We
chose a 64 symbol codebook based on empirical testing with values of 32, 64, and 128.

HMM Task Models. From the discretized signals, we trained two families of Hidden
Markov Model for each skill level (expert λs1, intermediate λs2, and novice λs3) us-
ing the Matlab statistics toolbox [17]. In one family, we trained “true” Hidden Markov
Models (2c) for each skill level using the Baum-Welch algorithm and no prior train-
ing labels. We chose 9 states to match the number of surgeme labels, but we allowed
the generalized Expectation Maximization algorithm to uncover the best structure of
the hidden states. For Hidden Markov Models with states as surgemes (2a), we con-
catenated each observation with its surgeme label. Because the underlying states were
known, we did not need to perform Baum-Welch, but rather could directly calculate the
transition and emission tables.

Evaluation Method. Given an observed output sequence Otest and a skill model λs,
maximum log likelihood, log P (Os|λs) was used to identify skill as

λ∗ = argmax[log P (Otest|λse), (log P (Otest|λsi), (log P (Otest|λsn)] (2)

where λse,λsi,λsn are the expert, intermediate, and novice models for each trial, re-
spectively.

Following [5,10], we also define a relative distance between a skill model λs and a
model trained from the testing data λtest based on the sequence of test observations

D(λs, λtest) =
1

Ttest
min(ξ(λi, λtest), ξ(λe, λtest), ξ(λn, λtest)) (3)

where ξ(λs, λtest) = log P (Otest|λtest) − log P (Otest|λs) and Ttest is the length of
the observation sequence Otest. This equation defines how well model λs matches ob-
servations generated by λtest, relative to how well model λtest matches observations
generated by itself. Calculating the distance between a test sequence and skill levels:
expert, intermediate, and novice yields three values. It is easy to see that the HMM
model with minimum distance is also that with maximum log likelihood.

4 Surgeme-Level Skill Modeling

Data Preprocessing. The continuous motion values were discretized using a K-means
algorithm with 8 cluster centers. The data was segmented into smaller motion blocks us-
ing the known manual surgeme labels, yielding a large set of observation subsequences
for each surgeme.

HMM Surgeme Models. Three HMM expertise models for each surgeme were com-
puted, totaling 24 skill models. We used 8 states after comparable results running the
system with three, eight, and fourteen states.
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Evaluation Method. In order to classify a test sequence as a particular skill level, we
used Equation 2, where now λs is the trained surgeme expertise models and Otest is
the observations from each surgeme occurrence. Each surgeme occurrence would have
a corresponding skill label.

Each test trial now has a skill label associated to each surgeme occurrence. Majority
voting was used on the test sequence labels, Lt, to classify the skill of that trial. In the
event of a tie between skill levels, the maximum of the surgeme log-likelihood average
was chosen.

5 Results
5.1 Experiment 1: Surgeme-Level HMM versus Task-Level HMM

Table 2. Surgeme-based result: “Confu-
sion Matrix”

Exp. Int. Nov. count
Exp. S1 0.50 0.28 0.22 18
Int. S1 0.33 0.67 0 18

Nov. S1 0.31 0 0.69 16

Exp. S2 0.76 0.12 0.12 76
Int. S2 0.16 0.78 0.06 77

Nov. S2 0.16 0.07 0.78 76

Exp. S3 0.79 0.17 0.04 76
Int. S3 0.35 0.53 0.12 75

Nov. S3 0.34 0.12 0.54 74

Exp. S4 0.89 0.02 0.09 57
Int. S4 0.00 0.78 0.22 27

Nov. S4 0.03 0.14 0.83 59

Exp. S5 - 0.25 0.75 4
Int. S5 0.11 0.79 0.11 19

Nov. S5 0.05 0.21 0.74 19

Exp. S6 0.71 0.08 0.22 78
Inter. S6 0.04 0.77 0.19 74
Nov. S6 0.05 0.17 0.79 42

Exp. S7 - - - 0
Inter. S7 - 0.92 0.08 36
Nov. S7 - 0.07 0.93 46

Exp. S8 - - 1.0 2
Int. S8 - 0.76 0.24 21

Nov. S8 - 0.10 0.90 21

o test the accuracy of the surgeme-based clas-
sification method, we performed a leave-one-
out cross validation. In each round, one oc-
currence of a surgeme was left out for testing
while the remaining occurrences of that surgeme
was used to train an HMMs for each class.
Out of the 1011 total surgeme occurrences, ex-
perts were correctly classified 75% (233/311),
intermediates 59% (206/347), and novices 76%
(268/353). For each expertise and surgeme, we
present the number of correctly identified skill
labels over the total number of occurrences of
that surgeme (Table 2). The diagonal shows the
correctly labeled surgemes. Reading across the
matrix rows indicates the frequency of correctly
classifying the skill of a surgeme and the fre-
quency of it misclassified at another skill level.
All rows sum to 1.

The data indicate that: (1) certain surgemes,
such as 2, 4, 6, are indicative of skill based on
high classification rates across all three skill lev-
els, (2) other surgemes, such as 1, are not indica-
tive of skill because the discrimination between
skill levels is low, and (3) there are surgemes
that are infrequently used by skill groups, such
as surgemes 5,7,8 for an expert, suggesting that
those are intermediate positioning moves. These
results correlate to the distribution of time spent
in each surgeme according to expertise. We
found that regardless of the expertise level, most
of the time was spent in surgeme 2 (Reaching
for needle), then 3 (positioning needle), then 6
(Moving to center with needle in gripper). Incidentally, we also found that these
surgemes were the ones that had the highest number of surgeme occurrences.
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Fig. 4. Average distance, over 19 rounds, of the left out sequence to each class’ model built using
BW and KS

Table 3. Skill classification rates for trials using
cross validation

Expertise Classification Rate
1c: Surgeme (E) 100%
1c: Surgeme (I) 100%
1c: Surgeme (N) 100%

2c: Task BW(E) 84%
2c: Task BW (I) 100%
2c: Task BW(N) 100%

2a: Task KS(E) 100%
2a: Task KS (I) 100%
2a: Task KS(N) 100%

Intermediate skill was most difficult
to classify correctly on the surgeme
occurrence level as it had the highest
percentage of misclassification over-
all, indicating that skill might be more
accurately modeled as a scale in-
stead of discrete classes. Assessing
the surgemes in the context of their
trials, we found that this evaluation
system correctly labeled 100% of the
trials. We found a 95% classification
accuracy rate of the task-level with un-
known states (BW) through 19 rounds
of leave one out. In each round one trial from each class was left out. HMMs were built
for each expertise and each left one trial out testing. Three expert trials were misclassi-
fied as a novice.

5.2 Experiment 2: Task-Level Hidden Markov Model with Known (KS) versus
Unknown States (BW)

We performed 19 rounds of leave-one-out testing to determine the accuracy of this
classification method. In each round, one trial from each class was left out. HMMs
were built for each expertise and each left out test trial was tested using KS methods
compared to BW.

Even evaluating the state transition diagrams, we see a qualitative difference between
the movements of experts and novices (Figure 5). For the KS transition diagram, as sur-
geon skill increases; the graph of their movements becomes more directed. The expert
surgeon accomplished a task using relatively few movements whereas the novice made
more errors during the task causing them use extraneous motions and started over in the
initial states.

There is still a difference between the expert and novice models using the Baum-
Welch algorithm where the states are hidden. Even though the states do not correspond
to the labeled surgemes it can still be observed that the expert model is less connected
than the novice model. This shows that the movements of experts are more directed and
less prone to erroneous or unnecessary movements.

Figure 4 shows the average distance over the 19 rounds of the expert, intermediate
and novice trials being generated by each expertise model. The first of the three sets of
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(a) Exp.KS (b) Int.KS (c) Nov.KS

Fig. 5. Expertise state transition diagram with known surgemes

bars represents the BW algorithm, and the second the KS algorithm. Each skill level
had the minimum distance when compared against its own model. The intermediate
skill level surgeon has a smaller distance to the expert than the novice surgeon. This
seems to confirm that intermediate surgeons actually do perform the tasks in a manner
that is closer to the expert than the novice does. KS yielded 100% trial classification
accuracy which is an improvement over the 95% classification using BW.

6 Discussion and Conclusions

This paper addresses the problem of evaluating skill using continuous velocity data from
the da Vinci system. Vector quantization techniques were used to discretize the data to
train discrete Hidden Markov Models (HMMs). These experiments show that HMMs
are a useful method to classify skill of an unknown trial based on maximum likelihoods
to various trained skill models. Using the parsed motion segments, correct classification
of each occurrence of a surgeme showed that surgemes that were more commonly used
were more indicative of skill. Taking a scoring of all the labels during a trial, surgeme-
level models achieved 100% correct classification over our 57 datasets. The task-level
HMM with unknown states correctly classified 94.7% of the trials. We further analyzed
the task-level HMMs by comparing the “true” HMM built from unlabeled data with
HMMs using labeled surgemes as states. Interestingly, we found that classification of
trials using HMMs surgemes as states increased to 100%. This indicates that we would
be able to input raw data into the evaluator without any prior labels and correctly classify
skill almost as well.

There are several extensions of this work. More importantly, this method can cor-
rectly identify skill but does not answer how a novice model can move towards an
expert model. The categorization of an intermediate surgeon is somewhat ambiguous
since it is a class that is between an expert and novice. It is interesting to note that the
analysis was able to detect what appears to be a slight learning curve in the intermediate
data. Thus, this may be an area of future investigation to pinpoint where novices and
experts differ during a trial and reinforce correct technique. We will need to better un-
derstand the surgeme representation to analyze which surgemes are the most important
and most indicative of skill. In the near future, we intend to evaluate our methods with
a larger, more variable database of surgical motions we have recently collected.
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Abstract. In recent years there has been an ever increasing amount of research 
and development of technologies and methodologies aimed at improving the 
safety of advanced surgery. In this context, several training methods and metrics 
have been proposed, in particular for laparoscopy, both to improve the surgeon’s 
abilities and also to assess her/his skills. For neurosurgery, however, the ex-
tremely small movements and sizes involved have prevented until now the de-
velopment of similar methodologies and systems.  

In this paper we present the development of the ultra-miniaturized Inertial 
Measurement Unit WB3 (at present the smallest, lightest, and best performing in 
the world) for practical application in neurosurgery as skill assessment tool. This 
paper presents the feasibility study for quantitative discrimination of movements 
of experienced surgeons and beginners in a simple pick and place scenario.  

1   Introduction 

In recent years, more and more technologies have entered the operating theatre, al-
lowing surgeons to obtain better results and higher performance with great benefits for 
the patients by using cameras or microscopes and miniaturized tools. While these new 
technologies have many advantages for patients, they often require surgeons to undergo 
long and difficult training before achieving the necessary experience. One of the most 
important issues in this training is the objective evaluation and assessment of surgeon’s 
dexterity and skill, and how they change and evolve over time.  

Historically, this kind of evaluation has been subjectively performed by senior sur-
gical staff in both training and operating environments. However it is fundamental to 
establish more efficient training exercises to enhance the dexterity of surgeons and to 
define objective metrics for assessing their experience and performance. While several 
metrics [1-3] and segmentation procedures [4-6] have been employed to characterize 
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different phases of surgical movements in laparoscopy, the extremely small movements 
and sizes involved in neurosurgery (working field is usually 280-370 [mm2] x 
h5-10[cm], target size 0.2-1.5[mm] [7]) have prevented until now the development of 
similar methodologies and systems.  

Commercial systems such as StealthStation TREONplus by Medtronic or NDI's 
Aurora Electromagnetic Tracking System require either photoreflecive markers – by 
which position data are acquired at high frequency; however these markers are heavy 
and bulky, and they need to be always in sight with the digitizer, which is not always 
possible [8] – or EM tracking sensors – which are very small, but position data are 
acquired at relatively low freq, thus limiting the precision of the analysis. One possi-
bility to overcome these limitations and to realize compact measurement systems is 
nowadays offered by Micro-Electro- Mechanical Systems (MEMS) technology. 
However, current prototypes such as WB2 [9] and commercial tools such as xSens 
MTx, InterSense InertiaCube3, and so on, are still too big for a practical application in 
neurosurgery.  

Our aim, therefore, is to develop evaluation tools and to define a set of parameters 
that allow the characterization of the neurosurgeon’s movements during surgery, to see 
how surgeons of different expertise performs, and to evaluate the improvement of the 
performance over training. In this paper we present the development of the ul-
tra-miniaturized Inertial Measurement Unit WB3 and its application for the evaluation 
of surgeon’s performance in a simple pick and place scenario. 

2   Material and Methods 

2.1   WB3 Inertial Measurement Unit IMU  

Our group recently developed a new IMU which is very compact and lightweight (size 
20 x 20 [mm] and weight 2.9 [g]) – at present the smallest, lightest, and best performing 
in the world. A picture of the new IMU is shown in Fig. 1. The IMU is composed by the 
following sensors: 3-axis accelerometer LIS3LV02DL; 2-axis gyroscope IDG300; 
1-axis gyroscope LSIY300AL. The IMU’s characteristics have been summarized in 
Table 1. This IMU actually also includes a 3-axis Magnetometer HMC5843; however 
the data of this sensor have not been analyzed in this paper, and therefore its description 
is omitted.  

The LIS3LV02DL (STMicroelectronics) is a 3-axis accelerometer, whose small size 
(4.4 x 7.5 x 1 [mm]) and high performance characteristics are fully compatible with the 
strict requirements of neurosurgery. The resolution with a Full-scale = ±2 [g] and 
Bandwidth=160[Hz] is 2 [mg], with noise level of about 0.005 [m/sec2] – less than one 
bit. The LISY300AL (STMicroelectronics) is a miniaturized 7.0 x 7.0 x 1.9 [mm] 
z-axis gyro sensor. Its full-scale is ±300 [deg/s] with a Bandwidth of 88 [Hz] and a 
sensibility of 3.3 [mV/deg/s]. In order to measure 3-axes angular velocities, we also 
used a bi-axial gyro IDG300 (InvenSense). The IDG300 size is 6.0×6.0×1.5 [mm], the 
measurement range is ± 500 [degree/s] and the sensitivity is 2.0 [mV/deg/s]. Unlike all 
other prototypes and commercial IMUs available today, this mixed configuration al-
lows our IMU to obtain all the 3 axis of the gyros in one planar layer. 
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Fig. 1. The new Inertial 
Measurement Unit WB3 

 

Table 1. Main characteristics of the inertial sensors in our IMU 

LIS3LV02DL IDG300 LSI

Range ±2 [g] ±500[deg/s] ±30
Sensitivity  12±1bit 12±1bit 12±
Bandwidth 40 Hz 140 Hz 88 
Sample Rate 160 Hz 500 Hz 500
Linearity  ±2%  <1%  ±0.
Noise level 0.0051 m/s2 0.35 [deg/s] 0.2

IY300AL

00[deg/s]
±1bit
Hz

0 Hz
8% 
6 [deg/s]  

Our IMU also contains a STMicroelectronics 32 bit microcontroller STM32 Cortex 
for embedded signal elaboration and data exchange. The communication with the 
module is performed using a CAN BUS at 1[Mb/s], directly connected with a PC. 

2.2   Experimental Setup 

During neurosurgery, one of the most commonly used instruments is the bipolar for-
ceps (Fig. 2). The main characteristics of the system we used in our experiments are 
summarized in Table 2. A connector made by acrylonitrile butadiene styrene (ABS) 
polymer in rapid prototyping for housing our IMU is placed at the proximal end of the 
bipolar cutting tool (Fig. 2, right). Our IMU’s extremely reduced weight and size al-
lows it to be mounted on the bipolar forceps, and to be used during normal tasks 
without disturbing the surgeon’s performance. 
 

Table 2. Main characteristics of the 
Bipolar Cutting Tool 

 

Fig. 2. The Bipolar cutting tool used in our experi-
ments. X, Y, and Z axis are indicated 

Bipolar Cutting Tool 
Total Length 194 [mm] 
Tip Length 100 [mm]  
Weight 34.0 [gr]  

The Skill Evaluation System (SES) used for this preliminary experiment is shown in 
Fig. 3. SES is composed by 5 main parts: 

1) The Testbed, made by ABS, simulates the most common operating space [7]. Cur-
rent version has a size of 60 x 40 x h60 [mm].  
2) The Support Base (SB) is an aluminium base of 100x100[mm] with a housing for the 
testbed made by ABS. SB’s purpose is to hold the main unit stable.  
3) The Surgical Field (SF, size 50x19 [mm]) simulates the aperture in the human skull. 
The surgeon accesses the Target Area and the Goal Area from here.  
4) The Target Area (TA) is a replaceable soft surface made by Hitohada skin-like gel 
RTV-2K#1406 Hardness 0 (EXSEAL Corp., Tokyo, Japan), on which the targets are 
placed for the experiment. Three different types of TAs, each with 5 small targets 
randomly placed on it, were prepared to simulate the typical objects that are handled 
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during neurosurgery (Fig. 3(b)): BIG: 3.2 x 1.6 x 0.4 [mm]; MEDIUM: 2.0 x 1.2 x 0.3 
[mm]; SMALL: 1.0 x 0.5 x 0.2 [mm]. Five target areas for each type were prepared in 
advance to simplify the experimental procedure. 
5) The targets picked up from the TA are put in the Goal Area (GA, size 10 x 30 [mm]). 
To facilitate the release of the target, a putty-like adhesive is placed at the bottom of this 
area. 

The experimental setup is shown in Fig. 3(c). The microscope is a MITAKA MRI 
(Mitaka Kohki Co., Ltd, Tokyo, Japan). 

 

   

Fig. 3. (a) Picture of the Skill Evaluation System (SES); (b): The 3 types of target area; (c): 
Overview of the experimental setup 
 

2.3   Experimental Protocol 

Thirteen non-medical subjects (average age 27.53 years, age range 22-39, all male, all 
right handed), and 1 professional neurosurgeon (male, age 40, right handed) kindly 
agreed to participate to the experiments after providing informed consent. Among the 
non-medical subjects, only 1 had some experience with neurosurgical tools, and 1 had 
some experience with laparoscopy; all the other subjects were totally novice. The ex-
periments consist in picking all the targets in the target area, one by one, with the bi-
polar forceps, and releasing them in the goal area. The target area is replaced at the end 
of each exercise. In total there are 15 target areas (3 sizes x 5 repetitions), and they are 
replaced by following the order BIG → MEDIUM → SMALL, for 5 times.  

Acceleration data were sampled at facc =160 [Hz]; gyro data at fgyro = 500 [Hz]. Data 
were acquired on the pc for real-time display, and saved for storage and offline analy-
sis. All the data were saved as CSV (Comma Separated Value), and then loaded in 
MatlabTM (The MathWorks, Inc.) for further processing and analysis. For each repeti-
tion the data were then automatically trimmed to remove dead-time at the beginning 
and at the end of the trial due to the manual start/stop, as follows: nstart is defined as the 
first sample when a 9.1m s⁄ ; nend is defined as the first sample from the end 
when a 9.1m s⁄ . (Y is the long axis of the bipolar cutting tool as defined in Fig. 
2). Only samples between nstart and nend were then analyzed.  

Acceleration components and angular speed components were then filtered and 
smoothed by using a 10th order bandpass IIR Butterworth filter with cutoff frequencies 
fc1 = 0.05 Hz, fc2 = 8hz (accelerometers), fc1 = 0.05 Hz, fc2 = 5 Hz (rate gyros), to re-
move bias and to remove physiological tremor [10].  
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In this paper we present the calculation and analysis of the following variables: 
Execution Time Ttask; Acceleration module |a|; and Angular Speed module | |. The fft 
for |a|  was calculated with FFTsize = 8192 samples and frequency resolution 
fres(acc)=facc/ FFTsize = 160/8192 = 0.0195 [Hz]. The fft for | | was calculated with fre-
quency resolution fres(gyro)=fgyro/ FFTsize = 0.061 [Hz]. The Power Spectral Density PSD 
was estimated in both cases with the following formula: . The 
frequency range chosen for the evaluation was 0.2 – 8 [Hz] for |a| , and 0.2 – 2 [Hz] 
for | | , to take into account only the voluntary movements. Several other pa-
rameters were also calculated, but are not presented here due to space limitation. 

3   Experimental Evaluation 

The following sections present the details about the experimental evaluation. In the 
following figures, (norm.) indicates that the data have been normalized to the average 
corresponding data of the surgeon (Subject #14) for an easier visual comparison of the 
scales. The normalizing values are always indicated. Surgeon’s data are always dis-
played with dark gray bars, while novice’s data are displayed in light grey. Moreover, 
the y-scales of the normalized graphs are optimized in function of the surgeon’s value, 
which means that some bar exceeds the y-scale limit (i. e. Fig. 6).  

3.1   Analysis of the Execution Time 

The surgeon – as expected – proved to be always faster (i.e. lower Ttask) and showed 
high constancy in the execution time (i.e. lower a )  of the different tasks than 
all the novices (Fig. 4). In addition, it can be noticed that both BIG (Fig. 5, left) and 
MEDIUM (not shown) targets s howed a fast learning effect for the novices, with the 
execution time stabilizing after the 3rd trial; however, these learning effects could not be 
seen for the SMALL target (Fig. 5, right). It’s also worth noticing that this learning 
effect is also present with the surgeon for his first trials (not shown).  

 

  

Fig. 4. Execution time for the BIG (left) and for the SMALL (right) targets, averaged on the 5 
trials for each subject. Normalization Ttask values are 11.75 and 16.17 [s], respectively 

3.2   Analysis of the Acceleration  

As can be seen in Fig. 6, the mean Power Spectral Density | |)  clearly identifies the 
experienced neurosurgeon (for the surgeon it is 0.62 and 1.47 [(m/s2)2)] for the BIG and 
SMALL task, respectively; while for the other subjects it’s usually twice as high or  
 

(B) SMALL (A) BIG 
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more). Frequency distribution of | | is also quite different. It can also be seen that 
subjects #2 and #9 performed very similarly to the neurosurgeon.  

Another parameter which shows some differences between the surgeon and the 
novices is the Cumulative Distribution Function CDF of the acceleration module |a|, 
calculated as |a| |a|   and evaluated for 9  ( ). For the 
BIG targe t (Fig. 7 (left)) the neurosurgeon outperforms all the novices; the data about 
the MEDIUM target shows similar trends. Things are different for the SMALL target, 
when several novices have similar or lower |a|  than the neurosurgeon. These 
however are due to a much higher Ttask for the novices. 

 

  

Fig. 5. Execution time for the BIG (left) and for the SMALL (right) targets averaged on all 
non-medical subjects for each trial. Normalization Ttask are 11.75 and 16.17 [s], respectively. 

 

Fig. 6. PSD for the (A) BIG and for the (B) SMALL targets, averaged on the 5 trials for each 
subject. Normalization values are 0.62 and 1.47 [(m/s2)2)]. 

 

Fig. 7. Cumulative Distribution Function (CDF) of the acceleration |a|; for the (A) BIG and (B) 
SMALL targets. Normalization values are 1.10 and 1.38 [m/s2], respectively. 

3.3   Analysis of the Rate Gyro 

Among the different parameters, the Cumulative Distribution Function (CDF) of the an-
gular speed | | | |  evaluated for 9  ( )  shows some  
 

(A) BIG (B) SMALL

(B) SMALL(A) BIG 

(B) SMALL (A) BIG
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(B) SMALL(A) BIG

 
Fig. 8. CDF of the angular speed. Normalization values are 16.6 and 19.3 [deg/s]. 

difference between the surgeon and the n ovices (Fig. 8). As with |a| , , the 
surgeon’s | |  is usually lower than the other subjects for the BIGGER and 
MEDIUM targets, showing therefore high smoothness in movement; it’s intermediate 
for the SMALL targets, where some subject reached a lower | |  at the ex-
penses of a higher Ttask. | |  also shows a very limited variance for the sur-
geon, thus signifying high regularity in the exercises. 

4   Discussion and Conclusions 

With the diffusion of more and more advanced tools and technologies in the operating 
room, it is fundamental to establish more efficient training exercises and to define 
objective metrics to objectively evaluate the dexterity of neurosurgeons. The extremely 
small movements and sizes involved in neurosurgery, however, have prevented until 
now the development of such methodologies and systems. In this paper we presented 
the development of an ultra-miniaturized Inertial Measurement Unit WB3 (Sec. 2.A). 
The extreme lightweight and its extreme high performance make WB3 suitable for 
applications in neurosurgery. Moreover, it directly acquires accelerations and rotations 
at high frequency, thus providing smooth and virtually noise-free data. Commercial 
systems, instead, acquire target's position and then obtain rotations and accelerations by 
successive derivations which introduce more noise. 

As a preliminary test we applied WB3 to a bipolar forceps (Sec. 2), the most com-
monly used instrument in neurosurgery, and we used this system to evaluate the 
movements of neurosurgeons in a simple pick and place scenario. The preliminary 
results (Sec. 3) proved that several parameters extracted from the IMU’s data (and in 
particular the mean Power Spectral Density | |  and the Cumulative Distribution 
Function  of both acceleration |a| and angular speed | |) allow a clear distinc-
tion between a professional neurosurgeon and a group of novices; moreover, these data 
also could show which non-medical subject performs similarly to the surgeon, and 
how, thus validating the approach proposed in this pilot study.  

In the future, the data of more professional subjects, as well as the data of both more 
non-medical and more medical novice subjects are needed to define a more precise 
evaluation system. Overall, this work shows that a substantial set of parameters is 
necessary to investigate and analyze the performance of surgeons. Currently, work is 
still in progress, and our future commitment in this field is to continue to analyze the 
performance of neurosurgeons in more complex exercises and procedures.  
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Abstract. The purpose of this study is to develop a new endoscope for performing 
simple surgical tasks inside a cardiac atrium/chamber filled with blood, i.e., for per-
forming “off-pump” cardiac surgeries. In general, it is very difficult to observe the 
inner wall of the vessels containing circulating blood because the light from the en-
doscope is scattered by the red blood cells. “Plasma flushing” performed using the 
separator system is developed to observe the inner side of the heart filled with 
blood and to remove blood cells from the front of the endoscope tip. The system 
was used in in vitro quantitative measurement of the device performance and in 
vivo experiments on a swine. In these experiments, we successfully obtained high-
resolution images of the interior of the heart during off-pump surgery. 

1   Introduction 

Currently, the cardiopulmonary bypass system is being widely used for performing 
cardiotomy under extracorporeal circulation even though the operation task is quite 
simple—the operation involves simply clipping valve leaflets, cutting or shortening a 
chord, closing the septal hole, etc. However, there are risks associated with the use of 
an artificial heart-lung machine during the operation. For example, complications 
such as cerebral infarct and pulmonary infarct may arise after operation. Thus, in the 
case of simple surgery inside the heart, off-pump surgery is ideal for increasing the 
quality of life of the patients.  

Some research groups and companies have been trying to perform surgical tasks by 
using off-pumps, e.g., Linte CA[3] developed the augmented reality environment for 
off-pump mitral valve implantation, and L. Ming[4] developed an MRI-compatible 
robot for assisting off-pump artificial aortic valve replacement. Tomasz [1] and 
Evalve Inc.[2] reported the development of the surgical catheter device “Mitraclip” 
that can be used to perform off-pump edge-to-edge (E2E) repair for mitral regurgita-
tion; in this procedure, the obstruction of transmitral flow is reduced by attaching 
clips to the leaflets of the mitral valve through catheter manipulation. However, it is 
very difficult to perform quick, efficient operations by adopting these procedures or 
using these devices because of the lack of image information during surgery. For each 
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task, surgeons have to use low-resolution ultrasound images, 2D X-ray images ob-
tained by X-ray exposure, or delayed MR images in order to observe the procedure 
during the surgery. The best observation method is to obtain an endoscopic view of 
the interior of the heart. Endovascular endoscopes are widely used not only for diag-
nosis but also for the surgical treatment of vessel stenosis, vessel sclerosis, etc. How-
ever, it is very difficult to observe the inner side of the vessels containing circulating 
blood because the light from the endoscope is scattered by the red blood cells and 
clear images are not obtained if saline flushing of these vessels is not performed.  

To overcome the above problems, we developed a new endoscope system to ac-
quire a clear endoscopic view that would help perform simple surgical tasks inside a 
cardiac atrium/chamber filled with blood. We utilized a “plasma flushing” system to 
remove blood cells from the front of the endoscope tip, as described in section 2. A 
new tip design is adopted for more efficient observation. In section 3, experiments 
and their results are described. In contrast, when using conventional endovascular 
endoscopes, an innovative method must be developed for observation of the inner 
surface of a wider heart chamber, given the strong turbulence caused by heart beats. 

2   Design and Development of New Endoscope 

To observe the inner chamber of the heart filled with blood, we developed a “plasma 
flushing” system to remove blood cells from the front of the endoscope tip. Figure 1 
shows an overview of our prototype system. The system comprises a whole endo-
scope (The diameter and length of the image guide fiber are 3.8 mm and 200 mm, 
respectively.) with a small channel (d = 2.0 mm); this channel comprises a coaxial  
 

Cardiac atrium

Liquid flow

autologous blood 

Endoscopic 
monitor

Control PC
with Image 
capture, A/D, 
D/A, DIO

Plasma Separator Reserver

Motor drive

NTSC

blood cells

NTSC

Signal from the target (ECG, Switch, etc.)

3 port Solenoid valve

I/O
Syringe

Surgical device

Fig. 1. Overview of the plasma flushing system: a fiber endoscope, surgical device, and the 
liquid flow are integrated inside the endoscope device (d = 10 mm) 
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flush channel and a small channel for forceps; the system also comprises a three-port 
solenoid valve, a syringe with a pumping actuator, a control PC with an add-in board 
for capturing images, A/D, D/A, and DIO extension boards to control the timing of 
the flushing, and an observation monitor. 

The required specifications for the endoscope are as follows: 

1. The external diameter should be less than 10 mm. 

2. The cardiovascular function should not be disturbed. 

3. Points up to 10 mm from the endoscope tip should be observable. 

4. The endoscope must be biocompatible and sterilizable. 

Figure 2 shows the prototype design of the device that satisfies the above require-
ments. Inside the outer pipe, a fiber-optic endoscope (d = 0.7 mm; AS-003, FiberTech 
Inc.) and biopsy forceps (d = 1.7 mm) are placed; further, the ends of the pipe are 
sealed by silicone rubber. Inside of the outer pipe, d = 0.7 mm fiber-optic endoscope 
(AS-003, FiberTech Inc.) and d = 1.7 mm biopsy forceps are set and the end of pipe 
are sealed by silicone rubber. A conventional endoscope can only be used to observe 
blood flow in a beating heart because blood contains corpuscles that reflect and scat-
ter light. To observe intracardiac surgery, we used a clear liquid flushed from the 
endoscope tip created a transparent region to observe the object. We proposed the use 
of plasma from autologous blood as the flushing liquid, because it is transparent, 
viscous, fully biocompatible, and if the total amount of liquid can be controlled, it will 
not cause stress to the heart during the operation. 

We attached the new tool called the “separator,” which looks like an umbrella, to 
separate liquid and blood at the device tip. The separator is made from a thin plastic film 
and six frames that are made of SUS304. The frames are arranged in a radial pattern 
around the center of the endoscope. This separator can be folded by pushing the outer 
sheath, and it recovers its original shape by the action of a self-generated spring force. 

 

Fig. 2. Detailed design of the endoscopic device with separator tip: a) Status before device 
insertion b) Opening of the separator c) Developed separator tip 

[ 
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3   Experiments and Results 

3.1   Evaluation Experiment for Observable Depth 

We performed a phantom experiment to evaluate the relationship between the angle 
of the separator of the tip and the observable depth. The experimental procedure is as 
follows:  

1. Prepare a tank filled with blood and place a plastic phantom inside the tank. 

2. Fix the endoscope device on an XYZ stage to measure the distance between the 
device tip and the phantom. 

3. Measure the maximum depth upto which the phantom can be clearly observed. 

4. Vary the following parameters: the separator open-angle, the distance, and the 
flushing speed. 

Distance to
measure

Observed area

1.5mm

 

Fig. 3. Experimental setup: a) Endoscopic device attached on an XYZ stage along with the 
phantom; b) The distance to measure; c) Endoscope image obtained during flushing performed 
inside the blood pool; d) Observed area of the phantom  

Table 1. Relationship between separator angle and measured observation depth 

Separator 
angle[deg] 

Flush  
speed [ml/s] 

Observable  
depth [mm] 

13 5.4 2.5 
7.5 2.4 3.8 

0 4.8 3.5 
[ 
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In this experiment, we used glycerin as a flushing liquid instead of blood plasma. 
The results are listed in Table 1. The listed flushing speeds are the maximum 

speeds required to observe the target phantom. The observable depth was the best 
when the open angle of the separator was set to 7.5°.  

3.2   Evaluation Experiment for Observation Area 

The observation area (visual field) was evaluated using a phantom along with a device 
that was equipped with a separator and one that was not equipped with a separator. In 
this experiment, the separator with an open angle of 7.5° was used since it gave the 
best performance in the previous experiment. We used another phantom, shown in 
Figure 4, to measure the circular observation area with a diameter of 5 mm. We 
evaluated the maximum depth by varying the distance between the endoscope tip and 
the phantom while the entire circle was in view. 

The results are listed in Table 2. It was impossible to observe the phantom at any 
distance when the endoscope was used without a separator. 

Table 2. Dependence of the maximum observable depth on the separator 

Separator Observation 
depth [mm] 

Flushing 
speed [ml/s] 

Present 3 4 

Absent Not Visible At any speed 

5mm

15mm

 

Fig. 4.  Experimental setup: a) Endoscopic device attached on an XYZ stage and the phantom; 
b) Phantom for measuring the observable area; c) Dimensions of the phantom; d) Observed 
phantom during the flushing performed in the blood pool 
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3.3   In vivo Experiments and Results 

In vivo experiments were performed on a swine whose heart size is similar to the size 
of a human heart. In the experiment, the device was inserted into the right atrium 
through a trocar with a diameter of 4.0 mm; the trocar was placed in an off-pump.  

We chose the tip of tricuspid valve and chorda tendinea in the right atrium for ob-
servation. Since the anatomy of the swine heart is different from that of the human 
heart, the trocar-insertion approach from the left atrium is very severe. Thus, we 
chose the right atrium for the in vivo experiment. The observation was monitored by 
real-time ultrasound imaging, which was required to recognize the position of the 
device tip before performing the flushing in the right atrium. This is because a clear 
view was available in an extremely narrow space and the surgeon could not find the 
correct anatomical structures without the position and orientation information. 

We also used glycerin as a flushing liquid instead of blood plasma because of the 
restriction on the experiment time. The glycerin liquid was warmed to maintain the 
swine’s body temperature at a constant level so that no shocks were felt by the heart. 
The flushing speed during the experiment was 3–5 ml/s. 

The screenshots from the video obtained during the off-pump observation are 
shown in Figure 5. The image on the left is the normal image that corresponds to the 
case without flushing - we can only observe blood flow. The image at the center 
shows the chordae tendineae of the tricuspid valve, and the papillary muscle was also 
observed well for a few seconds. The image on the right clearly shows the leaflet of 
the tricuspid valve in the right atrium.  

In these experiments, we successfully obtained very clear camera images of the in-
terior of the beating heart during off-pump surgery. 

4   Discussion 

In in vitro experiments, we used real plasma, and the results were not very different 
from the in vivo results. However, some problems related to crystallization of the 
plasma were encountered, and we need to consider the temperature control.  

The in vitro experiment was performed in the stationary condition, and the experi-
mental results showed a trade-off between the observable depth and observable area.  
[[ 

chorda tendinea

papillary muscle

tip of tricuspid valve

 

Fig. 5.  In-vivo experiment: (Left) Observation without flushing—we observe nothing because 
of the presence of blood; (Center) Observation when flushing was performed—Chorda tendinea 
and papillary muscle were observed; (Right) The tip of the tricuspid valve was observed 
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Flow rate of flushed liquid 

Separator
Endoscope

 

Fig. 6.  2D flow simulation of the device performed using ANSYS: the white lines represent 
the boundary, and the bar to the bottom represents the flow rate of the flushing liquid 

 

We believe that this trade-off arises because the observable volume is constant for any 
flow rate while the observable depth varies with flow rate. 

However, an actual clinical case involves the dynamic state, and further analysis is 
required for detailed design of the device. In a preliminary study, we attempted to 
perform 2D flow simulations using ANSYS CFD, as shown in Figure 6. In this simu-
lation, the turbulent separated flow inside the separator flows along the separator wall, 
which is a boundary. Further, it is expected that in this simulation, it is possible to 
obtain a wider transparent volume for a high-velocity flow at the device tip. However, 
it is very difficult for us to perform an analysis by simulating the 3D incompressible 
unsteady flow. As the next step, we should carry out both parameter acquisitions by 
performing in vivo experiments and further high-cost simulations. 

In the in vivo experiment, we developed a PC system that can be used to control the 
pumping timing through a manual switch or ECG signals; the system can also be used to 
store the endoscope images in real-time and periodically display images (similar to a 
stroboscopic view) on the monitor in order to maintain a clear view that is not distorted 
by the presence of blood cells. However, because of the time delay in the liquid flushing, 
it was impossible to control the timing of the flushing in the in vivo experiment. The 
flush pumping mechanism requires a few improvements before it is used in the next task. 

In all cases, we successfully obtained clear endoscope images of the interior of the 
heart, even though each observation lasted for a short time. The next task is to combine 
surgical tools to perform the operation. N Suzuki has already developed the same kind of 
endoscope with a small robot; the endoscope can be used for intravascular operation[5].   

5   Conclusion 

In this study, we developed a new endoscope system to acquire clear endoscopic 
images of the interiors of blood vessels or the heart. These images are useful when 
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performing simple procedures during cardiac surgery. By using this device, we can 
obtain high-resolution images to observe the inner structure of the heart and its pump-
ing activity. Thus, we can perform better diagnosis and administer more effective 
therapy by applying robotic technologies inside the heart.  

We are currently developing a small manipulator that we will combine with the ob-
servation device for performing advanced minimal invasive surgery in the near future. 

This research is supported by MEXT Grant-in-Aid for Scientific Research (S) 
(#17100008). 
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Abstract. An open problem in endoscopic surgery (especially with flex-
ible endoscopes) is the absence of a stable horizon in endoscopic images.
With our ”Endorientation” approach image rotation correction, even in
non-rigid endoscopic surgery (particularly NOTES), can be realized with
a tiny MEMS tri-axial inertial sensor placed on the tip of an endoscope.
It measures the impact of gravity on each of the three orthogonal ac-
celerometer axes. After an initial calibration and filtering of these three
values the rotation angle is estimated directly. Achievable repetition rate
is above the usual endoscopic video frame rate of 30Hz; accuracy is about
one degree. The image rotation is performed in real-time by digitally ro-
tating the analog endoscopic video signal. Improvements and benefits
have been evaluated in animal studies: Coordination of different instru-
ments and estimation of tissue behavior regarding gravity related defor-
mation and movement was rated to be much more intuitive with a stable
horizon on endoscopic images.

1 Introduction

In the past years, N atural Orifice T ranslumenal Endoscopic Surgery (NOTES)
[1] has become one of the greatest new challenges within surgical procedures and
has the strong potential to eventually succeed minimal invasive surgery (MIS).
Currently, MIS interventions are mainly carried out by surgeons using rigid la-
paroscopes inserted in the abdomen from the outside, while gastroenterologists
apply flexible video-endoscopes for the detection and removal of lesions in the
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gastro digestive tract (esophagus, stomach, colon, etc.). As the currently prac-
ticed NOTES and hybrid interventions require flexible endoscopes to access the
abdominal cavity as well as the surgical instruments and skills to perform the
actual intervention, both disciplines and technologies are needed. Gastroenterol-
ogists have been trained and accustomed to navigate through the lumen of the
colon, stomach or esophagus by pushing, pulling and rotating the flexible video-
endoscope (fig. 1), regardless of orientation, rotation and pitch of the endoscope
tip inside the patient and the image orientation displayed on the monitor. Sur-
geons, on the other hand, are used to a fixed relation between the tip of the
endoscope and the inside of the patient, as neither one of them is changing their
position during the intervention. However, mismatches in the spatial orientation
between the visual display space and the physical workspace lead to a reduced
surgical performance [2,3].

Hence, in order to assist surgeons interpreting and reading images from flexi-
ble video-endoscopy, an automated image rectification or re-orientation accord-
ing to a pre-defined main axis is desirable [4]. The problem of the rotated image
is even more important in hybrid NOTES procedures, where an additional mi-
cro instrument is inserted through the abdominal wall for exposition and tasks
during extremely complex interventions.

In the past, there have been suggested different approaches for motion tracking
[5] and image rectification [6]. Several approaches use parameters achieved from
registration of intra-operative obtained 3-D data with pre-operative CT or MRI
volumes. Such intra-operative 3-D data can be obtained from image-driven ap-
proaches like monocular shape-from-shading [7] and structure-from-motion [8,9],
stereocular triangulation [10], active illumination with structured light [11] or
application of an additional time-of-flight/photonic-mixing-device camera [12].
But even if intra-operative 3-D data can be obtained and reconstructed in real-
time, e.g. via time-of-flight cameras needing no data post-processing and having
frame rates higher than 30Hz, real-time computation of registration parameters
is still a challenge [13] especially since colon or stomach provide less applicable
feature points.

Fig. 1. Roll, pitch and yaw description for endoscopic orientation
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A broad overview of possible tracking technologies has been given in [5]. These
also include the idea of electro-magnetic tracking, which can be applied to an
endoscope. This requires not only an additional sensor in the endoscope’s tip but
also an external magnetic field. This can easily be disturbed by metallic instru-
ments and leads to several further restrictions [14]. A by far simpler approach to
measure the needed orientation angle will be presented in this work and consists
of integrating a Micro Electro-Mechanical System (MEMS) based inertial sensor
device in the endoscope’s tip to measure influencing forces in three orthogonal
directions (fig. 1). If the endoscope is not moving, only the acceleration of gravity
has an effect on the three axes.

2 Method

2.1 Technical Approach

To describe the orientation of the endoscope relating to the direction of gravity,
an Cartesian ”endoscopic board navigation system” with axes x, y and z (ac-
cording to the DIN 9300 aeronautical standard [15]) is used as body reference
frame [16]. The tip points in x-direction which is the boresight, the image bot-
tom is in z-direction and the y-axis is orthogonal to both in horizontal image
direction to the right. Rotations about these axes are called roll Φ (about x),
pitch Θ (about y) and yaw Ψ (about z). Image rotation has only to be performed
about the optical axis x which is orthogonal to the image plane. Gravity g is
considered as an external independent vector. Since there is no explicit angle
information, only the impact of gravity on each axis can be used to correct the
image orientation. Equation (1) expresses, how rotation parameters Φ, Θ and
Ψ of the IMU (Inertial Measurement Unit) have to be chosen to get back to a
corrected spatial orientation with z parallel to g:

⎛⎝Fx

Fy

Fz

⎞⎠ =

⎛⎝1 0 0
0 cos(Φ) sin(Φ)
0 − sin(Φ) cos(Φ)

⎞⎠ ·

⎛⎝ cos(Θ) 0 − sin(Θ)
0 1 0

sin(Θ) 0 cos(Θ)

⎞⎠ ·

·

⎛⎝ cos(Ψ) sin(Ψ) 0
− sin(Ψ) cos(Ψ) 0

0 0 1

⎞⎠ ·

⎛⎝0
0
g

⎞⎠ =

⎛⎝ − sin(Θ)g
sin(Φ) cos(Θ)g
cos(Φ) cos(Θ)g

⎞⎠ (1)

with Fx,y,z: measured acceleration

Using the two-argument function arctan2 to handle the arctan ambiguity within
a range of ±π one finally can compute roll Φ for Fx �= ±g and pitch Θ for all
values:

Φ = arctan2(Fy , Fz) (2)

Θ = arcsin
(
−Fx

g

)
(3)
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As g determines just 2 degrees of freedom with this approachyawΨ cannot be com-
puted. If Fx = ± g ( → Θ = ±π → Fy = Fz = 0 ) roll Φ is not determinable
either. To avoid movement influence, correction is only applied if superposed ac-
celeration additional to gravity g is below boundary value ΔFabsmax:

|
√

F 2
x + F 2

y + F 2
z − g| < ΔFabsmax (4)

First, a preceded 3× 3 calibration matrix, which incorporates misalignment and
scaling errors [17,18], has to be retrieved by initial measurements. Moreover a
peak elimination is the result of down sampling the measuring frequency, which
is considerably higher than the image frame rate (up to 400Hz vs. 30Hz). This
is realized by summing up separately all n sensor values Fxi , Fyi and Fzi within
an image frame with i = 1, ..., n and weighting them with a weighting factor wi

with maximal weight w0:

wi =
1

1
w0

+ |
√

F 2
xi

+ F 2
yi

+ F 2
zi
− g|

(5)

Afterwards the sum has to be normalized by the sum of all weighting factors wi:⎛⎝Fx

Fy

Fz

⎞⎠ =
n∑

i=1

(

⎛⎝Fxi

Fyi

Fzi

⎞⎠ · wi) ·
n∑

i=1

(wi)−1 (6)

To avoid bouncing or jittering images as a result of the angle correction, additional
filtering is necessary. Hence, prior to angle calculation, each axis is filtered with
a Hann filter to smooth angle changes and with a minimum variation threshold
ΔFaxmin to suppress dithering. As long as superposed acceleration calculated in
equation (4) remains below boundary value ΔFabsmax, roll Φ and pitch Θ can be
calculated using equations (2) and (3). Otherwise they are frozen untill ΔFabsmax

is reached again. If these boundaries are chosen correctly, the results will be contin-
uous and reliable since nearly all superposed movements within usual surgery will
not discontinue or distort angle estimation. Both original and rotated image are

Fig. 2. Block diagram of rotation correction with the ”Endorientation” algorithm
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displayed for security reasons. For potential use with other devices the calculated
angle is also transmitted to an external communication interface (fig. 2).

2.2 Image Rotation

The measurement data is transferred as a digital signal via a two-wire I2C inter-
face along the flexible endoscope tube. The endoscopic video signal is digitalized
via an external USB video capture device with an adequate resolution to provide
the usual quality to the operator. By this design the ”Endorientation” algorithm
is divided into two parts. One part running on a small 8-Bit microcontroller and
one parting running as an application on a workstation. Everytime the capture
device acquires a new frame the software running on the workstation requests the
actual acceleration values from the software on the microcontroller. The three
acceleration values are used to calculate the rotation angle according to the
equations above. The rotation of the frame is performed via the OpenGL library
GLUT[19]. The advantage of this concept is the easy handling of time-critical
tasks in the software. We can use the sensor sample rate of 400Hz doing some
filtering without getting into trouble with the scheduler granularity of the work-
station OS. The information of the endoscope tip attitude is available within
less than 30ms. Our ”Endorientation” approach can be performed in real-time
on any off-the-shelf Linux or Windows XP/Vista workstation.

2.3 Clinical Evaluation

In a porcine animal study, the navigation complexity of a hybrid endoscopic
instrument during a NOTES peritoneoscopy with the well established trans-
sigmoidal access [20] was compared with and without Endorientation. The en-
doscopic inertial measurement unit was fixed on the tip of a flexible endoscope
(fig. 3). Additionally a pulsed DC magnetic tracking sensor was fixed on the
hybrid instrument holder for recording the position of the surgeon’s hands. To

Fig. 3. Prototyping with external sensor on the endoscope’s tip
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Fig. 4. Original (l) and rotated (r) image with needle incision and fluid injection

evaluate the benefit of automated MEMS based image rectification, four differ-
ent needle markers were inserted through the abdominal wall to the upper left
and right and the lower left and right quadrants. Under standardized conditions
these four needle markers had to be grasped with a trans-abdominal introduced
endoscopic needle holder. Displaying alternately originally rotated and automat-
ically rectified images path and duration were recorded and analyzed.

3 Results

3.1 Technical Accuracy

With the employed sensor there is a uniform quantization of 8 bit for a range
of ±2.3g for each axis. This implies a quantization accuracy of 0.018g per step
or 110 steps for the focused range of ±g. This is high enough to achieve a
durable accuracy even to a degree within relatively calm movements. This is
possible as roll angle Φ is calculated out of inverse trigonometric values of two
orthogonal axes. Single extraordinary disturbed MEMS values are suppressed
by low weighting factors wi. Acceleration occurs only in the short moment of
changing movement’s velocity or direction. For the special case of acceleration
with the same order of magnitude as gravity, ΔFabsmax can be chosen small
enough to suppress calculation and freeze the angle for this short period of time.
By choosing a longer delay line for the smoothing Hann filter and a higher
minimum variation threshold ΔFaxmin, correction may be delayed by fractions
of a second but will be stable even during fast movements.

3.2 Clinical Evaluation

In the performed experiments, it could clearly be shown that grasping a needle
marker with an automatically rectified image is much more easier and therefore
faster than with the originally rotated endoscopic view (fig. 4). In comparison to
the procedure without rectification the movements are significantly more accu-
rate with by factor 2 shorter paths and nearly half the duration. The details of
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verified clinical benefits are described in [21]. Obviously the two parameters dura-
tion and path length are strongly correlated and can be regarded as a significant
measure for the complexity of surgical procedures. Since both are decreased with
the application of image rectification, the complexity of the complete procedure
can be reduced.

4 Discussion

As described in the previous section, an automatic rectification (or re-orientation)
of the acquired endoscopic images in real-time assists the viewer in interpreting the
rotated pictures obtained from a flexible videoscope. This is especially important
for physicians, who are used to naturally rectified endoscopic images related to
a patient-oriented Cartesian coordinate system within their surgical site. In con-
trast, gastroenterologistshave learned by combination of long experience, anatom-
ical knowledge and spatial sense how to use and interpret an endoscope-centered
(tube-like) coordinate system during their exploration of lumenal structures, even
if the displayed images are rotating. Our described experiments included surgeons
originally unrelated to flexible endoscopes. For future research, we will also in-
clude gastroenterologists, who are experienced reading and interpreting rotated
and non-rectified image sequences. Possibly, in the future of NOTES, dual moni-
tor systems will be needed to support both specialists during the intervention.

The hardware costs for of-the-shelf communication converter, capture device,
MEMS sensor and circuit board are below $250. More reliable hardware will
increase this amount by some factors, Linux/XP/Vista workstation and an ad-
ditional Display have to be added. Integrating the sensor board in a flexible endo-
scope is surely possible but probably more expensive as well. However, there are
several two channel endoscopes available. One of their working channels could
be used for the MEMS sensor. In conclusion, we have shown that it is simple and
affordable to additionally provide rotated images with fixed horizon for better
orientation. The main complexity while using the second working channel could
be to fix the sensor in the lumen, to prevent rotation in the working channel and
to get the possibility to change the sensor with an instrument.
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466 K. Höller et al.

6. Koppel, D., Wang, Y.F., Lee, H.: Robust and real-time image stabilization and
rectification. In: Procs. 7th IEEE Workshop on Application of Computer Vision
(WACV/MOTION 2005), vol. 1, pp. 350–355. IEEE Computer Society Press, Los
Alamitos (2005)

7. Yeung, S.Y., Tsui, H.T., Yim, A.: Global shape from shading for an endoscope
image. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp.
328–332. Springer, Heidelberg (1999)

8. Deguchi, K., Sasano, T., Arai, H., Yoshikawa, H.: 3D shape reconstruction from
endoscope image sequences by the factorization method. IEICE Transactions on
Information and Systems 79(9), 1329–1336 (1996)

9. Thormählen, T., Broszio, H., Meier, P.N.: Three-dimensional endoscopy. In: Falk
Symposium No. 124, Medical Imaging in Gastroenterology and Hepatology, Han-
nover, September 2001, vol. 124 (2002)

10. Stoyanov, D., Darzi, A., Yang, G.Z.: A practical approach towards accurate dense
3D depth recovery for robotic laparoscopic surgery. Computer Aided Surgery 4(10)
(June 2005)

11. Albitar, C., Graebling, P., Doignon, C.: Fast 3D vision with robust structured
light coding. In: SPIE Medical Imaging 2009: Visualization and Image-Guided
Procedures, Orlando, USA (February 2009)
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Abstract. This paper describes the first accomplishment of the Time-
of-Flight (ToF) measurement principle via endoscope optics. The appli-
cability of the approach is verified by in-vitro experiments. Off-the-shelf
ToF camera sensors enable the per-pixel, on-chip, real-time, marker-less
acquisition of distance information. The transfer of the emerging ToF
measurement technique to endoscope optics is the basis for a new gen-
eration of ToF rigid or flexible 3-D endoscopes. No modification of the
endoscope optic itself is necessary as only an enhancement of illumina-
tion unit and image sensors is necessary. The major contribution of this
paper is threefold: First, the accomplishment of the ToF measurement
principle via endoscope optics; second, the development and validation
of a complete calibration and post-processing routine; third, accomplish-
ment of extensive in-vitro experiments. Currently, a depth measurement
precision of 0.89 mm at 20 fps with 3072 3-D points is achieved.

1 Introduction

Minimally invasive surgery (MIS) has become a promising option if not standard
procedure for a great number of surgical interventions due to the minimized
collateral surgical trauma and quicker recovery. Minimally invasive intervention
techniques had, have and will have a significant impact on both patients and
surgeons.

Today diagnosis and intervention are based on the inspection of an image
sequence acquired by a monocular video camera in MIS. This image sequence
provides a flat visualization of the operation area. Consequently, depth percep-
tion and navigation of surgical instruments is very difficult. The recognition and
assessment of pathological structures and tissues as well as the quantification
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(a) ToF measurement principle (b) ToF camera system

Fig. 1. Fig. 1(a) illustrates the ToF measurement principle. The phase-delay ϕ between
the sinusoidally modulated illumination light power Pe and received light power Pr is
caused by the light propagation delay over the distance. ϕ is measured in each pixel of a
ToF sensor. The incoming amplitude k·PA (0 ≤ k ≤ 1 depending on signal attenuation)
is also measured by ToF sensors and provides a grey-scale image. (PB : optical power
of background light sources.) Fig. 1(b) shows a commercially available ToF camera
system (PMD[vision]3k-S from PMDTec GmbH) and the 7.4 mm×6.4 mm ToF sensor
located inside the housing. To the left and right the infrared active illumination units
can be observed. Replacing the original lense by an endoscope optic and replacing the
original illumination unit by a customized one were the basic hardware modification
steps to build the ToF endoscope.

of their three-dimensional dimensions is only possible due to the expertise and
experience of the inspecting person and is consequently subjective in its nature.
By three-dimensional surface models of the operation area such tasks can be
accomplished more easily, more objective and in a reproducible manner. It is a
widely investigated and verified fact that 3-D information significantly improves
operative safety and precision during intervention [1] as well as during surgical
training [2], for example in laparoscopic or gastrointestinal endoscopy [3].

No widely applicable and easy-to-build system is available which enables real-
time, 3-D measuring (in contrast to 3D visualization) at a constant pixel res-
olution in the operation area during an endoscopic intervention. The system
proposed in this article provides this measuring capability with sub-millimeter
depth precision.

2 State of the Art

Intra-operatively acquiring depth information is a problem which has gained
significant interest especially in the field of MIS.

Image-driven monocular or stereoscopic approaches for recovering depth data
of the operation area like [4,5] have been proposed. In general, these techniques
unfortunately provide no real-time capability as they require the processing of
an image sequence; Furthermore, they provide no guaranteed density of the com-
puted 3D point cloud as the number of computed 3D points relies on the amount
of detected and tracked features. Approaches have been proposed which weaken
assumptions like a static field-of-view or taking care of missing data problems
[6,7]. Such image-driven approaches have been successfully applied for surgical
robot-safety management or autonomous positioning of surgical instruments.

Instead of applying vision techniques the utilization of measuring techniques
for directly acquiring the depth information from the operation area have been
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investigated. Utilizing a miniaturized digital holography system 512×512 3D
points can be obtained at 5 fps [8]. The authors successfully address non-medical
application fields but do not comment on the applicability under sterile condi-
tions. This is an important issue as the proposed measurement probe is mounted
at the tip of the endoscope and thus has to be sterilized for intra-operative usage.
In [9] and [10] an approach based on the detection of a laser beam line which
is actively controlled by an optical galvano scanner is described. Approx. 4000
3D points can be obtained at 5-6 fps which was verified to be enough infor-
mation for a robotic navigation system. The approach requires the insertion of
two monocular endoscope optics: One for the projection of the laser beam and
one for observing the projected laser beam. The effort of inserting an additional
endoscope optic to obtain the 3D geometry may not be suitable for practical
clinical use.

Our approach aims at utilizing a single endoscope optic, which is commonly
available during endoscopic interventions, to derive 3D information of the oper-
ation area.

A measurement principle, which can derive 3D information if only one en-
doscope optic is available, is the ToF measurement principle. ToF sensors have
been developed without a focus on MIS or endoscopes and are available since one
decade [11]. ToF sensors consist of a pixel matrix and an external illumination
unit, which actively illuminates the scene with an incoherent near infrared light.
This light is intensity-modulated with a modulation frequency fmod, which is
usually in the range of ≤30 MHz for commercially available ToF sensors. Each
pixel is synchronized with the illumination unit and measures the phase-delay
ϕ due to the propagation delay between the emitted and reflected light. This
approach is illustrated in Fig. 1(a) The phase-delay is related to the propaga-
tion time of the signal td by td = ϕ/(2π · fmod), and the traveled distance d of
the signal can be computed by d = c · td, where c is the speed of light in the
transmission medium (c ≈ 299.710km/s in air). Additionally, each pixel provides
an amplitude information proportional to the intensity of the incoming infrared
light. The amplitude information is mainly depending on the distance and the re-
flecting material. This information provides a gray-value image (amplitude data
image) in addition to the distance map.

3D Cartesian coordinates can be computed from the measured distances. Stan-
dard calibration routines [12] can be applied to compute the necessary intrinsic
camera parameters if they are not known in advance.

3 Method and Evaluation

3.1 Illumination Unit of the ToF Endoscope

For the ToF principle a light source with fast intensity modulation is required.
As this modulation frequency fmod is in the range of 10 MHz to 100 MHz a
mechanical modulation of the light beam by a rotating chopper wheel can not
be used. Thermal light sources like tungsten incandescent lamps used typically
for endoscope illumination can not be modulated that fast by the electrical
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Fig. 2. Scheme of the signal transmission chain and hardware setup of a ToF endo-
scope. Note that d0 ≤ d1 < d2. The large dashed line depicts the transmission of the
illuminating light from the light source to the operation area. The small dashed line
depicts the transmission of the illuminating light from the operation area to the ToF
sensor.

current, either. Therefore, light emitting diodes (LEDs) are typically applied for
the illumination unit of ToF cameras as can be seen in Fig. 1(b). LEDs can be
modulated by their electrical current up to 100 MHz. However, to generate a
sufficient light intensity, many LEDs are required in parallel. This makes such an
illumination unit impractical for coupling to the illumination fiber guide of an
endoscope. For this work, a single fiber-coupled high-power laser diode has been
adopted to the endoscope. With an output power of max. 2 W emitted from a
single 200 μm diameter optical fiber, this laser diode can easily be coupled to the
endoscope and provides sufficient light power to overcome the transmission losses
of the endoscope illumination and image guides for a good signal-to-noise ratio of
the ToF camera. The high-frequency characteristics of the laser diode have been
studied thoroughly to design the required high-speed driver electronics. By a
single RF MOSFET transistor the modulation of the laser diode up to frequencies
of 50 MHz with potential to reach 100 MHz for future ToF cameras with an
improved distance resolution was enabled. The modulation is synchronized with
the ToF camera for accurate phase measurements. Thus, a powerful and versatile
illumination light source for adopting standard 3D ToF cameras to endoscopes
was realized.

3.2 Data Processing

As Fig. 2 depicts, the distance value (if not explicitly stated otherwise all dis-
tances are specified in mm) computed by a pixel of the ToF sensor is not initially
the distance from the endoscope tip to the operation area, but rather biased by
a constant error d0 + (d2 − d1).

The distance d0 + (d2 − d1) is different for each pixel due to slight differences
in the transmission way through the fiber optics and optical channel of the
endoscope optic. To remove this error an opaque object of good reflectivity (for
example a sheet of white paper) is held directly before the endoscope optic:
The distance measured in each pixel corresponds to d0 + (d2 − d1) = d2 as
d1 − d0 = 0. The acquired distances are additionally post-processed with a
bilateral filter using a spatial sigma of 10.0 and a range sigma of 50.0 [13] to get



Time-of-Flight 3-D Endoscopy 471

a smooth 2D distance-correction mask. Subtracting the computed offset mask
from the acquired distance map and dividing the obtained values by two yields
the distances of the observed points from the endoscope tip. Such distances will
be further on referred to as offset-corrected. To reduce outliers a 2D bilateral
filter (with spatial sigma 1.0 and range sigma 5.0) is finally applied to the offset-
corrected distance map. Pixels whose distance measurement is severely corrupted
either by acquiring very few of the infrared light or by acquiring too much of
it (which leads to saturation effects in a pixel and consequently to an invalid
distance measurement) can be automatically identified by applying an upper
and lower threshold to the amplitude data. As the amplitude information is an
absolute measurement of the acquired amplitude of the observed infrared signal
a global threshold can be chosen.

3.3 Evaluation of Measurement Precision and In-vitro Experiments

A ToF endoscope utilizing the ToF sensor of the ToF camera PMD[vision]3k-
S, which operated at a modulation frequency of 30 MHz, and a zero degree
endoscope optic with 10 mm diameter was used for the tests and experiments.
The ToF sensor had a lateral resolution of 64×48 pixels and operated at upto

(a) In-vitro experimental
setup

(b) 2D Amplitude data (c) Depth map

(d) 3-D measuring (Cube
at 4.6 cm; scene range:
1.4 cm-13 cm)

(e) 3-D measuring (Cube at
3 cm; scene range: 1.2 cm-
8 cm)

(f) 3-D measuring (Cube at
4 cm; scene range: 2.5 cm-
10 cm)

Fig. 3. Fig. 3(a) shows the setup used for the experiments. Fig. 3(b)-3(c) show the data
provided by the ToF endoscope: A 2D amplitude data image (Fig. 3(b)) and a distance
map (Fig. 3(c): the brighter a pixel the closer is the point) of a tunnel-like anatomical
structure at the entrance of the stomach. Fig. 3(d)-3(f): Endoscopic 3-D measurement
of edge and surface diagonal length of a 15×15×15 mm cube from different viewing
positions in the porcine stomach. The depicted gray value image encodes the amplitude
data (not the distances) provided by the ToF endoscope.
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(a) Amplitude image of
gastric mucosa

(b) Distance map
of ROI

(c) 3D Visualization of ROI

(d) Object
dimension

(e) 2D Color
image

(f) ToF ampli-
tude image

(g) ToF dis-
tance map

(h) 3D Visual-
ization

Fig. 4. Various example data sets. Porcine stomach experiments: Fig. 4(a) Am-
plitude data with Region-of-Interest(ROI); Fig. 4(b): Distance map of ROI; Fig.4(c):
3D visualization. 2D endoscopic color data vs. ToF endoscopic 3D data: A
ring-shaped object (Fig. 4(d)) was inserted into a pepper (Fig. 4(e): 2D endoscopic
color image). ToF endoscope data: Amplitude data (Fig. 4(f)), depth map (Fig. 4(g)),
3D Visualization (Fig. 4(h)).

25 fps. If not explicitly stated otherwise, the data (acquired using the ToF sensor)
which is referred to in the following has been acquired by a calibrated endoscope
optic and the distances have been offset-corrected. For a working distance of
3 cm the measurement precision was computed. The measurement expression
is expressed for each pixel by the standard deviation of the acquired distances
when observing a static scene. An average precision of 0.89 mm and a median
precision of 0.71 mm was computed from 100 acquired distance maps. A lower
amplitude threshold of 50 and an upper threshold of 700 were chosen to detect
pixels with a severely corrupted distance measurement (see section 3.2). 5% of the
pixels were neglected. An empty porcine stomach was manually insufflated with
air. The ToF endoscope was inserted via the remaining parts of the esophagus.
Before inserting the endoscope optic two plastic cubes each of size 15×15×15 mm
were inserted into the stomach. This served the purpose to be able to observe
three-dimensionally objects of known size and shape. During the experiments
one of the cubes was observed from different viewing positions. The four 3-
D boundary points of each visible surface square were manually selected. The
length of the edges (ground truth: 15 mm) of the square as well as the length of its
diagonals (ground truth: 21.2 mm) were computed. The 3-D point coordinates of
the selected points were utilized. Thus, the computed lengths are 3D Euclidean
distances between the selected 3-D points. The results along with illustrative
examples of the amplitude and distance data provided by a ToF endoscope are
depicted in Fig. 3. A 3D surface reconstruction of the stomach mucosa is given in
Fig. 4 along with a comparison of 2D endoscopic color data and ToF endoscopic
3D data.
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4 Discussion and Conclusion

The hardware costs for turning an available endoscope optic into a ToF endo-
scope utilizing only commercially available components are less than 5000 Euro
($7000). The ToF endoscope operates at 20 fps including data acquisition and the
complete processing chain (dual-core 2.4 GHz PC, 2GB RAM). The mean mea-
surement precision of 0.89 mm is sufficient to provide valuable intra-operative
information. The immediately available distance map of the operation area en-
ables a direct visual depth observation. The capability to three-dimensionally
measure anatomical structures (tumors, etc.) in the operation area was verified
by using an artificially inserted cube of known dimensions (see Fig. 3(d)-3(f)).

ToF endoscopes introduce outstanding perspectives to minimally invasive
surgery. Approaches addressing collision detection, robot-guided surgery, intra-
operative navigation support and 3-D visualization of the operation area will
benefit from the proposed novel 3-D endoscope. Additionally, the capability to
measure distances and dimensions of user-selected anatomical structures three-
dimensionally in real-time in the operation area has the capability to provide
valuable diagnostic information to the surgeon. Innovative new endoscopic in-
tervention techniques like NOTES (Natural Orifice Transluminal Endoscopic
Surgery) may be accomplished more successfully by utilizing ToF endoscopes.
Considering the ToF measurement principle and endoscope optics there are no
restrictions: Any rigid or non-rigid endoscope optic can be utilized as a ToF en-
doscope in the proposed manner. Only chip-on-tip endoscopes can not be used
in such a way.

5 Outlook

Currently, the utilized infrared illumination unit does not meet the safety re-
quirements for being utilized outside a controlled laboratory. An illumination
operating in the visible spectral range would provide two advantages: a better
quantum efficiency of ToF sensors and the eye-safety requirements are somewhat
less restrictive in the range of visible light.

Next generation ToF sensors will provide lateral resolutions of 204×204 pixels.
The utilization of such sensors for a ToF endoscopes will improve the observ-
ability of smaller anatomical structures. By mounting a beam-divider and an
additional standard CCD image sensor, 2D color information and distance in-
formation can be acquired with one endoscope optic. The presented experiments
have been accomplished with a rigid endoscope optic. A quantitative evaluation
of the capabilities of a flexible ToF endoscope is subject to current research.
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Abstract. The aim of this study is to automatically assess reendothelialization 
of stents at an accuracy of down to a few microns by analyzing endovascular 
optical coherence tomography (OCT) sequences. Vessel wall and struts are 
automatically detected and complete distance map is then computed from 
sparse distances measured between wall and struts by thin-plate spline (TPS) in-
terpolation. A reendothelialization score is mapped onto the geometry of the 
coronary artery segment. Accuracy and robustness are increased by taking into 
account the inhomogeneity of datapoints and integrating in the same framework 
orthogonalized forward selection of support points, optimal selection of regu-
larization parameters by generalized cross-validation (GCV) and rejection of 
detection outliers. The comparison against manual expert measurements for a 
phantom study and 12 in vivo stents demonstrates no significant discordance 
with variability of the order of the strut thickness. 

1   Introduction 

Optical coherence tomography (OCT) is an intravascular imaging technique that pro-
vides the high-image resolution (<20μm) capable of assessing stented arterial seg-
ments in vivo. OCT can accurately differentiate the most superficial layers of the 
arterial wall as well as the stent struts and the vascular tissue surrounding them [1]. 
OCT could become a reference tool for assessing appropriate healing of stented coro-
nary segments and comparing various types of stents, and could therefore guide opti-
mal antiplatelet therapy to prevent late stent thrombosis. 

Recent studies have confirmed the accuracy of OCT for quantifying neointimal 
hyperplasia and covered-strut rates with different stents [2]. Current methods of quan-
tification are accurate and offer good inter- and intra-observer reproducibility, but 
they are still manual and the time-intensive image analysis step remains a major limi-
tation. An automatic algorithm for detecting stent reendothelialization, i.e. thickness 
of neointimal cells covering the stent, has already been studied from volumetric opti-
cal coherence, but only on an in vitro model [3]. The blood vessel mimic did not re-
produce the artifacts and difficulties with human OCT acquisition (move off center or 
angulation of the probe, coronary artery and cardiac movements, suboptimal saline 
flush) or stent malapposition. A semi-automatic method was developed with good 
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results, but only for quantification of lumen, stent and neointimal areas, without strut 
coverage assessment [4]. We proposed to develop an automatic and supervised detec-
tion algorithm for lumen and struts (metallic echoes of the stent wire), making it pos-
sible to calculate prognostic OCT parameters used in clinical practice. We compared 
the algorithm results to conventional measures of neointimal hyperplasia and strut 
coverage on a dozen of human coronary stents analyzed by OCT 6 months after  
implantation.  

2   Feature Detection 

2.1   Wall Detection 

The first part deals with the delineation of vessel bed edges. Depending on the amount 
of reendothelialization, those edges correspond to the interface of blood with metal 
(Fig. 1a) and/or with endothelium (Fig. 1b). 

Vessel bed edge segmentation is obtained in a three-step process. At step 1, an 
automatic threshold level is computed on the gray-scale histogram of the 3D OCT 
image set using the Otsu method [5]. This threshold level is then applied to all cross-
sectional OCT images in order to obtain a binary OCT image set. This binary image 
set is used at step 2 to find a rough approximation of the wall border. For this, each 
OCT section is run through a morphological segmentation process: 

 (1) 

where  is the ith thresholded OCT slice image,  is a hole-filling function, and 
,  are the structuring elements used by the function processing morphological 

opening and closing, respectively. The structuring elements  and  are binary discs 
with a given radius of  and   pixels respectively. The resulting morpho-
logical image   is a clean binary image of the vessel wall, where noise speckle, 
struts and artifacts (such as the guide at the image center) have been removed. The 
wall border can be sampled by profile analysis from lines drawn from the image cen-
ter to the border at different angular positions. The detected wall position is used to 
initialize an active contour near to the real edges of the vessel bed. At step 3, the ves-
sel bed edges are precisely segmented (Fig. 1) via a segmentation process based on 
the active contour model [6]. 

In case of strong malapposition stemming from the presence of thrombus or wall 
dissection, the exact wall boundary is sometimes difficult to recover (Fig. 1). Fortu-
nately, the detected border is almost always irregular and an alert can be automati-
cally sent to the user to control the detection result and correct it if necessary. 

In order to cut the time needed to run the qualitative clinical validation of the ves-
sel wall segmentation results, we perform an automatic shape analysis. As the vessel 
contour is normally expected to be circular or elliptic, an ellipse is fitted to the seg-
mented vessel wall contours on each OCT image [7]. The Mean Square Error e be-
tween the vessel wall contour and the fitted ellipse is computed and used to trigger an 
alert for user validation if required. A simple alert threshold  was used to indi-
cate to the user which contours should be qualitatively validated and corrected if 
needed. A typical vessel wall contour that triggers an alert on is presented on Fig. 1.  
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Fig. 1. Example of an OCT slice with inhomogeneous coverage (top left): some struts are in 
direct contact with blood (a), whereas others are completely covered by neointimal hyperplasia 
(b). The guide of the OCT probe is visible at the image center (c). Struts seem to be floating in 
the lumen just after stent deployment (top right). Examples of a good automatic segmentation 
result (bottom left), and one that fails (bottom right, black line), compared to a fitting ellipse 
(dotted line) to raise an alert for user correction (white line). 

2.2   Strut Detection 

The strut segmentation process presented in this section is performed in a slice-by-
slice process. In order to simplify the strut segmentation algorithms, each OCT slice 
image is reformatted and interpolated in polar coordinates . 

The appearance of a strut in an OCT slice image is not unique and constant. In the 
best case, it appears as a high contrast speckle with a variable length depending on the 
orientation of the OCT probe with regard to the stent.  When the contrast of the vessel 
wall is high, the strut produces a radial shadow zone that can be efficiently used to 
infer the presence or not of a strut.  It is possible to enhance vertical lines produced by 
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the borders of the shadow zone by computing , the derivative with respect to θ. 
Secondly, we compute the cumulative of  along the -axis for each angle θ. Then, 
we search all specific increasing monotonic signal transitions, starting at a local 
minimum below zero and ending at a local maximum greater than zero. Two distinct 
metrics are defined to detect a shadow zone. The first is the peak-to-peak amplitude of 
the transition signal  in (2), and the second represents the symmetry between the 
absolute values of  and  respectively, noted  in (2): 

      | |                     (2) 

where i stands for the ith signal transition,  always > 0 and  always < 0. 
A normalized metric of symmetry,  based on  and   is used in (3), 

where represents a perfect symmetry and is a perfect asymmetry: 

                                              ⁄                                            (3) 

A shadow zone is then detected if and ;  and   are thresh-
old values, empirically set with regard to the values of and , that are gener-
ated by noise and artifacts, when no shadow zone exists. The final step is to detect the 
exact position of the strut inside the shadow zone. For this, we analyze the profiles for 
each angular position defined inside the shadow zone and search the strut position by 
a priori knowledge of high gray level values. 

But sometimes, the strut appears without shadow zone because the vessel wall is 
not highlighted. For this reason, we use a second pass algorithm to detect specific 
signal signature produced by strut without shadow zones. In order to enhance the strut 
detection in this case, the detection probability is strengthen when the strut is detected 
in successive angular positions so that a large strut becomes a higher probability as a 
small one, which can be a signal artifact. 

3   Reendothelialization Interpolation 

At this stage, the distance   to the vessel wall is only known at locations of 
the   detected struts. Due to detection uncertainties, some of the struts are missed, 
while others are outliers, i.e. their locations are totally abnormal. These outliers are 
really problematic because they can be falsely interpreted as under-deployed struts. 
Thus, it has to be possible to interpolate missing information and reject outliers at the 
same time.  

A thin-plate spline (TPS) model was chosen in order to simulate the rigidity of the 
stent: it is made up of an affine part and a sum of functions , , 
bounded and asymptotically flat, centered at the struts : 

             θ                     (4) 

The regularized solution for (4) comes from the knowledge of the real-valued distance 
  at locations  and is expressed in terms of a linear system: 
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                                                         (5) 

where θ ,, the ith row of P is ,  O is a 3x3 null 
matrix, o is a 3x1 null column vector, W and d are column vectors formed from 

and  , respectively, and a is the column vector containing elements  
In order to speed up the resolution process, orthogonalized forward selection is 

used. It consists in selecting a subset of m samples from the initial data, and the full 
design matrix H becomes , i.e. a   matrix where the last m 
columns of which correspond to the m support points [8]. 

For simplification, the affine and radial basis parts are estimated separately: first 
the coefficients for the affine part are estimated in a least-square sense: 

                                                                                                     (6) 

Then, the estimation for the radial function weights is performed on the residuals 
. . This is equivalent to ridge regression [9], i.e. minimization of first order 

regularization energy equal to SSE plus λ times ; the weights  associ-
ated to the m support points are given by: 

                                                                                 (7) 

The choice of the m best centers represents a computational burden unless forward 
selection is used. This consists in picking the centers one after the other from among 
the remaining set until the decrease in a model selection criterion (MSC) is suffi-
ciently low. At iteration m, the design matrix is augmented by , the column of 
the full design matrix corresponding to the point that minimizes .  

It has been proven by Chen et al. [10] that Gram-Schmidt orthogonalization of the 
design matrix  in , so that  with   an upper triangular, is likely 
to significantly speed up forward selection. Instead of choosing  among the col-
umns of H, its regularized version  is chosen from   iteratively updated in the 
following way: 

                         with                                      (8) 

and minimization of  means that  must maximize the gap in energy between two 
selections: 

                                                                                             (9) 

The transition matrix  itself is updated by: 

                                         (10) 

and makes it possible to recover final weights: 

                                                                                                           (11) 

from regularized weights: 
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                                                                                                      (12) 

simply by back-substitution.  
The MSC used as stopping criterion for the previous iterative algorithm is general-

ized cross-validation (GCV) [11,12] as it is considered to avoid data overfit. In [9], it 
is expressed as: 

         
r

where P H T H H
-1

H
T

           (13) 

is the matrix projecting the data  perpendicular to the space spanned by the model. 
Orr has shown that the estimate of regularization parameter λ can be inserted in the 

algorithm, and that its value can be refined at every iteration just after selection of the 
new center, by means of a re-estimation formula coming from the minimization of 

: its complete derivation can be found in [9]. 

4   3D Visualization of the Reendothelialization Score 

The wall edges detected in every slice are used to build a mesh of the vessel lumen by 
using the Marching Cubes algorithm [13]. Then each vertex is assigned a color corre-
sponding to the reendothelialization thickness at its location in cylindrical coordinates 

. 
The following color look-up table is used: green for well-apposed to the vessel 

wall with apparent neointimal coverage; red for well-apposed but without coverage 
(absence of any visible structure between lumen and vessel on OCT confirmed by a 
strong echo at the strut), and black for malapposed without coverage (malapposition 
being defined as a distance higher than the width of the strut). Figure 2 gives an ex-
ample of a stent with inhomogeneous coverage. 

5   Automatic Estimation versus Manual Measurement  

First, a phantom-based experiment consisting in deploying a stent into a urinary 
catheter and analyzing its position using OCT gave an error of 2 µm and a variability 
of 6.72 µm with regard to the theoretical thickness of the metallic wire. 

Second, in vivo cross-sections taken every millimeter from 12 OCT pull-back re-
cordings over stented segments were manually analyzed for a total of 2735 individual 
struts. Lumen Area (LA, in mm²) and Stent Area (SA, in mm²) were measured on 
each image to compute the percentage of NeoIntimal Hyperplasia Area as NIHA = 
100(SA-LA)/SA. Neointimal hyperplasia thickness was measured manually by a 
cardiologist for each strut using the offline software delivered with the OCT console 
(LightLab Imaging, Massachusetts, USA). It was defined as the closest distance be-
tween one strut and the lumen contour, but was difficult to be accurately measured 
manually and therefore cannot be considered as a perfect gold standard. 
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Fig. 2. 3D representation of reendothelialization score on the vessel lumen. For this stent, two 
scores are represented: well-apposed with coverage (green) and well-apposed without coverage 
(red). Relative displacements between slices are due to OCT probe movement inside lumen due 
to cardiac cycle. 
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Fig. 3. Bland-Altman plot of manual versus automatic thickness measurements expressed in 
μm. The bias 95% confidence interval is equal to ]-1.68;5.91[ and standard deviation is equal to 
101.2 μm. For the sake of clarity, one point out of 25 is drawn. 

NIHA automatic rate was overestimated by 1.13±1.45% on average with regard to 
manual measurement and ranged from 1.53 to 50.18%. Figure 3 illustrates that the 
two methods are not significantly discordant (risk 5%) and therefore could be ex-
changed since agreement bounds correspond approximately to the admissible clinical 
limit, i.e. the order of magnitude of the metallic wire thickness (150 µm). As stated 
above, most of the variability might also be explained by manual data; it is confirmed 
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by the high precision of NIHA estimation that does not depend on the assumption of 
closest distance.   

Processing time decreases from 4 hours for manual analysis (1 slice out of 15 being 
analyzed) down to a maximum of 10 minutes in the worse case of a sequence that 
required user interaction to correct 8 lumen contours raising alerts. 

Future prospects concern the correction of OCT movement artifacts in order to ob-
tain a smoother score representation and the recovery of the true 3D geometry by 
estimating the probe pull-back path from angiography. 
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Abstract. The quest for providing tissue characterization and functional map-
ping during minimally invasive surgery (MIS) has motivated the development 
of new surgical tools that extend the current functional capabilities of MIS. 
Miniaturized optical probes can be inserted into the instrument channel of stan-
dard endoscopes to reveal tissue cellular and subcellular microstructures, allow-
ing excision-free optical biopsy. One of the limitations of such a point based 
imaging and tissue characterization technique is the difficulty of tracking 
probed sites in vivo. This prohibits large area surveillance and integrated func-
tional mapping. The purpose of this paper is to present an image-based tracking 
framework by combining a semi model-based instrument tracking method with 
vision-based simultaneous localization and mapping. This allows the mapping 
of all spatio-temporally tracked biopsy sites, which can then be re-projected 
back onto the endoscopic video to provide a live augmented view in vivo, thus 
facilitating re-targeting and serial examination of potential lesions. The pro-
posed method has been validated on phantom data with known ground truth and 
the accuracy derived demonstrates the strength and clinical value of the  
technique. The method facilitates a move from the current point based optical 
biopsy towards large area multi-scale image integration in a routine clinical  
environment. 

1   Introduction 

With recent advances in biophotonics and surgical instrumentation, there is an in-
creasing demand to bring cellular and molecular imaging modalities to an in vivo, in 
situ setting to allow for real-time tissue characterization, functional assessment and 
intra-operative guidance. Miniaturization of the confocal laser scanning microscope, 
for example, has led to imaging probes that can be inserted into the instrument chan-
nel of a standard endoscope to visualize cellular and subcellular microstructures to 
provide ‘optical biopsy’ without excision of tissue. Following the application of a 
contrast agent, this can allow for the detection of colorectal adenomas, disruption in 
the pit pattern of the colon, angiogenesis, and neoplasia in Barrett’s esophagus [1]. It 
has also been used without a contrast agent to detect malignant disruption of the bron-
chial basement membrane using elastin autofluorescence [2]. Other techniques that 
enable microscopic detection and characterization of tissue include Optical Coherence 
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Tomography (OCT), two photon excited fluorescence and high magnification endo-
scopy [3]. There have also been successful clinical trials of techniques that acquire 
detailed spectroscopic information for cancer detection, for example using the time- 
or wavelength-resolved fluorescence or Raman properties.  

For in vivo applications, all of these techniques suffer from the limitation of only 
providing a small, localized probe region whilst the organs of interest may require a 
large surface area to be surveyed. Technically, the main difficulty of tracking the 
optical biopsy sites is that these probes leave no marks on the tissue. Furthermore,  
the optical biopsy sites move in and out of the view in a standard endoscope image as 
the examination progresses and may deform as a result of respiration or tissue-
instrument interaction. Current approaches to long-term tissue-instrument tracking 
assume the use of rigid laparoscopes and availability of optical markers [4]. Structure 
from motion has been used to reconstruct 3D tissue models, but it suffers from drift 
and does not work well when revisiting biopsy sites [5]. For extending the effective 
field-of-view of the endoscopic image, image mosaicing [6] and dynamic view ex-
pansion [7] have been used to reconstruct enlarged field-of-views, although these 
techniques tend not to explicitly deal with motion parallax.  

In practice, optical probes are typically introduced through the instrument channel 
while holding the endoscope stationary. Since the probe needs to be placed in contact 
with the tissue when the optical biopsy takes place, tracking the tip of the probe en-
ables the localization of the biopsy site. To this end, it is necessary to take into ac-
count scale, rotation and illumination changes when tracking the tool. Current ap-
proaches to needle and surgical instrument tracking may be applicable [8, 9], but a 
combined approach by integrating probe tracking with a 3D probabilistic map built in 
situ using only white light endoscopic images with no additional fiducials can ensure 
robustness and practical clinical use. This work proposes an image-based tracking 
system based on SLAM (Simultaneous Localization and Mapping) for optical probes. 
This will allow for subsequent localization and contextual analysis of microstructures 
or guiding real tissue biopsy. The main contribution of this paper is to combine 
SLAM with probe tracking to create a 3D model of the tissue surface and spatio-
temporally tracked optical biopsy sites. These biopsy sites are subsequently re-
projected back onto the image plane to provide a live augmented view in vivo, thus 
facilitating re-targeting and serial examination. The proposed method has been  
 

 

 
Fig. 1. (a) A typical microconfocal fluorescence image showing the microstructure of a sample, 
(b) the relative configuration of a confocal fluorescence probe when inserted through the in-
strument channel of a standard endoscope, and (c) a typical endoscopic white light image of the 
bronchus used for navigation 
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validated on phantom data with known ground truth. The method will facilitate a shift 
from the current point based optical biopsy towards multi-scale image integration in a 
routine clinical environment. 

2   Methods 

2.1   Probabilistic Mapping 

The first step of the proposed tracking framework is to establish a probabilistic map-
ping of the environment. Previous work on SLAM based approaches has shown the 
ability to generate 3D tissue models and recover the relative pose of the endoscope 
[10]. A long-term map is generated making it more resilient to drift and error accumu-
lation over time, and thus is well suited to returning to previously targeted areas. In 
this work, a vision based sequential approach has been used. This is based on an  
Extended Kalman Filter (EKF) framework with state vector x  containing the posi-
tion( , , )x y zc c c , orientation 1 2 3 4( , , , )q q q qc c c c , translational velocity ( , , )x y zv v v  and angu-
lar velocity ( , , )x y zω ω ω  of the endoscope. In addition, the state vector also stores 3D 
locations of salient features in the map ( , , )x y zy y y . A constant velocity, constant angu-
lar velocity motion model is used to predict the endoscope’s motion with Gaussian 
noise. Accompanying the state vector is the covariance matrix which stores the uncer-
tainty of the endoscope and feature locations in 3D. In this sequential map building 
approach, new features are added to the map on the fly by feature matching con-
strained by epipolar geometry to estimate their 3D positions relative to the endoscopic 
camera. 

2.2   Biopsy Site Estimation 

The initial position of the biopsy site in the image plane is estimated through probe 
tracking. In this work, no marker was attached and no changes were made to the col-
our of the imaging probe. The technique exploits the fact that the camera is relatively 
static when the biopsy is taken. The segmentation of the tool is achieved by combin-
ing background subtraction and color segmentation in the HSV space. In this study, a 
simple background subtraction technique is used based on inter-frame difference. 
Foreground/background models are learnt and updated over time. The background 
model is initialized with the first frame of the video sequence. For the extraction of 
foreground objects, the current frame is subtracted from the background model and 
any significant difference is labeled as foreground. If no foreground object is identi-
fied, the current frame becomes the background model. On the saturation plane, the 
shaft of the probe is highlighted in dark grey on a bright background. Therefore, fore-
ground pixels (Fig. 2 (a)) are used as seeds for region growing in the saturation color 
plane (Fig. 2 (b)) to segment the probe shaft as shown in Fig. 2(c). 

In order to identify the tip of the probe, the centroid of the shaft is extracted. The 
tangentials of the shaft are detected at the global maxima of the Hough transform and 
the axis of the shaft is computed as the eigenvector corresponding to the smallest 
eigenvalue of the moment of inertia. The localization of the tip of the probe is per-
formed with respect to a reference point located at the intersection of the shaft and the  
o 
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Fig. 2. Probe tracking and biopsy site estimation within the image plane; (a) background sub-
traction, (b) color saturation distribution within the image, (c) segmented tool regions, and (d) 
the model fitted tool (centroid -red dot, the reference point - green dot, vanishing tangential 
lines - cyan, radius at the center of mass and at the reference point – yellow).  

distal tip. The 3D position of the tip is estimated using a semi-model based approach 
assuming rigidity and incorporating prior knowledge of the width of the probe and the 
relationship between the reference point and the tip. The position of the reference 
point and the orientation of the shaft are estimated in 3D and the prior model enables 
the localization of the tip of the probe cb  relative to the camera. 

2.3   Global Biopsy Mapping 

Following the steps in Section 2.2, the position of biopsy site cb  is estimated in the 
camera coordinate system. It is transformed into the world coordinate system using: 

w w c wb C b c= +  (1) 

where wb is the biopsy site in the world coordinate system, wC and wc are the orienta-
tion and position of the camera in the global SLAM coordinate system. Although the 
3D position of the biopsy site is now defined, this position is never directly observed 
or measured again. There are two reasons for this; the actual site on the tissue is usu-
ally occluded by the probe when the biopsy is taken, and there may not be any salient 
features at or around the biopsy site to be tracked. In this case, 2D tracking would fail. 
However, the strength of the proposed probabilistic map is that the position of the 
biopsy site can be updated without directly measuring it. This is made possible by the 
co-variance matrix which models the uncertainty of all the biopsy positions. The ith 
biopsy site w

ib is inserted into the state vector and the co-variance matrix P  is up-
dated. The co-variance matrix is updated with the partial derivatives /i vb x∂ ∂  of the 
biopsy site with respect to the camera position, as well as the measurement model 

/i ib h∂ ∂  and measurement noise R as shown in Eq (2).  

where x is the position of the endoscope and iy is the ith feature in the map.  
The position and uncertainty of the biopsy sites are correlated to the camera posi-

tion and the rest of the features in the map. Fig. 3 illustrates this sequential map build-
ing demonstrating how the camera, features and the biopsy sites are correlated and  
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Fig. 3. (a-d) Schematic representation of sequential probabilistic mapping updates. The cam-
era’s position c is shown in red with the uncertainty represented by an ellipse, features y1, y2 
and y3 represented in dark gray, the biopsy site b shown in green and the tissue shown in light 
gray.  (a) c measures y1 with low uncertainty, (b) c is navigated to a new position with growing 
uncertainty. Features y2 and y3 are measured and biopsy b is taken. (c) c is navigated close to 
y1 and positional uncertainty increases. (d) Feature y1 is measured and the position estimate of 
c is improved. Resulting in an improved estimate of b, as it is correlated to c.  

temporally updated. At the time when the biopsy site is observed, the uncertainty of 
the camera’s position may be high, as illustrated in Fig. 3 (b) but the relative position 
of the biopsy site to surrounding features is well defined. Over time, the camera will 
re-measure these surrounding features in the map as in Fig. 3 (d) and the position 
estimation of the camera will improve, thus reducing the uncertainty. Therefore, the 
position estimation of the biopsy site will also improve as it is correlated to the posi-
tion of the camera and will not drift away in the global map. To facilitate real-time 
examination, the biopsy sites 1{ ... }w w

ib b  are visualized in this study by re-projecting 
the 3D points into the camera plane based on the intrinsic camera parameters and the 
estimated camera position from SLAM. This provides an augmented view of the bi-
opsy sites for the operator. 

2.4   Experimental Set-Up 

The proposed approach has been validated on a silicon phantom of the airway coated 
with acrylic paint to provide realistic texture and internal reflections. Sponge cell 
structures were attached to the internal surface to enable optical biopsies to be taken 
using a confocal fluorescence endoscope system (Cellvizio, Mauna Kea Technolo-
gies, Paris). Validation was performed by measuring the accuracy of biopsy sites in 
the image space as the endoscope navigated through the phantom. The ground truth 
data used for comparison was collected using an optical tracking device (Northern 
Digital Inc, Ontario, Canada) and an experienced observer. To obtain the ground truth 
position of the camera, a rigid stereo laparoscope fitted with four optical markers was 
used. The position lc  and orientation lC  of the center of the left camera relative to 
the optical markers were acquired using standard hand-eye calibration [11]. This 
enabled the position of the camera to be calculated in the world coordinate system wc  
and wC .To obtain the ground truth of the 3D biopsy site positions, the experienced 
observer manually identified the sites on the stereo images at the time when the bi-
opsy was taken. By using the camera’s intrinsic and extrinsic parameters, the 3D 
position cb of the biopsy site was obtained relative to the camera, and its position in 
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the world coordinate system wb  was determined as *w w c wb C b c= + . At each sub-
sequent frame, the biopsy site wb  was projected into the ground truth camera position 

( / )c c
o x x zx x fk b b= −  and ( / )c c

o y y zy y fk b b= −  where xfk and yfk are the focal length 
and ox and oy are the principal point. To validate the proposed probe tracking ap-
proach, the probe was mounted in a rigid sheath. This evaluation step was combined 
with manually defined image coordinates of the probe’s location. 

3   Results 

The proposed algorithm was validated on a two minute long stereo laparoscopic video 
sequence consisting of navigation to four different areas, including six biopsies and 
re-targeting previously taken biopsies.  

Quantitative analysis of the position of the biopsy sites in the image plane is shown 
in Table 1. The average visual angle error for the position of the biopsy sites ranges 
from 1.18° to 3.86°. Figs. 4 (d-e) show the estimated biopsy site position and ground 
truth position of site three over a short sequence before the site goes out of view. 
Accuracy of the biopsy position estimation is affected by the proximity of the camera 
to the site where close proximity leads to a magnification of the error. Fig. 5 illus-
trates the results of the augmented biopsy sites at different stages of the procedure 
where changes in illumination, scale and view point are experienced. Fig. 5 demon-
strates the practical value and clinical relevance of the proposed method; the entire 
procedure is represented where six biopsies are taken and added to the global map, 
including the associated biopsy images of the sponge cell structures. 

 

 
                 a)                                          b)                                                c)  

 
                        d)                                              e)                                             f) 

Fig. 4. (a-c) Probe tracking: Ground truth (red) and estimated (green) position of probe at (a) 
site six and (b) site three. (c) Ground truth (red) and tracked probe position (green) during 
navigation between biopsy sites. (d-f) Augmented biopsy site three: (d-e) the X and Y pro-
jected pixel error showing the site being tracked (f) the ground truth projected position (red) 
and the estimated position (green) for a short section of the procedure.  
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Table 1. Average error of biopsy site estimation and probe tracking for phantom experiments 

Probe tracking  Augmented biopsy sites  
Biopsy sites Average visual 

angle error 
Percent of 

FOV 
Visual angle 

error 
Percent of 

FOV 
1 1.85° 4.89% 2.34° 5.37% 
2 1.33° 3.59% 3.06° 7.58% 
3 0.87° 2.29% 2.22° 5.59% 
4 0.86° 2.23% 1.18° 2.99% 
5 0.81° 1.75% 2.06° 4.61% 
6 3.22° 8.88% 3.86° 10.09% 

 

 

Fig. 5. (a-d) Biopsy site position (green spheres). The spheres are 2mm in diameter and appear 
in different sizes when they are projected onto the image under perspective projection; (e) 
shows the six biopsy sites with corresponding micro-confocal fluorescence endoscope images.  

Detailed quantitative analysis of the probe tracking when the biopsies are taken is 
shown in Table 1. The tracking errors range from 0.81° to 3.22° of the visual angle 
and an example error distribution is illustrated in Fig. 4 (a-b). Quantitative analysis of 
the probe tracking on the whole sequence gave an average visual angle error of 2.87°. 
The sensitivity and specificity were 0.9706 and 0.9892, respectively. As expected, the 
accuracy deteriorates when the probe is introduced and removed from the scene as a 
part of the shaft is occluded, or when the probe is very close to the camera. 

4   Conclusion 

In this paper we have proposed a novel approach for microconfocal optical biopsy 
tracking which can be used to augment intra-operative navigation and retargeting of 
previously examined tissue regions. The system has been validated with a detailed 
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phantom experiment and we have demonstrated that this approach can accurately 
project the location of biopsy sites, thus enabling its practical clinical use. The pro-
posed method requires no prior information of the tissue geometry and can operate 
consistently in a sparse feature environment. The proposed method is robust to small 
local deformation and rigid global motion. Modeling large scale nonlinear tissue  
deformation, however, is not trivial and will be addressed in future work. 
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Abstract. Tracking biopsy sites in endoscopic images can be useful to provide 
a visual aid for the guidance of surgical tools, for example when endoscopic 
guided biopsy is required. A new method for re-localisation of these sites is 
presented in this paper. It makes use of epipolar geometry properties between 
three images of the same site observed from different viewpoints with an endo-
scope. Two epipolar lines are derived from the two first images in the third im-
age where the site needs to be re-localised. Their intersection corresponds to the 
location of the biopsy site. This method was tested with gastroscopic data from 
2 patients with 9 series of three images of the oesophagus. The re-localisation 
error was estimated at less than 1.5 millimetres by a clinical endoscopist, which 
is sufficient for most clinical endoscopic applications. 

1   Introduction 

Endoscopy is a procedure for real-time video acquisitions of the interior of hollow 
organs using flexible or rigid instruments and facilitates taking biopsies. The main 
problem for many endoscopists is the detection of macroscopically invisible biopsy 
sites and re-localisation during the same or future examinations. CT and electromag-
netic based systems for tracking the location of bronchoscopes have been described. 
These allow accurate targeting of biopsies in the relatively rigid bronchial tree [1, 2]. 
A precision of re-localisation of 1.58 mm has been reported. Some examinations like 
gastroscopy are based, however, entirely on visual images. In Barrett’s oesophagus, 
precancerous lesions may not be visible under white light endoscopy but may be de-
tected histologically. It is important to be able to re-localise these lesions, particularly 
after taking a virtual ‘optical’ biopsy or in vivo histology based solely on the informa-
tion within the endoscopy view. For several ‘optical’ biopsy techniques, one solution 
is to pass a miniprobe via the endoscope working channel and place it in contact with 
the tissue to scan the surface. The scan helps decide whether a tissue specimen needs 
to be taken. The forceps then need to be re-localised where the miniprobe was posi-
tioned. Unfortunately, the optical measurement and the excised tissue may not match, 
which can make the biopsy irrelevant if negative [3, 4]. Thus, the detected biopsy site 
may need to be re-localised precisely in subsequent video images. Methods for object 
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localisation in video images have been recently addressed in the field of robot-
assisted surgery [5, 6], but have focused only on tracking the instrument tip. The 
scope of the biopsy site re-localisation focuses more on the projection of a point  
location from an image to another and requires the computation of the spatial trans-
formations (rotations and translations) between endoscopic images. It has been dem-
onstrated in [7] that the recovery of the epipolar geometry [8] between endoscopic 
images can be used to compute these spatial transformations. 

The method presented in this paper proposes a solution to the re-localisation prob-
lem using robust feature tracking and the constraints of epipolar geometry for applica-
tions in gastroenterology. A point’s location is computed in the target image as the 
intersection of two epipolar lines derived from the location of corresponding biopsy 
sites in pairs of previously acquired endoscopic images. The epipolar geometry is 
recovered with a robust technique. This method presents several advantages. (i) First, 
it reduces the computational burden since it is based only on the epipolar lines con-
sideration. There is no need to directly compute the rotations and the translations 
between the images. (ii) Secondly, this method has the potential to be a real-time 
guidance system based on a limited amount of information. Biospy sites are tracked 
directly in the video images and not in relation to a pre-operative image. (iii) Finally, 
this method could be extended to any type of intra-operative optical imaging. 

2   Method 

2.1   Re-localisation Principle 

If a biopsy site location is known in an endoscopic image I1, it can be projected onto 
another image I2 for its re-localisation. This projection can be determined with the 
epipolar geometry formed with the two images I1 and I2. The epipolar geometry be-
tween I1 and I2 can be described algebraically using the fundamental matrix F12 as: 
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K1 and K2 are the intrinsic matrices of the camera at first and second positions defined 
from the focal length, the position of the image centre, and the scaling from the 3D-
space to the image. Once F12, K1 and K2 are known, it is possible to determine the 
camera motions, rotation R12 and translation t12, with further computations. 

During endoscopic procedures, a biopsy site can be seen from various viewpoints 
with an endoscopic camera (Fig. 1). Let I1 and I2 be two images where the biopsy site 
location is visible and I3 be a third image where it needs to be re-localised. Let P be 
the biopsy site location in the 3D space, and pT1 and pT2 be the locations of the biopsy 
site in images I1 and I2. The fundamental matrices F13 and F23 can be computed be-
tween respectively images I1 and I3 and images I2 and I3. The axes formed with cam-
era centre 1 and camera centre 3, and camera centre 2 and camera centre 3, have an 
intersection with the image plane I3, which is called the epipole. Let e13 and e23 be the 
two epipoles of this configuration. Thus, F13pT1 is a vector and defines the epipolar 
line l1, which passes through the projection of pT1 onto I3 and through e13. The  
[ 
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Fig. 1. Method for biopsy site re-localisation with three images and two epipolar lines 

epipolar line l2 can be defined similarly for F23pT2. As pT1 and pT2 correspond to the 
same biopsy site location in the 3D-space, the intersection of l1 and l2 returns the 
location of the biopsy site in image I3. 

2.2   Re-localisation System 

The two epipolar lines are determined with computations described in [8]. As summa-
rised in Fig. 2, two pairs of endoscopic images are provided as inputs to the system 
and processed independently until step 5. 

The system is described as follows for Input 1: 

Feature Tracking and Matching 
As described in [9] for bronchoscopy, a block matching in step 1 tracks blocks of 
MxN pixels through a series of subsequent images to match features {p1i , p3i} from 
images I1 and I3. The similarity between two blocks, Bmi and Bni, in images m and n 
is the square of the cross-correlation of each block with pixel intensities Bmi(k,l) and 
Bni(k,l), average intensities Bmi0 and Bni0, and standard deviations σBmi and σBni: 
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Inliers’ Detection 
The Maximum A Posteriori Sample Consensus (MAPSAC) has been presented as a 
robust method for inliers’ detection among the features [10]. The error for matched 
features must be minimised, which is equivalent to minimising a cost function C: 
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As explained in [10], T is a threshold for the detection of inliers and ei is the geometric 
distance for matched features {p1i , p3i}. The contribution of the inliers to the error 
and to the fundamental matrix computation is, therefore, taken into account. 
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Fig. 2. Block diagram of the biopsy site re-localisation algorithm 

Determination of the Epipolar Lines Intersection 
Steps 2 and 3 are iteratively run over samples of 7 matched features. For each sample, 
the 7-point algorithm is applied [8] and returns one or three solutions for the funda-
mental matrix F13. The cost function C is applied with the Sampson distance ei: 
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(F13p1i)1 is the 1st component of the vector F13p1i. This error expresses how well F13 
fits the matched features {p1i , p3i}. After the iteration loop, F13 minimizes C. A sec-
ond estimation of F13, minimising the Sampson distance, is found in step 4 with a 
constrained non-linear optimisation applied to the inliers detected from the MAPSAC. 
Thus, in step 5, the required epipolar lines l1 and l2 for the biopsy site re-localisation 
are computed from F13 and F23 and return the expected result. 

3   Validation 

3.1   Materials and Method 

Purpose. The validation consisted of first checking the recovery of the epipolar ge-
ometry to make sure that reliable epipolar lines could be computed and secondly of 
assessing the re-localisation error. 
 

Data and Procedure. In vivo data were acquired with monocular endoscopes during 
gastroscopy of two patients. The same endoscopist introduced a 2 mm diameter mini-
probe into the working channel of the endoscope, scanned the tissue surface, moved 
the endoscope camera to change the viewpoints, and removed the miniprobe. The re-
localisation method was validated with 9 groups of 3 images from the 2 patients. 
Cardiac and breathing motion could be approximated by an affine transformation of 
the oesophagus surface. 
 

Validation of the Recovery of the Epipolar Geometry. Endoscope motion usually 
comprises small rotations and translations around and along the optical axis of the 
endoscope in consecutive images. Thus, every time the re-localisation algorithm was 
applied, the computed epipoles were visually checked to ensure that they were in an  
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Fig.  3. Scales in the endoscopic images: a) The miniprobe helps compute the size of the vessel, 
b) which was used as a scale in Image 3 

area in reasonable agreement with the endoscope motions. The total Sampson dis-
tance, defined as: 
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was computed for the fundamental matrices F13 and F23, obtained with: (1) the Nor-
malised 8-Point (N8P) algorithm [8] applied to all the feature matches {p1i , p3i} or 
{p2i , p3i}, and (2) with the re-localisation algorithm. 
 

Estimation of the Re-localisation Error. This was carried out by the endoscopist. A 
biopsy site (a point on a salient vessel at the tissue surface or the miniprobe tip) was 
manually selected in Images 1 and 2. It was re-localised both visually in Image 3 to 
return a ground-truth location and automatically with the re-localisation algorithm. An 
error in pixels and in millimetres was determined from these two locations. As the 
diameter of the miniprobe was 2 mm, the size of a salient segment, e.g. a vessel, in 
the same plane as the miniprobe could be computed (Fig.  3 a)). This salient segment 
defined a scale in Image 3 for the conversion of the error from pixels to millimetres 
and for an estimation of the tissue dimensions in the Field Of View (FOV) of the 
image (Fig.  3 b)). 

3.2   Results 

Recovery of the Epipolar Geometry. As indicated in Fig.  4, the epipoles e13 and e23 
computed for the pairs of images 1 and 3 (I 1-3), and 2 and 3 (I 2-3) were in an area in 
agreement with the endoscope motions. The re-localisation algorithm gave an order of 
magnitude reduction in the Sampson distance in comparison to the N8p algorithm. 
Thus, reliable epipolar geometry was recovered with the re-localisation algorithm. 
 

Re-localisation: The estimated errors in pixels and in millimetres for the nine groups of 
three endoscopic images are presented in Table 1. This error varied from 2 pixels to 50 
pixels in the x and y directions of the image. The endoscopist assessed the error for each 
group of images in millimetres with the scale that was provided in Image 3. In most 
cases, this error was smaller than 1.5 mm which corresponds to approximately 100-150 
cells. In practice, an extracted tissue sample has a diameter of 5 mm; therefore, the 
endoscopist would have a high chance of extracting a part of the region that he previ-
ously analysed with the miniprobe using forceps. The errors greater than 1.5 mm 
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Fig.  4. Results for the recovery of the epipolar geometry and for the re-localisation of a biopsy 
site: the computed epipoles e13 and e23 are described with the sign ‘+’ in Image 3 for each group 
of images. The sign ‘x’ describes the biopsy site, whose positions pT1 and pT2 are manually 
selected in Image 1 and Image 2. In Image 3, the sign ‘x’ describes the biopsy site computed 
with the two epipolar lines shown in Image 3. Two Sampson distances are computed in pixels 
for each group of images: one for the pair of images I 1-3, and the other for the pair I 2-3. 

Table 1. Re-localisation errors in pixels and estimation of 
the absolute errors in millimeters 

Image Dimension 
(pixels) 

FOV 
(mm) 

Error 
(pixels) 

Error 
(mm) 

1 229 x 344 20 x 15 1.3 x 7.6 0.60 
2 229 x 344 30 x 30 12.8 x 24.7 1.39 
3 229 x 344 30 x 30 1.9 x 0.5 0.52 
4 229 x 344 30 x 30 14.9 x 26 0.59 
5 229 x 344 15 x 10 47.9 x 12.4 1.28 
6 193 x 235 15 x 20 29.2 x 3.4 1.40 
7 193 x 235 30 x 30 12.9 x 3.6 1.22 
8 193 x 235 30 x 30 2.2 x 32.5 2.56 
9 193 x 235 20 x 30 8.3 x 31.2 2.13  

 

Fig. 5. Re-localisation error 

 
become much more critical. They usually occur in endoscopic images with a poor 
contrast. In Fig. 5 for example, the tissue texture was smooth: no vessel or other sali-
ent structure existed in this region. Therefore, the main features extracted with the 
block matching were localised in the tissue folds, or in zones with a weak contrast. 
The features were sensitive to the endoscope motions and to the changes in illumina-
tion. Several of them were inaccurately tracked by a few pixels but were not detected 
as outliers since they did not create large errors. Thus, for these cases, the recovery of 
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the epipolar geometry was inaccurate and the epipolar lines derived from the biopsy 
site in Image 1 and 2 did not pass through the actual location of the biopsy site in 
Image 3. 

4   Conclusion 

A method for the re-localisation of biopsy sites in endoscopic images has been de-
scribed. It has the advantages of using epipolar geometry properties without directly 
computing the rotations and the translations of the endoscope camera. This method 
needs only the determination of the fundamental matrix to compute the necessary 
epipolar lines. Clinical data validation showed re-localisation can be accurate to less 
than 1.5 mm or to within 100-150 cells as determined by the direct scaling of images 
and independent corroboration by an endoscopist. Although tested only with  
gastroscopic images, this method should work equally well for other endoscopic ap-
plications. Regions with greater structure and contrast would improve the ease and 
accuracy of the final re-localisation results. The technique is robust as satisfactory 
results were obtained even with substantial camera motions between video images. 
 Future work includes refining the re-localisation error by improving (a) both the 
feature tracking and matching, and (b) outlier detection. The re-localisation algorithm 
may have greater difficulty in cases where the endoscope returns to the biopsy site 
region at a later time during the examination or subsequent investigations. Thus, fu-
ture work will also focus on (c) an extension of the method to the cases when a biopsy 
site needs to be re-localised with independent video sequences and not only succes-
sive video images from a single sequence. Finally, (d) a phantom study is required to 
estimate the re-localisation errors more accurately. 
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Abstract. Recent advances in biophotonics have enabled in-vivo, in-situ histo-
pathology for routine clinical applications. The non-invasive nature of these  
optical ‘biopsy’ techniques, however, entails the difficulty of identifying previ-
ously visited biopsy locations, particularly for surveillance examinations. This 
paper presents a novel region-matching approach for narrow-band endoscopy to 
facilitate retargeting the optical biopsy sites. The task of matching sparse affine 
covariant image regions is modelled in a Markov Random Field (MRF) frame-
work. The proposed model incorporates appearance based region similarities as 
well as spatial correlations of neighbouring regions. In particular, a geometric 
constraint that is robust to deviations in relative positioning of the detected  
regions is introduced. In the proposed model, the appearance and geometric 
constraints are evaluated in the same space (photometry), allowing for their 
seamless integration into the MRF objective function. The performance of the 
method as compared to the existing state-of-the-art is evaluated with both  
in-vivo and simulation datasets with varying levels of visual complexities.  

1   Introduction 

Oesophageal Adenocarcinoma (OAC) is the most rapidly increasing cancer in Europe 
and the United States, which has a 5-year survival rate of only 10% [1]. Barrett’s 
Oesophagus (BO), referring to the abnormal change of the oesophageal mucosa 
caused by gastro-oesophageal reflux (Fig. 1a-b), is the only recognized precursor to 
OAC. Therefore, for patients diagnosed with BO, periodic surveillance by gastrointes-
tinal (GI) endoscopy together with systematic biopsy is important for the early detec-
tion and prevention of OAC.  

In current surveillance protocols, a new technique called Narrow-Band Endoscopic 
Imaging (NBI), has shown advantage compared to conventional white light endo-
scopy as it allows for detailed visualization of mucosa and the underlying vascular 
patterns (Fig. 1a-b). A further technique called Fibered Confocal Microscopy (FCM) 
which enables real-time visualization of cellular structures in-vivo and in-situ (Fig. 
1c) is also introduced recently. During GI endoscopy, a fibered confocal microprobe  
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Fig. 1. Appearance of BO a) in white light endoscopy and b) in NBI. c) The FCM machine and 
d) FCM microprobe passing through the instrument channel of a standard endoscope. 

can be inserted easily through the instrument channel of a standard endoscope  
(Fig. 1d), thus providing in-situ histopathology without the need for tissue biopsy [2]. 
This has significant benefits in terms of ease of examination, patient comfort and real-
time feedback. In practice, however, the non-invasive nature of the procedure also 
makes it difficult to return to previously examined biopsy sites in surveillance endo-
scopy due to the absence of scar on the tissue. The purpose of this paper is to present 
a novel image-based region matching method for biopsy site re-targeting in NBI. 

Region matching in NBI entails several challenges, which include tissue deforma-
tion, prevalence of similar surface textures and mucosal patterns. As the endoscope is 
very close to the tissue, small differences in the visible scales of the same feature can 
cause a significant change in the visual content. Furthermore, the common issue of 
view-invariant scene matching also needs to be addressed. 

Viewpoint invariant scene matching is a well studied problem in computer vision 
and it typically proceeds by representing the scene as a collection of affine covariant 
regions which are described by a vector computed from the regions’ appearances. 
Usually a nearest neighbour matching of the descriptor vectors incorporating geomet-
ric constraints is used to eliminate possible outliers ([3-5] and references within). In 
endoscopy, the major focus is directed towards short-baseline matching/tracking in 
the presence of tissue deformation [6].    

Recently, spectral methods have been proposed for region-matching in images un-
dergoing non-rigid transformations [7-9]. These methods model a graph for the fea-
ture set in each image and estimate their correspondences by graph matching. Thereby 
the geometric relations are modelled in terms of point locations where distance and/or 
orientation preservation is enforced. The main focus of these approaches lies on esti-
mating the optimal solution for the NP-hard graph matching problem rather than on 
optimal modelling. However, Caetano et al. have demonstrated that finding the (near) 
optimal graphs can greatly simplify the matching problem and improve the results 
[10]. The authors proposed a learning based approach for optimal graph extraction. 
An MRF model [11] and a graph matching approach [8] with optimal model parame-
ter learning are also presented for the correspondence problem.  

In this paper, we will focus on deriving the (near) optimal MRF model for the fea-
ture correspondence problem in NBI. The proposed model incorporates appearance 
based region similarities as well as the spatial correlations of neighbouring regions. 
To this end, we introduce a geometric constraint that evaluates the consistency be-
tween neighbouring matches on their photometric properties. Evaluation of the ap-
pearance and geometric constraints in the same space (photometry) allows for their 
seamless integration. The performance of the proposed method is evaluated with both 
in-vivo and simulation datasets. 
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2   Methods 

The proposed method involves initial affine covariant region detection. This is fol-
lowed by formulating a particular MRF model for the matching problem. Finally, the 
optimal labelling is computed using Belief Propagation. 

2.1   Region Detection and Description 

Affine covariant regions are detected independently on both images using affine in-
variant anisotropic region detector [12], which is shown to be robust against small 
deformations. For viewpoint invariant description, each elliptical region p  is normal-
ized by the corresponding affine transformation pM  (determined by the shape of the 
ellipse) and mapped onto the corresponding circular region pp M p= ⋅  (Fig. 2a). 
Then, the dominant gradient orientation pϑ  is estimated from the local image gradi-
ents and the SIFT descriptor [3] p p(p, , )d σ ϑ  is computed from the circular patch p  
using the characteristic scale pσ  and the dominant gradient orientation pϑ .  

     

Fig. 2. a) Viewpoint invariant region description. b) Unary costs computed from the region 
descriptors, where the diamond indicates the SIFT descriptor computed on the affine normal-
ized patches. c) The proposed pair-wise costs. SIFT descriptors are computed on the patches q  
and ql  using the dominant gradient orientations pϑ , 

pl
ϑ  of the regions p  and pl . Two com-

pared image patches are the same, whereas the length and orientation of the line segment be-
tween two region centres are not preserved as illustrated via the yellow lines in a).  

2.2   Matching through Markov Random Fields 

Given the computed region descriptors, we model the matching problem as global 
optimization of an MRF labelling. We define the regions in the first image to be the 
nodes {1,..,n}=G  of the MRF and the regions in the second image to be the labels 

0 1{ , ,.., }Ml l l+ =L  including the null-label 0l , which is assigned to regions without 
true correspondence in the second image. In this paper, we consider only up to pair-
wise relations. Thus, finding the maximum a posteriori (MAP) estimate of the opti-
mum labelling *l  is equivalent to minimizing the energy function: 

lMRF p p pq p q
p p q (p)

( ) ( ) ( , )E V l V l l
∈ ∈ ∈

= +∑ ∑ ∑
G G N

 (1) 

where p p( )V l  is the unary cost of assigning the label pl  to the node p , pq p q( , )V l l  is 
the pair-wise cost and N  defines the neighbourhood system. 
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2.3   Unary Costs 

In our model, photometric similarities between the node and the label regions are 
evaluated via the unary costs by defining p p( )V l  to be the distance of the SIFT de-
scriptors of the node p  and label pl  regions (Fig. 1b). We further define the cost 

p 0( )V l  of assigning the null-label 0l  to a node p  to be a function of the photometric 
similarities. The motivation is that assigning the null-label 0l  to a region that has a 
strong correspondence in the second image should have a higher cost than assigning it 
to a region with no (strong) correspondence. We define the null-cost function of the 
node p  as p 0 p( ) (1 min( ()))V l Vα= ⋅ − ⋅ , where pmin( ())V ⋅  is the minimum cost of 
assigning a label to the node p , and α  is the factor regulating the trade-off between 
the quality and the number of matches. (For all our in-vivo datasets, the best perform-
ance is achieved for 0.5α = ). The final unary costs are computed as: 

p pp p p p 0

p p
p

arccos( (p, , ) ( , , ))/arccos(0)                if 
( )  ,

(1 min( ()))                                             otherwise

l l
d d l l l

V l
V

σ ϑ σ ϑ

α

⎧⎪ ⋅ ≠⎪⎪= ⎨⎪ ⋅ − ⋅⎪⎪⎩  

(2) 

where all costs p( )V ⋅  are normalized to the interval [0,1]  by dividing by the maximum 
possible angle between two descriptor vectors; arccos(0) .  

2.4   Neighbourhood Systems  

In the context of the matching problem, each region is allowed to have at most one 
correspondence in the second image, i.e., each label can be assigned at most to one 
node. This uniqueness constraint is included into the energy function by connecting 
each node with all the other nodes within the global neighbourhood system N and 
by defining the pair-wise cost for assigning the same label to two nodes to be infinite: 

pq p q( , )V l l = ∞  if p q 0l l l= ≠ . We further define a local neighbourhood system in 
order to impose flexible local geometric constraints. This neighbourhood system is 
defined for both the nodes and the labels to impose neighbourhood preservation as the 
initial geometric constraint (Eq. 3.1). The local neighbourhood local(p)N  of a region 
p  is set to be: local(p) {q p |  || p q || }t= ≠ − <N , where || p q ||−  is the Euclid-
ean distance between the centres of p  and q  and t  is a threshold value. (We use 

10%t =  and 20%t =  of the image size for the node- and label-neighbourhoods 
respectively to ensure the connectivity of two neighbouring regions after a large 
viewpoint change). For regions fulfilling the neighbourhood preservation, a novel 
geometric constraint is imposed measuring the consistency of two matches. 

2.5   Pair-Wise Costs 

In this paper, we propose a geometric constraint based on the assumption that 
neighbouring regions move with similar transformations. The idea is as follows: if 
two neighbouring regions p  and q  have the corresponding regions pl  and ql  in the 
second image, then there exist two affine transformations pA  and qA  such;  
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x x xp p p p p( ) A p( ) R M p( )l s= ⋅ = ⋅ ⋅ ⋅  and x x xq q q q q( ) A q( ) R M q( )l s= ⋅ = ⋅ ⋅ ⋅  
where ps   and qs  are scale factors. Theoretically, for spatially close regions on the 
same plane it holds p qA A= . However, for neighbouring regions on different planes 
this assumption is too restrictive and can be relaxed by assuming only p qR R R= = , 
where R  is the rotation of the local neighbourhood between two images.  

If two neighbouring matches p p(p, )m l=  and q q(q, )m l=  are true correspon-
dences, then the SIFT descriptors q p(q, , )d σ ϑ  and 

q pq( , , )l ld l σ ϑ  computed on the 
patches q  and ql  using their own characteristic scales qσ , 

ql
σ  and the dominant 

gradient orientations pϑ , 
pl

ϑ  of p  and pl  should be similar as the local rotation can 
be determined as 

p pR= lϑ ϑ−  (Fig. 1c). (Recall that pM p p⋅ =   and qM q q⋅ = ). 
This similarity measure indicates the consistency of the matches pm  and qm , as the 
rotation estimated from the match pm  is evaluated on the regions of the match qm . 
Combining with the neighbourhood preservation, the pair-wise costs to evaluate geo-
metric constraints are defined as: 

q p

p local q

pq p q
q p q p local q

                                                  if ( ( ))
( , ) .

arccos( (q, , ) ( , , ))/arccos(0)  if ( ( ))l l

l l
l l

d d l l l
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  (3.1) 
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Introducing the geometric constraints the final pair-wise costs are defined as: 
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   (4) 

where α  is the same factor used in the unary null-costs.  
The derived geometric constraint (Eq. 3.2) is invariant to changes in scale and re-

lies only on the assumption of similar rotations within a local neighbourhood.  This is 
in contrast to previous methods taking global consistency of the features into account. 
Such methods would fail in case of global deformation, which is present in our appli-
cations. This constraint also allows us to be locally more flexible than recent methods 
making stronger assumptions, such as invariance of the distance between the 
neighbouring points or the orientation of line segment connecting their centroids [7-
9]. Furthermore, the proposed constraint evaluates local image geometry based on the 
photometric properties of the patches rather than their spatial locations. This allows 
for the evaluation of the unary and the pair-wise costs in the same space and combin-
ing them in the objective function without using any weighting parameters.  

2.6   MAP Estimation 

The MAP labelling of the proposed MRF model is estimated using Belief Propagation 
(BP) [13].  The non-submodularity of the pair-wise costs restricts the choice of the 
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MRF inference algorithms to those without prior constraints on the class of energy 
functions. In this paper, without loss of generality we use the BP algorithm. 

3   Experiments and Results 

The performance of the proposed method is evaluated on 4 in-vivo and 4 simulation 
datasets and compared to 3 matching strategies evaluated in [14]. The regions are 
detected and described as explained in Section 3.1. The threshold-based (TB) [14], 
nearest-neighbour (NN) [14] and the nearest neighbour distance ratio matching 
(NNDR) [3,14] are applied for varying threshold values. MRF-based method is per-
formed for different values of the factor α  within the convergence range of the opti-
mization. We further compared the hypergraph matching algorithm (HGM) using the 
proposed affine invariant geometric measure via quadripartite point relations [7]. 
However, these graph matching methods are not adapted to large number of non-
matching regions (43%-87% in our datasets). Therefore, the performance of the HGM 
is poor and not illustrated here in detail. For quantitative analysis, we evaluate recall  
(the ratio of correct matches to the total number of correspondences) versus 
1 precision−  (the number of false matches with respect to the number of matched 
regions). For the best matching results 1recall =  and 1 0precision− = .  

3.1   Simulation Studies 

For evaluation with known ground truth data, we created 4 simulation datasets (2 for 
viewpoint change and 2 for deformation). In the first study, we generated images 
under different viewpoint conditions by transforming 2 in-vivo images (one veined 
and one structured area) with known homographies. In the second study, we deformed 
2 in-vivo images (one structured and one homogenous area) and tracked the detected 
regions. In both studies, two regions were accepted as a correct match if the distance 
between the centres of the transformed and detected ellipses was less than 1% of the 
image size and the overlap was more than 55%. Figs. 4(a-c) demonstrate that MRF 
matching results in a better performance than all compared methods for structured 
scenes. Fig. 4d shows that in the presence of non-distinctive regions, MRF-matching 
and NNDR (which favours distinctive matches) exhibit a similar performance. The 
matching results of the MRF model are presented in Figs. 3(a-d).  

 

Fig. 3. Matching results of the MRF model on a-b) viewpoint change c-d) deformation simula-
tion datasets, as well as  e) the first, f) second, g) third and h) fourth in-vivo datasets 
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Fig. 4. Validation of the results on simulation datasets. Viewpoint change on images of a) 
veined b) structured tissue. Deformation on images of c) structured and d) homogenous tissue.  

3.2   In-vivo Studies 

For the in-vivo studies, we used 4 NBI datasets with different viewpoint and photo-
metric conditions. The first 3 datasets contain two distant frames of the same GI pro-
cedure from different viewpoints showing a veined area (Fig. 3e), structured area 
(Fig. 3f) and homogenous area with large deformation (Fig. 3g). The fourth dataset 
contains images acquired during two different GI examinations with a time difference 
of 3 months where the patient underwent chemotherapy. This results in large changes 
in the visual appearance of the tissue (Fig. 3h). For the in-vivo data sets, the ground 
truth data was provided by manual labelling. Fig. 5 demonstrates that for all in-vivo 
cases the proposed MRF model performs better than the state-of-the art descriptor 
matching techniques. For all datasets (simulation and in-vivo), maximum recall values 
for the acceptable precision interval (80%-100% inliers) are summarized in Table1. 
The matching results for the in-vivo datasets are presented in Fig 3e-f. 

        

Fig. 5. Validation of the results on in-vivo datasets.  a-b-c-d) show the recall versus precision of 
each matching algorithm for the first, second, third and fourth in-vivo dataset, respectively. 

Table 1. Summary of the maximum recall values for the precision interval [0.8-1.0] (80%-
100% inliers) for the simulation and in-vivo datasets 

 Viewp.1 Viewp.2 Def.1 Def.2 In-vivo1 In-vivo2 In-vivo3 In-vivo4 
MRF 0.75 0.75 0.76 0.31 0.96 0.69 0.71 0.83 
NN 0.58 0.66 0.73 0.31 0.82 0.31 0.13 0.37 
NNDR 0.53 0.68 0.62 0.31 0.75 0.31 0.06 0.21 
TB 0.55 0.63 0.73 0.31 0.78 0.31 0.13 0.32 

4   Conclusion 

In this paper, we have investigated the task of region matching for NBI and propose a 
new method towards an image-based solution for consistent re-targeting of optical 
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biopsy sites. To this end, we present an MRF model for matching affine covariant 
regions incorporating a novel geometric constraint for dealing with large changes in 
the observed datasets. Our results demonstrate the robustness of the proposed model 
for deformable wide-baseline matching on in-vivo and simulation datasets. For future 
work, we plan to further extend our approach in order to provide a complete frame-
work for this novel and challenging application. This would require both detection 
and tracking taking into account the sequential appearances of features within the first 
and secondary examinations. 
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Abstract. Tracked ultrasound elastography can be used for guidance in
partial breast radiotherapy by visualizing the hard scar tissue around the
lumpectomy cavity. For clinical success, the elastography method needs
to be robust to the sources of decorrelation between ultrasound images,
specifically fluid motions inside the cavity, change of the appearance of
speckles caused by compression or physiologic motions, and out-of-plane
motion of the probe. In this paper, we present a novel elastography tech-
nique that is based on analytic minimization of a regularized cost func-
tion. The cost function incorporates similarity of RF data intensity and
displacement continuity, making the method robust to small decorre-
lations present throughout the image. We also exploit techniques from
robust statistics to make the method resistant to large decorrelations
caused by sources such as fluid motion. The analytic displacement esti-
mation works in real-time. Moreover, the tracked data, used for targeting
the radiotherapy, is exploited for discarding frames with excessive out-
of-plane motion. Simulation, phantom and patient results are presented.

1 Introduction

Breast irradiation after lumpectomy significantly reduces the risk of cancer re-
currence. There is growing evidence suggesting that irradiation of only the in-
volved area of the breast, partial breast irradiation (PBI), is as effective as whole
breast irradiation [1]. Benefits of PBI include significantly shortened treatment
time and fewer side effects as less tissue is treated. However, these benefits cannot
be realized without localization of the lumpectomy cavity. Tracked ultrasound
elastography can be used for localizing the lumpectomy cavity in the treatment
room, minimizing tissue motion from planning to treatment.

This paper is focused on freehand palpation elastography, which involves es-
timating the displacement field of the tissue undergoing slow compression. Most
elastography techniques estimate the displacement field using local cross corre-
lation analysis of echoes [2,3,4]. These methods are very sensitive and accurate
for calculating small displacements. However, elastography is subject to speckle
decorrelation caused by various sources such as motion of subresolution scatter-
ers, out-of-plane motion, high compression and complex fluid motions.

The prior of tissue deformation continuity can be used to make elastography
more robust to signal decorrelation. Previous work on regularized elastography

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 507–515, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is computationally expensive [5,6]. Dynamic programming (DP) can be used
to speed the optimization procedure [7], but it only gives integer displacements.
Subpixel displacement estimation is possible [7], but it is computationally expen-
sive if a fine subpixel level is desired. In addition, a fixed regularization weight is
applied throughout the image. However, while two ultrasound images may cor-
relate well in most parts, they can have small correlation in specific parts. Four
examples of low correlation are: (1) correlation decreases with depth mainly due
to a decrease in the ultrasonic signal to noise ratio, (2) correlation is low close
to arteries due to complex motion and inside vessels due to blood motion, (3)
correlation is extremely low in lesions that contain liquid due to the incoherent
fluid motion [8,3], and (4) out-of-plane motion of movable structures within the
image [8] causes low local correlation. To prevent such regions from introduc-
ing errors in the displacement estimation one should use large weights for the
regularization term, resulting in over-smoothing.

Freehand palpation elastography provides ease-of-use and requires minimum
additional cost. However, out-of-plane motion cannot be avoided in freehand pal-
pation, which reduces the quality of any elastography method. Assisted freehand
elastography [9] significantly reduces the out-of-plane motion but it requires ad-
dition of a device to the probe. Quality metrics such as persistence in strain
images have also been developed to address this problem [10]. To measure the
persistence, elastography is performed on two pairs of images and the resulting
strain images are correlated. This method requires strain images for calculating
the quality metric. Therefore, trying all the combinations in a series of frames
to find the best pair for elastography will be computationally expensive.

In this paper, we present a novel elastography method based on analytic
minimization (AM) of a cost function that incorporates similarity of echo ampli-
tudes and displacement continuity. We introduce a novel regularization term and
demonstrate that it minimizes displacement underestimation caused by smooth-
ness constraint. We also introduce the use of robust statistics implemented via
iterated reweighted least squares (IRLS) to treat uncorrelated ultrasound data
as outliers. And finally, we use the tracking information to select the best pairs
of frames for elastography. Simulation, phantom and patient experiments are
presented for validation.

2 Regularized Displacement Estimation

Dynamic Programming (DP). DP is a discrete efficient optimization tech-
nique for causal systems. In DP elastography [7], a cost function is defined as

C(i, di) = min
di−1

{C(i− 1, di−1) + αaR(di, di−1)}+ |I1(i)− I2(i + di)| , i = 2 · · ·m
(1)

where di is the displacement of sample i, R(di, di−1) = (di − di−1)
2 is an axial

regularization term (axial, lateral and out-of-plane directions are respectively
z, x and y in Figure 2 (a)), αa is a weight for the regularization, I1 and I2
are corresponding RF-lines of before and after deformation and m is the length
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of RF-lines. The cost function is minimized at i = m and the di values that
have minimized the cost function are traced back to i = 1, giving the di for all
samples. We have implemented a 2D DP algorithm similar to [7] to generate
integer displacements as a starting point for the next step of our algorithm.

Analytic Minimization (AM). We now propose a method that analytically
minimizes a regularized cost function and gives the refined displacement field.
Only axial displacements will be refined for strain calculation.

Having the integer displacements di from DP, it is desired to find Δdi values
such that di + Δdi gives the value of the displacement at the sample i for i =
1 · · ·m. Such Δdi values will minimize the following regularized cost function

C (Δd1, · · · , Δdm) = Σm
i=1 [I1(i)− I2(i + di + Δdi)]

2 +
αa(di + Δdi − di−1 −Δdi−1)2 + αl(di + Δdi − dp.

i −Δdp.
i )2 (2)

where superscript p. refers to the previous RF-line (adjacent RF-line in the
lateral direction) and αl is a weight for lateral regularization. Substituting I2(i+
di +Δdi) with its first order Taylor expansion approximation around di, we have

C (Δd1, · · · , Δdm) = Σm
i=1 [I1(i)− I2(i + di)− I ′2(i + di)Δdi)]

2 +
αa(di + Δdi − di−1 −Δdi−1)2 + αl(di + Δdi − dp.

i −Δdp.
i )2 (3)

where I ′2 is the derivative of the I2. The optimal Δdi values occur when the
partial derivative of C w.r.t. Δdi is zero. Setting ∂C

∂Δdi
= 0 we have

(I′2
2 + αaD+ αlÎ)Δd = I′2e− (αaD+ αlÎ)d+ αldt.p., D =

⎡⎢⎢⎢⎣
1 −1 0 · · · 0
−1 2 −1 · · · 0
...

. . .
0 · · · 0 −1 1

⎤⎥⎥⎥⎦
(4)

where I′2 = diag(I ′2(1+d1) · · · I ′2(m+dm)), Δd=[Δd1 · · ·Δdm]T , e=[e1 · · · em]T ,
ei = I1(i)− I2(i + di), d = [d1 · · ·dm]T , dt.p. = dp. + Δdp. is the vector of total
displacement of the previous line and Î is the identity matrix. I′2, D and Î are
matrices of size m×m and Δd, r, d and dt.p. are vectors of size m.

Biasing the Regularization. The regularization term αa(di + Δdi − di−1 −
Δdi−1)2 penalizes the difference between di+Δdi and di−1+Δdi−1, and therefore
can result in underestimation of the displacement field. Such underestimation
can be prevented by biasing the regularization by ε to αa(di + Δdi − di−1 −
Δdi−1− ε)2, where ε = (dm− d1)/(m− 1) is the average displacement difference
between samples i and i− 1. An accurate enough estimate of dm − d1 is known
from the previous line. With the bias term, the R.H.S. of Equation 4 becomes
I′2e− (αaD + αlÎ)d + αldt.p. + b where the bias term is b = αa[−ε 0 · · · 0 ε]T

and all other terms are as before. Interestingly, except for the first and the last
equation in this system, all other m− 2 equations are same as Equation 4.

Equation 4 can be solved for Δd in 4m operations since the coefficient matrix
I′2

2 +αaD+αlÎ is tridiagonal. Utilizing its symmetry, the number of operations
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can be reduced to 2m. The number of operations required for solving a system
with a full coefficient matrix is more than m3/3, significantly more than 2m.

Making Tracking Resistant to Outliers. Even with pure axial compression,
some regions of the image may move out of the imaging plane and increase
the decorrelation. In such parts the confidence of the data term is less and
therefore the weight of the regularization term should be increased. The parts
of the image with low correlation can be regarded as outliers and therefore
a robust estimation technique can limit their effect. Before deriving a robust
estimator for Δd, we rewrite Equation 3 as C(Δd) = Σm

i=1ρ(ri) + R(Δd) where
ri = I1(i)−I2(i+di)−I ′2(i+di)Δdi, ρ(ri) = r2

i and R is the regularization term.
The M-estimate of Δd is Δd̂ = argminΔd {Σm

i=1ρ(ri) + R(Δd)} where ρ(u) is
a robust loss function [11]. The minimization is solved by setting ∂C

∂Δdi
= 0:

ρ′(ri)
∂r

∂Δdi
+

∂R(Δd)
∂Δdi

= 0 (5)

A common next step [11] is to introduce a weight function w, where w(ri).ri =
ρ′(ri). This leads to a process known as “iteratively reweighted least squares”
(IRLS), which alternates steps of calculating weights w(ri) for ri = 1 · · ·m using
the current estimate of Δd and solving Equation 5 to estimate a new Δd with
the weights fixed. Among many proposed shapes for w(·), we use [11]

w(ri) =
{

1 |ri| < T
T
|ri| |ri| > T

(6)

where T is a threshold that can be tuned. A small T will treat many samples as
outliers. With the addition of the weight function, Equation 5 becomes

(wI′2
2 + αD + α2Î)Δd = wI′2e− (α1D + α2Î)d + α2dt.p. + b (7)

where w = diag(w(r1) · · ·w(rm)). All of the results presented in this work are
obtained with one iteration of the above equation unless otherwise specified.
Current implementation of the AM algorithm with the IRLS takes 0.015s to
generate a dense displacement field of size 1300× 60 on a 3.4GHz P4 CPU(not
including the DP run time). The computation time increases linearly with the
size of images.

Frame Selection. The ultrasound probe is tracked in navigation/guidance
systems to provide spatial information, to generate freehand 3D ultrasound,
or to facilitate multi-modality registration. Through a calibration process, the
6DOF motion of the probe in the sensor coordinate system is transformed into
image coordinate system [12]. The mean of the absolute motion value of all pixels
in 3D, 〈|vx|〉, 〈|vy|〉 and 〈|vz |〉, can be analytically related to the 6DOF sensor
readings using straightforward and efficient geometric computations. For frame
i and j to be selected from a sequence of frames for elastography,

Qi,i = kx 〈|vx|〉2 + ky 〈|vy|〉2 + kz
‖ 〈|vz|〉 − vz,opt‖3

〈|vz|〉+ c
(8)
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should be minimized where kx, ky, and kz are weights for lateral, out-of-plane
and axial displacements and vz,opt is the optimum axial motion. Please refer to
[12] for a rationale of the shape this function. Note that the selected pairs are
not necessarily consecutive frames. The parameters, kx, ky, kz , vz,opt and c are
manually tuned to 1, 2, 1, 0.7 and 1 for the AM elastography method.

3 Simulation, Phantom and Patient Results

Simulation Results. RF ultrasound data of two phantoms are simulated using
Field II [13]. The first phantom is 50 × 10 × 55mm and the second one is 36 ×
10 × 25mm. They are both made of homogeneous and isotropic material: the
first one is uniform and the second one contains a circular hole filled with water,
simulating a blood vessel in tissue (Figure 2 (a)). A uniform compression in the
z direction is applied and the 3D displacement field of the phantom is calculated
using ABAQUS finite element package (Providence, RI). The Poisson’s ratio is
set to ν = 0.49 in both phantoms to mimic real tissue, which causes the phantom
to deform in x & y directions as a result of the compression in the z direction.

Respectively 5×105 and 1.4×105 scatterers with uniform scattering strengths
are uniformly distributed in the first and second phantom, ensuring more than
10 scatterers exist in a resolution cell. The scatterers are distributed in the 8mm
diameter vein also (Figure 2 (a)). To construct deformed ultrasound images, the
displacement of all of the scatterers is calculated by interpolating the displace-
ment of the neighboring nodes in the finite element analysis. The parameters
of the probe are set to mimic Siemens 5-10MHz probes. The probe frequency is
7.27MHz, the sampling rate is 40MHz and the fractional bandwidth is 60%.

The first phantom undergoes uniform compressions in the z direction to
achieve strain levels of 2% to 14% in 2% intervals. Ground truth integer dis-
placement values are used as the initial estimate for AM to decouple the perfor-
mance of DP from AM. Accurate subpixel displacement field is calculated with
AM and the mean strain values are compared with the ground truth (Figure 1
(a)-(c)). The results are only shown for 2%, 4%, 8% and 14% compression for
better visualization. The results with two threshold values for IRLS and without
IRLS demonstrate that outlier rejection does not affect the mean strain value,
while increasing the regularization weight αa increases underestimation of the
displacement. The rate of increase of the underestimation with increasing αa is
significantly more with the unbiased regularization (dashed line) as expected.

Significantly higher signal to noise ratio (SNR) [2] values can be achieved
with outlier rejection (Figure 1 (d)-(f)) without over-smoothing the image with
high αa values. To show the performance of the overall method, the initial inte-
ger displacement field is calculated with DP and accurate displacement field is
calculated with (Figure 1 (g)-(i)). The SNR values are less than previous case
especially at high strain values, where DP results deviates from ground truth.

The second simulation experiment is designed to show the effect of smooth-
ness weight and IRLS threshold on contrast to noise ratio (CNR) [2] when the
correlation is lower in parts of the image due to fluid motion. The phantom
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Fig. 1. Mean and SNR of the elastograms of the Field II simulated uniform phantom
at four different compression levels (shown in percentage) for three IRLS T values. The
solid and dashed lines correspond to biased and unbiased regularizations respectively.
(a)-(c) shows the relative underestimation of the strain. ε is the mean strain calculated
with the elastography method and ε∗ is the ground truth. (d)-(f) shows the SNR of
the AM. (g)-(i) shows the SNR of the AM with initial displacements found by DP.

contains a vein oriented perpendicular to the image plane (Figure 2). The initial
integer displacement is generated with DP. The background window for CNR
calculation is located close to the target window to show how fast the strain is
allowed to vary, a property related to the spatial resolution. The maximum CNR
with IRLS is 5.3 generated at T = 0.005 and αa = 38, and without IRLS is 4.8
at αa = 338. Such high αa value makes the share of the data term in the cost
function very small and causes over-smoothing.

Phantom Results. We perform freehand palpation experiment on a breast
phantom to examine the performance of the frame selection technique. 50 frames
of RF ultrasound data are acquired using a Siemens Antares system (Issaquah,
WA). Our custom data acquisition program is connected to the Axius Direct
Research Interface to send the command for capturing RF data. At the same
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Fig. 4. Patient experiment results. The arrow points to the lumpectomy cavity.

time, the program collects tracking information from a Polaris tracker (Waterloo,
Canada). Currently, the RF frames are stored on the ultrasound system and are
processed offline. Figure 3 shows the SNR and CNR results. In automatic frame
selection, Qi,j (equation 8) for any two frames i, j in a buffer of size 15 frames
is calculated. For the two frames which give the minimum Q, the strain image
is obtained. The next image is then fed to the buffer, its first image is removed
and the frame selection is performed again. The automatic frame selection gives
8 frame pairs for strain calculation (as seen in the figure by 8 SNR and CNR
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values). Without frame selection, 49 strain images are calculated. The average
CNR and SNR values are improved from 4.91 to 7.19 and from 4.98 to 5.88 with
frame selection.

Patient Results. We have acquired freehand palpation ultrasound RF data
using the Siemens Antares system from patients approximately four weeks after
lumpectomy. The ultrasound probe is tracked with the Polaris tracking system.
Optimal frame selection is performed to select images for elastography using the
AM method. The strain image (Figure 4) shows that the AM method can detect
the thin hard scar tissue even though it is close to the cavity fluids which undergo
incoherent motions and cause signal decorrelation. Since the AM method finds
the displacement of all the samples on an A-line at the same time, the correlated
data at the top and bottom of the cavity guide the method to find the correct
displacement inside the cavity where the data is decorrelated.

4 Discussion and Conclusion

We introduced a novel method for calculating a dense displacement map by
analytic minimization of a cost function. We used the IRLS method from ro-
bust statistics to make the tracking resistant to outliers. Moreover, we exploited
the tracking data to optimize frame selection. Through simulation studies using
Field II and finite element analysis, we showed that the proposed AM method
generates high quality displacement estimates. The elastography method works
in real-time. A comparison of the IRLS method with quality guided displacement
tracking [14] which also aims for robustness is a subject of future work.

We chose the novel application of the lumpectomy cavity localization as the
hard scar tissue is relatively thin and demands a high resolution elastography
method. Also, incoherent fluid motions in the cavity causes large decorrelations,
requiring a robust method. We have an active Institutional Review Board(IRB)
protocol and have promising results from 9 patients which will be published in
future work.
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Abstract. Anesthetic nerve blocks are a common therapy performed in
hospitals around the world to alleviate acute and chronic pain. Tracking
systems have shown considerable promise in other forms of therapy, but
little has been done to apply this technology in the field of anesthesia.
We are developing a guidance system for combining tracked needles with
non-invasive ultrasound (US) and patient-specific geometric models. In
experiments with phantoms two augmented reality (AR) guidance sys-
tems were compared to the exclusive use of US for lumbar facet injection
therapy. Anesthetists and anesthesia residents were able to place needles
within 0.57mm of the intended targets using our AR systems compared
to 5.77mm using US alone. A preliminary cadaver study demonstrated
the system was able to accurately place radio opaque dye on targets.
The combination of real time US with tracked tools and AR guidance
has the potential to replace CT and fluoroscopic guidance, thus reducing
radiation dose to patients and clinicians, as well as reducing health care
costs.

1 Introduction

A wide variety of pain conditions are treated with needle injection therapies.
Selective nerve blocks require careful placement of the injection needle, both to
ensure effective therapy delivery and to avoid damaging neighboring tissues. The
facet joint is a source of chronic pain for between 15% to 45% of patients with
chronic lower back pain[1]. Lumbar facet joint injections are a good example of
a particularly challenging therapy; the small, narrow channel between vertebrae,
the oblique entry angle, relatively deep location and proximity to nerve tissue
can make accurate treatment delivery quite difficult.

Most facet injections are performed using fluoroscopy or CT guidance, which in-
volves delivering radiation dose to the patient and health care providers. Recently,
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a number of groups have been developing guidance techniques with the goal of re-
ducing or eliminating this radiation dose while either maintaining or improving
patient safety. For example, Proschek et al [2] have developed a guidance system
that uses a laser projection system to limit the radiation dose required for needle
delivery. Magnetic tracking systems (MTS) have shown promise for improving the
guidance of a wide variety of interventional procedures [3]. Tracking technology is
relatively inexpensive compared to 3D US systems or fluoroscopy, making it a vi-
able option for any clinical setting. Bruners et al have demonstrated a system that
combines interventional CT with tracked needles to facilitate lumbar facet needle
guidance [4], while Galiano et al have shown that ultrasound (US) can be used
instead of fluoroscopy or CT for lumbar facet joint injections [5]. US technology
is both ubiquitous and considerably less expensive than fluoroscopy or CT, and
eliminates radiation dose to both patient and clinician. However, on its own US
can be difficult to interpret and the high frequencies required to adequately visu-
alize small needles will not always penetrate deeply enough to visualize the target
facet joint.

By integrating 2D US with virtual representations of anatomical targets and
the tracked therapy delivery needle, it is possible to greatly enhance the US
information available to the clinician. The overall goal of the present work is
to develop an anesthesia delivery system that allows the integration of virtual
models derived from diagnostic imaging such as CT and tracked tools, all in-
tended to enhance real time US data. Our specific goal in the present work is to
assess the accuracy of augmented reality (AR) assistance for US guided lumbar
spinal facet injections. We evaluate two information delivery strategies: a simple
system representing only the tools being used (US and needle), and a more elab-
orate system that also incorporates a patient specific spine model for additional
guidance.

2 Materials and Methods

Four anesthetists and four anesthesia residents evaluated three different guidance
systems (see Figure 1) to place a tracked needle on target for facet therapy
injections in a lumbar spine phantom:

GSus GStools+ GSmodel+

Fig. 1. The three guidance systems evaluated. The virtual needle tool also has x,y and
z axis extensions with 10mm markers to help locate the tip and its trajectory.
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– US only (GSus): the users were restricted to using the US machine monitor.
They were free to manipulate the location and angle for the US transducer;

– US plus virtual tool representations (GStools+): the users had full use of
ultrasound, plus representations of the US and needle tool: the AR display
consisted of the normal fixed view of the US fan with ‘top’ and ‘side’ views
showing the angle and tip of the needle relative to the US beam;

– Complete 3D AR system (GSmodel+): the users had full use of the US, rep-
resentations of US transducer and needle, plus an anatomical model of the
spine based on a high resolution CT. The user had full control of their view
of the scene.

The GStools+ system is intended for applications where no anatomical models
are available (e.g., no pre-procedure imaging is done, as is the case for most
peripheral nerve blocks). It was expected this system would have an advantage
over US guidance since it allows the anesthetist to localize the needle tip even
when it is not entirely in plane in the US. This system will be evaluated specif-
ically for use in peripheral nerve block applications in future studies.

To date we have performed a single cadaver study to assess the logistics of
translating our techniques to a clinical environment.

Apparatus. Our phantom experiments were carried out using a plastic lumbar
spine that was rigidly fixed inside a lexan box using four high grade stainless
steel screws to hold each vertebra (see Figure 2). A total of 17 concave landmark
divots were machined randomly into the outside of the container for registration
purposes. The spine was embedded in a tissue mimicking polyvinyl alcohol cryo-
gel (PVA-C) material (10% PVA, two freeze-thaw cycles)[6]. To remove needle
tracks left behind in the phantom after repeated experiments, the PVA-C was
heated above 60◦ Celcius to melt it into a liquid state after which the freeze-thaw
cycles were repeated to return the PVA to its solid tissue-mimicking state. The
phantom was imaged using a 64 slice LightSpeed VCT scanner (General Electric,
Milwaukee, WI, USA), (0.441mm by 0.441mm in plane, 0.625mm slice thick-
ness), to generate an accurate surface model of the spine. An expert identified
the ideal target facet locations in the phantom CT by manually segmenting each
facet joint using ITK-SNAP (www.itksnap.org), and a spine model was gener-
ated using the Marching Cubes algorithm in VTK (Kitware Inc.), as shown in
Figure 2. Landmark divot locations were defined in the CT image to register
the tracked US and needle into the CT/model/target coordinate frame. Imaging
was provided by an Aloka US system with a 5 MHz neuro transducer.

Measuring Accuracy. For the actual therapy delivery, a magnetic tracking
system is required since the delivery needle is capable of bending inside tissue.
The Aurora MTS (NDI, Waterloo, ON, Canada) was used to track needles and
US. The needle (stylus and cannula) used was a 5 degrees of freedom (DOF) 18
gauge, 200 mm long needle (Figure 2) with the sensor located at its tip. 6DOF
sensors were used to track the US transducer and to provide a reference for
the phantom itself. The US transducer was calibrated using a Z-bar phantom
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(a) (b) (c)

Fig. 2. Phantom, tools and targets: (a) spine inside the phantom, (b) phantom with
tissue-mimicking PVA-C, tracked needle tool, US transducer and tracker field generator
(on right), (c) Facet targets in context of the spine model generated from CT data

[7]. Since the MTS has an inherent coordinate frame based on the magnetic
field generator, all tool coordinate vectors (pfg) are relative to this frame of
reference. This could cause problems if the phantom or field generator move
relative to each other during an experiment. Consequently the reference tool
was rigidly attached to the spine phantom box to yield coordinates relative to
the phantom, thus ensuring tracked tool coordinates (pmts) remained consistent
with the phantom coordinate frame:

pmts = T−1
ref

(
pfg

)
, (1)

where Tref represents the transform of the reference tool. In clinical applications,
placing this reference tool near the target will also help compensate for patient
shifting and breathing motion. The tracking coordinate frame was registered to
the CT-generated model using a tracked sphere-tipped tool that mated with the
divots on the outside of the phantom box, generating a very accurate point-
based registration. Using this point based registration transform (Tphantom), we
translated the measured needle coordinates (pmts) into the CT coordinate frame:

pmeas = Tphantom (pmts) , (2)

where pmeas is the measured needle tool tip location CT space. Trueness is then
the distance defined by the magnitude of the error vector,

derr = |perror| =
∣∣pmeas − ptarget

∣∣ , (3)

where ptarget is the closest point on the facet joint polydata as defined in the
CT. When pmeas was located inside the target polydata, the error was zero.

Software. The GSmodel+ system used a software platform that presents the
real-time tracked US and tools in a 3D context, allowing the user to inter-
actively select which data to display: the pre-procedural CT, real time US
image, in addition to geometric models, from any desired point of view [8].
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With the GSmodel+ system, the user was able to toggle between two “stan-
dard views” of their own choosing. Typically, this feature allowed the user to
flip between orthogonal views to provide accurate perception of needle trajec-
tory and needle depth. The GStools+ system was based on the same software
platform.

Implementation. Each subject gained familiarity with the AR guidance sys-
tems using a training apparatus consisting of tracked ultrasound and needle and
a series of small targets in a water bath. Surgical targets were shown to the
subjects prior to performing the experiment but were not available during the
experiment, since these data would not be available during an actual needle
therapy delivery. After the subjects were comfortable with the systems, they
proceeded to place the delivery needle at the target locations. A total of six
target locations were used: facet joints between L5 and L4, L4 and L3, L3 and
L2. Each guidance modality was used on each target, yielding 18 deliveries for
each subject, six for each guidance system. The target order and modality were
uniquely randomized for each subject in order to minimize any bias.

Cadaver Study. A proof of concept cadaver study was performed using the
GSmodel+ guidance system to assess the system in a clinical setting. This study
was performed according to the University of Western Ontario requirements for
the use of cadavers. Seven homologous points representing the spinal and lateral
processes in the region of interest were defined in the pre-procedural CT and
interactively in the OR using 2D US to perform the point based registration.
This procedure took approximately five minutes. To properly mimic a clinical
therapy, radio opaque dye was injected when the user believed the needle was in
the correct position. An anesthesia resident performed the needle delivery using
the GSmodel+ guidance system, placing radio opaque dye at the left and right
L2-3 and L3-4 facet joints. Accuracy was assessed independently by a radiologist
using a post-procedure CT (see Figure 3).

(a) (b) (c)

Fig. 3. Cadaver study and results. (a) OR environment showing AR scene, delivery
needle and MTS field generator, (b) close-up of GSmodel+ system including needle
(gray), US fan and projected y axis (green), (c) post-procedure CT showing radio
opaque dye at the L2-3 facet joints.
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Table 1. RMS distance errors in mm for each image guidance system. ‘Correct target’
excludes outliers where the subject identified the wrong facet joint but accurately
reached the (incorrect) target.

GSus GStools+ GSmodel+

all data 10.22 8.45 0.57
correct target only 5.77 4.87 0.57

3 Results and Discussion

The phantom experiment was a 3×6×8 factorial design, the factors being guid-
ance system, target and user, respectively. An analysis of variance (ANOVA)
was performed to test for significant variance across the three factors. When
a significant difference was found in the ANOVA, Tukey’s Honestly Significant
Difference test was applied to determine which levels of the given factor were
different. No significant difference was noted across users or targets (p > 0.05).

The use of GSmodel+ showed a marked superiority to GSUS and GStools+.
One curious phenomena was noted in several subjects: on six occasions using
the GStools+ system and five occasions with the GSUS system, users managed
to correctly place the needle tip inside a facet joint, but selected the incorrect
joint. This problem never arose with the GSmodel+ system. Table 1 displays root
mean squared (RMS) distance error data considering all trials, including cases
where the anesthetist placed the needle tip “correctly” in the wrong facet joint,
as well as the distance error data excluding these cases. In both cases, there is
a significant difference (p << 0.05) between the GSmodel+ system and the other
two systems. How common this form of error is in practice is unclear, however
the use of an AR system incorporating anatomical models would appear to cir-
cumvent the problem.

Figure 4 provides a graphical representation of therapy delivery locations rel-
ative to targets. Overall, the GStools+ system showed slightly better RMS error
than US alone, but not at a statistically significant level. The cognitive demands
of this new guidance system may have contributed to these results, as several clin-
icians commented that the computer monitor was rather “busy”. Larger sample
sizes are planned for future research which should help to quantify the advan-
tage of the GStools+ system, particularly for peripheral nerve block applications
where no pre-procedural imaging is done.

An unpaired t-test was performed to compare residents and anesthetist ac-
curacy, and no significant difference was found. The anesthesia residents in-
volved in this study had significant experience with US guided peripheral nerve
blocks, so this lack of difference between novices and experts is not surprising.
Only two of the participants had prior experience with facet joint injections.
Several of the participants commented on the training and educational poten-
tial of the guidance systems, both for identifying anatomical landmarks (using
the GSmodel+ system) and recognizing when the needle tip is in or out of the
US plane ( GStools+ system). Anecdotally, all users described the GSmodel+
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(a) (b) (c)

Fig. 4. Distribution of needle placements in coronal view: blue clouds are the facet
joint targets, spheres are needle delivery locations. (a) US alone, (b) GStools+ system,
(c) GSmodel+ system.

guidance system as a substantial improvement over existing systems (US alone
and fluoroscopy).

Introducing the tracking system into the OR environment for the cadaver
study posed no significant difficulties. Attention was paid to minimize the pres-
ence of magnetic materials in the vicinity of the MTS field generator. Although
we did not record the number of needle penetrations necessary for accurate
placement, the clinician commented that the new system greatly reduced the
number of penetrations and the time required to position the needle correctly.
The x, y, and z axes projected from the virtual needle tip were especially useful
for determining trajectory and tip location. The radiologist report stated sig-
nal enhancement (due to injected radio opaque dye) in and surrounding facet
joints right and left, L2-3 and L3-4. This correlates with a clinically significant
injection (see Figure 3 (c)).

4 Conclusions and Future Work

Our results indicate that AR assisted ultrasound guidance for facet injections
shows tremendous promise for increasing patient safety and comfort, greatly
reducing or even eliminating radiation dose to both patient and clinicians, as
well as reducing health care costs. The use of tracked US and needles in an AR
environment also has a great deal of potential for application in nerve block
clinics and anesthesia training.

Our next steps include the application and assessment of several features,
including a more clinically relevant CT to US registration algorithm. We are also
evaluating the use of a volume rendered display of 3D reconstructed ultrasound
data, since this would eliminate the need for registering pre-procedural CT data
and models. The need to compensate for respiratory motion and changes in
position during the clinical intervention may be reduced by the use of a tracked
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reference tool in the vicinity of the target tissues, though this will need further
study. An assessment of the cognitive demands presented by the AR systems
will also help to properly interpret their significance. Educational and clinical
applications for peripheral nerve blocks are also in the planning stages.
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Abstract. For patients with neck problems valuable functional and di-
agnostic information can be obtained from a fluoroscopy video of a
flexion-extension movement of the cervical spine. In most cases physi-
cians have to manually extract the vertebrae, making the analysis of these
video sequences tedious and time consuming. In this paper we propose
an automatic fast and precise method for tracking cervical vertebrae.
Our method relies only on a rough selection of template areas of each
vertebra in a single frame of the video sequence. Compared to existing
automated methods, no contours need to be extracted and no vertebra
segmentation is required. Tracking is done with a normalized gradient
field, using only the gradient orientations as features. Experimental re-
sults show that the algorithm is robust and able to track the vertebrae
accurately even if they are partially occluded or if a disc prosthesis is
present.

1 Introduction

The order in which the segments of the cervical spine contribute to the motion of
the skull with respect to the thorax during anteflexion and retroflexion (forward
and backward bending of the neck), has proven to provide valuable functional
and diagnostic information for patients with neck complaints [1,2]. To analyze
the movement of the cervical spine in detail, a video-fluoroscopy recording (i.e.
an x-ray video), is created for a movement from maximum extension to maximum
flexion of the neck (Fig. 1). From this recording the rotation and translation of
the cervical vertebrae with respect to each other need to be extracted.

Automatic spinal measurement techniques have been studied for the lumbar as
well as the cervical spine. Generally these methods are either based on landmark
detection, or on the extraction of vertebral boundaries. Due to noise, occlusion
and unclear vertebral contours, the detection of landmarks or contours is difficult.
Techniques exploiting the Hough transform [3,4], active appearance models [5],
level sets [6] and polar signatures [7], have been used to find the unclear vertebral
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Fig. 1. Three frames of a typical cervical fluoroscopy video. The images respectively
show the patient in retroflexion, neutral position and anteflexion.

boundaries and track them in fluoroscopy videos. These methods often use large
sets of templates to capture the great variability in the shape of the vertebrae,
require extensive manual interaction, are computationally heavy and are complex
to implement.

For the motion analysis of the cervical spine, exact contour extraction and
vertebra segmentation is not necessary. We therefore propose a method based
on the normalized gradient field that can automatically track cervical verte-
bra in a video-fluoroscopy sequence, requiring user interaction in only a single
frame of the video. This eliminates the cumbersome and computationally heavy
segmentation of the vertebral contours.

2 Methods

2.1 Cervical Video-Fluoroscopy

To acquire the cervical fluoroscopy video, the subject is placed on a stool, with
his shoulders perpendicular to the image intensifier. The shoulder nearest to the
image intensifier is placed directly against it. The subject is asked to move his
head in maximal extension without moving the upper part of his body. As soon
as the recording is started, the subject is instructed to move his head in the
sagittal plane from maximal extension to maximal flexion, without moving the
upper part of the body. The subjected is asked to perform the full movement in
about 15 seconds. It is important that the subject’s shoulders are kept as low
as possible while making the cervical fluoroscopy videos to ensure that all the
cervical vertebrae are visible. The movement of the cervical spine should be as
fluent as possible to prevent for sudden large rotations and translations between
consecutive frames. The fluoroscopic recordings were made with a digital X-ray
detector, capturing frames of 1024× 1024 pixels, at 10 frames per second. The
recordings were stored without compression.

2.2 Template Selection

The tracking algorithm requires a template of each vertebral body and the
skull, that can be tracked throughout the whole video sequence. Due to partial
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C1

C2

C3

C4

C5

C6

C0 / Skull

Fig. 2. An example set of templates for the vertebrae and the skull

occlusion by the shoulder of C5 and C6 only the anterior parts of these verte-
brae are visible during retroflexion, which is why these anterior parts are taken
as a template. The anterior parts of C1 and C2 appear as one, as the dens of
C2 moves into C1 to form the atlanto-axial joint. This is why only the posterior
parts of these vertebrae are used as a template. The bottom part of the maxillary
sinus and the palatum durum are projected in the x-ray image as a stable and
structure rich area of the skull. This is therefore an ideal template to track the
movement of C0 (the skull). C7 is usually completely occluded by the shoulder
and can therefore not be tracked. Figure 2 shows the template regions. The user
is asked to draw these templates in a single frame of the fluoroscopy video. The
templates are selected by positioning a closed spline over the template area. This
spline is positioned by moving a small number of points (the user can choose the
amount, but these are usually 4 points) over the image.

2.3 Vertebra Tracking

We define a user selected portion of a vertebral body as the template T , and the
subsequent image in the fluoroscopy video sequence as the reference R. The goal
is to find a rigid transformation ϕ such that the “distance” between the template
T , and the reference R, is as small as possible. The rigid transformation is defined
as:

ϕ(γ,p) =
(

cos(γ1) − sin(γ1)
sin(γ1) cos(γ1)

)(
p1
p2

)
+
(

γ2
γ3

)
. (1)

Given a distance measure D, the goal is to find a minimizer γ of

f(γ) := D
(
R(·), T (ϕ(γ, ·))

)
. (2)
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The cervical vertebrae tracking is done on a video sequence of fluoroscopic im-
ages. Partial occlusion of the vertebrae by other bones causes significant intensity
variations. A proper distance measure to register the reference and target should
therefore not depend on the intensities of the image. We have chosen to use the
normalized gradient field (NGF) as described by Haber [8]. The NGF contains
the local orientations of the image gradient. In regions where the intensities are
nearly constant the gradient orientation is unreliable. To lower the weight of
these gradient orientations a parameter ε is introduced so that the normalized
gradient ∇̂ε becomes

∇̂εI :=
∇I√

|∇I|2 + ε2
, with ε =

η

A

∫
Ω

| ∇I(p) | dp, (3)

where η is the estimated noise level in the image and A is the area of the
image domain Ω. With S := T · ϕ, the normalized gradient vectors at position
p become {R̂x(p), R̂y(p)} = ∇̂εR(p) and {Ŝx(p), Ŝy(p)} = ∇̂εS(p). As the
gradient fields are approximately normalized, the angle θ(p) between the vectors
{R̂x(p), R̂y(p)} and {Ŝx(p), Ŝy(p)} is given by:∣∣∣R̂x(p)Ŝy(p)− R̂y(p)Ŝx(p)

∣∣∣ =
∣∣∣{R̂x(p), R̂y(p)}

∣∣∣ ∣∣∣{Ŝx(p), Ŝy(p)}
∣∣∣ · sin(θ(p))

≈ sin(θ(p)). (4)

As we want to minimize the differences in the angles between the normalized
gradient field of reference R and template T we define the distance between two
normalized gradient vectors as

d(R(p), T (ϕ(p))) =
(
R̂x(p)Ŝy(p)− R̂y(p)Ŝx(p)

)2
. (5)

The overall distance between R and T is defined as

D(R, T ) =
1
2

∫
Ω

d (R(p), T (ϕ(p))) dp (6)

≈ h2

2

∑
p∈Ω

(
R̂x(p)Ŝy(p)− R̂y(p)Ŝx(p)

)2
.

Where h is the distance between grid points, defined as the image domain Ω,
divided by the number of grid points in each direction.

A Gauss-Newton optimization scheme is used to solve for the registration
parameters γ. For each iteration the parameter change s is found that minimizes
f(γ + s). Using a second order Taylor expansion we obtain

f(γ + s) ≈ f(γ) +∇f(γ) · s +
1
2
s · ∇2f(γ) · s. (7)

This equation needs to be minimized; therefore the first order derivative of the
function with respect to s should equal zero.

f ′(γ + s) ≈ ∇f(γ) +∇2f(γ) · s. (8)
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By setting the result equal to zero and rearranging the terms we obtain

−∇f(γ) = ∇2f(γ) · s. (9)

f(γ) can be written in a general form:

f(γ) =
h2

2
|r(γ)|22, with r(γp) = R̂x(p)Ŝy(p)− R̂y(p)Ŝx(p). (10)

The matrix of the first-order partial derivatives of r is the Jacobian,

J = [
∂rj

∂γp
]. (11)

By using the Jacobian the derivatives of f(γ) can be written as:

∇f(γ) = J(γ)T r(γ). (12)

∇2f(γ) = J(γ)T J(γ) +
2∑

j=1

rj(γ)∇2rj(γ) ≈ J(γ)T J(γ). (13)

Substituting Eqn. 12 and 13 in Eqn. 9 and rearranging the terms leads to

s = −
(
J(γ)T J(γ)

)−1
J(γ)T r(γ). (14)

The partial derivates ∂r
∂γ of r(T (ϕ(γ))) can be calculated using the chain rule

∂r

∂γ
=

∂r

∂T

∂T

∂ϕ

∂ϕ

∂γ
, (15)

leading to

∂r

∂γ
=
(
−R̂y R̂x

)( Ŝxx Ŝxy

Ŝxy Ŝyy

)(
−x1 sin(γ1)− x2 cos(γ1) 1 0
x1 cos(γ1)− x2 sin(γ1) 0 1

)
.

We use a convolution with a Gaussian kernel to calculate image derivatives.

φσ(x, y) =
1

2πσ2 e−
1
2 (x2+y2)/σ2

. (16)

Derivatives of the image can be calculated at any scale by

DI(x, y, σ) = (Dφσ ∗ I) (x, y), (17)

where D is any linear derivative operator with constant coefficients. By convolv-
ing the reference image R with the first order derivatives of the Gaussian kernel
we obtain R̂x and R̂y and similarly by convolving the transformed template T

with the second order derivatives of the Gaussian kernel we obtain Ŝxx, Ŝxy,
and Ŝyy.
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By iterating Eqn. 14 and updating the parameters γi+1 = γi + s the best
match between the template and the reference image is established. The process
is repeated until the distance D(R, T ) divided by the number of pixels in the
template T , between two consecutive iterations, is less than 1e−9. This threshold
is experimentally set. A change of an order of magnitude in this threshold will
not significantly change the outcome of the algorithm. This threshold is the same
for all sequences.

The obtained parameters γ can be used to track the cervical vertebra from
frame i to frame i + 1. This is done for each vertebra and for the skull.

3 Results

The results of our automatic tracking algorithm are presented to the user in an
animation as shown in Fig. 3. The results were validated by comparison with
manual vertebrae outline tracking by a trained clinician. The manual tracking
was obtained by outlining all cervical vertebrae and the skull in a neutral frame.
In the consecutive frames the outlines of the previous frame are displayed over the
image. These outlines are then rotated and translated horizontally and vertically
by the user until they visually match with the corresponding vertebrae in that
frame. This is repeated until all the frames contain matching outlines. This
manual analysis of an entire anteflexion-flexion movie takes a trained expert 5
to 6 hours.
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Fig. 3. Visualization of the results; the user is presented with an animation where
on the left side the vertebrae and a moving outline (user-specified in a single frame)
are shown; the amount of rotation between two adjacent vertebrae is visualized by
(exaggerated) polar-wedge diagrams. On the right side the amount of rotation between
adjacent vertebrae is quantified in graphs, the black dot represents the current frame.
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4 Discussion

The angles of rotation obtained by both the expert and our algorithm were
compared for three separate cervical fluoroscopy video’s, of which one contains a
disc prosthesis. In all cases the automatic method performed as well as, or better
than the manual tracking by the expert. The performance of one sequence is
shown in Fig. 4. It is clear that the differences are small apart from some manual
annotation errors that are apparent as high peaks in the graphs.

Our algorithm is robust to variations in the choice of the templates (Sec. 2.2)
as long as a substantial part of template is visible throughout the entire sequence.
If, however, the template area is too small, a region without any structure or an
area which will be largely occluded later in the video sequence is selected, the
algorithm will fail to track that vertebra. As a test we have asked six different
users to draw the templates for the vertebrae and the skull, and in all of these
cases the algorithm was able to track the vertebrae flawlessly, even though there
were substantial differences in the selected areas.

Our method is insensitive for the presence of a disc prosthesis, which is valu-
able as it enables the analysis of the movement of the cervical spine before and
after the placement of such a prosthesis.

The frames of the video sequence were cropped such that only areas that
contain information on the vertebrae and the skull were kept, i.e. the shoulders
were removed from the image and any excess space in front of or above the
patient was removed. On average this reduces the dimensions of the images to
500 × 500 pixels. Implementing these changes into the fluoroscopy acquisition
protocol will reduce the dose.

Selecting the neutral frame and marking the template areas on the video
sequence takes no more than 3 minutes and is all the user interaction required
for the algorithm to run. Our MathematicaTM implementation of the automatic
tracking algorithm takes around 45 minutes to run for all vertebrae on the entire
fluoroscopy video sequence, this algorithm runs unsupervised.
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Fig. 4. The cumulative angle of each vertebra through the video sequence, as marked
by the user (dashed) and our algorithm (continuous)
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Processing time can be shortened by reducing the video frame rate. We were
able to reduce the original frame rate of 10 frames per second to 3 frames per
second without any loss of accuracy. (Note that adjusting the acquisition proto-
col to this frame rate will lead to a significant dose reduction). If the movement
between two consecutive frames is too large, the algorithm will fail to track the
vertebrae correctly. An algorithm to drop consecutive frames with little move-
ment could further decrease the computation time.

The goal of this study was to develop an automated cervical vertebrae track-
ing algorithm that can give quantitative data on the order of movement of seg-
ments of the cervical spine. Our method is able to accurately track the skull and
the cervical vertebrae throughout an entire cervical fluoroscopy video. It is less
labor-intensive than manual methods, less complex and not as computationally
demanding as existing methods which extract the contours of the vertebra in
each frame of the video sequence. The tracking algorithm is robust and allows
for large variations in the choice of the template regions.
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Abstract. Intraoperative robotic and computer-guided assistances are
now commonly used in total hip arthroplasty (THA) for accurate exe-
cution of the preoperative plan. Although the preoperative plan to be
accurately executed is critical, it is still interactively prepared in a time-
consuming and subjective manner. In this paper, atlas-based approach to
automated surgical planning of the acetabular cup in THA is described
to stabilize its quality as well as reduce its time-consuming nature. Sur-
geon’s expertise is embedded in two types of statistical atlases, which
are constructed from training datasets of CT-based 3D plans prepared
by experienced surgeons. One is a statistical shape model which encodes
global spatial relationships between the patient anatomy and implant.
The other is the statistical map of residual bone thickness on the implant
surface, which encodes local spatial constraints of the anatomy and im-
plant. Given the 3D pelvis shape of the patient, we formulate a procedure
to determine the best size and position of the acetabular cup which sat-
isfy the constraints derived from the two statistical atlases. We validated
the proposed planning method by retrospective study using the datasets
which were actually used in the THA surgery.

1 Introduction

Surgical CAD/CAM is one of common frameworks for computer assisted surgery
[1], especially, in orthopedic application. The CAM systems, that involve intra-
operative robotic and computer-guided assistance, ensure accurate execution of
preoperative plans constructed using the CAD systems. In its ultimate form,
the surgery can be regarded as virtually completed once preoperative planning
is completed. Therefore, the quality of preoperative planning is becoming more
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critical than ever in this framework [2][3]. Our aim is to automate preoperative
planning for total hip arthroplasty (THA) in order to stabilize its quality as well
as reduce its time-consuming nature.

Nowadays, navigated THA is routinely used in many hospitals. Especially, for
patients with osteoarthritis of the hip caused by congenital hip dysplasia, CT-
based 3D preoperative planning is effective due to large deformation of the hip
joint. A large number of the 3D preoperative plans prepared by well-experienced
surgeons have been accumulated in some of the hospitals. The feedback of
these past planning datasets can be utilized for the future planning. Closed-loop
surgery to make the best use of past surgical data for future surgery is a recently
emerged framework [4]. Atlas-based approach is well-fit to this framework and
has been applied to the femoral stem planning [5][6]. One of the simplest forms of
such approach is to use one standard 3D plan constructed on CT data as a tem-
plate [5]. The spatial relations between host bone (femur) and implant (femoral
stem) in the template are mapped to each patient by scaled rigid registration
between the patient and template. However, the template based on only one
dataset is insufficient to deal with inter-patient shape variations. More recently,
the statistical map of bone-implant distance on implant surface was generated
from a large number of 3D plans to automate femoral stem planning [6].

In this paper, we develop an atlas-based approach to automated acetabular
cup planning. Unlike femoral stem planning, the expertise of cup planning in-
volves more global relations between implant and patient anatomy. Therefore,
we represent statistically-derived constraints of bone-implant relations not only
as the form of a statistical map on implant surface but also as a statistical shape
model [7] to describe global relations. We formulate a method for hybrid use of
the two statistical atlases to automate cup planning, and evaluate it using plan-
ning datasets actually used in navigated THA in comparison with a previous
automated cup planning method [8] based on user-specified constraints.

2 Methods

2.1 Overview

Figure 1 shows typical cup planning examples. The position and size of the ac-
etabular cup should be basically determined so as to recover the original anatomy
of the acetabulum. Although it is not so difficult to predict the original anatomy
for a mildly diseased case (Fig. 1(a)), it is somewhat difficult for a severely dis-
eased case due to its large deformation and shift (Fig. 1(b)). In both cases, cup
size and position should be carefully refined so that residual bone thickness is
sufficient on the implant cup surface and no penetration occurs.

Two types of statistical atlases are constructed from a sufficient number of
cup plans on CT data prepared by experienced surgeons. One is a combined
pelvis and cup statistical shape model (PC-SSM) to roughly predict the cup
shape recovering the original anatomy based on global pelvic anatomy [9]. The
other is the statistical map of (residual) bone thickness (SM-BT) on the cup
surface for subsequent refinement of the cup size and position so as to ensure
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(a) Mildly diseased case. (b) Severely diseased case.

Fig. 1. Cup planning for mildly and severely diseased pelvises. Cup planning was per-
formed by an experienced surgeon. Left column: Pelvis model. Right column: Cup
planning on pelvis model.

sufficient residual bone thickness for the host bone which was originally devel-
oped to describe the statistical map of bone-implant distance for femoral stem
planning [6].

In our automated cup planning, given the pelvis surface model segmented
from CT data, the cup position and size are estimated. The cup is modeled as a
hemisphere and its diameter and center are regarded as the cup size and position,
respectively. The final cup size is determined by selecting the size closest to the
estimated diameter among available discrete cup sizes. Because cup orientation
is determined based on femoral anteversion in our hospital, we do not address
its determination in this paper where only the pelvis is considered.

2.2 Construction of Planning Atlases

We assume that N training datasets of cup planning are given. Let Pi and Ci be
the 3D shape models of the pelvis and the cup model planned on Pi, respectively,
where i = 1, · · · , N . Inter-patient nonrigid registration of Pi and Ci is performed
using a point based method. Let pi and ci be the sets of vertex’s position of Pi

and Ci, respectively. Then, we concatenate pi and ci to obtain the combined
pelvis and cup pointset qi. The combined pelvis and cup statistical shape model
(PC-SSM) is obtained by performing principal component analysis of qi. PC-
SSM q is defined as

q(b) = q̄ + Φb, q̄ =
[
p̄
c̄

]
, (1)

where q̄, Φ, and b are the mean shape vector, the eigenvector matrix, and the
shape parameter vector, respectively. q̄ consists of the mean shape vectors of the
pelvis and the cup, p̄ and c̄, respectively.

The statistical map of bone thickness (SM-BT) is defined as the distributions
of the mean and standard deviation of the residual bone thickness on the cup
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surface. The residual bone thickness is defined as the remaining thickness of
bone tissue when the bone is removed for cup placement. The residual bone
thickness is calculated on each cup vertex along each normal direction. If the
bone thickness is equal to or smaller than zero, it means that penetration of the
cup through the bone occurs. Since the cup surface is not fully covered with the
pelvic bone, the target area of SM-BT is defined as the area which are covered
with the pelvic bone in 95% cases of the training datasets. Let vij be the j-th
vertex’s position of the cup surface of the i-th training dataset. Let d(vij , Pi) be
the bone thickness at vij . If the point vij is not covered with the pelvic bone Pi,
the bone thickness is not calculated. The distributions of the mean and standard
deviation of the bone thickness on the cup surface, U and S, are obtained by
the method described in [3] and defined as

U = {μj|μj =
1
N

N∑
i=1

d(vij , Pi), vij ∈ Ci}, (2)

S = {σj |σj =

√√√√ 1
N

N∑
i=1

(d(vij , Pi)− μi)2, vij ∈ Ci}, (3)

where μj and σj represent the mean and standard deviation of the bone thickness
at the point vj , respectively.

2.3 Optimization Procedure

Two-step optimization is performed for automated cup planning. Let Pa be the
patient’s 3D pelvis surface model on which the cup is placed. The cup position
t and size s are initially determined by fitting the pelvis part of PC-SSM to Pa,
and then they are refined by using SM-BT. When specific parameter b is given to
PC-SSM q(b) in Eq. (1), the pelvis shape p(b) and the cup shape c(b) are given
by p̄ + Φpb and c̄ + Φcb, respectively, where Φp and Φc are the submatrices of
Φ which correspond to pelvis and cup vertices, respectively. Let the number of
vertices of p(b) and c(b) be n and m, respectively. The fitting process of PC-SSM
is performed by obtaining b which minimizes the cost function CD defined as

CD(b;p(b), Pa) =
n∑

j=1

d(wj(b), Pa)2, (4)

where wj(b) and d(wj(b), Pa) are the j-th vertex’s position of p(b) and the
shortest distance from wj(b) to Pa, respectively. Let ba be the shape param-
eter vector minimizing Eq. (4). We use Levenberg-Marquardt method for the
minimization. Then, initial cup position ta and size sa are determined by fit-
ting a parametric hemisphere model to c(ba). Let c′(t, s) be the sets of vertex’s
position of the parametric hemisphere model which position is t and size is s.
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In the subsequent refinement using SM-BT, we minimize the cost function
f(t, s) defined as

f(t, s) = λ1(s− sa)2 + λ2(t− ta)2 + λ3
1
m

m∑
j=1

1
σ2

j

(d(v′
j(t, s), Pa)− μi)2, (5)

where v′
j(t, s) is the j-th vertex’s position of c′(t, s). The first and second terms

ensure that the size and position estimated using PC-SSM should not be far
from the initial size and position. The third term ensures that the distribution
of the bone thickness on the ongoing cup becomes close to SM-BT. λ1, λ2, and
λ3 are the weight parameters balancing the three terms. For the hybrid use of
the two atlases, λ1 = 1.0, λ2 = 1.0, λ3 = 10.0 were used while λ1 = 1.0, λ2 = 1.0,
λ3 = 0.0 or λ1 = 0.0, λ2 = 0.0, λ3 = 1.0 were used when either atlas was utilized.

3 Experimental Results

3.1 Experimental Conditions

We compared the proposed method with the previous method described in [8],
which is the only one existing method for automated cup planning in 3D to our
knowledge. In order to investigate effects of the atlases, we tested the method
under three conditions, that is, only PC-SSM, only SM-BT, and the hybrid use of
PC-SSM and SM-BT. CT slice thickness and reconstruction pitch were 2 mm.
Field of view was 360 mm. The pelvis surface was segmented with the atlas-
based automated segmentation method described in [10]. The available cup size
variation was 11 sizes from 40 mm to 60 mm. The 3D surface models of pelvis
and cups consisted of 3,000 and 353 vertices, respectively. 28 patient datasets
including 3D pelvis models and preoperative plans were used for construction
of atlases and evaluations. The preoperative plans used for atlas construction
and evaluation were made by the experienced surgeons using a commercially
available planning system, Stryker CT-Hip System (Stryker Leibinger GmbH,
Freiburg, Germany), and applied to the actual navigated THA surgery. We used
the first 10 principal components in PC-SSM fitting to avoid over-fitting [9].

Evaluation was performed by leave-one-out cross validation. Evaluation mea-
sures were cup position error, cup size error and the number of cases when the
penetration occurred. Error was defined as the difference between the surgeon’s
and estimated results.

3.2 Results

The constructed PC-SSM and SM-BT are shown in Fig. 2 and Fig. 3, respec-
tively. Fig. 2 shows the mean and variations of PC-SSM. Fig. 3(a) shows the
evaluation area for SM-BT construction. Fig. 3(b) and (c) show the distribution
of the mean and standard deviation of the bone thickness, respectively. Table. 1
shows a summary of the evaluation results. It shows the number of cases when
the penetration of the cup occurred, mean positional error, and mean size error.
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-3 Mean shape +3

Fig. 2. Shape variations of combined pelvis and cup statistical shape model (PC-SSM).
The first mode is shown.

0mm 10.0 mm0mm 5.0 mm 10.0 mm
(Thick)(Thin)

(a) (b) (c)

Fig. 3. Statistical map of residual bone thickness (SM-BT). (a) Blue area indicates
the cup coverage over 95 % of datasets. (b) Distribution of mean bone thickness. (c)
Distribution of standard deviation of bone thickness. Color bars at bottom of each
figure represent the residual bone thickness.

With the previous method, there was no cup penetration, but the mean po-
sitional error was the largest among the four conditions, which was 4.3 mm.
With the PC-SSM only, the size error was 1.5 mm, which was smaller than the
previous method. On the other hand, cup penetration occurred in four cases.
With the SM-BT only, the number of cases of penetration was reduced, but the
size error was 2.4 mm which was the largest among the four conditions. With
the hybrid use of PC-SSM and SM-BT, both positional and size errors were the
smallest among the four conditions, which were 3.9 mm and 1.4 mm, respectively.
Additionally, only one penetration occurred.

Figure 4 shows the planning results of a typical case. With the PC-SSM only,
the cup size was same as the surgeon’s selection, but there was cup penetration.
With the SM-BT only, positional error was the smallest, but larger size was
selected. Additionally, there was penetration. On the other hand, with the hybrid
use of PC-SSM and SM-BT, the positional and size error was smaller than that
of PC-SSM only. Further, there was no penetration.
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Table 1. Evaluation results of automated planning

Previous PC-SSM SM-BT Hybrid use of
only only PC-SSM and SM-BT

Number of cup penetration 0 4 1 1
Mean positional error [mm] 4.3 4.2 4.0 3.9
Mean size error [mm] 2.1 1.5 2.4 1.4

0mm 5.0 mm 10.0 mm (Thick)(Thin)
No
2.7 mm
2

Yes
3.5 mm
0

Yes
2.5 mm
2

No
2.9 mm
0

No
N/A
N/A

Penetration
Positional error
Si 2 mm 0 mm 2 mm 0 mmN/A

(a) (b) (c) (d) (e)
Size error

Fig. 4. Illustrative case of experimental results. (a) Surgeon’s plan. (b) Previous
method. (c) PC-SSM only. (d) SM-BT only. (e) Hybrid use of PC-SSM and SM-BT.
Values below each figure indicate penetration occurred or not (top), positional error
[mm] (middle), and size error [mm] (bottom), respectively. Arrows indicate the areas
where penetration occurred. Colors on cup surface indicate bone thickness distribution.

4 Discussion and Conclusions

We proposed a method for hybrid use of the two atlases to automate 3D planning
for acetabular cup placement in THA. One is a combined pelvis and cup statis-
tical shape model (PC-SSM) which encodes global spatial relationships between
the patient anatomy and implant. The other is a statistical map of residual bone
thickness (SM-BT) which encodes local spatial constraints of the anatomy and
implant. The proposed method could provide a framework for learning and mod-
eling the planning policy of the surgeon because the two atlases are constructed
from training datasets of experienced surgeons. It involves few manual param-
eter tuning while the previous method has many parameters. According to the
experimental results, mean errors in size and position were better for the hy-
brid use of PC-SSM and SM-BT than the previous method (Table. 1). It would
be arguable that this improvements is clinically significant or not. Currently,
we have already had some preliminary results to evaluate clinical significance,
that is, comparison with inter-surgeon difference. The mean inter-surgeon dif-
ference for eight cases was 1.3 mm in size while the mean differences from a
surgeon of the proposed and the previous methods were 1.5 mm and 2.0 mm,
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respectively. These results may show some implication on clinical significance.
We will evaluate the statistical significance of these results as future work.

In the previous method, there was no penetration since it explicitly prohibited
the penetration. However, cup penetration occurred in four cases when only PC-
SSM was used. We consider this is because the variation of PC-SSM described
by the training datasets is insufficient for fitting of severely diseased cases. On
the other hand, with the hybrid use of PC-SSM and SM-BT, the number of cases
of penetration was reduced. We consider that this is because the cup size and
position were determined so as to minimize the difference between the resulting
bone thickness and SM-BT which had no penetration. However, the current
atlas could not prohibit all of the penetrations completely. The constraint which
explicitly prohibits penetrations could be introduced to overcome the problem.

In principle, given a sufficient number of planning datasets that a surgeon
planned, the method is applicable to various implants for different bones. As
future work, we are planning to apply the method to the femoral stem.
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Abstract. Vitreoretinal surgeries require accuracy and dexterity that
is often beyond the capabilities of human surgeons. Untethered robotic
devices that can achieve the desired precision have been proposed, and
localization information is required for their control. Since the interior
of the human eye is externally observable, vision can be used for their
localization. In this paper we examine the effects of the human eye optics
on imaging and localizing intraocular devices. We propose a method for
wide-angle intraocular imaging and localization. We demonstrate accu-
rate localization with experiments in a model eye.

1 Introduction

Future ophthalmic surgeries will be partially automated in order to achieve the
accuracy needed for operations near the sensitive structure of the human retina.
Our work is motivated by the untethered intraocular microrobot presented in [1].
The microrobot can move in the posterior of the human eye and is magnetically
controlled; for accurate control, knowledge of its position inside the magnetic
field is necessary [2]. Since the interior of the human eye is externally observable,
vision-based 3D localization can be performed.

Intraocular imaging has been practiced for centuries, and clinicians now have
the ability to acquire high-definition, magnified images of the interior of the eye
using optical tools that are designed specifically for the human eye. However,
these tools combined with the optical elements of the eye (Fig. 1(a)) alter the
formation of images (Fig. 1(b)) and make localization challenging.

Our approach to intraocular localization is based on depth-from-focus [3].
Focus-based methods do not require a model of the object of interest, but only
knowledge of the optical system. Focus-based methods applied in the eye could

� This work was supported by the NCCR Co-Me of the Swiss National Science Foun-
dation. Part of this work was carried out while J. J. Abbott was with the Institute
of Robotics and Intelligent Systems.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 540–548, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Wide-Angle Intraocular Imaging and Localization 541

Ciliary body

Pupil

Cornea Iris

Lens

Sclera

Retina
Choroid

Fovea

Optic Nerve

National Cancer Institute

Aqueous humor

(a) (b)

Fig. 1. (a) Anatomy of the human eye. (b) The biomedical microrobot of [1] in the
model eye [4]. The left image shows the intraocular environment without the eye’s
optical elements, and the right image shows the effect of the model eye optics. Images
are taken with an unmodified digital camera.

also localize unknown objects such as floaters. As a result, our analysis need not
be considered only in the scope of microrobot localization, but is applicable on
any type of unknown foreign bodies.

In the following section, we consider a stationary camera and evaluate different
ophthalmoscopic techniques based on their imaging and localizing capabilities. In
Sec. 3 we present a wide-angle localization algorithm. Our experimental results
can be found in Sec. 4, and we conclude with an outlook in Sec. 5.

2 Comparison of Ophthalmoscopy Methods

Our results are based on Navarro’s schematic eye [5] (i.e. an optical model
based on biometric data that explains the optical properties of the human eye).
Navarro’s schematic eye performs well for angles up to 70◦ measured from the
center of the pupil and around the optical axis. For greater angles, the biometric
data of each patient should be considered individually. Simulations are carried
out with the OSLO optical lens design software. Throughout this section, the
object’s depth z is measured along the optical axis. We begin by investigating
the feasibility of imaging and localizing intraocular devices using existing oph-
thalmoscopy methods.

2.1 Direct Ophthalmoscopy

In a relaxed state, the retina is projected through the eye optics as a virtual
image at infinity. An imaging system can capture the parallel beams to create
an image of the retina. In direct ophthalmoscopy the rays are brought in focus
on the observer’s retina [6]. By manipulating the formulas of [7] the field-of-view
for direct ophthalmoscopy is found as 10◦ (Fig. 2(a)).

Every object inside the eye creates a virtual image. These images approach
infinity rapidly as the object approaches the retina. Figure 3 (solid line) displays
the distance where the virtual image is formed versus different positions of an
intraocular object. In order to capture the virtual images that are created from
objects close to the retina, an imaging system with near to infinite working
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Fig. 2. (a) Direct ophthalmoscopy with Navarro’s schematic eye [5]. (b) Ophthal-
moscopy with Navarro’s schematic eye with a vitrectomy lens [8]. (c) Indirect oph-
thalmoscopy with Navarro’s schematic eye with a condensing lens [9].

Table 1. Optical parameters for the systems of Fig. 2

Surface 1 2 3 4 5a 5b 5c 6b 6c 7
Radius (mm) 12.00 6.00 −10.20 −6.50 −7.72 −7.72 −7.72 ∞ 11.65 −9.48

Conic Constant 0.00 −1.00 −3.13 0.00 −0.26 −0.26 −0.26 0.00 −9.24 −1.07
Thickness (mm) 16.32 4.00 3.05 0.55 ∞ 2.00 2.00 ∞ 13.00 ∞
Refraction Index 1.336 1.420 1.337 1.376 1.000 1.425 1.000 1.000 1.523 1.000

distance is required. Such an imaging system will also have a large depth-of-
field, and depth information from focus would be insensitive to object position.

2.2 Vitrectomy Lenses

To visualize devices operating in the vitreous humor of phakic (i.e. intact intra-
ocular lens) eyes, only plano-concave lenses (Fig. 2(b)) need to be considered [6].
Vitrectomy lenses cause the virtual images of intraocular objects to form inside
the eye, allowing the imaging systems to have a reduced working distance. Based
on data given from HUCO Vision SA for the vitrectomy lens S5.7010 [8], we
simulated the effects of a plano-concave vitrectomy lens on Navarro’s eye (Fig.
2(b)). This lens allows for a field-of-view of 40◦, significantly larger than the one
obtainable with the method described in Sec. 2.1.

As shown in Fig. 3 (dashed line), the virtual images are formed inside the eye
and span a lesser distance. Thus, contrary to direct observation, imaging with
an optical microscope (relatively short working distance and depth-of-field) is
possible. The working distance of such a system must be at least 20mm. As
depth-of-field is proportional to working distance, there is a fundamental limit
to the depth-from-focus resolution achievable with vitrectomy lenses.

2.3 Indirect Ophthalmoscopy

Indirect ophthalmoscopy (Fig. 2(c)) allows for a wider field of the retina to be
observed. A condensing lens is placed in front of the patient’s eye, and catches
rays emanating from a large retinal area. These rays are focused after the lens,
creating an aerial image of the patient’s retina. Condensing lenses compensate
for the refractive effects of the eye, and create focused retinal images.

We simulated the effects of a double aspheric condensing lens based on in-
formation found in [9]. This lens, when placed 5mm from the pupil, allows
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Fig. 3. Image position versus intraocular object position for the direct ophthalmoscopy
case, the vitrectomy-lens case, and the indirect ophthalmoscopy case. Image distances
are measured from the final surface of each optical system (5a, 6b, 7 respectively).

imaging of the peripheral retina and offers a field-of-view of 100◦. As a result,
it can be part of an imaging system with a superior field-of-view than the ones
described in Sec. 2.1 and Sec. 2.2. The image positions versus the intraocular
object positions can be seen in Fig. 3 (dashed-dotted line). A sensing system
with a short working-distance and shallow depth-of-field can be used in order to
extract depth information from focus for all areas inside the human eye. Depth
estimation is more sensitive for objects near the intraocular lens, since smaller
object displacements result in larger required focusing motions.

Dense CMOS sensors have a shallow depth-of-focus, and as a result, they can
be used effectively in depth-from-focus techniques. Based on Fig. 3, to localize
objects in the posterior of the eye a sensor travel of 10mm is necessary. A
24 × 24mm2 CMOS sensor can capture the full field-of-view. The simulated
condensing lens causes a magnification of 0.78× and thus, a structure of 100 μm
on or near the retina will create an image of 78 μm. Even with no additional
magnification, a CMOS sensor with a common sensing element size of 6×6 μm2

will resolve small retinal structures sufficiently. As a conclusion, direct sensing
of the aerial image leads to a high field-of-view, while having advantages in
focus-based localization.

3 Wide-Angle Localization

As previously stated, the condensing lens projects the spherical surface of the
retina onto a flat aerial image. Moving the sensor with respect to the condensing
lens focuses the image at different surfaces inside the eye, which we call isofocus
surfaces. The locus of intraocular points that are imaged on a single pixel is
called an isopixel curve. Figure 4(a) shows a subset of these surfaces and curves
and their fits for the system of Fig. 2(c). The position of an intraocular point is
found as the intersection of its corresponding isopixel curve and isofocus surface.
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Fig. 4. Simulation of the isofocus surfaces and isopixel curves for (a) indirect ophthal-
moscopy with Navarro’s eye, and (b) indirect ophthalmoscopy with the model eye [4].
The different isofocus surfaces correspond to the distance from the lens to the sen-
sor (dls), for uniform sensor steps of (a) ∼ 1.95 mm, and (b) ∼ 0.7 mm. The isopixel
curves correspond to pixel distances from the optical axis (dop), for uniform steps of
(a) ∼ 2.25 mm, and (b) ∼ 1.75 mm.

The location of the isofocus surfaces and isopixel curves are dependent on the
condensing lens and the individual eye. The optical elements of the human eye
can be biometrically measured. For example, specular reflection techniques or
interferometric methods can be used to measure the cornea [10], and autokerato-
metry or ultrasonometry can be used to measure the intraocular lens [11]. Then,
the surfaces and curves can be accurately computed offline using raytracing. In
theory there is an infinite number of isofocus surfaces and isopixel curves, but in
practice there will be a finite number due to the resolution of sensor movement
and pixel size, respectively.

The density of the isofocus surfaces for uniform sensor steps in Fig. 4(a)
demonstrates that the expected depth resolution is higher for regions far from
the retina. The isopixel curves show that the formed image is inverted, and from
their slope it is deduced that the magnification of an intraocular object increases
farther from the retina. As a result, we conclude that both spatial and lateral
resolutions increase for positions farther from the retina.

The isofocus surfaces result from the optics of a rotationally symmetric and
aligned system composed of conic surfaces. We therefore assume that they are
conic surfaces as well, which can be parametrized by their conic constant, cur-
vature, and intersection with the optical axis. Since the isofocus surfaces corre-
spond to a specific sensor position, their three parameters can also be expressed
as functions of the sensor position.

The isopixel curves are lines, and it is straightforward to parametrize them
using their slope and their distance from the optical axis at the pupil. Each
isopixel curve corresponds to one pixel on the image, and its parameters are fun-
ctions of the pixel’s offset (measured from the image center) due to the rotational
symmetry of the system. For the 2D case, two parameters are required.

In Fig. 5(a)-(d) the parametrizing functions of the isofocus surfaces and
isopixel curves are displayed. The conic constant need not vary (fixed at −0.5)
because it was observed that the surface variation can be successfully captured
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Fig. 5. (top row) Parametrization polynomials for the system of Fig. 4(a), and (bot-
tom row) for the system of Fig. 4(b). Isofocus surface parametrization: (a), (b), (e),
(f) Fitted 2nd- and 3rd-order polynomials for the curvature and for the intersection
with the optical axis. Isopixel curve parametrization: (c), (d), (g), (h) Fitted 3rd-order
polynomials for the line slope and for the intersection with the pupil.

by the curvature. For each parameter, we fit the least-order polynomial that
captures its variability. The parametrizing functions are “1− 1” (Fig. 5(a)-(d)),
and thus, 3D intraocular localization with a wide-angle is unambiguous.

4 Localization Experiments

As an experimental testbed, we use the model eye [4] from Gwb International,
Ltd. This eye is equipped with a plano-convex lens of 36 mm focal length that
mimics the compound optical system of the human eye. Gwb International, Ltd.
disclosed the lens’ parameters so that we can perform our simulations. We also
measured the model’s retinal depth and shape.

The optical system under examination is composed of this model eye and the
condensing lens of Fig. 2(c), where the refraction index was chosen as 1.531. The
simulated isofocus surfaces and isopixel curves of the composite system, together
with their fits, are shown in Fig. 4(b). Based on these simulations, we parametrize
the isofocus surfaces and the isopixel curves (Fig. 5(e)-(h)). The behavior of the
parameters is similar to the one displayed in Fig. 5(a)-(d) for Navarro’s schematic
eye. We assume an invariant conic constant of −1.05, because the variability of
the surfaces can be captured sufficiently by the curvature.
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Fig. 6. (a) Model fits for the function describing the intersection of the isofocus surfaces
with the optical axis. Biometric calibration errors: mean = 159 μm, std = 94 μm. (b)
Localization experiment showing the validity of the proposed algorithm. Errors: mean
= 282 μm, std = 173 μm.

In order to calibrate the isofocus surfaces for their intersection with the op-
tical axis, we perform an on-optical-axis depth-from-focus experiment on the
aligned optical system. We use a Sutter linear micromanipulation stage to move
a checkerboard calibration pattern in the model eye with 1 mm steps, and esti-
mate the in-focus sensor position [12]. The estimated sensor positions with re-
spect to different object depths can be seen in Fig. 6(a). The uncalibrated model
fit is displayed with a solid line, and, as can be seen, calibration is needed.

In the model eye, we can calibrate for the relationship between the in-focus
sensor position and the depth of the object using the full set of data points.
However, such an approach would be clinically invasive as it would require a
vitrectomy and a moving device inside the eye. The only minimally invasive bio-
metric data available are the depth and shape of the retina that can be measured
from MRI scans [13]. Assuming that there are accumulated errors that can be
lumped and included as errors in the estimated image and object positions, it is
shown in [14] that by using a first-order model of the optics, calibration using
only the depth of the retina is possible. By adapting this method to our frame-
work, we are able to biometrically calibrate for the parameters of the polynomial
that describes the intersection of the isofocus surfaces with the optical axis. The
resulting fit can be seen in Fig. 6(a).

The remaining two parameters of the isofocus surfaces control the shape of
the isofocus surfaces but not their position. The condensing lens is designed to
create a flat aerial image of the retinal surface, and our experiments have shown
that we can use it to capture an overall sharp image of the model eye’s retina.
Therefore, we conclude that there exists an isofocus surface that corresponds to
the retinal surface, and we consider it as the 1st surface. From Fig. 4(b) we see
that the 1st isofocus surface does indeed roughly correspond to the retinal shape
(mean error = 371 μm). As a result, calibration for the conic constant and the
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curvature is not needed. If our model was not accurately predicting the shape
of the retina, then we would calibrate the parameters of the 1st isofocus surface
so that is has exactly the same shape as the retina.

To estimate the validity of the presented wide-angle localization algorithm, we
consider points in the model eye for various angles with respect to the optical
axis and various distances from the pupil. In Fig. 6(b), the results using the
proposed wide-angle localization algorithm are displayed. For comparison, we
also show the results based on the paraxial localization algorithm presented
in [14] for angles up to 10◦ from the optical axis. The paraxial localization results
deteriorate as the angles increase. However, the localization method proposed
here can be used for regions away from the optical axis with high accuracy.

5 Conclusions and Future Work

In this paper we evaluated existing ophthalmoscopy techniques based on their
imaging and localizing capabilities. We presented the first wide-angle intraocular
localization algorithm, and demonstrated accurate localization in a model eye
(error: 282± 173 μm). We are currently interested in localizing microrobots (∼
500 μm) for use in an open-loop magnetic field controller [1], and such localization
errors are acceptable. Then, closed-loop visual servoing techniques will be used.

In the future, we will evaluate the robustness of the presented approach with
respect to variations in illumination and uncertainties in the optical system. This
is an important step towards in vivo intraocular localization.
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Abstract. The automation and speedup of interventional therapy and
diagnostic workflows is a crucial issue. One way to improve these work-
flows is to accelerate the image acquisition procedures by fully automat-
ing the patient setup. This paper describes a system that performs this
task without the use of markers or other prior assumptions. It returns
metric coordinates of the 3-D body shape in real-time for inverse posi-
tioning. This is achieved by the application of an emerging technology,
called Time-of-Flight (ToF) sensor. A ToF sensor is a cost-efficient, off-
the-shelf camera which provides more than 40,000 3-D points in real-
time. The first contribution of this paper is the incorporation of this
novel imaging technology (ToF) in interventional imaging. The second
contribution is the ability of a C-arm system to position itself with
respect to the patient prior to the acquisition. We are using the 3-D
surface information of the patient to partition the body into anatom-
ical sections. This is achieved by a fast two-stage classification pro-
cess. The system computes the ISO-center for each detected region.
To verify our system we performed several tests on the ISO-center of
the head. Firstly, the reproducibility of the head ISO-center computa-
tion was evaluated. We achieved an accuracy of (x: 1.73±1.11 mm/y:
1.87±1.31 mm/z: 2.91±2.62 mm). Secondly, a C-arm head scan of a body
phantom was setup. Our system automatically aligned the ISO-center of
the head with the C-arm ISO-center. Here we achieved an accuracy of ±
1 cm, which is within the accuracy of the patient table control.

1 Introduction and Related Work

Workflow optimization is an important task in clinical procedures. The combi-
nation of increased life expectancy and advancements in the field of medicine
� The authors gratefully acknowledge funding of the International Max-Planck-
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have resulted in a constantly increasing number of patients. This in-turn cre-
ates a heavier workload for hospitals and healthcare systems in general. Thus,
it is becoming progressively more important to develop efficient healthcare pro-
cedures without any decline on the quality of patient care. In the future, either
healthcare costs will increase dramatically or smart cost-effective solutions for
optimizing current workflows have to be found.

With that last goal in mind we examined the image acquisition workflows, in
general, and analyzed them in terms of bottlenecks. In this paper we introduce
a system to shorten the probably most important and for sure most time con-
suming part of this procedure: the initial patient positioning step. Image acqui-
sition procedures have constantly been optimized within the past years. Today
the scanning time for CT and C-arm systems is basically negligible. What is
still very time consuming within the workflow of image acquisition procedures is
the patient-dependent setup procedure. Each patient is physiologically relatively
unique. There is also a diverse number of clinical procedures. As a result, the
patient setup process cannot be easily generalized. Nevertheless, the correct po-
sitioning of the patient is a crucial parameter for the quality of image acquisition.
Also for retrospective hybrid-image acquisitions it is important to acquire im-
ages at the correct position. Therefore, it is important that patient positioning is
performed accurately, which can make it a very time consuming task. Especially
in interventional procedures correct positioning of the image acquisition device
is mandatory. Todays C-arm systems are already very intuitive to use. Strobel
et al. [1] describe the setup procedure and the associated time consuming steps.
Several fluoroscopic images have to be taken before the required body part is
within the ISO-center of the C-arm. These steps are both very time consuming
and applying additional radiation doses to the patient.

To automate and speed-up the setup procedure for interventional image ac-
quisition procedures we suggest a system based on a ToF sensor. The proposed
system partitions the whole body into several 3-D bounding boxes. It operates
marker-lessly and does not rely on any other assumptions. The C-arm system
receives exact metric coordinates from the proposed system which can then be
used in automatically adjusting the C-arm’s position with respect to the pa-
tient and for data acquisition. We call this inverse positioning, as the system
is positioned with respect to the target and not the target with respect to the
system. Furthermore, the C-arm knows exactly the bounds of the object to scan
and an instantaneous collision detection can be provided. Last but not least, the
proposed solution is very cost-effective.

The importance of a solution to these problems is also reflected by prior work.
Grimson et al. [2] introduced a system wich supports optical tracking of patient
and instrument locations using surface data. Navab et al. [3] proposed a system
for intraoperative positioning and repositioning of mobile C-arms using a camera-
augmented mobile C-arm. This system speeds up the whole procedure and also
reduces the radiation of the patient as it decreases the number of images which
have to be acquired for positioning the patient. Using an optical camera and
X-ray/optical markers the system supports guidance for C-arm repositioning.
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Fig. 1. Examples for ToF sensor models. On the left side: CamCube from PMDtec
GmbH, Germany. On the right side: SR4000 from MESA Imaging, AG, Switzerland
(images taken from manufactor websites)

C-arm systems also suffer from their narrow field-of-view. Wang et al. [4] suggest
a stitching algorithm for scaning long bones using a C-arm system. They, too
use an additional optical camera to augment different views. Ladikos et al. [5]
provide a method for collision detection for a C-arm environment. An array
of optical cameras is used to generate a 3-D representation of the operation
room. All of these applications are either based on markers and/or use multiple
cameras/systems. The proposed system is independent of markers and only needs
a single sensor.

2 Materials and Methods

2.1 Time-of-Flight Sensor

ToF sensors provide a direct way to acquire 3-D surface information [6]. ToF sen-
sors have several advantages over other 3-D surface acquisition techniques. The
most promising advantage is that ToF is on its way to become a component of
mass markets like consumer electronics and the automotive industry. Currently
a high-end ToF sensor is available for about USD 7,000 (see Fig. 1). A target
price for ToF sensors of a few hundred dollars can be expected in the near future.
ToF sensors also render calibration steps, which are mandatory for stereo based
systems, unnecessary. This is based on the monocular all-solid-state architecture
of ToF sensors. Such an architecture also enables a high portability of the system
and a variety of integration prospects in existing systems. Recent ToF sensors
provide data rates up to 25 frames per second with an lateral resolution of up to
204×204 pixels. Each of these 3-D points provides precise metric information in
the sensor coordinate system. Recently several systems for medical applications
like respiratory motion or patient positioning using a ToF sensor were proposed
[7,8]. Further information about the principle of ToF sensors can be found in Xu
et al. [6]. A detailed discussion about the advantages of ToF sensors over other
3-D surface acquisition techniques can be found in Schaller et. al [7].

2.2 Body Part Detection

In this section we will give an overview of how a ToF sensor enables inverse real-
time positioning. We will introduce a generalized, very fast and fairly simple
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Fig. 2. Overview: The red lines indicate the three principal axes ρ0,ρ1,ρ2. The three
golden sections γ0, γ1, γ2 are shown as yellow lines. Furthermore, all intersection points
ιk and the centroid μ are also depicted.

algorithm to solve this task. The proposed algorithm for body part detection
consists of two main parts which require a preprocessing and segmentation of
the ToF sensor data. The first part describes an effective and robust two-stage
classification procedure. At the end of this first subtask, the 3-D body surface is
subdivided into multiple anatomically meaningful regions of interest. The second
part computes bounding boxes for each of these regions and their corresponding
ISO-center. Furthermore, a fairly simple calibration method for aligning the
computed ISO-center with the C-arm ISO-center is introduced.

The ToF sensor is rigidly mounted above the patient table and the whole
patient is within the field of view of the ToF sensor. We denote P the M × N
3-D points of interest acquired by a ToF sensor.

P = [pi,j ] , i ∈ {0, 1, ..,M − 1}, j ∈ {0, 1, ..N − 1} (1)

Typically ToF data is affected by noise. To reduce this noise we apply both, a
bilateral filter [9] and a temporal averaging filter. The averaging filter returns
the average 3-D point cloud using data from the last n accumulated 3-D point
clouds. To reduce the amount of data and to identify 3-D points belonging to
the body we detect the patient table and compute a virtual plane. For this task
we use a Hough-Transform like method based on surface normals described in
Schaller et al. [7]. Knowing the virtual table plane we can discard all 3-D points
which do not belong to the patient. As a result for further computations only
relevant 3-D points P̂ ⊆ P (⊆ denotes a subset of points) belonging to the
body have to be considered. To speed-up the classification process, we apply
a normalization on the remaining 3-D points P̂. Therefore a Karhunen-Loeve-
Transformation (PCA) is performed. As a result the origin of the coordinate
system is placed in the centroid μ of the point cloud P̂ and the axes are aligned
with the axial, sagittal and coronal plane of the patient. The main advantage we
achieve is parallelism of the bounding boxes to the axes. This results in a more
computationally efficient run-time for the algorithm. The three principal axes
computed by the transformation are denoted as ρ0, ρ1, ρ2 (see Fig. 2). We have
prior knowledge about the shape of the human body. Therefore, we can assume
that ρ0 corresponds to the height of the patient, ρ1 to the width and ρ2 to the
depth.

One can then compute five intersections (ιk, where k ∈ {0, 1, .., 5}) along the
first principle axis (see Fig. 2). The outer most intersection points ι0 and ι5 are
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Fig. 3. Refinement of the bounding boxes. Left: Detection of the pelvic region with the
corresponding histogram below. μ is the origin of the coordinate system. The search
interval d1 is 30 cm in each direction with a bining size of 4.8 cm. Right: Detection
of the neck with the corresponding histogram below. γ1 is the upper golden section
intersection. The search interval d0 is 10 cm with a bining size of 3.2 cm.

defined by the outermost 3-D points on ρ0. Again, we utilize prior knowledge
about the shape of the human body. For a coarse first stage initialization of
the classification we compute three golden intersections γ0, γ1, γ2 along ρ0 (see
Fig. 2). The golden section γ2 roughly indicates the position of the neck. γ1 is
located near the diaphragm and γ0 at the knees of the person. These points
constrain the search space for the exact position of the remaining intersection
points.

To refine these coarse initial values we introduce a second stage in our clas-
sification. Two histograms H0 and H1 along ρ0 are computed. The vertical axis
of H0 bins the silhouette of the body along the positive p1 axis, while the verti-
cal axis of H1 bins it along the positive p2 direction. The horizontal axis of H0
ranges from γ2 − d0 to γ2 + d0. The horizontal axis of H1 ranges from γ − d1 to
γ + d1. d0 and d1 are emirically determined. Based on these histograms, ι4 and
ι5 are the minima of H0 and H1 accordingly. ι3 is then defined as the mid-point
between ι4 and ι5, while ι1 is set to γ0.

We can then use these intersections as an input for the second part of the
algorithm. This part computes bounding boxes using ι0, .., ι5. With the excep-
tion of the head, left and right bounding boxes are computed for each body
segment (e.g. left and right abdomen), where ρ0 acts as a delimiter. In addition
to the boundary values, the ISO-center and the volume is computed for each
box. Figure 4 shows the full body part segmentation.

Before we are able to position a target, a fairly simple calibration step has to be
performed. The following has to be done only once for the whole system. A coin
is placed on a box on the patient table (see Fig. 5). The ISO-center ICarm of the
C-arm is manually aligned with the center of the coin. We use two fluoroscopic
images, one from 0◦ and one from 90◦ to do this. After determining ICarm, the
corresponding 3-D coordinate (ISO-center) of the center of the coin IToF in the
ToF coordinate system has to be identified. These two points, ICarm and IToF

can be considered as the origins of each of the corresponding coordinate systems.
To position a bounding box ISO-center, the 3-D coordinate of the ISO-center is
shifted to IToF .
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Fig. 4. Full body acquisition using a ToF sensor including bounding boxes (side view
and top view). On the left side information about the different bounding boxes is shown.
V shows the volume of the bounding box in cm3, I the ISO-center of the bounding box
in mm and B the bounds of the actual bounding box in mm. On the lower right side,
some basic information about the dimensions of the patient is displayed.

Fig. 5. Coin calibration: A coin is placed on a box on the patient table. The coin is
aligned in the ISO-center of the C-arm. Afterwards, the corresponding 3-D coordinate
of the position of the coin in the ToF point cloud can be determined.

3 Experiments and Results

For the evaluation we used a SR-3000 ToF sensor from MESA Imaging, AG,
Switzerland and a C-arm system of the Artis zee family from Siemens AG, Health-
care Sector, Germany. We rigidly mounted the ToF sensor on the ceiling above the
patient table so that the patient can be fully visible. The ToF sensor has a reso-
lution of 176x144 pixels with a field of view of 47.5◦ and 39.6◦ respectively. The
depth accuracy after preprocessing the data is below 1 mm per pixel.

We first examined the reproducibility of the ISO-center computation. With-
out loss of generality, this was done for the head ISO-center. For the other
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Fig. 6. Phantom evaluation: Two upper left images: 0◦ and 90◦ projections of man-
ually aligned head (gold standard). Two lower left images: 0◦ and 90◦ projections of
automatically aligned head using the proposed method. Two upper right images: 0◦

and 90◦ projection difference images of manually and automatically aligned head. Two
lower right images: 0◦ and 90◦ projections of manually and automatically aligned head
(automatically aligned projections are superimposed in red).

ISO-centers this could be done in a similar manner. The head ISO-center of three
persons was computed 70 times per person. We took the mean x- y- z- coordinate
as our reference ISO-center. We again computed 140 head ISO-centers for each
of these persons while they were in the same position. The mean squared errors
between those measurments and the reference in x- y- z- direction (corresponding
to ρ0,ρ1,ρ2) are: x: 1.73±1.11 mm, y: 1.87±1.31 mm, z: 2.91±2.62 mm. Further-
more, we computed the inter-subject standard deviation on these datasets: x:
3.16 mm y: 2.85 mm z: 4.42 mm. To evaluate our approach within a clinical setup
a body phantom was placed in a C-arm environment. We were again interested
in the ISO-center of the phantom head. The phantom was shifted in all three
room dimensions multiple times. After computing the ISO-center Ih of the head
bounding box with respect to the previously computed IToF we could directly
compute the translation to align Ih with ICarm. A gold standard was defined by
manually aligning the ISO-center of the head using the same technique as for the
previously described coin calibration (see Fig. 6). This is also the way it is done
in hospitals today. We compared the table position of the gold standard align-
ment and the automatic alignment. In all cases we were able to automatically
position the head in the x and the y direction within the accuracy of the patient
table. According to the manufactor the accuracy is 1 cm. In the z-direction, we
had an error of ± 1 cm (see Fig. 6) because the z-coordinate of the ISO-center
heavily depends on the quality of the table segmentation. On a standard CPU
(2.0 GHz dual-core) our algorithm has an execution time of 65 ms. Including
data acquisition, preprocessing and segmentation, the overall execution time is
about 143 ms.

4 Conclusion

Automation of time consuming steps is a key competency of future clinical pro-
cedures and workflow aware hospitals. We have shown that our system for fully
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automatic patient setup is able to identify anatomical regions for image ac-
quisition in real-time. This information can be used to align the ISO-center of
anatomical targets with the ISO-center of a C-arm system fully automatically.
For this task, a 3-D surface acquired by a ToF sensor is analyzed. A two-stage
classification process is introduced to identify body parts and to compute the
corresponding ISO-centers. The extracted information can be directly used to
control any image acquisition devices. This results in an inverse positioning,
where the image acquisition device can be positioned according to the patient.
Furthermore, several patient dependent metric information are provided by the
system. This information can be used for e.g., initial positioning, collision detec-
tion, dose estimation or respiratory motion correction [7].
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Abstract. To help surgeons to pre-operatively select the target location for DBS 
electrodes, functional atlases based on intra-operatively acquired data have been 
created in the past. Recently, many groups have reported on the occurrence of 
brain shift in stereotactic surgery and its impact on the procedure but not on the 
creation of such atlases. Due to brain shift, the pre- and intra-operative coordi-
nates of anatomic structures are different. When building large population at-
lases, which rely on pre-operative images for normalization purposes, it is thus 
necessary to correct for this difference. In this paper, we propose a method to 
achieve this. We show evidence that electrophysiological maps built using cor-
rected and uncorrected data are different and that the maps created using shift-
corrected data correlate better than those created using uncorrected data with 
the final position of the implant. These findings suggest that brain-shift correc-
tion of intra-operatively recorded data is feasible for the construction of accu-
rate shift-corrected electrophysiological atlases.  

1   Introduction 

Deep brain stimulation (DBS) is a surgical procedure involving the implantation of an 
electrode in the deep brain to stimulate specific nuclei using a pacemaker. DBS has 
provided remarkable therapeutic benefits to patients suffering from movement disor-
ders such as the Parkinson’s disease. To help the surgeon pre-operatively select the 
target location for the electrode, functional atlases [1, 2] based on intra-operatively 
acquired electrophysiological data from a number of patients have been created to 
complement anatomical and histological atlases. Several authors [1, 3-5] have shown 
techniques by which such atlases can be used in the planning, placement and pro-
gramming of DBS. 

An underlying assumption in the creation of these atlases is that anatomical struc-
tures do not move between pre-operative imaging and intra-operative recording. A 
number of studies have proved that this assumption is not valid. Miyagi et al. [6] 
found the anterior and posterior commissures to be more medial, posterior and  
inferior on the post-operative MRI than on the pre-operative MRI. Khan et al. [7] 
reported brain shifts of up to 4 mm in deep brain structures. Using real-time intra-
operative MRI Martin et al. [8] recently reported appreciable ipsilateral brain shift 



558 S. Pallavaram et al. 

during burr hole access. Consequently, the pre- and intra-operative coordinates of 
anatomic structures may be different. But, to create population atlases, pre-operative 
image volumes are typically utilized because the stereotactic platform that is used to 
reference the intra-operative data is built in the pre-operative image space. It is thus 
critical to correct for brain shift to place data recorded intra-operatively at the correct 
location in the pre-operative scans. In this paper, we propose a method to do this. We 
also present preliminary results which indicate that shift correction has a substantial 
effect on statistical maps derived from these data and that shift-corrected maps are 
more accurate than maps computed with uncorrected data.  

2   Data 

With IRB approval each patient had pre-operative MRI and CT, a post-operative CT 
acquired on the day of the surgery, and a post-operative stable CT acquired approxi-
mately one month after surgery before programming of the electrode. The scan ac-
quired the day of surgery will be called post-op CT, the scan acquired one month after 
the procedure will be called stable CT. Typical CT images were acquired at kVp = 
120 V, exposure = 350 mAs and 512x512 pixels. In-plane resolution and slice thick-
ness were respectively 0.5 mm and 0.75 mm. MRI (TR 12.2 ms, TE 2.4 ms, 
256x256x170 voxels, with typical voxel resolution of 1x1x1 mm³) were acquired 
using the SENSE parallel imaging technique (T1W/3D/TFE) from Philips on a 3T 
scanner. We used patients that underwent sub-thalamic nucleus (STN) targeting. 
Stimulation data included the location of each stimulation point, the efficacy (thera-
peutic response) observed and the associated stimulation current, the adverse effect (if 
any) and the associated current. Efficacy was recorded as percentage reduction in 
symptoms from baseline as assessed by a neurologist. Only those points with at least 
70% efficacy were used. The dataset comprised of 36 efficacious points and 35 eye 
deviation points (an adverse effect) from 13 patients for the left side, 20 efficacious 
points from 8 patients and 34 eye deviation points from 12 patients for the right side. 
Some other adverse effects include muscular contraction, dysarthria, or parasthesia. 
We have chosen to use eye deviation data in this work because it is the most populous 
adverse effect in our dataset. 

3   Method 

To create atlases, the 3D T1-weighted images were registered to each other using a 
combination of intensity-based rigid and non-rigid registration algorithms. The non-
rigid registration we proposed earlier [9] is called the Adaptive Bases Algorithm 
(ABA). Briefly, it computes a deformation field that is modeled as a linear combi-
nation of radial basis functions with finite support. This results in a transformation 
with several thousands of degrees of freedom. Two transformations (one from the 
atlas to the subject and the other from the subject to the atlas) that are constrained to 
be inverses of each other are computed simultaneously. ABA reduces the computa-
tional complexity and improves the convergence properties of related B-splines-
based approaches by identifying regions of mis-registration and adapting the  
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compliance of the transformation locally. The algorithm arrives at the final defor-
mation iteratively across scales and resolutions and uses mutual information as the 
similarity measure.  

One solution to build shift-free functional atlases is to use only those patients that 
have minimum or no intra-operative shift (based on pneumocephalus in immediate 
CT) as shown by us in [10]. Patients were placed in the low, medium and large shift 
category based on the average air pocket width (AAPW) at the cortical surface seen 
on the post-op CT. To determine the region in the frontal cortex where cortical sur-
face shift was most likely to cause shift at the target, a reference line parallel to the 
direction of gravity and passing through the implant was drawn and average of 4 air 
width measurements made in its vicinity was computed. Using data from patients in 
the low category (AAPW ≤ 3 mm) we populated shift-free atlases. These shift-free 
atlases are built without any correction applied to the intra-op coordinates. The limita-
tion of this approach is that a large number of patients’ data (medium: 3 mm < AAPW  
≤ 7 mm and large group: AAPW > 7 mm) cannot be used. 

The shift correction method we propose permits using all patients to build statisti-
cal maps. Fig 1(a) shows a detailed model of various shift components.  

  

Fig. 1. (a) Detailed model of various brain shift components, (b) approximate model, (c) dem-
onstrating how data points P1, P2, P3 and P4 are corrected for brain shift to arrive at P1

*, P2
*, P3

*, 

P4
* using the model in (b). OT: optimal target, )(BSBI : Brain Shift Before Implantation, OT*: 

shifted position of OT due to )(BSBI  and identified as the location for implantation by electro-

physiological mapping, )(EPE : Electrode Placement Error, IOIP: Intra-Operative Implant 

Position, )(BSAI : Brain Shift After Implantation, POIP: Post-Operative Implant Position as 

seen on the CT acquired immediately after surgery, )(BSR : Brain Shift Recovery, PSIP: Post-

operative Stable Implant Position as seen on the stable CT acquired about a month after sur-
gery, )(BSRE : Brain Shift Recovery Error. 

During the procedure, the optimal target (OT) where the implant should ideally be 

placed gets displaced due to Brain Shift Before Implantation )(BSBI  and moves to 

OT*. By electrophysiological mapping OT* is identified as the location for implanta-
tion. Electrode Placement Error )(EPE  due to the finite accuracy of the stereotactic 

(c) 
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system and/or manual errors causes the electrode to be implanted at a slightly differ-
ent location. This is the Intra-Operative Implant Position (IOIP). Brain Shift After 
Implantation )(BSAI  causes the implant to move further to the Post-Operative Im-

plant Position (POIP) as seen on the post-op CT. Finally, due to Brain Shift Recovery 

)(BSR  the lead stabilizes at the Post-operative Stable Implant Position (PSIP) by the 

time the stable CT is acquired. The difference between PSIP and OT is because of 

)(EPE  and/or Brain Shift Recovery Error )(BSRE  due to the brain not recovering 

exactly to its pre-operative state. If we assume that )(BSRE and )(EPE  are negligible, 

the model reduces to the simpler formulation shown in fig 1(b) where PSIP returns to 
OT. Using this model we can account for brain shift when populating atlases. The 
intra-operative coordinates of all the data points (P1, P2, P3 and P4 in fig 1(c)) and OT* 
are known in the platform coordinates. Probabilistic maps built using these coordi-
nates are referred to as uncorrected maps. Using the approximate model, the trans-

formation between OT* and PSIP is BSBI− . By applying this transformation to all 
intra-operative points, their corrected coordinates (P1

*, P2
*, P3

*, P4
*) can be computed 

as illustrated in fig 1(c). By populating electrophysiological atlases using these coor-
dinates we can build shift-corrected atlases and maps referred to as corrected maps. 
Probabilistic maps were created from atlases of intra-operative measurements using 
the method proposed by us in [3]. 

4   Results 

Our method is based on the assumption that, in the stable CT, brain has recovered to 
its pre-operative state.  This assumption is difficult to prove. However, if it is correct, 
the lead position in the stable CT should correspond to a region of high efficacy pre-
dicted by our shift-free map. To verify this hypothesis we have used two patients in 
which we observed substantial shift (3.14 mm and 2.90 mm at the target position).  
Fig 2 illustrates our results. In both patients, we show the location identified intra-
operative as the optimal target for implantation (OT*) shown by 4 dashed contacts and 
the stable lead position (solid contacts) overlaid on shift-free efficacy maps. Since 
shift-free maps are the closest to ground truth i.e. maps unaffected by shift, and be-
cause as per the approximate mode the stable lead position (PSIP) is the shift-
recovered position of the implant (OT*), these results show that our assumption of 
negligible brain shift recovery is reasonable because PSIP correlates better than OT* 
with shift-free maps. To further test our assumption, we would ideally compare shift-
free with corrected and uncorrected efficacy maps. Due to the relatively small number 
of shift-free cases for which we have stable CTs a quantitative comparison is not 
possible at the current time. To address this issue we validate our approach in two 
steps: (1) we show that corrected and uncorrected maps are different, and (2) we show 
that the position of the electrode in the stable CT correlates better with zones of high 
efficacy predicted by the shift-corrected maps than with those predicted by uncor-
rected maps.  
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                               (a)                                         (b)                                  (c) 

Fig. 2. Sagittal view showing relative positions of the intra-operative optimal target (OT*) as 
dotted contacts, actual lead from the stable CT (PSIP) as solid contacts overlaid on shift-free 
maps built for two patients (a) Patient1, (b) Patient2. (c) Color scale. The gray region extending 
out of the core of the map and masking the stable lead is the low probability region of the map. 

To show that the maps are different, we first compute the Dice similarity coeffi-
cient (S) [11] between two sets defined in (1), (2),  and (3) where p(X, Y, Z) is the 
probability value at point (X, Y, Z) in a map.  
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We then compare connectivity and spread of the maps. Because physiological regions 
should concentrate into well connected tight clusters, we compare the maps by com-
puting the number of clusters (NOC) with high probability. We do this using 3-
dimensional 26-connectivity where voxels sharing any of their 6 faces, 12 edges or 8 
corners are grouped into the same cluster. A larger number of such clusters indicates 
greater number of isolated high probability zones and poor overall clustering. To 
measure the spread of the maps, we computed the mean distance from cluster centroid 
(MDCC) for points of high probability. Table 1(a) gives the values of dice coefficient 
for the uncorrected and corrected maps of efficacy (EFF) and eye deviation (EYE). 
Table 1(b) shows the number of 26-connected clusters in the two maps for high prob-
ability points and the mean distance from cluster centroid for those points. This table 
shows that the uncorrected and corrected maps are very different. From table 1(a), the 
uncorrected and corrected efficacy and eye deviation maps for the the left and right 
sides had respectively 57%, 44%, 57% and 46% of non-zero probability voxels over-
lapping. Considering only voxels with high probability (p >= 0.7), the percentage of 
overlapping voxels decreased to 0%, 12%, 0% and 8% respectively indicating that the 
high probability regions in the two maps were almost completely different. Table 1(b) 
shows that the number of distinct high probability clusters is generally higher in the 
uncorrected maps than in the corrected maps; 4 to 1 for left efficacy, 8 to 1 for right 
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eye deviation and 2 to 1 for left eye deviation. This indicates that clustering tends to 
be tighter in the corrected maps than in the uncorrected maps. In turn, this suggests 
that corrected maps represent electrophysiology better than uncorrected maps. This is 
further supported by the larger mean distances from cluster centroid for uncorrected 
maps than for corrected maps. Fig 3 and fig 4 show coronal, axial and sagittal slices 
of (a) corrected and (b) uncorrected maps overlaid over the stable CT for the two 
large-shift patients used earlier. Since we showed in fig 2 that shift recovery error can 
be neglected, it means that the stable lead position or PSIP returns to the optimal 
target location in a patient. Therefore, if shift-corrected maps built for a patient were 
correct then they would correlate better than uncorrected maps with PSIP. This can be 
seen in fig 3 and fig 4. 

Table 1. (a) Dice coefficient (S) for uncorrected (uncorr) and corrected (corrr) maps, EFF: 
efficacy, EYE: eye deviation, (b) Number of clusters (NOC) in the two maps for p >= 0.7 and 
26-connectivity, and, mean distance from cluster centroid (MDCC) for p >= 0.7     

    (b) Map NOC MDCC 

S  Corr 1 1.29 
(a) p > 0 p >= 0.7  

EFF LEFT 
Uncorr 4 3.25 

EFF LEFT 0.57 0  Corr      2    2.5 
EFF RIGHT 0.44 0.12  

EFF RIGHT 
Uncorr 2    2.8 

EYE LEFT 0.57 0  Corr 1 1.27 
EYE RIGHT 0.46 0.08  

EYE LEFT 
Uncorr 2 1.67 

    Corr 1 1.9 
    

EYE RIGHT 
Uncorr 8 3.64 

 

 

 

Fig. 3. Coronal, axial and sagittal slices of (a) corrected and (b) uncorrected maps overlaid over 
the stable CT for patient1. The color scale is shown in fig 2(c). 

(a) 

(b) 
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Fig. 4. Coronal, axial and sagittal slices of (a) corrected and (b) uncorrected maps overlaid 
over the stable  CT for patient2. Color scale is shown in fig 2(c) 

5   Discussion 

Creation of accurate efficacy and side effect maps is important for the pre-operative 
planning and intra-operative guidance of DBS procedures. Stimulation data acquired 
during the procedures is a rich source of information to build these maps, but substan-
tial brain shift (up to 4 mm) in areas surrounding the regions of implantation has been 
reported in the literature. Because of this shift, the intra-operative coordinates of a 
structure may be different from its pre-operative coordinates. In turn, this affects the 
accuracy of maps derived from these data. It has been reported that shift is related to 
the amount of air entering the cranial cavity during the procedure. A straightforward 
approach to building the maps would thus be to screen patients and keep only those 
for whom there is minimum air invasion. While feasible, this approach also severely 
limits the number of data sets which can be used to create statistical maps.  In this 
paper, we present an approach that permits the correction of this shift and thus the use 
of data that would otherwise need to be discarded.  Albeit preliminary, the results we 
present strongly suggest that our approach produces efficacy maps that correlate bet-
ter with the anatomical location selected as optimal during the procedure than the 
uncorrected maps. This optimal anatomical target location is referred to as OT, which 
according to our approximate model is the stable lead position (PSIP). Work is ongo-
ing to validate these results in a large number of patients and to correlate high efficacy 
zones predicted using shift-corrected maps of intra-operative data with post-operative 
programming stimulation response observations. 
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Abstract. A natural requirement in pairwise image registration is that
the resulting deformation is independent of the order of the images. This
constraint is typically achieved via a symmetric cost function and has
been shown to reduce the effects of local optima. Consequently, sym-
metric registration has been successfully applied to pairwise image reg-
istration as well as the spatial alignment of individual images with a
template. However, recent work has shown that the relationship between
an image and a template is fundamentally asymmetric. In this paper, we
develop a method that reconciles the practical advantages of symmet-
ric registration with the asymmetric nature of image-template registra-
tion by adding a simple correction factor to the symmetric cost function.
We instantiate our model within a log-domain diffeomorphic registration
framework. Our experiments show exploiting the asymmetry in image-
template registration improves alignment in the image coordinates.

1 Introduction

Dense spatial correspondences among multiple images can be established by
either directly registering pairs of images [1,2], or through a common coordinate
system, where each image is aligned with a template [3,4,5]. Standard off-the-
shelf pairwise registration algorithms are commonly used by both approaches.
Yet, as we discuss in this paper, the two formulations are inherently different.
In particular, we show that employing an algorithm designed for pairwise image
registration can be sub-optimal if one of the images is a template.

In pairwise image registration, we seek a bi-directional mapping between the
spatial coordinates of two images. It is therefore natural to assume that both
coordinate systems should play equivalent roles in the algorithm. This symmetry
of the pairwise image registration problem is exploited by inverse consistent
algorithms [1,6,7,8,9,10,11]. These methods use the gradients of both images in
the optimization while constraining the warps between the images to be inverses
of each other, either explicitly or by construction. Empirically this strategy yields
more robust and accurate alignment results [7,11].

In contrast, the problem of image alignment to a template is fundamentally
asymmetric: registration must be unidirectional for the template to represent

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 565–573, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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a valid probabilistic model [12,13]. In this paper, we further argue that this
asymmetry is important in the context of atlas-based segmentation because the
alignment quality should be measured in the image coordinate frame, rather
than that of the atlas. To the best of our knowledge, this paper includes the first
practical demonstration of this argument.

We present an energy-based formulation of the asymmetric image-template
registration. Many of the derivations we include have previously appeared, cf.
[8,10], but only in the context of symmetric pairwise image registration. The
main point of the present paper is to demonstrate that accounting for the asym-
metry in image-template registration will lead to improved segmentation. We
develop an algorithm that employs a stationary velocity field parametrization of
diffeomorphisms [11] to solve the proposed optimization problem. We include two
sets of experiments on images from the OASIS [14] and Brainweb [15] datasets.

2 Problem Formulation

Given two images I, J : R3 �→ R, the transformation Φ : R3 �→ R3 that aligns the
images is commonly determined via a regularized optimization problem, such as:

Φ̂ = argmin
Φ

‖I − J ◦ Φ‖2
2 + Reg(Φ), (1)

where [J ◦ Φ](x) = J(Φ(x)) and ‖f‖2
2 =

∫
R3(f(x))2dx for any f : R

3 �→ R.
While we only consider the L2 norm in this paper, the following discussion

extends to other image dissimilarity measures. It can be shown that the L2 norm
is not symmetric with respect to spatial transformation, and the optimization
problem of Eq. (1) depends on which image is warped [8,1,10]. In the absence of
a preference, it makes sense to symmetrize the dissimilarity measure either by
using a symmetric differential form as in [10] or by seeking

Φ̂ = argmin
Φ

‖I − J ◦ Φ‖2
2 + ‖I ◦ Φ−1 − J‖2

2 + Reg(Φ) + Reg(Φ−1). (2)

Eq. (2) is the basis of many inverse consistent image registration approaches
[6,7,8,9,11]. The use of symmetry results in robust and accurate optimizers that
employ gradients of both images.

As discussed in [12], a true probabilistic formulation requires the model (tem-
plate) to be warped and thus registration of an image should be formulated
uni-directionally. This argument can be extended to energy-based approaches.
In segmentation, for example, one estimates an anatomical label for each voxel
in image I. A typical approach involves registering the image I with template
T , which might represent the average of training images. The goal is to bring
the underlying hidden labels of the image into spatial agreement with the labels
of the training data. Segmentation quality depends heavily on this accordance.

Since segmentation accuracy is measured as the agreement between estimated
and ground truth labels in the spatial coordinates of the image I, using a dissim-
ilarity term measured in the image coordinates should improve label alignment.
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This points to the “forward” formulation, where the template T is warped:

Φ̂ = argmin
Φ

∫
R3

[I(x) − T (Φ(x))]2 dx + Reg(Φ). (3)

By introducing y = Φ(x), we arrive at an equivalent formulation:

Φ̂ = argmin
Φ

∫
R3

[
I(Φ−1(y))− T (y)

]2
det(∇Φ−1(y))dy + Reg(Φ), (4)

where ∇Φ−1 denotes the Jacobian matrix of transformation Φ−1 with respect to
the spatial coordinates. Eq. (4) involves warping the image I, and hence can be
viewed as a “backward” formulation. Combining Eq. (3) and Eq. (4), we achieve
a “bi-directional” formulation for image-template registration:

Φ̂ = argmin
Φ

1
2

∫
R3

[I(x)− T (Φ(x))]2

+
[
I(Φ−1(x)) − T (x)

]2
det(∇Φ−1(x))dx + Reg(Φ). (5)

Note that Eqs. (3), (4) and (5) are theoretically identical in the continuous do-
main, but may yield different numerical solutions after discretization. In par-
ticular, solving the bi-directional optimization problem of Eq. (5) will involve
the gradients of both the image and template. Thus, we expect that similar
to inverse consistent approaches, this formulation will enjoy robust and ac-
curate performance. If we use an inverse consistent warp regularization, i.e.,
Reg(Φ) = Reg(Φ−1), the only difference between Eq. (5) and the symmetric
formulation of Eq. (2) is the Jacobian weighting term that encodes local areal
distortion due to the warp. Specifically, det(∇Φ−1(x)) is larger than 1 in regions
where an area in image I is mapped to a smaller area in template T and less than
1 elsewhere. This weighting reflects the asymmetry in the objective function that
evaluates alignment in image coordinates.

3 Log-Domain Diffeomorphic Registration

We demonstrate and compare the algorithms that solve Eq. (3), Eq. (4) and
Eq. (5) in the log-domain diffeomorphic registration framework [11], which em-
ploys a Demons-style approach [16] to decouple the optimization of the similarity
measure and of the regularization term, by introducing an auxiliary transforma-
tion Γ . In each iteration, the algorithm minimizes the following energy:

E(I, T, Φ, Γ ) = Dissim(I, T, Φ) + λDist(Φ, Γ )2 + Reg(Γ ), (6)

where λ > 0 and Dist(Φ, Γ ) encodes the distance between the two transforma-
tions. Reg(Γ )+λDist(Φ, Γ )2 replaces Reg(Φ) from the previous section. In each
iteration, the Demons algorithm optimizes Eq. (6) in two steps. First, we fix Γ
and estimate Φ that minimizes the first two terms. Then, we fix Φ and minimize
the last two terms with respect to Γ . The second step searches for a smooth
approximation to the current warp Φ and typically reduces to smoothing Φ.
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In the log-domain diffeomorphic Demons framework [11], a warp Γ is pa-
rameterized with a smooth, stationary velocity field v : R3 �→ R3 via an ODE:
∂Γ (x,t)

∂t = v(Γ (x, t)) and an initial condition Γ (x, 0) = x. The solution of the
ODE, Γ (x) = exp(v)(x), can be computed efficiently using scaling and squar-
ing [17] and inverted by using the negative of the velocity field: Γ−1 = exp(−v).
An update velocity field u computed in the first step of the current iteration,
can be then combined with the previous warp estimate Γ = exp(v) to compute
the current warp Φ = exp(v′) ≈ exp(v + u) [11]. The distance between the two
warps Dist(Φ, Γ ) is defined as ‖u‖2

2.
We now derive the update formula for the asymmetric bi-directional dissim-

ilarity cost of Eq. (5). For a fixed deformation Γ = exp(v), the first step of the
Demons algorithm seeks u that minimizes the following objective function:

∑
x∈Ω

[[
I(x)− T (exp(v + u)(x))

]2
+
[
I(exp(−v − u)(x))− T (x)

]2
det(∇ exp(−v)(x))

]
+ 2λ‖u(x)‖2,

where, for simplicity, we approximate det(∇ exp(−v−u)(x))≈det(∇ exp(−v)(x))
for a small u, removing dependencies between the voxels at each update and re-
place the integral with a discrete sum. This non-linear least squares problem can
be efficiently solved using the Gauss-Newton method, which requires finding the
gradient of the terms with respect to the stationary velocity field u at u = 0 and
solving a linearized least-squares problem. We define: gT (x) = ∇T (exp(v)(x)),
gI(x) = ∇I(exp(−v)(x)), cv(x) = det(∇ exp(−v)(x)), and

H(x) =
[
gT (x)gT (x)T − cv(x)gI(x)gI(x)T + 4λId3×3

]
.

The image gradients are column vectors, cv(x) is a scalar, H(x) is a 3×3 matrix,
(·)T denotes the transpose and Id3×3 is the 3 × 3 identity matrix. Solving the
linearized least-squares problem yields the update for each voxel x

u(x) = H(x)−1

[(
I(x) − T (Γ (x)

)
gT (x) −

(
I(Γ−1(x)) − T (x)

)
cv(x)gI(x)

]
. (7)

Since the cost function in Eq. (5) is the average of the ones in Eq. (3) and Eq. (4),
corresponding updates can be similarly derived. Furthermore, the symmetric
formulation used by inverse-consistent registration algorithms for pairwise image
alignment can be obtained by setting the Jacobian determinant term cv(x) = 1
in our framework. The following is a summary of the algorithm. ! KσK denotes
spatial convolution with an isotropic Gaussian with standard deviation σK .

Asymmetric bi-directional log-domain image-template registration:

– Initialize Γ = exp(0)
– Iterate until convergence:

• Given current Γ = exp(v), compute update u(x) based on Eq. (7).
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• Update: v ← v + u
• Regularize: v ← v ! KσK

The algorithm has two input parameters: λ that controls the step size taken in
the update (via H(x)) and σK that controls the warp smoothness.

4 Experimental Results

Using two experiments, we compare five algorithms:

1. Template Warp: Optimize Eq. (3).
2. Image Warp: Optimize Eq. (4).
3. Asymmetric Bi-directional: Optimize Eq. (5).
4. Image Warp without Jacobian: Ignore the Jacobian term in the Image

Warp Algorithm and treat the template as a second image.
5. Symmetric Bi-directional: Ignore the Jacobian term in the Asymmetric

Bi-directional Algorithm.

For each ordered pair of images, we ran all five algorithms, treating the first
image as the image I and the second image as the template T . The only algorithm
invariant to the ordering of the two images is the symmetric Algorithm 5.

We quantify the quality of alignment in the image coordinates using: (1) image
mean square error (MSE), obtained by averaging the squared differences between
the image intensities and the interpolated template intensities over the image
voxels, and (2) the Dice score [18] to measure overlap of regions of interest.
Dice scores were computed in the image coordinates by measuring the overlap
between the image labels and the transferred template labels obtained through
nearest neighbor interpolation. Dice scores vary from 0 to 1 with higher values
indicating better alignment. Both MSE and Dice have been extensively used in
the literature to evaluate registration results, cf. [19]. Yet, it is important to note
that different applications might require different evaluation metrics.

Due to the arbitrary tradeoff between the image-based term and regulariza-
tion in the objective function, comparisons between registration algorithms are
fair only when considered over a range of harmonic energy of the warps [20].
Harmonic energy measures the non-linearity of the warp, defined to be the aver-
age Frobenius norm of the Jacobian of the displacement field associated with the
warp. A wider kernel used to estimate Φ (larger σK) results in smoother warps,
yielding a lower harmonic energy.

We ran each algorithm on each ordered pair of images ten times with σK

values at equally spaced intervals from one to ten voxels and λ = 10−3. For each
ordered pair of subjects and each algorithm, we thus obtained 10 alignment
scores with corresponding harmonic energies. We then computed the mean and
standard error across trials for a particular harmonic energy.

In the two experiments, we provide a pairwise comparison of the Image Warp
and Aysmmetric Bi-directional Algorithms (Algs. 2, 3) to their counterparts
that ignore the Jacobian term (Algs. 4, 5). This pairwise comparison aims to
investigate the effect of ignoring the Jacobian term in the cost function.
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Fig. 1. OASIS: Brain MRIs of six subjects
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Fig. 2. OASIS: Average Image Mean
Squared Error (MSE). The dynamic
range of image intensities is [0, 1].
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Fig. 3. OASIS: Average Image Mean Square Error (MSE) Difference. Positive values
indicate that ignoring the Jacobian term increases the average error in registration.

4.1 Oasis Experiment

In the first experiment, we employed pre-processed (skull stripped and gain-
field corrected) MRI volumes (176 × 208 × 176, 1 mm isotropic) of 6 subjects
from the OASIS database [14]. The subjects represent a wide spectrum of the
population, both in terms of age and dementia score. Axial slices are shown in
Fig. 1, demonstrating large anatomical variability across the six subjects. We
applied the five algorithms to all thirty ordered pairings of these subjects.

Fig. 2 shows the image mean squared errors (MSE) over a range of harmonic
energy values averaged across all pairings. Error bars are not included to avoid
clutter. It is clear that the bi-directional methods (Algs. 3 and 5) outperform
the unidirectional methods (Algs. 1, 2, and 4).

Furthermore, taking into account the asymmetry of image-template registra-
tion outperforms the respective algorithms that treat both images the same way
(Algs. 2 vs 4 and Algs. 3 vs 5). Fig. 3 highlights this comparison. For each ordered
pair of images and each harmonic energy value, we subtracted the MSE value of
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Alg. 2 (3) from Alg. 4 (5) and averaged across all pairings. Positive values indicate
that the former algorithm outperforms the latter. It is clear that the algorithms
incorporating the Jacobian term are statistically significantly better than the
corresponding algorithms that do not. Moreover, the difference between the al-
gorithms grows with increasing harmonic energy because under more nonlinear
warps, certain regions shrink or grow more, resulting in an increased asymmetry
due to substantial variations in the Jacobian map over space.

4.2 Brainweb Experiment

We used ten synthetic scans obtained from Brainweb [15]. Each scan contained
a simulated T1-weighted MRI volume (256 × 256 × 181, 1 mm isotropic) with
corresponding tissue label maps for CSF, gray and white matter. We ran the five
algorithms on 20 random ordered pairings of the subjects. A comparison of the
image mean squared error (MSE) values over a range of harmonic energy values
(not shown) revealed a ranking of the algorithms consistent with the OASIS
dataset: bi-directional methods outperform uni-directional methods, and taking
into account the asymmetry of image-template registration improves alignment.

To further evaluate the algorithms, we used the tissue labels to quantify the
overlap between the underlying tissue map of the image and interpolated tis-
sue map of the warped template. Fig. 4a compares the Dice scores for the three
tissue types of the Image Warp (Alg. 2) with its counterpart that ignores the
Jacobian term (Alg. 4). Similar to the previous experiment, positive values in-
dicate that taking the Jacobian term into account yields significantly improved
alignment of the underlying tissue labels, suggesting better segmentation quality
in a template-based segmentation application. Moreover, the difference between
the two methods grows with increasing harmonic energy. Fig. 4b shows that this
conclusion is also true for the bi-directional Algorithms (Algs. 3 and 5). Note
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Fig. 4. Brainweb. Dice Score Differences between: (a) Image Warp with Jacobian
(Alg. 2) minus Image Warp without Jacobian (Alg. 4). (b) Asymmetric (Alg. 3) minus
Symmetric Bi-directional (Alg. 5).
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that a Dice score difference of 10−3 roughly corresponds to 100 voxels in white
matter, 600 voxels in grey matter and 1000 voxels in CSF.

5 Conclusions

This paper investigates the asymmetry in image-template registration. Due to
this asymmetry, our analysis and experiments suggest that a straightforward
application of off-the-shelf pairwise registration algorithms may be sub-optimal
in the context of image-template registration. We present a bi-directional objec-
tive function that takes the asymmetry into account by introducing a correction
factor: the Jacobian that quantifies the deformation of the spatial grid. This
correction factor can be used to modify virtually any symmetric registration
algorithm into an asymmetric bidirectional one.

Our experiments confirm that bi-directional methods yield improved results
compared to unidirectional algorithms since the use of both image gradients in
the optimization improves robustness against local minima. Furthermore, incor-
porating the Jacobian weighting term to account for the asymmetry produces
significantly improved alignment scores in the image coordinates. This improve-
ment becomes more pronounced under more nonlinear warps.
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Abstract. Thirion’s Demons [1] is a popular algorithm for nonrigid
image registration because of its linear computational complexity and
ease of implementation. It approximately solves the diffusion registra-
tion problem [2] by successively estimating force vectors that drive the
deformation toward alignment and smoothing the force vectors by Gaus-
sian convolution. In this article, we show how the Demons algorithm can
be generalized to allow image-driven locally adaptive regularization [3,4]
in a manner that preserves both the linear complexity and ease of imple-
mentation of the original Demons algorithm. We show that the proposed
algorithm exhibits lower target registration error and requires less com-
putational effort than the original Demons algorithm on the registration
of serial chest CT scans of patients with lung nodules.

1 Introduction

At a high level, image registration algorithms can be described by three com-
ponents: a cost function that describes the dissimilarity between two images, a
space of geometric transformations under which one or both images are allowed
to deform, and, a strategy for minimizing the cost function over the space of
allowable transformations. In nonparametric registration [2], the set of vector-
valued functions {Φ : Rn �→ Rn} forms the allowable space of transformations.
In order to guarantee that the nonparametric registration problem is well-posed
and has a smooth solution, a regularization term must be added to the dissimi-
larity measure to form the cost function.

In medical image registration, various regularizers, such as elastic, fluid, dif-
fusion, and curvature have been proposed [2] for inclusion into the cost function,
each defining a notion of smoothness in a slightly different way. A variety of
different techniques [1,2,5,6,7] have been proposed for numerically solving the
Euler-Lagrange equations arising from the variational minimization of these cost
functions. In this article, we focus on Thirion’s Demons algorithm [1], which is
a popular choice because of its linear complexity and simple implementation.

Thirion’s Demons algorithm approximates the solution to nonparametric reg-
istration with a homogeneous diffusion regularizer by iteratively performing two
steps: 1) computing a force vector that corresponds to the variational derivative
of the dissimilarity measure, and 2) convolving the force vector with a Gaussian
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kernel. The Demons algorithm can be generalized for use with curvature and
fluid regularizers as described in [8], by reformulating the solution of the Euler-
Lagrange equation as the stationary solution of a coupled system of diffusion
equations.

Each of the above-mentioned regularizers are homogeneous and isotropic,
meaning they ensure smoothness independently of location or direction. In the
optic flow community, much research has been done into generalizing diffusion
regularization to be nonhomogeneous and anisotropic [4]. Even though adaptive
diffusion regularizers allow for greater flexibility, the resulting Euler-Lagrange
equations are not of a form that fits nicely into the framework of an efficient,
easy to implement Demons-style algorithm.

In this paper, we show that a Demons-style algorithm that uses successive
Gaussian convolution can be constructed to handle image-driven locally adaptive
regularization. This is possible if the locally adaptive regularizer is based on a
generalization of the curvature regularizer instead of the diffusion regularizer.
When the proposed locally adaptive curvature regularizer is incorporated in a
variational registration problem, the resulting Euler-Lagrange equation can be
linked to a coupled system of diffusion equations whose stationary solution can
be approached by Demons-style successive Gaussian convolution. We illustrate
the behavior of the proposed algorithm on a pedagogical example and on serial
CT chest exams.

2 Background

Consider two images, a reference image R and a floating image F , both as
functions in R

n. Define a deformation Φ : Ω ⊂ R
n �→ R

n by Φ(x) = x− u (x),
and call u the displacement. The general form of the registration problem is
given by:

min
u

E(R,F,u) := S(u) + αJ (R,Fu) , (1)

where J is a dissimilarity measure that quantifies the dissimilarity between
the reference image R and the deformed floating image Fu := F (Φ), S is a
regularizer that ensures that the minimization problem is well-posed and that
the solution is smooth in some sense, and α is a weighting parameter.

Necessary conditions for a minimum of E(R,F,u) are given by the Euler-
Lagrange equations:

A(u(x)) = αf(x, R, F,u(x)) , (2)

with suitable boundary conditions. The partial differential operator A and force
vector f arise from the Gâteaux derivatives of the regularizer and dissimilarity
measure, respectively. In this article, we use the negative of the squared cor-
relation coefficient (CC) dissimilarity measure, which yields the force vector:

f(x, R, F,u(x)) = −
2ρ2

R,Fu

|Ω|

[
(R(x)− μR)− (Fu(x)− μFu)

σ2
Fu

]
∇Fu(x) , (3)
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where μA, σ2
A, and ρA,B refer to the mean, variance, and correlation coefficient,

respectively. We note that our subsequent analysis is not dependent on this
choice of J .

The diffusion and curvature regularizers [2] and their corresponding partial
differential operators given by:

Sdiff(u) =
1
2

∫
Ω

n∑
j=1

‖∇uj(x)‖2
dx , Adiff(u(x)) = −Δu(x) , (4)

Scurv(u) =
1
2

∫
Ω

n∑
j=1

(Δuj(x))2dx, Acurv(u(x)) = Δ2u(x) . (5)

For large deformation problems, these partial differential operators can be ap-
plied to the velocity field v(x, t) of the deformation, which is related to the
displacement field by the material derivative:

v(x, t) = ∂tu(x, t) + (∇u(x, t))T v(x, t) . (6)

2.1 Locally Adaptive Diffusion Registration

Image-driven adaptive diffusion regularization can be enabled by applying a
scalar weighting function to the diffusion regularizer; i.e.

Sid-adapt
diff (u) =

1
2

∫
Ω

βu(x)

⎛⎝ n∑
j=1

‖∇uj‖2

⎞⎠ dx. (7)

The weighting function β(x) can be chosen based on the type of behavior desired.
Alvarez [3] proposes using a weighting function that is inversely proportional to
the gradient magnitude of the underlying image. Charbonnier [9] and Bruhn [10]
show that a function fitting this description is β(x) = Ψε

(
‖∇F (x)‖2

)
, where

Ψε

(
s2) =

ε√
s2 + ε2

. (8)

Kabus [11] proposes a different type of weighting function that is based on a
segmentation of the image into foreground/background regions. He also allows
the weighting function to deform over the course of registration according to
u(x). Here, we use the weighting function (8) but allow it to deform according
to Kabus’ convention.

2.2 Thirion’s Demons

The first variant of Thirion’s Demons algorithm [1] is essentially an approxima-
tion to the stationary solution of the following diffusion equation:

∂tv(x, t)−Δv(x, t) = αf(x, R, F,u(x, t)) , (9)
v(x, 0) = 0,
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Algorithm 1. Demons Algorithm for Diffusion Registration
Select time step τ ; define tj = jτ , j = 0, 1, . . . .
Set v(x, t0) = u(x, t0) = 0, m = 0.
repeat

v(x, tm+1) ← K(x,
√

2τ
) ∗ [αf(x, R, F,u(x, tm)) + v(x, tm)

]
.

u(x, tm+1) ← u(x, tm) + τ [I−∇u(x, tm)]Tv(x, tm+1).
m ← m + 1.

until convergence.

where x ∈ Rn and t ≥ 0. Furthermore, the stationary solution of (9) is equiv-
alent to nonparametric registration with a diffusion regularizer applied to the
velocity field. The Demons algorithm exploits the fact that the Gaussian kernel
is the Green’s function of the diffusion equation, and therefore approximates the
stationary solution of (9) by successive Gaussian convolution. Algorithm 1 de-
scribes this process, using the notation K

(
x,
√

2τ
)

to indicate a Gaussian kernel
at position x with standard deviation

√
2τ , and ∗ to indicate convolution.

Note that in Thirion’s description [1] of the Demons algorithm, a normalized
version of the sum of squared distances similarity measure is used. Here, we
generalize to allow for any similarity measure.

3 Designing a Locally Adaptive Demons Algorithm

In order to incorporate locally adaptive regularization into a Demons-style regis-
tration framework, we must somehow relate the Euler-Lagrange equations (2) to
one or more diffusion equations of the form (9). If this is possible, we can exploit
the nature of the Green’s function of (9) to construct an approximate solution
by successive Gaussian convolution. Unfortunately, due to the nonhomogeneous
structure of Aid-adapt

diff , (which is omitted here for lack of space), there appears
to be no direct way to relate the resulting Euler-Lagrange equations to diffusion
equations of the form (9).

However, such a relationship can be established if locally adaptive curvature
regularizers are constructed. In this section, we show how to construct an image-
driven locally adaptive curvature regularizer, how to relate it to a coupled system
of diffusion equations, and finally, how to exploit this relationship to design a
locally adaptive Demons algorithm for registration.

3.1 Locally Adaptive Curvature Regularization

An image-driven locally adaptive curvature regularizer can be constructed in the
same manner as its diffusion counterpart (7) by applying a weighting function
to the homogeneous curvature regularizer. This yields:

Sid-adapt
curv (u) =

1
2

∫
Ω

βu(x)

⎛⎝ n∑
j=1

(Δuj)
2

⎞⎠ dx. (10)
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When the corresponding partial differential operator Aid-adapt
curv is determined and

applied to the velocity field, the corresponding Euler-Lagrange equation can be
written as:

Δ[βu(x)Δv] =
1
2

⎛⎝ n∑
j=1

(Δvj)
2

⎞⎠∇βu(x) + αf(x, R, F,u(x)) . (11)

3.2 Coupled PDE System

The structure of the left hand side of the Euler-Lagrange equation (11) allows
us to relate the solution of (11) to the stationary solution of a coupled system
of diffusion equations. This coupled system is given by:

∂tw(x, t)−Δw(x, t) =
√

α f(x, R, F,u(x, t))

−
√

α

2

⎛⎝ n∑
j=1

(wj(x, t))2
⎞⎠∇

[
1/βu(x,t)(x)

]
, (12)

∂tv(x, t)−Δv(x, t) =
√

αw(x, t) /βu(x,t)(x) , (13)
w(x, 0) = v(x, 0) = 0.

In order to establish the relationship between the stationary solution of (12)–(13)
and the solution of (11), we first note that the stationary solution of (12)–(13)
satisfies ∂tw = ∂tv = 0. Therefore, as t →∞, we see that solving for w(x, t) in
(13) and substituting the result into (12) yields (11).

3.3 Locally Adaptive Demons

We have shown for the locally adaptive curvature regularizer that the solution
to the Euler-Lagrange equation is equivalent to the stationary solution of a
coupled system of diffusion equations. Therefore, we can exploit the structure of
the Green’s function of the diffusion equation in order to define a Demons-style
algorithm for registration with this adaptive regularizer. Algorithm 2 lists the
resulting Demons algorithm.

Algorithm 2. Demons Algorithm for Locally Adaptive Registration
Select time step τ ; define tj = jτ , j = 0, 1, . . . .
Set w(x, t0) = v(x, t0) = u(x, t0) = 0, m = 0.
repeat

w(x, tm+1) ← K(x,
√

2τ
) ∗ [ {RHS of (12) at t = tm} + w(x, tm)

]
.

v(x, tm+1) ← K(x,
√

2τ
) ∗ [√αw(x, tm+1) /βu(x,tm)(x) + v(x, tm)

]
.

u(x, tm+1) ← u(x, tm) + τ [I−∇u(x, tm)]Tv(x, tm+1).
m ← m + 1.

until convergence.
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4 Pedagogical Example

To illustrate the behavior of the locally adaptive Demons algorithm, we consider
a pedagogical example of registering two ellipses. Figure 1 shows two 100× 100
images of an ellipse with smoothed edges; the floating ellipse has left edge that
is five pixels to the left of the left edge of the reference ellipse. The right edges
of both ellipses are in the same location.

In a simple experiment, we registered the ellipses using the standard and
locally adaptive Demons algorithms. Figures 1(d) and 1(c) show that each algo-
rithm warps the edge of the floating ellipse in a similar manner, but that interior
of the floating ellipse is warped at different rates. Figure 1(e) affirms this point:
the use of locally adaptive Demons with ε = 10−2/ε = 1 causes the interior of
the ellipse to be less/more affected by the ellipse edge than the standard Demons
algorithm.

(a) Floating (b) Reference (c) Warp Fields (d) Zoomed View

10 20 30 40 50 60 70 80 90 100
0

2

4

6

 

 
Standard Demons

Locally Adaptive Demons, ε = 10−2

Locally Adaptive Demons, ε = 1

(e) Horizontal displacement component across the middle row of the float-
ing image. X axis of plot corresponds to pixel location.

Fig. 1. Pedagogical example: warp fields correspond to standard Demons algorithm
with α = 10−4(red), locally adaptive Demons algorithm with α = 10−4 and ε = 10−2

(green), and locally adaptive Demons algorithm with α = 10−3 and ε = 1 (blue)

5 Serial Chest CT Experiment

A cursory analysis of Fig. 1(e) suggests that the locally adaptive Demons al-
gorithm can be tuned to enable a range of behavior in how deformations are
smoothed near edges in the image. To explore this behavior on a practical
example, we register serial chest CT examinations of 18 patients with lung
nodules.
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Table 1. Statistics of TRE across all nodules, ATRE across all cases, and ECS for
rigid registration and nonrigid registration via standard and locally adaptive Demons

Statistic Rigid only Rigid + Rigid + locally
standard Demons adaptive Demons

Mean TRE (mm) 8.5 2.6 2.5
Median TRE (mm) 7.2 2.0 1.8
Std. dev. TRE (mm) 6.5 2.2 2.1
Mean ATRE (mm) 8.4 2.3 2.1
Median ATRE (mm) 7.8 2.4 1.9
Std. dev. ATRE (mm) 4.5 1.6 1.5
ECS Percentiles (25%, 50%, 75%) (53.0, 56.4, 56.5) (17.2, 19.0, 21.8)

(a) (b) (c) (d)

Fig. 2. Chest CT registration: (a) Axial slice from prior volume; (b) Axial slice from
current volume; (c) log (1 + ‖∇u‖) from yellow subregion of (a) using standard Demons;
(d) log (1 + ‖∇u‖) from yellow subregion of (a) using locally adaptive Demons

To establish a set of ground truth points that can be used to measure target
registration error (TRE), we manually identified the centers of lung nodules less
than 6mm in diameter that are observable in both the prior and current images
of a patient. This yielded from 4-20 ground truth points for each patient. We
resampled the images to approximately 3 × 3 × 3mm3 isotropic resolution and
performed a rigid preregistration step. We then performed nonrigid registration
using the standard and locally adaptive Demons algorithms with various values
of α and ε. Registration was performed in a multiresolution pyramid at four
resolution levels.

Computational requirements of each algorithm were measured in terms of
effective convolution steps (ECS). A unit of ECS is defined as the amount of
computation required to convolve a vector field at the finest resolution level
with a Gaussian kernel. Hence, 50 iterations of standard Demons at each of the
two finest levels requires 50 + (1/8) ∗ 50 = 56.25 ECS. Adaptive Demons would
require twice as many Gaussian convolution steps, yielding 112.5 ECS.

Table 1 shows statistics on the TRE values across all nodules, aggregate TRE
(ATRE) values across all cases for the best performing algorithms (standard: α =
10−2; locally adaptive: α = 10−2, ε = 10−2), and ECS. ATRE for a particular
patient case is defined as the median TRE value for all nodules in the case.
Figure 2 illustrates an axial slice from the prior and current CT images of one
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patient, along with images of log (1 + ‖∇u‖) for the deformations resulting from
the standard and locally adaptive Demons algorithms.

6 Conclusion

We have shown how the Demons algorithm can be generalized to handle a lo-
cally adaptive regularizer. This is done by constructing an image-driven locally
adaptive version of the curvature regularizer, and then relating the solution of
the Euler-Lagrange equations for registration to the stationary solution of a pair
of diffusion equations. The proposed algorithm is easy to implement and exhibits
linear complexity in the number of pixels/voxels. Experiments on serial registra-
tion of chest CT images of patients with lung nodules show an improvement in
TRE as well as a reduction in the amount of computational effort required.
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Abstract. A variety of pixel and feature based methods have been
proposed for registering multiple views of anatomy visible in studies
obtained using diagnostic, minimally invasive imaging. A given regis-
tration method may outperform another depending on anatomical vari-
ations, imaging conditions, and imaging sensor performance, and it is
often difficult a priori to determine the best registration method for a
particular application. To address this problem, we propose a registra-
tion framework that pools the results of multiple registration methods
using a decision function for validating registrations. We refer to this
as meta registration. We demonstrate that our framework outperforms
several individual registration methods on the task of registering multi-
ple views of Crohn’s disease lesions sampled from a Capsule Endoscopy
(CE) study database. We also report on preliminary work on assessing
the quality of registrations obtained, and the possibility of using such
assessment in the registration framework.

1 Introduction

Minimally invasive diagnostic imaging methods such as flexible endoscopy, and
wireless capsule endoscopy (CE) often present multiple views of the same
anatomy. Duplication issues are particularly severe in the case of CE, where
peristaltic propulsion may lead to duplicate information over several consecutives
frames, and also several minutes apart. This may be difficult to detect, since each
individual image captures only a small portion of anatomical surface due to lim-
ited working distance of these devices, providing relatively little spatial context.
Given the relatively large anatomical surfaces (e.g. the Gastrointestinal tract
(GI)) to be inspected, it is important to identify duplicate information as well
as to present all available views of anatomical and disease views to the clinician
for improving consistency, efficiency and accuracy of diagnosis and assessment.

� Supported in part by National Institutes of Health with Grant 5R21EB008227-02
and Johns Hopkins University internal funds.
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Fig. 1. A mild Crohn’s lesion in
CE. CE color Images are typically
576x576 pixels.

In particular, we are interested in automati-
cally assessing the severity of Crohn’s disease,
an inflammatory condition of the GI tract us-
ing CE images (Figure 1). The aggressiveness
of the course of mucosal healing treatment for
Crohn’s disease depends upon the severity as-
sessment of unique lesions in the CE images.
We aim to identify and assess multiple views
of a selected lesion, to reduce redundant in-
formation and to improve the consistency and
accuracy of disease assessment.

In the literature, lesion finding has been
commonly formulated as a detection problem
[1] where a classifier is trained to learn the vi-
sual properties of the chosen object category
(i.e. lesions). This process typically requires
feature extraction to generate a low dimensional representation of image con-
tent, followed by classifier training to distinguish the desired object model(s)
[2]. For CE, appearance modelling has been used for blood detection [3,4], topo-
graphic segmentation[5] and lesion classification [6].

Generic detection is different from matching an instance of an object to an-
other. Therefore, we consider detection of repetitive lesions as a registration
and matching problem. A registration method evaluates an objective function
or similarity metric to determine a location in the target image (a second view)
where a reference view (i.e. a lesion) occurs. Once a potential registration is
computed, a decision function must be applied to determine the validity of the
match. Our goal is to develop a trained statistical classifier that makes a decision
based on the quality of a match between two regions of interest (ROIs) or views
of the same lesion, rather than the appearance of the features representing an
individual ROI.

Decision functions for image matching have traditionally been designed as
thresholded classifiers based on one or more registration metrics. Although such
a method ensures low false positive rates, the overall retrieval rate is bounded
by the recall rate of the most sensitive metric. The work of Szeliski et al. [7] and
Stewart et al. [8] are examples of such problem formulations. In many cases, a
single, unique global threshold may not exist; therefore the determination of an
adaptive threshold is a challenging problem. An integrated classifier that distin-
guishes registrations based on a feature representation populated by a wide range
of metrics is likely to outperform such threshold based methods. Chen et al. [9]
introduce a new feature vector that represents images using an extracted fea-
ture set. However, this approach still requires the same similarity metric across
the entire feature set. By contrast, we present a framework that incorporates
multiple registration algorithms, a generalizable feature representation for clas-
sification and a regression based ranking system to choose the highest quality
match.
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2 Meta Registration Framework

Fig. 2. Multiple independent registration methods
and a robust classifier are used to determine the lo-
cation of ROI R in image I

Given an ROI Ri in an im-
age Ii, and a target image
Ij , we define the registra-
tion function T (Ri, Ij) �→
Rj , which generates an ROI
match pair (Ri,Rj). The ob-
jective function for this regis-
tration is based upon the in-
variance properties of image
data to be matched. For ex-
ample, histogram representa-
tions are invariant to rotation,
whereas pixel based meth-
ods are generally not. Feature
based methods are typically
less affected by changes in il-
lumination and scale. Due to
large variation in these invariance properties within endoscopic studies, a single
registration method may not be adequate for retreiving matches in endoscopic
data. We use multiple independent global registration methods (each more ac-
curate in a different subset of the data) and a decision function to estimate a
valid match. Let us denote the similarity metric relating visual properties of the
two ROIs Ri and Rj as d(Ri, Rj). Using a set of global registration functions
T = Ti(R, I) : i = 1 . . . n and estimated matches R′

1 . . . R′
n from each of these

methods, the decision function D which determines which estimates are correct
matches can be written as in equation 1. In the case where there are multiple
correct match estimates, we use a ranking function to determine the best result.
Figure 2 shows the information flow in the proposed method.

D(Ri, R
′
j) =

{
1, if d(Ri, R

′
j) < γ

−1 otherwise (1)

Decision Function Design. For an ROI R, we use the following notation for
representing appearance features. We start with pixel based features. The inten-
sity band of the image is denoted as RI . The Jacobian of the image is denoted
RJ = [Rx, Ry] where Rx and Ry are the vectors of spatial derivatives at all
image pixels. Condition numbers and the smallest Eigenvalues of the Jacobian
are denoted as RJC and RJE respectively. The Laplacian of the image is de-
noted as RLAP . We denote histogram based features as : RRGBH , RWH and
RWCH for RGB histograms, Gaussian weighted intensity histograms and Gaus-
sian weighted color histograms respectively. We also consider MPEG-7 descrip-
tors [10]: REHD (Edge Histogram), RHar (Haralick Texture), RDCD (Dominant
Color) and RHTD (Homogeneous Texture).

Given two images Ia and Ib where A is an ROI in IA with center x and B
is an ROI in IB , we generate a feature vector for a pair of regions A and B
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Table 1. Metrics Table

Metric Name Formula

RMS (rms)
√

( 1
n

∑
k(AI − BI)2)

RMS Shuffle
√

( 1
n

∑
k shuffle(AI , BI))

Ratio of Condition Numbers min(AJC , BJC)/max(AJC, BJC)
Ratio of Smallest Eigenvalues min(AJE, BJE)/max(AJE, BJE)
Laplacian Shuffle Distance shuffle(ALAP , BLAP )
Weighted Histogram Bhattacharya Distance sqrt(AWH .BWH)
RGB Histogram Bhattacharya Distance sqrt(ARGB.BRGB)
Edge Histogram Manhattan Distance

∑
(AEHD − BEHD)

Haralick Descriptor Canberra Distance
∑ |AHar−BHar |

|AHar|+|BHar |
HTD Shuffle Distance shuffle(AHTD, BHTD)
Forward Backward check |x − T (Ib, Ia, T (Ia, Ib, x))|

populated with the metrics shown in Table 1. The decision function can then
be trained to distinguish between correct and incorrect matches using any stan-
dard classification method. We use Support Vector Machines (SVM) [11] in our
experiments.

The Ranking Function: We treat the registration selection as an ordinal re-
gression [12] problem. Given a feature set corresponding to correctly classified
registrations, F = {f1, ..., fN} and a set of N distances from the true regis-
trations, we can form a set of preference relationships between the elements
of F . Let us define the set of preference pairs P as, P = {(x, y)|fx ≺ fy}.
Our goal is to compute a continuous real-valued ranking function K such that,
fx ≺ fy ∈ P =⇒ K(fx) < K(fy). A preference pair (x, y) ∈ P can be thought of
as a pair of training examples for a standard binary classifier. We train a binary
classifier C such that,

C(Fx, Fy) =
{

0, if(x, y) ∈ P
1 otherwise

and C(Fy , Fx) = 1−C(Fx, Fy). Given such a classifier, the rank can be computed
as, K(F ) =

∑n
i=1 C(F, Fi)/n where K is the fraction of the training set that

are less preferred to F based on the classifier. Thus K orders F relative to the
training set. Let fx represent the metrics or features of registration and fi,j

represent the vector concatenation of fi and fj. The training set, Train = {<
fi,j , 0 >,< fj,i, 1 > |(i, j) ∈ P} is used to train an SVM. For classification, we
pair each vector in the test set with all the vectors in the training set and use
the empirical order statistics K(F ) described above for enumerating the rank.

3 Training Data

Given an ROI R and a set of CE images I = {Ii : i = 1 . . .N}, the task is
to build a dataset of pairs of images representing correct and incorrect matches
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of a global registration. We first compute the correct location of the center of
the same ROI in I through manual selection followed by a local optimization.
We denote this set of locations as X = {Xi : i = 1 . . .N}. Next, we select any
global registration method T and apply it between R and each image in the set
I to generate a set of estimated ROI center locations X ′ = {X ′

i : i = 1 . . .N}
and pairs R = {R,Ri : i = 1 . . .N}. The pairs are designated a class label
y (correct or incorrect matches) by thresholding on the Euclidean distance (in
pixels) between Xi and X ′

i. We refer to this as the ground truth distance. The
training set T contains all registered pairs and their associated class labels.

4 Experiments

Our CE study repository contains studies acquired with an approved Institu-
tional Review Board (IRB) protocol. A CE study may contain up to 8 hours of
data acquired at 2 images per second. The CE study database contains selected
annotated images containing Crohn’s Disease (CD) lesions manually selected by
our clinical collaborators. These provide the ROIs we use for our experiments. A
lesion may occur in several neighboring images, and these selected frames form
a lesion set. Figure 3 shows an example of a lesion set. In these experiments,
150x150 pixel ROIs were selected. Various lesion sets contain between 2 and 25
image frames. Registration pairs were then generated for every ROI in the lesion
set, totaling 266 registration pairs.

We used the folowing five standard techniques for 2D registration. These in-
clude SIFT feature matching, mutual information optimization, weighted his-
tograms (grayscale and color) and template matching. For each of these meth-
ods, we performed a registration to estimate a registered location, resulting in a
total of 1330 estimates (5 registration methods per ROI-image pair). The ground
truth for these estimates was determined by using a threshold of 25 pixels on
the Euclidean distance described in Section 3. The dataset contained 581 correct
(positive examples) and 749 incorrect (negative examples) registrations.

For every registration estimate, we computed the registered ROI for the train-
ing pair. The feature vector respresenting this registration estimate was then
computed as described in Section 2. We then trained the decision function using
all registration pairs in the dataset. The performance of this integrated classifier
was evaluated using a 10-fold cross-validation. Figure 5(a) shows the perfor-
mance of our classifier, including comparison with the ROC curves of individual

Fig. 3. A Lesion Set: a set of neighboring CE images with the same lesion
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Table 2. 8 Iterations of Ranking Experiment

Iter1 Iter2 Iter3 Iter4 Iter5 Iter6 Iter7 Iter8
No: of pairs 300 600 900 1200 1500 1800 2100 2400

Train mis-classification rate 0.001 0.014 0.016 0.015 0.018 0.017 0.017 0.017
Train pair mismatch rate 0.16 0.18 0.17 0.16 0.16 0.16 0.16 0.15
Test pair mismatch rate 0.32 0.38 0.32 0.26 0.38 0.32 0.35 0.27

Test rank mean 0.53 0.69 0.55 00.35 0.69 0.55 0.61 0.44
Test rank std dev 0.14 0.15 0.20 0.28 0.19 0.23 0.21 0.29

Fig. 4. Estimated Ranks for training (left) and test(right) datasets

metrics used for feature generation. The true positive rate was 96 percent and
the false negative rate was 8 percent.

For n registrations, a total of n choose 2 preference pairs can be generated.
We used a subset of this data as the input to the ranking model. Features used to
generate a training pair include the difference between EHDs and the difference
between the DCDs. Training was initiated with a random selection of n = 300.
This estimate was then improved by iteration and addition of preference pairs
at every step. At each iteration, a 10-fold cross validation was performed where
the dataset was divided into appropriately sized training and test sets. Training
was then conducted using an SVM model with a radial basis kernel.

Once this classifier was trained, preference relationships were predicted by
classifying vectors paired with all training vectors. Relative ranks within each
set were determined and pair mismatch rates were calculated. A mismatch is any
pair of registrations where K(Fx) > K(Fy) and Fx ≺ Fy or K(Fx) < K(Fy) and
Fx ( Fy. The training mis-classification rate is the percentage of contradictions
between the true and predicted preference relationships in the training set. Table
2 shows the rank metrics for each iteration. Figure 4 shows the sorted ranking
function of training and test set registrations at the end of 8 iterations.

The registration framework was applied to all 266 image pairs. For each pair,
all five registration methods were applied to estimate matching ROIs. The first
row of Table 3 shows the number of correct registrations evaluated using the
ground truth distance. Features were extracted for all registrations and the in-
tegrated classifier trained above was applied. A leave one out cross-validation
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Fig. 5. Meta Registration Results. LEFT: ROC Curves of all metrics used individually
overlaid with the integrated classifier (Green X), RIGHT: Percentage true positives for
cross validation for template matching(red), SIFT (green), Mutual Information (blue),
Intensity Weighted Histogram matching (black) Color Weighted Histogram matching
(magenta) and meta registration (cyan).

Table 3. Meta Registration Results. The first row shows the number of correct matches
qualified by a manual validation. The second row shows the number of correct matches
qualified by the automated integrated classifier. The third row shows the number of
automatically qualified matches that match the manual (ground truth) validation.

Type Template
Matching

Sift Mutual
Info

Intensity
Weighted
Histogram

HSV
Weighted
Histogram

Meta
Registration

Ground
Truth

165 122 54 111 129 266

Classifier 129 62 25 75 77 188
True
Positives

106 59 10 46 47 188

was performed for each ROI-image pair. The second row of Table 3 shows the
number of matches that the classifier validated as correct. Finally, the last row
shows the number of true positives which is the number of correctly classified
matches that are consistent with the ground truth classification. The last column
in the table shows the performance of the meta registration. The new framework
retreived a larger number of registrations than any single registration method.
We performed a range of n-fold validations on the same dataset for n ranging
from 2-266 (where n = 2 divides the set into two halves and n = 266 is the leave
one out validation). Figure 5(b) shows the percentage of true positives retreived
(which is the ratio of true positives of the meta registration to the number of
correct ground truth classifications) by each individual registration method and
the integrated classifier (top curve in cyan). The meta registration was able to
retrieve 70 percent of matches where the best registration method only retreived
39 percent.
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5 Discussion

We have proposed a meta registration framework for matching of lesions in cap-
sule endoscopic video. This general approach incorporates multiple independent
optimizers and an integrated classifier combined with a trained ranker to select
the best correct match from all registration results. Our results show the inte-
grated method outperforms the use of any single method for ROI matching and
retreival in CE imagery. In future work, we plan to extend this to matching ROIs
without explicit application of global optimizers.
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Abstract. The registration of various data is a challenging task in medi-
cal image processing and a highly frequented area of research. Most of the
published approaches tend to fail sporadically on different data sets. This
happens due to two major problems. First, local optimization strategies
induce a high risk when optimizing nonconvex functions. Second, sim-
ilarity measures might fail if they are not suitable for the data. Thus,
researchers began to combine multiple measures by weighted sums. In
this paper, we show severe limitations of such summation approaches. We
address both issues by a gradient-based vector optimization algorithm
that uses multiple similarity measures. It gathers context information
from the iteration process to detect and suppress failing measures. The
new approach is evaluated by experiments from the field of 2D-3D regis-
tration. Besides its generic character with respect to arbitrary data, the
main benefit is a highly robust iteration behavior, where even very poor
initial guesses of the transform result in good solutions.

1 Introduction

Image registration can be described as the task of finding a transformation from
the coordinate system of one image into another in a way that corresponding
information is aligned [1]. This challenging task is a highly frequented area of
research and subject of numerous publications in the last 15 years [2,3,4,5]. De-
pendend on the application ranging from neuro surgery to radio therapy and
many more, the requirements include a high accuracy, time efficiency and ro-
bustness which are of course highly conflictive.

State of the art approaches use similarity measures that try to model the
quality of the registration, given a certain transformation. Based on this objec-
tive function an optimization scheme is applied to search for the best transform.
So there exist two main reasons for a failed registration. First, the optimiza-
tion algorithm may get stuck in a wrong local optimum. This problem can be
handled up to a certain extent by more complex search strategies at the cost

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 590–597, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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of computational time [6]. Second, similarity measures can simply fail, what is
often overseen. It means that the measure has its extremum at a location in
the parameter space that does not correspond to meaningful registration. Al-
though Penney et al. found already in 1998 [3] that different measures can lead
to different results, this problem has hardly been further considered.

In order to avoid the problem of failing measures, researchers constructed
more complex ones [7] and started to build convex combinations of two or more
similarity formulations [4]. Feldmann et al. [8] used the idea of democratic in-
tegration of Triesch et al. [9], where an arbitrary number of measures are used
simultaneously in a dynamically weighted sum. Since summation approaches
have severe limitations as they suffer from scaling issues, it can be said that the
overall approach to tackle that aspect has not been found yet.

In this paper we design a new iterative vector optimization scheme that will
allow for an efficient and robust registration. It works with a set of similar-
ity measures that are all treated equally so that the highly different scaling of
the single measures does not affect their influence compared to the remaining
ones. For detecting failing measures, the necessary context information can be
extracted from the iteration trajectory and is used to suppress their influence.

First of all, section 2 will give a motivation of the algorithm design, followed
by the formal definition. Secondly, section 3 demonstrates the capabilities of the
method in two experiments. The paper closes with a discussion in section 4.

2 Method

In general, similarity measures are highly nonconvex functions with unpredictable
response behavior to parameter changes. Therefore, they are hard to normalize.
Although it is mostly possible to give theoretical lower and upper bounds, their
actually used range is not known in advance. But we know by design that all
similarity measures try to characterize the point of optimal registration what
implies that they should share an extremum.

The working hypotheses of the presented approach assumes the following situ-
ation. A subset of the similarity measures works quite well, once the parameters
are close enough to the solution. The rest of the measures fails to give useful in-
formation. These subsets depend on the data set and dynamically on the current
guess of the parameters which may be out- or inside the region of convergence
for some measures.

2.1 Motivation

For a start, we give a brief demonstration about the problem of summation
approaches. Figure 1 shows three different functions on the left side and their
sum on the right side. Two of the three functions share an optimal point - the
sought solution. Beneath the functions, arrows denote the iteration directions
d(fi) a gradient descent method would suggest. On the right side, the failing
function obviously dominates in the sum d(f)Σ . But instead of building the
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Fig. 1. Iteration directions of a gradient descent approach on single measures and a
sum of measures compared to voting

gradient of the sum we could take the similarities as vector valued information.
The gradient of each component of this vector votes for an iteration direction to
build a majority decision. The result d(f)V is shown in the second row of arrows
on the right side. Note that the algorithm would iterate right through the wrong
minimum to the correct solution. Be also aware of the fact, that a multiplication
of the wrong function with an arbitrary large number would still give the same
voting result while the summation approach would be lost.

Considering n-dimensional problems, we recognize that there is an infinite set
of directions to vote for. Of course, this is an ill posed task. Hence, we have to
reinterpret the voting of a direction candidate as an averaging of the direction
suggestions. The bad side effect of this averaging is that failing measures have
a disturbing effect. But assuming we know which measures currently fail, we
can easily suppress their influence by a small weighting factor. In terms of opti-
mization, this failing can easily be described: let the measure be a function that
has to be minimized, and let us assume we have already a previous iteration. If
the last iteration was locally an ascend direction for the measure, it would have
preferred the opposing direction and by that voted against the chosen one. This
simple observation will be the core idea of the following method.

2.2 Registration by Vector Optimization

In the field of vector optimization, Edgeworth-Pareto (EP) optimality is defined
with respect to an ordering cone [10]. In general, the set of EP-optimal points
is of infinite cardinality. To define a single solution, we incorporate the working
hypothesis by a diagonal matrix I with rank deficiency. It selects the working
measures which share an optimal point x̂ and by that, characterize a strong EP-
optimal point for this reduced sub problem. Associating with x̂ the maximum
rank of I (namely rank (x̂)), for which x̂ is still a strong EP-optimal point, we
write the registration problem as

max
I∈Rm×m

{
rank

(
argmin

x∈Rn

fI(x)
)}

, where fI(x) := I · f(x), f(x) ∈ R
m. (1)
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2.3 Algorithm Design

Our iterative optimization algorithm that realizes (1) will repeat the same basic
steps as classical approaches: determine an iteration direction d and a step width
λ. The presented method will use a scale parameter δ that gets reduced when
oscillating behavior occurs. As it is straightforward, we omited the embedding
in a multiresolution approach.

Iteration Direction. To compute the iteration direction, we approximate gra-
dient information by central differences with evaluations of the functions in a
distance of δ. To create a democratic approach where each measure fi has an
equal influence independent from its scaling, we reduce the gradient to direc-
tional information as a vector with unit length. Without loss of generality we
assume that all measures have to be minimized. The continuous equivalent for
the weighted discrete vote idea can be formalized as weighted averaging of the
negated normalized gradients

d(x) = − 1
N

∑
i

wi∇‖·‖fi(x) , where ∇‖·‖fi(x) :=
∇fi(x)
‖∇fi(x)‖ . (2)

For the moment, the weights wi should be considered as given, because they will
be described after presenting the framework.

Step Size. In order to determine a step size, usually a one dimensional optimiza-
tion is applied. A weighted sum of all measures would be a possible objective
function for that. But the above example already revealed the disadvantages
of scalar valued approaches. In account of that, we define a rough but robust
method: the scale parameter δ of the algorithm suggests two candidates for the
step size λ1 = δ and λ2 = 2 · δ. Between the two candidates, a discrete weighted
vote is performed, that is summing up the weights of the measures that would
prefer λ1 and comparing it with the corresponding value of λ2 where the larger
value marks the result.

Adaption of the Weight Factors. Changing the weights in (2) during op-
timization results in a dynamically varying shape of the ordering cone realized
by the linear mapping I in (1). Adapting the weights is the most crucial task in
the algorithm. So we have to design an automatism that makes the weighting
strategy meet our requirements. In this approach, the weights are generated by
multiplication of two terms

wi = wi,RE · wi,CO , (3)

that are described in the following.

Reliability of a Measure (wi,RE). To detect failing measures, we observe over
time how often a measure gives a useful contribution to the iteration. Therefore,
we define a history of length h to realize a time limited context extraction from
the current iteration tc to tc−h. Within this context we determine to which
extent the iteration direction was a descend direction for the measure. This
can be formalized as having an angular of less than π

2 from the negated gradient
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Fig. 2. Problem of inertia of reliability weights

direction to the iteration direction. A normalization is applied to keep the weights
in [0, 1]. The angular between vectors a and b is denoted by �(a, b)

w1
i,RE =

#{t|�(−∇‖·‖f t
i , d

t) < π
2 , t ∈ {tc−1, tc−2, . . . , tc−h}}∑

j #{t|�(−∇‖·‖f t
j , d

t) < π
2 , t ∈ {tc−1, tc−2, . . . , tc−h}}

. (4)

As a random similarity measure could get relative high weight, we penalize
volatile gradient changes with a multiplication ramp. The most ’random’ mea-
sure gets multiplied by one and the least random measure gets multiplied with
γ > 1 to get a [1, γ] normalization.

w̃2
i,RE =

∑
tk∈{tc,...,tc−h}

�(∇‖·‖f
tk
i ,∇‖·‖f

tk−1
i ) (5)

w2
i,RE = γ − (γ − 1) ·

w̃2
i,RE −minj w̃2

j,RE

maxl w̃2
l,RE −minj w̃2

j,RE

(6)

Together with w1
i,RE we get the total reliability in the given time context

wi,RE = w1
i,RE · w2

i,RE (7)

Conformity of a Measure (wi,CO). The reliability weight can introduce a prob-
lem of inertia as the cardinal numbers in (4) can change only by one in each
iteration. Figure 2 shows four following iterations x1, . . . , x4 with the negated
gradients of the measures. The preferred directions of the measures differ a lot
in the first three steps. Two measures (gray) point every time in iteration di-
rection and get therefore a high reliability weight. In the fourth iteration all
except these two measures point into the same direction but the reliability could
make the algorithm iterate in the opposing direction. Thus, we also consider
the unweighted mean of negated gradients. Measures that point closely in that
direction are conform with the majority in the current situation.

wi,CO =
π −� (∇‖·‖f

tc

i ,
∑

ν ∇‖·‖f tc
ν

)∑
j π −� (∇‖·‖f

tc

j ,
∑

ν ∇‖·‖f
tc
ν

) . (8)

Subtraction from the maximum angle π and division gives again a [0, 1] normal-
ization of the weights.

3 Experiments and Results

The used data was acquired from three different phantoms (skull, pelvis and
thigh) with a Siemens AXIOM Artis dFA C-arm device. To get a rigid 2D-3D
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(a) (b) (c)

Fig. 3. Image data without (a) and with (b),(c) disturbing instruments present

registration problem, we reconstructed 3D volumes of 512×512×392 voxels and
reduced them to half size, took images of size 1024× 1024 and resampled them
to a resolution of 256× 256. In the following, all error values represent the mean
projected distance of corresponding points (equally spaced grid points in the
center (1

3 )3-th volume) in mm on the detector plane. As the phantoms were not
moved between reconstruction and image acquisition the system protocol could
be used as ground truth information. Due to the limited precision of the C-arm
device, the error values have a disturbance in the range of a few mm. As setup
for the presented algorithm we chose h = 5, γ = 2 (6) and the following set of
similarity measures: energy of differences (ED), gradient correlation (GC), gra-
dient differences (GD), joint entropy (JE), mutual information (MI), normalized
cross correlation (NCC), pattern intensity (PI), ratio of image uniformity (RIU)
and sum of squared differences (SSD) (see [3,5] and references).

3.1 Robustness to Heavily Disturbing Image Contents

In the first experiment, we simulate surgical instruments by adding a screwdriver
to the skull phantom after it has been reconstructed. Some measures are sensitive
to such disturbing image content. Figure 3 shows the original phantom without
and with the instrument for two different positions. We compare the presented
approach with best-neighbor (BN) optimization approaches of single similarity
measures. We generated 10 random initial parameter sets (3D rigid transforms)
in the range of 19 mm to 42 mm distance to the optimal solution leading to the
results, shown in Table 1. On this data set, MI and PI failed, gradient correlation
worked quite well in the case of (a) but its error increases by almost 1 cm in the
problem (b). The presented voting approach shows only a minimum increase of
0.1 mm. Although the the error values appear high, what is due to the mentioned
C-arm inaccuracy, the results are very useful as it can be seen from the checker
board representations of Fig. 4. Looking at the small veins in the registration
result in of Fig. 4(b) we recognize an exact match.

3.2 Robustness to Bad Initial Guesses

We generated randomly 15 initial guesses and started from each of them 9 differ-
ent registration problems: three different views on each of the three phantoms.
The results were sorted according to their initial displacement that ranged from
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Table 1. Error table of the first experiment. Error values are the medians of the error
distribution of all start positions given in mm.

Problem Voting BN - GC BN - MI BN - SSD BN - PI
3(a) 3.5 3.5 26.6 4.2 25.0
3(b) 3.6 13.3 32.5 4.6 23.1
3(c) 3.6 4.4 26.5 5.6 22.2

(a) (b)

Fig. 4. Checker board representation of the system calibration (error 0 mm) (a) and
a registration result (b) which has an error value of more than 3 mm
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Fig. 5. Error distributions sorted by initial guesses for the vector optimization approach
in (a) and a best neighbor approach with pattern intensity in (b). Boxes show 0.25-,
0.50-, 0.75-quantiles, outliers are marked as points.

10.2mm up to 43.3mm. To our knowledge, this means an unpublished wide at-
traction range for medical image registration. Figure 5(a) shows the resulting
error distribution beginning with the closest start position ’1’ and ending with
the farthest one ’15’, where each distribution represents the results of all nine
registration problems. Where the voting approach shows only very few outliers
without a general drift to higher values, the best neighbor approach with PI
shows a high sensitivity to local optima in Fig. (b).

4 Discussion

In this paper, we formalized the problem of medical image registration by means
of vector optimization (1) and introduced a new algorithm that solves the problem
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accordingly. It makes use of multiple similarity measures and is therefore able to
handle the problem of failing measures. Unlike other state of the art combination
approaches, it avoids the summation of function values and by that the problem
of single dominating similarity measures. Instead, in each iteration each similar-
ity measure votes for an iteration direction according to its gradient information.
This is a direct consequence of the working hypotheses that most of the similarity
measures share a local optimum and therefore prefer the same iteration direction.
The influence of each measure is controlled by dynamically adapted weights (2).
Those use the iteration context by taking past iterations into account to detect
failing measures automatically (4). By that strategy it is possible to get good reg-
istration results even with very bad initial guesses. An evaluation of the starting
position showed almost constant result quality while increasing the initial error up
to 43 mm. To our knowledge, such high attraction ranges have not yet been pub-
lished in medical image registration. Furthermore, the algorithm needs no data-
dependent modifications and solves the registration problem in a generic manner.
This implies a high practical applicability for clinical applications. Future research
topics will address the optimal choice of participating similarity measures to assure
a democratic setup and the influence of history length for adapting the weights. A
clinical evaluation will follow.
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Abstract. In this paper, we propose a framework for learning the pa-
rameters of registration cost functions – such as the tradeoff between
the regularization and image similiarity term – with respect to a specific
task. Assuming the existence of labeled training data, we specialize the
framework for the task of localizing hidden labels via image registra-
tion. We learn the parameters of the weighted sum of squared differences
(wSSD) image similarity term that are optimal for the localization of
Brodmann areas (BAs) in a new subject based on cortical geometry. We
demonstrate state-of-the-art localization of V1, V2, BA44 and BA45.

1 Introduction

In medical imaging, registration is rarely the end-goal, and therefore the quality
of image registration should be evaluated in the context of the application. The
results of registration are usually used by other tasks, e.g., segmentation. Taking
into account the parameters of the registration cost function has been shown to
improve alignment as measured by the performance of subsequent tasks, such as
population analysis [1] and segmentation [2,3]. This paper proposes a framework
for optimizing parameters of registration cost functions for a specific task.

A common image similarity measure used in registration is the weighted sum
of squared differences (wSSD). wSSD assumes an independent Gaussian dis-
tribution on the image noise with the weights corresponding to the reciprocal
of the variance. The weights are typically set to a constant global value [4,5].
Alternatively, a spatially-varying variance can be estimated from the intensi-
ties of registered images [6]. However, the estimated variance depends on the
wSSD-regularization tradeoff: weaker deformation regularization leads to better
intensity alignment and lower variance estimates [3].

Recent work in probabilistic template construction resolves this problem by
marginalizing the tradeoff under a Bayesian framework [7] or estimating the
tradeoff with the Minimum Description Length principle [8]. Since these methods
are not guided by any task, it is unclear whether the resulting parameters are
optimal for any specific task. After all, the optimal parameters for segmentation
might be different from those for group analysis. In contrast, [9] proposes a
generative model for segmentation, so the registration parameters are Bayesian-
optimal for segmentation. When considering a single global tradeoff parameter,
� Corresponding author.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 598–606, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Task-Optimal Registration Cost Functions 599

an exhaustive search by cross-validation of segmentation accuracy is possible [3].
Unfortunately, an exhaustive search is not feasible for multiple parameters.

Unlike these generative approaches, we take the discriminative approach of
directly incorporating the task in the parameter estimation. We assume that the
performance of a particular task can be measured by a cost function g given the
output of registration. Our method learns the parameters of a given registration
cost function f that yield better registration of a new image with respect to
a specific task. The task-specific cost function g is evaluated with information
from training data that is not available to the registration cost function f .

Our formulation is related to the computation of the entire space of solu-
tions of learning problems (e.g. SVM) as a function of a single regularization
parameter [10]. Because we deal with multiple parameters, it is impossible for
us to compute a solution manifold. Instead, we trace a path within the solution
manifold that improves the task-specific cost function.

In this paper, we propose a framework that optimizes parameters of regis-
tration cost functions for a specific task. We learn the weights of the wSSD
registration cost function to optimize the prediction of Brodmann Areas (BAs)
in a new subject, effectively estimating the tradeoff between the similarity mea-
sure and regularization. We demonstrate improvement over existing localization
methods [11] for several BAs.

2 Task-Optimal Registration

Given an atlas coordinate frame and a new image, f(w, Ψ) denotes a smooth
registration cost function parametrized by the weights w and transformation Ψ .
For example, the parameters w can be the tradeoff between the regularization
and image similarity measure. f is typically a function of the template and the
input image, but we omit this dependency to simplify notation. We assume a
known and fixed template. Image registration is the process of estimating Ψ∗ for
a given set of parameters w:

Ψ∗(w) = argmin
Ψ

f(w, Ψ). (1)

A different set of parameters w will result in a different solution and thus will
effectively lead to a different image coordinate system. While there are typically
multiple solutions to Eq. (1), we work with a single local optimum in practice.

The results of registration are used for further tasks, such as image segmenta-
tion. We assume the task performance can be measured by a smooth cost func-
tion g, so that smaller values of g(Ψ∗(w)) correspond to better task performance.
g is a function of input data associated with a subject, such as its anatomical
labels or functional activation map, not available to the cost function f .

Given a set of training subjects, we seek the parameters w∗ that generalize
well to a new subject, i.e., registration of a new subject with w∗ yields the
transformation Ψ∗(w∗) with a small task-specific cost g(Ψ∗(w∗)):

w∗ = argmin
w

G(w) where G(w) �
S∑

s=1

gs(Ψ∗
s (w)) + Reg(w). (2)
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Ψ∗
s (w) denotes the registration of training subject s with fixed weights w. gs is

the evaluation of g for training subject s. Reg(w) denotes regularization on w.

2.1 Optimizing Registration Parameters w

In this section, we discuss the optimization of the cost function in Eq. (2). Let
∂x, ∂2

x, and ∂2
x,y denote partial derivatives and Ψ∗(w0) denote a local minimum

of the registration cost function for a fixed w = w0.
Suppose we perturb w0 by δw. Let Ψ∗(w0) + δΨ∗(w0, δw) denote the new

locally optimal deformation for the new parameters w0 + δw. Because of nu-
merous local optima, Ψ∗(w0) + δΨ∗(w0, δw) might be far from Ψ∗(w0). If the
Hessian ∂2

Ψf(w0, Ψ) is positive definite at Ψ = Ψ∗(w0), then by the Implicit Func-
tion Theorem [12], a unique function δΨ∗(w0, δw) exists with the same order of
smoothness as f for small enough values of ‖δw‖, such that δΨ∗(w0, 0) = 0.

Consequently, at (w0, Ψ
∗(w0)) with positive definite Hessian, one can compute

the derivatives of δΨ∗, allowing us to traverse a curve of local optima, finding
values of w that improve the task-specific cost function for the training images.
Since the derivatives at any local optimum is zero, we can show that

∂wΨ∗
∣∣∣
w0

= −
(

∂2
Ψf(w0, Ψ)

∣∣∣
Ψ∗(w0)

)−1

∂2
w,Ψf(w, Ψ)

∣∣∣
w0,Ψ∗(w0)

. (3)

In practice, the matrix inversion in Eq. (3) is computationally prohibitive for
high-dimensional warps Ψ . As a result, we consider a simplification of Eq. (3) by
setting the Hessian to be the identity:

∂wΨ∗
∣∣∣
w0

≈ −∂2
w,Ψf(w, Ψ)

∣∣∣
w0,Ψ∗(w0)

. (4)

Since −∂Ψf is the direction of gradient descent of the cost function Eq. (1), we
can interpret Eq. (4) as approximating the new local minimum to be in the same
direction as the change in the direction of gradient descent as w is perturbed.
Differentiating the cost function in Eq. (2), using the chain rule, we get

∂wG = ∂w

(
S∑

s=1

gs(Ψ∗
s (w)) + Reg(w)

)
=

S∑
s=1

[∂Ψ∗
s
gs][∂wΨ∗

s ] + ∂wReg(w). (5)

We can therefore optimize Eq. (2) by standard gradient descent. We summarize
the training procedure of the task-optimal image registration framework below:

– Initialize w to uniform values.
– Estimate Ψ∗

s (w) = argminΨs
fs(w, Ψs), i.e., perform registration of each train-

ing subject s.
– Iterate until convergence:

• Given current estimates (w, {Ψ∗
s (w)}), compute the gradient ∂wG in

Eq. (5) using ∂wΨ∗ in Eq. (4).
• Perform line search in the direction opposite to the gradient ∂wG.
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Each line search involves evaluating the cost function G multiple times, which
in turn requires registering the training subjects. Since we are initializing from
a local optimum, for a small change in w, the registration converges quickly.

Since nonlinear registration is dependent on initialization, the current esti-
mates (w, Ψ∗(w)), which were initialized from previous estimates, might not be
achievable when initializing the registration with the identity transform. The cor-
responding parameters w might therefore not generalize well to a new subject
initialized with the identity transform. Consequently, after every few iterations,
we re-initialize the transformations to the identity transform, re-register the im-
ages and check that G is better than the current best value of G computed with
initialization from the identity transform.

Remark: Degeneracies can arise for local minima with a singular Hessian. For
example, let Ψ = [a b] and f(Ψ,w) = (ab − w)2. Then the determinant of the
Hessian at any local minimum is equal to zero! In this case, there is an infinite
number of local minima near the current local minimum Ψ∗(w), i.e., the gradient
is not defined - our algorithm might then be stuck in the current estimates of w.
In our experiments, these degeneracies do not seem to pose serious problems.

3 Learning wSSD for Hidden Label Alignment

We now instantiate the task-optimal registration framework for localizing hidden
labels in images. Here, we work with meshes modeling the cortical surface, al-
though it should be clear that the discussion extends to volumetric images. We
assume that the meshes have been spherically parameterized and represented
as spherical images: a geometric attribute is associated with each mesh vertex,
describing local cortical geometry.

Suppose we have a set of spherical training images {Is} with a particular
structure manually labeled. We represent the binary labels as signed distance
transforms on the sphere {Ls}. We assume the existence of a spherical image
template IT and corresponding distance transform LT . In this paper, we select
one of the training subjects as the template. Our task is to align a new image
to the template and predict the boundary of the hidden structure in the new
subject by transferring the labels from the template to the new subject.

We represent the transformation Ψ as a composition of diffeomorphic warps,
each parameterized by a stationary velocity field [5,13]. A diffeomorphic warp
Φ is associated with a smooth stationary velocity field v via a stationary ODE:
∂tΦ(x, t) = v(Φ(x, t)) with an initial condition Φ(x, 0) = x. The solution at t = 1
is denoted as Φ(x, 1) = Φ(x) = exp(v)(x), where we have dropped the time
index. A solution can be computed efficiently using scaling and squaring [14].

For a given image Is, we define the registration cost function:

fs(w, Ψ) =
∑

i

w2
i [I(xi) − Is(Ψ(xi))]2 +

∑
i

1
|Ni|

∑
j∈Ni

(‖Ψ(xi) − Ψ(xj)‖ − dij

dij

)2

,

where Ψ(xi) denotes the point on the sphere S2 to which Ψ maps the point xi ∈
S2. The first term corresponds to the wSSD image similiarity. The



602 B.T.T. Yeo et al.

parameterization of the weights as w2
i ensures non-negative weights. The second

term is the regularization on the transformation Ψ . Ni is a predefined neighbor-
hood around vertex i, dij is the original distance between the neighbors ‖xi−xj‖.
A higher weight wi corresponds to placing more emphasis on matching the corti-
cal geometry of the template at spatial location xi relative to the regularization.

To register subject s to the template, let Ψ0 be the current estimate of Ψ . We
seek an update exp(v) parameterized by a stationary velocity field v:

fs(w, Ψ0 ◦ exp(v)) =
∑

i

w2
i [IT (xi) − Is(Ψ0 ◦ exp(v)(xi))]2 (6)

+
∑

i

1
|Ni|

∑
j∈Ni

( ‖Ψ0 ◦ exp(v)(xi) − Ψ0 ◦ exp(v)(xj)‖ − dij

dij

)2

.

We adopt the techniques in the Spherical Demons algorithm [13] to differentiate
Eq. (6) with respect to v, evaluated at v = 0. Defining ∇Is(Ψ0(xi)) to be the
gradient of the warped image Is(Ψ0(·)) at xi, ∇Ψ0(xi) to be the Jacobian matrix
of Ψ0 at xi and vi to be the velocity vector tangent to vertex xi, we get

∂vifs(w, Ψ0 ◦ exp(v))
∣∣∣
v=0

= −2w2
i [IT (xi) − Is (Ψ0 (xi))] [∇Is (Ψ0 (xi))]T (7)

+ 2
∑

j∈Ni

(
1

|Ni| +
1

|Nj |
)( ‖Ψ0(xi) − Ψ0(xj)‖ − dij

d2
ij‖Ψ0(xi) − Ψ0(xj)‖

)
[Ψ0(xi) − Ψ0(xj)]T ∇Ψ0(xi).

Eq. (7) instantiates ∂Ψfs for this application. We can then perform gradient
descent of the registration cost function fs to obtain Ψ∗

s , which can be used to
evaluate the task-specific cost function gs. We adopt a simple label similarity
measure for our task of localizing hidden labels:

gs(Ψ∗) =
∑

i

[LT (xi) − Ls (Ψ∗
s (xi))]

2
, (8)

A low value of gs indicates good alignment of the hidden label maps between
the template and subject s, suggesting good prediction of the hidden label.

Here, we ignore the regularization Reg(w), but still achieve good results. One
reason is that the re-registration after every few line searches helps to regularize
against bad values of w. There is also implicit regularization in the framework:
for example, w cannot become arbitrary large, since registration achieved with
almost no regularization will lead to poor task performance.

Given the current estimates (w, Ψ∗
s ), to update w using Eq. (5), we evaluate:

∂Ψ∗gs = ∂vigs(Ψ∗
s ◦ exp(v))

∣∣∣
v=0

= −2 [LT (xi) − Ls (Ψ∗
s (xi))] [∇Ls (Ψ∗

s (xi))]
T (9)

∂wΨ∗
s ≈−∂2

wi,vj
fs(w, Ψ∗

s ◦ exp(v))
∣∣∣
v=0

=4wi [I (xi)−Is (Ψ∗
s (xi))] [∇Is(Ψ∗

s (xi))]
T

δ(i, j).

4 Experiments

In this section, we demonstrate the utility of the task-optimal registration frame-
work for localizing Brodmann Areas (BAs). We compare the framework with
using uniform weights [4,5] and FreeSurfer [6].
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BAs are cyto-architectonically defined parcellations of the cerebral cortex
closely related to cortical function. We consider 10 human brains analyzed via
postmortem histology [15]. Histologically defined BAs were sampled onto each
hemispheric surface model and sampling errors were manually corrected. In this
paper, we consider V1 and V2, which are well-predicted by local geometry and
the Broca’s areas: BA44 and BA45, which are not [11].

Even though each subject has multiple BAs, we focus on each structure in-
dependently. This allows us to interpret the weights in the wSSD in association
with a particular label: a large weight at a particular location implies that the
cortical geometry at that spatial location of the template is significant for local-
izing the label of interest.

4.1 Methods

Task-Optimal. We perform leave-one-out cross validation to predict BA loca-
tion. For each BA and a test subject, we use one of the remaining 9 subjects
as the template and the remaining 8 subjects for training. Once the weights are
learned, we use them to register the test subject and predict the BA of the test
subject by transferring the BA label from the template to the subject. We com-
pute the symmetric mean Hausdorff distance between the boundary of the true
BA and the predicted BA on the cortical surface of the test subject – smaller
Hausdorff distance corresponds to better localization. There are 90 possibilities
to select the test subject and the template. Here, we consider 20 of the 90 pos-
sibilities by selecting each of the 10 subjects to be a test subject twice (with
a different randomly selected template), resulting in a total of 20 trials and 20
mean Hausdorff distances for each BA and for each hemisphere.

Uniform-weight. We repeat the process for the uniform-weight method us-
ing the same 20 pairs of subjects, where all the wi’s are manually set to a global
fixed value w without training. We explore 12 different values of global weight
w, chosen so that the deformations range from rigid to flexible warps. For each
BA and each hemisphere, we pick the best value of w leading to the lowest mean
Hausdorff distances. Because there is no cross-validation in picking the weights,
the uniform-weight method is using an unrealistic version of the strategy pro-
posed in [3].

FreeSurfer. Finally, we use FreeSurfer [6] to register the 10 ex vivo subjects to
the FreeSurfer Buckner40 atlas, constructed from the MRI of 40 in vivo subjects.
Once registered into this in vivo atlas space, for the same 20 pairs of subjects,
we can use the BAs of one ex vivo subject to predict another ex vivo subject. We
note that FreeSurfer also uses the wSSD cost function, but a more sophisticated
regularization that penalizes both metric and areal distortion. For a particu-
lar tradeoff between the similarity measure and regularization, the Buckner40
template consists of the empirical mean and variance of the 40 in vivo subjects
registered to template space. We use the reported FreeSurfer tradeoff parameters
that were used to produce prior state-of-the-art BA alignment [11].
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Fig. 1. Mean Hausdorff Distance (in mm) for V1, V2, BA44 and BA45. For the uniform-
weight method, the result corresponding to the best weight is reported.

We run the task-optimal and uniform-weight methods on a low-resolution
subdivided icosahedron mesh containing 2,562 vertices, whereas FreeSurfer re-
sults were computed on high-resolution meshes of more than 100k vertices. In
our implementation, training on 8 subjects takes on average 4hrs on a standard
PC (AMD Opteron, 2GHz, 4GB RAM). Despite the use of the low-resolution
mesh, we achieve state-of-the-art localization accuracy.

4.2 Results

Fig. 1 shows the alignment errors for V1, V2, BA44 and BA45. Not surpris-
ingly, we achieve better localization of BA44 and BA45 over the uniform-weight
method and FreeSurfer, since local geometry poorly predicts the Broca’s
areas.

Since local cortical geometry is predictive of V1 and V2, we expect the three
methods to perform similarly for V1 and V2. Surprisingly, we achieve improve-
ment in V2 alignment over the uniform-weight method and FreeSurfer. Our
method also significantly improves the alignment of V1 with respect to the
uniform-weight method. Compared with FreeSurfer, we achieve slightly worse
localization in the left hemisphere but better localization in the right. This sug-
gests that even when local geometry is predictive of the hidden labels, so that
anatomy-based registration is reasonable for localizing the labels, tuning the
registration cost function can further improve the task performance.

Since our measure of localization accuracy uses the mean Hausdorff distance,
ideally we should incorporate it into our task-specific objective function instead
of the SSD on the distance transform representing the BA. Unfortunately, the re-
sulting derivative is difficult to compute and the gradient will be zero everywhere
except at the BA boundaries, resulting in a slow optimization.

We note that the task-optimal and uniform-weights registrations are pairwise,
while FreeSurfer registrations are performed via an atlas. In our experience, reg-
istration via an unbiased atlas is usually more accurate than direct pairwise
registration. Furthermore, FreeSurfer utilizes atlas-based registration by default,
and this was used to produce prior best BA alignment [11]. We also note that our
approach allows the computation of multiple task-optimal templates, thus com-
plementing recent approaches of using multiple atlases for segmentation [16,17].
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5 Conclusion

In this paper, we present a framework for optimizing the parameters of any dif-
ferentiable family of registration cost functions with respect to a specific task.
The only requirement is that the task performance can be encoded by a differen-
tiable cost function. We demonstrate state-of-the-art Brodmann area localization
by optimizing the weights of the wSSD image-similarity measure. Future work
involves applying the framework to other Brodmann areas and fMRI-defined
functional regions, as well as estimating the optimal template in addition to the
weights of the registration cost function. We also hope to design task-specific
cost functions for tasks other than segmentation.
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Abstract. We introduce a new hybrid approach for spline-based elastic
registration of multimodal medical images. The approach uses point land-
marks as well as intensity information based on local analytic measures
for joint entropy and mutual information. The information-theoretic sim-
ilarity measures are computationally efficient and can be optimized in-
dependently for each voxel. We have applied our approach to synthetic
images, brain phantom images, as well as clinically relevant multimodal
medical images. We also compared our measures with previous measures.

1 Introduction

Image registration is an important technique for medical diagnosis, surgical plan-
ning, and treatment control. A challenge is to cope with the broad range of appli-
cations as well as the large spectrum of imaging modalities. Previous approaches
for image registration can be classified according to the transformation model
(e.g., rigid or elastic) and the used image information (e.g., landmarks or intensi-
ties). Landmark-based approaches are computationally efficient and allow coping
with large geometric differences, while intensity-based approaches use more im-
age information and do not require segmentation. Concerning intensity-based
approaches, it is important to distinguish between monomodal and multimodal
registration problems, since different types of similarity metrics are required.
Monomodal registration can be achieved by, e.g., using the sum of squared in-
tensity differences (SSD). Registration of images of different modalities, however,
requires multimodal similarity metrics such as joint entropy (JE) or mutual infor-
mation (MI). In general, registration using such information-theoretic intensity
similarity metrics is robust and accurate, however, these metrics are computa-
tionally expensive since they require the estimation of probability density func-
tions based on joint histograms (e.g., [1,2,3]).

In recent years, increased attention has been paid to hybrid registration ap-
proaches that integrate both landmark and intensity information (e.g.,
[4,5,6,7,8,9,10,11]). Hybrid approaches can be classified into two classes. The first
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class of approaches uses the two types of information subsequently. Typically,
one type of information is used to perform an affine preregistration to decrease
computation time in the following elastic registration step (e.g., [4,5,6,7,8]).
The second class of hybrid approaches couples both types of information di-
rectly (e.g., [9,10,11]). However, only few hybrid approaches have been designed
for multimodal images (e.g., [9,5,7]) and, even if information-theoretic similar-
ity measures are employed, often only application to monomodal images is re-
ported. In addition, previous spline-based hybrid approaches typically use coarse
physical deformation models such as B-splines (e.g., [9,7]) or thin-plate splines
(e.g., [5,8]), and incorporate intensity information using global, computationally
expensive information-theoretic measures. Local information theoretic measures
exists (e.g., [12,13]), however, they have not been used in hybrid registration
schemes.

In this contribution, we present a new hybrid approach for spline-based elas-
tic registration of multimodal medical images. Our approach is formulated as an
energy-minimizing functional that incorporates point landmarks and intensity
information as well as a regularization using physically-based splines. The inten-
sity information is evaluated locally based on analytic measures for joint entropy
and mutual information. We suggest new information-theoretic measures that
are modifications of the measures in [13], but which are more robust w.r.t. noise
as well as more similar to the original information-theoretic formulations. In con-
trast to [13], where the measures are evaluated globally, we here evaluate and
optimize the measures locally, i.e., independently for each voxel, and integrate
them within a hybrid spline-based registration scheme.

2 Multimodal Hybrid Elastic Registration

2.1 Hybrid Energy Minimizing Functional

Our hybrid approach for elastic registration of multimodal images is based on
an energy minimizing functional JHybrid that incorporates both landmark and
intensity information and a regularization term:

JHybrid(u) = JData,I(g1, g2,uI) + λIJI(u,uI) + λLJData,L(u) + λEJEl(u) (1)

The first term JData,I describes the intensity-based similarity measure between
the source and target image, g1 and g2, respectively. With the second term JI

the intensity-based deformation field uI is coupled with the final deformation
field u using a weighted Euclidean distance. The term JData,L incorporates the
landmark information based on approximating Gaussian Elastic Body Splines
(GEBS). In contrast to other splines, an advantage of GEBS is that cross-effects
can be handled [14], i.e., transversal contractions lead to longitudinal dilations
according to properties of elastic tissue. The fourth term JEl represents the reg-
ularization of the deformation field according to the Navier equation of linear
elasticity, which constrains the deformation field to physically realistic deforma-
tions. The overall functional JHybrid is minimized alternatingly w.r.t. uI and u.
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In previous work [11], JData,I was defined based on the sum-of-squared intensity
differences, thus the approach was only applicable to monomodal registration.
Here, we present two new formulations of JData,I for multimodal registration as
well as new schemes for minimizing JHybrid w.r.t. uI .

2.2 Multimodal Registration Using Analytic Measures for Joint
Entropy and Mutual Information

For the intensity-based similarity measure JData,I in (1) we suggest to use local
analytic measures for joint entropy and mutual information. Let g be an image
of dimension d over the continuous domain Ω ⊂ Rd, and NR(x) be the neigh-
borhood of radius R around a point x ∈ Ω. For R being sufficiently small, the
first order Taylor approximation Tg(x) ) ∇g(x)T · x + g0(x) can be used as an
approximation of g(x) in the neighborhood of x, where ∇g denotes the image
gradient. The intensities g(x) in the neighborhood NR(x) can be characterized
by a random variable g, which can be described by a probability density func-
tion. In [13] it was shown that for two images g1 and g2 the joint entropy JE(x)
and the mutual information MI(x) can then be approximated by

JEorig(x) : {cd + log2(‖∇g1(x)‖‖∇g2(x)‖| sin(θ)|)} → min, (2)
MIorig(x) : {cd − log2(| sin θ|)} → max, (3)

where θ represents the angle between ∇g1(x) and ∇g2(x), cd is a constant that
depends on the dimension d, and ‖ · ‖ denotes the Euclidean norm. However,
due to properties of the logarithm, JEorig(x) and MIorig(x) yield very large
absolute values if the argument ‖∇g1(x)‖‖∇g2(x)‖| sin(θ)| or | sin θ| is close to
zero which leads to unstable results. In [13], JEorig(x) and MIorig(x) were eval-
uated globally, i.e., the similarity for each voxel is integrated over the whole
image. If, however, at a single voxel the argument of the logarithm is zero or
close to zero, the global measure yields a very large value, since adding loga-
rithmic terms is equivalent to the logarithm of the product of the arguments
(
∑

i log2 si = log2
∏

i si). Due to the singularity of the logarithm, the value at
a single voxel can render the result of the metric useless. To circumvent this
problem, in [13] simplified metrics have been used which omit the logarithm:

JEsimp(x) :
{(
∇gT

1 (x)∇g2(x)
)2}→ max (4)

MIsimp(x) :
{
cos2 θ

}
→ max (5)

A disadvantage of these measures is that they differ largely from the original
measures in (2) and (3). Instead, we here propose alternative formulations for
JE and MI that do not have a singularity and that are more similar to the
original measures.

Joint Entropy Measure. For JE, we suggest an alternative measure to (2),
where the logarithm is still included. To illustrate and motivate this modifica-
tion, we have generated synthetic images simulating a multimodal registration
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Fig. 1. Registration problem: Source and target images

problem (light circle on a dark background and dark square on a light back-
ground, Fig. 1). By registration, the circle has to be stretched to the size and
shape of the square. For each point in the source image, we have computed the
similarity values w.r.t. the marked reference point (black cross) in the target
image and have visualized them as 3D plots in Fig. 2. In each of the plots, the
intended optimum is marked with a black arrow and circle. In (a), the result for
JEorig(x) is shown. Since JEorig(x) needs to be minimized, the optimum can be
found at the saddle point between the two elevated semi-circles. Obviously, this
minimum is difficult to identify since it has a similar value as the background,
which is very noisy. To reduce the sensitivity to noise, we introduce a constant
ε > 0, which is added to the argument. This leads to the result in (b). Now,
the background noise is reduced significantly, but the optimum is still located at
the saddle point between the two semi-circles, which is difficult to identify. To
facilitate optimization, we replace | sin(θ)| in (2) with | cos(θ)|, which leads to:

JEnew(x) : {log2 (ε + ‖∇g1(x)‖‖∇g2(x)‖| cos(θ)|)} → max (6)

Now, the measure has to be maximized, which is much easier (see (c)) than
finding the saddle point in (b).

Mutual Information Measure. For MI, we suggest a similar modification
where the logarithm is still included and a constant ε > 0 is introduced. Here,
the introduction of ε also improves the robustness of the metric:

MInew(x) : {log2 |ε + sin θ|} → min (7)

(a) (b) (c)

Fig. 2. Results for different metrics for JE for registration of the images in Fig. 1:
(a) JEorig(x), (b) JEorig(x) after introducing a constant ε, (c) using JEnew(x)
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(a) (b) (c) (d) (e) (f)

Fig. 3. Registration of a sphere with a cube. (a) Original source and target images, (b)
after landmark-based registration, (c) after intensity-based registration using JEnew,
(d) after intensity-based registration using MInew, (e) after hybrid registration using
JEnew, and (f) after hybrid registration using MInew.

In our registration approach, the measures are integrated as JData,I in (1). Opti-
mization of JHybrid is performed alternatingly w.r.t. uI and u. For minimization
w.r.t. uI , JData,I + λIJI has to be minimized. To this end we have derived ana-
lytic expressions for the partial derivatives of the different measures. Note that
in contrast to [13], in our approach MI and JE are evaluated locally, i.e., op-
timization of uI is computed independently for each voxel, which improves the
efficiency. In comparison to [11], we here use a minimization scheme based on
steepest gradient since the analytic information-theoretic measures cannot be
formulated by squared differences and thus the method of Levenberg-Marquardt
cannot be used.

3 Experimental Results

We have applied our registration approach to 3D synthetic images, 3D brain
phantom images, and clinically relevant 3D medical images. In a first experi-
ment, we have applied our approach to the 3D synthetic sphere and cube shown
in Fig. 3a. The images have a size of 128×128×128 voxels and inverted contrast
to simulate a multimodal registration problem. Thus, a monomodal similarity
measure (e.g., SSD) would fail. Note that registration is difficult since the vol-
ume of the cube is nearly two times larger than the volume of the sphere. Eight
landmarks were defined at the corners of the cube, and the registration result is
computed based on the different metrics. Fig. 3 shows the results for landmark-
based registration (b), for intensity-based registration based on JEnew (c) and
MInew (d), as well as for hybrid registration based on JEnew (e) and MInew (f).
It can be seen that JEnew and MInew yield similar results. For landmark-based
registration, only the corners of the cube are aligned. Using intensity-based reg-
istration, the faces of the sphere are aligned, but not the corners. The best result
is obtained using the new hybrid approach, since both the faces as well as the
corners are aligned.

To compare the results using our new measures with those in [13], we evaluated
the registration accuracy for intensity-based registration of multimodal phantom
images (MRI-PD and MRI-T1) from the BrainWeb database [15] for different
levels of Gaussian noise (σn = 0, 5, 9; see Fig. 4a,b for the case of σn = 5). Here,
we present results for the comparison of MInew and MIsimp. We have generated
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(a) (b) (c) (d)

Fig. 4. Comparison of MIsimp and MInew: (a) Source and (b) target image for σn = 5.
Registration result and edge overlay of the target image for (c) MIsimp and (d) MInew.

a deformation field uo based on eight landmarks using GEBS, which is applied
to the different MRI-T1 images to obtain three target images with known elastic
deformations and different levels of noise. After registration, we compared the
computed deformation u with the original deformation uo and quantified the
registration accuracy by the mean geometric error eg = ‖uo − u‖. Note that in
this experiment we did not use landmarks. Without registration, we have eg =
3.40 pixels. For σn = 0, registration using MIsimp and MInew yields eg = 1.44
and eg = 1.08 pixels, respectively. With increasing level of noise, our new measure
consistently yields more accurate results than the previous measure. Fig. 4, for
example, shows the registration results for σn = 5 for MIsimp (c) and MInew

(d). It can be seen that registration is more accurate in the neighborhood of
the ventricles when using MInew. The visual result agrees with the quantitative
values: eg = 1.85 for MIsimp, and eg = 1.55 for MInew. For σn = 9, MIsimp

yields eg = 2.30, while MInew yields eg = 1.78. Thus, our new measure MInew

is more robust w.r.t. noise than MIsimp. We also investigated the effect of ε on
the registration result of MInew. We found that the choice of ε is not critical,
however, best results were obtained for 0.5 ≤ ε ≤ 1.5.

Furthermore, we quantified the registration accuracy of our approach using
real, clinically relevant 3D multimodal medical images. We used five pairs of 3D
PET transmission (170× 128× 128 voxels) and 3D CT (320× 400× 400 voxels)
images of the human chest. Fig. 5, for example, shows two orthogonal slices of
a 3D PET (a) and 3D CT (b) image before registration, as well as overlay im-
ages of the PET image with computed edges of the CT image before (c), after
landmark-based (d), after intensity-based (e), and after hybrid registration (f)
using MInew . It can be seen that both the landmark-based and intensity-based
registration schemes improve the alignment significantly, however, the best result

Table 1. Registration of 3D PET and CT images: Mean geometric error eg (in voxel)
for different metrics using different types of image information

Intensities Hybrid

Unreg. LM JEsimp JEnew MIsimp MInew JEsimp JEnew MIsimp MInew

eg 7.36 5.32 5.60 5.76 6.70 5.60 5.17 5.05 5.28 4.83
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(a) (b) (c) (d) (e) (f)

Fig. 5. Orthogonal slices of original (a) 3D PET transmission and (b) CT images.
Source image with edge overlay of the target image (c) before, (d) after landmark-
based, (e) after intensity-based, and (f) after hybrid registration using MInew

(a) (b) (c) (d) (e) (f)

Fig. 6. Transversal and saggital slices of original (a) 3D fMRI and (b) MRI-T1 im-
ages. Section of the source image with edge overlay of the target image (c) before, (d)
after landmark-based, (e) after intensity-based, and after (f) hybrid registration using
MInew.

is obtained when using the new hybrid scheme. This was also confirmed quantita-
tively. For this purpose, we identified ten pairs of corresponding anatomical point
landmarks in each source and target image and computed the mean geometric
registration error eg (see Tab. 1). Before registration, we have eg = 7.36 voxels.
Using landmarks only, we have eg = 5.32 voxels, which is a relative improve-
ment of 27.7%. Using intensity information only, we obtain eg = 5.60 (23.8%)
and eg = 5.76 (21.7%) voxels for JEsimp and JEnew , respectively. For MIsimp

and MInew we obtain eg = 6.70 (9.0%) and eg = 5.60 (24.0%) voxels. When
using the hybrid approach, we obtain eg = 5.17 (29.7%) for JEsimp and eg =
5.05 (31.4%) for JEnew as well as eg = 5.28 (28.2%) for MIsimp and eg =
4.83 (34.3%) for MInew . Thus, in all cases, the hybrid approach is more accurate
than the intensity-based and the landmark-based approaches. Furthermore, the
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new intensity similarity measures JEnew and MInew yield more accurate re-
sults for the hybrid approach than the previous measures JEsimp and MIsimp.
Overall, MInew yields the best results.

We also applied our approach to register 3D MRI-T1 and functional MRI
(fMRI) images (144× 256× 256 voxels). Fig. 6 shows a transversal and saggital
view of 3D fMRI (a) and MRI-T1 (b) images. Before registration (c), a significant
misalignment between source and target image is visible. After landmark-based
registration using seven landmarks, a slight improvement is visible in the neigh-
borhood of the ventricles (d). After intensity-based registration using MInew (e),
the global alignment is improved significantly, although local misalignments still
exist. The best result is obtained when using our new hybrid approach (f), since
both the global as well as the local alignment is improved.

4 Discussion

We introduced a new hybrid spline-based approach for elastic registration of
multimodal images. The approach incorporates point landmarks, intensity in-
formation, as well as a physically-based regularization. Since the approach uses
new local analytic measures for mutual information and joint entropy, the re-
quired derivatives can be calculated analytically, and optimization can be per-
formed independently for each voxel. We have demonstrated the applicability
of our approach using 3D synthetic images, 3D phantom images, and different
types of real 3D medical images. It turned out that our new similarity measures
yield a more accurate registration result than previously proposed measures. We
also found that the hybrid approach improves the results compared to a pure
intensity-based and a pure landmark-based scheme.
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Abstract. In this paper we present a novel method for performing image
registration of different modalities. Mutual Information (MI) is an estab-
lished method for performing such registration. However, it is recognised
that standard MI is not without some problems, in particular it does not
utilise spatial information within the images. Various modifications have
been proposed to resolve this, however these only offer slight improve-
ment to the accuracy of registration. We present Feature Neighbourhood
Mutual Information (FNMI) that combines both image structure and
spatial neighbourhood information which is efficiently incorporated into
Mutual Information by approximating the joint distribution with a co-
variance matrix (c.f. Russakoff’s Regional Mutual Information). Results
show that our approach offers a very high level of accuracy that im-
proves greatly on previous methods. In comparison to Regional MI, our
method also improves runtime for more demanding registration problems
where a higher neighbourhood radius is required. We demonstrate our
method using retinal fundus photographs and scanning laser ophthal-
moscopy images, two modalities that have received little attention in
registration literature. Registration of these images would improve accu-
racy when performing demarcation of the optic nerve head for detecting
such diseases as glaucoma.

1 Introduction

Image Registration is the task of finding a spatial transformation that aligns two
(or more) images into matching correspondence. Within the medical domain,
combining images of different modalities can provide a clinician with greater
insight when treating a patient. Mutual Information (MI) is a widely recognised
technique for registering different modalities, based on the entropy of the image
regions being compared. Simultaneously proposed by Viola [1] and Collignon [2],
MI relies on a statistical comparison between the images rather than individual
intensity comparison, making it a suitable similarity measure for multi-modal
images. Given our floating image A, and the region being covered by this in
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Fig. 1. Two images with clear structural relationship but no simple intensity mapping

our reference image B, MI can then be defined as I(A;B) = H(A) + H(B) −
H(A,B), where H(A) is the entropy of image A, H(B) is the entropy of image
B and H(A,B) is the joint entropy of the two. We wish to find the spatial
transformation that maximises I(A;B).

Since being introduced, there have been many methods proposed to improve
the registration accuracy of MI. This is largely to resolve the fact that no spatial
information is considered within the measure meaning each pixel is considered
independently of its neighbours. Given two multi-modal images, there may be
little or no consistent intensity mapping that relates the two together due to the
differences in lighting and acquisition (Fig. 1) [3]. Therefore it is sensible to also
include structural information since intensity alone may not provide adequate
information.

There have been many proposed methods that attempt to improve MI. Pluim
suggests integrating a gradient value into the MI measure [4], however this is
simply done by computing standard MI and multiplying this by a gradient term.
Dowson incorporates interpolated pixel information to improve the entropy esti-
mate [5] using NP-Windows. However this is computationally expensive giving a
lengthy runtime that is unsuitable for our task. Rueckert proposes higher-order
MI that computes entropy for intensity pairs rather than individual intensities,
to introduce neighbouring pixel information into MI [6]. Beijing also uses higher-
order MI [7] to include a range of other properties such as mean and median
values of a pixel neighbourhood, different neighbouring pixels (left and right
neighbours) and also a gradient value. Kubecka suggests using gradient-image
MI, where MI is computed for both the original images (after performing illu-
mination correction) and also for the corresponding gradient images [8].

Another proposed scheme to improve Mutual Information is Regional Mutual
Information (RMI), introduced by Russakoff [9]. This takes neighbouring pix-
els into account to incorporate spatial information. Essentially, for each pixel,
a vector of all the local intensities is created for both of the images being reg-
istered. While this provides much greater relational information for each pixel,
it also means that many intensities need to be considered (e.g. for a neigh-
bourhood radius of 1, this would mean 18 intensities per pixel when register-
ing two 2-dimensional images). Using a joint histogram to represent this would
be unfeasible and place far too great a demand on the physical memory of
the computer system (using 8-bit images, the joint histogram would consist of
25618 ≈ 2.2301× 1043 bins). To overcome this complexity problem, the samples
are replaced by a covariance matrix which substantially reduces the amount of
data. The covariance matrix represents the relation between the original vector
elements by approximating the joint intensities by a normal distribution. This
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method offers a clear improvement over standard MI. Yang [10] extends this
method by using the same approach as Russakoff, but incorporating a mean
neighbourhood intensity value instead of all intensities to reduce the complexity
of the original matrix computation. However, this method fails to perform as
well as RMI, clearly showing that too much information is lost by simplifying
the data in this fashion.

In this paper, we incorporate multi-scale feature derivatives along with spa-
tial neighbourhood knowledge into a MI framework. In doing this, we can en-
capsulate greater detail from our images in a much more efficient approach. We
demonstrate our method using retinal fundus photographs and scanning laser
ophthalmoscope (SLO) images, and obtain very high accuracy of registration.
Successful registration would help improve demarcation and analysis of the optic
nerve head, an important task in detecting such diseases as glaucoma.

2 Multi-scale Feature Neighbourhood MI

Feature Neighbourhood Mutual Information (FNMI) consists of firstly comput-
ing the features from our images and then combining these together in a Mutual
Information framework. To be a successful similarity measure, the result should
be maximised at the correct transformation. If we imagine the surface given
by calculating the similarity measure at different transformation points, ideally
this should also be smooth with few local maxima and good convergence to
the maximum solution, so this can be efficiently found by an optimised search
algorithm.

For our features, we compute the gradient magnitude of each image at multiple
scales to detect structural change within the image. Typically, an image will
consist of many different features, varying in shape and size. In the case of retinal
images, we expect to see the optic nerve head along with many blood vessels,
all of various thickness. In order to highlight all these features effectively, we
incorporate the notion of scale-space [11]. Scale-space applies Gaussian blurring
to an image at multiple kernel sizes (defined as σ) that can determine how
features in the image relate at a larger scale. At a low scale we can pick out fine
detail of small blood vessels and the edges of larger vessels. For larger vessels,
there maybe little connectivity information that would link one edge with the
other, so by using a larger scale smaller features become grouped giving a more
generalized edge map showing the connectivity of the larger features.

2.1 Incorporating Features with Mutual Information

Our method for incorporating features is an adaptation of RMI [9]. We create a
stack for each of the images being registered, consisting of the original image and
its corresponding feature images (Fig. 2). It is possible to combine any number
of feature images, where more features may improve accuracy further, although
as more features are added this will affect computation time. Given the floating
image and the area being registered to from the reference image, we create a
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Fig. 2. Top: SLO image with multi-scale gradient (σ = 1, 2, 4 and 8). Bottom: Extract
from fundus photograph with multi-scale gradient (σ = 1, 2, 4 and 8).

vector that consists of each pixel and its neighbours for each image in the stack.
If we use f feature images, then the vector will consist of d = 18×(f+1) elements
(the pixel and its 8 neighbouring pixels for both the floating and reference images
(18 points), for each feature image plus the original image). This is done for every
point where the floating image and reference image overlap (ignoring background
in the fundus photograph), and combined to give matrix P .

We subtract the mean from each point in the matrix, and calculate the co-
variance of the matrix, given by C = 1

N PPT . From [12], the entropy of a nor-
mally distributed set of points in �d with covariance matrix c is given by H(c) =
log((2π)

d
2 det(c)

1
2 ). The joint entropy is computed by H(C), and the marginal

entropies are computed by H(CA) and H(CB), where CA is the d
2×

d
2 sub-matrix

in the top-left corner of C, and CB is the d
2 ×

d
2 sub-matrix in the bottom-right

corner of C. Mutual Information is computed by MI = H(CA)+H(CB)−H(C).

2.2 Registration Search

Searching the transformation space in registration tasks is difficult since the
space is very large when considering all possible translations and rotations,
meaning an exhaustive search is unfeasible. Instead, we adopt the Nelder-Mead
simplex algorithm [13] to find translation. We know the rotation of the image to
be within the range ±3◦, which we step through at intervals of 0.5◦.

We incorporate a multi-resolution image pyramid to search for the correct
registration on a coarse-to-fine approach. The coarse level is initialise by placing
the floating image in the centre of the reference image since it is expected that
the optic nerve head will occur near the centre of the fundus photograph. At
the coarse level, we can obtain a result much faster due to a much smaller
search space, and so can afford to search all possible rotations within range. The
result is then used to initialise the next level down in the pyramid, giving good
approximation to the maximum at the fine level. We also reduce the rotation
range to ±1◦ as we step down the pyramid to reduce unnecessary computation.
This approach improves computation time at the fine level and also helps to
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avoid local maxima points that a search algorithm could easily become trapped
within, due to the reduced search space.

3 Testing and Results

For our testing, we have 135 image pairs that are to be registered. The image
modalities are retinal fundus photographs and scanning laser ophthalmoscopy
(SLO) images. The size of each fundus image is 564× 367 and the size of each
SLO image is 286× 278. For each of the methods tested, we compare the mean
and median registration errors between the obtained result and the ground truth
values. The ground truth registrations were performed by hand and approved by
an expert clinician. Since the mean can be affected by outliers and the median is
insensitive to half of the data, we also use a 5-point grading scheme to assess each
method, with an expert clinician classifying each registration as either ‘excellent’,
‘very good’, ‘good’, ‘weak’ or ‘fail’.

The results shown in Table 1 indicate that our method can obtain a very
high degree of accuracy for registration. It can be seen that many of the other
methods have a high variability in the results, shown by a high mean and a
low median result. While there are some successful registrations found with each
method, the results show that other approaches are not as consistent as our
proposed method. However, it is clear to note that our method requires much
greater computation time to achieve such accuracy. This is due to generating the
additional feature image as part of the registration process, a task which could
be sped up by utilising the GPU.

In our testing, we use one feature image at scale σ = 2. We propose that
our registration can be improved by incorporating additional features to our
registration, such as two images at scale σ = 2 and σ = 4. Likewise, it is noted
that RMI is computed using a neighbourhood radius of 1. This neighbourhood
radius could be extended, which should improve on the original result. Table 2
shows our extended testing of our method with additional features and RMI
using a larger radius. It can be seen that the mean error is reduced when using
additional features, or when increasing the radius of RMI. However it is difficult

Table 1. Registration error (Translation (pixels), Rotation (degrees) and Runtime
(seconds))

Method Mean Median Runtime
Trans. Rot. Trans. Rot. Mean Median

FNMI (σ = 2) 7.52 0.39 0 0 143.5 88.2
RMI 94.61 1.24 16 0.5 22.6 23.9
Mean Neighbourhood MI 89.13 2.39 74 2.0 11.0 11.2
Gradient-Image MI 49.94 1.56 25 1.0 17.4 17.4
Gradient MI 80.22 2.16 65 2.0 19.5 19.4
Second-Order MI (mean neighbourhood) 105.48 1.94 25 1.5 6.1 6.2
Second-Order MI (median neighbourhood) 123.68 1.74 55 1.5 7.3 7.3
Second-Order MI (gradient value) 119.54 1.74 40 1.0 14.2 14.0
Second-Order MI (left neighbour pixel) 160.70 2.01 151 1.5 5.4 5.4
Second-Order MI (right neighbour pixel) 171.54 1.96 179 1.5 5.2 5.2
Standard MI (32 bins) 115.43 1.90 42 1.5 3.9 4.0
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Table 2. Registration error for FNMI and RMI

Method Mean Median Runtime
Trans. Rot. Trans. Rot. Mean Median

FNMI (σ = 2 and σ = 4) 5.48 0.47 2 0 223.2 146.6
RMI (r = 3) 14.92 0.50 5 0.5 85.2 85.7
RMI (r = 4) 11.13 0.52 5 0.5 149.4 150.3
RMI (r = 5) 6.91 0.52 6 0.5 259.2 257.8

Table 3. Grading results for registration

Method Grading Results
Excellent V.Good Good Weak Failed

FNMI (σ = 2) 30 92 8 1 4
Regional MI 11 41 11 6 66
Mean Neighbourhood MI 3 9 5 3 115
Gradient-Image MI 8 22 27 12 66
Gradient MI 1 14 10 8 102
Second-Order MI (mean neighbourhood) 10 32 9 14 70
Second-Order MI (median neighbourhood) 7 30 5 10 83
Second-Order MI (gradient value) 10 37 12 8 68
Second-Order MI (left neighbour pixel) 6 23 10 8 88
Second-Order MI (right neighbour pixel) 7 21 6 6 95
Standard MI (32 bins) 8 24 16 11 76
FNMI (σ = 2 and σ = 4) 38 88 9 0 0
RMI (r = 3) 23 85 21 0 6
RMI (r = 4) 29 85 19 0 2
RMI (r = 5) 37 86 12 0 0

to assess exactly how well this has improved registration using mean and median
error results alone. Therefore we also provide qualitative assessment to determine
the number of successful registrations shown in Table 3.

Figure 3 shows an example of a difficult registration. The result obtained using
our original method is the failed registration, however FNMI with σ = 2 and σ =
4 can successfully register the images. Both methods give the global maximum
at the correct registration, however using the additional features reduces the
number of local maxima that can trap the search optimisation, meaning that
the search is more likely to converge to the correct solution. What is interesting
to note here is that if using traditional Mutual Information, the failed registration
result gives MI as 0.4958 and the correct registration gives MI as 0.4672, and
so the search optimisation would fail to find the correct registration, whether
using a search optimisation or an exhaustive search. This shows that Mutual
Information can not be relied on as a robust similarity measure.

Fig. 3. Left-to-right: Fundus image, SLO image, failed and successful registration



622 P.A. Legg et al.

Fig. 4. Surface plots of a difficult registration. Top Row: MI (32 bins), RMI (r = 3),
RMI (r = 4). Bottom Row: RMI (r = 5), FNMI (σ = 2) and FNMI (σ = 2 and σ = 4).

Figure 4 shows each similarity measure versus X-translation for registration
of our difficult image example. In this example, both MI and RMI (when r = 3)
fail as the true registration does not give the global maximum in our surface
function. RMI (r = 4 and r = 5) both give the correct registration at the
global maximum, although there exist other local maxima that could easily trap
the search optimisation. FNMI peaks at the correct registration, has much fewer
local maxima, and provides a smooth surface that converges well to the solution.
This example considers only X-translation purely to provide clearer visualisation.
If considering all possible transformations then it becomes more apparent that
both the simiarity measure and the search optimisation can greater affect the
performance of registration.

4 Discussion

Our study is focused on the registration of multi-modal retinal images. We pro-
pose to combine multi-scale derivatives with neighbourhood intensities, and in-
corporate these into a MI framework. Our method achieves very accurate results
for our registration problem compared to existing registration methods.

Our method extends the work of Russakoff, who proposed RMI. In RMI, only
neighbourhood intensities are included in registration. What we found with RMI
is that when using the direct neighbourhood (a pixel and its 8 neighbours, for
each image; giving 18 points), RMI fails to consistently give good registration
results. This can be improved by increasing the radius of the neighbourhood,
however the number of points required for each vector quickly becomes very
large. In difficult registration cases, we found RMI can register these to a good
standard when using a neighbourhood radius of 5 pixels (requiring 242 points
in each column vector). The same image can be registered using our method
using two feature images (requiring 54 points in each vector). This significant
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reduction of data points becomes even more apparent in the covarience matrix,
where RMI would have a matrix C of size 242× 242 (58564 elements) compared
to a matrix of size 54 × 54 (2916 elements) in our method. This leads to much
less computation time required for this step of the algorithm. Our method does
require computing feature derivatives however which takes additional time. We
experimented with two approaches: computing the features first and then trans-
forming the complete image stack, or performing transformations on the single
intensity images and computing features only when performing our registration
comparison. The second approach gave slight improvement to runtime and so
was adopted, although both of these approaches could be performed much faster
by exploiting the capabilities of the GPU, giving a robust similarity measure
that would also be efficient for fast image registration.
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Abstract. This paper proposes a novel multimodal image registration
method which can fully utilize the multimodal information and result
in a more accurate unified deformation field. Different from the existing
methods which fuse the information at the image/intensity level, the
proposed method fuses the multimodal information at the feature level
through Gabor wavelets transformation. At this level, complementary
and redundant information is distinguished reliably and efficiently, and
then combined and removed respectively. Experiments on both simulated
and real T1+DTI image sets illustrate that the proposed method can
effectively incorporate better characterization for white matter (WM)
from the DTI and for gray matter (GM) from the T1 image and lead to
a more accurate and efficient multimodal image registration which paves
the way for the subsequent multimodal population-based studies.

1 Introduction

Clinical studies routinely acquire different magnetic resonance imaging (MRI)
protocols such as structural images (T1, T2, FLAIR, mPRAGE ) and diffu-
sion imaging such as Diffusion Tensor Imaging (DTI). Each of these modalities
provides some unique characterization of tissue. For instance, structural images
generate contrast between the gray matter (GM), white matter (WM) and cere-
brospinal fluid (CSF). DTI captures the directional microstructural information
within WM as a tensor, which complements the missing orientation information
of structural images. Multimodal image registration has become an active re-
search topic, because 1) it combines complementary information from different
modalities and 2) the deformation field obtained is common to all the modalities.
When the spatially normalized images are used for statistics, using the same de-
formation field makes them more comparable than using separate registrations
for each of the modality which usually generates inconsistent deformation fields.
It is also efficient, as registrations on all modalities are produced at the same
time. In [1], Park et al proposed a deformable multimodal image registration
method using multichannel demons [2], in which T2 and DTI were registered as
a vector image. In this straightforward method, although every image channel
is incorporated, they are assigned equal importance in the image matching. Or
in other words, there is no separation between complementary and redundant
information. More recently, in [3], multimodal image consisting of T1, DTI and
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cerebral blood flow (CBF) were registered by defining the multimodal similarity
metric as a weighted summation of each modality’s similarity metric. Although
spatially constant weights were used in the experiments, the author also sug-
gested that a weighting function ωi(x) defined on the image domain should
generate better results. In Studholme’s work [4], DTI was incorporated into the
mapping between T1 as an constraint. Multichannel mutual information (MI)
was used to match the multimodal image. Due to the impractical number of
histogram bins required by the multichannel MI of all 7 image channels (T1 and
6 tensor components), a simplification of only using two tensor components, Dxx

and Dyy, was adopted based on the fact that the different diffusion directions
is relatively un-correlated. For other multimodal image with large number of
modalities, multichannel MI remains computationally expensive.

The challenging problem in multimodal image registration is to fuse the mul-
timodal information and find a unified deformation field that can be applied to
spatially normalize every image channel. The meaning of ‘fuse’ is two-fold here,
merging the complementary (to be more accurate) and removing the redundant
(to be more efficient). The main drawback of dealing with the information fusion
problem at image/intensity level is that, it is difficult to extract and distinguish
between complementary and redundant information, because the stronger signal
(higher intensity value) does not necessarily indicates a stronger characteriza-
tion ability of one modality. This ability is proportional to the contrast the
modality can provide. Inspired by the ideas of multiscale decomposition (MSD)-
based information fusion scheme [5], which have been successfully used in im-
age fusion [6], in this paper, we propose a novel multimodal image registration
algorithm which fuses the multimodal information at feature level. By design-
ing a matching metric through Gabor wavelets transformation, the proposed
registration method can incorporate and enhance complementary information
while eliminating the redundancies between the different channels. Therefore,
this leads to a more accurate registration at a much lower computational cost.
In experiments, we apply the new algorithm to T1+DTI image and obtain more
accurate registration than using either of the two modalities individually.

2 Methods

Before describing the proposed registration algorithm, we will illustrate the basic
idea of MSD-based information fusion scheme through an example.

2.1 MSD-Based Information Fusion

An image I can be decomposed by discrete wavelets transform (DWT) into a
series of wavelets coefficients cIk,l,m,n, where k, l and (m,n) indicate the de-
composition level, the frequency band and the position in a frequency band,
respectively. Because ‖cIk,l,m,n‖ reflects the local energy of the output of the fil-
ter banks and is a good indicator of the characterization ability of each modality
at the specific scale, frequency band and position, the simplest but efficient in-
formation fusion rule is the choose-max scheme [5]. That is, to fuse two image
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(a) (b) (c)

Fig. 1. An example of image fusion by the choose-max scheme. (a) T1 image; (b) FA
image; (c) Fused image.

X and Y, we can get the wavelets-based MSD representation of the fused image
Z by only keeping the coefficient with the largest absolute value. After that, an
inverse DWT can be performed to finally get the fused image Z. As an example,
we use a pair of co-registered T1 and fractional anisotropy (FA) [7] of the same
subject to show the performance of the above fusion scheme. As shown in Fig. 1,
the fused image gives good characterization on both WM and cortex which are
not available in the input T1 and FA, individually.

2.2 Choose-Max Metric for Matching

Using the similar MSD-based Choose-Max information fusion scheme, we firstly
define a dissimilarity metric for the multimodal image registration. However,
since the objective of information fusion in registration is to fully utilize the
multimodal information for a better matching criteria, but not to get a fused
image explicitly, we use Gabor wavelets [8] for the multiscale analysis, instead
of DWT. Gabor wavelet transformation has been shown to be optimal in the
sense of minimizing the joint uncertainty in space and frequency, and has been
widely used for feature extraction [9]. Although the registration is for 3D image,
to alleviate the computational cost, we use 3 perpendicular (axial, coronal and
sagittal) 2D Gabor filter banks to extract the features. A 2D Gabor filter can be
viewed as a sinusoidal plane of particular frequency and orientation, modulated
by a Gaussian envelope: G(x, y) = s(x, y)g(x, y), where s(x, y) is a complex
sinusoid: s(x, y) = exp[−j2π(u0x + v0y)] and g(x, y) is a 2D Gaussian envelope:

g(x, y) =
1√

2πσxσy

exp[−1
2
(
x2

σ2
x

+
y2

σ2
y

)] (1)

σx and σy characterize the spatial extent and bandwidth of g along the re-
spective axes, u0 and v0 are the shifting frequency parameters in the frequency
domain. Using G(x, y) as the mother wavelet, the Gabor wavelets, a class of
self-similar functions can be obtained by appropriate dilations and rotations of
G(x, y) through: Gm,n(x, y) = a−mG(x′, y′), where x′ = a−m(x cos θ + y sin θ),
y′ = a−m(x sin θ+y cos θ), a > 1, θ = nπ/O, m = 1 · · ·S n = 1 · · ·O. O indicates
the number of orientations and S the number of scales in the multiresolution
decomposition. These parameters can be set according to [9] to reduce the re-
dundant information (caused by the nonorthogonality of the Gabor wavelets) in
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the filtered images. Given an image I(x, y), the Gabor transform with orientation
n and scale m can be computed as:

Fm,n(x, y) =
∫

I(x1, y1)G∗
m,n(x− x1, y − y1)dx1dy1 (2)

where ∗ indicates the complex conjugate.
Suppose we have two multimodal image I = [I1, · · ·, IM ] and J = [J1, · · ·, JM ],

in which I1, · · ·, IM and J1, · · ·, JM are two collections of co-registered images
generated by M different modalities. The Gabor wavelet transformation of the
ith modality image Ii and Ji with orientation n and scale m are F Ii

mn and F Ji
mn,

respectively. Using the choose-max scheme, the dissimilarity between two voxel
I(x1) and J(x2) can be measured as:

D1(I(x1),J(x2)) =

√√√√ S∑
m=1

O∑
n=1

M∑
i=1

wm,n,i(||F Ii
m,n(x1)|| − ||F Ji

m,n(x2)||)2 (3)

where

wm,n,i =

{
1 if i = argmax

j=1···M
||F Ij

m,n(x1)||

0 otherwise
(4)

Using D1 on two T1+FA image sets, the similarity between a reference point
on the template and other points on a subject can be computed and shown in
Fig. 2(b) as a similarity map.

2.3 Max-Index Metric for Matching

To utilize the information which is not included in (3) without too much com-
putational cost, we can design another metric using the max indices which we
already have. Let pI

m,n(x) denote the label of the modality which generates the
strongest Gabor feature at scale m and orientation n on I(x). Arrange these
labels into a vector form pI(x) = [pI

1,1(x), · · ·, pI
S,O(x)]. Then pI(x) is a very in-

formative fingerprint of voxel I(x). Let L(I(x1),J(x2)) be the number of equal
labels between pI(x1) and pJ(x2). Thus, L is a similarity metric with an in-
creasing resolution when S and O increase. Here, the 3 perpendicular 2D Gabor
filter banks each has 4 scales and 6 orientations. Therefore, L has the ability
to differentiate the brain tissue into 4 × 6 × 3 = 72 classes. Fig. 2(c) shows the
similarity map generated by metric L. As we can see, at this resolution level,
only L can give considerable discriminatory power. More importantly, this is also
a clear evidence showing the correctness and effectiveness of the choose-max fu-
sion rule. Because if it is not reliable, we can not get such a specific similarity
map by using only L. By combining L with (3), the metric for multimodal image
matching is finally defined as:

D(I(x1),J(x2)) = [1− L(I(x1),J(x2))
3SO + 1

] ·D1(I(x1),J(x2)) (5)

The discriminative ability of metric D is shown in Fig. 2(d).
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Fig. 2. Similarity map generated by different metrics. (a) shows the reference point
(denoted by a red cross) on T1. (b) is the similarity map generated by D1. (c) is the
similarity map generated by metric L (normalized to [0 1]). (d) is the similarity map
generated by metric D. Red indicates high similarity.

2.4 Deformable Registration of Multimodal Image

With the dissimilarity metric defined in (5), the problem of registering multi-
modal image I(x) to multimodal image J(x), can be defined as finding a optimal
transformation h(x) which minimizes

∫
x1∈ΦI

D(I(x1),J(h(x1)))dx1 +
∫

x2∈ΦJ

D(I(x1),J(h−1(x2)))dx2 +α

∫
x1∈ΦI

‖∇2h(x)‖dx1

(6)
By hierarchically optimizing (6) through the deformation model on the lines of
the HAMMER algorithm [10], we develop a multimodal image registration algo-
rithm. To select the active points (which drive the registration), we also adopt
the choose-max criterion. After the edge map [11] of each channel is computed,
a fused edge map is obtained using the choose-max scheme. On this fused map,
the portion of points with higher edge intensity are selected as the active points.
After that, in a hierarchical manner, by adding more and more active points to
guide the deformation, this algorithm generates the final spatial transformation
by concatenating the hierarchical sequence of piecewise smooth transformations
obtained at each stage. Since DTI is one of the modalities in our experiments,
the obtained deformation field is also used to determine the tensor reorienta-
tion by using a spatially adaptive procedure that estimates the underlying fiber
orientation [12].

3 Experiments and Results

3.1 Discriminatory Ability of the Metric

The discriminatory ability of the proposed metric is firstly tested by comparing
the similarity maps generated by different metrics. To make the comparison
clear, we use multimodal image only consists of T1 and FA. In preprocessing,
T1 is affinely registered to B0 of DTI and re-sampled to have the same size
(256 × 256 × 70) and resolution (0.9375 × 0.9375 × 2.5mm). The Gabor filter
bank is set to have 6 orientations and 4 scales. Three other metrics are used
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Fig. 3. Comparison of the similarity maps of a reference point on WM. (a) and (b)
show the reference point (denoted by a red cross) on T1 and FA, respectively; (c) and
(d) are similarity map only using T1 and FA, respectively; (e) is the similarity map
using both T1 and FA without fusing; (f) is the similarity map given by the new metric
defined in (5).
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Fig. 4. Comparison of the similarity maps of a reference point on GM. Legends are the
same as those in Fig. 3.

for comparison: metric only using the Gabor features from T1 or FA and the
metric using features from both T1 and FA but without fusing (as in (3) with
wm,n,i = 1, ∀m,n, i). As expected, for a reference point on WM, the metric
only using FA features (Fig. 3(d)) is more discriminative than the metric only
using T1 features (Fig. 3(c)). And similarly, the metric only using T1 features
(Fig. 4(c)) is more discriminative on GM than the metric only using FA features
(Fig. 4(d)). Although for reference point on GM, the metric using both T1 and
FA without fusing improves the discriminatory power (Fig. 4(e)), by comparing
Fig. 3(e) with Fig. 3(d), we also found that this metric actually degenerates the
discriminatory ability on WM. In comparison, the proposed new metric (defined
in (5)) correctly utilizes the information from both channels and gives the most
discriminative result on both WM (Fig. 3(f)) and GM (Fig. 4(f)).

3.2 Registration of Simulated and Real Images

Ten simulated DTI+T1 image set are generated by applying ten simulated de-
formation fields on a template DTI+T1 image set (with the same size, resolution
and preprocessing as used in Sect. 3.1). These ten simulated DTI+T1 image are
then registered back to the template using the Gabor features extracted from T1
and 5 DTI-derived scalar images (FA, apparent diffusion coefficient (ADC) [7],
Cs (sphericity), Cp (oblateness) and Cl (prolateness) [13]). For comparison, 3
registrations were computed: the proposed method and the other two methods
which only use features from one modality, either T1 or DTI. The deforma-
tion fields generated by the 3 methods are then compared with the simulated
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Fig. 5. Comparison of the registration accuracy

deformation fields (ground truth). The results are summarized in Fig. 5(a), in
which the proposed method, by utilizing the information from both modality,
outperforms the other two methods on most of the subjects. The performances of
the three methods are also compared on ten real T1+DTI images. After warping
both T1 and DTI using the 3 deformation fields generated by the 3 methods,
the registration accuracies were compared on both the registered T1 and the
registered DTI based on the average Sum Absolute Difference (SAD) and Log-
Euclidean (Log-EUC) [14] metric, respectively. In both of these comparisons
(as summarized in Fig. 5(c) and Fig. 5(d)), the proposed method generates the
smallest error on most of the subjects, especially the 3 difficult subjects (4, 5 and
10), on which the single modality methods generate relatively high registration
error. This suggests that fusing the information from multi-modalities can help
to robustly obtain accurate registration. We also found that, on some subjects
(simulated subject 4 and real subject 1, 2 and 9), the proposed method does
not give the best results (but difference is slight). One of the possible reasons
that may cause registration error for the proposed method is the registration
error between T1 and DTI in the preprocessing step. Therefore, to exclude the
influence of this factor, another experiment was also conducted on the simulated
subjects only using ADC and Cs (they are inherently co-registered). As shown in
Fig. 5(b), the proposed method consistently gives the best result in this experi-
ment. And because ADC and Cs have less redundant and more complementary
information, the proposed method gains more improvement. In the future, more
advanced inter-modality registration algorithm will be adopted to improve the
intra-subject registration between T1 and DTI.

4 Summary

In this paper, we proposed a multimodal image registration framework based a
new metric which combines complementary and removes redundant information
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from different modalities at the feature level. Experiments on both simulated
and real multimodal images (DTI+T1) illustrate that the proposed method can
effectively fuse the information from different modalities and result in a more
accurate unified registration. In the future, we plan to explore more advanced
fusion schemes of the Gabor features. As an application, we also plan to apply
this method on clinical studies for joint comparative statistics on T1 and DTI.

Acknowledgments. The authors and the work was supported by the National
Institute of Health via grant R01-MH-079938. We also acknowledge the help
from the work of Dr. Dinggang Shen and Yangming Ou.
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Abstract. We introduce an efficient search strategy to substantially
accelerate feature based registration. Previous feature based registration
algorithms often use truncated search strategies in order to achieve small
computation times. Our new accelerated search strategy is based on the
realization that the search for corresponding features can be dramat-
ically accelerated by utilizing Johnson-Lindenstrauss dimension reduc-
tion. Order of magnitude calculations for the search strategy we propose
here indicate that the algorithm proposed is more than a million times
faster than previously utilized naive search strategies, and this advan-
tage in speed is directly translated into an advantage in accuracy as the
fast speed enables more comparisons to be made in the same amount of
time. We describe the accelerated scheme together with a full complex-
ity analysis. The registration algorithm was applied to large transmission
electron microscopy (TEM) images of neural ultrastructure. Our experi-
ments demonstrate that our algorithm enables alignment of TEM images
with increased accuracy and efficiency compared to previous algorithms.

1 Introduction

Image registration is a fundamental process in medical imaging applications
aimed at establishing spatial correspondences between images [1]. Registration
algorithms must satisfy demanding requirements of speed, robustness and ac-
curacy depending on the specific application involved. Alignment of Electron
Microscopy (EM) images of neural tissue involves consideration of the high res-
olution and overwhelming size of the data, the large amount of detail, the ac-
quisition artifacts and the deformation induced by the intrinsic deformation of
the slices [2]. Thus, the reconstruction of neural circuitry from EM remains a
substantial and challenging problem [3].

Existing algorithms for registration can be broadly classified into approaches
that directly operate on image intensities or to feature based alignments seek-
ing to identify features that should be aligned and an optimal transformation
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that brings them into alignment [1]. Similar to previous registration methods
for alignment of microscopy images our method relies on matching local image
patches across successive slices. A recent study [2] addressed matching as part of
a complete algorithm for assembling 3D volumes from EM data. This approach
first identifies feature descriptors based on a gradient vector pyramid and then
exploits these features to match adjacent slices. An approach for 3D reconstruc-
tion based on a block matching strategy was presented by [4] where the local
displacements were utilized to robustly estimate a global transformation. [5] de-
veloped a solution for 3D reconstruction of a series of EM images based on the
finite support properties of the cubic B-splines, where the initial estimate for the
affine registration was based on the technique described in [4].

In this work we presents a novel algorithm designed for alignment of large
cross-sectional slices of EM by introducing a search strategy which to our knowl-
edge has not been used for image registration before. The key advance we pro-
pose is based on the realization that the search for corresponding features can
be dramatically accelerated by utilizing Johnson-Lindenstrauss (JL) [6] dimen-
sion reduction. This enables us to consider more regions in the images and to
consider all of the potential correspondences, ensuring that the search does not
overlook the correct set of correspondences, and thus dramatically improves the
robustness and accuracy of the registration. Combining this together with recent
advances in approximate nearest neighbor (ANN) techniques [7] for the search
strategy reduces the computational complexity significantly.

The paper is organized as follows. Section 2 describes the algorithm, section
3 presents experimental results and conclusions are presented in section 4.

2 Methods

The volume reconstruction is obtained by composing pairwise 2D alignments of
consecutive slices by taking as reference the middle of the stack. Thus we focus
on the 2D registration of successive sections, although the algorithm can be used
for 3D registration as well. The input includes the fixed scene image IS and a
moving model image IM . Our aim is to find the transformation T aligning the
scene with the model. The algorithm consists of three main steps. In the first
step, we extract image patches, also called blocks, fragments or templates [4],
as the features for matching. The patches are rectangular sub-images of d = 104

voxels (i.e. 100 × 100 sized image regions) extracted from the scene and model
images. Then using JL-embedding [6] with the random projections approach by
Achlioptas [8] we generate a low dimensional representation of these patches.
In the second step the patches of reduced dimension are compared across
successive slices. So that, given a projected scene and model patch we search for
correspondences based on the Euclidean distance between the patches. Finally,
we construct two sets of points based on the center coordinates of the projected
scene and model patches. We compute the transformation with an extension to
the Expectation Maximization Iterative Closest Point (EM-ICP) [9] algorithm
which includes the similarity measure of the patches. Table 1 presents an outline
of the algorithm proposed.
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Table 1. Outline of the algorithm

Given a pair of successive slices, a fixed (scene) and moving (model) image:
Step 1: JL dimension reduction of features: State of the art feature matching
approaches to registration commonly perform feature detection by correlation, followed
by a truncated search and a transform estimation. In contrast with previous methods
we first extract small patches at different locations for both images and then the
features are projected on to a lower dimension based on the JL-Lemma.
Step 2: Search for correspondences: The projected features extracted from both
images are compared based on the correlation measure or Euclidean distance.

-2a. Brute Force search strategy.
-2b. Approximate nearest neighbor (ANN) search where each near neighbor is reported

with a certain probability. For this step there are several solutions such as tree
based search or locality sensitive hashing [10].

Step 3: Transformation estimation: Apply extended EM-ICP [9] approach based
on the corresponding features between the images.

2.1 Step 1: Johnson-Lindenstrauss (JL) Dimension Reduction

The essential property enabling accelerated search has been the realization that
efficient high dimensional search can be achieved by creating randomized pro-
jections into low-dimensional spaces, and then using efficient low-dimensional
search. The JL Lemma [6] asserts that any set of n points in d-dimensional Eu-
clidean space can be projected down to k-dimensional Euclidean space, where
k = O(ε−2 logn), while maintaining pairwise distances with a low distortion.
Recent research [8] has shown that random projection matrices can be used for
JL projection. Following this proof, given the initial set of n points in Rd, repre-
sented as an n× d matrix, where each feature-patch is represented by a row, let
R be a d× k random matrix with R(i, j) = rij ; where the independent random
variables rij are : {1 with probability 0.5, and −1 with probability 0.5 }. Naively,
the random projection can be performed by constructing a k×d random matrix;
so that mapping each point takes O(dk), however recent theoretic work suggests
that a projection from dimension d to dimension k can be computed with O(d)
operations [11].

2.2 Step 2: Search for Correspondences

The transformation computation is based on maximizing the similarity of corre-
sponding patches. Currently we utilize the brute-force approach which involves
computing the distances between the patch and all the patches in the neighbor-
ing image. Our experiments compare the results of using the full-size patches and
their projections. We use normalized correlation (NC) as a similarity measure
since NC is invariant to linear intensity transformation and it is assumed that
for small corresponding image patches across the two successive slices, the in-
tensities are locally related by some linear intensity transformation [4]. Another
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attractive property of NC is that it is equivalent to a squared Euclidean distance
[12] which meets the requirements of the JL Lemma.

Recently it has been discovered that allowing approximate rather than exact
search enables dramatically accelerated search [7]. In the approximate nearest
neighbor (ANN) formulation, given a query point q and a specified constant
c > 0, the algorithm returns a point whose distance from q is at most a c = (1+ε)-
factor larger from the distance of the nearest point p in P from q. This approach
results in efficient algorithms which are based on data structures such as tree
based search (spill trees) and locality sensitive hashing (LSH)[10]. Thus instead of
performing the naive search described above, additional significant acceleration
can be obtained by casting the registration problem as an ANN search problem.

2.3 Step 3: Transform Estimation

Given the set of patches represented by their center coordinates this step de-
termines the transformation that matches a set of model and scene points. The
approach exploits the Expectation Maximization (EM) scheme to optimize si-
multaneously for correspondences and the registration transformation. It extends
the EM-ICP approach to go from point matching to patch matching. Let si be
the points of the scene set S ∈ R2 and mi the points of the model patch set
M ∈ R2, with ns and nm determining the number of points respectively. T rep-
resents the rigid transformation from the scene to the model. The probability
of a point si to correspond to the model points mi is modeled by a Gaussian
probability distribution. In the case of homogeneous isotropic Gaussian noise the
probability is modeled by

p(si|mj , T ) = exp(−||T ∗ si −mj||2/2σ2) (1)

where σ represents the noise in the measurement.
The idea is to maximize log p(S,A|M,T ) the log-likelihood of the data dis-

tribution where the unknown correspondences A ∈ RnS×nM are considered as a
hidden random variables . The algorithm starts by initialization of the transfor-
mation (T ), and repeats until convergence of the two EM steps. In the E-step,
T is fixed and the probability of matches (AT )ij are computed as follows (for
more details see [9])

(AT )ij =
πij exp(−||T ∗ si −mj ||2/2σ2)∑
k πik exp(−||T ∗ si −mk||2/2σ2)

(2)

In the classic EM-ICP, the prior probability of the matches is based on the
uniform law: πij = 1

nM
. In contrast, the EM-ICP-NC used here extends the

prior to account for the NC similarity of the patches taking advantage of the
similarity measure in addition to the spatial information. Hence, the prior is
based on the normalized NC:

πij =
NC(pi, pj)∑

k

NC(pi, pk)
(3)
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The NC-based prior πij is also used in the initialization step to determine the
initial transformation T . In the M-step, A is fixed and the likelihood is optimized
w.r.t to T .

Tn+1 = argmax
T

(EA[logP (S,A|M,T )]) (4)

Thus, by ignoring constant terms the criterion optimized by the EM-ICP-NC
yields

CAT (T ) =
ns∑
i

nm∑
j

(AT )ij log p(si|mj , T ) (5)

2.4 Computational Complexity

The computational complexity of the entire process is determined by the num-
ber of images (T ≈ 100) in the data base, the image size n (we assume that the
number of patterns per slice is proportional to n) and the feature dimension d.
Our preliminary results were performed on slice sections of n = 108 = 104×104,
which were downsampled using Gaussian smoothing plus bi-linear interpolation
to a size of n = 106 = 103 × 103. Improved TEM techniques utilizing multiple
camera arrays have lead to datasets of n = 1010 = 105 × 105. The size of a
typical local image patch is d = 104 = (100 × 100), by employing JL lemma
the initial n× d matrix is projected to an n× k feature matrix (where k = 100
in our experiments). We focus on the search for correspondences since it is the
most expensive operation of the algorithm. The naive searching method involves
comparing each projected patch to all the projected patches in the neighboring
image. The complexity of the naive search time per query is O(dn). Thus, the
overall complexity for using the full d-dimensional patches is O(Tn2d). Hence,
projection to lower dimension alone reduces the complexity to O(Tn2 logn) sav-
ing O(d − k) operations (104 operations per slice in our experiments).

Additional significant acceleration can be obtained by employing recent ad-
vances in approximation algorithms for performing ANN. The authors in [7]
have shown that the time required for retrieving similar features is reduced to
O(dn1/c2

) where for c = 2 this becomes O(dn1/4). Consequently, the proportion
between the naive and accelerated approaches is O(n1−1/c2

) and for c = 2 this
becomes O(n3/4) which in the typical conditions of the data we are dealing with
becomes O(107.5). Thus we claim that the proposed approach to registration
is more than a million times faster than using naive approaches. We also note
that the query time quoted assumes the need to project from high dimension
to low dimension before doing the query. However, since our patches participate
as both search points and query points, we can benefit from pre-computing the
projection of all the points ahead of the query, which reduces the query cost by
O(d). Recall d is O(104) in our case, so this is a substantial improvement.

3 Experiments and Results

The algorithm was tested on a series of EM images of the lateral geniculate
nucleus of a ferret. Each image is about 10000× 10000 pixels large with a pixel
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resolution of 3nm and a slice thickness of 60nm. We evaluated our experiments
on 114 slices which were manually preprocessed to correct or exclude images with
significant artifacts or severe rotations. The approach was validated by compar-
ison to a manual ground truth registration. The manual registration denoted
as (T ∗), was performed by manually selecting corresponding points in a pair of
consecutive images and computing the pairwise transformation based on Horn’s
method [13]. Given a set of corresponding points in two systems, Horn’s method
finds the closed form solution to the ”least square” problem relating these points.
We performed two sets of experiments. The first set of experiments was obtained
with the JL projection of features while the second set was obtained without the
projection. Both experiments compare the results obtained by three automatic
approaches including our EM-ICP-NC approach (see Sec. 2.3), the classic EM-
ICP [9] and Horn’s [13] approach. The L2 difference between the transformations

Before: (a) Fixed Slice (b) Moving Slice (c) Checkerboard of (a) and (b)

Alignment: (d) Manual (e) Automatic with JL (f) Automatic without JL

Checkerboard: (g) Manual(h) Automatic with JL (i) Automatic without JL

Fig. 1. Successive pair of slices before and after alignment. (a) and (b) present the
fixed and moving image before alignment and (c) shows their checkerboard compos-
ite. (d),(e),(f) show the alignments results of the manual, and automatic algorithms
with JL projection and without projection respectively. (g),(h),(i) demonstrate the
checkerboard of the fixed image in (a) and the aligned moving image in (d), (e) and
(f) respectively.
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Table 2. Comparing our results to the manual transformation and to two other auto-
matic approaches. Our algorithm has higher accuracy than previously described meth-
ods. The advantage is obtained both with and without the JL projection.

Dimension EM-ICP-NC EM-ICP Horn
k (with JL projection) 5.41 ± 3.32 45.024 ± 28.56 93.63 ± 56.9
d (without JL projection) 4.93 ± 2.94 20.55 ± 26.74 66.86 ± 53.6

Fig. 2. Effectiveness of template matching for identifying correspondences. The fusion
of the correlation map computed for the patch (a) with the original slice, from which
the patch was extracted (b) and with the successive slice (c). The maxima regions in
both slices (b,c) respectively, are highlighted in red rectangles and enlarged. The red
maxima values in the fusion image correspond to higher correlation values, showing
that the features are a sharp local maxima of the correlation function.

of all three automatic approaches in both sets of experiments are compared to
the ground truth transformation computed (T ∗). Figure 1 shows the results ob-
tained with and without the JL projection compared to the manual registration.
Table 2 presents the results of both experiments. Our EM-ICP-NC automatic
algorithm has a higher accuracy than previously described methods. The advan-
tage is achieved in both set of experiments with and without the JL projection,
with similar results. Thus, we conclude that the projection to low dimensional
space did not reduce the ability to recognize corresponding patches.

To evaluate the effectiveness of template matching for identifying correspon-
dences in various cases of neurobiological objects, we tested patches with
different features, such as myelinated white matter, dendrites, synapses, and
microtubules. The NC function was computed between the features visible in
the image, with patches within the same image and with patches in a successive
image. Figure 2 illustrates the results, demonstrating that the local maxima in
the NC function within the same image is detected in the exact same spot, while
in the next slice the detection is in the area of similar anatomy.

4 Summary

We present a novel algorithm for alignment of large EM images. To our knowl-
edge this is the first attempt to provide the registration algorithm a low



Accelerating Feature Based Registration 639

dimensional representation of the data by utilizing the JL embedding and to
demonstrate the dramatic speed up of the identification of correspondence which
at the same guarantees the robustness and accuracy of the alignment. In this
work we have demonstrated these contributions on real EM data and also con-
structed a full scheme with significant computational savings. We assessed the
impact of dimensionality reduction on the transformation accuracy and shown
for the first time the feasibility and effectiveness of this approach, showing that
the projected features are as effective for registration as the full-dimensionality
features. Future work will evaluate alternative search strategies for the accelera-
tion of accurate correspondence estimation. This will include evaluation of data
structures that support ANN search strategies, such as LSH, and spill-trees. We
will explore faster variants of algorithms to project into k-dimensional space.
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Abstract. Registration of Diffusion-Weighted MR Images (DW-MRI)
can be achieved by registering the corresponding 2nd-order Diffusion
Tensor Images (DTI). However, it has been shown that higher-order dif-
fusion tensors (e.g. order-4) outperform the traditional DTI in approxi-
mating complex fiber structures such as fiber crossings. In this paper we
present a novel method for unbiased group-wise non-rigid registration
and atlas construction of 4th-order diffusion tensor fields. To the best
of our knowledge there is no other existing method to achieve this task.
First we define a metric on the space of positive-valued functions based on
the Riemannian metric of real positive numbers (denoted by R

+). Then,
we use this metric in a novel functional minimization method for non-
rigid 4th-order tensor field registration. We define a cost function that
accounts for the 4th-order tensor re-orientation during the registration
process and has analytic derivatives with respect to the transformation
parameters. Finally, the tensor field atlas is computed as the minimizer
of the variance defined using the Riemannian metric. We quantitatively
compare the proposed method with other techniques that register scalar-
valued or diffusion tensor (rank-2) representations of the DWMRI.

1 Introduction

Group-wise image registration is a challenging task in medical imaging which
is related to the problem of computing an atlas, i.e. the image of the average
subject from a set of co-registered subjects. There are two prevalent approaches
for atlas construction. The first one is based on group-wise alignment of 3D
shapes [1,2], while the second one is uses alignment of 3D image intensity maps.

In this paper we focus on the second category, and therefore we review only
techniques that are based on intensity map registration. Joshi et al. [3] proposed a
method for group-wise image registration and simultaneous atlas construction.
In this method the atlas is formed by minimizing the distance between the
displacement fields that warp the images and therefore it is not biased toward a
specific subject data. The estimated atlas does not belong to the set of registered
subjects unlike the method presented in [4], which perform pair-wise registration
of all the subjects and select the least biased target as the atlas.
� This research was in part funded by the NIH grant EB007082 to BCV.
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The aforementioned methods perform scalar-valued image registration. It has
been shown, however, that registration of diffusion tensor-valued images (DTI)
produces more accurate alignments of fibrous tissues [5]. In this approach the ten-
sors should be re-oriented appropriately after the warping of the DTI images in
order to preserve the micro-structural geometry in the subjects. One way to avoid
the tensor re-orientation is to register rotation invariant quantities or other highly
structured features extracted from DTI [6]. A DTI similarity measure that uses the
full information in the tensors and performs their re-orientationusing locally affine
transformations was employed in [7]. Furthermore, two methods for diffeomorphic
non-rigid DTI registration were proposed in [8] and [9] both of which use analytic
derivatives of the reorientation term in the corresponding energy functions.

All the above techniques perform pair-wise DTI registration. Multi-subject
registration for DTI atlas construction was proposed in [10] by extending the
scalar-image framework in [3]. Another group-wise DTI registration technique
which unfolds the manifold described by the Geodesic-Loxodromes metric on
diffusion tensors and produces vector-valued images that are being warped in
order to estimate the DTI atlas was recently proposed in [11].

Although the methods for DTI registration and atlas construction yield richer
representations than the corresponding scalar-image based techniques, they fail
in regions of fiber crossings and other complex tissue geometries since 2nd-order
tensors cannot account for multiple peaks in the diffusivity function. This prob-
lem can be resolved by using 4th−order tensor fields and registering them using
the recently proposed method in [12]. In their work, it was shown that the align-
ment of 4th − order tensor fields produces more accurate results compared to
those obtained by DTI registration. This technique performs tensor comparison
using Hellinger’s distance, which is however defined between probabilities. Since
diffusion tensors are not probabilities, Hellinger’s distance is not a suitable mea-
sure, unless we perform tensor normalizations which are unnatural and we avoid
in this paper. Furthermore, the method in [12] performs pair-wise tensor field
registration and hence cannot be directly employed for group-wise registration
or statistical atlas construction.

In this paper we present a novel method for unbiased 4th-order tensor field atlas
construction. Our method (significantly) generalizes the unbiased diffeomorphic
scalar image atlas construction framework in [3] to the case of symmetric posi-
tive definite higher-order tensors. The atlas is computed simultaneously with the
non-rigid deformation fields using a functional minimization procedure. We define
a novel cost function using the Riemannian metric on positive valued functions
which is a generalization of the Riemannian metric on R+. This metric appro-
priately handles the positive nature of the symmetric positive-definite high-order
tensors and their re-orientation is performed analytically using the Gram-Schmidt
orthogonalization process of the local Jacobian matrices. The method is validated
using synthetic and real DW-MRI data from isolated human hippocampi.

The key contributions of this work are: To the best of our knowledge, this is
the first report in literature for higher-order tensor field atlas construction. Our
method outperforms the existing methods that register derived scalar images
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or 2nd-order tensor fields from DWMRI, both of which fail to accurately warp
datasets with complex local tissue structures such as fiber crossings. Further-
more, we employ a novel metric based on the Riemannian geometry of positive-
valued spherical functions and we show that it produces more accurate results
compared to the standard Euclidean metric. Finally, our cost function has an-
alytic derivatives with respect to the unknown transformation parameters that
lead to an efficient and easily scalable implementation of our framework.

2 Riemannian Metric for Positive-Valued Real Functions

Assume a, b ∈ R+, i.e. are elements of the space of positive real numbers. The
Logarithmic map at location a is given by Loga(x) = log(x/a) and corresponds
to the local tangent vector toward x. Its inverse function is the Exponential map,
which is given by Expa(t) = exp(t)a and projects the tangent t ∈ R back to the
space R+. The corresponding Riemannian distance between a and b ∈ R+ is
given by the length of the tangent

dist(a, b) =
∣∣∣log

a

b

∣∣∣ (1)

which satisfies scale invariance, i.e. dist(sa, sb) = dist(a, b) ∀a, b, s ∈ R+, addi-
tionally to the properties of distance measures.

The Riemannian metric in R+ can also be used to define distances between
positive-valued functions fa(x) and fb(x) x ∈ Ω as follows: dist2(fa, fb) =∫

Ω
dist2(fa(x), fb(x))dx. In the particular case of parametric spherical functions

d(g;D1) and d(g;D2), where g ∈ S2 and D1 and D2 are the corresponding
parameter vectors, the distance is given by

dist2(D1,D2) =
∫

S2

∣∣∣∣log
d(g;D1)
d(g;D2)

∣∣∣∣2 dg. (2)

Note that the integral in Eq. 2 is over S2, i.e. the space of unit vectors g.
This distance function is invariant with respect to 3D rotations and scale, i.e.
dist(sR ◦D1, sR ◦D2) = dist(D1,D2) ∀s ∈ R+ and R ∈ SO3.

Similarly, the distance between ordered n-tuples whose elements are positive
real numbers can be defined using the Riemannian metric in R+. In this case
the distance between A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} ai, bi ∈ R

+

is given by dist2(A,B) =
∑N

i=1 dist
2(ai, bi). This can also be seen as a discrete

approximation of Eq. 2 by taking ai = d(gi;D1) and bi = d(gi;D2), where gi is
a predefined set of vectors in S2.

In the next section we will employ the above distance measure in order to
achieve simultaneous group-wise registration and atlas construction of fields of
spherical functions modeled using Cartesian tensor bases of order 4.

3 Groupwise Registration of 4th-Order Tensor Fields

Cartesian tensor bases of various orders have been used for approximating physi-
cal quantities computed from DW-MRI datasets. 4th-order tensors
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d(g;D) =
∑

i,j,k,l D
i,j,k,lgigjgkgl have been employed to approximate the dif-

fusivity function in generalized diffusion tensor images [13], and the kurtosis
component of the diffusion in diffusion kurtosis images [14].

In the case of 4th-order generalized diffusion tensors, the diffusivity is a
positive-valued function and can be computed using the parametrization in [15].
This produces fields of positive-valued spherical functions whose processing can
be achieved using the Riemannian metric presented in Sec. 2.

The problem of group-wise registration of N tensor-fields and simultaneous
atlas estimation can be formulated as a functional minimization problem. By
using Eq. 2 the energy function to be minimized is given by

E(φn,Dμ) =
N∑

n=1

∫
Ω

∫
S2

(
log

d(g;Dn ◦ φn)
d(g;Dμ)

)2

dgdx +
N∑

n=1

∫
Ω

cost(φn)dx (3)

where Dμ is the 4th-order tensor coefficients of the estimated atlas, φn is the
estimated deformation to be applied to the nth tensor field, and cost() is a cost
function that adds smoothing constraints to the estimated deformations.

Note that the tensor coefficients are dependent on the local rotation of the
coordinate system [12]. Hence, given a deformation φn the transformed spherical
function field at location x can be computed as

d(g;Dn ◦ φn) =
∑

i,j,k,l

Di,j,k,l
n (x ◦ φn)(Rxg)i(Rxg)j(Rxg)k(Rxg)l (4)

where Rx is the rotation of deformation φn at location x, and the notation
(Rxg)i represents the ith component of the rotated vector g.

The deformation can be parametrized as a time varying vector field such that
∂φn(x, t)/∂t = vn(x, t), t ∈ [0, 1], where vn(x, t) is the velocity field at time
t. In this formulation the estimated deformation is given by φn = φn(x, 1) =∫ 1
0 vn(x, t)dt. Furthermore, the cost() function in Eq. 3 can be defined as

∫ 1
0 ‖

Lvn(x, t) ‖2 dt, where L is a differential operator on the velocity fields [3].
We will minimize the energy function (Eq. 3) by evolving the deformation

fields φn using a greedy iterative scheme which approximates the solution to the
above minimization problem, similar to the technique in [3]. For this purpose we
will construct a field of forces by computing the first order variation of the first
term in Eq. 3 with respect to the transformation parameters as follows

Fn = −2
∫

S2
log
(
d(g;Dn ◦ φn)

d(g;Dμ)

)
[∇trans +∇rot]log(d(g;Dn ◦ φn))dg (5)

where the variation ∇trans is related with the local translation (i.e. variation of
Di,j,k,l

n (x◦φn) in Eq. 4) and ∇rot is related with the local rotation (i.e. variation
of (Rxg)i(Rxg)j(Rxg)k(Rxg)l in Eq. 4). The computation of these terms is
discussed in Sec. 3.1.

After the estimation of the fields of forces Fn, n = 1 . . .N we compute the
update vector fields vn =

∫
Ω K(x)Fn(x)dx, where K is a kernel applied to the
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field of forces. In our experiments we employed the kernel K(x) = η(x)G(x),
where G is a Gaussian kernel centered at x and η is a smooth function that takes
zero value at the boundaries and therefore imposes zero boundary conditions on
the kernel K as was done in [8]. Note that the integration of K with Fn is
a convolution that becomes multiplication in the frequency domain, hence it
can be efficiently computed using the discrete Fourier transform [16]. Then, the
deformation fields are updated as φnew

n = φold
n (x + εvn) using a small step ε.

Finally, the tensor coefficients of the atlas can be updated by also minimizing
the first term in Eq. 3 with respect to the parameters of a positive definite
4th-order tensor using the parametrization in [15].

3.1 Implementation Details

In general, the integral over the sphere in Eq. 5 cannot be computed analytically
when the Cartesian tensor parametrization is used for modeling the diffusivity
function. On the other hand the Riemannian space of ordered n-tuples (see Sec.
2) leads to analytic calculations and therefore we used it in our implementation.
We constructed an m-tuple space by using a set of unit vectors gm m = 1 . . .M
uniformly distributed on the sphere. This set of vectors can be constructed by
tessellating the icosahedron and then projecting the vectors on the unit hemi-
sphere (we consider only a hemisphere due to antipodal symmetry of diffusivity
functions). We use this set of vectors in order to evaluate the spherical functions
In,m = log(d(gm;Dn ◦ φn)), m = 1 . . .M and n = 1 . . .N . This creates N vec-
tor valued images In, whose vectors contain the M elements of the m-tuples. Note
that in this m-tuple space the integrals over the sphere in Eqs. 3 and 5 become
summations over m.

The above discretization helps us also in reducing the time complexity of atlas
computation, which can now be efficiently computed by

dμ(gm) = exp(
1
N

N∑
n=1

log(d(gm;Dn ◦ φn))) (6)

where dμ(gm) is also in the form of a vector valued image, whose vectors contain
M elements. Note that log(d(gm;Dn◦φn)) is an already computed image (In,m),
and therefore there is no need to re-deform the images and re-compute the log
maps. The corresponding driving forces in Eq. 5 are now computed as follows

Fn = −2
M∑

m=1

Lm,n(x)∇In,m +
∑

|y−x|=1

Lm,n(y)
∇Rygmd(gm;Dn(y ◦ φn))

d(gm;Dn(y ◦ φn))
∇Rygm

(7)

where Lm,n = log
(

In,m(x)
d(gm;Dμ(x◦φn))

)
, ∇ In,m is simply the spatial gradient of a

scalar valued image and the second term in Eq. 7 correspond to the gradient
related to the tensor re-orientation. In this term the rotation Ry at location
’y’ can be efficiently computed by the Gram-Schidt algorithm as in [8]. Using
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this orthogonalization technique the components of the rotation matrix are ex-
pressed as functions of the displacement vectors in φn, hence we can easily com-
pute analytic derivatives with the unknown transformation parameters denoted
as ∇Rygm. The computed derivatives are non zero for those voxels ’y’ which
are in the neighborhood of our current voxel ’x’. Furthermore, the gradient of
the tensor with respect to the rotation is given by ∇Rygmd(gm;Dn(y ◦ φn)) =
4
∑

i,j,k D
i,j,k,l
n (y ◦ φn)(Ryg)i(Ryg)j(Ryg)k.

Finally, after the termination of the iterative minimization procedure, the 4th-
order tensor coefficients can be computed by fitting the tensorial model to the
estimated values dμ(gm) using the positive-definite parametrization in [15].

4 Experimental Results

In order to compare the Riemannian metric presented in Sec. 2 with a Euclidean
metric in terms of fiber orientation accuracy of the atlas estimated by each
metric, we performed the following experiment. We synthesized a 2-fiber crossing
DW-MRI dataset (in a single voxel) using the realistic adaptive kernel model
shown in Fig.3 of [17] (81 gradient directions and b = 1250s/mm2). We computed
a 4th-order tensor (shown in Fig. 1 upper left) from the synthetic dataset using
the algorithm in [15]. Then we generated 100 more datasets by applying small
rotations to the simulated crossing and by adding outliers (few of them are shown
in Fig. 1 left). The computed atlases (average tensors) are compared in the bar
chart of Fig. 1. As expected, the Riemannian mean outperforms the Euclidean
mean since the physical space of the data is that of positive-valued functions.

To motivate the use of 4th-order tensors in registering DW-MRI, we also
simulated a fiber crossing dataset and synthesized a deformation field (Fig. 2).
Then we computed the corresponding FA, DTI and 4th-order tensor fields and
their deformed images as well. We registered the obtained datasets using the
scalar image registration method in [3], its DTI modification [10], and the 4th-
order tensor field algorithm in [12] respectively as well as our proposed method.
After that, the displacement field produced by each algorithm was used to warp
the deformed 4th-order tensor field and it was then compared to the ground

Fig. 1. Comparison of the 4th-order tensor atlases computed by various metrics: a)
Euclidean mean, b) Riemannian mean (computed in the space presented in Sec. 2)
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Fig. 2. Comparison of registration methods using a synthetic fiber crossing dataset.
The errors were measured by evaluating Eq. 2 on the whole field (blue).

Fig. 3. Real datasets from hippocampus before and after alignment using our method.
The constructed 4th-order tensor field atlas is shown at the bottom. The field of stan-
dard deviations can show the variations in the dataset.

truth field shown in Fig. 2(left) using Eq. 2. The results demonstrate that our
method produced more accurate mappings and registered successfully the data.

Finally, we computed the 4th-order tensor field atlas from four hippocampal
datasets. Each dataset consists of 21 diffusion-weighted images collected with
a 415 mT/m diffusion gradient (Td =17 ms, δ = 2.4ms, b = 1250 s/mm2).
Figure 3 shows the original misalignment of the corresponding S0 images and
the aligned images after applying our method. The 4th-order tensor field atlas
is depicted at the bottom of this figure and contains all the known structures
of the hippocampal anatomy. The variations in the dataset can be explored by
observing the standard deviation field computed by the proposed Riemannian
metric (shown in an ROI on the bottom left).

5 Conclusions

In this paper we presented a novel groupwise registration and atlas construction
algorithm for DWMRI data sets each of which is represented by a 4th order
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tensor field. To the best of our knowledge, there is no existing literature on this
topic. The key contribution of this work is the definition of a novel metric for
positive valued spherical functions which was then used in the unbiased group-
wise registration and atlas construction. Experimental results on comparisons
with scalar and DTI registration techniques are favourable to our method.
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13. Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical
relationships between dti and hardi. MRM 50(5), 955–965 (2003)

14. Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: DKI:the quantifica-
tion of non-gaussian water diffusion by means of MRI. MRM 53(6), 1432–1440 (2005)

15. Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regular-
ized positive-definite fourth order tensor field estimation from DW-MRI. NeuroIm-
age 45(1 supl. 1), 153–162 (2009)

16. Joshi, S., Grenander, U., Miller, M.I.: On the geometry and shape of brain sub-
manifolds. IJPRAI 11(8), 1317–1343 (1997)

17. Barmpoutis, A., Jian, B., Vemuri, B.C.: Adaptive kernels for multi-fiber reconstruc-
tion. In: IPMI 2009. LNCS, vol. 5636, pp. 338–349. Springer, Heidelberg (2009)



Closed-Form Jensen-Renyi Divergence for
Mixture of Gaussians and Applications to

Group-Wise Shape Registration�

Fei Wang1, Tanveer Syeda-Mahmood1, Baba C. Vemuri2, David Beymer1,
and Anand Rangarajan2

1 IBM Almaden Research Center, San Jose, CA, USA
2 Department of CISE, University of Florida, Gainesville, FL, USA

Abstract. In this paper, we propose a generalized group-wise non-rigid
registration strategy for multiple unlabeled point-sets of unequal cardi-
nality, with no bias toward any of the given point-sets. To quantify the
divergence between the probability distributions – specifically Mixture of
Gaussians – estimated from the given point sets, we use a recently devel-
oped information-theoretic measure called Jensen-Renyi (JR) divergence.
We evaluate a closed-form JR divergence between multiple probabilistic
representations for the general case where the mixture models differ in
variance and the number of components. We derive the analytic gradi-
ent of the divergence measure with respect to the non-rigid registration
parameters, and apply it to numerical optimization of the group-wise
registration, leading to a computationally efficient and accurate algo-
rithm. We validate our approach on synthetic data, and evaluate it on
3D cardiac shapes.

1 Introduction

The non-rigid registration of multiple point sets is a fundamental problem in
medical imaging for atlas generation and disease class representation. In model-
based image segmentation for example, constructing an atlas typically requires
us to bring pre-segmented shapes into alignment. Similarly, registration of hip-
pocampal regions across patients with a given disease helps capture the essential
disease-specific variations of the region. This is particularly relevant for echocar-
diography where a disease-specific understanding of echocardiagraphic sequences
requires accurate characterization of spatio-temporal motion patterns in the echo
videos. The supplemental videos show different patients diagnosed with the same
disease of hypokinesia. The similar motion patterns in the designated cardiac re-
gions can be observed. Simultaneous registration of such videos helps summarize
the motion pattern for a disease class.

Simultaneous registration of such shapes can be a daunting task due to sev-
eral reasons. First, the shapes are deformable requiring non-rigid spatial trans-
formations. Secondly, explicit correspondence through search is computationally
� This research was in part funded by the NIH grant RO1-NS046812 and NSF grant

NSF 0307712.
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prohibitive for such large data sets. Robustness to missing and spurious features
would be desired. Finally, the registration must be unbiased towards any one of
the shapes.

In this paper, we develop a novel non-rigid registration technique for mul-
tiple point-sets based on a recently introduced information theoretic matching
criterion [1] called Jensen-Renyi (JR) divergence. We show that using Renyi’s
Quadratic entropy results in a closed-form solution for the registration problem.
We also derive the analytic gradient of this match measure in order to achieve
efficient and accurate non-rigid registration. The Jensen-Renyi measure is then
minimized over a class of smooth non-rigid transformations expressed in a thin-
plate spline basis. We show the results of our algorithm for the registration of
medical imaging datasets from spatio-temporal cardiac echo videos.

2 Previous Work

The work reported here fits into the general class of approaches that avoid ex-
plicit point correspondences for non-rigid registration through the use of diver-
gence measures between probability distributions formed around point sets[2,3,4].
Specifically, the Jensen-Shannon (JS) divergence and the CDF-based Jensen-
Shannon divergence between the feature point-sets was minimized to obtain the
non-rigid deformation. The density-based approaches are relatively more robust
to the point-sets of different sizes and to the presence of missing features. Fur-
thermore, if an unbiased information theoretic measure is chosen to quantify the
multiple densities representing the shapes, the matching results can potentially
be unbiased to any of the given point-sets [4].

Other related work includes Wang et al. [5], where the relative entropy mea-
sure (Kullback-Leibler divergence) is used to find a similarity transformation
between two point-sets under rigid transformation. In Jian et al. [2] and Roy et
al. [6], nonrigid registration is between pairs of data sets using L2 distance on
a mixture of Gaussians model of the data sets. Both methods, however, have
not been extended to the problem of unbiased simultaneous matching of mul-
tiple point-sets being addressed in this paper. Recently, in [7], Glaunes et al.
represent points as delta functions and match them using the dual norm in a
reproducing kernel Hilbert space. The resulting 3D spatial integral is difficult
to compute numerically. Similarly, the JS divergence proposed earlier [3] was
estimated using the law of large numbers, making it computationally expensive.

In [1], a new divergence measure called the Jensen-Renyi divergence was intro-
duced as a generalization of the Jensen-Shannon divergence being based on Renyi
Entropy [1]. In contrast to the JS divergence used earlier [3], the exponential order
of Renyi entropy as well as the weights to control the measurement sensitivity of
the probability densities can be adjusted in JR divergence. Further, the JR diver-
gence measure enjoys appealing mathematical properties such as convexity and
symmetry, affording a great flexibility in a number of applications [1]. Finally, a
related work by Chiang et al.[8] has used JR divergence for pairwise image match-
ing where contiguity constraints between pixels could be utilized.
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Our approach differs from prior work in many respects. First, we consider a new
problem of simultaneous registration of multiple points sets (rather than multiple
pair-wise registrations). Secondly, we introduce the JR divergence for the point-
sets registration problem and give a closed-form solution to divergence estimation
making it computationally attractive. More importantly, Jensen-Renyi divergence
can be generalized to a family of divergence measures among a group of point-sets,
with JS-divergence being a special case (when α → 1). Finally, our method can
accommodate point-sets to be registered of varying size, and is also robust in the
presence of noise.

3 Multiple Point-Sets Registration Using JR Divergence

3.1 Shape Representation by Mixture of Gaussians

Consider first the representation of probability density of shapes as Mixture of
Gaussian (MoG). Let the N point-sets to be registered be denoted by {X(i), i ∈
{1, ..., N}}. Each point-set X(i) consists of d-dimensional points {x(i)

j ∈ Rd, j ∈
{1, ..., np} }. Each point set is represented by a probability density function Pi.
The features of ith shape X(i) are represented as a Gaussian Mixture
Model

Pi = p(x|θ(i)) =
Ki∑

a=1

ω(i)
a

1

(2π)
d
2 |Σ(i)

a | 12
exp

(
− 1

2
(
x− u(i)

a

)T (Σ(i)
a )−1

(
x − u(i)

a

))

=
Ki∑

a=1

ω(i)
a G(x− u(i)

a , Σ(i)
a )

(1)

where x ∈ Rd, parameter set θ(i) = {ω(i)
a , u

(i)
a , Σ

(i)
a }, and G(x− u

(i)
a , Σ

(i)
a ) is the

Gaussian Kernel in d-dimensional space. Constraints on the MoG weight ω
(i)
a

are {ω(i)
a > 0,

∑Ki

a=1 ω
(i)
a = 1}. Since X

(i)
j are assumed to be i.i.d., the likelihood

of the set of features of X(i) is

p(X(i)|θ(i)) =
Ni∏
j=1

Ki∑
a=1

ω(i)
a G(X(i)

j − u(i)
a , Σ(i)

a ) (2)

For all the shapes, we fit the model parameters θ(i)s by minimizing the neg-
ative log-likelihood objective function in Eqn.(2) w.r.t. the model parameters.
For simplicity, we specialize to the case where the occupancy probabilities are
uniform ω

(i)
a = 1

Ki
and we have isotropic covariance matrix Σ

(i)
a = σ2

i Id for all
the shapes.

The minimization of Eqn.(2) can be easily accomplished using the well-known
EM algorithm for the MoG [9]. This computation is done offline for all the shapes
once we fix the number of centroids Ki. Model selection for mixture models needs
to be performed to fix the number of centroids.
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3.2 A Closed-Form Divergence Measure between Multiple MoGs

We now derive the cohesive measure between the multiple probabilistic shape
representations with the help of the Jensen-Renyi divergence. Please note that
distance measures like Jensen-Shannon [3] cannot be derived in closed form for
the Gaussian mixture model.

The Jensen-Renyi divergence [1] between probability density functions is de-
fined as:

JRπ(P1, P2, ..., PN ) = Hα(
∑

πiPi) −
∑

πiHα(Pi), (3)

where π = {π1, π2, ..., πn|πi > 0,
∑

πi = 1} are the weights of the probability
distributions Pi, Hα(X) is Renyi entropy of order α, α ≥ 0 defined on a random
variable X and is given by Hα(X) = 1

1−α log(
∑n

i=1 p
α
i ), where pi are the proba-

bilities of x1, x2, ..., xn. Note that Renyi entropy is a generalization of Shannon
entropy, since limα−>1 Hα = HS , and HS is Shannon entropy of the same ran-
dom variable. Thus Jensen-Shannon divergence is a special case of Jensen-Renyi
divergence when α → 1. In the definition of the α-Renyi Entropy, when α = 2,
H2 = − log(

∑n
i=1 p

2
i ) is called quadratic entropy. We now show that in the case of

quadratic entropy (α = 2), there exists a closed-form solution to the estimation
of JR divergence between multiple MoGs, i.e. JR(p(x|θ(1)), . . . , p(x|θ(N))).

Given a Gaussian mixture model p̂V (x) =
∑N

i=1 ωiG(x − vi, σ
2I), where vi

and σ2I are the centroids and covariance matrix respectively, unlike Shannon
entropy, Renyi’s quadratic entropy has a closed form for MoGs

H2(V ) = − log
∫ +∞

−∞
p̂V (x)2dx = − log

[ N∑
j=1

∫ +∞

−∞
ωiωjG(x − vi, σ

2I)

G(x − vj , σ
2I)dx

]
= − log

[ N∑
i=1

N∑
j=1

ωiωjG(vi − vj , 2σ2I)
]
,

(4)

where vi ∈ R
d and vj ∈ R

d are two centroids, and Σi and Σj are two covari-
ance matrices for two Gaussian kernels in the space. Substituting the value of
quadratic entropy in Eqn.(3) for the MoG of each shape expressed in Eqn.(1), we
get an estimate for the quadratic entropy of each individual probabilistic shape
representation

H2(Pi) = − log
[ 1
K2

i

Ki∑
k=1

Ki∑
l=1

G(u(i)
k − u

(i)
l , 2σ2

i I)
]
. (5)

For the convex combination
∑

πiPi, if we choose πi = Ki

M , where M =
∑

i Ki is
the total number of the centroids in all shapes, we have the following,

N∑
i=1

πiPi =
1
M

N∑
i=1

Ki∑
a=1

G(x − u(i)
a ), σ2

i I) =
1
M

M∑
j=1

G(x − uj , σ
2
τ(j)I) (6)

where {u1, u2, ..., uM} ≡ {u1
1, ..., u

i
j , ..., u

N
KN

} are the pooled centroids, τ :
{1, ...,M} → {1, ..., N} is a mapping function that maps the index of an in-
dividual point to the index of the point-set. Therefore the linear combination
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of the MoGs can be expressed as a single Gaussian Mixture centered on the
pooled centroids. Consequently, we have the quadratic entropy estimation of the∑

πiPi,

H2(
N∑

i=1

πiPi) = − log
[ 1
M2

M∑
i=1

M∑
j=1

G(ui − uj , (σ2
τ(i) + σ2

τ(j))I)
]

(7)

Combining the two terms in Eqn.(5) and (7) together, we have the closed-form
JR-divergence for multiple MoGs,

JRπ(P1, P2, ..., PN) = H2(
∑

πiPi) −
∑

πiH2(Pi) = − log
[ 1
M2

M∑
i=1

M∑
j=1

G(ui − uj , (σ2
τ(i) + σ2

τ(j))I)
]

+
N∑

i=1

Ki

M
log
[ 1
K2

i

Ki∑
k=1

Ki∑
l=1

G(ui
k − ui

l, 2σ2
i I)
] (8)

The JR divergence can be further simplified using matrix notation. Let us in-
troduce a Gaussian kernel matrix G with Gij = G(ui− uj, (σ2

τ(i) +σ2
τ(j))I), and

define an indicator vectors Ia (of length M) for ath point-set, i.e. Ia(i) = 1 if ui

is from the ath point-set, i.e. τ(i) = a. IM is the vector whose elements are all
ones. Eqn. (8) can be rewritten as

JRπ(P1, P2, ..., PN ) = − log
IT

MGIM

M2
+
∑

i

Ki

M
log

IT
i GIi

K2
i

(9)

This is the final expression for the distance function used in this paper. The
number of centroids and the variances of each shape can be different.

3.3 Cost Function Optimization

We now turn to the description of the deformation model. We assume that pa-
rameters of each shape θ(i) = {u(i), σi} (comprising the centroids and variance)
are simultaneously deforming until the JR divergence between {p(x|θ(i)), i ∈
{1, . . . , N}} are minimized. We use the familiar thin-plate spline (TPS) defor-
mation model for the centroids, for which we refer the readers to [3] for more
details. In addition a regularization term is added to JR divergence to prevent
reflections and unphysical affine transformations.

Based on Eqn.(9), we can derive the gradient of the JR divergence with respect
to the transformation parameters μ(a), which is given by,

∂JR

∂μa
= −

IT
M

∂G
∂μa IM

IT
MGIM

+
N∑

i=1

Ki

M

IT
i

∂G
∂μa Ii

IT
i GIi

(10)

The details of the derivation are omitted due to space limitations. Once we have
the analytical gradient, the cost function optimization is achieved very efficiently
using a quasi-Newton method. The variance parameters σi are updated sepa-
rately from the remaining parameters and are not allowed to abruptly change.
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4 Results

We now present experimental results on both synthetic and real data sets. We
first demonstrate the robustness and accuracy that can be achieved in registra-
tion with JR divergence in comparison to Jensen-Shannon divergence reported
in an earlier work. We then report results of registration on data sets drawing
from cardiac imaging.

4.1 Robustness to Noise and Outliers

Our approach to validation is based on comparing the recovered transformation
parameters against the true (synthetically generated) parameters for a randomly
generated 2D point-setM (consisting of 300 points). A rigid transformation is ap-
plied to the point-setM to obtain a transformed point-set S, and we then remove
50% of the points in S to get a reduced set and this is done so that the two mixture
densities have a large discrepancy in the number of centroids. We then execute the
registration at 30 different noise trials for each different rigid transformation. For
each pair of point-sets, we use our algorithm and the Jensen-Shannon method to es-
timate the known rigid transformation which was partially responsible for the cor-
ruption. Results show that our method exhibits stronger resistance to noise than
the JS method, as shown in Table 1. Furthermore, the average running time for all
synthetic examples is 2.39s in our method compared with 3.96s in the JS algorithm
(single core, 1.66 GHz processor, both algorithms are implemented in Matlab).

Table 1. Robustness test in the presence of large noise

JR improvement over JS outlier fraction (τ − ρ)/(ρ)
in R, t estimation (%) 0.1 0.2 0.3 0.4 0.5

rotation R improvement (%) 11.23% 13.57% 4.36% 27.91% 14.90%
translation t improvement (%) 5.26% 7.24% 3.55% -3.53% 13.83%

4.2 Evaluation on 3D Shapes from Cardiac Echo Videos

Next, we presents results over 3D shapes extracted from cardiac echo videos.
Specifically, cardiologists from hospitals in India provided us echo videos of pa-
tients with various diseases, which depicted over 500 heart beat cycles chosen
from over 50 patients with a number of cardiac diseases including myocardial
infarction, cardiomyopathy, mitral regurgitation, and regional wall motion ab-
normality etc. For each disease class, we collected videos depicting similar views
(short axis, long axis, four chamber views). An Active Shape Model (ASM) was
used to characterize each such view as described in [10]. Feature points corre-
sponding to identifiable landmarks on heart wall boundaries were automatically
extracted and tracked [10] to obtain a 3D point set.

We showcase results on 3D shapes of Parasternal Long Axis (PLA) views from
five different patients, which are formed by stacking together the points from all
frames of a single cycle, and the time axis is normalized for each echocardiogram
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Fig. 1. Illustration of echo feature points extracted from echo video of the Parasternal
Long Axis (PLA) view
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Fig. 2. Experiment results on five 3D echocardiogram point-sets. (see text for details).
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Fig. 3. Within different cardiac diseases, registration variance is lower with our JR
approach compared with JS, showing we achieve a better overall registration

video with respect to the heart beat of the patient (Fig. 1). As shown in Fig. 2, the
recovered deformation between each point-set (blue) and the mean shape (red) are
superimposed on the first row and the left image in second row in Figure 2. The
scatter plot of the five point-sets before and after registration results are shown
in second and third image of the second row of Figure 2. The registration results
generated using Jensen-Shannon is shown in the lower-right for comparison, from
which we can observe that the results generated using our algorithm exhibits more
similarity than the JS approach. As we described earlier, all these results are
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computed simultaneously and automatically. This example demonstrates that our
matching algorithm can simultaneously align multiple shapes even though the in-
formation on point correspondences is not in anyway available.

The advantage of JR over JS in registering point sets also exists within disease
categories. In Fig. 3, we show the remaining point variance after registration of
videos from a number of diseases: regional wall motion abnormality (RWMA),
mitral regurgitation (MR), and myocardial infarction (MI). For all diseases, the
JR variance is lower than the corresponding JS variance, showing that JR per-
forms a superior registration of the point sets.

5 Conclusions
In this paper, we presented a novel and robust algorithm that utilizes an infor-
mation theoretic measure, namely Jensen-Renyi divergence, to simultaneously
register multiple unlabeled point-sets. Using the quadratic form of Renyi entropy,
we have shown that it is possible to obtain a closed-form solution to the non-rigid
registration problem leading to computational efficiency in registration. While
we used Gaussian kernels to represent the probability density of point sets, the
formalism holds for other kernels as well. Experiments were depicted with both
2D and 3D point sets from medical and non-medical domains. Future work will
focus on generalizing the non-rigid deformations to diffeomorphic mappings.
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Abstract. Groupwise registration has been recently introduced for simultaneous 
registration of a group of images with the goal of constructing an unbiased at-
las. To this end, direct application of information-theoretic entropy measures on 
image intensity has achieved various successes. However, simplistic voxelwise 
utilization of image intensity often neglects important contextual information, 
which can be provided by more comprehensive geometric and statistical fea-
tures. In this paper, we employ attribute vectors, instead of image intensities, to 
guide groupwise registration. In particular, for each voxel, the attribute vector is 
computed from its multiple-scale neighborhoods to capture geometric informa-
tion at different scales. Moreover, the probability density function (PDF) of 
each attribute in the vector is then estimated from the local neighborhood, pro-
viding a statistical summary of the underlying anatomical structure. For the 
purpose of registration, Jensen-Shannon (JS) divergence is used to measure the 
PDF dissimilarity of each attribute at corresponding locations of different indi-
vidual images. By minimizing the overall JS divergence in the whole image 
space and estimating the deformation field of each image simultaneously, we 
can eventually register all images and build an unbiased atlas. Experimental re-
sults indicate that our method yields better registration quality, compared with a 
popular groupwise registration method. 

1   Introduction 

Image registration has been one of the focuses in medical imaging research for dec-
ades. It is a key step for many medical image analysis based applications, since inter-
subject comparison cannot be performed without first normalizing all images onto a 
common space. To this end, though a lot of methods have been reported, most of 
them are, however, pairwise in nature, where a floating image is warped to the space 
of a fixed image. When pairwise approaches are directly applied to a population of 
images, one subject needs to be selected in advance as the fixed image, to which all 
other images can be registered. This manual determination inevitably biases the regis-
tration and also subsequent analysis. In light of this, recently proposed groupwise 
registration algorithms consider the image population as a whole, by simultaneously 
deforming all individual images impartially, with the final goal of constructing an 
atlas which describes the population in an unbiased manner [1][2]. Inferences drawn 
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using an unbiased atlas can be expected to be more objective, and reflect more accu-
rately the population characteristics.  

Several groupwise registration methods have been proposed in literature. Joshi et 
al. [3] extends a large deformation diffeomorphic mapping algorithm [4] to work in a 
groupwise manner for unbiased atlas construction. A congealing framework [5] based 
groupwise registration scheme is proposed in [6], where intensity based entropy 
drives a gradient-based stochastic optimizer and pushes each image to the population 
center simultaneously. This method, which originally works for affine transformation 
only, is further extended by Balci et al. [7] to incorporate B-Splines to model non-
rigid deformation. The objective function, called stack entropy in [6] and [7], meas-
ures the compactness of the intensity distribution for a certain voxel location across 
different subjects. Similar to the popular entropy based metrics used in pairwise regis-
tration (e.g., mutual information [8][9]), the current formulation of stack entropy 
considers image intensity as the only feature, and discards local contextual informa-
tion that can be provided by the voxel neighborhood. Moreover, each voxel contrib-
utes equally to the metric, regardless of its anatomical properties.  

In this paper, we propose a novel groupwise registration algorithm, which utilizes 
multi-scale attribute vectors, rather than only image intensities, as feature descriptors. 
To better capture the variability of each attribute in the attribute vector, its probability 
density function (PDF) is further estimated from the neighborhood. Then, the registra-
tion algorithm aims to minimize the overall PDF divergence of attribute vectors at 
each corresponding location across different images. Finally, all the images are 
groupwisely registered onto a common group mean. Experimental results indicate that 
our method yields better registration quality and outperforms Balci’s method [7]. 

2   Method 

Multi-scale attribute vectors are used as voxel anatomical signatures to guide group-
wise registration. For a given voxel location, the probability density function (PDF) of 
each attribute in the vector is estimated from the neighborhood of the voxel. The ob-
jective of our groupwise registration is then to minimize the overall PDF divergence 
of the whole attribute vector, across different subjects, and for each voxel location. 
The final result is the registration of all images onto a common space defined by the 
estimated atlas. We will describe our method in more details in the following sections. 

2.1   Attribute Vectors and Their Statistical Descriptions 

In medical image analysis, it is important to build anatomical models that take into 
account the underlying anatomy, rather than only the similarity of image intensities. 
Moreover, brain images have intrinsically high anatomical variation, and hence more 
complex descriptors are needed to fully exploit the structural information. This moti-
vates the utilization of more descriptive features, which take into consideration the 
different shapes and sizes of anatomical details. 

Attribute vectors can capture rich anatomical information, and have been success-
fully applied to achieve accurate pairwise registration [10]. The composition of the  
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Fig. 1. Attribute vectors at the voxel location. Attribute vectors at the same corresponding 
location across all subjects form an attribute stack. PDF vectors and PDF stacks are further 
produced, providing statistical descriptions of attributes in the neighborhood of voxel. 

attribute vector is quite flexible and can be easily fine-tuned to cater for different 

applications. As shown in Fig. 1, we formulate an attribute vector at voxel location  

of the -th image as , where D denotes the number of attributes 
in the vector. Each attribute  is a scalar and describes a specific feature, which 
can constitute the voxel intensity, and also more contextual features such as gradient 
and directional derivatives. It is, however, worth noting that if the attribute is derived 
from only a single voxel, the attribute vector can be susceptible to imaging noise and 
anatomical ambiguity. A better approach is to include attributes which describe con-
textual information of each voxel by considering its neighborhood. Attributes as such 
are more robust to imaging noise and can be expected to improve the robustness of 
the registration. Attributes at the same location across all the subjects then form an 
attribute stack (as shown in Fig. 1), and we note here that the attribute vectors are 
always compared stack-wise.  

The optimal composition of attribute vectors is related to the specific application. 
Though complicated features could bring potential benefits to groupwise registration, 
simple attributes can greatly save computational time, which is critical to groupwise 
registration where many images need to be handled simultaneously. Therefore, in our 
study here, only intensities and gradients (calculated in multiple-scale neighborhoods) 
are used to form the attribute vector, though more complex attributes (i.e., moments 
[10]) can be incorporated in future. It is demonstrated in the following experiments 
that sufficiently good performance can be achieved via simple attribute vectors. 

To increase the robustness of groupwise registration, a statistical description, in the 
form of PDF, is estimated for each voxel by considering its neighborhood. And for 
each attribute vector, we define its corresponding PDF vector. A simple but effective 
means of estimating PDF ,  where   is a random variable, for the attribute 

, is by evaluating the histograms of neighboring attribute values around the voxel 
location . A Gaussian kernel is then used to smooth the histogram. With the PDFs 
estimated for all attributes in the attribute vector, we can define the PDF vector as 

,  elements of which now replace roles of scalar attributes 
 in the groupwise registration. 
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2.2   Jensen-Shannon Divergence and PDF Stack Divergence 

Jensen-Shannon (JS) divergence [11] is an information-theoretic quantity for measur-
ing the dissimilarity or the distance of two probability distributions. JS divergence 
was later adopted in [12] for groupwise registration of different point sets. The  
approach taken was based on the global PDF of each point set. We take a different 
approach by applying JS divergence on local PDFs, instead on a single global distri-
bution. Noting that the PDF stack for the j-th attribute at the location  of N different 
images is ,  then, the local JS divergence for the PDF stack, or 
PDF stack divergence, can be written as: 

 

(1) 

where   is the Shannon entropy with respect to random variable , and each 
individual image is weighted with equal prior ( ⁄ ). By rewriting (1) as: 

∑ ⁄
 

(2) 

we can observe that the local JS divergence for a specific PDF stack measures the 

variation of the PDFs from the mean PDF, obtained by averaging the PDFs across  
different subjects.  

2.3   Overall JS Divergence 

We then formulate the overall JS divergence based on all local PDF stack diver-
gences. It is worth noting that different attributes in the vector are usually orthogonal 
(e.g. different directional derivatives) or statistically independent (e.g. intensity and 
gradient). To ensure measurements of local PDF stack divergences at different loca-
tions are minimally correlated, the locations for consideration are randomly and 
sparsely sampled from the image space. Therefore, the overall JS divergence, as the 
objective function of our groupwise registration algorithm, can be represented by the 
linear combination of PDF stack divergences of all attributes and all voxel locations 
in the image volume, that is: 

 
(3) 

where  is the empirically determined weighting factor for the j-th attribute and 
complies to ∑ . Suppose   represents the new location transformed from  
for the i-th image ( ), groupwise registration is achieved by minimizing 
the overall JS divergence in (3) through a gradient based optimization approach, fol-
lowing: 

 
(4) 
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Generally, the optimization framework similar to [7] can be adopted. The B-Spline 
deformation model is employed in our method to represent the spatial deformation 

fields . The optimizer will simultaneously estimate individual transformations for 
all images, through minimizing Equation (3). The mean identity transformation con-
straint is enforced to solve the global drift issue. To avoid local minima, which are quite 
prone to happen in a high degrees-of-freedom (DOF) optimization problem, a multi-
resolution strategy is employed. The attribute vectors and their corresponding PDF 
vectors are computed at different scales. At a coarser level, the optimization problem is 
effectively reduced to a lower DOF version, and many local minima can be avoided. 
The registration is progressively refined as the finer resolutions are considered. 

3   Experimental Results 

We have employed the NA0 Database [13] to demonstrate the capability of our 
method. In the dataset, there are 16 individual brain MR images, each of which has 32 
manual anatomical labels. Balci’s method [7] is used as a benchmark since it is open-
source and is freely available in ITK. Also, it is worth mentioning that our method is 
implemented by modifying Balci’s method in ITK, so that the improvement yielded 
by the utilization of attribute vectors can be quantified. For fair comparison, we use 
the same multi-resolution registration strategy (three resolutions) and the same con-
figuration (DOF of transformations and number of iterations) for both Balci’s method 
and our method. After groupwise registration, all aligned images are averaged vox-
elwise to form the group mean which defines a common space.  

To quantify the performance, we calculate the intensity residual errors between 16 
aligned images and their group mean. Then, an averaged standard deviation volume for 
the 16 images is produced. In Fig. 2 (a) and (b), same slices of the residual error volumes 
are shown at different resolutions for visual comparison. Results yielded by our method 
are generally darker, especially in areas marked by the ovals, implying lower residual 
errors. It is worth noting that higher residual errors are more likely to happen near the 
cortical region, where the inter-subject anatomical variability is generally higher. Lower 
residual errors usually mean that images are better aligned, and imply higher registration 
accuracy. The distributions of the residual errors are also shown in Fig. 2 (c). Unsurpris-
ingly, our method yields a distribution with peaks moved closer to zero. In fact, the aver-
age of residual errors provided by our method is 3.56% lower than that of Balci’s method. 
Given that the same number of iterations and similar computation time is used, the im-
provement brought about by our method in terms of residual errors is attractive. 

The ability to establish correspondences of the same anatomical structures from 
different brains is essential for consistent groupwise registration. We can quantita-
tively measure this by utilizing the estimated transformation for each image to warp 
the manually delineated anatomical labels to the common space, and then compare the 
overlap rates of these labels. The overlap rate utilized here is the Jaccard coefficient, 
which is defined as the ratio between the size of the region of intersection to the size 
of the regional union of a registered image and the mean image. In Fig. 3, we provide 
the average overlap rates for all 32 labels, produced via Balci’s method and our 
method, respectively. Our method shows improvement in all 32 labels, with an aver-
age of 2.45% increase, implying that more consistent correspondence matching can be 
achieved using our method. 
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Fig. 2. Comparison of residual errors after groupwise registration via two different methods. (a) 
and (b): Our method (blue) produces lower errors than Balci’s method (red), (c): The distribu-
tions of residual errors yielded by the two methods. 
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Fig. 3. Our method produces higher overlap rates than Balci’s method in all 32 labels. The 
green bars represent the percentage of improvement by our method, relative to Balci’s method. 
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Fig. 4. Corresponding slices are selected from the images registered via Balci’s method (a) and 
our method (b), respectively. Ventricles in row (b) are more similar to each other than those in 
row (a), especially for the locations indicated by arrows. 

Furthermore, our method could better align anatomical structures in groupwise reg-
istration. For example, as shown in Fig. 4, we provide the same slices of 6 images 
selected from previously registered 16 images. The rows of (a) and (b) in Fig. 4 show 
the results produced via Balci’s method and our method, respectively. As indicated by 
arrows, images registered by our method are much consistent than those yielded by 
Balci’s method. In particular, ventricles in row (b) are more similar to each other than 
those in row (a). 

4   Conclusion 

In this paper, we have presented a novel groupwise registration method. Our method 
employs attribute vectors as anatomical signatures of voxels. We then estimate the 
PDF of each attribute at a certain voxel location from its neighborhood. Across differ-
ent images, the dissimilarity of the PDF stack is further measured by the JS diver-
gence. We can finally achieve groupwise registration by minimizing the overall JS 
divergence in a multi-resolution manner. Experimental results indicate that our 
method can yield better registration results than Balci’s method, using the same im-
plementation freely available in ITK. 
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Abstract. The construction and application of statistical models of de-
formations based on non-rigid image registration methods have gained
recent popularity. This paper presents the application of such a model to
restricting a general-purpose registration algorithm to anatomically plau-
sible solutions. Specifically, the Morphon registration method is used for
atlas-based segmentation of bone scintigraphy images. From a training
set of 734 images, a model of characteristic deformation fields is built
and used for regularizing the registration of 113 test images. Results
show that around 300 training images and 30 principal modes are suffi-
cient for building a useful model. The segmentation succeeded in 106 of
113 test images.

1 Introduction

Accurate segmentation of bone scintigraphy images is a prerequisite for localiz-
ing and quantifying skeletal metastatic disease. Disease extent is an important
prognostic indicator of survival longevity [1]. Automating the segmentation and
the subsequent chain of analysis may both increase effectiveness and objectivity
of the clinical investigation. In this paper, we describe and apply a modified ver-
sion of the Morphon [2] algorithm for aligning a segmented atlas image to patient
images. The principal modification pertains to the regularization of the vector
field of deformations obtained during each iteration. To guide the registration to-
wards anatomically plausible solutions, the deformation field is constrained with
respect to a statistical deformation model [3] (SDM) built from examples. Previ-
ous reports on such models regarded small sets of examples and high-dimensional
volumetric data [3,4]. Here, we focus on data of limited dimensionality and a rel-
atively large training set to enable the investigation of the relations between
model dimensionality, training set size, and generalization ability. The perfor-
mance of the modified Morphon is measured from the segmentation of a test set
of images.

The Morphon registration algorithm was devised by Knutsson and Anders-
son [2]. Petterson et al. [5] present an application of the Morphon to the segmen-
tation of the pelvis from CT images. The term and concept of SDMs are due to
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Rueckert et al. [3]. SDMs have been applied directly to registration by optimiza-
tion in the space of principal components [6,7,4], for the automatic construction
of shape models [8,9] and for interpretation [10].

2 Method

This section presents a review of the Morphon method for image registration
along with proposed modifications. Where applicable, we follow the nomencla-
ture of Knutsson et al [2]. Image dimensionality is denoted by pd while p is the
number of image elements (pixels or voxels) and n is the number of images (sub-
jects). The images studied in this paper are two-dimensional (pd = 2), however,
the discussed methodology applies to images of arbitrary dimensionality.

The Morphon method follows an iterative scheme where local image defor-
mations are used to deform a source image with the aim of bringing it into
successively closer correspondence with a target image. Instead of directly opti-
mizing an image similarity measure, each Morphon iteration attempts to mitigate
differences in location on a per-image element basis, subject to constraints on
the irregularity of the resulting deformation field; a process which implicitly in-
creases image similarity in successful cases. Each iteration consists of four steps;
deformation of the source image according to the current accumulated deforma-
tion field, estimation of a new deformation field, deformation field regularization,
and the addition of the regularized deformation field to the accumulated field.
Each of these steps will be described briefly below.

Image Deformation. Each iteration starts with the deformation of the source
image according to the current accumulated field (see below). This deformation
is carried out using standard image warping techniques.

Deformation Field Estimation. A new deformation field is estimated from
measurements of local phase differences between the deformed source image and
the target image. Image phase is estimated using complex filters sensitive to
intensity ridges, valleys and edges in a particular direction. A set of nf filters
(here, nf = 4) are created to cover equally spaced directions on the unit circle.
The complex filter response of each filter is separated into phase and magnitude
components. The phase difference between the deformed source and target im-
ages at a particular element is proportional to the displacement of the element
in the source image relative the target image. The magnitude of the response
provides a measure of the certainty of the displacement. Using the filter direc-
tions as predictor variables and the estimated phase difference as the response,
the deformation vector corresponding to an image element can determined by
weighted least squares,

argmin
v

nf∑
i=1

ci(nT
i v − di)2, (1)
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where v is the pd × 1 deformation vector to be estimated, ni is the direction of
the ith filter, and di and ci are the ditto phase response difference and magni-
tude respectively. Solving this equation for all image elements yields an initial
deformation field estimate. We propose to augment Equation 1 to enable the
registration of multi-band images such as RGB color images and multi-spectral
and multi-modality images, where several images are acquired simultaneously
and in correspondence. Bone scintigraphy is such an image type, as there are
two corresponding images per patient, one anterior and one posterior. In such
cases, the task is to determine a single deformation field from multiple images.
Equation 1 can be augmented to include the additional information provided by
several images in the following manner,

arg min
v

nb∑
j=1

nf∑
i=1

ci,j(nT
i,jv − di,j)2, (2)

where nb is the number of corresponding images (bands). This makes the size
of the system nfnb × pd instead of nf × pd. The effect of this is that v can be
determined based on more data, weighted by the certainty at each element, band
and direction.

Deformation Field Regularization. The deformation field estimation nei-
ther models spatial dependencies among the deformation vectors nor enforces
smoothness. Instead, this is incorporated in a subsequent regularization step on
which much of this paper focuses. The Morphon method suggests a filtering ap-
proach known as normalized averaging resulting in elastic deformations [2,11].
Each component matrix of the deformation field is convolved with a Gaus-
sian kernel. To increase robustness, the certainties are included which allow
more certain deformations to have higher influence on the averaging at each
element. Let the matrix d denote a component (e.g. the x-values) of the de-
formation field. Then, the regularized deformation field component is obtained
by,

delastic
reg =

(c* d) ∗ g
c ∗ g

, (3)

where g is a low-pass Gaussian filter kernel, ∗ is a convolution operator and *
is the Hadamard (element-wise) product operator. This procedure is carried out
separately for all components.

During the first stages of the registration process, it may be beneficial to
regularize the deformations further. We do this by projecting the deformation
coordinates onto an affine basis in a weighted least-squares sense using the cer-
tainties as weights.

Deformation Field Accumulation. The obtained regularized deformation
field is added to the total deformation field describing the transform from the
original source image to the target. The certainties influence this accumulation
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such that less certain deformations affect the the total field less than more cer-
tain counterparts. The accumulated field components da and the accumulated
certainties ca are updated in each iteration according to

da =
ca * da + c* (da + d)

ca + c
and ca =

c2
a + c2

ca + c
. (4)

We will now turn to a description of the proposed alternative to normalized
averaging for displacement field regularization.

2.1 Building a Model of Characteristic Deformations

Using the described registration method we created an intensity-based atlas
from ten bone scintigraphy images of normal subjects. The atlas was created
as outlined in [12], where all subjects are registered to an arbitrary member of
the normal group. The average deformation field is then calculated and used to
transform all subjects to the common average anatomy. To decrease the bias
from choosing a particular member as reference, the process is repeated with
the estimated average anatomy and intensity as reference. The atlas was seg-
mented into 31 anatomical regions by a medical expert. When registering an
unknown bone image to this atlas, the atlas segmentation can be transformed
using the inverse of the resulting deformation field, providing a segmentation of
the unknown image.

We successfully registered 734 bone images to this atlas, resulting in equally
many deformation fields. Affine transformation components were factored out,
leaving a set of fields describing the non-rigid differences between each sub-
ject and the atlas. Each field was reshaped into a single row vector, e.g. as
[x1 . . . xp y1 . . . yp] and put in a mean centered data matrix X of size n×pdp. Per-
forming a principal component analysis (PCA) on these data amounts to finding
and orthogonal matrix L and a diagonal matrix D such that n−1XT XL = LD.
However, as p >> n for most SDMs, the computation of the pdp × pdp covari-
ance matrix n−1XT X becomes difficult. The principal components and their
variances can instead be obtained by

L =
1√
n
XT L̂D̂

− 1
2 , D = D̂, (5)

where L̂ and D̂ are the eigenvectors and eigenvalues respectively of the smaller
n× n matrix n−1XXT .

The deformation fields are defined on a rectangular grid of which only part is
occupied by the object of interest, the skeleton. The decomposition of the defor-
mation field data can be done as suggested above, but much of the model dimen-
sionality will be spent on describing deformations which occur outside the skele-
ton. This can be alleviated by performing an importance-weighted PCA [13]. We
used the mean certainty map calculated from all 734 training images as weights
and put them (repeated pd times) in a diagonal matrix W. The decomposition
can then be performed as above using the weighted data set X̃ = XW.
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2.2 Model-Based Regularization of Deformation Fields

Regularization using normalized averaging is general in the sense that it allows
any transformation with sufficient smoothness. Many such transformations lead
to anatomically implausible solutions. Regularization can instead be provided by
the model of characteristic transformations from Equation 5. The regularization
consists of a projection of the obtained deformation field d (here represented by
a length pdp column vector) onto a rank k subspace by

dSDM
reg = W−1LkLT

k W(d− daffine) + daffine, (6)

where Lk consists of the k columns of L corresponding to the k largest eigenvalues
and daffine is the affine component of d.

3 Results

To determine whether the given number of training images is sufficient for build-
ing a model that is general enough for segmenting unseen images, we performed
two studies. The first is a five-fold cross-validation study measuring the dis-
crepancy between the ”true” deformation fields as given by standard Morphon
segmentation of the 734 training set cases and the model approximation of
the corresponding fields. The error measure was s−1∑s

i=1 ‖di − dSDM
i(reg)‖2 where

s = +734/5, is the number of images in the test fold. This measure was eval-
uated for an increasing number of modes and for eight data set sizes; n = 50,
148, 245, 343, 441, 539, 636 and 794. We also evaluated the measure without
cross-validation, i.e. directly on the training data. Figure 1(a) shows the resulting
eight cross-validation error curves and the training error curve. From a computa-
tional viewpoint, cross-validation is impractical for high-dimensional data sets;
the study presented here took days to compute. A less demanding alternative is
to, as is customary, assume that the relevant modes explain e.g. 95 % of the total
variation. Focusing on the eigenvalues of submatrices of the ”small” covariance
matrix, we plot the number of modes necessary to explain a certain fraction of
the total variance given a data set size. Figure 1(b) shows this plot for fractions
90 %, 95 %, 97 % and 99 %. The model size saturate at around 30 modes and
300 training images. The cross-validation study also shows scant improvement
for models built from more that 300 images, but seems to suggest a larger model
(around 100 modes). Parallel analysis [14] performed on repetitions of permuted
variables and all 734 images suggested 27 modes. Based on this information and
favoring a more compact model, we chose a model of 30 modes built from all
734 images for the subsequent analysis.

Both the standard Morphon registration and the SDM-regularized registration
were initiated with an affine alignment to account for gross differences. The SDM
registration was then regularized using an increasing number of modes; 1, 2, 5, 10,
and finally 30. The algorithm was run for a fixed number of iterations (typically
5) for each of these regularization options. This proved sufficient for convergence.
The SDM algorithm was run on a test set of 113 unique images/patients. Visual
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Fig. 1. Curves for determining model dimensionality and the smallest training set size
for which the addition of more training examples does not lead to a more general model.
Both graphs indicate that models built from around 300 examples are sufficiently gen-
eral, but cross-validation suggests models of higher dimensionality than the analysis of
the principal component variances.

inspection yielded 7 failures, 6 with minor registration errors and 1 with more
pronounced errors. The standard algorithm, which already had proven its value
by succeeding in 734 of 795 training images, failed in 10 cases from the test set,
8 and 2 with minor and major errors respectively.

4 Discussion

Figure 2 shows the atlas with the manually defined segmentation superimposed
along with examples of images where SDM regularization managed to guide the
registration to a better segmentation than normalized averaging regularization.
Example 1 shows a patient with a leg prosthesis which is not detected on scintig-
raphy images. SDM regularization leads to a more plausible segmentation in this
region compared to standard regularization. The right arm is also better delin-
eated with SDM regularization in this example. Example 2 shows an example
where the skull segmentation was placed relatively far from from the actual skull
after affine alignment. SDM regularization manages to preserve the skull shape
and guide the segmentation into place while standard regularization leads to
a smearing of the skull segmentation such that only part of the delineation is
correct. The choice of incorporating a maximum of 30 modes for regularization
was sufficient for obtaining accurate registrations on the test images. Raising
this number to 100 as suggested by Figure 1(a) neither improved nor over-fitted
the adjusted model to a significant extent.

The segmentation failure rates for SDM versus standard regularization sug-
gests that performance is comparable between the methods. Often, the failures
occurred for different patients, suggesting SDM regularization as a complement
— rather than as a replacement — to normalized averaging.
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Atlas Ex. 1 Ex. 1 SDM Ex. 2 Ex. 2 SDM

Anterior

Posterior

Fig. 2. Anterior and posterior bone scintigraphy images with the segmentation su-
perimposed. The first column shows the atlas with the manually drawn segmentation.
Columns 2 and 3 show example results from registering the atlas to a patient image us-
ing normalized averaging and SDM regularization respectively. Columns 4 and 5 show
another example.

The Morphon registration method is based mainly on convolutions. Optimiz-
ing the algorithm for speed therefore amounts to creating an efficient convolution
procedure. The registration of one patient containing one anterior and one pos-
terior image took roughly 5-10 seconds in our Java implementation, for both
normalized averaging and SDM regularization. The computational complexity
for these regularization options is O(lp) and O(kp) respectively, where l is the
size of the (1-D) regularization kernel and k is the number of modes.

The choice of decomposing the deformation data by an importance-weighted
PCA had a large impact on model compactness. Performing a standard PCA
lead to a model which required 73 modes to cover 95 % of the variation while
parallel analysis suggested 54 modes. The graphical method from Figure 1(b)
suggested around 70 modes calculated from at least 500 training images, however,
the curves did not flatten out as evidently as for the weighted decomposition.
In general, our impression is that the permeating use of the certainty matrix in
the Morphon algorithm makes a difference and sets it apart from other optical
flow-type algorithms for registration.

In studies to come, we wish to investigate the possibility of using the de-
scribed method for registering volumetric image data. Previous reports on SDMs
have presented preliminary results on this [7,4]. However, in light of the results
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presented here, the outlook of gathering enough data for building a sufficiently
general model seems bleak for such complex data sets.
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Abstract. In this paper we propose a novel framework to unite a population to an
optimal (unknown) pose through their mutual deformation. The registration cri-
terion comprises three terms, the first imposes compactness on appearance of the
registered population at the pixel level, the second tries to minimize the individual
distances between all possible pairs of images, while the last is a regularization
one imposing smoothness on the deformation fields. The problem is reformulated
as a graphical model that consists of hidden (deformation fields) and observed
variables (intensities). A novel deformation grid-based scheme is proposed that
guarantees the diffeomorphism of the deformation and is computationally favor-
ably compared to standard deformation methods. Towards addressing important
deformations we propose a compositional approach where the deformations are
recovered through the sub-optimal solutions of successive discrete MRFs by us-
ing efficient linear programming. Promising experimental results using real 2D
data demonstrate the potentials of our approach.

1 Introduction

Population registration is defined as the identification of a homology between more than
two images. Its importance is evident in problems like statistical modeling of variations
and atlas construction. To solve the fore-mentioned problems, often a reference frame is
chosen and all population members are mapped to this pose using pair-wise registration
algorithms. The explicit selection of the reference image bias inherently the registration
towards the chosen reference frame [1] and influence inherently its performance. Such
a behavior is the opposite to the one expected towards appropriate representation of the
population. Last but not least, these methods are not applicable when aiming statistical
deformations population modeling using data coming from different modalities.

Methods that try to overcome the above-stated limitations can be subdivided into
two classes. The first class of methods initially focuses on the appropriate selection
of the reference [2] or constructs a reference template through the use of the popula-
tion statistics [3,1]. Conventional registration methods based in pair-wise criteria are
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Fig. 1. The node and the edge system of the constructed graph. With blue color the relationship
between the grid nodes and the images is depicted (deformation model). The black edges repre-
sent the smoothness terms while the red ones encode the local dissimilarity measure. The global
relationship between all the nodes at respective places in the grids is shown by the yellow edges.
(For clarity a fraction of the edges is shown.)

then considered towards the reference. The main limitation of these methods lies in the
use of the template. The second class are template-free group-wise registration meth-
ods using either local pairwise relations or global population measurements. In [4], all
possible pair-wise registrations were considered and a mean model was created by com-
posing the deformations for each member into a mean deformation. In [5], the sum of
univariate entropies along pixel stacks is introduced to address the problem of group-
wise registration using an affine deformation model and is further extended by [6] to
include FFD. Last but not least, in [7] local pair-wise relations were considered to de-
form mutually a population of images towards providing an atlas-based segmentation.

Template-driven methods introduce bias to the process through the selection of the
reference, and treat individually examples of the population. On the other hand, template-
free population-registration methods suffer from the lack of modularity with respect to
the registration criterion and the deformation model, are sensitive to the initial condi-
tions while being computationally inefficient. The scope of the objective function is
limited to pairwise relations and computational approximations [5] are used in order to
meet the high computational and memory demands.

In this paper, we propose a graphical model approach to population registration [Fig.1].
The latent variables of the model aren-deformations (Hermite-based polynomials) of the
population examples and the optimal reference pose. The pose variables are connected
with the observations and the corresponding deformation variables towards measuring
the statistical compactness of the registration result at the pixel level. The registration
variables are inter-connected and aim to decrease the cost of pair-wise comparisons be-
tween individual examples. Last, but not least the registration variables within an image
are connected so as to impose smoothness. The resulting paradigm can easily encode
different deformation interpolation methods, local similarity metrics and global statis-
tical measurements while being computational efficient [when compared with the state
of the art methods]. This graphical model is expressed in the form of a MRF. Towards
validating the approach, we consider population registration of calf muscle MRI images.

2 Global and Local Population Registration

Let us consider n images {I1, ..., In}, where each image is described by intensity values
Ii(xi) for different image domains Ωi,xi ∈ Ωi. The aim of the mutual population
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deformation is to determine a set of transformations T = {Ti : xR = Ti(xi), i =
{1, ..., n}} which maps mutually corresponding points from the n-image spaces to the
same point of a reference frame ΩR. In our case, we assume the reference pose to
simply correspond to the geometry and not an image template.

Deformation Model. Let us consider a grid-based deformation model that can encode
different interpolation methods in a way that the transformation is one-to-one and in-
vertible. The deformation of an object is achieved by manipulating an underlying mesh
of control points. We superimpose a deformation grid Gi : [1,K] × [1, L] onto each
one of the images Ii and let us also consider a grid G0 : [1,K] × [1, L] in the ref-
erence pose. The central idea of our approach is to deform the grids simultaneously
(with a given displacement vector dpk

i
for each control point k belonging to the grid

Gi) such that meaningful correspondences between the population examples are ob-
tained and their mapping to the reference pose creates a statistically compact variable.
In this case, the transformation of an image pixel xi = (xi, yi) ∈ Ωi can be written as
Ti(xi) = xi +Di(xi) where Di(xi) =

∑
pk

i ∈Gi
η(|xi−pk

i |)dpk
i

and η(·) is a weight-

ing function that measures the contribution of the control point pk
i to the displacement

field Di.

Population-wise Global Comparisons. The first term of the objective criterion to be
minimized is the global statistical compactness one. We consider the intensity values of
the deforming images at corresponding coordinate locations as a distribution of a ran-
dom variable π(i(x)), where i(x) = {I1(T−1

i (x)), · · · , In(T−1
n (x))}. In statistics, one

can associate a random variable to a measure of compactness with respect to this den-
sity. Examples can refer to standard deviation, higher order moments, Shannon entropy,
etc. It should be expected that as the images are aligned the compactness of the prob-
ability distribution should increase. We introduce the following global measurement
towards population registration

Eg(T1, · · · , Tn) =
∫∫

ΩR

γ(π(i(x)))dx (1)

with γ being a monotonic function inversely proportional to the compactness of the
intensity distribution at x once all population examples have been mapped to the ref-
erence pose. Such an objective function introduces the inverse transformation, that is
challenging from theoretical and practical point of view when referring to deformable
deformation. An alternative criterion that can be considered is using the forward trans-
formations and measure the similarity of the images on the intersection of the deformed
images, or

Eg(T) =
∫

· · ·
∫

Ωi∪···∪Ωn

φ(T1(x1), · · · , Tn(xn))γ(λ(x1, · · ·xn))dx1 · · · dxn (2)

where λ(x1, · · ·xn) = π(I1(T1(x1)), · · · , In(Tn(xn))) and φ is a Dirac-driven func-
tion whose role is to define which pixels correspond to the same position at the reference
pose defined as follows:

∏
(i,j)∈[1,n]×[1,n] δα(|xi − xj |).

Population-wise Local Comparisons. It may be the case that a distribution exhibits
good compactness characteristics globally but certain members of the population can
always be placed in the tale of the distribution. To avoid such cases, local pair-wise
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comparison between the members of the population are going to be considered. Let
ρij(·) be a similarity measurement used to compare the visual information for the im-
ages i and j. Then, if (without loss of generality) we consider for example pixel-based
measurements, the pair of forward deformations Ti, Tj , should minimize the distance
in the intersection of the deformed images:

El(Ti, Tj) =
∫∫

Ωi∪Ωj

φ(|Ti(xi) − Tj(xj)|)ρij(Ii(Ti(xi)), Ij(Tj(xj)))dxidxj (3)

In simple words, this quantity evaluates the pertinence of the correspondences between
the two images using both definition domains Ωi, Ωj where only the pixels for which
correspondences between the two images have been found are considered. The criterion
can be extended to deal with the case of n-images by simply considering all possible
pairs of images.

Smoothness Constraints. Medical images capture properties of spatially continuous
anatomical structures, therefore it is natural to assume that the deformation applied to
them should be locally smooth. Opposite to the former cases, this constraint should
applied to each grid separately. This constraint can be defined on the grid as

Es(T1, · · · , Tn) =
n∑

i=1

∫∫
Ωi

ψ(∇Ti(xi))dxi (4)

where ψ is a convex function imposing smoothness.
The optimal parameters of the deformation should be determined through the mini-

mization of an objective function being composed of the above terms. Gradient descent
method is the most common approach, but is unable to guarantee the recovery of the
global minimum, is computational inefficient, and far from being modular. Graphical
models and the off-the-shelf discrete optimization methods being associated to them
can address the above mentioned constraints.

3 Graphical Model towards Population Registration

In order to able to use discrete optimization schemes the deformation space should
be quantized. Let Θ = {d1, ..,dq} be a quantized version of the deformation field,
then a discrete set of labels L = {l1, ..., lq} can be corresponded to it. A label as-
signment lξp, where ξ ∈ {1, · · · , q}, to a grid node p is associated with displacing

the node by the corresponding vector dlξp . If a label is assigned to every node we get
a discrete labeling l. The displacement field associated with a certain labeling l be-
comes D(x) =

∑
p∈G η(|x − p|)dlp . We have considered the Hermite splines. In

this case D =
∑1

l=0
∑1

m=0 Hl(u)Hm(v)di+l,j+m. i = +x/δx,, j = +y/δy,, u =
x/δx − +x/δx, and v = y/δy − +y/δy,. Hl represents the lth basis function of the
Hermite spline and δx = M

K−1 , δy = N
L−1 denotes the control point spacing. Hermite

splines involve less computations than cubic-B splines while exhibiting the same de-
sired properties.

By applying this quantization of the deformation space one would like to reformulate
the problem as a discrete multi-labeling problem. A common model for representing
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such problems are Graphical Models and MRFs. In the context of population regis-
tration, the graphical model will involve three terms, one singleton that measures the
compactness and two pair-wise, one that account for smoothness at each deformation
field and one that enforces pair-wise correspondences.

EGM (G0, T1 ◦ G1, · · · , Tn ◦ Gn, ) = α
n∑

i=0

∑
p∈G0

Vp(lp)+

βintra

n∑
i=0

∑
p∈Gi

∑
q∈(N(p)∩Gi)

Vpq(lp, lq) + βinter

n∑
i=0

∑
p∈Gi

∑
q∈(N(p)\Gi)

Vpq(lp, lq)

(5)

where Vp(· ) are the unary potentials, Vpq(· , · ) are the pair-wise potentials andN repre-
sents the neighborhood system of the nodes [Fig.1]. α, βinter and βintra are weighting
constants. The main challenge of discrete optimization methods is the quantization of
the search space since it seeks for a compromise between computational complexity
and the ability to capture a good minimum. This can be achieved through a composi-
tional approach, where the final solution is obtained through successive optimization
problems with respect to the deformation increment towards minimizing the objective
function [8]. Thus, by keeping the set of the labels in a reasonable size it becomes
possible to approximate the optimal solution in an efficient way.

3.1 Mapping of the Objective Function to the Graphical Model

Mapping global, local and smoothness costs to the graphical model consists of convert-
ing them to singleton and pair-wise terms. The most challenging case is the global cost
due to the fact that in order to be properly determined it requires higher order cliques.
The mapping of the other two terms is straightforward.

Singleton Term. The adoption of higher order cliques is possible within MRFs, how-
ever their use decreases significantly their computational efficiency. We consider an
approximation of the global cost that consists of assuming that for a given node p of a
given deformation field/image i, the rest of the images do not move within the current
iteration. This assumption is considered for all nodes, and for all deformation fields
within a given iteration and therefore is not restrictive and quite common in minimiz-
ing graphical models through expansion moves. Then, the cost of a deformation will
depend only on the label of this node, or,

V t
pk
i
(lpk

i
) ≈

∫
· · ·
∫

Ω1∪···∪Ωn

η−1
s (xi, p

k
i )φ(T t−1

1 (x1), · · · , T t
i (xi), · · ·T t−1

n (xn))

γ(λ(I1(T t−1
1 (x1)), · · · , Ii(T t

i (xi)))dx1 · · · dxn

(6)

where η−1
s (xi,pk

i ) = η−1
s (|xi − pi|) = η(|xi−pi|)∫

Ωi
η(|yi−pi|)dyi

. We have considered a

congealing-like global cost that aims at minimizing the entropy of the pixel distribu-
tions upon registration. This term corresponds to the G0 graphical model variables.

Pair-Wise Terms. Two different cases have to be discerned, one that accounts for pair-
wise registrations between all image pairs and one that imposes smoothness on the
deformation fields. The adaptation of the local registration costs involves connections
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between the nodes pk
i ,q

k
j , that are placed in respective places k in grids that belong to

two different images i and j. The inter pair-wise potential are defined as

Vpk
i qk

j
(lpk

i
, lqk

j
) ≈∫

Ωi∪Ωj

η−1
p (xi,p

k
i ,xjq

k
j )φ(|Ti(xi) − Tj(xj)|) · ρ(Ii(Ti(xi)), Ij(Tj(xj)))dxidxj

(7)

where η−1 are inverse projection functions that depend on the distances between the
pixel and the different deformation grids and are defined as: η−1

p (xi,pk
i ,xjqk

j ) =
η(|xi−pi|)η(|xj−qj |)∫

Ωi∪Ωj
δ(Ti(yi),Tj(yj))η(|yi−pi|η(|yj−qj |))dyidyj

. The image metric used in the context

of pair-wise image comparisons of our approach was the sum of absolute differences.
Last, but not least imposing smoothness on the deformation fields can be done by

defining a distance function computing the magnitude of vector differences [8]

Vpiqi
(lξpi

, lνqi
) = |dlξpi − dlνqi |.

To minimize the successive MRFs, that is to assign a label l to all the nodes p of the
constructed graph, an efficient linear programming method is used [9]. The last con-
straint to be addressed refers to the diffeomorphic property of the proposed population
registration framework. This can easily introduced by imposing hard constraints to the
allowed deformations [10]. Following [11], the bound for the maximum displacement
towards guaranteeing diffeomorphic deformations, in the case of the cubic Hermite
spline, is proven to be 0.25 times the grid spacing.

4 Experimental Validation

To evaluate the performance of the method, the population registration of 2D MR hu-
man skeletal muscle calf images has been considered. The images were acquired with
a 1.5T Siemens scanner, with parameters TR=711, TE=11. Each volume consists of
90 slices of 4mm thickness with voxel spacing of 0.7812× 0.7812× 4 mm. From the

Fig. 2. Results obtained for the muscle image data set (mean and variance image). From left
to right, the initial images, the result of the group-wise registration, the result of two pair-wise
registrations.
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Fig. 3. Comparison between group-wise and pair-wise registration. The Dice coefficients obtained
through pair-wise registration with respect to all plausible individual template choices are com-
pared with the population registration result.

original volumes slices that correspond to respective positions were selected to for the
data set. Segmentations for the data were provided by an expert. The parameters of the
method, α, βinter , βintra were set to 10, 1 and 0.1, respectively. We have used a multi-
scale implementation with 3 levels, an initial grid resolution of 8× 8, and a final one of
32× 32. A number of 2× 4 + 1 labels were used per iteration cycle, sampled along the
principal horizontal and vertical directions.

The qualitative results of the group-wise registration of the muscle data are presented
in [Fig.2]. Comparing visually the mean and the variance image of the population be-
fore and after the group-wise registration the success of the registration process can
be assessed qualitatively. The mean image is far more sharp than the one before the
registration process, while the variance image emphasizes the decrease of the intensity
differences along the registered data.

To further appraise the performance of the proposed method, it was compared to a
state of the art pair-wise registration method [8]. Similar parameters and deformation
grids were used for both methods with the difference that for the group-wise registra-
tion scheme, Hermite weighting functions were used instead of cubic B-splines. The
performance of the pairwise registration was exhaustively evaluated as all possible im-
ages were used as targets. The distributions of the Dice values for each image target
are reported in [Fig.3], where a boxplot is given for every image target. The results for
the pair-wise registration are given from column 1 to 18, while the last column corre-
sponds to the results obtained by the proposed group-wise registration framework. By
simple observation, it can be concluded that the group-wise registration outperforms
the pair-wise method for the majority of the cases.

The results depicted in the graph suggest that considering the population as a whole
and registering subjects jointly brings the population into better alignment than match-
ing each subject to a target image. This is implied by the decrease of the dispersion of
the Dice values that is observed in the group-wise case. The results presented in the
figure [Fig. 3] point out the intrinsic drawbacks of the pair-wise registration process
whose performance is greatly influenced by the choice of the target image.
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A Matlab implementation of our approach takes approximately 30 min on an Apple
Mac with 4GB memory and 2.5GHZ Processor, for a population registration of 20 ex-
amples (256×256) and a final resolution grid of 32×32 per image. However, since our
graph is similar to the one in [8] and the same optimization technique is used, a C++
implementation should decrease the running time to a couple of minutes.

5 Discussion

In this paper we have proposed a novel approach to unbiased diffeomorphic deformable
population registration using graphical models and discrete optimization. Our approach
is gradient free, modular in terms of the image and smoothness components and can
encode global population criteria and pair-wise comparisons.

The extension of the method to deal with 3D data is natural and straightforward
future direction. Furthermore, the use of higher-order MRFs towards proper approx-
imation of the global costs will improve the performance of the method in terms of
ability to capture the global optimum. Last, but not least the ability to construct an un-
biased statistical anatomical atlas using the proposed concept could be a useful tool in
a number of applications in medical imaging.
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Abstract. Geodesic registration methods have been used to solve the
large deformation registration problems, which are hard to solve with
conventional registration methods. However, analytically defined
geodesics may not coincide with anatomically optimal paths of regis-
tration. In this paper we propose a novel and efficient method for large
deformation registration by learning the underlying structure of the data
using a manifold learning technique. In this method a large deformation
between two images is decomposed into a series of small deformations
along the shortest path on the graph that approximates the metric struc-
ture of data. Furthermore, the graph representation allows us to esti-
mate the optimal group template by minimizing geodesic distances. We
demonstrate the advantages of the proposed method with synthetic 2D
images and real 3D mice brain volumes.

1 Introduction

The problem of registering two images is particularly challenging in the pres-
ence of large deformations between the images, as in the case of growth in pe-
diatric studies or pathological changes. Registration between two very different
anatomies is difficult mainly for two reasons. First, an objective function such
as mean-squared error (MSE) or mutual information (MI) is a highly nonlinear
function of the deformation variable f , and therefore the optimization process
is often trapped in a local minimum. Second, the uncertainty about the one-
to-one correspondences in the images makes the optimization problem ill-posed.
Although regularization on the final deformation f is commonly used to remedy
the situation, the regularization alone cannot guide the variable f to an optimal
path of registration. Geodesic registration methods have been proposed to cope
with these challenges. In the framework of [1,2], the optimal deformation path
f(x, t) is computed by solving the Euler-Lagrange equation:

∂f(x, t)
∂t

= v(f(x, t), t), f(x, 0) = x,

where v is the velocity field, and t ∈ [0, 1]. Among the possible solutions of
the ODE, the geodesic path is defined as the ‘shortest’ path that connects two
� This work was supported by NIH grants R01-MH079938 and R01-AG014971.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 680–687, 2009.
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Original

Direct

Geodesic

11 5 10 15 20 25 30 35 40 45 50

Fig. 1. Examples of synthetic images and typical registration results. The top row
shows the subset of original images with the sample numbers on top. The image 11 in
the first column is the template. The second and the third rows show the comparison
of direct vs the proposed registration methods. Note the unnatural warping of the
boundaries in the direct method, especially in image 20, 25, and 50.

images. The length of the geodesic path is defined as a weighted sum of the
intensity difference and the smoothness measure of the velocity field v:

g2(Ii, Ij) =
∫

Ω

|Ii(x) − Ij(f(x))|2 dx + w

∫ 1

0
‖v(x, t)‖2

L dt.

When all images are in the single orbit of diffeomorphisms, the quantity g pro-
vides the dataset with a true metric structure. Registration methods which are
based on this numerical integration of the geodesics provide improvements in
the large deformation problems [3,4]. However, the increase in the computational
costs can outweigh the benefits of geodesic registration methods for certain prob-
lems. More importantly, these methods calculate geodesics on the manifold of
diffeomorphic transformations, most of which do not represent valid anatomies.
One ideally wants to calculate geodesics on the manifold of all transformations
that represent true biological variations, which unfortunately cannot be repre-
sented analytically.

We aim to achieve this goal by learning this manifold from the data. In this
paper, we approximate the shortest path on the continuous space of diffeomor-
phisms by the shortest path on a k-nearest-neighbor(kNN) graph that approxi-
mates the metric structure of underlying data manifold. A large deformation that
maps an anatomy to another, is decomposed into a series of small deformations
along the path on the graph. This means that the large deformation actually
progresses through a series of small deformations between the anatomies in the
data. Since only nearby images need to be registered to each other, a simple reg-
istration algorithm suffices to solve the difficult registration problem. We will call
this approach a pseudo-geodesic registration method, because the registration
is restricted to the paths on the assumed manifold of the data.

The advantages of the proposed registration method include the following:

1. Learning of anatomical manifolds: Our method computes the geodesics
on the manifold of the actually observed anatomical variations from the data,
instead of the infinite-dimensional manifold of diffeomorphisms.
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2. Efficient computation: Our method solves a large deformation problem
by using simpler and faster algorithms such as the Diffeomorphic Demons
algorithm [5] which we use for pairwise registrations.

3. Visualization: Our method provides a low-dimensional characterization of
the data structure by flattening the learned manifold.

4. Automatic template selection: The optimal template is chosen with a
criteria consistent with the pseudo-geodesics, instead of being solved itera-
tively as in [4,3].

5. Meta-registration: Our approach is flexible to the choices of registration
cost or an algorithm as its components.

The examples in Figure 1 demonstrate the accuracy of the proposed approach
achievable with the same registration method that fails to find optimal solutions
when used directly without the pseudo-geodesic paths.

Related Work. The pseudo-geodesic path relies on the learning methods for
discovering the empirical manifold of data instead of numerical methods of solv-
ing ODEs on an analytic manifold of shapes. In our method we adopt the Isomap
algorithm [6] to compute and visualize the manifold structure of data, which was
originally proposed for nonlinear dimensionality reduction of high-dimensional
data. Several authors have proposed the learning-based methods for template
selection and visualization of the data [7,8,9]. Although their goals are different
from ours, these methods build the models of data by pairwise registration of
multiple images similarly to our method. However, those works lack the coun-
terpart the pseudo-geodesics which is the key to the computational efficiency of
the proposed method in this paper.

The remainder of the paper is organized as follows. Section 2 describes the
proposed algorithms in detail, Section 3 illustrates the application of the algo-
rithm to 2D and 3D image databases, and Section 4 concludes the paper.

2 Pseudo-geodesic Registration

In this section we provide the algorithmic details of the pseudo-geodesic reg-
istration. The overall registration procedure consists of three stages which are
described in the following three subsections. First, we analyze the data structure
by coarse registrations between all image pairs. From this we find a kNN graph
structure and a low-dimensional embedding of the data. In the second stage,
we choose a template automatically from the graph structure, and identify the
pseudo-geodesic paths from the template to the other samples. In the third
stage, we compute the final large deformation by composing small deformations
between adjacent images along the paths.

Throughout the paper, let’s assume the dataset I consists of n images I1, ..., In,
and each image is a nonnegative real function on a 2D or a 3D domain Ω.



Efficient Large Deformation Registration via Geodesics 683

2.1 Construction of Empirical Manifolds

In the first stage we construct the empirical manifold of data by investigating
its metric structure. For this purpose we represent the data as a graph whose
vertices correspond to the image samples. Below is the summary of the required
steps.

1. Perform a coarse registrations between all pair of images. The minimum of
the registration cost function between Ij is Ii after registration is considered
the length dij of the edge eij .1

2. Construct a connected kNN or ε-NN graph based on the edge lengths.
3. Find the pseudo-geodesics (=shortest paths on the graph) between all pairs

of vertices, e.g., by Dijkstra’s or Floyd-Warshall algorithm. The length gij

of a pseudo-geodesic is the sum of its edge lengths dkl along the path.
4. (Optional) Visualize the Euclidean embedding of the data by solving eigen-

value problems (refer to [6] for details).

One can show that the shortest path length gij is a valid metric by construc-
tion regardless of the properties of the constituent distance dij . The most time-
consuming part in practice is step 1 which requires O(n2) registrations between
all image pairs. To reduce the overhead we perform the registration on the coarse
resolution images of the original data, and also use fewer number of iterations
than the final registration. This heuristic is justified by the observation that the
kNN graph topology does not change much by the approximation.

2.2 Automatic Template Selection

An unbiased template of the given data can be defined as the geodesic mean of
the data [4,3]. From the graph derived in the previous section, we can choose a
template from the samples that is closest to the pseudo-geodesic mean:

IT = argmin
i

∑
j

g2(Ii, Ij).

Since we have already computed the geodesic lengths gij , the template can be
chosen by looking-up of the values. Two other alternatives to the mean are the
center (IT = arg mini maxj g(Ii, Ij)) and the median (IT = argmini

∑
j g(Ii, Ij))

of the graph. The three templates look similar in our experiments. We choose
the median as the template due to its resilience to outlier samples in the data.

2.3 Computation of Large Deformations

We compute the large deformation from the template IT to any node Ij by a
recursive composition of the small deformations from its edges along the pseudo-
geodesic path. Let fi,j : Ωi → Ωj denote the deformation field computed from
1 The cost function of a generic registration algorithm is a weighted sum of the

intensity difference
∫

Ω
|Ii(x) − Ij(f(x))|2dx and the smoothness measure, e.g.,∫

Ω
∇2f(x) dx.
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the registration of Ij to Ii. Given the two fields fi,j and fj,k, we can easily
compute the composition field fi,k = fj,k · fi,j : Ωi → Ωk by resampling and
interpolation of the two fields.2 The final deformation f̂T,j is the refinement
on the composed field fT,j by a few additional iterations of registration. This
removes the numerical errors accumulated from the composition of deformations.
Below we summarize the procedure.

1. Identify n pseudo-geodesic paths from IT to the rest Ij , ∀j ∈ 1, ..., n.
2. Enumerate all edges E used in any of the shortest paths. Perform accurate

registration between (Ii, Ij), ∀eij ∈ E .
3. For each j ∈ 1, ..., n,

(a) Let s = (s1 = T, ..., sm = j) be the pseudo-geodesic path from IT to Ij .
(b) If fT,j is already computed then exit.
(c) Otherwise, recursively compute fs1,sm = fsm−1,sm · fs1,sm−1 .
(d) Fine-tune fs1,sm by a few additional iterations of registration.

Note that we needed only coarse registration results in the previous stages,
and this stage is where we actually perform accurate registrations. The step 2
may seem to be a huge computational burden at first since the number of all
the edges in a graph can be a large as n2. In fact, we only need to update
the registration for n − 1 edges, that is, no more than the number of direct
registration for a conventional approach. This is due to property of the graph
that the shortest paths from the template to the rest forms a spanning tree.
Furthermore the registration converges faster since the two adjacent images are
similar by construction.

2.4 Discussion

The proposed registration method is motivated by the Isomap algorithm, which
proves that a true geodesic on a convex set can be approximated by a path on
the kNN graph connecting the data samples. Due to the finite number of sam-
ples, the pseudo-geodesic is different from the numerically integrated geodesic in
general. Moreover, the different choices of the neighborhood size k in kNN yield
different graphs and therefore different paths. However, we can show that the
final large deformations are robust to the these approximations: two different
pseudo-geodesic paths between the common image pair result in the same final
deformation as long as each step of the paths is smooth enough to avoid any
local minimum of registration.

3 Experiments

3.1 Synthetic Images

The data consist of 60 binary images of size 140× 140 which simulate a patch of
a cortex varying in shape and the number of folds. We use an ITK [10] version

2 Two deformations should be properly composed, not simply added to each other.
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11 − 33 − 27 − 5

11 − 51 − 7 − 10

11 − 15

11 − 24 − 52 − 20

11 − 33 − 41 − 25

11 − 1 − 57 − 35 − 30

Fig. 2. Left. Two-dimensional embeddings of the manifold of synthetic shapes. The
embedding reveals that there are two or three major variants (which resemble M, Ω, Λ)
and the rest of the images can be interpolated from those representative image. Right.
Examples of the pseudo-geodesic paths from the template 11 to 5, 10, 15, 20, 25, and
30. Note the gradual and monotonic change of shapes along each path.

Table 1. Final registration error of the synthetic images : comparison of Mean Square
Error (MSE), Harmonic Energy (HE), and Maximum of Jacobian Determinant(MJD).
The (avg) and (max) are the average and maximum of all images in the data.

Method MSE (avg) MSE (max) HE (avg) HE (max) MJD (avg) MJD (max)
Direct 388 1136 0.260 0.583 4.01 14.6
Pseudo-geodesic 327 565 0.218 0.504 3.55 7.70

of the Diffeomorphic Demons [5] for registration due to its efficiency. Images are
registered with three levels of resolution (10×10×10) and the smoothing kernel
size of 1.5. Figure 2 shows the two-dimensional Euclidean embedding of the
synthetic database and a few examples of pseudo-geodesic paths. The registration
results are shown in Figure 1. For comparison we perform the direct registration
of all images to the template without following the pseudo-geodesic paths. One
can visually confirm the superior quality of the pseudo-geodesic registration
results over the direct registration results obtained from the same algorithms
and parameters. Table 1 summarizes the final registration errors. For each of the
six error criteria, the pseudo-geodesic method achieves smaller error than the
direct registration method does.

3.2 Fractional Anisotropy Map of Mouse

Next we apply our registration method to a dataset of mouse brains which is col-
lected with the aim of creating a normative atlas of a developing mouse brain.
The data consist of 69 Fractional Anisotropy volume of the brains sampled at
2,3,4,7,10,15,20,30,45,and 80 days of age. Each volume is resized to 150×150×100
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Fig. 3. Left. Two-dimensional embeddings of the manifold of mouse brains. A mid-
axial slice is shown for each mouse brain volume. The number on top of each image
is the age and name of the sample. Right. Examples of the pseudo-geodesic paths
from the template to others. Each path reflects the changes in both the shapes and the
appearances of developing brains.

Table 2. Final registration error of the mouse brain images. See Table 1 for notations.

Method MSE (avg) MSE (max) HE (avg) HE (max) MJD (avg) MJD (max)
Direct 19.33 40.11 0.0984 0.1927 9.051 19.92
Pseudo-geodesic 19.98 41.62 0.0800 0.1345 8.789 13.02

and affinely aligned. We also use the Diffeomorphic Demons method for pairwise
registration, with two levels of resolution 15× 10 and with σ = 1.0. The images in
this dataset not only have a larger number of voxels than the synthetic data, but
they are more challenging for registration due to their large shape and appearance
variations from different ages and the degrees of maturation of tracts.

The two-dimensional embedding of the data in Figure 3 (left) provides a
glimpse of its manifold structure. From the figure we can observe that the major
variability of the data comes from the age. The importance of the age factor
is also observed in Figure 3 (right): a path that connects two brain images of
different ages passes through brains of intermediate ages in a monotonic fashion.
These findings are consistent with our prior knowledge of the database. Table 2
summarizes the final registration errors. The MSE of the pseudo-geodesic method
is slightly worse but comparable with the MSE of the direct method. However,
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the harmonic energy and the Jacobian determinants are significantly lower in the
pseudo-geodesic method. One possible interpretation is that the pseudo-geodesic
method can achieve the similar level of intensity difference as the direct method
but with a much smoother deformation.

4 Conclusion

In this paper we propose a novel method of performing a large deformation reg-
istration. The most distinguishing feature of the method is that it computes the
geodesics on the manifold of the observed anatomical variations from the data,
instead of computing the geodesics by solving ODEs. Furthermore, the learned
manifold provides a visualization of the data structure and allows us to choose
an optimal template among the samples. We describe an meta-registration algo-
rithm to efficiently compute large deformations, which can use a large class of
registration algorithms as a component. The experiments have their caveats but
show promising results. We are currently testing the algorithms on a number
of other image databases. A comprehensive study will be reported in the near
future.
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Abstract. We present a new method for the non-rigid registration of
serial mouse microCT images which undergo potentially large changes
in the positions of the legs due to articulation. While non-rigid registra-
tion methods have been extensively used in the evaluation of individual
organs, application in whole body imaging has been limited, primarily
because the scale of possible displacements and deformations is large re-
sulting in poor convergence of most methods. Our method is based on
the extended demons algorithm that uses a level-set representation of the
mouse skin and skeleton as an input, and composed of three steps reflect-
ing the natural physical movements of bony structures. We applied our
method to the registration of serial microCT mouse images demonstrat-
ing encouraging performances as compared to competitive techniques.

1 Introduction

Whole body mouse registration is a challenging emerging problem in image anal-
ysis with many potential applications. These applications arise from the exten-
sive genetic similarities between the mouse and human genomes which make the
mouse an excellent model for understanding human developmental processes and
pathologies. A particular mouse model of interest in our work is that of hindlimb
ischemia [1], which is used to study vascular remodeling. In this model an is-
chemic zone is created in one limb by surgical ligation of the femoral artery, with
the other limb serving as a paired control. Vascular remodeling is an important
process which plays an important role in both peripheral arterial disease and
coronary artery disease.

Molecular imaging using microSPECT can be used to quantify angiogenesis,
the process of formation of new blood vessels. This is often performed using hy-
brid microSPECT/microCT scanners. A key challenging in the quantification of
the SPECT images is the parcellation of the hindlimbs into different anatomical
regions (e.g. proximal, distal and foot) to enable the region-of-interest analysis
of these images. Whereas such parcellation can be done manually (using the
anatomy from the co-aquired microCT), this is tedious and leads to subjective
divisions. Our goal in this work is to develop atlas-based labeling of the hindlimbs
where the parcellation is done manually at the first time point and automatically

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 688–695, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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propagated in time using our non-rigid registration method which we describe
in this paper.

Registering the hindlimbs is probably the most challenging aspect ofwhole body
mouse registration. Previous approaches to the problem of whole body mouse reg-
istration [6,7,8] have used a combination of the robust point matching method
(RPM) to first align the bone surface as an initial condition followedby an intensity-
based registration which aims to improve accuracy in the soft-tissue structures.
Our work differs from the previous work in the literature in that (i) we adopt an
implicit surface registration method which relies on a distance-map parameteriza-
tion of the bone and skin surfaces and (ii) in performing the surface registration we
follow the natural “anatomical” constraints of first registering the bone surfaces
– which literally anchor the rest of the body and then refining this by introduc-
ing skin surface information. The result of the surface-based registration is then
augmented by an intensity based non-rigid registration as before. We validate our
results using 14 image-pairs using both intensity similarity criteria and measures
of (implicit) segmentation accuracy as evaluated using standard overlapmeasures.

We compare our results to standard methods such as the demons method
(which uses the same transformation model and optimization method as our
method), the intensity-based non-rigid registration with free-form deformation
(IFFD)[11] and a robust point-based method (RPM)[9] – which forms the basis
of most of the previous mouse non-rigid registration work in the literature.

2 Methods

Figure 1 shows the brief block diagram of the proposed method. The inputs
are microCT images of the same mouse imaged over a period of 4 weeks. This
method is a three-step serial registration composed of a bone surface registration,
a skin surface registration and an intensity registration. After initially executing
the bone surface registration(f1), we execute the skin surface registration(f2)
based on the initial bone surface registration result. Then, we refine the image
intensities for the soft tissue between the bone and skin by the final intensity
registration(f3). We combine these three registrations as one registration using
concatenation (ftotal = f3 ◦f2 ◦f1). We first review an extended demons method
for single surface mapping such as a bone surface. Then we describe each step
in the proposed method.

2.1 Extended Demons Registration

Thirion [2] suggested an image-matching algorithm using a diffusion process.
Using the demons concept from Maxwell’s demons in thermodynamics, the non-
rigid image matching process is modeled as a diffusion process in the demons
algorithm. The theory behind this algorithm is that the object boundary can
change its shape depending on the position of the demons within the image
domain. The demons’ forces, which deform the object shape, are generated to
reduce the disparity between the reference and the moving images. Equation (1)
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Fig. 1. Block diagram for our registration method

shows the demons algorithm based on the optical flow equation. Here, r(X) is
the reference image, m(X) is the moving image and v(X) is the displacement.

v(X) = −((m(X) − r(X))∇r(X))/(‖∇r(X)‖2 + (m(X) − r(X))2) (1)

Many studies improved the original demons algorithm by increasing the speed of
convergence [4,5]. For stronger convergence performance, the extended demons
registration method takes advantage of the level-set representation of the object
boundary using a distance map based on the demons algorithm. The extended
demons algorithm utilizes the distance map around the shape border instead of
intensity which results in improved convergence even though the two objects are
not overlapped sufficiently. Thus, the extended demons registration algorithm
can achieve much higher convergence speed with better confidence in binary
volume registration. In this paper, we used a symmetric version of the extended
demons method to avoid local minima as below.

v(m, r, X) = − 2(m(X) − r(X))(∇r(X) + ∇m(X))
‖∇r(X) + ∇m(X)‖2 + (m(X) − r(X))2

(2)

2.2 First Step: Registration of Bone Surface

From each reference and moving CT images of the same mouse, binary bone
images and binary skin images are segmented through intensity differences by
thresholding and clustering (K-means clustering with 3 classes)(Figure 1). The
level-set represented bone images are generated by distance map from the binary
reference bone image and the binary moving bone image respectively. Using
v(mB , rB,X) of the extended demons algorithm (equation (2) ), the deformation
between the two level-set represented bone images is calculated.

Here, rB is the reference image represented by level-set from the bone bound-
ary, mB is the moving image represented by level-set from the bone boundary,
and v(mB , rB,X) is the displacement between rB and mB.

2.3 Second Step: Registration of Skin Surface

After the registration of bone surface in the first step, the moving skin image
is deformed with the displacement of the bone surface registration result. In
the same way as the bone registration, the level-set represented skin images
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are generated by distance maps from the binary reference skin image and the
binary moving skin image respectively. Using v(m1S , rS ,X), we calcualte the
deformation between the two level-set represented skin images. Here, rS is the
reference image represented by level-set from the skin boundary, m1S is the
moving image represented by level-set from the skin boundary (deformed by the
result (v(mB , rB,X)) of the first step), and v(m1S , rS ,X) is the displacement
between rS and m1S . In this second step, bone surfaces are registered again
simultaneous (during a same iteration) with the skin surface registration using
v(m1B , rB,X). Here, m1B is the moving image represented by level-set from the
bone boundary (deformed by the result (v(mB , rB ,X)) of the first step), and
v(m1B , rB,X) is the displacement between rB and m1B.

During each iteration of the extended demons algorithm the two displacements
(v(m1B , rB,X) and v(m1S , rS ,X)) are spatially combined in every iteration by
equation (3) within the f2 in Figure 1.

v(X) = wB(X)v(m1B , rB ,X) + wS(X)v(m1S , rS ,X) (3)

Where wB(X) and wS(X) are weight factors defined as:

wB(xk) =

⎧⎨⎩
1 if dB(xk) ≤ 0 and dS(xk) < 0
0 if dB(xk) > 0 and dS(xk) ≥ 0

|dS(xk)|
|dB(xk)|+|dS(xk)| if dB(xk) > 0 and dS(xk) < 0

(4)

wS(xk) =

⎧⎨⎩
0 if dB(xk) ≤ 0 and dS(xk) < 0
1 if dB(xk) > 0 and dS(xk) ≥ 0

|dB(xk)|
|dB(xk)|+|dS(xk)| if dB(xk) > 0 and dS(xk) < 0

(5)

Here |dB(xk)| is the absolute value of the signed distance value and k is the
voxel index. The displacement of the bone registration v(m1B, rB ,X) is exclu-
sively used within the bone region, and the displacement of the skin registration
v(m1S , rS ,X) is exclusively used outside the skin region. The displacement of
the soft tissue between bone and skin is calculated by interpolation depending on
the distance from both the bone and skin. In order to reduce the abrupt change
of the displacement, the standard deviation of the smoothing filter within the
extended demons algorithm is set to a large value (σ = 2 voxels.)

2.4 Third Step: Registration of Graylevel Intensity Image

After finishing the registration of bone and skin surfaces, soft tissues between
the bone and skin are registered through this third step. In the third step, the
symmetric version of the demons algorithm [2] with histogram matching is used
for the image intensity registration instead of the extended demons algorithm.
The moving graylevel intensity image is deformed with both the displacement
(f1) of the bone surface registration result and the displacement (f2) of the skin
surface registration result as shown in Figure 1. The deformed moving graylevel
intensity image and the reference graylevel intensity image are used as inputs of
this third step of registration.
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2.5 Implementation Details

Three resolution layers were utilized in each step from the coarsest to the finest
layer to search the displacement in the 3D data set. Iteration numbers for each
layer were set to 200, 200 and 30 from the coarsest to the finest layer, respectively.

The images consisted of the lower half of the mouse (roughly from below the
lungs to the feet). The image size after cropping was approximately 160 × 90 ×
140 (voxels).

3 Results

We present results of the application of our method to N = 14 pairs of mouse
microCT images, acquired with a resolution of 100 × 100 × 100 μm3. In these
images the mice are virtually divided into 7 regions shown in Figure 2. These en-
ables the comparison of the overlap of these regions after registration. In order to
generate this mouse parcellation, we manually positioned planes to segment the

Fig. 2. 7-region mouse parcellation; body and tail (red), the left proximal hindlimb
(yellow), the left distal hindlimb (light green), the left foot (green), the right proximal
(light teal) , the right distal (light blue), and the right foot (blue) (a) Baseline, (b)
Moving

Fig. 3. (A) and (B) Reference and Targed Images. Bone (C) and Skin (D) Surfaces
prior to Registration. Bone (E) and Skin (F) Surfaces after registration.
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Table 1. Similarity comparisons (Jaccard Similarity Coefficient) for the regions

Right proximal JSC Averg. T test
First step 67.66 1.65E-04

Second step 78.36 0.66
Third step 78.92
(Final reg)

IFFD 76.50 0.30
RPM 73.14 0.02

Demons 64.67 1.10E-02

Left proximal JSC Averg. T test
First step 65.31 3.9E-06

Second step 75.135 0.44
Third step 75.70
(Final reg)

IFFD 72.56 6.65E-05
RPM 74.26 0.29

Demons 67.71 1.53E-02

Right distal JSC Averg. T test
First step 63.44 2.03E-05

Second step 82.60 0.19
Third step 85.26
(Final reg)

IFFD 85.46 0.85
RPM 79.49 9.08E-04

Demons 53.96 1.73E-03

Left distal JSC Averg. T test
First step 62.40 9.76E-07

Second step 79.45 0.31
Third step 80.42
(Final reg)

IFFD 76.79 5.03E-02
RPM 70.78 0.029

Demons 59.52 1.70E-03

Right foot JSC Averg. T test
First step 60.53 4.61E-04

Second step 79.03 0.33
Third step 83.29
(Final reg)

IFFD 60.51 3.09E-04
RPM 58.77 6.53E-08

Demons 34.34 8.39E-05

Left foot JSC Averg. T test
First step 64.92 5.21E-08

Second step 78.72 0.40
Third step 77.50
(Final reg)

IFFD 55.36 7.54E-06
RPM 47.81 1.45E-06

Demons 19.57 2.13E-06

mouse into 7 regions; main body including the tail, the left proximal hindlimb,
the left distal hindlimb, the left foot, the right proximal hindlimb, the right distal
hindlimb, and the right foot. The planes were positioned on a 3D rendering of
the CT image. Among those 7 regions, the main part of the body including the
tail, is excluded as its upper boundary is variable between images. We compared
our method to two non-rigid registration methods ([11,9]) and to the demons
algorithm. We demonstrate encouraging improvement in registration accuracy
compared to these standard methods. As a similarity measure for local shape,
we used the Jaccard similarity coefficient (JSC = (| R∩M | / | R∪M |)× 100).
Where M is the moving and R is the reference object, and |M | refers the number
of members in the set M as a cardinality.

Table 1 shows the comparison results with the Jaccard Similarity Coefficient
(JSC) for the six mouse regions. In the first four tables in Table 1, the av-
erage JSCs of our proposed method (Third step) are slightly better or simi-
lar (Right distal hindlimb) to the average JSCs of IFFD, and always better
than those of the Demons algorithm and RPM. In cases of the JSCs for both
the right foot and left foot, however, our proposed serial registration has much
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better than all methods (much less than 0.05 in paired-T test). We note that
our method achieves consistently high overlaps over the all six mouse regions
and the improvement is particularly noticeable in the most challenging part –
the feet. This is probably due to two reasons. The intensity based only methods
(IFFD,demons) can not converge in these region due to the large displacements
that can be present. While the imaging technologists attempt to place the mice
in roughly the same orientation (the scans are acquired in weekly intervals) –
this is almost impossible in the case of the feet resulting in large displacements
which are less easily estimated by intensity-based methods. In the case of RPM,
the improvement is most likely caused by the fact that the number of points that
can be used for RPM is finite (we used about 5000 points) as it requires the com-
putation of a match matrix which even if sparse, still becomes computationally
intractable. This results in less accurate surface representation of smaller struc-
tures which explains partially why our method becomes increasingly superior to
RPM as we move down the limb. (Please note that the surface only part of our
algorithm – Second Step – also gives superior results to RPM, a surface-only
technique, which is a more fair comparison.)

4 Discussion and Conclusions

We presented a new non-rigid stepped registration method for quantitiative eval-
uation of serial mouse images. Our method, which is based on an extended
demons formulation, first aligns the bone surfaces to achieve a good initial con-
dition and then leverages additional information obtained from skin surfaces to
improve the result and finally includes the use of direct intensity information con-
strained by the pre-computed surface-derived transformations maps. These first
and second steps of surface mappings are critical in ensuring that the intensity
information is useful, as without a good initialization, intensity only methods
fail to converge to the appropriate result. We evaluated the proposed method on
3D volumes from 14 serial mouse microCT data sets, and demonstrate that our
method performs better three standard methods (IFFD, Demons and RPM.)
The first two methods represent popular standard nonrigid intensity based reg-
istration algorithms which are readily available – and hence should be tried on a
new problem prior to developing a customized method. The comparison to RPM
was done as this has been used previously for whole body mouse registration.

Relating the comparison with Li et al. [7,8], this method is also a two-step
algorithm. Step one is bone registration using robust point matching (RPM)
from bone surface; step two is intensity-based registration. Although we don’t
use the same intensity-based registration method in the final step as Li et al.,
the intensity-based registrations in both cases are a “finishing” step. While we
were not able to compare our results directly to the work of Li et al., we note
that the surface only part of this algorithm (i.e. Step 2) demonstrates superior
performance to the surface only portion of that method (which relied on RPM)
for both sets of criteria. This is a strong indication that all things being equal
our combined method is likely to perform better than this competitor in the
challenging area of the hindlimbs.
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Our methodology may also be applicable to serial imaging of patients with
peripheral arterial disease. In addition this type of multistage registration may be
applicable to registration problems in the abdomen where there is the potential
for large displacements of key structures such that conventional intensity-based
methods are not able to handle. However, we emphasize that in much of this
work, the goal is not to use the mouse as a test-bed for the development of
imaging/image analysis methods which will eventually be translated to human
applications. The goal is, rather, to develop mouse specific methods that will help
understand the underlying pathology. It is this increased understanding that will
ultimately most likely prove useful in a translational sense, as opposed to the
methods themselves.
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Abstract. In this paper, we propose a new feature based non-rigid im-
age registration method for dealing with two important issues. First, in
order to establish reliable anatomical correspondence between template
and subject images, efficient and distinctive region descriptor is needed as
intensity information alone maybe insufficient. Second, since interference
factors such as monotonic gray-level bias fields are commonly existed
during the imaging process, the registration algorithm should be robust
against such factors. There are two main contributions presented in this
paper. (1) A new region descriptor, named uniform gradient spherical
pattern (UGSP), is proposed to extract the geometric features from input
images. UGSP encodes second order voxel interaction information. (2)
The UGSP feature is rotation and monotonic gray-level bias field invari-
ant. The proposed method is integrated with the Markov random field
(MRF) labeling framework to formulate the registration process. The α-
expansion algorithm is used to optimize the corresponding MRF energy
function. The proposed method is evaluated on both the simulated and
real 3D databases obtained from BrainWeb and IBSR respectively and
compared with other state-of-the-art registration methods. Experimen-
tal results show that the proposed method gives the highest registration
accuracy among all the compared methods on both databases.

1 Introduction

Non-rigid image registration is an active research topic during the last decade.
It plays an important role in group analysis, image-guided surgery, atlas super-
position and etc. During the last decade, many novel methods were proposed to
tackle the non-rigid image registration problem. They can be generally classified
into three categories: (1) Landmark based methods; (2) Intensity based methods
and (3) Feature based methods. Landmark based registration methods [1,2] first
select a set of landmark points from template and subject images. Then the opti-
mum transformation is estimated based on the features extracted from those land-
mark points. In order to produce accurate registration results, a large number of
landmark points are required, which brings additional computation burdens. In-
tensity based registration methods are usually fully automatic. They define simi-
larity measure metrics based on the intensity distributions of input images to guide
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registration [3,4]. However, intensity similarity does not necessarily equivalent to
anatomical similarity. Feature based registration methods use feature vectors to
represent each voxel and the registration process is modeled as a feature match-
ing and optimization problem. HAMMER [5] is a representative of this class of
methods. The registration accuracy heavily depends on the feature vectors used.

Though the non-rigid image registration problem has been intensively studied
during the last decade, it still remains as a challenging task. More precisely, two
important issues arise in recent years: First, using intensity information only
to characterize anatomical properties of brain images may be insufficient as
analyzed in [6]. Therefore, new anatomical descriptor is needed to capture the
geometric properties of different anatomical structures. Second, the registration
approach should be robust against monotonic gray-level bias fields. Otherwise
the algorithm may prefer to align the bias fields between two images instead of
aligning their anatomical structures as stated in [7].

To this end, a new feature based non-rigid image registration method is pro-
posed in this paper to deal with these two issues. The major contributions of
this paper lie in the following aspects. First, a new region descriptor, named
uniform gradient spherical pattern (UGSP), is designed as signatures for each
voxel. UGSP encodes second order voxel interaction information. Second, UGSP
is rotation and monotonic gray-level bias fields invariant. The UGSP feature is
integrated with the Markov random field (MRF) labeling framework to formu-
late the registration process in this paper. The α-expansion algorithm is used to
optimize the corresponding energy function. The proposed method is evaluated
on both the simulated and read 3D datasets obtained from BrainWeb and IBSR
respectively. Experimental results show that the proposed method achieves the
highest registration accuracy among all the compared methods.

2 Uniform Gradient Spherical Patterns

In this section, we describe the new region descriptor, called uniform gradient
spherical patterns (UGSP), which is derived based on the local binary patterns
(LBP) [8], analyze its properties and show how to use it to represent each voxel
as signatures.

Suppose for an input image G. For each voxel vc ∈ G a spherical neighborhood
is defined centered at vc with radius R. Also, N samples are taken on the surface
of the sphere by using the sampling method proposed in [9], denote them as vi

(i=1,2,...,N). For vi (i=1,2,...,N) which does not exactly fall in the 3D image
grid its intensity is interpolated by tri-linear interpolation. Let ∇vi denote the
gradient of vi. Then a rotation invariant gradient orientation measure of each
neighboring voxel vi is defined by Equation 1, which is the angle between ∇vi

and vc − vi, denote as θvi .

θvi = arccos
∇vi · (vc − vi)
|∇vi| · |vc − vi|

, (1)

where |∇vi| and |vc − vi| denote the magnitudes of ∇vi and vc− vi respectively.
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Vc
Vi

Vi

Rotate 45 degrees 
anti-clockwise Vc

Vi
Vi

Fig. 1. A 2D example demonstrating the rotation invariant property of θvi . vc is the
center voxel, vi is a neighboring voxel. The black arrow pointing out from vi denotes
the gradient vector of vi. It is shown that the θvi remains the same before and after
rotating 45 degrees anti-clockwise.

θvi is rotation invariant as it is the angle of the gradient of vi relative to the
direction of vc−vi. Figure 1 shows a 2D example of θvi before and after rotation
of 45 degrees. It is shown that θvi remains the same.

Then, the space of θvi is uniformly partitioned into four subspaces. Each voxel
is assigned with a label based on which subspace of θvi it belongs. That is, each
neighboring voxel is assigned with a label according to Equation 2:

l(vi) =

⎧⎪⎪⎨⎪⎪⎩
1, if θvi ∈ [0, π

4 ),
2, if θvi ∈ [π

4 ,
π
2 ),

3, if θvi ∈ [π
2 ,

3π
4 ),

4, if θvi ∈ [ 3π
4 , π].

(2)

Then the basic gradient spherical pattern (BGSP) is defined based on Equations
1 and 2:

Definition 1. Basic gradient spherical pattern (BGSP) is the labeled spherical
surface obtained from the original spherical neighborhood centered at the refer-
ence voxel by using Equations 1 and 2.

Besides rotation invariance, BGSP is also monotonic gray-level transformation
invariant. As monotonic gray-level transformations affect the gradient magnitude
of each voxel, the orientation of the gradient remains the same. Therefore, the
angle θvi between the directions of the gradient vector of vi and the vector vc−vi

also remains the same.
However, some of the BGSPs’ occurrences are too sparse to reliably reflect

the geometric features of input images. Therefore, a subset of BGSPs which
represent the fundamental image structures, named uniform gradient spherical
patterns (UGSP), are used as signatures of each voxel. Before we define UGSP,
we first give the definition of ”uniform region” as follows:

Definition 2. Uniform region is the area on the surface of BGSP where all the
voxels belong to this area have the same label defined in Equation 2.

Then, UGSP is defined as follows:
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(a) (b) (c)

Fig. 2. (a) An example of UGSP, its surface can be covered by only one uniform region;
(b) An example of UGSP, its surface can be covered by two uniform regions; (c) An
example of non-UGSP, its surface cannot be covered by less than or equal to two
uniform regions. Different colors represent different labels of each voxel.

Algorithm 1. Determining whether a BGSP is a UGSP
Input: A BGSP with radius R and N neighboring voxels on the surface.

Output: true or false (whether the input is a UGSP or not).

1. Initialize all the neighboring voxels as unflagged.
2. FOR j = 1 to 2
3. IF all the neighboring voxels are flagged
4. Break;
5. ElSE
6. Randomly select an unflagged neighboring voxel vi on the surface of the input BGSP.
7. Find the largest connected component Cj starting from vi based on its label l(vi)

using the Breadth First Search (BFS), set a flag for each voxel belonging to that
largest connected component. Two neighboring voxels vm and vn are
considered to be connected if and only if l(vm) == l(vn).

8. END IF
9. END FOR
10. IF all the neighboring voxels are flagged
11. Return true
12. ElSE
13. Return false
14. END IF

Definition 3. Uniform gradient spherical patterns (UGSPs) are BGSPs whose
surfaces can be covered by AT MOST two uniform regions.
For instance, Figure 2(a) is a UGSP as its surface can be covered by only one
uniform region. Figure 2(b) is also a UGSP as its surface can be covered by two
uniform regions. Figure 2(c) is not a UGSP as its surface cannot be covered by
less than or equal to two uniform regions.

UGSP has physical meaning to mirror fundamental image structures. For
example, Figure 2(a) denotes that there is an edge at a specific direction as all
the neighboring voxels’ gradient orientation measures are the same. Figure 2(b)
represents that there is a corner formed by two edges. In this paper, all the
non-uniform gradient spherical patterns are treated as a single type of pattern.
Algorithm 1 is the procedure to determine whether a BGSP is a UGSP or not.

UGSP encodes second order information. The gradient orientation measure
defined in Equation 1 already contains the first order interaction information
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Algorithm 2. Calculate the UGSP Feature for each Voxel
Input: An input image G, a local cubic square window W for each voxel, the UGSP
radius R and the number of neighboring samples N .

Output: A vector image K, each voxel is represented by a UGSP signature.

1. FOR each voxel v ∈ G
2. SubV olume = (W center at v)
3. Initialize a new feature histogram, H [0...(N − N

2
� + 1)] = 0

4. FOR each voxel t ∈ SubV olume
5. Calculate its corresponding BGSP Qt with parameters R and N
6. Determine whether Qt is a UGSP or not using Algorithm 1
7. IF Qt is a UGSP
8. S = Size of the largest connected component in Qt

9. PatternID = S − N
2
�

10. H [PatternID] = H [PatternID] + 1
11. ELSE
12. H [N − N

2
� + 1] = H [N − N

2
� + 1] + 1

13. END IF
14. END FOR

15. Normalize H [0...(N − N
2
� + 1)] such that

∑N−� N
2 �+1

i=0 H [i] = 1
16. K(v) = H [0...(N − N

2
� + 1)]

17. END FOR
18. Return K

between voxels. During the operation of finding the connected components in
Algorithm 1, higher order voxel information is considered based on the first order
information embedded in the label of each voxel. While LBP [8] only considers
the first order information as it only compares the intensity differences between
the neighboring voxels and the center voxel. Therefore, UGSP has higher order
information layer than LBP.

In this paper, the type ID of a UGSP is determined based on the size of the
largest connected component of the UGSP (e.g. max(|C1|, |C2|), C1 and C2 are
calculated in operation 7 in Algorithm 1, |C1| and |C2| respectively denote the
sizes of C1 and C2). The procedure for calculating the UGSP feature signatures
for each voxel of the input image is presented in Algorithm 2.

A more detail UGSP type classification can be achieved if we also consider
the label type and shape of the largest connected component. However, it will
make the UGSP feature histogram too sparse as there are too many possible
combinations and some of the pattern’s occurrence frequency are too small.
Radius R in the Algorithm 2 affects the scale of interest. In this paper, the
radius R is set by the best scale selection principle in [10].
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3 MRF Modeling for Registration

In recent years, it is shown that the registration process can be robustly for-
mulated as a MRF labeling problem [11]. In this paper, the UGSP feature is
integrated with the MRF framework to drive the registration.

The general form of the MRF energy function can be defined by Equation 3:

Ef = Edata + Esmoothness

=
∑
p∈Ω

Dp(lp) +
∑

(p,q)∈N

Vp,q(lp, lq), (3)

where Ω is the set of voxels, N is the neighborhood system defined in Ω. In
this paper, the 4-connected neighborhood system is used. Dp(lp) is the energy
function associated with the data term. It penalizes the cost of assigning label
lp to voxel p. Vp,q(lp, lq) is the energy function associated with the smoothness
term, and it penalizes the cost of label discrepancy between two neighboring
voxels.

The registration problem is transformed to the MRF labeling problem by
quantizing the deformation space. A discrete set of labels L ∈ {l1, l2, ..., ln} is
defined. Each label li (1 ≤ i ≤ n) corresponds to a displacement vector di.
Assigning the voxel p with label lp means moving p to a new position by the
displacement vector dlp . We follow the quantization step in [12], where each
voxel can be moved from the original position bounded by a discretized window
Ψ = {0,±s,±2s, ...,±ws}d of dimension d.

The energy function Dp(lp) associated with the data term is defined based on
the UGSP features as:

Dp(lp) = Dp(Gtemplate(p), Gsubject(p + dlp)
= Dp(Ktemplate(p),Ksubject(p + dlp))
= JSD(Ktemplate(p)||Ksubject(p + dlp)), (4)

where Gtemplate is the template image, Gsubject is the subject image, Ktemplate

and Ksubject are the UGSP feature images of Gtemplate and Gsubject respectively
at the current iteration calculated by Algorithm 2. JSD(·) is the Jensen-Shannon
divergence measure.

The smoothness energy function Vp,q(lp, lq) is defined as:

Vp,q(lp, lq) = min(λ, |dlp − dlq |), (5)

where λ is a constant represents the maximum penalty. It is the piece-wise
truncated absolute distance.

The alpha-expansion algorithm [13] is applied to minimize the energy function
defined in Equation 3 with the data term energy function and smoothness term
energy function defined in Equations 4 and 5.
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4 Experimental Results

The proposed method is evaluated on both the simulated and real 3D databases
obtained from BrainWeb1 and IBSR2 respectively. In all experiments, the sub-
volume window sizes W was set to 16 × 16 × 16 in Algorithm 2, the number
of neighboring samples N for each UGSP was 60. The 3D displacement win-
dow used in this paper was Ψ = {0,±1,±2, ...,±12}3. The maximum penalty
parameter λ defined in Equation 5 was set to 20. The proposed method is also
compared with three widely used approaches: FFD [3], Demons [4] and HAM-
MER [5]. In all the experiments, the control point spacing of FFD was set to
2.5mm. For Demons, the displacement field was smoothed by a unit variance
Gaussian kernel. The elementary demon forces were computed by the optical
flow equation [4].

4.1 Experiment on Simulated Data

Twenty image volumes from different subjects were obtained from BrainWeb.
One of the image volumes was selected as the template image, and the others
were used as the subject images. The resolution of each image was 256×256×181
voxels. The segmentation results of each image for three classes of tissues: white
matter (WM), gray matter (GM) and the cerebrospinal fluid (CSF) are also
provided by the BrainWeb. The skull of each brain image was removed before
registration by using the software Brain Suite version 2 obtained from USC 3 as
it is a required step for HAMMER [5] to be compared in this paper.

The tissue overlap of GM, WM and CSF between the template and trans-
formed subject images [14] was adopted as the evaluation function. The evalu-
ation function is defined as P = N(A∩B)

N(A∪B) , where A and B denote the regions of
a specific tissue in two images. The average values and standard deviations of
P for GM, WM and CSF before registration, registration after using FFD [3],
Demons [4], HAMMER [5] and the proposed method are listed in Table 1.

It is observed in Table 1 that the proposed method has the highest value of P
among all the methods in this comparison. It reflects that the proposed method
can give high registration accuracy.

4.2 Experiment on Real Data

The proposed method was also evaluated on the real datasets obtained from
IBSR. Twenty skull-stripped image volumes with segmentation results were ob-
tained from IBSR. The size of each volume was around 256 × 256 × 64 voxels.
The experimental settings were similar to the settings described in Section 4.1.
Again, the tissue overlap evaluation function was used to measure the registra-
tion accuracy of different approaches. Table 2 lists the tissue overlap function
value of P for various methods.
1 http://www.bic.mni.mcgill.ca/brainweb/
2 http://www.cma.mgh.harvard.edu/ibsr/
3 http://brainsuite.usc.edu/
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Table 1. The mean values of P and SDs of GM, WM and CSF with different methods
on the simulated 3D database. BR denotes before registration.

Tissue BR FFD Demons HAMMER UGSP
Gray 0.41923±0.07 0.75284±0.05 0.78522±0.04 0.80273±0.05 0.84452±0.04
White 0.48344±0.03 0.76409±0.06 0.78376±0.05 0.81296±0.04 0.83201±0.07
CSF 0.37025±0.06 0.72936±0.06 0.75784±0.04 0.76553±0.05 0.80146±0.05

Table 2. The mean values of P and SDs of GM, WM and CSF with different methods
on the real 3D database. BR denotes before registration.

Tissue BR FFD Demons HAMMER UGSP
Gray 0.54082±0.06 0.75193±0.05 0.77631±0.05 0.79063±0.06 0.83167±0.05
White 0.52147±0.05 0.76728±0.07 0.77382±0.06 0.80274±0.04 0.83639±0.04
CSF 0.33094±0.07 0.73425±0.05 0.76813±0.05 0.77153±0.05 0.80125±0.05

It is shown that the proposed method still has the largest value of P among all
the methods in the comparison and it strongly implies the registration accuracy
of the proposed method.

5 Conclusion

In this paper, a new feature based non-rigid image registration method is pro-
posed. The proposed method is based on a new type of image feature, named
uniform gradient spherical patterns (UGSP). UGSP encodes second order infor-
mation to capture the geometric properties around each voxel. UGSP is rotation
invariant and monotonic gray-level transformation invariant. The UGSP feature
is integrated with the Markov random field (MRF) labeling framework to for-
mulate the registration process. The proposed method is evaluated on both the
simulated and real 3D datasets obtained from BrainWeb and IBSR respectively.
It is also compared with other state-of-the-art registration methods. Experimen-
tal results show that the proposed method has the highest registration accuracies
among all the compared methods on both the simulated and real 3D datasets.
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Abstract. Registration of brain structures should bring anatomically
equivalent areas into correspondence which is usually done using informa-
tion from structural MRI modalities. Correspondence can be improved by
using other image modalities that provide complementary data. In this
paper we propose and evaluate two novel surface registration algorithms
which improve within-surface correspondence in brain structures. Both
approaches use a white-matter tract similarity function (derived from
probabilistic tractography) to match areas of similar connectivity pat-
terns. The two methods differ in the way the deformation field is calcu-
lated and in how the multi-scale registration framework is implemented.
We validated both algorithms using artificial and real image examples, in
both cases showing high registration consistency and the ability to find
differences in thalamic sub-structures between Alzheimer’s disease and
control subjects. The results suggest differences in thalamic connectivity
predominantly in the medial dorsal parts of the left thalamus.

1 Introduction

Different MRI modalities provide complementary data, informing us in vari-
ous ways about brain anatomy and physiology. It is therefore natural to try to
interpret them in an integrated fashion. This is beneficial for a variety of rea-
sons; for example, matching structural landmarks (especially in the cortex) does
not always imply matching functional regions [1]. Also, some structures appear
featureless in a certain modality, with no particular structural landmarks for
matching, whereas other modalities may provide clearer information (e.g. white
matter changes in DTI data).

We believe that image registration can be improved if, in addition to matching
T1-weighted image intensities, we also try to align brain regions according to their
connectivity patterns (information from diffusion-weighted images). Most impor-
tantly, including connectivity information takes us closer to matching functional
areas [2,3,4]. In this case, the description of every brain region becomes more spe-
cific, which should result in better matching accuracy across the population.

In this paper we propose two registration methods that integrate information
available in T1-weighted images and probabilistic tractography. They use geo-
metrical models of subcortical brain structures (e.g., human thalamus is used
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here) segmented using the FIRST/FSL software tool [5] to enhance anatomical
correspondence between their surfaces. Anatomical alignment is based on inter-
subject matching of areas of similar connectivity, which supposes that anatomi-
cally equivalent areas are connected to the same cortical and sub-cortical regions
in different subjects. This is different from [4] where the cortical surface is de-
formed based on regional connectivity measures to cortical ROIs. We illustrate
the effectiveness of our registration methods by applying them to an Alzheimer’s
disease (AD) data-set, specifically looking for thalamic connectivity alterations,
which could have value in determining MRI biomarkers of disease progression.

2 Methods

The registration process tries to improve within-surface correspondence, which
means that the shape of the extracted structures (represented by meshes output
by FIRST) is unchanged by the surface matching. What changes is the cor-
respondence between vertices of the two meshes, which represents anatomical
correspondence between thalamic surfaces. For example, let every vertex in the
thalamic mesh have a unique label (i.e., a number between 1 and N) and denote
the set of vertices on the surface of the anterior dorsal thalamic nucleus as S1
in one subject and S2 in the other (in general, different sets of numbers). The
purpose of the algorithm is to match vertices in S1 to those in S2 by sliding
them around the surface and in that way re-establish correspondence of labels.

Both registration methods presented here use the same form for the similarity
function which measures similarity in white-matter (WM) connectivity of cer-
tain brain regions to the rest of the brain. In our case, these brain regions are
represented by different points of the mesh delineating the sub-cortical structure.
Therefore, the first step in the processing pipeline is to segment matching struc-
tures (using FIRST) from T1-weighted images of both subjects (or more if group
registration is performed). Meshes delineating segmented structures have a fixed
number of vertices (e.g., the thalamus has 642 vertices) that, in our approach,
become seeding points for whole-brain probabilistic tractography [6].

Next, we label probabilistic tractography output from vertex A as the “Con-
nectivity Profile” of A: CP(A). Therefore, CP(A) is an image where every voxel
encodes the number of white-matter tracts originating at coordinates of vertex
A and passing through that voxel. The maximum value is the number of ran-
dom tractography samples at the seed, which is 5000. In the next step, CPs of
all vertices for both subjects’ structures (human thalami) are transformed into
standard MNI space where they can be compared.

After these steps the Correlation Matrix (CM) is formed, which encodes the
similarity measure between CPs (reshaped into vectors). We define correlation
of vectors X and Y as

Corr(X,Y) =
XTY

(XT X + YT Y)/2
, (1)

so that the Correlation Matrix can be written as
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CM(i, j) = Corr(CP(xi),CP(yj)), i, j ∈ [1, N ], (2)

where xi is the ith vertex of a mesh delineating the thalamus in subject X (yj

for subject Y ) and N is the number of vertices in each mesh. Values from the
CM are used to derive the similarity function that drives the registration.

FIRST sub-cortical meshes are initially formed by deforming a spherical mesh.
We use this equivalence in mesh topology to perform registration using spher-
ical meshes. Registration starts by generating two identical regular spherical
meshes (generated by subdividing an icosahedron) representing the input and
the reference structure. The reference mesh (sphere) remains undeformed during
registration whereas the input mesh undergoes tangential deformations to max-
imise the similarity function and better match the reference mesh. In this way,
vertices from the input mesh move along the surface until they converge to a
position where correlations between their CPs and the CPs of the corresponding
vertices of the reference mesh are maximised. In the end, the deformation (of
the input mesh) is propagated back from the sphere to the mesh of the structure
in the native image space.

2.1 Registration Using Deformation Forces (Method1)

In this approach we make use of two deformation forces: the similarity force
(SF) and the regularisation force (RF). The similarity force aims to maximise
similarities between connectivity profiles, whereas the regularisation force aims
to preserve the separation of the vertices (Fig. 1). A multi-scale registration
framework is realised by grouping vertices into “patches”. A “patch” represents
a group of vertices that move together. Large patches are crucial at the initial
stages of the registration when dealing with large-scale deformations e.g., global
rotation. On the other hand, small patches (one vertex is the smallest) only act
locally, affecting local mesh features. In total, optimisation is performed at 10
different scales (patch sizes).

The local similarity function (LSF) calculates the mean correlations between
all vertices within a patch in the input mesh and the corresponding vertices of the

Fig. 1. The effect of the similarity force on an input mesh vertex (xi – input mesh;
yi – reference mesh). The deformation of x3 due to the similarity force is shown. In
a) reference and input meshes initially overlap. In b) the similarity force SF moves x3

away from y3 and towards y2 as Corr(CP(x3),CP(y2)) > Corr(CP(x3),CP(y3)).
The regularisation forces would have the opposite effect, bringing x3 closer to y3.
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reference mesh. The similarity force, SF, is defined as the spatial derivative of the
LSF with respect to the parameters encoding the position of the patch centre in
the input mesh. This force acts equally on all the vertices within a patch, inducing
coherent movement. The regularisation force is defined as RF(xi, νi) ∝ mi − xi

where νi is the set of first neighbours of xi in X and mi is the average position
of the neighbours, given by mi = 1

|νi|
∑

k∈νi
xk as in [7]. RF is calculated and

applied separately to each vertex within a patch.
RF and SF are iteratively applied to patches until convergence. The patch

sizes (number of vertices) we use are 642, 321, 100, 50, 40 30, 20, 10, 5, 3 and
1. At the smallest patch size, both forces act on one vertex in turn. During
every iteration, each vertex becomes the centre of a patch once and is chosen at
random. The number of iterations has been empirically optimised using artificial
testing data as described below.

Displacements are determined from the forces by scaling parameters, λ and μ
for RF and SF respectively, where the values are determined empirically. When
a force is applied to a vertex, mesh-intersections and local topology breaches are
prevented by checking for intersections and, when they occur, reducing the size
of the movement until no intersections occur.

2.2 Registration Based on Spherical Wavelets (Method2)

In this registration method we represent the deformation field using a set of
biorthogonal wavelet basis functions defined on a sphere [8,9]. The basis set is
constructed of scaling functions at the coarsest scale and wavelet functions at
finer scales. Both scaling (ϕ) and wavelet functions (ψ) are defined as ϕj,k, ψj,k :
S → R, where S is a unit sphere, j defines the scale of the function and k refers to
the spatial index which describes where on the surface the function is centered.
At a particular scale j, wavelet functions are combinations of scaling functions
at scales j and j + 1. A given function f : S → R can be expressed as a linear
combination of the basis functions

f(x) =
∑

k

λ0,kϕ0,k(x) +
∑
j≥0

∑
m

γj,mψj,m(x). (3)

Scaling coefficients λ0,k represent the low-pass content of the signal f whereas
coefficients γj,m represent the localised band-pass content of the signal.

The idea of multi-scale registration using spherical wavelets relies on approxi-
mating the function f at different scales - coarse (low) scale encodes large defor-
mations while higher scales determine fine features of the deformation field (for
applications in shape analysis see, e.g., [10,11]). If a spherical mesh has N ver-
tices, a total of N basis functions are created, composed of N0 scaling functions
(where N0 is the initial number of vertices of the base mesh - e.g. icosahedron)
and Nr wavelet functions. If each of these basis functions is evaluated in each of
the N vertices and these data stacked into a matrix ΦN×N , every finite energy
scalar function F evaluated at N vertices can be transformed into a vector of
basis coefficients Γ using Forward Wavelet Transform Γ = Φ−1F and recovered
using Inverse Wavelet Transform: F = ΦΓ .
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If F encodes displacements in Euler angles for every vertex of the input mesh,
coefficients in Γ can be numerically solved for by maximising the similarity
function between CPs of the input (X) and reference (Y ) meshes. The similarity
function (SFun) is calculated for all vertices of the reference mesh and can be
written as

SFun(X,Y ) = μ
1
N

∑
l∈Y

C̃M(xl∗ ,yl) + νEm(F ), (4)

where C̃M(xl∗ ,yl) is the interpolated value of the CP correlation between yl and
the corresponding input mesh vertex xl∗ , where this position directly depends on
the deformation field, F . The interpolation of CM values is achieved using linear
interpolation. Em is the membrane energy of the deformation field, taking on the
role of the regulariser, while μ and ν are scaling parameters found empirically.
In order to penalise local topology breaches, parameter ν is increased (by 10%)
when the deformation field F results in a mesh-intersection.

We use variable metric non-linear optimisation to estimate coefficients λ and
ψ (Γ ) [12]. This is performed in four steps (on four scales) with all coefficients
set to 0 initially. We denote a set of coefficients at scale i by Si, i ∈ [0, 3] (where
Si−1 ⊂ Si). The first stage of optimisation finds the coefficients at the coarsest
scale, S0, followed by stages for increasingly higher scales: S1, S2 and S3.

3 Results

In order to test the algorithms and tune free parameters we ran experiments on a
set of artificial examples. The artificial meshes are regular spheres with six differ-
ently coloured regions (Fig. 2). All vertices of the same colour have identical CPs
across spheres/subjects, while vertices with different colours have completely un-
correlated CPs. In order to test the quality of registration we used all spheres from
Fig. 2 and performed A to B, B to C and C to A registrations. If we denote the
corresponding mappings by wA, wB and wC : A wA−→ B

wB−→ C
wC−→ A, then in

an ideal case, wC ◦ wB ◦ wA = I where I is an identity mapping (we shall call
this an ABCA test). Therefore, the residual deformation field of the ABCA test
is a good measure of the registration consistency although it cannot be used to
assess absolute accuracy. We performed the ABCA test using Methods 1 and 2

Fig. 2. A (left), B (middle) and C (right) represent three different artificial sub-
jects/spheres. Sizes of the coloured regions and overall rotation vary between subjects.
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Fig. 3. ABCA test performed using Methods 1 and 2. a) shows mesh A after the A →
B → C → A registration using Method1. In the ideal case, it should be a regularly tessel-
lated sphere. b) shows displacement vectors between original A and A-registered-back-
to-itself through B and C. c) shows a histogram of displacement vector norms from b)
(mean displacement is approx. 2 mm). d), e) and f) show analogous results for Method2.
All displacement values are smaller than the length of the mesh triangle side (≈7 mm).
Mean (true) displacement values for each of the A → B, B → C and C → A registration
steps are 5 mm, 6 mm and 10 mm respectively for both methods.

and the results are shown in Fig. 3. For every registration step of the ABCA test,
the final mean vertex-to-vertex correlations between the input and the reference
meshes were approx. 0.98 (5% to 10% increase from the initial mean vertex-to-
vertex correlation) indicating successful alignment/convergence for both registra-
tion methods. The ABCA test was also performed on thalami from three healthy
controls. For Method1, the average vertex displacement from the registrations (A-
B, B-C and C-A) was approx. 1.5 mm (5 mm max). The average residual displace-
ments (A-B-C-A) were approx. 1 mm (5 mm max) and the average mesh edge
length approx. 2 mm. As the ABCA test involves three registrations, the individ-
ual registration errors are likely to be less than the total ABCA residual error. For
Method2, however, the average vertex displacements from the B-C and C-A regis-
trations were similar to the average residual displacement, while the A-B registra-
tion found no displacements. This could be due to convergence problems with the
variable metric approach when optimising fine-scale wavelet coefficients, possibly
due to the highly non-linear similarity function. Conjugate gradient optimisation
method yielded similar results.
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(a) (b)

Fig. 4. Statistical analysis of residual within-surface displacements between control and
AD groups for the left thalamus. Colourbars represent uncorrected p-values. a) Results
for Method1. b) Results for Method2. A – anterior, P – posterior.

These methods were further tested on the thalami from a dataset compris-
ing age- and gender-matched AD and control groups (12+12 subjects). An AD
subject (the most typical of all 24 subjects [13]) was chosen as template and
all others were registered to this using proposed methods. For every vertex, the
Euclidean distance between its original position (given by FIRST vertex corre-
spondence) and the new position after registration was compared between AD
and control groups. For both methods two-tailed t-tests showed group differences
in residual within-surface displacements predominantly in medial dorsal parts of
the left thalamus (Fig. 4). Right thalamus showed negligible differences that
considerably depended on the choice of the template subject. Spatial positions
of changes found in the left thalamus did vary with the choice of template, but
were always constrained to the medial dorsal part. Nevertheless, such dependen-
cies demonstrate the potential benefits of construction and investigation of an
average template of thalamic connectivity profiles.

4 Discussion

We presented a general framework for improving the within-surface correspon-
dence between brain structures based on matching areas of similar structural
connectivity patterns. We then introduced two methods implementing this idea.
Both perform well on the artificial example suggesting high registration consis-
tency and indicating that the chosen set of features is informative enough to
drive the registration. Method2, however, was less sensitive when analysing real
data, although it performed better in the artificial examples. We believe this is
due to the difficult optimisation step at the highest scale (aligning fine details)
where we found the variable metric optimisation approach was often unable to
properly converge. This demonstrated the importance of adjusting the optimi-
sation method, as well as the multi-scale approach, to the specific nature of this
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registration problem. Nonetheless, patterns of differences in thalamic connectiv-
ity between AD and healthy controls found by both methods are consistent with
histological evidence [14]. This indicates potential value for the method in deter-
mining MRI-based biomarkers of disease progression. Future work will attempt
to apply this registration framework to the whole neo-cortical surface.
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Abstract. Constructing a one to one correspondence between whole
brain MR image scans is a problem of critical importance in neuroimag-
ing analyses. We present a framework to combine the strength of both
surface-based and volumetric-based analyses for consistent, bijective data
transfer between brain coordinate systems.

1 Introduction

Constructing a one to one correspondence between whole brain MR image scans
is a problem of critical importance in neuroimaging analyses [1]. This underlies
the ability to transform several types of data that are acquired or computed in
the native brain’s structural coordinates to a common central template brain
space [2]. One type of data to transform is two-dimensional cortical surface-
indexed measures such as cortical thickness, curvature, sulcal locations/depths
or projected functional activation maps on the surface. A second type of data to
be transformed are the 3D volumetric Cartesian grid-indexed measures such as
structural images, or 3D functional activation maps from fMRI. Comprehensive
neuroanatomical analysis of these two kinds of data necessitates that the distinct
surface-indexed and Cartesian grid-indexed coordinate systems be consistently
transformed bijectively between the brains being registered.

There now exist several volume to volume registration (VVR) methods that
attempt to register brain images by minimizing the overlap of grayscale MR im-
age intensities; these give good results for most internal areas of the brain but
cannot handle the thin and highly convoluted nature of the cerebral cortex. On
the other hand, surface to surface registration (SSR) methods are able to preserve
cortical topology and still give good registrations, however, either these lead to
large distortions in the cortical mesh, or require quality controlled point or curve
landmarks, the variability in natural occurrence or the uncertainty injected in

� We are grateful to NSERC, CHRP, Pacific Alzheimer Research Foundation and the
Michael Smith Foundation for Health Research for providing funding towards this
research.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 713–720, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



714 E. Gibson, A.R. Khan, and M.F. Beg

the labeling process of which also influences heavily the quality of this registra-
tion. More generally, these SSR methods give cortical surface correspondence,
but these are not easily extendable to construct a volumetric matching between
the spaces. Hence, the important bridge that should exist between the two meth-
ods is not yet available. Instead, researchers have tended to use one or the other
type of data and the corresponding registration, and have made comparisons to
justify which one is suitable in what conditions [3], [4] and for surface-indexed
measurements, generally conclude that surface based registrations offer better
alignment than volumetric registration methods [5]. Some hybrid methods lever-
age VVR to bootstrap SSR [6]; others use SSR to initialize VVR [7,8] improving
cortical alignment; however, these methods still use either VVR or SSR alone as
the final registration.

Instead of choosing between grid-indexed or surface-indexed data while study-
ing neuroanatomy, a better solution is a consistent combination of both of these
methods to reach a comprehensive neuroimaging analyses framework. What is
needed is a method that performs accurate whole brain matching such that vol-
umetric and surface data can be consistently mapped to a given template space.
The construction of such a framework, that yields consistent mapping between
cortical surfaces and volumetric domains, is the focus of this paper.

2 Proposed Combined Surface And VOlumetric
Registration (SAVOR) Framework

The neuroanatomical volumetric coordinate system Ωi in the brain scan Ii of the
ith brain consists of the Cartesian grid-based coordinates indexing volumetric
subdomains Vi ⊂ Ω, and additionally, imbedded in Ωi are the 2-dimensional
surface manifolds Si representing the whole brain cortical surface. Our method
for constructing a whole brain and surface bijective and accurate correspondence

Fig. 1. Framework Pipeline. (A) Two pial surfaces (B) Upper surface registered to lower
surface via image registration, with identity coordinate functions overlaid (C) surfaces
mapped to the spherical domain via FreeSurfer mapping with coordinate functions
overlaid (D) surfaces on spherical domain with function on lower surface mapped to
that on upper surface (E) Cortical thickness values for upper and lower brains displayed
on the domain of the lower brain.
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relies on accurate VVR, followed by a surface constrained optimal approximation
of the VVR using SSR. This process is outlined in Figure 1.

Whole Brain Smooth and Invertible VVR. The first step (Figure 1(B))
is to use an accurate whole brain VVR method construct a dense volumetric
correspondence ϕV (i,j) : Ωi → Ωj . This mapping should accommodate the vari-
ability of subcortical structures, as well as do a reasonably good job, although
not necessarily perfect, of aligning cortical surfaces. This mapping will be used
directly for transforming grid-index data. Additionally, this mapping is used as
a reference registration that the following SSR will approximate.

Smooth and Invertible SSR. The second step is to construct invertible map-
ping ϕS(i,j) between the two surfaces Si ∈ Ωi and Sj ∈ Ωj , proceeding from this
dense volumetric mapping ϕV (i,j) using VVR in step 1. Using the ϕV (i,j) ob-
tained, get a transformed surface Si′ = ϕV (i,j)(Si) = {ϕV (i,j)(x), ∀x ∈ Si}; this
now lies in the domain Ωj . The transformed surface Si′ is expected to be close to
the target surface Sj but not exactly matched. To achieve an accurate surface to
surface correspondence, we need to construct a second mapping, ϕSi′,j , between
Si′ and Sj to be used to ultimately construct the mapping from Si to Sj . This
mapping should approximate ϕV (i,j) as closely as possible, under the constraint
of precisely, aligning the surface domains. We propose the following three steps.

1. Define suitable functions indexed on the surfaces Si′ and Sj that should be
registered (Figure 1(B)),

2. define a smooth and invertible mapping of each surface to a common in-
termediate surface where these registrable functions defined in (a) are then
transferred (Figure 1(C)),

3. compute a registration of these transformed functions on the common inter-
mediate surface domain (Figure 1(D)).

The functions we choose to construct for registration are the coordinate identity
map on Si′ and Sj , such that C(Si′ (x)) = x and C(Sj(x)) = x. These are then
mapped to a common surface domain using a surface homeomorphic mapping
ϕS(i′,0) and ϕS(j,0) for each surface Si′ and Sj to a common space S0 along with
the coordinate functions from both surfaces. In this common domain, perform
a multi-dimensional registration of the mapped coordinate functions from the
two surfaces, producing a mapping ϕS(0). This mapping between surface coor-
dinate identify maps transferred to a common domain in effect minimizes the
distance between corresponding original surface points. Once these coordinate
map functions are matched on the common domain via ϕS(0), then an invertible
mapping between the surfaces Si′ and Sj is created by composition. By further
composition with mapping between Ωi and Ωj , the final invertible map that
preserves topology between the surfaces Si and Sj is given to be:

ϕS(i,j) = ϕ−1
S(j,0) ◦ ϕS(0) ◦ ϕS(i′,0) ◦ ϕV (i,j) (1)
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Interpolation and Transfer of Coordinate-indexed Data. The third step
is interpolation of surface-indexed data to a common domain; using the surface
mapping ϕS(i,j) to transform the surface-index data. In the general case, where
the surface-indexed functions are continuously defined on the surface domains,
and all the mappings are continuous mappings between domains, there is no need
for interpolation. However, implementations of this proposed framework may use
sparse representations of the domain (as in the triangulated mesh-based surfaces
in the illustrative example below). In this case, interpolation is necessary, as
the point x′ ∈ Sj corresponding to point x ∈ Si will in general not lie on a
point where the data to transform, FSj , is defined. This final interpolation step
completes the transfer of surface-indexed functions between surfaces.

3 Our Implementation of the Proposed Framework

In implementing the framework, several algorithmic components must be se-
lected: the VVR method for volumetric image registration, the homeomorphic
mapping to bring surfaces into to a common domain, the method of registra-
tion of coordinate functions on this common domain and finally, the method of
interpolation. Our choice of these components and the selection rationale follow.

Data. T1-weighted MR images (N=8 subjects), each scanned at 2 time points
were taken from the ADRC dataset [9]. Subjects having CDR 0 score at base-
line and CDR 0.5 at followup were chosen. Three types of comparison were
implemented: 1) transforming cortical surface-index data from each subject to
a common template (cross-sectional); 2) transforming data from the followup
scan for each subject to compare to the baseline data (longitudinal); and finally
a combined approach to compare these longitudinal results across subjects in a
common template. For each brain, the cortical pial surface, corresponding to ΩSi ,
was extracted using FreeSurfer [10]. Biomarkers defined on these surfaces include
curvature measures generated by FreeSurfer, and our in-house implementation
of cortical thickness measurements measured using Laplacian streamlines [11].

Image Registration. Accuracy of the VVR registration is important to the
quality of the final mapping; thus a high-dimensional nonlinear VVR method
was chosen. Specifically, VVR registration between MR images Ii and Ij was
carried out using a multi-structure extension of a high dimensional nonrigid dif-
feomorphic (smooth and invertible) transformation [12] that incorporated chan-
nels for MR image intensity, subcortical binary segmentation and volumetric
cortical segmentations to concurrently guide the registration. The simultaneous
usage of the automated segmentations as separate cost terms allows the overall
MR image matching to better avoid local minima, while providing flexibility in
setting weights for different channels to emphasize certain properties, such as
emphasizing smaller structures, or deemphasizing less reliable channels. The use
of 34 cortical parcellations, as listed in [13] and computed using FreeSurfer, al-
lows for higher accuracy in the cortical mantle. Parcellations were voxelized,
then smoothed to eliminate the sharp boundaries, and used in guiding the
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volumetric registration. This multi-structure framework is observed to transform
the surfaces to within 1.5 mm of template surface in cross-sectional registration.

Homeomorphic Surface to Common Domain Mapping. To apply the
second step for SSR, we map the surfaces to a common spherical domain. The
specific mapping to a spherical domain is drawn from an intermediate step in the
FreeSurfer segmentation, and is described in detail in [14]. In brief, each cortical
surface is first inflated to a smooth surface and then projected on to a sphere.
The surface is then evolved to minimize metric distortion, including spherical
folds introduced by the projection.

Registration of Functions on Common Domain. The registration of the co-
ordinate functions on the spherical domain is performed using Spherical Demons
registration [15]. The Spherical Demons algorithm uses representations of map-
pings, and regularizations that are particularly suited to fast computation on the
spherical domain, and know to perform well on cortical surfaces.

Interpolation. Each cortical surface was represented by a triangular mesh, and
surface-indexed function was given on the vertices. Additionally, the homeomor-
phic mappings to the common domain are defined only at the vertices, extended
via linear interpolation along the entire face, and for interpolating function value
from neighboring vertices. This linearity allows us to compute the interpolation
weights from a discretization of the spherical common domain.

4 Results

Using our multi-structure VVR registration, the Dice coefficients found for sub-
cortical structure mappings are shown in Figure 3(b). For the subsequent SSR reg-
istration of the cortical surface manifolds between the baseline scans to a common
template image(IT )/surface(ST ) and from baseline scans to the followup scan, we
transformed all baseline surfaces Si and corresponding baseline FS labelsFi to the
template domain. We compute, for each vertex v on the template surface, the sur-
face registration error map (SREM) by comparing the transformed labels Fi,T to
the template labelFT via δ(FT =Fi,T ) giving value 1 for a mismatch, and 0 otherwise.
AcrossN subjects, we define the probability of registration error to be the average
SREM or ASREM via P (error(v) = 0) = (1/N)

∑N
i=1 δ(FT =Fi,T ). The ASREM,

shown in Figure 2 (a) shows the average registration errors across our 8 subjects,
and panel (b) shows the individual SREMs in matching to template space and (c)
shows the SREMs for baseline to longitudinal matching. Using these registrations,
we transformed the cortical curvature and mantle thickness functions longitudi-
nally to baseline, and further, cross-sectionally to template. Longitudinal cortical
thickness change, normalized for inter-scan time for each subject, is shown in Fig-
ure 4(a), and mapped further to a common template, as in Figure 4(b). Pearson’s
linear correlation, comparing the overlap of values transformed from followup to
baseline, was done using our framework and using solely FreeSurfer’s cortical sur-
face registration [14], is shown in Figure 3(a). Dice metrics for alignment of cortical
parcellations are given in Figure 3(b).
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(a)

(b) (c)

Fig. 2. The average surface-registration error map (ASREM), shown as a color map (a)
on the template surface, quantifies the variability in label overlaps after registration,
capturing the variability in folding patterns accuracy in the assignment of labels and
errors in registration. (b) shows the individual cross-sectional registration error (red:
labels were not matched), and (c) shows the longitudinal registration errors.
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Fig. 3. (a) Comparison of our framework vs. FreeSurfer cortical registration. Points be-
low the line correspond to mappings where our framework had higher correlation be-
tween source and mapped target data. (b top) Mean Dice metrics for selected surface
parcellations. (b bottom) Mean Dice metrics for selected subcortical structures.
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(a) (b)

Fig. 4. (a)Longitudinal change in cortical thickness overlaid on the baseline surface
for left hemisphere of all subjects. (b)Mean longitudinal change in cortical thickness
mapped on to the common template. These thickness maps have not been smoothed.

5 Discussion and Conclusion

While direct surface registration has many proponents, there are limitations
to the types of data that can be expressed on surfaces, and to the quality of
registration achievable by directly mapping two surfaces. Furthermore, this step
necessarily assumes that there is no error in the definition of the surface. Hence,
the ’correct’ registration may lie outside of the space of considered registrations
in direct SSR. In the SAVOR framework, the correct registration would lie within
the space of considered registrations, and errors in surface definition would be
accounted for by the manifold registration on the common domain.

Our suggestion to use an arbitrary homeomorphic mapping to a common do-
main as an intermediate stage for mapping surfaces needs some justification. In
the general sense, the mapping may be arbitrary; however, this requires that
the manifold registration must also be capable of producing arbitrary mappings.
In practice, manifold registration algorithms use regularization techniques that
limit the space of achievable manifold registrations, limiting the choice of ac-
ceptable homeomorphic mappings. The Spherical Demons algorithm was used
with the FreeSurfer spherical mapping based on evidence that this registration
was powerful enough to align cortical surfaces with this mapping [15].

Our demonstrated implementation performed better at overlaying longitudi-
nal cortical thickness and data mapping. For longitudinal and cross-sectional
mapping of thickness and curvature, our implementation performed better ex-
cept for cross-sectional curvature mapping. This may be attributed to the under-
lying mechanism of the FreeSurfer data mapping which includes a minimization
of intersubject curvature in its cortical registration.

In conclusion, we have introduced a comprehensive framework for bijectively
transporting both volume-indexed and surface-indexed data using a powerful
combination of image-based and surface-based registration (SAVOR). We demon-
strate the use of this framework for assessing general trends in longitudinal stud-
ies, and show results from one such assessment. This work simplifies the use of
cortical surface biomarkers for proponents of image-based registration; enables
combined surface and volume based data-mapping; and provides a new means
for evaluating image-based registrations relative to surface-based registrations.
However, the framework relies on a set of subcomponents, and the full potential
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of this framework can be realized with optimized combination of each of the
subcomponents.
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Abstract. We propose a novel algorithm, called Fast Tensor Image
Morphing for Elastic Registration or F-TIMER. F-TIMER leverages mul-
tiscale tensor regional distributions and local boundaries for hierarchi-
cally driving deformable matching of tensor image volumes. Registration
is achieved by aligning a set of automatically determined structural land-
marks, via solving a soft correspondence problem. Based on the estimated
correspondences, thin-plate splines are employed to generate a smooth,
topology preserving, and dense transformation, and to avoid arbitrary
mapping of non-landmark voxels. To mitigate the problem of local min-
ima, which is common in the estimation of high dimensional transforma-
tions, we employ a hierarchical strategy where a small subset of voxels
with more distinctive attribute vectors are first deployed as landmarks
to estimate a relatively robust low-degrees-of-freedom transformation. As
the registration progresses, an increasing number of voxels are permitted
to participate in refining the correspondence matching. A scheme as such
allows less conservative progression of the correspondence matching to-
wards the optimal solution, and hence results in a faster matching speed.
Results indicate that better accuracy can be achieved by F-TIMER, com-
pared with other deformable registration algorithms [1, 2], with signifi-
cantly reduced computation time cost of 4–14 folds.

1 Introduction
Diffusion tensor imaging (DTI) is capable of measuring water diffusion in vivo
non-invasively, and has been widely employed to delineate potential neurological
disease related white matter abnormalities. To this end, accurate registration of
diffusion tensor images across different subjects is a critical prerequisite for de-
tailed voxel-by-voxel statistical analysis. Spatial normalization of diffusion tensor
images is, however, challenging both technically and computationally given that
tensor data representation is inherently high dimensional, and the anisotropic na-
ture of cellular water diffusivity calls for proper reorientation of the tensors on
top of their spatial alignment, which adds another dimension of difficulty to the
problem.

Conventional methods generally extract tensor scalar features from each ten-
sor individually, and by constructing scalar maps, regional integration and other
operations such as edge detection can be performed to extract the final features
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for correspondence matching. These approaches, however, do not exploit full
tensor information, and are limited in the sense that the regional and edge infor-
mation extracted might not reflect the true underlying tensor structure. While
it is possible to use existing scalar image registration algorithms to establish
correspondence matching, it is natural to expect that the inclusion of additional
information gained from considering the full diffusion tensor will lead to more
accurate matching, and hence more robust registration.

In this paper, we propose a fast and accurate diffusion tensor image registra-
tion algorithm, called F-TIMER. F-TIMER, in addition to scalar map based fea-
tures, gathers directly from the tensors regional statistical information and bound-
ary edge information in a multiscale fashion. All the collected information is then
grouped, for each voxel, into an attribute vector [3], serving as its structural signa-
ture. Based on the attribute vectors, salient points, signifying important anatomi-
cal structures, are automatically selected, and are utilized as landmarks for corre-
spondence matching. For robust correspondence matching and to avoid being bias
towards the template or the subject, the deformation is estimated by jointly con-
sidering the forward and reverse transformations [4]. Upon establishing landmark
correspondences, thin-plate splines (TPS) [5] are employed to generate a smooth,
topology preserving, and dense transformation, and to avoid arbitrary mapping of
non-landmark voxels. The whole framework can be summarized as an Attributive
Symmetric Soft Assignment Problem (ASSAP), which is an extension of the orig-
inal soft assignment problem [6] by taking into account attribute vector labelled
landmarks [3] and also symmetric transformation [4]. To obviate local minima,
which are prone to happen, and often inevitable in estimating a transformation
with very high degrees of freedom, we adopt a hierarchical strategy in optimizing
the ASSAP related energy function. We progressively build up our optimization
solution starting with landmarks resulting from a small subset of the voxels, which
exhibit more distinctive attribute vectors — equivalent to optimizing an approxi-
mate lower-degrees-of-freedom version of the energy function — and include more
voxels to refine the solution as registration progresses. Finally, reorientation of the
tensors is performed using the algorithm presented in [7]. Such scheme, as can be
validated from the experiments, results in more robust and accurate matching in
a lesser amount of time.

2 Methods

2.1 Attribute Vectors

In medical imaging, it is important to build deformable anatomical models that
take into account the underlying anatomy, and not simply the similarity of im-
age intensities. To this end, a multiscale attribute vector is attached to each
voxel, reflecting its underlying anatomical structure in a local scale, and also
its relationship to more distant voxels in a more global scale. A rich enough
attribute vector can potentially differentiate different parts of the anatomy that
would otherwise look similar. F-TIMER characterizes a voxel using three dif-
ferent types of features: 1) Regional features aReg

r (x) (means and variances),



Fast Tensor Image Morphing for Elastic Registration 723

2) Edge features aEdg
r (x) (tensor edges and FA map edges), and 3) Geometri-

cal features aGeo
r (x) (FA values and principal diffusivities). These features are

computed in three different scales (Fine, Middle, Coarse) and are grouped, for
each voxel x, into an attribute vector: a(x) =

[
aFine(x), aMiddle(x), aCoarse(x)

]
,

where, for each scale r ∈ {Fine,Middle,Coarse}, there are three types of fea-
tures: ar(x) =

[
aReg

r (x),aEdg
r (x), aGeo

r (x)
]
. In the following, we describe and

define aReg
r (x), aEdg

r (x), aGeo
r (x), and also measures for gauging attribute vector

similarity.

Regional Features. Utilizing Log-Euclidean metrics, we can define the regional
mean in the neighborhood N (x) of voxel x as: M(x) = exp

[∑
z∈N(x) log(D(z))

|N (x)|
]
,

where D(x) is the tensor pertaining to voxel x. From the mean, the principal dif-
fusivities, i.e., the eigenvalues, can be computed: λ(M)

1 (x) ≥ λ
(M)
2 (x) ≥ λ

(M)
3 (x),

where λ
(M)
k (x) represents the k-th largest eigenvalue of matrix M(x). Similarly,

we can define the regional variance as: V(x) =
[∑

z∈N (x)
[log(D(z))−log(M(x))]2

|N (x)|
]
,

and the principal variabilities as: λ(V)
1 (x) ≥ λ

(V)
2 (x) ≥ λ

(V)
3 (x). These eigenval-

ues are scaled according to the following equation to yield their mean normalized
values: λ̃(V)

i (x) = λ
(V)
i (x)/

∑3
k=1 λ

(M2)
k (x) where we have used M 2 instead of M

to match the dynamic range of V. The notation [·] indicates that the quantity in
the bracket is in the log space. The regional features are computed for each scale
r, and are grouped into: aReg

r (x) =
[
λ

(M)
1,r (x), λ(M)

2,r (x), λ(M)
3,r (x), λ̃(V)

1,r (x), λ̃(V)
2,r (x),

λ̃
(V)
3,r (x)

]
.

Edge Features. To better extract tissue boundaries, the Canny edge detec-
tor is extended to cater for diffusion tensor images. For fast edge detection, 3D
Gaussian-based image filtering is implemented using three subsequent steps of
one-dimensional (1D) Gaussian filtering along the anterior-posterior, superior-
inferior and left-right directions, which is then followed by gradient maps com-
putation. Using these steps, edge detection can be accomplished rapidly and ro-
bustly. Note that tensor edge detection is performed in the logarithmic space [8].
For each voxel in the volume, a gradient HTensor(x) can be computed, and from
which, after non-maximum suppression, a final edge magnitude HTensor(x) can
be obtained. Edges from tensors and edges from FA map are complementary
to each other and, by using both, potentially all major kinds of tissue bound-
aries, that is, those formed between white matter (WM), gray matter (GM)
and cerebro-spinal fluid (CSF), can be detected and aligned in the registra-
tion. We denote the edge magnitude returned by the FA map detection at
point x as HFA(x). For scale r, the edge features are grouped into: aEdg

r (x) =[
HTensor

r (x), HFA
r (x)

]
.

Geometrical Features. The rest of the features used in F-TIMER includes
the fractional anisotrophy value FA(x) and the principal diffusivities λ

(D)
1 (x) ≥

λ
(D)
2 (x) ≥ λ

(D)
3 (x), which characterize the geometrical shape of the tensor

ellipsoid. For scale r, the geometrical features are grouped into: aGeo
r (x) =[

FAr(x), λ(D)
1,r (x), λ(D)

2,r (x), λ(D)
3,r (x)

]
.
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Fig. 1. Distintiveness of attribute
vector. The similarity map in the
green box is magnified for a closer
inspection. Dark red indicates high
similar and dark blue otherwise.

Fig. 2. Landmarks superimposed on the FA
image. Shown on the left are the initial land-
marks and on the right, in red, are the ad-
ditional landmarks when the registration pro-
gresses to a later stage.

Similarity Measures. Prior to computing the attribute vector similarity, we
normalize the elements of the attribute vectors to have a range of [0, 1]. For
a template voxel xt with attribute vector aT(xt) and a subject voxel xs with
attribute vectors aS(xs), their voxel similarity is defined as: m

(
aT(xt), aS(xs)

)
=

Πi(1 − |aT,i(xt) − aS,i(xs)|), where aT,i(x) and aS,i(x) are the i-th elements of
aT(x) and aS(x), respectively. Fig. 1 illustrates that the attribute vectors are rich
enough to warrant differentiation of different anatomical structures. For robust
correspondence matching, rather than computing the similarity on a voxel-to-
voxel basis, we compare the similarity of the voxels in the neighborhood of xt

with that of xs, and vice-versa. For a voxel x in the neighborhood of xt in the
template space, the distance x − xt corresponds to Δs(x,xt) = f(x) − f(xt)
in the subject space. Likewise, for voxels x and xs in the subject space, their
corresponding distance in the template space is Δt(x,xs) = f−1(x) − f−1(xs).
We can hence define the regional similarity measures, in both forward and reverse
directions, as:

simT→S(xt,xs) = m
(
aT(xt), aS(xs)

)∑
x∈N1(xt)

m
(
aT
(
x
)
, aS
(
xs + Δs(x,xt)

))
|M1(xt)|

,

simS→T(xt,xs) = m
(
aT(xt), aS(xs)

)∑
x∈N2(xs)

m
(
aT
(
xt + Δt(x,xs)

)
, aS
(
x
))

|M2(xs)|
,

where N1(·) and N2(·) denote the respective neighborhoods, and |N (x)| the
cardinality of set N (x). These regional similarity measures are used to optimize
the ASSAP energy function (1), which will be discussed in Section 2.3.

2.2 Landmark Selection

Brain medical images are inherently high dimensional and computations in-
volved in registering these images can be prohibitive. In order to overcome this,
out of all possible voxels XT = {xt : t = 1, . . . ,M} for the template, and
XS = {xs : s = 1, . . . , N} for the subject, (XT,XS ∈ R3), we select as land-
marks a subset of voxels with more distinctive attribute vector XS(k) = {xt(k) :
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t = 1, . . . ,M(k)} ⊂ XS and XT(k) = {xs(k) : s = 1, . . . , N(k)} ⊂ XT, at it-
eration k of the registration, for correspondence matching. As the registration
progresses, an increasing number of landmarks are used to refine the registra-
tion. Besides the obvious benefit of making the correspondence matching problem
more feasible, this approach also helps mitigate the problem of local minima. Se-
lecting an initial smaller number of landmarks essentially means that we are now
solving a lower-degrees-of-freedom approximation of the transformation, and is
hence less prone to be trapped by local minima. As more landmarks start to par-
ticipate, transformation of increasing complexity can be estimated. F-TIMER
selects as landmarks a combination of voxels with the highest tensor edge mag-
nitudes (HTensor

r (x) > αTsrEdge
r ), FA map edge magnitudes (HFA

r (x) > αFAEdge
r )

and FA values (FAr(x) > αFA
r ), since these voxels represent important anatomi-

cal structures, and are relatively easy to locate in images with sufficient contrast.
The values of αTsrEdge

r , αFAEdge
r and αFA

r are initially high, but are progressively
lowered to allow more voxels to participate in correspondence matching as regis-
tration progresses. Fig. 2 gives an illustration of the landmarks at two different
stages of the registration.

2.3 Correspondence Matching and Transformation Estimation

The determination of the non-rigid spatial mapping can be cast into an Attribu-
tive Symmetric Soft Assignment Problem (ASSAP). We adopt a hierarchical
strategy in minimizing the related energy function. At each iteration k, the ac-
tive landmarks consist of a subset of voxels XT(k) ⊂ XT from the template and
in XS(k) ⊂ XS from the subject. Let f denote a non-rigid spatial mapping. Our
goal is to find the optimal correspondence matrices P̂(k) and Q̂(k) and an opti-
mal spatial transformation f̂ by minimizing an energy function with constituent
terms explained as follows:

– We would like to match the driving voxels in XT(k) and XS(k) as closely
as possible in the subject space, but at the same time encourage match-
ing of voxels with similar attribute vectors. And naturally, a voxel pair
xt(k) and xs(k) satisfying these conditions will be deemed a more probable
match and given a higher probability pt,s in the energy function. This can

be realized with: E(P(k), f) =
∑M(k)

t=1
∑N(k)

s=1 pt,s(k)
{
||f(xt(k))− xs(k)||2 −

log
[
simT→S(xt(k),xs(k))

]}
, where P(k) = {pt,s(k)}.

– We require mapping f to be consistent in that equal consideration is given
to correspondence matching from the point of view of the template and
the subject in determining f . This is to avoid bias towards the template
or the subject, and to avoid local minima resulting from correspondence
ambiquity. We thus incorporate a term in the energy function, which is
symmetric to that defined above, by requiring similar matching in the tem-
plate space: E(Q(k), f) =

∑M(k)
t=1

∑N(k)
s=1 qt,s(k)

{
||xt(k) − f−1(xs(k))||2 −

log
[
simS→T(xt(k),xs(k))

]}
where Q(k) = {qt,s(k)}.
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– Soft correspondence are permitted in the initial stages of the registration
so that the energy function is smooth and better behaved. Towards the end
of the registration, more exact one-to-one correspondence is enforced. This
is realized by energy terms: E(P(k)) = α

∑M(k)
t=1

∑N(k)
s=1 pt,s(k) log(pt,s(k)),

E(Q(k)) = α
∑M(k)

t=1
∑N(k)

s=1 qt,s(k) log(qt,s(k)). Parameters α controls the
degree of fuzziness of the matching. It has initially high values, encouraging
fuzzy matching, and later progressively lower values, which enforce exact
matching.

– Mapping f is required to be smooth so as to preserve the topology and to
avoid arbitrary mapping of non-landmark voxels. This is enforced by energy
term: E(f) = β||Lf ||2. L is an operator which aids in measuring the bending
energy. β is a weighting factor which is decreased throughout the registration
to allow f to model deformation of increasing complexity.

The overall energy function that needs to be optimized is:

E(P(k),Q(k), f) =
{
E(P(k), f)+E(Q(k), f)+E(P(k))+E(Q(k))+E(f)

}
. (1)

In the following, we describe an optimization strategy to minimize (1), which
basically alternates between correspondence matching (Step 1) and dense trans-
formation estimation (Step 2). We first fix f and solve for the P and Q by let-
ting ∂E(P(k),Q(k), f)/∂pt,s(k) = 0, ∂E(P(k),Q(k), f)/∂qt,s(k) = 0. We then
fix P(k) and Q(k), and solve for f using TPS.
Step 1: Correspondence Matching: The correspondence matrices P(k) and
Q(k) can be updated as follows:

pt,s(k)=simT→S(xt(k),xs(k))e−||f(xt(k))−xs(k)||2/α, pt,s(k) ← pt,s(k)/
N(k)∑
s=1

pt,s(k)

qt,s(k)=simS→T(xt(k),xs(k))e−||xt(k)−f−1(xs(k))||2/α, qt,s(k)←qt,s(k)/
M(k)∑
t=1

qt,s(k).

Overly weak matches are prevented by setting pts(k) or qts(k) falling below a
predefined threshold to zero prior to normalization.
Step 2: Dense Transformation Estimation:

M(k)∑
t=1

N(k)∑
s=1

[
pt,s(k)||f(xt(k))−xs(k)||2 + qt,s(k)||xt(k)− f−1(xs(k))||2

]
+ β||Lf ||2

which, as it stands, is very cumbersome. A slightly different form is implemented:

min
f

E(f)=min
f

⎧⎨⎩
M(k)∑
t=1

||f(xt(k))−x̂t(k)||2+
N(k)∑
s=1

||f(x̂s(k))−xs(k)||2+β||Lf ||2
⎫⎬⎭

where x̂t(k) =
∑N(k)

s=1 pt,s(k)xs(k), x̂s(k) =
∑M(k)

t=1 qt,s(k)xt(k). The variables
x̂t(k) and x̂s(k) can be seen as the newly estimated locations in the subject and
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template spaces, which correspond to xt(k) and xs(k), respectively. The above
equation can be solved using TPS fitting [5], which essentially minimizes the
geometrical distance of the driving voxels and, at the same time, minimizes the
bending energy ||Lf ||2.

3 Experimental Results

The dataset consisted of diffusion tensor images of 22 subjects, acquired using a
1.5T scanner. The imaging dimension and resolution were 256×256 and 0.9375×
0.9375 × 2.5mm3, respectively. Whenever appropriate, results yielded by the
deformable registration algorithms, presented by Yang et al. [1] and Zhang et
al. [2], will be included for comparison. They will be referred to as YANG and
ZHANG, respectively, in the rest of the paper. It is worth noting here that
registration using F-TIMER takes approximately 15 min on a 2.66GHz Linux
machine, compared to 210 min using YANG, and 60 min using ZHANG.

3.1 Real Subjects

One subject was selected from the dataset and taken as the template. 21 subjects
were then registered onto this template. By averaging all the registered images,
we could visually inspect the accuracy of the registration. The result is shown
in Fig. 3. It can be observed that for the FA map based affine registered images,
their average image, shown in Fig. 3(b), is fuzzy especially in areas near the
cortical region. In comparison, after registration with F-TIMER, the average
image, Fig. 3(c), shows much improved sharpness. It is difficult to gauge the
performance of F-TIMER by visual comparison with the average images yielded
by YANG and ZHANG, shown in Fig. 3(c) & (d). We describe a quantitative
approach in the upcoming section.

(a) Template (b) Affine (c) F-TIMER (d) YANG (e) ZHANG

Fig. 3. Group-averaged images resulting from the registration of the 21 subjects. The
FA weighted first principal directions are shown in their color coded representations:
green for the anterior-posterior direction, blue for the superior-inferior direction, and
red for the left-right direction. The tensors in the yellow boxes are shown in their FA
weighted ellipsoidal representations in the bottom panels.
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Table 1. Deformation estimation errors (mm)

Whole Brain Cortical Region
F-TIMER YANG ZHANG F-TIMER YANG ZHANG

Mean 1.36 1.87 1.44 1.43 2.03 1.68
S. D. 1.14 1.48 1.75 1.17 1.59 1.96

p-value 3.50 × 10−8 2.80 × 10−1 7.71 × 10−8 1.28 × 10−2

Table 2. Fiber bundle distances (mm)

F-TIMER YANG ZHANG

Splenium 0.87 0.91 0.98
S. D. 0.015 0.016 0.044

p-value 3.51 × 10−1 5.06 × 10−2

Cortical 1.34 1.49 1.91
S. D. 0.150 0.115 0.208

p-value 2.08 × 10−1 1.30 × 10−4

3.2 Simulated Subjects

To further evaluate the accuracy of F-TIMER, we generated 20 simulated defor-
mation fields using the statistical model of deformation (SMD) proposed in [9].
One human brain was chosen from the dataset as the template and the 20 simu-
lated deformation fields, which also served as the ground truths, were applied to
the template, resulting in 20 simulated human brains. These 20 simulated brains
were then registered back onto the template using F-TIMER and the deforma-
tion fields estimated by the registration were compared with the ground truths,
using Euclidean distance. Results shown in Table 1 indicate that F-TIMER yields
higher accuracy. F-TIMER is also more consistent as indicated by the smaller
deviation values. Also shown in Table 1 are the results for the cortical region
and similar conclusion can be drawn. The significance of the improvement of
F-TIMER over YANG and ZHANG is indicated by the paired t-test p-values in
the same table.

3.3 Fiber Tracking

Using a tractography method know as FACT [10], fiber bundles passing through
some regions of interest (ROIs) were tracked, extracted, and compared for quan-
tifying the registration accuracy of F-TIMER. Based on the simulated data
generated above, we present here two sets of results. One ROI was selected so
a fiber bundle residing in the splenium of the corpus callosum (CC) could be
extracted for comparison. The second ROI was selected so that we could evalu-
ate F-TIMER in a more difficult situation where a fiber bundle near the cortical
surface was extracted. The fiber bundles are shown in Table 2. The distance of
two fiber bundles was then measured using the mean of the closest distances, in
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a way similar to that used in [2]. A summary of the results of all fiber bundles is
shown in Table 2. The results indicate that F-TIMER yields better performance
when compared to YANG and ZHANG.

4 Conclusion

F-TIMER extracts distinctive features from a diffusion tensor image, drawing on
multiscale tensor regional and boundary information, as automated structural
landmarks. Employing these landmarks to minimize an Attributive Symmetric
Soft Assignment Problem (ASSAP) related energy function, a smooth, topology
preserving, and consistent transformation can be derived. Emperimental results
show that F-TIMER can achieve sufficiently good accuracy with relatively low
computation cost.
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Abstract. Neuroimaging at the group level requires spatial normaliza-
tion of individual structural data. We propose a geometric approach that
consists in matching a series of cortical surfaces through diffeomorphic
registration of their sulcal imprints. The resulting 3D transforms natu-
rally extends to the entire MRI volumes. The DIffeomorphic Sulcal-based
COrtical (DISCO) registration integrates two recent technical outcomes:
1) the automatic extraction, identification and simplification of numer-
ous sulci from T1-weighted MRI data series hereby revealing the sulcal
imprint and 2) the measure-based diffeomorphic registration of those cru-
cial anatomical landmarks. We show how the DISCO registration may be
used to elaborate a sulcal template which optimizes the distribution of
constraints over the entire cortical ribbon. DISCO was evaluated through
a group of 20 individual brains. Quantitative and qualitative indices at-
test how this approach may improve both alignment of sulcal folds and
overlay of gray and white matter volumes at the group level.

1 Introduction

Correct alignment of cortical surfaces amongst a group of subjects is crucial in
neuroimaging because of the large variety of breakthrough applications. Intensity-
based approaches cannot achieve this issue as the matching criteria being used
is global and not optimized for finer-scale warping at the cortical level. In that
respect, research in volume-based methods has evolved from the mere aligne-
ment of intesity-based elements to the integration of geometrical features of the
cortical surface and even recently of cortical surface itself with hybrid surfacic
and volumic approaches [9,12]. However, as in more standard methods like [2],
the resulting deformation constraints enforce the alignment of cortical valleys
and crests but without any guarantee that sulci of identical anatomical denom-
ination would be properly aligned altogether (e.g. the precentral sulcus from a
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subset of subjects might end up being matched to the central sulcus of other
subjects). Specific alignment of cortical circonvolutions remains crucial as the
sulcal folds shape might be correlated with the underlying functional organiza-
tion [4] and requires higher level anatomical knowledge. Indeed, explicit sulcal
constraints have been experimented in e.g. [14,7,13]. Joshi et al. have proposed
to combine a surfacic sulcal warp with a subsequent volumic matching step [8].
However, in all those approaches the similarity between sulcal landmarks relies
on their parametrisation which impose strong assumptions about their topology
and therefore about the segmentation. Few sulcal landmarks are then selected
manually; which results in a sparse and heterogeneous distribution of anatomical
landmarks guiding the transformations. Heterogeneities in the constraints favors
irregularities of deformation fields and might result in alterations of the overall
topology of the cortex.

In this contribution, we optimize the alignment of cerebral structures among
a group of subjects through the registration of their exhaustive and sulcus-based
folding patterns while constraining the dense 3D transform to be diffeomorphic
– that is, smooth and invertible – through Large Deformation Diffeomorphic
Metric Mapping (LDDMM) framework [5]. The DISCO registration technique –
DIffeomophic Sulcal-based COrtical registration – consists in the following steps:

1. The automatic extraction, identification and simplification of up to 120 sulci
per subject. This step yields a dense set of distributed landmarks, denoted
as the individual sulcal imprint, and prevents the use of tedious and to a
great extent subjective, manual tracing.

2. An LDDMM transform aiming at matching individual sulcal imprints ob-
tained from Step 1. The similarity between corresponding sulci rely on mea-
sure based-representation which avoids the parametrisation of landmarks.
We describe how this procedure can be derived from a group of subjects of
arbitrary size through the definition of an adaptive sulcal template derived
from the very set of subjects involved. Note that the LDDMM framework
naturally yields the ability to extend the deformation to any additional ob-
ject in 3D – such as deeper brain structures – thereby overcoming the major
limitation of surface-based approaches.

The performances of DISCO are quantitatively evaluated using data from a
group of 20 healthy control subjects.

2 Extraction of the Individual Sulcal Imprint

The extraction of the individual sulcal imprint from T1-weighted MR image
volumes is initiated by the automatic segmentation and labeling of a large num-
ber of sulci using the brainVISA free software platform [1,10]. Voxel labeling
of the gray and white matter tissues are obtained from histogram analyses
and mathematical morphological techniques applied to the biased-corrected T1-
weighted MR images. Elementary sulcal elements are segmented and divided into
topologically-simple surfaces and organized as a graph structure. The sulci are
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Fig. 1. Automatic extraction of the sulcal imprint: a) tissue classification; b) extrac-
tion of sulci and automatic identification results in up to 60 individual sulcal labels in
each hemisphere. c) The automatic simplification of the original complex sulcal pat-
tern yields a distributed set of sulcal edges, thereby defining the sulcal imprint of an
individual brain.

then automatically labeled according to a predefined nomenclature of 60-sulcus
labels per hemisphere as illustrated on Fig.1 b). Agreement between the com-
puter and human experts reaches 86% on average [11]. Though the performances
of the automatic labeling procedure might reach up to 96% for well-defined folds
such as the central sulcus, they tend to decline in regions where the cortical
folding pattern has shows considerable inter-individual variability such as in the
occipital areas.

This extraction yields structures with complex shapes made of subsets of vox-
els corresponding to an overly detailed description of the sulci in the context
of inter-individual registration, while it is crucial to preserve the variability in
topology of a given sulcus across individuals. The original complex sulcal struc-
tures are subsequently and automatically simplified as relevant sulcal landmarks
using the original procedure detailed thereafter.

2.1 From Sulci to Sulcal Imprint

For each sulcus s, the initial set of voxels is first reduced to two subsets: one
corresponding to the fundus of s, defined as the border of the sulcus reaching
the deepest into the brain volumes, and one for its outer border, defined as the
junction between the sulcus and the hull of the brain. These voxels are readily
identified during the very sulcal extraction process as performed by brainVISA.

These two initial subsets are then independently reduced and smoothed using
K-means clustering as illustrate Fig.2b). The voxels are geometrically grouped
into smaller clusters which are subsequently reduced to their respective centroid.
The resulting points along either sulcal border are then connected using the
minimum spanning tree approach, thereby yielding two open connected graph
structures, i.e. two trees (see Fig.2c). Finally, the secondary branches of the
trees are removed using a longest-path approach (Fig.2e). This way, the fundus
and outer borders of each sulcus s are reduced to two edges denoted as Ef

s and
Eo

s respectively. The extraction of the sulcal edges associated to an interrupted
sulcus remains identical. The sulcus will be described as two connected graphs
through the minimum spanning tree. However, the interruptions will appear as
holes in the distribution of points along the respective path. This procedure
yields a set of folding features distributed across the entire cortical surface as
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Fig. 2. a) Each sulcus is decomposed into three subsets of voxels: fundus (in blue),
outer edge (green) and other voxels (in red) using brainVISA. The description of each
sulcus may be summarized by fundus and outer border voxel subsets. b) Those voxels
are grouped into clusters (shown here as colored circles) and each cluster is reduced to
its barycenter (black dots). Finally, the sulcal borders illustrated in c) are reduced to
simple lines in d) through a longest path approach.

illustrated Fig.1 c). These features hereby define the sulcal imprint of each indi-
vidual brain anatomy – I = [Ef

1 , E
o
1 , .., E

f
s , E

o
s , .., E

f
S , E

o
S ] – that will be matched

across subjects.

3 Measure-Based Diffeomorphic Matching of Sulcal
Imprints

We introduce a non-linear pairwise registration approach of sulcal imprints in
the general framework of the LDDMM theory [5]. The deformation φ of sulcal
edge E1 onto another sulcal edge E2 is defined as the minimum of the following
registration energy functional:

Jsulc
E1,E2

(φ) = γReg(φ) + Mis(φ(E1), E2), (1)

where the first term controls for the regularity of the deformation while the
second term evaluates the mismatch between the deformed sulcal edge φ(E1)
and the target E2; γ being a scalar trade-off parameter. Following the LDDMM
theory, φ is a diffeomorphism if it may be defined as a solution at time t = 1
of the differential equation: ∂tφ

v
t = vt ◦ φv

t , with initial condition φv
0 = Id.

Id represents the identity deformation that maps an object onto itself. In this
equation, vt : R

3 −→ R
3 is a time-dependent vector field which models the

infinitesimal variations of the deformation flow. vt belongs to the reproducing
kernel Hilbert space V of regular vector fields. V is associated to a kernel KV

controlling for the regularity of the final diffeomorphic transform. We define
the cost of a given diffeomorphism φ as its distance to the identity transform:
d2

V (Id, φ) = infv
{∫ 1

0 ||vt||2V dt, φv
1 = φ

}
. Registering a pair of sulcal edges in a

diffeomorphic framework then consists in minimizing the functional:

Jsulc
E1,E2

(φ) = γd2
V (id, φ) + Mis(φ(E1), E2). (2)

The mismatch Mis between two sulcal edges is defined hereafter.
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3.1 Description of Sulcal Landmarks as Measures

Each couple of anatomically-corresponding sulcal edges are considered as two
sets of points E1 = (xi)i<nx and E2 = (yj)j<ny ⊂ R3, with possibly nx �= ny.
These two sets of points can be described mathematically as measures μ and
ν respectively, each consisting of the weighted sum of Dirac distributions [5]:
μ =

∑nx

i=1 aiδxi and ν =
∑ny

i=1 biδyi . (ai)i<nx and (bj)j<ny are two sets of
scalar weight parameters. These weights are set as follows: if the neighbor-
hood of each xi in the associated sulcal edge is denoted as H , then ai =

1
card(H)

∑
h|h∈H ||xh − xi||R3 . This uniformly distributes the weights along the

measure, thereby compensating for the heterogeneity in the spatial distribution
of points along the edge lines corresponding to interrupted sulci. The action of
φ on the measure μ may be defined as a mass transportation problem: φ(μ) =
φ(
∑

i aiδxi) =
∑

i aiδφ(xi). In order to evaluate the adjustment of the source sul-
cal measure μ to the target measure ν, we introduce an additional reproducing
kernel Hilbert space I associated to a second kernel KI , such that every bounded
and signed measure belongs to I∗, the dual space of I. We may then evaluate the
distance between the pair of measures μ and ν as: d2

I(φ(μ), ν) = ||φ(μ)− ν||2I∗ =∑
i,j aiajK

I(φ(xi), φ(xj))+
∑

i,j bibjK
I(yi, yj)−2

∑
i,j aibjK

I(φ(xi), yj). Equa-
tion (2) can therefore be rewritten as:

Jsulc
μ,ν (φ) = γd2

V (id, φ) + ||φ(μ) − ν||2I∗ . (3)

Considering now two sulcal imprints with P sulcal edges in common, we define
I1 = [μ1, .., μP ], the source sulcal imprint to be adjusted to a target sulcal
imprint I2 = [ν1, .., νP ]. Registering a pair of brains through their respective
sulcal imprints corresponds to the minimization of the following functional:

J impr
I1,I2

(φ) = γd2
V (id, φ) +

P∑
p=1

||φ(μp)− νp||2I∗ . (4)

Of primary importance is that the resulting deformation is a fully 3D diffeomor-
phic map defined everywhere in R3, hence not only on the cortical surface, but
also in the entire MRI volume.

3.2 Unbiased, Empirical Anatomical Template for Multiple-Subject
Registration

We now propose a multi-scale iterative approach at the group level that extends
previous results from [6]. This approach avoids the arbitrary selection of a single
brain as a registration template while exploiting the maximum of the sulcal
information available. The methodology involved is itemized as follows:

1. The sulcal imprint is extracted from each individual brain data and is linearly
registered into standardized Talairach space [3].

2. An empirical template is defined as the union of the entire set of sulcal points
through the entire group of subjects involved in the study. For each sulcal
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label available across the group, the corresponding sulcal landmark in the
template consists of the union of all points associated to this label within
every subject of the group.

3. Diffeomorphic transformation of each individual data onto the empirical tem-
plate is operated following the methodology described in Section 3.

4. The process in steps 2 and 3 is iterated Q times by considering the resulting
transformed sulcal points as the new running template, until the evolution
between two successive template samples is inferior to a fixed threshold. We
focus on finer scale deformations as the template is iteratively refined by
reducing the sizes of the kernels involved in the registration energy (for both
regularization and mismatch terms in Eq. (5) between two iterations.

Therefore, registering N subjects consists of Q iterations of N minimization steps
while the empirical template is updated between two iterations, in a multi-scale
framework.

For clarity purposes, we now detail the elaboration of an empirical template
consisting of a single sulcus through a group of N individual sulcal imprints.
The generalization to P sulcal labels extends the strategy introduced by Eq. (2)
through Eq. (4). Following [6], let us denote (xip)1≤i≤N,1≤p≤ni , the N individual
sets consisting of ni points describing the sulcus to be matched across subjects;
aip ∈ R their associated weights and μi =

∑ni

p=1 aipδxip, their respective measure
form. Obtaining the measure μ of the group template may be defined as a min-
imisation problem: {φ̂i, μ̂} = arg minφi,μ

∑N
i=1

{
γd2

V (id, φi) + ||φi(μi)− μ||2I∗
}
.

Note that for fixed φi, μ̂ reduces to the sum of the Dirac masses associated to
the union of all points φi(xip):μ̂ = 1

N

∑N
i=1 φi(μi) = 1

N

∑N
i=1
∑ni

p=1 aipδφi(xip).
Hence, the problem reduces to:

{φ̂i} = arg min
φi

N∑
i=1

{
γd2

V (id, φi) + ||φi(μi)−
1
N

N∑
i=1

φi(μi)||2I∗

}
. (5)

At the end of the process, the transformation that brings subject i into the
common space is the composition of Q diffeomorphisms: φQ

i ◦φ
Q−1
i ◦ . . .◦φ1

i . By
definition, the composition of Q such diffeomorphisms is also diffeomorphic.

4 Results

DISCO was applied for evaluation purposes to the registration of the brains from
20 healthy subjects through the elaboration of their corresponding empirical
anatomical template. Sulcus automatic labeling was checked for errors manually.
Between 88 and 98 sulci were identified across subjects in this group, 71 of which
were common to all subjects and only 8 sulci were found in less than 14 of
the subjects. The iterative sulcal template refinement process converged though
Q = 9 iterations with template update. Computation time on a cluster of 10
processors running at 3.6GHz with 2Gb of RAM was 10 hours.

As shown on Fig.3, the superimposition of most sulcal edges is clearly im-
proved after diffeomorphic transformation using DISCO. Further, it is important
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Fig. 3. Comparative results of the registration of 20 brains using the linear technique
[3] (upper panel) vs. DISCO diffeomorphic sulcal matching (lower panel)

Fig. 4. Comparison of the linear (left) and DISCO (middle) registration procedures
across 20 white-matter masks. Correct alignment of cortical circumvolutions would
yield reduced fuzziness in the gray levels of the average volume masks, as readily
observed after DISCO was applied. Right: a typical slice of the resulting DISCO de-
formation field. The convex hull of the brain in that particular slice is shown in red.

to remember that matching is not warping, as some aspects of the original group
variability have been preserved by the regularity of the diffeomorphic transforms.

The Hausdorff distance between each subject and the rest of the group was com-
puted for each sulcal landmark, and averaged across subjects, after linear or diffeo-
morphic matching. This measure is an indicator of the spatial dispersion of sulcal
edges. The Hausdorff distance was reduced by 18% (from 17.2mm to 14mm) on
average across all sulci and subjects using the diffeomorphic matching compared
to the linear registration approach. For instance, the sulcal dispersion has been de-
creased by more than 7mm in the inferior part of the temporal lobe. The improve-
ment was smaller in regions with sulcal objects of greater geometrical irregularity
across subjects as in e.g. the occipital lobe. The dispersion of the central sulcus
was reduced by ”only” 1.6 mm as it had been already correctly realigned by the
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linear registration procedure. Note also that the deformation of any given sulcus
is tempered by the transformations occurring in its neighborhood.

As discussed in Section 3, the DISCO transformation naturally extends to the
entire 3D volume as illustrated Fig.4 through the group averages of the binary
white-matter masks.

5 Conclusion

The suggested approach combines the attractive properties of diffeomorphic
matching with the pairing of anatomical landmarks considered by neuroanatom-
ical experts. Future work will focus on larger-scale validation, including com-
parison with other non-linear registration methods. The preliminary results
presented here suggest that this technique may lead to a new systematic ap-
proach for anatomical registration in neuroimaging group studies.
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Abstract. The human lungs are divided into five independent com-
partments called lobes. The lobar fissures separate the lung lobes. It is
hypothesized that the lobar surfaces slide against each other during res-
piration. We propose a method to evaluate the sliding motion of the lobar
surfaces during respiration using lobe-by-lobe mass-preserving non-rigid
image registration. We measure lobar sliding by evaluating the relative
displacement on both sides of the fissure. The results show a superior-
inferior gradient in the magnitude of lobar sliding. We compare whole-
lung-based registration accuracy to lobe-by-lobe registration accuracy
using vessel bifurcation landmarks.

1 Introduction

The human lungs are divided into five independent compartments called lobes.
A lobar fissure is a thin space (approximately 0.5mm depending on volume of
pleural fluid) separating the lung lobes. The left lung is divided into the left
upper (LUL) and left lower (LLL) lobes, separated by the oblique fissure. The
right lung is partitioned into the right upper lobe, middle lobe, and the lower
lobe, separated by the oblique and horizontal fissures. The branching patterns
of the bronchial and vascular trees also follow the lobar structure of the lung.

Regional function and biomechanics depend on the material properties of the
lung parenchyma and the complex interaction between the lobes, diaphragm, and
chest wall. Hubmayr et al. [1] have used embedded metal markers and X-ray pro-
jection images to study regional lung mechanics. Recently, image registration has
been used to assess regional lung function and tissue biomechanics using mul-
tiple 3D images at different lung volumes by CT [2,3,4] and MRI [5]. Although
those results show regional changes in lung function and mechanics, they do not
explicitly account for the interaction between the lung lobes. It is believed that
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during respiration the lobes move relative to each other (sliding and rotation),
and this motion may provide a means to reduce the lung parenchymal distor-
tion and avoid regions of high local stress [1]. In addition, understanding of how
lobes slip relative to one another is of importance to the understanding of how
the lung accommodates chest wall shape changes while minimizing effects on
regional distribution of ventilation.

In this paper, we investigate lung biomechanics using a lobe-by-lobe registra-
tion technique. Our approach explicitly accounts for the registration displace-
ment field discontinuity at the fissure (due to lobar sliding), and should provide
more accurate image registration near the fissure and, as a result, better biome-
chanical measurements. We measure lobar sliding by evaluating the relative dis-
placement on both sides of the fissure. We compare whole-lung-based registration
accuracy to lobe-by-lobe registration accuracy using vessel landmarks.

2 Materials and Methods

2.1 Data Acquisition

All data were gathered under a protocol approved by our institutional review
board. Three pairs of volumetric CT data sets from three normal human subjects
were used in this study. Each image pair was acquired with a Siemens Sensation
64 multi-detector row CT scanner (Forchheim, Germany) during breath-holds
near functional residual capacity (FRC) and total lung capacity (TLC) in the
same scanning session. Each volumetric data set was acquired at a section spacing
of 0.5 ∼ 0.6 mm and a reconstruction matrix of 512 × 512. In-plane pixel spacing
is approximately 0.6 mm × 0.6 mm.

2.2 Automatic Lobe Segmentation

To perform the lobe-by-lobe registration, the lobes are first automatically seg-
mented using the method from [6]. The lobar segmentation begins with auto-
matic lung, airway tree, and vessel tree segmentation. A watershed transform,
applied to a distance map derived from the original CT image and the vessel
segmentation, provides an initial lobar segmentation. The lobar surfaces are re-
fined using a 3D optimal surface detection that divides the lungs at the fissure
surfaces. For complete details on the lobar segmentation method, see [6].

2.3 Image Registration

The CT scans at FRC and TLC are registered for each subject. The FRC–TLC
image pairs show large lung volume change, large tissue deformation, and large
voxel intensity changes. To account for these differences between the images
during registration, we used a lung mass preserving registration method [7]. The
method uses a similarity metric that estimates the local tissue and air fraction
within the lung and minimizes the local tissue mass difference. This method has
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been shown to be effective at registering across large lung volume changes (such
as FRC–TLC pairs) [7].

From the CT value of a given voxel, the tissue volume can be estimated as

V (x) = ν(x)
I(x)−HUair

HUtissue −HUair
= ν(x)γ(I(x)), (1)

where ν(x) denotes the volume and I(x) is the intensity of a voxel at position
x. HUair and HUtissue refer to the intensity of air and tissue, respectively [8].
In this work, we assume that air is -1000 HU and tissue is 55 HU. γ(I(x)) is
introduced for notational simplicity.

Given (1), we can then define the similarity measure as the sum of squared
local tissue volume difference:

C =
∑
x∈Ω

[Vr(x) − Vf (T (x))]2 =
∑
x∈Ω

[νr(x)γ(Ir(x)) − νf (T (x)) γ(If (x))]2 ,

(2)
where Ω denotes the overlapping lung regions in the two images, and T (x) is
the warping function. In this work, T (x) is a cubic B-splines transform:

T (x) = x +
∑
k⊂K

φk β(x), (3)

where φ describes the displacements of the control nodes and β(x) is a three-
dimensional tensor product of basis functions of cubic B-Spline.

Given a warping function T (x), If (T (x)) can be interpolated from the moving
image. νf (T (x)) can be calculated from the Jacobian J(x) of the deformation

Fig. 1. Comparison of displacement field between the lobe-by-lobe registration (left
column) and the lung-by-lung registration (middle column) for the LUL (yellow) and
LLL (green). The right column is the difference of the two displacement fields with the
magnitude indicated by the color bar.
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as νf (T (x) = J(x)νr(x). Note that the Jacobian value must be positive here,
which can be achieved by using displacement constraints on the control nodes.

2.4 Computational Setup

In this study, the lobe-by-lobe registration is used to investigate lobar sliding.
Our current analysis is limited to the upper and lower lobes of the left lung, since
the three lobes in the right lung will likely have more complicated interaction.

We start with the lobar segmentations of the TLC and FRC images as de-
scribed in 2.2. After segmentation we match the TLC left upper lobe to the FRC
left upper lobe, and the TLC left lower lobe to the FRC left lower lobe. After
registration, the displacement fields are recombined into one left lung displace-
ment field. We also perform conventional lung-by-lung registration to match the
TLC left lung to the FRC left lung, using the same registration algorithm.

Discontinuities of the displacement field along the fissure surface are indi-
cations of lobar sliding. Figure 1 shows the displacement fields generated by
lobe-by-lobe and lung-by-lung registration methods for one subject. The figure
shows a considerable difference between these methods along the fissure surface.

(a) Subject A with volume change = 3.2 Liters

(b) Subject B with volume change = 2.3 Liters

(c) Subject C with volume change = 2.4 Liters

Fig. 2. Displacement profile of tangent components along a line perpendicular to the
fissure surface at three different locations (left: near apex; middle: near lingula; and
right: near base) for both the whole-lung-based (square) and the lobe-based (solid
circle) methods
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2.5 Assessment of Image Registration Accuracy

Vascular bifurcation points are used as landmarks to evaluate registration accu-
racy. An observer uses a landmark annotating system [9] to find corresponding
landmarks in the FRC and TLC images. For each landmark, the actual landmark
position is compared to the registration-derived estimate of landmark position
from the two registration methods and the landmark error is calculated.

2.6 Evaluation of Local Lobar Sliding

Once the lobe segmentations are obtained, the oblique fissure surface between
LUL and LLL is extracted as a triangular mesh. The normal direction is then
calculated at each vertex of the mesh. The sliding motion is quantified for each
point along the fissure surface by looking at the discontinuity in the line profile
perpendicular to the fissure surface as shown in Figure 2. On each side, the profile
of tangent component of the displacement is fitted as a 3rd order polynomial
function d of the distance to the fissure surface. The sliding distance s(x) at
fissure surface position x is then defined as

s(x) =‖ d+
0 − d−

0 ‖, x ∈ S. (4)

where d+
0 is the predicted value on the fissure surface from the polynomial func-

tion along the positive normal direction (we define the normal direction pointing
the LUL as positive.) while d−

0 is the predicted value from the other side.

3 Results

3.1 Registration Accuracy

For each lobe, 20 to 40 landmarks are identified. Table 1 shows the results of the
landmark distance before and after registration for the lobe-based and whole-
lung based registrations. The average landmark errors are 0.83 mm and 0.73 mm
for whole-lung-based registration and lobe-based registration.

Table 1. Comparison of registration accuracy between lobe-based and whole-lung-
based registrations. Distances in mm.

Before Whole-lung-based Lobe-based
Subject Lobe Registration Registration registration

A LUL 19.08 ± 8.25 0.99 ± 0.99 0.95 ± 0.81
LLL 35.79 ± 12.69 0.94 ± 1.12 0.71 ± 0.41

B LUL 15.09 ± 4.03 0.72 ± 0.81 0.57 ± 0.30
LLL 38.33 ± 6.55 0.87 ± 0.48 0.75 ± 0.43

C LUL 13.45 ± 6.59 0.78 ± 0.72 0.78 ± 0.83
LLL 35.45 ± 10.76 0.68 ± 0.24 0.67 ± 0.30
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3.2 Local Lobar Sliding

The sliding distance at each fissure surface point was calculated to evaluate
the local lobar sliding. A step length of 1 mm and 10 sample points were used
along the normal direction on each side of the surface. A surface point was
not taken into consideration if any of its 20 sample points were outside the
lobes. Figure 2 shows the displacement profile of the tangent component along
a line perpendicular to the fissure surface at three different locations (near the
apex, near the lingula and near the base) for the whole-lung-based (square)
and the lobe-based (solid circle) methods. The results show increased sliding
(larger discontinuity) in the more basal positions using the lobe-by-lobe analysis.
However, these discontinuities are not apparent using the lung-by-lung analysis.

Figure 3 compares the estimated lobar sliding distances between two different
registration methods. The whole-lung-based registration shows small sliding dis-
tance (� 1 mm) because the transformation model enforces displacement field
smoothness across the fissure, while the lobe-by-lobe registration method recov-
ers the displacement field discontinuity along the fissure.

4 Discussion and Summary

We proposed a method to estimate local lobe sliding using lobe-by-lobe lung-
mass-preserving registration. In addition, we compared the displacement field,
the landmark error, and the sliding distance between the lobe-by-lobe registra-
tion and the lung-by-lung registration for the left lungs of three normal human
subjects. We used major vascular bifurcation as landmarks. Thus, there are not
large numbers of landmarks near fissures. As seen in Figure 1, both methods
yield similar matching results in the center regions of the lobes while a consid-
erable difference is observed in the vicinity of fissure. Thus, as seen in Table 1
there is not a very significant decrease in the overall landmark error while there
are significant regional differences. Moreover, the lung-by-lung registration is not
able to capture the sliding between the lobes while the lobe-by-lobe registration
shows the same superior-inferior gradient of sliding distance in all three cases.
One possible explanation for this pattern is that the lungs contract and expand
more at the diaphragm than at the apex and the LUL is more firmly anchored
to the chest wall than LLL.

In addition to evaluating lobar sliding, the lobe-by-lobe registration may yield
more physiologically meaningful assessments of regional lung function and me-
chanics. Registration transformation functions that do not explicitly model the
lobar fissure are not able to capture lobar sliding and thus experience more reg-
istration errors near the fissure. These findings may have implications in using
registration to estimate lung function (specific volume change and lung expan-
sion) and for tracking lung tissue and lung nodules, across the respiratory cycle.
These methods can be directly extended to respiratory-gated CT of the lung,
where CT data is reconstructed at multiple points across the respiratory cycle.

In conclusion, we have described a method to evaluate the local lobar slid-
ing using a lobe-by-lobe lung-mass-preserving registration. Application of these
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(a) Subject A with volume change = 3.2 Liters

(b) Subject B with volume change = 2.3 Liters

(c) Subject C with volume change = 2.4 Liters

Fig. 3. The color-coded sliding distance map overlays on the fissure surface. Left most
column is the surface rendering of LUL (gray) and the LLL (gold); second column
shows the sliding distance from the lobe-based registration; and right most column
shows the sliding distance from the whole-lung registration.
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methods may be useful for increasing our understanding of function and biome-
chanical behavior of the respiratory system.
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2008, Part II. LNCS, vol. 5242, pp. 1006–1013. Springer, Heidelberg (2008)



Evaluation of 4D-CT Lung Registration

Sven Kabus1, Tobias Klinder1,2, Keelin Murphy3, Bram van Ginneken3,
Cristian Lorenz1, and Josien P.W. Pluim3

1 Philips Research Europe – Hamburg, Germany
sven.kabus@philips.com

2 Institut für Informationsverarbeitung, Leibniz University of Hannover, Germany
3 University Medical Center, Utrecht, The Netherlands

Abstract. Non-rigid registration accuracy assessment is typically per-
formed by evaluating the target registration error at manually placed
landmarks. For 4D-CT lung data, we compare two sets of landmark dis-
tributions: a smaller set primarily defined on vessel bifurcations as com-
monly described in the literature and a larger set being well-distributed
throughout the lung volume. For six different registration schemes (three
in-house schemes and three schemes frequently used by the community)
the landmark error is evaluated and found to depend significantly on
the distribution of the landmarks. In particular, lung regions near to
the pleura show a target registration error three times larger than near-
mediastinal regions. While the inter-method variability on the landmark
positions is rather small, the methods show discriminating differences
with respect to consistency and local volume change. In conclusion, both
a well-distributed set of landmarks and a deformation vector field analy-
sis are necessary for reliable non-rigid registration accuracy assessment.

1 Introduction

Image registration plays an indispensable role in medical application areas such
as diagnosis, therapy planning, and follow-up assessment. Evaluating its accu-
racy has therefore become an issue of growing importance [1,2,3]. Contrary to
rigid registration methods, validation of non-rigid methods remains a challenging
task due to the absence of a gold standard [3]. Currently, this task is addressed
by computing the target registration error (TRE) based on anatomical land-
marks or on surfaces (e.g., contoured masses) in the images to be registered.
The resulting TRE is widely accepted as an indicator for the method’s accuracy.
TRE-based evaluation for lung applications, however, suffers from low contrast
in near-to-pleura regions, in particular if the scans are acquired dynamically as
in 4D-CT. Consequently, evaluation is typically performed on a limited set of
landmarks defined on major bifurcations of the vessel tree (cf., e.g., [4,1,5]), often
grouped around the mediastinum and thus not covering the lungs entirely. Since
registration accuracy in near-mediastinal regions may not be representative for,
e.g., the lower lungs as here the motion amplitude is largest, it is therefore of
particular interest how the choice of landmarks affects the estimated overall
registration accuracy.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 747–754, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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On the basis of a publicly available and carefully validated 4D-CT chest
dataset (POPI-model [4]) we compare in this work the influence of two dif-
ferent landmark sets on the TRE: (a) a set consisting of 37 lung landmarks
grouped around the mediastinum (obtained by the POPI-model), (b) a set of
100 landmarks being well-distributed throughout the lung volume (generated by
a semi-automatic tool [6]). For the registration accuracy, six different registra-
tion algorithms are compared in terms of the TRE (per landmark set and per
lung region) as well as the inter-method variability at the landmark positions.
In addition, an analysis of the resulting deformation vector fields is included.

2 Methods

2.1 Datasets

The basis of the evaluation is a respiratory gated chest CT dataset (10 phases,
0.98x0.98x2.00mm3 voxel size) provided by the ’POPI-model’ [4]. Maximum di-
aphragm motion is measured as about 18mm (9mm) for the right (left) lung.
In addition, the POPI-model provides a set of 41 landmarks annotated in each
breathing phase. From these, 37 are located within the lungs and are employed
for evaluation (landmark reference set (LRS) A). Moreover, an automatic tool [6]
is used to create a set of 100 well-distributed lung landmarks in a reference
phase. These landmarks are then semi-automatically propagated [6] to all other
respiratory phases individually by two trained scientists (inter-observer differ-
ence of 1.0mm); their averaged annotations finally defines the second 4D set
of landmark positions (LRS B). For a region-based analysis, each lung is di-
vided into four volumetric regions such that the near-mediastinal parenchyma
is enclosed in a sphere around the lungs’ center of mass (regions I and II) and
the remaining parenchyma of each lung is separated into an upper, central,
and lower region. The dispersal of landmarks concerning the defined regions is
shown in Fig. 1 for both landmark reference sets. While the landmarks from set A
mainly belong to regions I and II, the landmarks from set B show a more regular
distribution.

2.2 Registration Schemes

This work compares six fully automatic registration schemes, each computing
deformation vector fields (DVFs) pointing from the end-inhale phase onto all
other respiratory phases. Three methods are in-house, three other methods have
either been downloaded or have been already applied to the data set. Five of
the six methods are volumetric schemes whereas one is surface-based. Among
the volumetric schemes, three are based on a parametric B-spline representation,
while the two others are non-parametric.

Surface-based Registration (MBS). [7] After extracting lung surface and
vessel tree a method of deformable surface models is applied on the generated
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Fig. 1. Region definition and landmark positions shown in a coronal projection for the
landmark reference set A (top left) and for the landmark reference set B (top right)
together with the dispersal of landmarks among the regions (bottom). For improved
visualization each region is given a unique landmark symbol.

Table 1. Property overview for the volumetric registration schemes. All schemes are
used in a multi-level embedding.

transformation cost use ofMethod
class function

regularizer
lung mask

POPI-par [8] B-splines SSD – no
elastix [9] B-splines NCC – yes
DROP [10] B-splines SAD grid vector distances yes
POPI-nonpar [5] non-par. SSD Gaussian + linear elastic no
FEIR [11] non-par. SSD linear elastic yes

iso-surface to propagate the mesh to all other phases by minimizing an energy term.
A dense DVF is then obtained using a thin-plate-spline interpolation scheme.

Volumetric Registrations [5,8,9,10,11]. An overview of the employed volu-
metric schemes is given in Tab. 1, for further details we refer to the cited refer-
ences. POPI-par is a modification based on a frequently used FFD-approach [12]
whereas POPI-nonpar describes a modified Demon’s approach [5].

MBS, elastix and FEIR are in-house methods and are applied with standard
parameter settings. DROP is applied following the published instructions [10].
The computation for these methods was completed after 3–15 minutes per phase
on standard PCs. The DVFs for POPI-par and POPI-nonpar are not computed
by the authors themselves, these are already provided by the POPI-model.
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3 Results

To ensure the correct use of the output of the different registration schemes, each
DVF is applied to the reference phase to carefully check the correct alignment
of the pleura with the corresponding phase.

Then, for all the six methods each set of landmarks annotated in the reference
phase is transformed to the other phases. By comparing the transformed position
with the respective annotated position, the target registration error (TRE) is
obtained for each landmark, respiratory phase, and registration method. From
this, we deduce both method-based and LRS-based mean TRE and standard
deviation by collecting the TREs from all phases and landmarks, cf. Tab. 2.
In addition, the mean of the upper 10% quantile (MU10) is calculated, which,
compared to the maximum, is less dominated by outliers. An inspection of Tab. 2
reveals a clear decrease of the TRE for all methods with elastix performing
slightly better and POPI-nonpar slightly worse than the others. Focusing on
the inter-LRS differences, we further notice that the MU10 values show a larger
relative difference than the mean values. The reason can be found in lung regions
covered by LRS B but not by LRS A (cf. the landmark distribution displayed
in Fig. 1) – on the one hand this refers to regions located in the apex of the
lungs with a quite small TRE, on the other hand to regions in the lower lungs
with a larger TRE (demonstrated in Fig. 2). Particularly in the lower right lung
(region III) the mean-TRE (2.4–3.1mm) as well as the MU10-TRE (6.1–8.7mm)
are higher by a factor three (cf. Tab. 3) probably caused by the larger motion
amplitude in the right lung. However, since Fig. 1 reports only 2 landmarks in
region III for LRS A, this inhomogeneous distribution of the TRE cannot be
deduced from a landmark distribution grouped around the mediastinum.

As the TRE differs only slightly among the registration methods, we investi-
gate the inter-method variability evaluated on the displaced landmark positions
of both landmark sets. To this end, for each landmark position and each phase
individually, the sum of eigenvalues of the covariance matrix is computed from
the displacement vectors of all methods. For an LRS-based discrimination, its
mean is taken over all landmarks and phases yielding a value of 0.31mm for
set A and one of 0.47mm for set B, thus an increased inter-method variability

Table 2. TRE for each method and LRS (shown are mean, standard deviation, and
MU10 in mm)

Method Landmark reference set A Landmark reference set B
without registration 3.68 ± 2.97 (9.6) 4.22 ± 3.20 (11.2)
MBS 1.11 ± 0.65 (2.5) 1.36 ± 1.13 (3.9)
POPI-par 1.07 ± 0.56 (2.2) 1.26 ± 1.17 (3.8)
elastix 0.96 ± 0.56 (2.1) 1.16 ± 0.97 (3.4)
DROP 0.98 ± 0.56 (2.2) 1.25 ± 1.07 (3.6)
POPI-nonpar 1.28 ± 0.42 (2.1) 1.41 ± 1.22 (4.1)
FEIR 1.05 ± 0.57 (2.2) 1.27 ± 1.00 (3.6)
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MBS POPI−par elastix

DROP POPI−nonpar FEIR

Fig. 2. TRE averaged over all respiratory phases for landmark reference set B shown
proportional to the spheres’ diameters

Table 3. TRE per lung region (cf. Fig. 1) for landmark reference set B (shown are
mean, standard deviation, and MU10 in mm)

Method Region I Region II Region III Region IV
without reg. 5.28 ± 3.58 (11.5) 3.65 ± 2.00 (6.9) 7.31 ± 5.25 (15.7) 4.83 ± 2.77 (9.1)
MBS 1.44 ± 1.10 (3.7) 1.25 ± 0.73 (2.7) 2.69 ± 2.25 (7.4) 1.30 ± 0.87 (3.0)
POPI-par 1.21 ± 0.77 (2.6) 1.28 ± 0.96 (3.2) 2.71 ± 2.47 (7.9) 1.12 ± 0.86 (2.8)
elastix 1.17 ± 0.79 (2.8) 1.09 ± 0.69 (2.4) 2.37 ± 1.89 (6.1) 1.09 ± 0.80 (2.6)
DROP 1.33 ± 0.89 (3.1) 1.20 ± 0.75 (2.7) 2.49 ± 2.17 (7.4) 1.11 ± 0.80 (2.7)
POPI-nonpar 1.38 ± 0.77 (2.8) 1.22 ± 0.66 (2.5) 3.14 ± 2.60 (8.7) 1.25 ± 0.77 (2.6)
FEIR 1.21 ± 0.82 (2.9) 1.08 ± 0.66 (2.3) 2.48 ± 1.83 (6.2) 1.18 ± 0.86 (2.8)

Method Region V Region VI Region VII Region VIII
without reg. 4.64 ± 3.12 (10.4) 3.64 ± 1.94 (6.8) 3.58 ± 2.03 (7.1) 1.99 ± 1.15 (4.2)
MBS 1.24 ± 0.68 (2.7) 0.90 ± 0.46 (1.9) 1.12 ± 0.57 (2.3) 0.89 ± 0.47 (1.9)
POPI-par 1.15 ± 0.72 (2.7) 0.92 ± 0.50 (2.0) 1.11 ± 0.55 (2.2) 0.73 ± 0.39 (1.5)
elastix 1.27 ± 0.65 (2.6) 1.01 ± 0.57 (2.2) 1.14 ± 0.66 (2.5) 0.82 ± 0.45 (1.8)
DROP 1.19 ± 0.62 (2.4) 1.12 ± 0.62 (2.5) 1.30 ± 0.60 (2.4) 0.90 ± 0.41 (1.7)
POPI-nonpar 1.29 ± 0.73 (2.9) 1.10 ± 0.53 (2.2) 1.28 ± 0.66 (2.6) 1.01 ± 0.44 (1.8)
FEIR 1.41 ± 0.83 (3.1) 1.10 ± 0.62 (2.5) 1.17 ± 0.64 (2.4) 0.86 ± 0.44 (1.7)
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Fig. 3. Left: Minimum volume change (obtained from det(Jac(DVF))−1) over all lung
voxels shown for each method and phase transition (values smaller than −1 indicate
folding of the DVF); right: Mean and maximum consistency error (in mm) over all lung
voxels shown for each phase transition
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Fig. 4. For an exemplary coronal slice (same as in Fig. 1), local volume change (top) and
local consistency error (bottom) are displayed after registration from end-inhale onto
end-exhale. Note that for the local volume change maps blue (brown) colors indicate
expansion (contraction).

on the well-distributed landmark set. Discriminating on a region-by-region basis
determines a value of 1.81mm for region III and a range of 0.24–0.36mm for the
other regions, thus a high variability for regions with a large TRE and vice versa.
Finally, from a computation of the Mahalanobis distance, elastix and FEIR are
identified to deviate less from the other methods (mean values of 2.21 and 2.09,
respectively) whereas POPI-nonpar shows the largest deviation (6.66).

However, evaluation so far is restricted to the sparse sets of distinct landmark
positions. To further investigate the inter-method variability and also to achieve
greater insight into the methods’ properties an analysis of the DVFs is performed.

At first, we compute the determinant of the Jacobian of the DVF to measure
the local change in volume which allows for detecting non-bijectively mapped
regions (i.e., ’folding’ occurs). Since each DVF is defined in the end-inhale domain
we expect a contraction in general. An inspection of the minimum values (within
the lungs only) revealed large differences: whereas MBS, elastix and FEIR show
relatively little local contraction values, DROP and the two POPI-methods result
in heterogeneous contraction-expansion-patterns (cf. Fig. 4, top) with severe
foldings of the POPI-methods for phases 3 to 7 (cf. Fig. 3, left).
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Secondly, for registration methods with both forward and backward DVFs
available, we compute a local consistency measure. The consistency is determined
by composing the forward and the backward DVFs and measuring the amplitude
of the geometrical discrepancy at each position. Since none of the methods under
consideration is consistent by definition, measuring the consistency error is a
suitable indicator of how independent the registration result is from the image
input order. Here, the smallest error is achieved by FEIR, the largest by DROP
(cf. Fig. 3, right, and Fig. 4, bottom). Neither POPI-method is evaluated since
backward DVFs were required.

4 Discussion and Conclusion

On the basis of a publicly available 4D-CT chest dataset we have investigated
the impact of two different landmark distributions on non-rigid registration ac-
curacy assessment: the first set of landmarks consists of 37 lung annotations
grouped around the mediastinum as commonly described in the literature, the
second set provides 100 annotations being well-distributed throughout the lung
volume. While the mean target registration error on both landmark sets dif-
fers only slightly, a region-based analysis reveals smaller errors in apical re-
gions but also a significantly higher error in the lower right lung and therefore
a dependence of the target registration error on the distribution of landmarks.
This dependence is observed for each registration scheme chosen from a col-
lection of six popular methods including surface- and volume-based as well as
parametric and non-parametric methods. Clearly, validation on further patient
datasets is required, however, since generally the lower lungs show the largest
motion amplitude, we believe that our result is of general validity and that a
well-distributed set of landmarks is a necessity for reliable registration accuracy
assessment.

Focusing on the inter-method variability we observed similar displacement
vectors at the landmark positions. The methods can, however, be discriminated
by a closer analysis of the resulting deformation vector fields, e.g., regarding the
local change in volume. This parameter is clinically relevant since it is directly
related to local lung ventilation estimation and has impact on lung diagnosis as
well as on radiotherapy planning. Inspecting the local volume change discloses
for three of the six methods several regions where the vector field is near to or
already suffers from folding. Moreover, the methods differ in showing individual
contraction-expansion-patterns. With the lung at end-inhale as the reference po-
sition in mind, an overall contraction – rather than a mixture of contracting and
expanding regions – seems to be desirable from a physiological point of view.
Another indication for inter-method variability is obtained from a local consis-
tency analysis. Although non-consistent by definition, three out of four methods
result in nearly consistent deformation vector fields and are thus independent
of the image input order. Since similar target registration errors does not mean
that different registration methods give similar results overall, an analysis of the
deformation vector field is necessary to evaluate non-rigid registration accuracy.
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Abstract. The computation of accurate motion fields is a crucial aspect
in 4D medical imaging. It is usually done using a non-linear registration
without further modeling of physiological motion properties. However,
a globally homogeneous smoothing (regularization) of the motion field
during the registration process can contradict the characteristics of mo-
tion dynamics. This is particularly the case when two organs slip along
each other which leads to discontinuities in the motion field. In this pa-
per, we present a diffusion-based model for incorporating physiological
knowledge in image registration. By decoupling normal- and tangential-
directed smoothing, we are able to estimate slipping motion at the organ
borders while ensuring smooth motion fields in the inside and preventing
gaps to arise in the field. We evaluate our model focusing on the esti-
mation of respiratory lung motion. By accounting for the discontinuous
motion of visceral and parietal pleurae, we are able to show a significant
increase of registration accuracy with respect to the target registration
error (TRE).

1 Introduction

The accessibility of accurate motion fields is a precondition for many applications
in medical imaging, e.g. for lung motion quantification in radiation therapy [1],
wall movement analysis of the heart [2] or automatic contour propagation [3].
Motion estimation is usually done on the basis of 4D images by computing the
displacements between time frames of the data sets using non-linear registration
approaches.

While smoothing mechanisms are required during the registration process,
they can contradict the physiology of the organ motion. This is especially the
case when two objects slip along each other, which can be observed for example
in the case of lung- [4] or liver motion [5].

Arising discontinuities at object boundaries are addressed by several ap-
proaches: In [4] finite element methods are used in order to simulate the physi-
ology of respiration dynamics, point- and surface-based registration approaches
are used in [6]. While these allow to explicitly or implicitly incorporate boundary
conditions, inner-organ information like bronchial or vessel trees are dismissed
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which results in an inaccurate registration of those structures. In [5,7] the prob-
lem of slipping organs is dressed implicitly by masking the background in order
to prevent it from affecting the force calculation. However, this limits motion
estimation to the object and provides no information about background motion.

In this paper, we present a novel smoothing mechanism that enables us to
explicitly handle slipping motion at object boundaries. While other approaches
use segmentations in order to model certain properties of objects (e.g. rigidity [8]
or varying elasticities [9]) none addresses this specific physiological behaviour.
Our model is closely related to the diffusive regularisation approach [10]. By
decoupling normal- and tangential-directed smoothing we are able to estimate
discontinuities at the object boundaries while maintaining smooth inner-object
motion and preventing gaps at the borders.

The presented approach is not limited to a specific application. However, we
apply it in the context of radiotherapy for the treatment of thoracic tumors,
where the computation of accurate motion fields of the lung is a crucial part.
In-depth knowledge about lung motion is needed to explicitly account for the
respiration-driven movement of tumor and organs at risk during the treatment,
for example in order to determine appropriate safety margins or dose accumu-
lations [1]. From the perspective of physiology, motion estimation is especially
challenging because visceral and parietal pleurae are slipping along each other
during breathing, thus creating discontinuities in lung and chest wall motion.
Transferred to the registration problem, this behavior conflicts with common
regularisation models which favor smooth motion fields. As a result, registration
errors arise in particular near the lung borders [7].

This paper is organized as follows. We start introducing our model in section
2. In section 3 a detailed evaluation and discussion is given for the estimation of
lung motion fields. We summarize our approach in section 4.

2 Methods

When applying non-linear registration methods for the estimation of organ mo-
tion, usually no a-priori knowledge about the physiological process is taken into
account. Treating all regions in the image as one homogeneous object often re-
sults in questionable motion estimates.

In this paper, we present a model for a normal-directed regularization. We
incorporate knowledge about the physiology of organ motion by allowing object
and background to slide along each other (see Fig. 1). In the process we assume
a given segmentation of the object in one frame.

We proceed by presenting an automatic preprocessing step to refine the seg-
mentations, what turns out to be useful in order to improve accuracy and stabil-
ity of subsequent steps (Sect. 2.1). In Sect. 2.2 we briefly summarize the basics
of the diffusive registration. We then introduce our model for the novel regular-
isation approach in Sect. 2.3.
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2.1 Preprocessing of Segmentations

In order to determine object boundaries we use segmentations of the object,
i.e. of the lung in our particular case. These segmentations were generated by
a semi-automatic procedure, consisting of a volume growing followed by a man-
ual slice-by-slice correction of the boundaries by a clinical expert. Due to this
generation process and reconstruction artifacts in the CT data (comp. [11]),
the segmentations often show inaccuracies and a non-smoothness, especially in
z-direction.

These shortcomings are particularly impedimental to the discrete calculation
of the surface normals (comp. Sect. 2.3). Therefore, we apply a level set based
refinement of the segmentations.

Let Γ be the segmented object in the reference image and φ̃ : Ω �→ IR the
corresponding level set function, with Ω ⊂ IR3 denoting the image domain. We
calculate an improved segmentation φ(x), x ∈ Ω by minimizing the following
energy functional:

JSeg [φ] := I[φ] + E [R;φ] +A[φ̃;φ]

The internal energy I provides a smoothing of the boundary as defined in [12].
We chose a region based external energy E as proposed in [3].

The third energy term

A[φ̃;φ] :=
1
2

∫
Ω

Hα(φ(x))‖φ̃(x)− φ(x)‖2 dx ,

where Hα denotes a differentiable approximation of the Heaviside function, pre-
vents the segmentation from moving too far away from the manual segmentation.
As a result, we obtain a segmentation with increased smoothness and accuracy.

2.2 Diffusive Registration

Let R, T : Ω �→ IR be two 3D Images (i.e. timeframes) of a 4D data set, called
reference image R(x) and target image T (x) with the image domain Ω ⊂ IR3.
The goal is to find a motion field u : Ω �→ IR3 that minimizes the energy
functional

JReg [u] := D[R, T ; u] + S[u] (1)

The distance measure D is used to measure the similarity between the reference
image and the warped target image T (x−u(x)) whereas the smoothing term S
provides smooth motion fields.

A common choice for S is the diffusive registration [10]

SDiff [u] :=
1
2

3∑
l=1

∫
Ω

‖∇ul(x)‖2 dx , (2)

where ul is the l-th component of u. A smoothing is archieved by penalizing large
gradients in the vector field. Providing results similar to those of the elastic regu-
larisation, this term is much more efficient with respect to computation time [7].
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For the minimization of the energy functional (1) an iterative approach is
employed. According to the calculus of variations, a solver of (1) must fulfill
the condition ∂J /∂u = 0. From the associated Euler-Lagrangian equation the
following iterative update scheme is derived:

u(k+1) = u(k) + τcS(u(k)) + τfD(u(k)) .

The force term fD(u) corresponds to the specific distance measure D. In this
paper, we use

fD(u) :=
R(x)− T (x− u(x))
‖∇R(x)‖2 + κ2 ∇R(x) ,

where κ denotes a normalizer which is used in order to account for image con-
trast. This force term is closely related to Thirion’s demons, the corresponding
distance measure can be found in [10].

The correction term cS(u) is used to smooth the field according to the regu-
larizer S. For (2) we find ∂S/∂u = Δu what leads to cS(u) = Δu.

2.3 Model for a Directional-Dependent Regularisation

In this work, we extend the diffusive regularisation by restricting inter-object
smoothing to the normal direction. Based on a given segmentation φ(x) of an
anatomical object, the goal is to incorporate knowledge about the physiology of
its motion by allowing object and background to slip along each other. From a
technical point of view, we want to allow discontinuities between the movement
of object and background in tangential direction, while maintaining smoothness
in normal direction (see Fig. 1).

Let n(x) = ∇φ(x)/‖∇φ(x)‖ be the normal of the segmentation at a point
x. We proceed by splitting the motion in two parts: the normal-directed part
u⊥(x) = 〈u(x),n(x)〉n(x) and the tangential-directed part u‖(x) = u(x) −
〈u(x),n(x)〉n(x). We can then rewrite eq. (2) as

SDiff [u] =
1
2

3∑
l=1

∫
Ω

‖∇(u⊥
l +u

‖
l )‖2 dx =

1
2

3∑
l=1

∫
Ω

‖∇u⊥
l ‖2 + ‖∇u

‖
l ‖2 dx , (3)

+

+

n

u⊥

u‖
u

Fig. 1. In the center image the motion field along the border of the lung (left) is visual-
ized. This is not smooth with respect to the diffusive regularization (2). By decoupling
u⊥ and u‖ we can demand the field to be smooth only in normal direction (right).
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whereat we assume n to be fixed, leading to
∑3

l=1 〈∇u⊥
l ,∇u

‖
l 〉 = 0. This assump-

tion is feasible because the surfaces are smooth with respect to image spacing.
Based on (3), we define our new model in two steps. First, according to our

assumptions, we want to achieve a comprehensive (i.e. inter-object) smoothing in
normal direction while smoothing object and background separately in tangential
direction. Thus, we split the domain of the energy terms: as before we define
‖∇u⊥

l ‖2 on the whole image domain Ω, but we restrict ‖∇u
‖
l ‖2 to the inside

resp. outside of the object Γ , using Neumann boundary conditions. This leads
to an interim formulation for a direction-dependent regularization (DDR)

SDDR′
[u] :=

1
2

3∑
l=1

(∫
Ω

‖∇u⊥
l ‖2 dx +

∫
Γ

‖∇u
‖
l ‖2 dx +

∫
Ω/Γ

‖∇u
‖
l ‖2 dx

)
.

(4)
In a second step, we include a weighting between the proposed regularization
(4) and the common diffusive term (2) in order to restrict the calculation of
(4) to the region close to the object borders. This is done because normals are
only defined within this region. Moreover, it entails a computational benefit and
allows us to admit a tangential smoothing of a certain amount. Following [9] we
use the Dirac-shaped weighting function

δ(φ(x)) = 1− 1
1 + αc exp−αφ(x)2 (5)

in order to determine the object borders. The influence of the parameters α and
c on δ is depicted in [9]. This leads to the final energy term

SDDR[u] :=
1
2

3∑
l=1

( ∫
Ω

δ(φ) ‖∇u⊥
l ‖2 + (1− δ(φ)) ‖∇ul‖2 dx

+
∫

Γ

δ(φ) ‖∇u
‖
l ‖2 dx +

∫
Ω/Γ

δ(φ) ‖∇u
‖
l ‖2 dx

)
. (6)

As in Sect. 2.2, we apply a variational framework in order to minimize the energy
functional (1). Regarding the Euler-Lagrangian equation of (6) we find

cS(u) = ∇δ∇u⊥ + ∇(1− δ)∇u + ∇Γ δ∇Γ u‖ . (7)

With ∇Γ we denote the gradient being calculated only inside the object, using
Neumann boundary conditions. In the background, ∇Ω/Γ is used respectively.
N.B.: we assume the normals n to be independent of the position x for the cal-
culation of this derivative. The inclusion of the weighting function δ in (6) leads
to terms related to an anisotropic diffusion which are implemented efficiently
according to [13].

3 Results

The evaluation is based on 4D CT data sets of 12 lung cancer patients acquired
during free breathing. Data sets are reconstructed using an optical flow based



760 A. Schmidt-Richberg et al.

+

+

Fig. 2. Top: Motion magnitudes after a registration with diffusive (left, (2)) and
directional-dependent regularisation (right, (6)). Bottom: The estimated motion field
close to the lung border for the diffusive (left) and the directional-dependent (right)
approach. For further explanation please refer to the text.

method [11]. Spatial resolution is 0.98× 0.98× 1.5 mm. Each data set consists
of 3D CT images at 10 to 14 different breathing phases of which we chose end-
inspiration (EI) as reference image R and end-expiration (EE) as target image
T . The segmentations are obtained as described in Sect. 2.1.

In Fig. 2, a qualitative comparison between the registration with the standard
diffusive regularizer (2) and the direction-dependent regularizer (6) is given. In
order to improve results as well as computational efficiency, a multi-resolution
strategy was applied on both approaches. While the motion fields in the inside of
the lung are almost identical, considerable differences occur near to the lung bor-
ders. In this area, the motion estimated by the directional-dependent approach
satisfies the expectation derived from respiration physiology (comp. Fig. 1) and
is not impaired by the marginal movement of the background as it is the case
with the diffusive registration.

For a quantitative analysis, a medical expert identified inner lung landmarks
(prominent bifurcations of the bronchial tree and the vessel tree) in the CT data
at EI and EE. Landmarks are differentiated into landmarks located in the middle
of the lung (20 landmarks each lung), near the lung borders (15 landmarks), and
near the tumor (10 each lung tumor).

Registration accuracy is quantified as target registration error (TRE), i.e.
the mean Euclidean distance between reference landmarks and target land-
marks a) before registration, b) after a diffusive registration, c) after a masked
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Table 1. Target registration errors (TRE) and variations in mm. The last row lists
the statistical significance of the improvement of direction-dependent vs. diffusive reg-
ularisation, using levels of p < 0.05 (+), p < 0.01 (++) and p < 0.001 (+++).

Pat. w/o Reg. Diffusive Masked Direction-Dep. p-value Significance

01 4.25 ± 6.5 1.08 ± 0.7 1.06 ± 0.6 1.04 ± 0.4 0.422 =
02 6.26 ± 22.7 1.73 ± 1.9 1.21 ± 0.4 1.21 ± 0.4 < 0.001 +++
03 5.45 ± 7.4 1.73 ± 3.0 1.65 ± 2.8 1.48 ± 1.3 0.011 +
04 6.20 ± 4.6 1.74 ± 1.7 1.39 ± 0.7 1.44 ± 0.9 0.003 ++
05 6.79 ± 14.0 1.80 ± 2.3 1.50 ± 1.4 1.55 ± 1.4 0.012 +
06 6.44 ± 9.5 1.67 ± 1.3 1.36 ± 0.6 1.43 ± 1.0 0.011 +
07 4.31 ± 9.8 1.41 ± 1.3 1.35 ± 0.6 1.35 ± 0.7 0.025 +
08 10.76 ± 60.8 2.48 ± 10.2 1.43 ± 1.6 1.49 ± 2.2 < 0.001 +++
09 6.40 ± 46.0 2.80 ± 11.5 2.52 ± 10.8 2.40 ± 7.2 0.002 ++
10 6.06 ± 25.4 1.37 ± 2.5 1.10 ± 0.4 1.19 ± 0.9 0.063 =
11 7.98 ± 28.0 2.07 ± 6.9 1.69 ± 2.8 1.71 ± 3.6 0.007 ++
12 8.31 ± 40.9 2.14 ± 5.4 1.64 ± 2.8 1.52 ± 1.6 < 0.001 +++

diffusive registration and d) after the directional-dependent registration. The
masked registration is done following for example [5,7] by defining fD(x) := 0 for
all x ∈ Ω/Γ . In order to quantify the improvement of the directional-dependent
approach with relation to the standard diffusive registration, we further perform
a two-sample t-test following [14]. The results are given in Table 1.

The presented directional-dependent model outperforms the diffusive approach
with respect to the TRE for all examined patients. In 10 out of 12 cases, the
results are statistically significant. As expected, the improvement is considerable
especially for landmarks near the lung border. Neither the directional-dependent
nor the masked registration proves to be superior with regard to registration ac-
curacy. However, the directional-dependent approach allows a closed mathemat-
ical formulation and provides a motion estimation for the whole image domain
while the masked registration limits calculation to the lung.

4 Discussion and Conclusion

We presented a new registration approach that enables us to incorporate phys-
iological knowledge into the smoothing mechanism. In order to model the slip-
ping motion of objects, regularization procedure was decoupled into normal and
tangential direction. While smoothing object and background separately in nor-
mal direction, tangential-directed smoothing was performed comprehensively. In
addition, we presented an approach for an automatic refinement of the segmen-
tations which is substantial to warrant smooth normals.

The parameters c and α in (5) can be determined generally and are not very
sensitive to the specific application. In addition, no further parameters occur
compared to the standard approach.

We validated the approach for motion field estimation of the lung on 12 clin-
ical data sets. The presented directional-dependent regularization significantly



762 A. Schmidt-Richberg et al.

outperformed the common diffusive approach with respect to the TRE and pro-
vided results similar to those of the masked registration. However, with the
directional-dependent registration we introduced a model for the estimation of
the whole image domain, which also includes neighboring structures.
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Abstract. Recent US systems allow the real-time acquisition of volume
data, either by freehand 3D techniques or novel transducer hardware.
However, the acquisition of large volumes is limited by the field of view
of the US transducer and anatomical scanning windows into the patient.
Mosaicing of several 3D US scans has been proposed to generate large
US volumes. Still, US imaging specific characteristics and artifacts make
it challenging to create high quality mosaics. For many clinical cases,
especially interventions, additional high quality CT data is available. In
this paper we present a novel multi-variate, multi-modal 3D US regis-
tration and mosaicing approach, which reduces the effects of ultrasound
imaging artifacts on mosaic quality, by incorporating information from
co-registered CT.

1 Introduction

3D US imaging is becoming more and more frequently used in today’s clinical
workflows. Recent US systems allow direct real-time acquisition of 3D volume
data. Either freehand 3D US, where a position and orientation (pose) sensor is
attached to a conventional 2D US probe, or direct 3D acquisition capable US
transducers are used. However the acquisition of large volume data is today still
limited by the US transducer field of view and restricted scanning windows into
the patient. Analog to 2D US image mosaicing, US volume mosaicing has been
proposed to generate large US volumes from several acquired 3D US datasets.

Such 3D mosaic volumes of entire organs help to improve diagnostic confi-
dence, e.g. by reducing scanning orientation induced artifacts, and transcend
the role of ultrasound in radiology by providing self-contained 3D data for the
reading room. For guidance of minimally-invasive interventions, such mosaics
provide global anatomical reference, and allow for automatic mono- and multi-
modal fusion with pre-operative data. US imaging specific artifacts, e.g. noise,
occlusions, speckle, make it challenging to design robust similarity measures. By
using the enriched spatial and artifacts reduced information of US mosaics the
registration problem is becoming less ill-posed. Besides, comparison of 3D US
at different stages before, during and after the procedure, allow to better assess
treatment outcome. Additionally, 3D US mosaics could also be used as databases
for generating simulated US images for training and education of physicians [1].
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1.1 Problem Statement

3D US mosaicing is a two step process. First the unknown registration parame-
ters [p̂0, ..., p̂N ] of all individual volumes have to be computed. The registration
problem is solved by minimization of a cost function

[p̂0, ..., p̂N ] = arg min
[p0,...,pN ]

∑N
k=0

∑N
l=0 ω(k,l) ·

∑
v∈Ω Γ

(
Ik[T−1(pk) · v], Il[T−1(pl) · v]

)∑N−1
k=0

∑N
l=k+1 ω(k,l)

(1)
defined by the sum of the pair-wise cost functions Γ for all pairs (Ik, Il) over all
elements v in the overlap domain Ω, where T−1(pi) maps an element in overlap
coordinates into the i-th volume. ω(k,l) is a weighting factor for the contribution
of the costs for pair (Ik, Il) to the global costs. If one chooses ω(k,l) = 1 for
all pairs the total cost is equal to the average of the individual costs. Another
option is to choose ω(k,l) equal to the pair-wise volume overlap, as proposed by
Wachinger et al [2] to introduce a weighting favoring larger overlaps over smaller
ones.

For solving the registration problem several approaches exist. They can be
classified by the use of either direct or indirect cost functions, and pair-wise and
simultaneous optimization approaches. Indirect approaches first pre-process the
3D US data to extract features for registration, in contrast direct approaches
directly use the complete image intensity information. Pair-wise approaches
decompose the global registration problem into several sequentially executed
pair-wise registration problems, which are then used to compute the global reg-
istration by propagation of transformations. Simultaneous approaches directly
minimize the cost function by simultaneously solving for all parameters and are
more stable towards pair-wise local minima. However, they also greatly increase
the computational effort per cost function evaluation. For symmetric cost func-
tions, Eq.1 can be simplified to∑N−1

k=0
∑N

l=k+1 ω(k,l) ·
∑

v∈Ω Γ
(
Ik[T−1(pk) · v], Il[T−1(pl) · v]

)∑N−1
k=0

∑N
l=k+1 ω(k,l)

(2)

which reduces the evaluation costs significantly.
Once the registration problem is solved, the actual per pixel mosaic values

have to be computed from the individual US intensities of different volumes.
Both, the registration and mosaic steps are challenging to solve for US data due
to the characteristics of US imaging itself. The intensity of the same anatomical
region varies in different US scans for multiple reasons. Variations in direction
of the US sound waves, give rise to occlusion and shadowing artifacts. Hypoe-
chogenic regions can cause negative shadows in scan direction. Motion, either
induced by pressure of the transducer onto the patient, internal organ motion,
and of course breathing motion cause geometric variations in the images. Fur-
thermore, US system internal signal processing, noise, speckle and operator de-
pendent imaging control settings cause variations between different scans.
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Several recent works have dealt with the problem of 3D US mosaicing. Gee et
al [3] used a direct pair-wise registration approach. They reduce the complexity
of the 3D/3D registration problem to a 2D/2D registration at volume intersec-
tion planes. Poon et al [4] proposed two block-based methods for improving the
local alignment in the overlap volumes to compensate for the errors introduced
by position trackers. Wachinger et al. [2] investigated registration strategies,
pair-wise vs. simultaneous, for US mosaicing on a single phantom dataset. Si-
multaneous approaches proved to be superior to pair-wise ones, however resulting
in high computational costs. Ni et al [5] chose an indirect pair-wise registration
approach, using SIFT feature extraction. They evaluated their approach on an
abdominal phantom and 3D US scans of human liver.

In this work we introduce a new simultaneous, direct, and multi-modal 3D
US mosaicing approach. We chose not to use an indirect approach as reliable
extraction of features from US data is inherently ill-posed in general for scans
with varying field of view, scan direction, and unknown volume overlap. For
many clinical scenarios a high quality CT scan of the patient is available. Our
method uses the additional information from CT to improve the US/US regis-
tration by simultaneous registration of US to US and US to CT data. US/US
registration problems caused by small overlap, lack of registration relevant fea-
tures in the overlap volume, can be compensated by the additional information
from CT. We use a variation of the method for CT/US fusion introduced by
Wein et al [6] to estimate the registration parameters by simultaneously com-
puting the registration of all US volumes to each other and to the CT scan. A
simultaneous optimization was chosen instead of a pair-wise one to avoid accu-
mulation of errors and improve overall stability of the registration. To reduce
the computational costs we implemented the complete registration algorithm
on GPU stream processors, greatly accelerating the multi-variate cost function
evaluation compared to a CPU-based implementation.

2 Methods

Registration Framework. We use a GPU accelerated registration framework,
supporting pair-wise, and simultaneous intensity based registration. Several,
mono and multi-modal similarity measures (c.f. Table 1) have been implemented
using OpenGL/GLSL1. We use global affine transformations, as rigid transfor-
mations are not sufficient to cover scale variations and shearing due to motion,
scan conversion, compounding, shape of US field of view in the individual scans.
A Downhill Simplex optimizer was chosen to optimize the similarity measure
and determine the registration parameters. We added a transformation penalty
term to the similarity measure to penalize physical impossible or unlikely trans-
formations for US scans with a known pose guess from tracking. For US data
with unknown pose, either a rough manual pre-positioning and relaxed penalty
condition is used, or no transformation restriction at all.
1 OpenGL - Open Graphics library http://www.opengl.org

GLSL - OpenGL’s built-in high level shading language.
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Table 1. Used similarity measures. Left colum, pair-wise, right column simultaneous
version. (Row 1) n = 1 SAD - Sum of absolute differences, n = 2, SSD - Sum of squared
differences (Row 2) NCC - Normalized Cross Correlation, (Row 3) LNCC - Local NCC
in a k3 neighbourhod.

1
N

∑N
k=1 |Ik − Il|n

∑N−1
k=0

∑N
l=k+1

∑
v∈Ω

|Ik−Il|n∑N−1
k=0

∑
N
l=k+1 ω(k,l)

NCC(I, J) =
∑N

k=1(Ik−I)(Jk−J)
NσIσJ

∑N−1
k=0

∑
N
l=k+1 ω(k,l)

∑
v∈Ω NCC(Ik ,Il)∑N−1

k=0

∑N
l=k+1 ω(k,l)

LNCC(I, J, k) = 1
N

∑N
nb=k NCC(I, J)k

∑N−1
k=0

∑
N
l=k+1

∑
v∈Ω

LNCC(Ik ,Il)∑N−1
k=0

∑
N
l=k+1 1

2.1 Multi-modal Mosaicing

The above described registration framework directly allows for mono-modal mo-
saicing of 3D US data. We incorporate the CT information into the registration
algorithm by a variation of the method of Wein et al [6]. In every iteration the
major US reflections are simulated from CT [7] and reconstructed into a carte-
sian volume [8] on the GPU. As similarity measure ϕ we chose the weighted sum
of the multi-variate normalized cross correlation of all 3D US data, and real 3D
US and simulated reflections (cf. Eq. 3).

ϕ =

∑N−1
k=0

∑N
l=k+1 ω(k,l) ·

∑
v∈Ω NCC (USk,USl)∑N−1

k=0
∑N

l=k+1 ω(k,l)

+α

∑N−1
k=0

∑N
l=k+1 ω(k,l) ·

∑
v∈Ω NCC (θ(CT ,USk)),USl)∑N−1

k=0
∑N

l=k+1 ω(k,l)
(3)

where θ(CT ,USk) is the US simulation operator, simulating the k-th US volume
from CT. For final refinements after registration we exchange the global NCC in
ϕ with a Local NCC. Local NCC is not selected right from the start as NCC is
stable enough for aligning the major features in US/US and CT/US data from
the initial pose.

We chose this measure as the LC2 measure proposed by Wein et al [6] for
CT/US fusion proved numerically instable on recent GPUs using GLSL due to
lack of double precission floating point support. However, the simulated major
reflections provide sufficient information for stable CT/US registration for US
scans with large tissue interfaces.

3 Experiments and Results

We evaluated our 3D US mosaicing framework for phantom and real clinical 3D
freehand US datasets of human liver from multiple patients. Both mono- and
multi-modal mosaicing were tested. The stability of the simultaneous US/US
registration was evaluated on four 3D US scans of a baby phantom. The US probe
was moved in cranio-caudal direction over the phantom, without a major view
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(a) (b) (c)

Fig. 1. Axial along mosaic volume generated 2D MPRs from five freehand 3D US scans
of human liver

(a) (b) (c)

Fig. 2. (a) Mosaic from two volumes with very small overlap in the middle. Mosaicing
works only if CT information (b,c) is used to constrain the registration. Use of mono-
modal approach will lead to breakup of the volume configuration.

direction change. Therefore the intensity variation in the scans is mostly due to
noise. An optimization of translation and rotation parameters was performed 100
times with random offsets of +/- 10mm and +/- 5 degrees from a defined ground
truth pose. SSD was used as similarity measure. Table 2a depicts the standard
deviations of the translation and rotational parameters for the phantom and
patient dataset.

The same stability study was performed for multiple real clinical datasets.
Fig. 1 shows an example of an US mosaic created from four 3D freehand US
scans of the liver region. For the clinical data NCC was selected as similarity
measure. Table 3a depicts the results of the stability study. The results show that
direct simultaneous registration performs as well on phantom as on real patient
data. Tables 2b and 2b depict the performance of the framework for both mono
and multi-modal registration. Table 2b shows an impressive speedup of more
than 400 times of the GPU version versus a single-threaded CPU version for
the same data and initial registration parameter settings. The used computer
was equipped with an Intel Core Duo processor (2.6Ghz), 4Gbyte RAM and a
NVIDIA Geforce GTX 280 with 1GByte of VRAM.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3. Comparison of CT/US alignment before (a-c,g-i) and after registration (d-f,j-l)
for the two US volumes with small overlap depicted in Fig. 2
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Table 2. Simultaneous mono-modal registration experiment results for four US phan-
tom scans. (a) Standard deviations of translation and rotation parameters for random
study from defined ground truth pose. (b) GPU vs. CPU performance comparison for
different volumes resolutions.

(a)

Vol. tx [mm] ty [mm] tz [mm] α [rad] β [rad] γ [rad]
1 3.2134 3.0474 3.1312 0.0183 0.0288 0.0204
2 3.1112 3.0478 3.2231 0.0198 0.0269 0.0212
3 3.1507 3.0117 3.1160 0.0198 0.0269 0.0206
4 3.1338 3.2669 3.3408 0.0176 0.0302 0.0227

(b)

GPU [sec] CPU [sec]
4 x 2563 11.19231 > 36.000
4 x 1283 9.71301 4006.34
4 x 643 7.10882 397.21

Table 3. Real patient data experient results. 256x256x106 voxels per volume (CT and
US). (a) Standard deviations of translation and rotation parameters for random study.
(b) Computational performance of simultaneous multi-modal registration for three and
five volumes.

(a)

Vol. tx [mm] ty [mm] tz [mm] α [rad] β [rad] γ [rad]
1 3.2829 3.3165 3.5544 0.0212 0.0331 0.0230
2 3.2813 2.9114 2.9758 0.0173 0.0304 0.0232
3 3.2195 3.2878 3.8525 0.0176 0.0319 0.0259
4 3.2345 2.8773 3.1018 0.0170 0.0311 0.0243

(b)

Volume Config. Time [sec]
1CT,2US 333.93
1CT,4US 1076.57

The multi-modal mosaicing was evaluated qualitatively by visual inspection of
alignment of major anatomical regions, e.g. organs interfaces, vasculature inside
the liver. The improvement of alignment before and after registration is clearly
visible (see Fig. 3), but has to be evaluated detailed and qualitatively in further
studies. We validated the improved registration for problematic configurations
by a testcase with two US volumes with very small overlap and one CT scan (see
Fig. 2). Using only US intensity information the registration fails and breaks the
link of the US volumes. Using our proposed mosaicing method, the US volumes
are registered to each other and to the CT data (see Fig. 3).

4 Discussion

In this work we have presented a novel, multi-modal and multi-variate, approach
to 3D US mosaicing. The additional information about the patient anatomy from
CT allows mosaicing of US scan configurations with very small pair-wise volume
overlap and reduces problems caused by US intensity variations. We demon-
strated that direct, simultaneous mono and multi-modal 3DUS mosaicing works
on clinical data.In future work we will conduct an extensive evaluation of the
proposed method on phantom and real clinical datasets. Physician defined land-
marks in CT and US data will be used to assess the quality and correctness
of the method. Our work also addressed the current major limitation of direct,
simultaneous, multi-variate image registration by implementing the most expen-
sive computations on stream processors of computer graphics hardware. Our
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vision is to extend it to a general multi-modality, multi-variate image registra-
tion framework. The objective is to perform multi-modal registration not only
for data from a pair of modalities but to incorporate all information into the
registration framework.
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Abstract. Radiofrequency ablation of liver cancer is a minimally inva-
sive alternative to open surgery. Typically, the preoperative planning is
done on an MR (or CT) scan, while the intervention relies on ultrasound
(US) guidance. Registration of intra-operative US and preoperative MR
(or CT) would assist navigation and increase the confidence of RFA nee-
dle positioning. In this paper we present a novel method for registration
of US and MR images of the liver. Hepatic vessels are extracted from
2D US by an algorithm that models US dynamics. It generates 2D prob-
ability maps representing hepatic vessels which are then combined into
probability volumes. A multi-resolution registration framework performs
registration of the pre-processed MR with two 3D vessel probability im-
ages. The accuracy, robustness and speed of the method were assessed by
registering eight US/MR datasets. High robustness (86%) and reasonable
accuracy (1.98◦, 4.10mm), acceptable for the RFA clinical application,
suggest that the method has a good potential for intra-operative use.

1 Introduction

Minimally invasive therapy is an increasingly important alternative to open in-
terventions. Radiofrequency ablation (RFA) of liver cancer is a minimally in-
vasive procedure that can be an alterative to surgery for inoperable tumors or
can be combined with surgery in complex cases. An important step of the RFA
treatment is insertion of an RF needle into the tumor. Typically, the insertion is
performed under ultrasound (US) image guidance. However, US often produces
images of poor quality for this task and can fail in depicting small lesions. MR
and CT are complementary to US and can often image tumors missed by ultra-
sound as well as provide high resolution and high contrast image with a large
field of view. By registering the preoperative images and the intra-operative US,
it would be possible and clinically useful to include the visualization of such
lesions to aid with accurate positioning of the needle.

The fusion of abdominal US and MR (or CT) images was a field of active
research during the last decade. The problem is particularly complex due to fun-
damentally different physics involved in these imaging modalities. One strategy

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 771–778, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is to model the US from the MR (or CT) and register the real and simulated US
images. In [1], Wein et al. developed a technique for simulating US from CT/CTA
scans. The method is based on the empirical mapping between CT/CTA and US
intensities, and modeling of US-wave propagation. A linear combination of the
two was used to achieve the registration by optimizing an NCC-like similarity
metric. The results are reported for the freehand 3D US and CTA datasets only.
Roche et al. [2] utilized MR intensity and gradient information to simulate US
images of the brain. Their Bivariate Correlation Ratio (BCR) similarity metric
is based on consecutive optimization of a rigid transformation and simulated US.

To overcome the absence of functional dependency between MR (or CT) and
US image intensities, another strategy is to map the datasets to an alternative,
typically non-intensity, space - and register images in that space. In [3], Mellor
and Brady generated local phase images from intensity US/MR and registered
them using Mutual Information [4,5]. The method was only demonstrated on
simulated brain US. Blackall et al. [6] produced probabilistic maps from US
and MR images of the liver, where each pixel was assigned with a probability
of belonging to the hepatic vessel tree. A registration of the two probabilistic
representations was achieved by the Cross Correlation metric.

Recently, Milko et al. [7] reported a method for segmentation of liver US.
The method differentiates between several anatomical structures, such as liver
parenchyma and hepatic vessels. Importantly, the method analyzes not only the
static US intensity, but also the dependency of pixel intensity on time. Authors
demonstrated that modeling of time-dependent appearance of US has a clear
benefit over pure intensity based segmentation approach. A preliminary inves-
tigation of method’s feasibility for US/MR registration was introduced in [8].
However, only one pair of US/MR images was registered; no quantitative assess-
ment of the registration was reported.

Motivated by the results in [7,8] and focused on the RFA application, we
present a novel method for registration of preoperative MR to intra-operative
liver US. The method is a significant advance over the ideas presented in [8].
It combines the analysis of US dynamics developed in [7] with a volume recon-
struction algorithm and a multi-resolution registration framework. Namely, the
information extracted from spatially tracked 2D US images is combined into a
3D volume that is registered with preoperative RFA planning. The accuracy,
robustness and speed of the method were assessed on eight US/MR datasets.

2 Methods

2.1 Dynamic Texture Based Analysis of US

An excellent introduction to dynamic texture analysis for general computer vision
is given in [9]. Its application to segmentation of liver US is reported in [7]. Here,
we give a concise outline of the method from [7] focusing on the image registration
problem. Let {I(t)|t = 1..τ}, I(t) ∈ Rm be a sequence of images. We call {I(t)} a
(linear) dynamic texture if it can be described by the system of two equations
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{
x̄(t) =

∑k
i=1 Aix̄(t− i) + Bν(t)

I(t) = φ(x̄(t)) + w(t) .
(1)

Here, x̄(t) ∈ Rn is a state variable. Its value at time point t linearly depends
on previous k values, matrices Ai ∈ Rn×n, i = 1..k, B ∈ Rn×l and a known
independent and identically distributed (IID) sequence ν(t) ∈ Rl. The equation
for I(t) involves a spatial filter φ : Rn → Rm and another known IID sequence
w(t) ∈ Rm. Following [7], we reduce (1) to a single equation describing the
dynamics of individual US pixels. We consider the intensity function at each
pixel p as a state variable xp(t) ∈ R1. Then {xp(t)|t = 1..τ} is a time series -
a sequence of 1D observations. By setting φ to identity transformation and all
dimensions l, m, n to 1, the equation (1) can be reduced to

xp(t) = A1xp(t− 1) + A2xp(t− 2) + ... + Akxp(t− k) + Bu(t) . (2)

Equation (2) describes an Auto Regressive (AR) process characterized by linear
coefficients {Ai, i = 1..k} and B, and a residual noise u(t). Respecting different
assumptions regarding the type of noise for the US analysis, such as additive
Gaussian [7] or multiplicative Rayleigh [10], we model u(t) as a Gaussian with
zero mean and unit variance due to its simplicity. Using least squares fitting,
one can estimate the order k, coefficients {Ai, i = 1..k} and B, that best explain
the measurements {xp(t)}. This was done by Schneider and Neumaier’s ARfit
algorithm [11].

In [7,8], a maximum a-posteriori (MAP) classifier was used to label each pixel
with a tissue class, such as liver parenchyma or hepatic vessel, based on average
(over time) pixel intensity and linear coefficients {Ai} and B attributed to the
pixel. As opposed to such “hard” classification, our method adopts a “soft”
labeling where each pixel is assigned a probability of belonging to a certain tissue
class. As described in [7], the probabilities were computed by a supervised MAP-
classifier for liver parenchyma, hepatic and external (w.r.t. liver) vessels. Note,
that hepatic- and external vessels can be separated by the level of “noisiness”
(term B in (2)) and average pixel intensity. These two classes of vessels were
identified as a basis for registration. To summarize: by analyzing a sequence of 2D
US images acquired with a stationary held probe, we computed two probability
maps - each reflecting the probability of US pixels to belong to one of the two
vessel classes.

2.2 Reconstruction of Probability Volumes

The previous section outlined the analysis of a sequence of 2D images acquired
with stationary US transducer. A number of such sequences were recorded, each
producing two 2D probability maps for the two identified classes of vessels. Se-
quence acquisitions were performed at different positions of the probe covering a
significant portion of the liver. The imaging planes were largely parallel, 2–3mm
apart.
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A median position and orientation of each US sequence was calculated based
on the recordings of a magnetic tracking sensor attached to the probe. This
spatial information was attributed to the 2D probability maps that were then
weighted and combined into two probability volumes corresponding to two classes
of vessels. Values of the 2D probability maps were weighted according to their
geometrical position on the US image. A considerable area around the center
of the US image was assigned the weight 1. The weights of pixels located fur-
ther from the border of this area and towards the US edges gradually decrease
to 0. This reflects higher confidence in structures observed in the center of the
US image as opposed to boundaries (see Discussions). Probability values were
multiplied with their weights and passed to the reconstruction step.

Each reconstruction was done by traversing a set of 2D probability maps twice.
On the first traversal, a minimal bounding box containing the entire examined
anatomy was determined. It was divided into a uniform grid with isotropic voxels
having a resolution of 0.6mm. For all voxels, the probability and hit-counter
values were initially assigned to zero. On the second traversal, probabilities were
accumulated in a 3D volume. For each pixel p of the weighted 2D probability
map a closest voxel v was determined based on the tracking and calibration data.
The probability value of the voxel PRv was updated and a hit-counter HCv -
incremented according to

PRv :=
HCv × PRv + PRp

HCv + 1
; HCv := HCv + 1

where PRp is the probability value of the pixel p.
To avoid gaps in the reconstructed volume, we assume that 2D probability

maps have a non-zero thinkness, which grows linearly as we move further from
the head of the transducer. Thus, a 2D probability map is considered as a 3D
“wedge” in the reconstructed volume and contributes to the intensity of all the
voxels it intersects. The wedge thinkness was assigned to 1.75mm close to the
transducer head and to 3.15mm at the opposite end. These values were derived
empirically by visually inspecting the reconstructed volumes. Voxels having zero
hit-counter (HCv = 0) were excluded from the registration.

2.3 Registration

A proposed registration method operates with three 3D images: two recon-
structed probability volumes corresponding to hepatic- and external vasculature,
and a preprocessed MR scan. Note that probability volumes were reconstructed
in the same coordinate space and are, therefore, registered. A preprocessing step
for MR involves semi-automatic segmentation of major hepatic vessels as well as
inferior vena cava and gallbladder. These two anatomical structures are typically
visible on intra-operative US and have appearance similar to hepatic vessels. A
volume produced on the MR preprocessing step is a binary mask containing ones
in voxels belonging to the segmented structures and zeros elsewhere.

To define a formula for the registration metric, we introduce a general regis-
tration framework. Given a reference image I and a template image J, we look
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for the rigid transformation T, which optimizes some similarity metric S. By
xk we denote the voxels of I. Then ik ≡ I(xk) is an intensity value of I at xk.
Similarly, j↓k ≡ J(T (xk)), where the arrow ↓ marks the dependency on T. The
position returned by T (xk) does not generally coincide with the voxel grid of
J. Therefore, interpolation between the neighbour voxels of J is necessary. A
partial volume (PV) interpolation was used as a tradeoff between speed and
accuracy [2].

We chose a preprocessed MR image as a template (J) to respect the clinical
context: registration of the pre-operative planning to the intra-operative US scan.
Hence, a reference I is a vector image incorporating two probability volumes, and
ik consists of two components ik[hep] and ik[ext] representing probabilities of
hepatic- and external vessel classes. A similarity metric can be defined as

S(T ) =
∑

xk∈I↓
(aik[hep] + bik[ext])j↓k , (3)

where a, b ∈ [0..1] are linear coefficients reflecting the importance of two vessel
classes for registration. Their values were chosen empirically as a = 1, b = 0.5
based on the observation explained in Discussions.

The similarity metric was maximized by the Powell optimization method.
A multi-resolution registration framework was implemented. First, the images
down-sampled to 30% of their original extent were registered. The obtained
transformation was used to initialize the registration on the next step, where the
registration of images down-sampled to 60% of the original dimension occurred.
Finally, the original images were registered starting with the transformation
computed on step two. We observed that registration of the original images
improved the transformation only marginally, whereas its computational time
was intense due to large dimensionality of datasets. Therefore, registrations for
the first two resolutions only were used for numerical evaluation of the method.

The accuracy, robustness and speed of the method were assessed by registering
eight pairs of 3D US/MR datasets. Each dataset consisted of three images: a
preprocessed MR volume and two reconstructed probability volumes for liver US.
“Ground truth” transformations were achieved manually by an expert registering
the MR and reconstructed 3D US images. For this purpose, US volumes were
reconstructed from the tracked 2D images by the algorithm described in the
previous section.

We generated 200 perturbations from the ground truth by adding random
rotations ξr = (ξx

r , ξy
r , ξz

r ) and translations ξt = (ξx
t , ξy

t , ξz
t ). The vectors ξr and

ξt were chosen with random orientation, but constant magnitude: ‖ξr‖ = 10◦ and
‖ξt‖ = 10mm. A total of 8× 200 = 1600 automatic registrations were performed
starting from perturbed initializations.

An automatic registration R = {θ̄, t̄} = {(θx, θy, θz), (tx, ty, tz)} was consid-
ered successful if ‖θ̄ − θ̄∗‖ < �θ and ‖t̄ − t̄∗‖ < �t, where R∗ = {θ̄∗, t̄∗} is a
corresponding ground truth registration. The values for �θ and �t were chosen
as 3◦ and 6mm respectively to reflect the suitability for the RFA application.
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The accuracy was measured on successful registrations achieved for each
US/MR pair. Two errors were computed for every successful automatic registra-
tion R = {θ̄, t̄} as: δθ = ‖θ̄− θ̄∗‖ and δt = ‖t̄− t̄∗‖. The mean (δmean

θ , δmean
t ) and

median (δmedian
θ , δmedian

t ) rotation and translation errors were then calculated
across all successful automatic registrations of each US/MR pair. The robust-
ness was estimated as a percentage of successful registrations achieved by the
method.

3 Results

Table 1 shows the robustness, accuracy, and speed of the registration method
tested on eight pairs of US/MR images. Recall that 200 registrations were per-
formed for each image pair. Therefore, a success rate of 0.5% refers to a single
successful registration. Mean (δmean

θ , δmean
t ) and median (δmedian

θ , δmedian
t ) er-

rors were computed on successful registrations only.

Table 1. Accuracy, robustness and speed for registering eight US/MR datasets. Note,
that (δmean

θ , δmean
t ) and (δmedian

θ , δmedian
t ) errors were computed on successful registra-

tions only. Robustness was measured as a success rate (%). The value 0.5% corresponds
to one registration out of two hundred.

Dataset δmean
θ ,◦ δmean

t , mm δmedian
θ ,◦ δmedian

t , mm Time,sec Success rate,%
1 1.16 5.27 1.16 5.27 569 81.0
2 2.75 5.78 2.75 5.77 473 87.0
3 2.05 3.40 2.05 3.39 425 87.5
4 1.39 3.47 1.37 3.43 467 86.0
5 1.67 5.02 1.66 4.99 508 81.5
6 2.89 4.60 2.89 4.60 592 87.0
7 2.11 3.36 2.11 3.36 536 83.0
8 1.73 2.13 1.73 2.14 346 92.0

Avg. across all 1.98 4.10 2.01 3.47 525 86.0

Fig. 1. Registration of the US/MR datasets: a - original MR; b - reconstructed 3D US;
c - probability volume corresponding to hepatic vessels
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An example of successfully registered US/MR images of the liver is presented
on fig. 1, where cross sections through the original US/MR and a probability
volume corresponding to hepatic vessels are shown.

4 Discussion and Conclusion

Table 1 demonstrates that the proposed registration method has a good potential
for the RFA clinical application due to its high robustness (86%) and acceptable
rotation (1.98◦) and translation (4.10mm) errors, averaged across all 1600 regis-
trations. The method is somewhat similar to the algorithm proposed in [6], where
manually segmented MR was registered to a sparse set of 2D vessel probability
maps computed on the US intensity. We believe that our approach has several
advantages. Modeling the dynamics of liver US enables capturing higher number
of hepatic vessels and external (w.r.t. liver) vascular structures than the analy-
sis of static US intensity only [7]. This statement is particularly valid for vessels
distant from the US probe that have average (over time) intensity similar to the
adjacent liver parenchyma. The reconstruction of 3D probability images from a
set of 2D probability maps is beneficial as it compensates for re-occurrences of
the same anatomy on more than one 2D image. Indeed, since the US acquisition
was performed with a hand held probe with relatively small distance between
imaging planes (2–3mm), their intersection often occurred. If a sparse set of 2D
probability maps was used, re-occurring vessels would influence the registration
more than vessels encountered only once.

Multi-resolution registration framework is a popular choice when the similar-
ity metric is not sensitive to down-sampling of the registered images. This holds
for the proposed metric computed on US probability volumes and a preprocessed
MR. Computational efficiency achieved by the multi-resolution approach makes
it attractive for intra-operative use.

The major limitation of our method, as well as the method described in [6],
is a necessity for manual preprocessing of the MR. However, it is mitigated by
the RFA application - a clinical context of both studies. A preoperative plan-
ning for the RFA often includes delineation of critical structures, such as tumors
and large adjacent vessels, on the MR. Availability of this information can make
the registration method fully automatic. The algorithm does not compensate for
non-rigid deformations and is, therefore, sensitive to breathing. The RFA treat-
ment is typically conducted under general anesthesia. It is a common practice to
suspend subject’s breathing during the needle insertion phase. Therefore, rigid
registration is adequate at this stage of the RFA procedure.

We believe that by utilizing probabilities rather than “hard” segmentation
as described in [7,8], our method gives better alignment and is more robust to
errors in US segmentation. The registration accuracy is, however, limited by
the accuracy of the MR segmentation. To address this issue, registration of US
probability volumes directly to MR intensities is considered a future work.

A selection of linear coefficients a = 1 and b = 0.5 in (3) respects the higher
importance of hepatic vessels for registration than either external (w.r.t. liver)



778 S. Milko et al.

vessels or the gallbladder. Due to their larger size, the gallbladder and inferior
vena cava can force the registration to drift away from the correct solution unless
down-weighted.

A confidence mask applied to the US probability maps reflects higher con-
fidence in structures observed in the center of the US image, as opposed to
boundaries. For example, a US region adjacent to the transducer contains com-
pressed and, therefore, distorted structures; a boundary region distant from the
probe receives attenuated US signal and is often noisy.

In this paper we proposed a novel method for registration of preoperative MR
and intra-operative liver ultrasound based on modeling of US dynamics. Quan-
titative assessment demonstrated high robustness of the method and accuracy
acceptable for the RFA application. Despite the necessity of manual preprocess-
ing step for pre-operative MR, the method benefits from frequent availability of
such information for the RFA treatment.
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Abstract. We address the problem of the viewing-angle dependency
of ultrasound images for registration. The reflected signal from large
scale tissue boundaries is dependent on the incident angle of the beam.
This applies an implicit weighting on the ultrasound image, dependent
on the viewing-angle, which negatively affects the registration process,
especially when utilizing curved linear transducers. We show that a sim-
ple reweighting of the images, considering a common physical model for
ultrasound imaging, is not feasible. We therefore introduce a new match-
ing function, separating reflectivity and scattering regions, which are the
results of two different types of physical interactions of the ultrasound
beam with the tissue. We use the local phase for identifying regions of
reflectivity, and consider it as one part of our matching function, combin-
ing feature- and intensity-based aspects. First experiments provide good
results for this novel registration approach.

1 Introduction

The fusion of several ultrasound images for the creation of a combined image with
a larger field-of-view, referred to as ultrasound stitching, mosaicing or panorama
imaging, is of clinical interest [1] and topic of on-going research. In the past,
a variety of methods were proposed ranging from rigid to deformable [2], from
intensity- to feature-based [3], and from pair- to groupwise [4]. While feature-
based approaches may be an option for getting close to the correct alignment,
the final alignment is best achieved with groupwise intensity-based methods [4].

The major drawback of intensity-based methods is the missing overlap invari-
ance of the similarity measures, favoring a total overlap of the images [4]. The
reasons for this phenomenon have not yet been investigated. They could either
be rooted in the similarity measures themselves, like Cahill et al . [5] addressed,
or in the ultrasound images. We show that the viewing-angle dependency of ul-
trasound images not only causes angle dependent artifacts like shadow, but also
puts an implicit weighting on the images, favoring a total overlap.

To address this issue we first evaluate methods for reweighting ultrasound
images, making them viewing-angle independent. However, currently used ul-
trasonic imaging models are not accurate enough, as we will show, for allowing
� This work was partly funded by the European Project ”PASSPORT”, ref. number
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such a reweighting. We instead propose a new ultrasound matching function,
consisting of one term, measuring the alignment of reflectivity structures, and
a second term, measuring the alignment of the remaining texture. This new
matching function has advantages for US-US, as well as, US-CT registration.

2 Viewing Angle Dependency

Structures, visible in ultrasound images, are the result of two different types of
interaction of the ultrasound beam with the tissue: reflection and scattering. Re-
flection occurs at large scale tissue boundaries and is viewing-angle dependent.
Scattering is caused by microscopic tissue inhomogeneities and provides the in-
ternal texture of the organs. Scattering is to a certain extent dependent on the
direction of insonification because the ultrasound PSFs are not spherically sym-
metric. However, since we are not able to match single scattering responses from
the resolution cells, it is more appropriate to consider entire scattering regions,
and the echogeneity of these regions does not change with the viewing-angle.

A common physical model for the reflection, as it is described in the textbooks
of Hedrick et al . [6] or Zagzebski [7], and further used by Wein et al . [8], is to
calculate the reflected signal R(x) as

R(x) = ρ(x) · Ii(x) · (cosφ(x))m (1)

with the incident angle φ(x) at position x, and the incident intensity Ii. The
reflection coefficient calculates as

ρ(x) =
(
z(x)− z(x−Δd)
z(x) + z(x−Δd)

)2

(2)

with the acoustic impedance z and Δd the distance between scan line points.
The exponent m models the heterogeneity of the tissue interface, ranging from
rather specular reflections to diffuse reflectors. Typically, strong reflections can
be observed at the diaphragm and the kidney surface.

To illustrate the problems, that affect the registration process when work-
ing with viewing-angle dependent ultrasound images, we create two artificial
images, acquired from a curved linear probe, see Figure 1. The images show
a region of high reflectivity, having a cosine intensity profile, and a scattering
region. Rayleigh distributed noise is added to the images (log-compressed) to
simulate the speckle noise of the ultrasound images [9]. The correct alignment of
the two images, which can be acquired with lateral displacement, is to overlap
the scattering regions. However, as we show in the similarity plot of Figure 1,
similarity measures like CD2 [9] favor a total overlap of the images. The reason
is the dominance of the reflectivity structure, leaving only a local minimum at
the desired position.

2.1 Reweighting Ultrasound Images

A first attempt, when thinking about the problem, is to identify structures of
high reflectivity, calculate the incidence angle of the beam, and use the ultrasonic
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Fig. 1. Artificial ultrasound images showing reflection, scatter, and speckle. Similarity
plot using CD2 [9] along lateral direction

imaging model as shown in Equation (1) to reweight the image. The result would
be the creation of normalized ultrasound images being less or not at all viewing
angle dependent. In the case of our example, the reflectivity region would result
in a constant similarity value for translations in lateral direction, so that the
scattering region would dominate the registration process.

In the following, we will investigate if the presented ultrasound model is accu-
rate enough for reweighting the images. We acquired ultrasound B-mode and RF
images with a curved linear transducer in a water bath with just one object in it,
having a diffuse surface, usually used for single wall calibration, see Figure 2. The
reflection coefficient ρ(x) is the same for every beam, as we have the common
water-object boundary. The incident intensity Ii is dependent on the attenuation
of the beam along its way to the boundary. The attenuation coefficient, which
includes absorption and scattering effects, is 2.2 · 10−3 dB

cm·MHz for water. In com-
parison, the attenuation coefficients for Fat (0.6 dB

cm·MHz), Liver (0.9 dB
cm·MHz), and

Kidney (1.0 dB
cm·MHz), are about three orders of magnitude larger. Further, the

length of the beam in the middle and the one on the side vary about 2 cm (1.93
exactly). This leads to an attenuation of 22.8 · 10−3 dB by using an acquisition
frequency of 2.6 MHz and considering also the way back to the transducer. Since
the ratio of change of intensity I1

I0
is close to 1 for values close to 0 dB, we can

neglect the effect of attenuation for our experiment.
The received signal, therefore only depends on the incident angle of the beam.

The subsequent cost function has to be minimized in order to find the optimal
exponent m, characterizing best the type of the interface

C(m) =
∫ ( |R(x)|

cosm(φ(x))
− ρ(x) · Ii(x)

)2

dx (3)

dC(m)
dm

=
∫

2
(

|R(x)|
cosm(φ(x))

− ρ(x)Ii(x)
)
|R(x)| · ln(cos(φ(x))) · cos−m(φ(x))dx

with ρ(x) ·Ii(x) being constant for all x on the surface and corresponding to the
measured reflectivity of the middle beam, and |R(x)| the absolute value of the
received signal.

We plot the cost function in Figure 2(b), where a gradient descent optimiza-
tion with the above stated gradient of the cost function leads to m = 34.52.
In Figure 2(c), we show the intensity profile of the RF data, together with
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Fig. 2. Reweighting experiment on ultrasound RF data

the optimal cosine variant. The advantage of working with RF data is that
no further processing steps or filters are applied on the data, making a mean-
ingful evaluation of the model possible. When working with B-mode images,
especially the log-compression has to be considered, turning the multiplicative
cosine term of Equation (1) into an additive one. In Figure 2(e), we show the
reweighted RF signal with cos34.52. As can be seen, the result is not satisfying
because instead of having a constant intensity profile, we have a ”W” shaped
one. For other interfaces it may be possible to find an exponent m so that
reweighting works, however, this would only characterize this specific type of
interface and not be generally applicable. We conclude that the presented ul-
trasonic imaging model in Equation (1) is usually not accurate enough to al-
low for reweighting ultrasound images, in order to make them viewing-angle
independent.

This finding also affects a recently introduced algorithm for US-CT registra-
tion [8], which bases upon the simulation of ultrasound images, applying this
ultrasonic imaging model. The the next section, we introduce a new ultrasound
matching scheme, usable for US-US and US-CT registration, to address this
issue.

3 A New Ultrasound Matching Scheme

In this section we present a novel matching scheme for ultrasound images, deal-
ing with the viewing angle dependency, discussed in the last section. As we
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concluded, a correction of the angle dependency of the images is with the cur-
rent model not feasible. Our approach is therefore to separate reflection and
scatter, which are the results of two different physical interactions of the beam
with the tissue, combined in one image. In the following, we first present the
method that we use for the crucial identification of regions of reflectivity in the
ultrasound images, and then detail the new matching function.

3.1 Reflectivity Regions

We use local phase information for identifying regions of reflectivity because
it provides us with structural information independent of the brightness and
contrast [10]. This independence is very important for the extraction of reflec-
tivity regions, since the absolute intensity of the reflection varies with the in-
cident angle. The local phase was already used by Mulet-Prada and Noble [11]
for boundary detection in echocardiography. Recently, Hacihaliloglu et al . [12]
achieved good results in segmenting bone in ultrasound images employing the
local phase. Mellor and Brady [13] apply mutual information on local phase im-
ages for multi-modal image registration. Grau et al . [10] use the local phase for
aligning 3D echocardiographic sequences.

For 1-D signals the phase is constructed from the original signal and its Hilbert
transform. Different approaches exist to extend this concept to N -D. In the
following, we use the monogenic signal introduced by Felsberg et al . [14]. It uses
a generalization of the Hilbert transform, the Riesz transform, to calculate phase
information in N -D. The image is filtered by N filters, which are given in the
Fourier domain by

Hi(f1, . . . , fN ) =
fi√∑N
j=1 f

2
j

(4)

with f1, . . . , fN the Fourier domain coordinates. We follow [10] in applying log-
Gabor filters prior to the calculation of the monogenic signal of the image to
extract frequency and spatial localization. The monogenic signal provides us
with information about the local phase P (x) each pixel x. We threshold the
phase image with a value τ to obtain a binary mask, indicating reflectivity
regions. Throughout all the experiments we use τ = 0.7, showing that this is not
a crucial parameter. Alternatively, the local phase values could directly be used
as weights, resulting in a fuzzy like mask.

3.2 Matching Function

Since the local phase image provides us with structural information independent
of brightness, building a matching function upon this like in [10] would already
significantly reduce the effects of the viewing-angle dependency on the regis-
tration. However, this also leads to the following drawbacks: First, we would
be completely dependent on the outcome of the algorithm calculating the lo-
cal phase. And second, texture information in the form of scattering regions is
not integrated. Focusing on boundaries seems totally fine for echcardiographic
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applications, where not much texturing exists, but for other applications, like
abdominal ones, this is not optimal. Consequently, the matching function we
propose considers both, feature- and intensity-based aspects, by using reflection
and texture.

Considering two images u and v, an image grid Ω, regions of reflectivity
Γu = {x ∈ Ω|Pu(x) > τ} and Γv = {x ∈ Ω|Pv(x) > τ}, further Γ = Γu ∪ Γv,
the matching function is

M(u, v) = MT
Ω\Γ (u, v) + λ ·MR

Ω(Pu, Pv) (5)

with MT
Ω\Γ measuring the similarity of the texture regions, excluding reflectivity

regions Ω \ Γ , and MR
Ω(Pu, Pv) measuring the similarity of the phase images

on the whole grid Ω. The matching function can be easily extended to the
multivariate case by using the multivariate similarity framework proposed in [4],
summing up pairwise terms.

Suitable similarity measures for MT are, next to standard measures like sum
of squared differences (SSD), normalized cross-correlation (NCC), and mutual
information (MI) assuming a Gaussian distributed noise, the similarity measures
proposed by Cohen and Dinstein [9], assuming a Rayleigh distributed noise.
Especially CD2 was reported to have good performance [15]. Suitable similarity
measures for MR are once again the standard measures, and the similarity
measure proposed in [10], taking the cosine of the phase difference.

The disadvantage, when choosing two different similarity measures, is that the
correct selection of the weighting term λ is important, since it has to map the
similarity score into a comparable range. Even when working with normalized
images, the outcomes of the similarity measures are not directly comparable,
so that we perform the experiments with the same similarity measures for both
terms and simply set λ = 1.

This matching framework is also directly applicable to the US-CT registration
[8], where texture and reflection parts are simulated separately and finally com-
bined during the registration. In our matching approach, reflectivity and texture
regions are extracted from the ultrasound image, and can directly be matched
with the simulated ones.

4 Experiments

In Figure 3, we show the results of the new matching function, using SSD as
similarity metric for texture and reflection, for the data set illustrated in Fig-
ure 1. Comparing the similarity plots for CD2 and MT , which both use the
texture, we can see the improvement of not considering the reflectivity region
Γ in the calculation. The plot of the term MR, measuring the similarity of the
phase images is very smooth, however, does not indicate the correct alignment
at 30. Combining both curves, M, leads to an accurate cost function with wider
capture range than MT .
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Fig. 3. Similarity plots for images from Figure 1 along lateral direction using SSD
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Fig. 4. Ultrasound images acquired from laterally displace positions. Similarity plots
for SSD and the different parts from our new matching scheme.

We also conducted experiments for US-US registration on ultrasound images
acquired with a curved linear transducer, see Figure 4. The images are acquired
from an ultrasound phantom, with a true displacement of 88.0 mm. The bony
structure on the left side of the first image is depicted in the middle of the
second image. The similarity plots for SSD, NCC, and CD2 are comparable, with
SSD indicating the correct alignment at 96.8 mm. The combined cost function
indicates the correct alignment at 88.8 mm, with NCC as similarity measure for
both terms.

We performed further experiments on a data set, similar to the one presented
by Penney et al . [16], simulating the US-CT registration problem. An illustration
of the images together with the good results of our matching approach can be
found in the supplementary material 1.

1 http://www.webcitation.org/5hEZWaajc
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5 Conclusion
The alignment of ultrasound images is complicated by the viewing-angle depen-
dent nature of the images. After an analysis of the effects on the registration
process, we presented a method for reweighting ultrasound images. However,
the commonly applied imaging model for ultrasound was shown to be not accu-
rate enough, for allowing a correction of the viewing-angle dependency. Instead,
we introduced a new matching scheme for the alignment of ultrasound images,
which can be used for US-US as well as US-CT registration. It incorporates
the usage of feature- and intensity-based metrics into one global measure. We
evaluated the new registration approach on various data sets, with good results.
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Abstract. A method is described for registering preoperative magnetic reso-
nance (MR) to intraoperative transrectal ultrasound (TRUS) images of the pros-
tate gland. A statistical motion model (SMM) of the prostate is first built using 
training data provided by biomechanical simulations of the motion of a patient-
specific finite element model, derived from a preoperative MR image. The 
SMM is then registered to a 3D TRUS image by maximising the likelihood of 
the shape of an SMM instance given a voxel-intensity-based feature, which 
represents an estimate of normal vector at the surface of the prostate gland. Us-
ing data acquired from 7 patients, the accuracy of registering T2 MR to 3D 
TRUS images was evaluated using anatomical landmarks inside the gland. The 
results show that the proposed registration method has a root-mean-square tar-
get registration error of 2.66 mm.    

1   Introduction 

Prostate cancer is a major international health problem, particularly affecting men in 
the Western World. Traditional treatment strategies for localised prostate cancer in-
volve either radical treatment of the whole gland - for example, by surgical excision 
or radiotherapy - or pursuing an active surveillance/watchful waiting programme in 
which intervention is delayed in favour of monitoring the patient for signs of disease 
progression. Motivated by the potential for a reduced risk of side-effects compared 
with conventional treatments, there has recently been growing interest in techniques 
which enable the targeted treatment of prostate cancer and minimise damage to vul-
nerable structures, such as nerves [1]. However, accurate mapping of cancer foci and 
accurate therapy delivery are of critical importance in such approaches.  

Transrectal ultrasound (TRUS) imaging remains the most accessible and practical 
means for guiding needle biopsy and therapeutic interventions. However, has poor 
accuracy for visualisation of cancer foci within the prostate means conventional (B-
mode) TRUS imaging provides very limited information on the spatial location of 
tumours. Consequently, TRUS images are not suitable for disease mapping, and per-
forming accurate, targeted biopsy. Instead, current standard of care is to use TRUS to 
simply inform the operator that the needle is in the prostate and which side it is in. 
Recent advances in functional and structural MR imaging techniques for localising 



788 Y. Hu et al. 

and characterising prostate cancer have led to sensitivities and specificities that are 
now sufficiently high to be clinically useful for guiding biopsy needles and for target-
ing localised therapy in a more precise manner [2]. However, the ability to fuse ana-
tomical and pathological information on tumour location, derived from MR images or 
a previous biopsy, with TRUS images obtained during a procedure remains a signifi-
cant technical challenge.  

In this paper, a new method is presented for non-rigid registration of MR images 
and 3D TRUS images, which compensates for gland motion and is sufficiently fast 
for intraoperative use. The method uses a previously demonstrated approach that 
combines finite element analysis (FEA) and statistical shape modelling to generate a 
compact model of prostate gland motion due to insertion of a TRUS probe into the 
rectum [3,4]. In this study, this technique is used to construct patient-specific, biome-
chanically-informed statistical motion models (SMMs) from preoperative MR images 
in order to predict physically realistic deformations as well as providing a well-
constrained transformation model for non-rigid registration of MR and TRUS images. 

Related previous work reported by Wu et al. [5] and Xu et al. [6] was limited to 
rigid registration, and is therefore unable to compensate for the significant gland de-
formation that commonly occurs between MR and TRUS imaging. In the latter study, 
an initial manual MR-TRUS registration is also required, and quantitative accuracy 
results are only presented for a phantom [6]. In this work, we propose a “model-to-
image” registration approach in which a deformable model of the prostate gland, con-
structed from segmented MR images prior to a procedure, enables rapid registration to 
TRUS images acquired during the procedure with minimal user interaction. Although 
there is a significant time overhead associated with generating such a model, much of 
the preoperative processing is performed automatically and the level of user interac-
tion required is feasible for the purposes of surgical planning, especially if advanced 
image segmentation tools are employed. 

2   Methods 

An overview of the registration method developed in this work is illustrated in Fig. 1.   
The following two-stage scheme is proposed:  
    a) Planning Stage (before a surgical procedure): i) Build a patient-specific finite 
element (FE) mesh of the prostate gland and surrounding anatomy from preoperative  
 

 

Fig. 1. An overview of the registration method. Preoperative processes and data are shaded 
grey, whereas intraoperative processes and data are not shaded. 
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MR image; ii) Perform a series of FEA simulations of gland motion using randomly 
sampled material properties and boundary conditions; iii) Construct a SMM by apply-
ing principal component analysis (PCA) to the predicted FE mesh node displace-
ments.   

b) Registration Stage (during a procedure): i) Compute the TRUS image feature 
vectors by computing second derivatives of the image intensity; ii) iteratively opti-
mise the rigid-body and SMM shape parameters until the likelihood of a particular set 
of registration parameters given the TRUS image is maximised.  

In Section 2, a detailed description of these two stages is provided. 

2.1   Statistical Motion Model Generation 

For the purposes of this study, diagnostic MR images were manually segmented into 
regions, which defined the geometry of the prostate gland (divided anatomically into 
the central and peripheral zones), the pelvis bone, the rectum and the bladder at the 
base of the prostate (see Fig. 2). The prostate gland was initially described using a 
spherical harmonic representation, which was then converted into a triangulated sur-
face mesh. The lower part of the pelvis was also meshed. The surfaces were then im-
ported into the commercial FEA software package ANSYS (ANSYS Europe Ltd., 
Oxfordshire, UK) and a FE model constructed with 50-60,000 tetrahedral elements 
using the solid modeling tools provided by the software. Ten-node tetrahedral ele-
ments were used as these support non-linear geometries using unstructured meshes. 
The mesh was refined around the region of rectum so that the TRUS probe could be 
modeled directly in simulations without remeshing.  

Elements within all regions of interest were labeled and each assigned material 
properties randomly sampled from a physiological range. All tissues were assumed to 
behave as isotropic, linear elastic materials. Since it can been argued that the assump-
tion of incompressibility (Poisson’s ratio, ν = 0.5) may not be appropriate for organs 
such as the prostate because of gain and loss of blood and other fluids, and the  
presence of a collapsible urethra, both the Young’s modulus and the Poisson’s ratio 
assigned to different materials in the FE model were assumed to be unknown and 
therefore sampled randomly in the simulations. 

Boundary conditions for each FEA simulation were determined as follows: The 
displacement on the surface of the pelvis was set to zero for all simulations. A random 
configuration of the TRUS probe in terms of its pose and the diameter of the water-
filled sheath were set for each simulation [4]. 

After assigning sampled material properties and boundary conditions for each of 
500 simulations, the node displacements were computed using the preconditioned 
conjugate gradient iterative equation solver in ANSYS. 

Since correspondence was established between the deformed prostate models, PCA 
was applied directly to the 3D displacements of the mesh nodes, as follows: For each 
of M (= 500) simulated gland deformations, the displacement of each of N nodes in 
the prostate gland mesh was calculated and combined to form a 3N×1 vector d, which 
describes the predicted motion of the prostate gland for a particular set of material 
properties and boundary conditions. The principal modes of variation in d were then 
calculated using PCA. If m0 represents the undeformed gland and is a vector contain-
ing the 3D coordinates of the nodes of the original FE model determined from the MR 
image, then a deformed gland is defined by vector m, given by:  
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Fig. 2. Left: An illustration of surface meshes derived from an MR image. The TRUS probe 
(with sheath) is approximated by a cylinder (shown in blue). Right: The first 3 modes (PC1, 
PC2 & PC3) of an SMM showing the variation in prostate shape. The normal vectors at the 
nodes of the triangulated surfaces are indicated by arrows.    
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where d  is the mean node displacement vector, ei is the ith eigenvector of the covari-
ance matrix, and ci is a scalar weight. L ≤ M was chosen so that the SMM covered 
>99% of variance in the training data, typically, L ~ 15. Additionally, the normal vec-
tors at the nodes (vertices) of the triangulated surface were computed. An example of 
the shape changes of a prostate model corresponding to the first three modes of the 
shape variation, are illustrated in Fig. 2. 

2.2   Ultrasound Surface Feature Detection 

One distinct feature in MR and TRUS images of the prostate gland is the capsule sur-
face. In the proposed registration method, vector representations of this surface, com-
puted independently from the MR-derived model and the 3D TRUS image, are used 
to drive the model-to-image registration by maximising the similarity between these 
vectors. In this formulation, the surface of a deformable model, given a set of registra-
tion parameters (i.e. rigid-body parameters and shape parameters defined by {c1, 
c2,…, cL}), is uniquely defined by the surface normal vector field u(x), where x is a 
position vector that defines the 3D co-ordinates of a point in the model space, and u is 
a 3D vector function that defines the surface normal at a particular point. By defini-
tion u is zero at all points not lying on the model surface. 

Similarly, a surface normal vector field, denoted by v, can be estimated for the im-
age using a multiscale filtering technique based on second-order Gaussian derivatives. 
In such approaches, the Hessian is computed at each voxel for a particular scale. The 
relative magnitudes of the eigenvalues of the Hessian can then be used to classify the 
local structure, enhancing blob-, tubular- or sheet-like structures [7]. In this work, an 
extension of the sheet-like enhancement filter proposed by Descoteaux et al. [7] was 
derived to take into account the non-uniform ultrasound (US) image intensity charac-
teristics found at boundaries due to the variable angle between a boundary surface and 
the US beam path. This effect is responsible for artefacts where, for example, the  
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Fig. 3. Example of the surface normal vector field estimated from a 3D TRUS image using the 
method described in Section 2.2. From left to right: transverse slice through the original TRUS 
volume; image representing the response of the filter defined in Eq. (3); extracted vector field v 
(projected onto the slice) given by Eq. (4); and a zoomed-in view of a region of interest (shown 
in the third image) around part of the gland surface. 

intensities at the boundary on the lateral sides of the prostate gland are low compared 
to those on the inferior and superior sides of the gland. 

In the original formulation described in [9], the filter response is given by:   
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where, the ordered eigenvalues λ1, λ2 and λ3 (|λ1|≤|λ2|≤|λ3|), of the Hessian, were com-
puted at point (x,y,z), R1=|λ2/λ3|, R2=|2|λ3|-|λ2|-|λ1|| and R3=(λ1

2+λ2
2+λ3

2)0.5. For the 
TRUS data collected in this study, the response of this filter was found to be insensi-
tive to the scalar weighting parameters α, β and γ, and therefore these were set to con-
stant values as suggested in [7]. The width σ of the Gaussian kernel used to compute 
the Hessian was 1mm in all directions. 

If the direction of the US beam is defined by the 3D vector b, then the modified fil-
ter response is given by: 
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where n3(x,y,z) is the normalised eigenvector corresponding to the largest eigenvalue 
(λ3) of the Hessian, which will be approximately co-linear with the surface normal at 
the surface. The weighting factor in Eq. (3) reduces the response to noise when direc-
tion of the US beam is approximately perpendicular to the surface normal. Finally, the 
surface normal vector field is given by:  
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where the scalars a and b specify a window in which the filter response is considered 
to be significant. An example of this vector field is given in Fig.3. 

2.3   Definition of a Probability Density Function for the Surface Noise Model  

To enable robust model-to-image registration, a similar approach to that described by 
Staib and Duncan [8] was adopted. The model-to-image registration problem is 
equivalent to the boundary finding problem considered in [8], and a feature extracted 
from the image, such as the surface normal vector field, described above, may be con-
sidered to be a noise-corrupted version of the surface normal vector field determined 
from the deformable model m (defined in Section 2.1). In this formulation, the prob-
ability that a particular image voxel, referenced by the index i in the image space  
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Ωimage, has co-ordinates yi = (xi, yi, zi) and an estimated surface normal vector vi can be 
expressed as a probability mixture model as follows: 

                           );();(),( WG
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where hj is a mixing parameter, Σ hj=1,  j is an index to a discrete point in the model 
space Ωmodel, defined by xj = (xj, yj, zj), and fG and fW are probability density functions 
that describe Gaussian and bipolar Watson distributions [9] defined as: 
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respectively. 
In Eq. (6) a special class of anisotropic Gaussian with two parameters is used 

where the covariance matrix Σj is restricted by a set of orthogonal vectors wd:  
                                          ∑ =
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where wd defines the orientations of the ellipsoid (which defines a surface of constant 
probability density), and w1 is set to uj. The two independent parameters, ρ1 and ρ 2

 

(=ρ3) govern the “capture range” in the surface normal direction and in the tangent 
plane, respectively. For the experiments described here, ρ 1 = 2ρ2. 

In Eq. (7) k is a scalar concentration parameter, which is varied depending on the 
noise level. k was set to a small value 0.1<k<0.5 in order to weaken the contribution 
from strong local match. The normalising constant C(k) was estimated by recursive 
integration to satisfy the requirements of a probability density function. θ is the angle 
between the model surface normal vector, computed at point j, and the image surface 
normal vector, computed at voxel i. 

2.4   Registration Scheme 

The aim of the registration algorithm is to find the optimal registration parameters 
which maximise the joint probability of the noise. Assuming that the noise values at 
different voxels are independent [8], we arrive at the following log likelihood objec-
tive function: 
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The expectation maximisation (EM) algorithm provides an efficient means of maxi-
mising a likelihood function [10]. An EM algorithm was implemented using Matlab 
(The Mathworks Inc.), which iteratively optimises the registration parameters in order 
to maximise Eq. (9).  

3   Experiments and Validation Results 

All patient data used in this study was obtained from patients recruited to clinical re-
search studies at University College London Hospital (UCLH), approved by the local  
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Table 1. Target registration errors (TREs) calculated for intra-prostatic landmarks 

Case No. 1 2 3 4 5 6 7 All 
Number of Landmarks 5 3 3 4 4 4 3 26 
TRE (mm) RMS 1.92 3.67 3.14 1.86 1.57 3.23 3.12 2.66 
 Mean  1.84 3.01 3.02 1.07 1.47 3.21 2.91 2.36 
 Std. 0.63 2.58 1.04 0.94 0.64 0.46 1.38 1.24 
 Max. 2.53 5.98 4.19 2.93 2.36 3.56 4.46 5.98 

 
research ethics committee. All patients gave written consent to participate. Data from 
7 patients with prostate cancer were used to validate the method described here. T2-
weighted MR image volumes of the prostate gland were acquired prior to template-
guided transperineal needle biopsy under general anaesthesia. Immediately before 
needle insertion, 3D TRUS images of the gland were acquired using a B-K ProFocus 
scanner (B-K Medical Ltd., Berkshire, UK). A set of parallel 2D transverse B-mode 
images were captured at 2mm intervals and stored on the scanner.  A mechanical 
stepping device (Tayman Medical Inc., MO, USA) was used to translate the US probe 
(B-K 8658T, 5-7.5MHz transducer) perpendicular to the axial plane along the rectum.  

Each US image was first resampled into a volume with an isotropic voxel dimen-
sion of 1mm. At each voxel, the Hessian was computed in the frequency domain us-
ing an implementation based on the fast Fourier transform. A quick and simple proce-
dure was used to initialise the pose of SMM with respect to the TRUS volume where 
two points at the apex and base of the gland were manually identified. Once regis-
tered, a dense displacement field (DDF) was computed across the volume of interest 
by interpolating the final instance of the SMM with a solid FE mesh using a shape 
function for tetrahedral elements. 

Corresponding anatomical landmarks, including cysts, calcifications, the urethra, 
the puboprostatic ligament, and the junction between the seminal vesicles, the vas 
deferens and the midline of the gland, were identified manually in both the MR and 
TRUS volumes. The 3D co-ordinates of landmarks defined in the MR image were 
then propagated into TRUS co-ordinates using the DDF. For each pair of identified 
and propagated landmarks, a target registration error (TRE) was calculated, defined as 
the distance between the manually defined and propagated landmarks in the TRUS 
space. The MR images were also warped using the DDF to allow a visual assessment 
of the registration.  

The landmark-based results are given in Table 1. The root-mean-square (RMS) 
TRE over all 7 cases (26 landmarks) was 2.66mm. Fig. 4 illustrates the warped MR 
images and target TRUS images computed from an example registration. 

 

Fig. 4. Example transverse image slices (1st and 3rd images) through a TRUS volume for Case 1 
shown with the corresponding warped MR images (2nd and 4th images) following deformable 
registration. The arrows indicate landmarks which were well aligned. 
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4   Discussion 

A model-to-image registration method is proposed in this study, which uses a com-
bined statistical-biomechanical model built from an MR image. Building the model 
requires manual segmentation of the MR image and is computationally intensive, but 
is performed preoperatively, so does not significantly impact the intraoperative work-
flow. A model to image registration can currently be performed within 2 minutes us-
ing a desktop PC with a 2.33GHz Intel® Core™ dual CPU processor and 3GB of 
RAM. The method achieved sufficiently high accuracy to be clinically useful for  
MR-targeted prostate biopsy and interventions. Although only the gland surface is 
registered in this scheme, the use of a deformable finite-element model enables the 
displacement of internal structures to be rapidly computed. 
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Abstract. We present an accurate and efficient technique to combine and 
rasterize multiple 3D ultrasound (3DUS) image volumes originally presented in 
spherical coordinates into a single, 3D Cartesian image that uniformly samples 
the total field of view. To ensure the consistency of merged image content in 
overlapping regions, image re-registration was performed by maximizing mu-
tual information (MI). The technique was applied to 22 3DUS image volumes 
obtained during five neurosurgical patient cases. The computational cost of the 
approach increases linearly with the number of images involved (average time 
to combine and rasterize one pair of 3DUS images was 1.5 sec). Interpolation 
was approximately 20% more accurate in overlapping regions when re-
registration was performed before rasterization and minimized feature loss 
and/or blurring that was evident without re-registration. In addition, we report 
the average translational (35.2 mm) and rotational (38.5o) capture ranges for the 
MI re-registration of two volumetric 3DUS images. The technique is applicable 
in any clinical application in which volumetric true 3DUS is acquired. 

1 Introduction 

Ultrasonography is an important imaging technique with a wide range of both diag-
nostic and intraoperative applications. Conventional 2D ultrasound (2DUS) is cur-
rently the most commonly used imaging scheme where multiple freehand sweeps are 
acquired to sample the region of interest. Recently, we have integrated volumetric 
true 3D ultrasound (3DUS) into image-guided neurosurgery, during which image  
volumes are generated from a dedicated ultrasound transducer without the need for 
freehand sweeps or 3D image reconstruction [1]. However, the 3DUS image space is 
represented in an unconventional spherical coordinate system, making it incompatible 
with most processing and visualization software that expects Cartesian coordinates. In 
addition, multiple acquisitions, as opposed to a single snapshot, are still often re-
corded (e.g., to increase the overall sampling of the region of interest). Therefore, a 
technique that combines multiple 3DUS image volumes into one Cartesian 3D dataset 
is needed to enable application of existing software as well as to improve the effi-
ciency of any subsequent image processing of the 3DUS acquisitions.  

This paper presents an accurate and efficient technique to combine arbitrarily-
oriented 3DUS volumes into a single Cartesian coordinate system. The consistency of 
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the combined image content in overlapping regions is ensured through re-registration 
with mutual information (MI), the importance of which is demonstrated by comparing 
rasterized images generated with and without the re-registration. We show that image 
features can become lost or significantly blurred without re-registration. In addition, 
the capture ranges of two true 3DUS image volumes registered with MI are quantita-
tively evaluated and found to be much larger than those of tracked 2DUS acquisitions.  

2 Material and Methods 

Five patients (3 male, 2 female; average age of 48) undergoing open cranial brain tu-
mor resections (three low grade gliomas, one high grade glioma and one meningioma) 
with deployment of volumetric 3DUS were included in the study. A set of volumetric 
3DUS images was acquired (3–9 image volumes for each patient and 22 in total; time 
interval between two consecutive volumes was approximately 10–15 sec) before dural 
opening using a dedicated transducer (X3-1 broad band matrix array) and ultrasound 
system (iU22, Philips Healthcare, N.A.; Bothell, WA). All image acquisitions were 
configured to cover the maximum angular ranges allowed [1]. The scan-depth was set 
to 140–160 mm to capture the parenchymal surface contralateral to the craniotomy. 

2.1   Geometric Transformation and Interpolation for Volumetric 3DUS  

Interpolation is essential for 3DUS image rasterization. We have recently developed 
an accurate and efficient trilinear interpolation scheme out of necessity because the 
vendor of the 3DUS scanner did not openly provide conversion functionality to trans-
form scans into Cartesian coordinates. The interpolation was achieved by first con-
verting physical points into an integer Cartesian grid space, similarly to that reported 
in [2]. Briefly, the dimensions of the 3DUS image matrix and the ranges in depth (r, 
in mm), and lateral (θ; in degrees) and medial angles (φ; in degrees) determine the 
step sizes in each direction (Fig. 1a). Therefore, the indices of the row, column and 
slice of a voxel in a typical 3DUS image determine its physical location. Conversely, 
for any given point in the physical space (Fig. 1b), its equivalent coordinates in grid 
space (i, j, k; not necessarily integers) can be uniquely determined (Fig. 1c; [1]).  

The intensity value at p or its equivalence, p′, can then be linearly interpolated us-
ing the standard finite element trilinear shape functions [3]. Specifically, the 8 
neighboring voxels formulate an 8-node hexahedral element in grid space, which is 
further transformed into natural coordinates (Fig. 1d). The trilinear shape functions 
for a normalized hexahedral element are expressed as: 

))()((8
1

aaaaN ζζηηξξ +++= , (1) 

where a indexes from 1 to 8, representing the eight neighboring nodes in the element, 
while ξ, η, and ζ are three normalized coordinates (subscript indicates value at node 
a). The intensity at p is, therefore, calculated as the weighted sum of the intensities at 
the neighboring voxels according to the following equation (Fig. 1d): 
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Fig. 1. (a) A typical 3DUS voxel (B) in physical space. (b–d) Sequential transformations of a 
typical point from physical space ( p ) to grid space ( 'p ), and subsequently to natural coordi-

nates ( ''p ) of a hexahedral element determined by the eight surrounding voxels. 
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where I(a) is the intensity value at the corresponding voxel. The accuracy of the tri-
linear interpolation algorithm has been verified with clinical 3DUS images, and is an 
improvement over both voxel nearest neighbor or distance weighting algorithms [1]. 

2.2   Combination of Multiple Images 

In order to combine multiple 3DUS images, a common coordinate system is required, 
which was accomplished through optical tracking (Northern Digital Inc., London ON, 
Canada) that continuously monitored two infra-red light emitting sources rigidly cou-
pled with the patient’s head (patient tracker) and the US scan-head (US tracker), re-
spectively. Image transformation is illustrated in Fig. 2a, in which US

trackerT was ob-

tained by scan-head calibration (accuracy of approximately 2 mm; [4]). An arbitrary 
3DUS image was transformed into a pre-selected 3DUS volume (chosen as the first 
3DUS image acquired for each patient) coordinate system by: 

US1TUS 2 = inv trackerTUS( )× inv patientTtracker

(1)( )× patientTtracker

(2) × trackerTUS , (3) 

The accuracy of the image transformation depended on the accuracies of the Polaris 
tracker (error <1 mm) as well as the US scan-head calibration (error of 2–3 mm; [4]). 
To improve the accuracy of image transformation, an inter-image re-registration was 
performed to maximize image alignment (see 2.3 for details) before rasterization. 

After all 3DUS images were transformed into a common coordinate system (the 
relative size of the overlapping region between two image volumes with the same 
scan-depth was 79.9% on average (ranged from 56.7% to 94.0%)), a 3D bounding 
box was established with its major axes parallel to those of the first 3DUS image ac-
quisition (Fig. 2b). A set of regularly spaced voxels was generated to fill the bounding 
box. The spacing between voxels determined the voxel size, and was chosen to be 1.0 
mm along all three directions. The image intensities of these voxels were determined 
through interpolation (see section 2.1 for details). In addition, an extra band of 5 zero 
intensity pixels was padded along the boundaries of the bounding box to ensure com-
plete sampling of the combined imaging volume.  
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Fig. 2. (a) Illustration of image coordinates involved in transforming 3DUS images. (b) Illustra-
tion of image combination and rasterization. Image intensity values of voxels enclosed by mul-
tiple 3DUS images (n≥1) were obtained by averaging. 

Apparently, each Cartesian voxel may be physically enclosed by any number of 
the 3DUS acquisitions (n = 0, or ≥1; Fig. 2b). When n=0 (i.e., the voxel was not en-
closed by any 3DUS image), a zero-intensity was assigned. Otherwise (i.e., n≥1), an 
averaging scheme was used to prescribe a unique intensity value by interpolating 
across all of the 3DUS images in which the voxel was enclosed. 

2.3   Inter-image Re-registration through Maximization of MI 

Inter-image re-registration through MI (Insight Segmentation and Registration Tool-
kit; ITK version 3.8 [5]) was used to correct errors in the transformations (i.e., Eqn. 3) 
required to place all 3DUS volumes into a common coordinate system. The first 
3DUS acquisition was chosen as the fixed image while all of the rest of the volumes 
were treated as moving images. In total, (N–1) re-registrations were performed, where 
N is the number of 3DUS acquisitions for a particular patient. 

Gaussian smoothing (kernel of 5×5) of both the fixed and moving images as well 
as thresholding of the moving images were performed to improve the robustness of 
the registration. The initial transformation obtained from the tracking system (Eqn. 3) 
served as the starting point for re-registration with Mattes version of MI [5] as the im-
age similarity measure. Multithreading was enabled and a steepest gradient descent 
optimization was employed to maximize the MI. Convergence was reached when ei-
ther the net change in MI was less than 10–3 or the number of iterations reached a pre-
set maximum value of 200 [5]. With image re-registration, the adjusted version of 
Eqn. 3, which transformed an arbitrary 3DUS volume into the coordinate system of 
the first 3DUS acquisition can be written as: 

US1TUS 2

adjust = Tadjust × inv trackerTUS( )× inv patientTtracker

(1)( )× patientTtracker

(2) × trackerTUS , (4) 

2.4   Capture Range 

To quantify the capture range of registration between two volumetric 3DUS acquisi-
tions, the first two 3DUS volumes recorded in each patient case were selected, raster-
ized, and then registered. The converged locations of all non-zero intensity voxels in 
the thresholded moving image (defined as the “true” locations) were subsequently  
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obtained. The centroid of these voxels was defined as the origin of a local coordinate 
system (Olocal). The moving image was then transformed away from the “true” loca-
tions over a specified range (0–60 mm in translation and 0–60o in rotation about Olocal, 
respectively). For each patient, a total of 400 translational and 400 rotational perturba-
tions were generated, in which the magnitudes of the translational and rotational per-
turbations linearly increased over the specified range. In addition, the directionality of 
the translation as well as that of the rotational axis passing through Olocal was ran-
domly selected from a uniform distribution. The distances from the locations of con-
verged voxels with respect to their corresponding “true” positions were calculated, 
and the average (distance) error was determined. Successful registration was defined 
to occur when the average distance error was less than 2 mm. Successful registrations 
were counted and the capture range was defined as the largest misalignment at or be-
low which the registration success rate was at least 95% across all of the patient cases.  

2.5   Data Analysis 

To demonstrate the importance of inter-image re-registration, representative images 
were qualitatively compared with those obtained when no image re-registration was 
otherwise performed. We also demonstrated the differences by transforming the sec-
ond 3DUS volume into the coordinates of the first with and without re-registration to 
interpolate intensities at locations defined by the transformed voxels in the second 
image based on their corresponding intensities in the first. Absolute differences in im-
age intensities between the interpolated and the “ground-truth” second images indi-
cate the influence of image re-registration on the interpolation accuracy. Scatter plots 
of the average distance error relative to the initial translational and rotational mis-
alignments as well as success rate curves were generated. 

Image rasterization was implemented in C with multithreading enabled by 
OpenMP [6], and was compiled in Matlab (Matlab R2008b; The Mathworks, Natick, 
MA). Image rasterization and registration were executed on an 8-CPU Intel Xeon 
computer running Ubuntu Linux 6.10 (2.33GHz, 8G RAM). All data analyses were 
performed in Matlab. We report (i) the typical computational cost of registering one 
pair of 3DUS volumes and combining and rasterizing multiple 3DUS acquisitions, (ii) 
the interpolation accuracy in overlapping regions with and without image re-
registration, and (iii) the capture ranges of the intra-modality image registration. 

3   Results 

Seventeen (17) image re-registrations were performed and they all converged within 
100 iterations (typically 30–70 iterations). The average computational cost for each 
re-registration was 31 sec. In addition, the amount of transformation (translation and 
rotation) required to align the moving images with respect to the fixed image was 
2.0±0.5 mm (range of 1.3–3.5 mm). Image transformations were adjusted by Eqn. 4. 

Subsequently, image rasterization was performed to uniformly sample the com-
bined image volume. Clearly, the computational cost of image combination and 
rasterization depended linearly on the number of 3DUS volumes involved. The aver-
age cost to combine and rasterize each 3DUS acquisition was 1.5 sec. Representative  
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Fig. 3. Combined and rasterized 3DUS images (a) with and (b) without inter-image re-
registration for a representative patient. The combined image is significantly sharper when re-
registration was applied before rasterization (see arrows and enlarged view of image inset). 

2D cross-sectional images passing through the center of the acquisition volume are 
shown for a representative patient (Fig. 3a). For comparison, the 3DUS images were 
also combined and rasterized without applying the re-registrations, and the corre-
sponding results are also shown (Fig. 3b). Apparently, the combined 3DUS image 
was sharper (and less fuzzy in appearance) when image re-registration was applied. 
This is not surprising because tissues in the overlapping regions generally presented 
the same image intensities (given that the angular changes of the transducer were usu-
ally small due to the confinements of the craniotomy). Therefore, image blurring 
would certainly occur when misalignment was present, demonstrating the importance 
of image re-registration to minimize any misalignment before rasterization.  

The significance of re-registration between 3DUS volumes was apparent when 
overlaying two image acquisitions in the same space, where clearly misalignment of 
features between image acquisitions was significantly minimized with the application 
of registration (Fig. 4). The significance was further demonstrated by transforming the 
second 3DUS image into the coordinates of the first and comparing the absolute dif-
ferences in image intensities between the interpolated and the “ground-truth” second 
image. With re-registration, the absolute difference was 9.5±2.8 for five patient cases, 
whereas it was 11.7±4.1 otherwise (all images were 8-bit grayscale). 

Scatter plots of the average distance error relative to the initial translational and ro-
tational misalignments when perturbed away from the “true” locations are shown in 
Fig. 5ab. With the results pooled across patients, the registration success rate was 
plotted against the initial misalignments (Fig. 5cd). The intersection of the success 
rate curve with the horizontal dashed line at 95% indicates that the overall transla-
tional and rotational capture range was 35.2 mm and 32.8o, respectively. As a com-
parison, when the threshold for average distance error of 4 mm was used (instead of 2 
mm) to define a successful registration, the translational and rotational capture ranges 
differed by less than 2 mm and 1o, respectively. When a success rate of 90% was con-
sidered sufficient, the capture ranges were improved to 39.2 mm and 38.9o.  
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Fig. 4. Significance of registration is apparent when comparing representative overlays of two 
3D volumes in the same space generated (a) with or (b) without registration. Arrows in (b) in-
dicate areas of significant misalignment (approx. 3.5 mm) corrected by MI re-registration. 

  

  

Fig. 5. Scatter plots of average distance error vs. initial (a) translational and (b) rotational mis-
alignment, along with the corresponding (c) translational and (d) rotational success rate curves 

4   Discussion and Conclusion 

We have presented an accurate and efficient image combination and rasterization 
technique for generating a single Cartesian 3D image volume from multiple 3DUS 
image acquisitions that has been used in five neurosurgical patient cases. The compu-
tational cost of the approach increased linearly with the number of images involved 
with an average of 1.5 sec for combining and rasterizing each 3DUS acquisition. Re-
registering 3DUS images before rasterization significantly increased the consistency 
of image content in overlapping regions. The average magnitude of transformation 
required to re-align the 3DUS volumes was 2.0 mm. The importance of re-registration 
in producing sharper images in overlapping regions was demonstrated by visually 
comparing the results generated without re-registration. The enlarged views in Fig. 3 
clearly indicate that features becomes lost or significantly blurred without the  
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MI re-registration. By comparing the absolute differences between the interpolated 
and “ground-truth” image intensities, the interpolation was found to be approximately 
20% more accurate in overlapping regions when image re-registration was performed. 
The residual interpolation error (9.5±2.8) was likely due to inherent noise in the 
3DUS acquisitions (e.g., caused by varying acoustic coupling to brain parenchyma).  

The capture ranges of intra-modality registration between two volumetric 3DUS 
acquisitions (35.2 mm and 35.8o) are similar to those in reports of reconstructed 
3DUS images in the literature (25.5 mm [7] and 40o [8]) and much larger than those 
we have obtained when re-registering tracked 2DUS. Given the large capture ranges, 
it may be possible to register two 3DUS images without the need for optical tracking 
if sufficient overlap is present, which may further simplify the technique. 

Although the approach presented in this study was demonstrated with neurosurgi-
cal cases, it is also applicable in other imaging contexts (e.g., imaging the abdomen, 
pelvis, etc.) in which volumetric true 3DUS is deployed. As long as the images are 
tracked or they have sufficient overlap to allow accurate inter-image transformation, 
multiple volumes can be combined and rasterized into a single 3D Cartesian coordi-
nate system. Because only one image volume (instead of multiple volumes) is pro-
duced, the efficiency of subsequent image processing can be significantly improved.  
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Abstract. Registration of intraoperative ultrasound (US) with preop-
erative computed tomography (CT) data for interventional guidance is
a subject of immense interest, particularly for percutaneous spinal injec-
tions. We propose a biomechanically constrained group-wise registration
of US to CT images of the lumbar spine. Each vertebra in CT is treated
as a sub-volume and transformed individually. The sub-volumes are then
reconstructed into a single volume. The algorithm simulates an US image
from the CT data at each iteration of the registration. This simulated
US image is used to calculate an intensity based similarity metric with
the real US image. A biomechanical model is used to constrain the dis-
placement of the vertebrae relative to one another. Covariance Matrix
Adaption - Evolution Strategy (CMA-ES) is utilized as the optimization
strategy. Validation is performed on CT and US images from a phantom
designed to preserve realistic curvatures of the spine. The technique is
able to register initial misalignments of up to 20mm with a success rate
of 82%, and those of up to 10mm with a success rate of 98.6%.

1 Introduction

Spinal injections for back-pain management are carried out on a frequent basis
in hospitals and radiological clinics. Currently, these procedures are performed
under fluoroscopy or CT guidance in specialized interventional radiology facili-
ties, and thus incur a major financial burden on the healthcare system. Another
drawback with the current practice is patient and surgeon exposure to X-ray
radiation. The goal of this research is to design a spine intervention system that
uses US for guidance. This would greatly reduce the exposure of both the patient
and the physician to ionizing radiation and allow the procedure to be performed
outside of a specialized facility. The use of only US for guidance has its own
difficulties. In particular, due to the significant level of occlusion in spinal US
images, it can be difficult to accurately identify the appropriate injection site.
For this reason, in this paper, we consider the fusion of intraoperative US with
preoperative CT as a means of guidance for spinal injections (Figure 1).
� This work has been partially funded by NSERC and CIHR. Special thanks to A.
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Fig. 1. Axial slice from a CT volume of the spine phantom (left), corresponding US
slice (center) and an overlay of the CT bone contours with the corresponding US slice
(right)

Point- and surface-based registration of US to CT data often require manual
intervention and segmentation of US data, which is time consuming and suscepti-
ble to errors. To avoid these problems, we chose to focus on automated intensity-
based registration methods. Among previously proposed intensity based methods
for registration of US to CT data, Winter et al. [1] propose to define the bone
surface in CT that is visible in an US image, with the similarity calculated as the
US pixel intensities overlapping the surface. This requires a priori knowledge of
the direction and orientation of the US probe. Penney et al. [2] present a method
where voxel values in the US and CT data are converted to the probability of
representing a bone edge. In order to have clinically relevant probabilities, a
large set of prior CT and US images would have to be manually segmented.

In Wein et al. [3,4], density information from CT data is used to iteratively
simulate an US image throughout the registration process, thereby optimizing
the simulation as the registration proceeds. This has the benefit of not requiring
any previous knowledge of the orientation of the US probe. Although the simu-
lation is a simplified take on the physics of ultrasound beam propagation, it is
sufficient for registration purposes. This algorithm is extended in Shams et al.
[5] to create a more realistic simulation for training physicians and technicians in
the use of US imaging. The technique requires preprocessing to create a scatter
volume of the CT data using the Field II simulator, which remains time consum-
ing. In Reichl et al. [6] and Kutter et al. [7] the US simulation and registration
is implemented in GPU, resulting in a dramatically decreased algorithmic run
time. Gill et al. [8] propose an extension of the work from Wein et al. [3,4], a
groupwise US to CT registration of vertebrae L3 to L5. The algorithm allows
free motion of the vertebrae and registers all three simultaneously. The drawback
of this approach is that free motion of vertebrae during registration can lead to
biologically unrealistic alignments.

Here we propose an algorithm that extends the groupwise registration pre-
sented in Gill et al. [8]. The algorithm allows independent motion of the verte-
brae, but constrains their motion based on a well known biomechanical model.
The registration is tested on a phantom printed using a surface model of a
patient’s spine which preserves a clinically realistic curvature of the spine. We
present the results of the registration with various weights for the fusion of the
biomechanical model with the intensity-based similarity metric.
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2 US to CT Registration

The registration workflow can be seen in Figure 2. The CT volume is ini-
tially cut into sub-volumes, each containing a single vertebra. Voxels in the
sub-volumes corresponding to bone from an external vertebra are masked. The
registration treats each vertebra independently, allowing for six degrees of free-
dom. All vertebrae are registered simultaneously, resulting in an optimization
with n×6 parameters, where n is the number of vertebrae being registered. Af-
ter the transformations are applied, the sub-volumes are reconstructed into a
single volume. For any overlapping voxels the maximum intensity is selected for
the reconstructed volume, thus preserving bone structure. Any gaps not in the
final volume are filled with a default value approximating the intensity of soft
tissue in CT. The US simulation is applied to this reconstructed volume. CMA-
ES is used as the optimization strategy, as Gill et al. [8] found it to be robust
for US to CT simulation and registration.

Fig. 2. Workflow of the biomechanically constrained groupwise US to CT registration

There are three distinct steps in the simulation of US from CT: The Simulation
of the US reflection from CT, the mapping of the CT values to those found in
US, and calculations of the weights for these to images and a bias. The weights
are chosen so that the simulation best represents the real US image.

The simulated ultrasound reflections model the ultrasound beam passing
through the tissue as a ray. The assumption is made that the CT intensities
(in Hounsfield units) can be related to the acoustic impedance values used to
calculate ultrasound transmission and reflection. The simulated beam passes
through each column of the volume. The transmission and reflection of the beam
is calculated at each voxel based of the following equations,

Δr(x, y, d) = (dT∇μ(x, y))
|∇μ(x, y)|
(2μ(x, y))

, (1)

Δt(x, y) = (1 −
(
|∇μ(x, y)|
(2μ(x, y))

)2

, (2)

r(x, y) = I(x, y − 1)Δr(x, y, d), (3)
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I(x, y) =

{
I(x, y − 1)Δt(x, y), |∇μ(x, y)| < τ

0, |∇μ(x, y)| ≥ τ
, (4)

where d is the direction of the US beam, μ is the intensity of the CT image,
ΔR is reflection coefficient, r is the simulated reflection intensity, Δt is the
transmission coefficient, τ is the threshold for full reflection and I is the intensity
of our simulated US beam. Any gradient value greater than a set threshold (450
h.u. in our simulations) causes full reflection of the US beam intensity at that
point, setting the incoming US beam intensity for all subsequent points on the
scan line to zero. A log-compression is applied to the simulated reflection image
to amplify small reflections,

r(x, y) =
log(1 + ar(x, y))

log(1 + a)
. (5)

The CT intensities are mapped to values closer to those corresponding to the
tissues in the US data using an approximation of the curve presented in Wein
et al. [3,4],

p(x, y) = 1.36μ(x, y)− 1429. (6)

The final step of the US simulation is the weighting of the simulated US reflec-
tion, the mapped CT and a bias term. A least-squares optimization is used to
calculate the weights, such that the values in the simulation best match the cor-
responding intensities in the real US volume. The final simulation is calculated
as,

f(x, y) =

{
αp(x, y) + βr(x, y) + γ, I(x, y) > 0
0, I(x, y) = 0

, (7)

where f is the simulated US image and α, β, γ are the weights for their respective
images. We do not include any voxels that are occluded in the simulation as
part of the weight calculation. All occluded voxels in the US simulation are set
to zero. Occluded voxels are identified as any voxel where the intensity of the
incoming simulated US beam is zero. Similarity between the actual US image
and simulated US image is calculated using the Linear Correlation of Linear
Combination (LC2) metric presented by Wein et al. [3,4],

LC2 =
∑

(U(x, y)− f(x, y))2

N × V ar(U)
, (8)

where N is the number of overlapping voxels between the US and CT images,
and U is the actual ultrasound image intensity. All voxels, including occluded
voxels, are used in the calculation of the similarity metric.

3 Biomechanical Model

Allowing free motion of vertebrae during registration is not ideal as it does not
distinguish between anatomically realistic orientations of vertebrae and orienta-
tions where the vertebrae are colliding, unreasonably oriented or far apart. We
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propose the use of a biomechanical model of the spine to constrain the regis-
tration and to favour anatomically acceptable alignments. The biomechanical
model we use models the relation between the displacement of the intervertebral
structures and the reaction forces and moments[9] :

K =

⎡⎢⎢⎢⎢⎢⎣
100 0 50 0 −1640 0
0 110 0 150 0 580
50 0 780 0 −760 0
0 150 0 1.48E5 0 −8040

−1640 0 −760 0 1.52E5 0
0 580 0 −8040 0 1.53E5

⎤⎥⎥⎥⎥⎥⎦
[
Nmm rad−1

]
, (9)

where K is the stiffness matrix representing the intervertebral structures. This
stiffness matrix is multiplied with a vector x representing the change in transla-
tion and rotation of the intervertebral link. For our case, x is calculated as the
relative transform between two consecutive vertebrae. Each vertebra is expected
to have no change in rotational orientation and no translation along the x and
y axes. The expected translation along the coronal axis is defined as the mean
distance between the centers of consecutive vertebrae in the patient’s CT data.
Note that this is meant as an approximation of the vertebral resting position.

The energy of the system based on the relative transformations between the
vertebrae is calculated using the general spring equation,

U =
1
2
(xTKx). (10)

The energy is calculated across all vertebrae and normalized based on the energy
of a maximum misalignment (15 mm translation along each axis and 15 rotation
about each axis),

E =
(UL2,L3 + UL3,L4)

2× Umax
, (11)

where E is the normalized energy of the system, UL2,L3 and UL3,L4 represent
the energy of the model calculated from the relative transforms between L2-L3
and L3-L4, respectively, and Umax is the energy of the maximum misalignment.

This normalized energy is then combinedwith theLC2 metric to give theBiome-
chanically Constrained Linear Correlation of Linear Combination (BCLC2),

BCLC2 = LC2 − σE, (12)

where σ is a user defined weight used to blend the biomechanical model measure
with the LC2 intensity based measure.

4 Results

Registration accuracy was validated on a patient-mimicking phantom of the
lumbar spine. Vertebrae L1 to L5 were segmented from patient CT data using
ITK-SNAP. The segmented data was converted to a surface model and the spine
was printed using a Cimetrix 3D shape printer (Cimetrix Solutions, Oshawa, ON,
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Canada). In this model, the natural curvature of the spine is preserved between
the patient CT and the printed phantom. The phantom was filled with an agar-
gelatine recipe [10], designed to simulate the appearance of soft tissue in US.
A high-resolution CT volume (0.46 mm x 0.46 mm x 0.625 mm) and an US
volume were acquired. The US volume was reconstructed from a freehand sweep
using an L14-5/38 linear-array transducer (Ultrasonix, Richmond, BC, Canada)
operating at 6.6 MHz with a depth of 5.5 cm. The probe was tracked using an
Optotrack Certus System (Northern Digital Inc., Waterloo, ON, Canada) and
calibrated using an N-wire US phantom[11]. Registration was performed on a
Dell Precision 690, 2×2.33 GHz Intel Xeon Quad-core CPU and 16GB of RAM.

The phantom CT and US data were aligned to the gold standard, determined
by fiducial markers placed on the exterior of the phantom box. The registration
was performed on vertebrae L2-L4 and the US volume was cropped to corre-
spond, as seen in Figure 3. The middle vertebrae were chosen for registration as
they contained overlap from other vertebrae at the facet joints.

Fig. 3. Surface model of L1 to L5 (top left); US slice of L2 to L4 (top right). Overlaid
US with surface model (bottom left) and corresponding extracted slice (bottom right).

One hundred registrations of the CT and US data were performed on the
phantom with initial misalignment ranging from 0-20mm Target Registration
Error (TRE). The CT volume was misaligned by a random transform chosen
from a uniform distribution of 10 mm translation along each axis and 10 rotation
about each axis. Each vertebra was further misaligned by individually applying
a random transform using a uniform distribution of 5 mm translation along
each axis and 5 rotation about each axis. We chose this distribution to ensure
that the registration capture range is greater than that of a clinical setting. The
registrations were repeated for σ values of 0, 0.5, 1 and 2.

Registration accuracy was determined by its ability to recover to the gold
standard alignment, and is reported as the mean TRE calculated from the mis-
alignment of the eight corners of the volume bounding box. Registration results
are presented in Table 1 and an example of the initial misalignment and the
final registration is displayed in Figure 4. TRE is calculated for each vertebra
and the overall error is calculated as the mean error across the entire volume. A
registration is considered failed if the final TRE is greater than 3mm.
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Table 1. Final TRE for vertebrae L2-L4 and the mean error of the volume are pre-
sented for all successful registrations. Success rate (SR) is defined as the percentage
of registrations where the overall final TRE is less than 3mm. SR is presented for all
registration and for registrations with initial TRE of less than 10mm.

σ L2 L3 L4 Overall SR (%) SR:
(mm/std) (mm/std) (mm/std) (mm/std) ITRE < 10mm (%)

0.0 1.49/0.57 1.83/1.02 1.93/0.85 1.75/0.46 61.0 77.8
0.5 1.82/0.36 1.62/0.54 2.47/0.60 1.97/0.30 82.0 98.6
1.0 2.19/0.34 1.79/0.46 3.04/0.44 2.34/0.21 80.0 94.4
2.0 2.46/0.21 1.58/0.28 4.12/0.38 2.71/0.13 72.0 84.8

Fig. 4. Transverse (Left), Coronal (Center) and Sagittal (Right) slices of the original
US volume overlaid with the bone contours in the misaligned CT volumes and in the
registered CT volumes. The transverse slice is taken from the center vertebra L2 (Top).

5 Discussion and Conclusion

In this work we presented an US to CT registration technique for the lumbar
spine that successfully registered 98.6% of volumes with initial misalignments of
up to 10mm. The registration algorithm applied iterative US simulation from
CT images while allowing independent motion of each vertebra. A biomechanical
model was introduced to represent the intervertebral link and the system energy
was calculated based on the relative transforms between the vertebrae. Integra-
tion of a biomechanical model to constrain the registration greatly improved the
consistency of the algorithm. When the biomechanical model was combined with
the LC2 metric with a σ weight of 0.5, the algorithm produced the best results:
an overall accuracy of 1.97 mm, a failure rate across all registrations of 18% and
a failure rate, for registration with initial misalignment less than 10 mm, of 1.4%.
The registration technique was tested on patient mimicking phantom that were
faithful in representing a realistic curvature of the spine (L1-L5). One hundred
tests were performed where each vertebrae was misaligned between 0 mm and
20 mm. The tests were repeated for various weights for integrating the biome-
chanical model. Using a σ value of 0.5, 82% of all registrations were successful,
while 98.6% of tests with initial misalignment of less than 10mm were success-
fully registered. Increasing the weight of the biomechanical model, to σ equal to
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1 or higher, increased the failure rate of the registration. Similarly we observe
that while the inclusion of a biomechanical model improves the success rate of a
registration, it can also decrease the accuracy of those successful registrations.
This can be explained by the fact that the model used is an approximation and
not specific to the given patient. The TRE values presented are calculated based
on the misalignment of the bounding box corners for each sub-volume. We be-
lieve this is a worst case estimate of the error and the error found at the facet
joints (approximately centre of the box) will be lower.

The mean run time of our registrations was 57.4min. To reduce this to a more
clinically acceptable run time, we have begun the implementation of this algo-
rithm in GPU. Our preliminary implementation, running in CUDA 1.1 on an
Nvidia GTX285 graphics processor, reduced the registration runtime to 537s, a
6.4x improvement. In our future work we plan to optimize the GPU implemen-
tation and extend the registration to the full lumbar spine, L1-L5. In addition,
we also plan to test the registration on real patient data.
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Abstract. This paper presents a general PDE-framework for registra-
tion of contrast enhanced images. The approach directly applies the idea
of separating the contrast enhancement term from the images in the
regularization terms. In our formulation, we stay consistent with ex-
isting non-parametric image registration techniques, however, we carry
an additional contrast enhancement term throughout. A mathematically
rigorous approach is pursued which can exploit various forms of regu-
larization. In this paper, our experiments are built based on diffusion
regularization for both contrast enhancement and the deformation field.

1 Introduction

This paper provides a general mathematical framework to complement a series
of algorithms [1,2,3,4] that support registration of contrast enhanced images.

Following Horn-Schunck’s seminal work [5] on estimating the motion using
optical flow equations, a number of approaches were proposed in the literature
[6,3,4] which allowed varying illumination among the two images being regis-
tered. The approaches developed in [3,4] were very similar to Horn-Schunck’s, ex-
cept that they separated the illumination change as a linear intensity shift term.
More recently, a similar idea has been applied to the registration of contrast-
enhanced medical images [2,1]. The common intuition behind all these methods
is separating and regularizing the contrast enhancement term from the images
in the regularization expression coupled with the motion. Numerically, these ap-
proaches propose constructing a very large system of equations directly based
on the slightly modified optical flow equations. Iterative solvers (e.g., conjugate
gradient method) are used to minimize the objective functional and estimate the
deformation vectors. All of these methods used the diffusion penalty [7] func-
tion for the deformation field in practice and application of other regularization
expressions is not readily available. In this paper, we present a general PDE-
framework for registration of contrast enhanced images. A goal of our work is to
explain, complete, and extend the described set of methods.

To proceed, we need to rigorously introduce the required background material
which will be employed in our formulation. For consistency, we adapt our nota-
tions from [7]. In Section 2, we will introduce the mathematical formulation and
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problem set-up. In Section 3, we derive a PDE with a steady-state solution that
corresponds to the solution of the described problem. The discretization and
derivation of a numerical scheme for the PDE is followed in Section 4. Finally,
we will present various computational experiments and concluding remarks in
Sections 5 and 6.

2 Mathematical Formulation

Consider the registration problem of a template image T to a reference image
R, where T is a realization of R deformed via a vector field u and the contrast
of a portion of this realization is changed via an extra additive term (image) w.

In this paper, the d-dimensional reference and template images are represented
by mappings R, T : Ω ⊂ R

d → R of compact support. The goal is to find a
displacement vector field u = (u1, . . . , ud) and a compactly supported contrast
enhancement image w : Ω ⊂ Rd → R such that Tu −w is similar to R, in which
Tu = T (x − u(x)) is the deformed image and Tu − w = T (x − u(x)) − w(x)
is the corrected-contrast deformed image. We formulate the registration of a
contrasted-enhanced deformed image T to a reference image R as following.

Problem 1. Given two images R and T , find a deformation u and a contrast
enhancement image w, that minimizes

J [u,w] := D[R, T ;u,w] +H[u,w]

in which D measures the similarity of Tu − w and R, and H is a regularization
expression on [u,w]. Here, assuming positive regularizing parameters α, β ∈ R+

we express
H[u,w] := αP [u] + βQ[w]. (1)

Also, we use the sum of squares of intensity differences for the similarity measure

D[R, T ;u,w] :=
1
2
||Tu − w −R||2L2(Ω) . (2)

Hence, the objective is to minimize

J [u,w] :=
1
2
||Tu −R− w||2L2(Ω) + αP [u] + βQ[w].

We shall present a mathematical formulation to solve Problem 1. Briefly speak-
ing, we seek necessary conditions for optimality of [u,w] by finding the Gâteaux
derivatives of the components of J with respect to [u,w]. This shall provide us
with the corresponding Euler-Lagrange equations that will be used to form a
PDE which will be solved numerically.

Theorem 1. Let d ∈ N, and R, T , and w are d-dimensional real-valued images,
i.e., functions from Rd → R, T ∈ C2(Rd), u : Rd → Rd, v : Rd → Rd+1,
Ω :=]0, n[d. The Gâteaux derivative of D[R, T ;u,w] is given by

dD[R, T ;u,w; v] = −
∫

Ω

〈Φ(x, u(x), w(x)), v(x)〉Rd+1 dx,

in which Φ : R
d × R

d × R → R
d+1,



A General PDE-Framework for Registration of Contrast Enhanced Images 813

Φ(x, u(x), w(x)) = [Tu(x)−R(x)− w(x)]
(
∇Tu(x), 1

)
.

[see the proof in Appendix 1., Cf. [7] pp. 80.]

Here, we focus on the special case where P ,Q are diffusion regularization ex-
pressions [7,8,9,5,4,3,10,11].

Theorem 2. Assume P and Q are diffusion regularization expressions and the
functionals Pe and Qe are respectively extensions of P and Q, i.e.,

Pe[(u,w)] := P [u] :=
1
2

d∑
j=1

∫
Ω

〈∇uj ,∇uj〉 dx, (3)

Qe[(u,w)] := Q[w] :=
1
2

∫
Ω

〈∇w,∇w〉 dx. (4)

Also, assume that Neumann boundary conditions are imposed, i.e.,

〈∇w(x),−→n (x)〉Rd = 〈∇uj(x),−→n (x)〉Rd = 0 for x ∈ ∂Ω and j = 1, . . . , d,

in which −→n denotes the outer normal unit vector of ∂Ω (boundary of Ω). The
Gâteaux derivative of Pe[(u,w); v] and Qe[(u,w); v] are respectively

dPe[(u,w); v] = −
∫

Ω

〈A[u](x), v(x)〉Rd+1 dx,

dQe[(u,w); v] = −
∫

Ω

〈B[w](x), v(x)〉Rd+1 dx

where, A[u](x) = (Δu1(x), . . . , Δud(x), 0) = (Δu(x), 0),

B[w](x) = (0, . . . , 0︸ ︷︷ ︸
d times

, Δw(x)) = (0Rd , Δw(x)).

Proof. The result yields applying the Green’s formula similar to [7] pp. 138.

Theorem 3. The Euler-Lagrange equations corresponding to J = D+αP+βQ,
where D is defined by Equation (2) and P, Q are defined by Equations (3,4)
respectively are

Φ(x, u(x), w(x)) + αA[u](x) + βB[w](x) = 0, x ∈ Ω, (5)

with Neumann boundary conditions. These can also be written as

[Tu(x) −R(x)− w(x)]∇Tu(x) + αΔu(x) = 0Rd x ∈ Ω,

[Tu(x)−R(x) − w(x)] + βΔw(x) = 0 x ∈ Ω,

〈∇w(x),−→n (x)〉Rd = 〈∇ul(x),−→n (x)〉Rd = 0, l = 1, . . . , d, x ∈ ∂Ω.

Proof. The result yields using substitution (Cf. [7] pp. 138.) .
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3 A Corresponding PDE

There exist various ways to solve Equation (5). A possibility that we pursue here
is to formulate the solution as the steady-state solution of a corresponding PDE
similar to [7]. We propose

∂t(u(x, t), s w(x, t)) = Φ(x, u(x, t), w(x, t))+αA[u](x)+βB[w](x) x ∈ Ω, t ≥ 0,

where s is a scale factor. Assuming Φ = (f, g) the PDE can be written as

∂tu(x, t) = f(x, u(x, t), w(x, t)) + αΔu(x, t), x ∈ Ω, t ≥ 0, (6)

s ∂tw(x, t) = g(x, u(x, t), w(x, t)) + βΔw(x, t), x ∈ Ω, t ≥ 0, (7)

f(x, u, w) := [Tu(x)−R(x) − w(x)]∇Tu(x),

g(x, u, w) := [Tu(x) −R(x)− w(x)].

4 Discretization and Numerical Scheme

To numerically solve the derived PDE in Equations (6,7), we evaluate expressions
at discrete time variable {tk+1}

∂tu(x, tk+1) = f(x, u(x, tk), w(x, tk)) + αΔu(x, tk+1), x ∈ Ω, (8)

s ∂tw(x, tk+1) = g(x, u(x, tk+1), w(x, tk+1)) + βΔw(x, tk+1), x ∈ Ω. (9)

Notice that due to the nonlinearity of f with respect to u, f is evaluated at tk
instead of tk+1 in Equation (8) [cf. [7] pp. 80] which translates to applying a fixed-
point iteration scheme. However, g is linear with respect to w and tk+1 is used
consistently in Equation (9). Using a spatial discretization X of Ω that includes
nd voxels (pixels) corresponding to a unit space step in every dimension due to
the definition of Ω :=]0, n[d, and a time step of τ1, we define for j = 1, . . . , d,
and k ∈ Z∗ (the set of non-negative integers)

Uk
j (X) := uj(X, τ1k) := Discretized(uj(x, tk)),

W k(X) := w(X, τ1k) := Discretized(w(x, tk)).

Furthermore, AUk
j := Δuj(X, τ1k) := Discretized(Δuj(x, tk)),

AW k := Δw(X, τ1k) := Discretized(Δw(x, tk)),

in which A ∈ R
nd×nd

is defined such that
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AUk
j ≈

d∑
l=1

∂xl,xl
uj(X, τ1k) and AW k ≈

d∑
l=1

∂xl,xl
w(X, τ1k).

[See Appendix 2 for the precise definition of A.]
Substituting the discretization in the PDEs of Equations (8,9) leads that for

j = 1, . . . , d, k ∈ Z
∗

Uk+1
j − Uk

j

τ1
=
(
T (X−Uk(X))−R(X)−W k(X)

)
∂j T (X−Uk(X))+αAUk+1

j ,

s
W k+1 −W k

τ1
=
(
T (X − Uk+1(X))−R(X)−W k+1(X)

)
+ βAW k+1.

Defining τ2 := τ1/s gives(
I−τ1αA

)
Uk+1

j = Uk
j +τ1

(
T (X−Uk(X))−R(X)−W k(X)

)
∂j T (X−Uk(X)),

(
(1 + τ2)I − τ2βA

)
W k+1 = W k + τ2

(
T (X − Uk+1(X))−R(X)

)
,

where I ∈ R
nd×nd

is the identity matrix. This yields

Uk+1
j = (I − τ1αA)−1[Uk

j +τ1(T (X−Uk(X))−R(X)−W k(X))∂j T (X−Uk(X))]

W k+1 = ((1+τ2)I−τ2βA)−1[W k +τ2(T (X−Uk+1(X))−R(X))].
(10)

Finally, we use the initialization vectors W 0 = U0
j = 0

Rnd , j = 1, . . . , d.

5 Computational Experiments

To better understand the introduced scheme, we start from two 2-dimensional 8-
bit, 256× 256 images shown in Fig. 1(a1-a2) i.e., d = 2, n = 256. The intensities
of images have also been mapped to [0,1]. The reference image is generated by
deforming the template using a finite element model (FEM), where the magni-
tude of the deformation is shown in Fig. 1b(1), followed by subtracting a contrast
enhancement term shown in Fig. 1b(3) from the deformed template image. The
contrast enhancement term is generated as a combination of physiological en-
hancement term taken from a patient study and an artificial gradient term.

We apply the scheme derived in Equation (10) to evaluate the deformation and
the contrast enhancement terms given only the reference and template image. In
all of these experiments, we fix the number of iterations to 50, choose α = 0.1,
τ1 = 103, τ2 = 1010 and vary the parameter β. The result are shown in rows (c-f)
of Figure 1. The first four columns in each row respectively corresponds to the
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Template Reference Difference

(a1) T (a2) R (a3) T − R

Magnitude of Deformed True Contrast
True Deformation Template Ehancement

(b1) ‖u∗‖ (b2) Tu
∗ (b3) Tu

∗ − R

α = 0.1, β = 1010
α = 0.1, β = 1010

α = 0.1, β = 1010
α = 0.1, β = 1010

(c1) ‖u‖ (c2) Tu (c3) Tu − R (c4) w

α = 0.1, β = 100 α = 0.1, β = 100 α = 0.1, β = 100 α = 0.1, β = 100

(d1) ‖u‖ (d2) Tu (d3) Tu − R (d4) w

α = 0.1, β = 10 α = 0.1, β = 10 α = 0.1, β = 10 α = 0.1, β = 10

(e1) ‖u‖ (e2) Tu (e3) Tu − R (e4) w

α = 0.1, β = 0 α = 0.1, β = 0 α = 0.1, β = 0 α = 0.1, β = 0

(f1) ‖u‖ (f2) Tu (f3) Tu − R (f4) w

Fig. 1. Computational experiments on simulated data
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magnitude of the corresponding deformation shown in a [0-15] gray-level map,
the deformed template, the difference between the deformed template and the
reference, and the computed contrast enhancement. The employed parameter β
for each row is indicated above the Figures.

The case β = 1010 shown in row (c) corresponds to a diffusion-based regis-
tration ignoring the contrast term, while the case β = 0 in row (f) corresponds
to the case that contrast term is not penalized and can vary arbitrarily. It can
be observed that among the selected parameters β, the choice of β = 100 shown
in row (d) gives the most reasonable estimation of the motion and the contrast
enhancement term.

6 Concluding Remarks

We offered a mathematical framework for registration of contrast enhanced im-
ages. Our approach directly applies the idea of separating the contrast enhance-
ment term from the images in regularization [3,4,1,2]. We applied diffusion reg-
ularizations for both u and w, where the idea of Adaptive Operator Splitting
(AOS) can be simply used to split the operator A of Equation (10) to present
a scheme of linear complexity similar to [7]. Finally, the choice of regularizer
H[u,w] in Equation (1) may be replaced with other suitable expressions.
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Appendix 1: Proof of Theorem 1

Proof. Define p(x) := (v1(x), . . . , vd(x)) and q(x) := vd+1(x), i.e., split v(x) to
v(x) = (p(x), q(x)). Using the Taylor expansion of Tu+hp(x) with respect to h
at the point x− u(x),

Tu+hp(x) = T (x− u(x)− hp(x))) = Tu(x) − h〈∇Tu(x), p(x)〉Rd +O(h2).

Hence, (Cf. [7] pp. 81.)

d D [R, T ;u,w; v] = lim
h→0

1
h

(D[R, T ; (u,w) + hv]−D[R, T ;u,w])

= lim
h→0

1
h

(D[R, T ; (u + hp,w + hq)]− D[R, T ;u,w])

= lim
h→0

1
2h

∫
Ω

(Tu+hp(x)−R(x)− (w(x) + hq(x)))2

− (Tu(x) −R(x)− w(x))2 dx

= lim
h→0

1
2h

∫
Ω

(Tu(x) − h〈∇Tu(x), p(x)〉Rd +O(h2)−R(x)− w(x) − hq(x))2

− (Tu(x) −R(x)− w(x))2 dx

= lim
h→0

1
2h

∫
Ω

2[Tu(x)−R(x)− w(x)](−h〈∇Tu(x), p(x)〉Rd − hq(x) +O(h2)) dx

=
∫

Ω

−[Tu(x)−R(x)− w(x)][〈∇Tu(x), p(x)〉Rd + 〈1, q(x)〉R] dx

=
∫

Ω

〈−[Tu(x)− R(x)− w(x)]
(
∇Tu(x), 1

)
, v(x)〉Rd+1 dx.
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Appendix 2: Definition of A

A ∈ Rnd×nd

is defined as A :=
∑d

l=1 Al where Al = I ⊗ · · · ⊗ I︸ ︷︷ ︸
l−1 times

⊗B⊗I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−l times

,

in which I ∈ Rn×n is identity matrix and ⊗ denotes the Kronecker product of
matrices. The lth factor B ∈ Rn×n is an approximation of the second order
derivative in only one spatial direction. More precisely, it can be defined as the
tridiagonal matrix

B =

⎛⎜⎜⎜⎜⎜⎝
−2 1 0 . . . 0
1 −2 1 . . . 0
...

. . . . . . . . .
...

0 . . . 1 −2 1
0 . . . . . . 1 −2

⎞⎟⎟⎟⎟⎟⎠ .
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Abstract. The widely used procedure of evaluation of cup orientation
following total hip arthroplasty using single standard anteroposterior
(AP) radiograph is known inaccurate, largely due to the wide variabil-
ity in individual pelvic orientation relative to X-ray plate. 2D/3D rigid
image registration methods have been introduced for an accurate deter-
mination of the post-operative cup alignment with respect to an anatom-
ical reference extracted from the CT data. Although encouraging results
have been reported, their extensive usage in clinical routine is still lim-
ited. This may be explained by their requirement of a CAD model of the
prosthesis, which is often difficult to be organized from the manufacturer
due to the proprietary issue, and by their requirement of a pre-operative
CT scan, which is not available for most retrospective studies. To address
these issues, we developed and validated a statistically deformable 2D/3D
registration approach for accurate determination of post-operative cup
orientation. No CAD model and pre-operative CT data is required any
more. Quantitative and qualitative results evaluated on cadaveric and
clinical datasets are given, which indicate the validity of the approach.

1 Introduction

Two-dimensional (2D) anteroposterior (AP) pelvic radiographs, despite their
inferior accuracy in comparison to three-dimensional (3D) techniques based on
computed tomography (CT) [1], are the standard imaging method for the evalu-
ation of cup orientation following total hip arthroplasty (THA) [2], largely due to
the simplicity, availability, and minimal expense associated with acquiring these
images. While plain pelvic radiographs are easily obtained, their accurate inter-
pretation is complicated by the wide variability in individual pelvic orientation
relative to the X-ray plate [1]. In THA, increased pelvic tilt results in significant
decreases in apparent prosthetic cup anteversion and vice versa [3].

2D/3D rigid registration methods [4][5][6] have been introduced to estimate
the post-operative cup alignment with respect to an anatomical reference, which
is a plane called the anterior pelvic plane (APP) defined by the anterior superior
iliac spines (ASIS) and the pubic tubercles [8]. The common procedure within
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these methods is to use 2D/3D registration to align both the prosthesis and the
pre-operative CT volume to the X-ray image(s), which then allows the position
of the implant to be calculated with respect to the anatomical reference plane.
Although encouraging results have been reported, their extensive usage in clinical
routine is still limited. This may be explained by their requirement of a Computer
Aided Design (CAD) model of the prosthesis [4][5][6], which often is difficult to
be organized from the manufacturer due to the proprietary issue, and by their
requirement of a pre-operative CT scan [4][5][6], which is not available for most
retrospective studies or earlier cup designs. We addressed the former issue in our
previous work [7], where a hybrid 2D/3D registration scheme was implemented
to estimate a rigid transformation between a pre-operative CT volume and the
post-operative X-ray radiograph. No registration between the prosthesis and the
X-ray radiograph is required, thus eliminating the necessity of possessing the
CAD models of the prosthesis. In this paper, we would like to address the latter
issue through 2D/3D reconstruction.

Reconstructing a 3D bone model from single 2D projection image is a chal-
lenging task. Furthermore, in our application, no radiograph-specific calibration
is available. The only information that we assume to know about the radio-
graph is the image scale (mm/pixel) and the distance from the focal point to
the imaging plane or to the film. As long as the radiograph is acquired in a
standardized way, which is preformed in a clinical routine [2], both parameters
can be estimated by performing one-time calibration [9]. When only single image
is used, it is well-known that the depth information and the scaling factor are
correlated with each other. Thus, precise estimation of both of them from single
image is difficult, if it is not impossible. However, considering the context of our
application, we hypothesize that even a scaled estimation of the pelvic model
should provide enough information to determine the post-operative cup orienta-
tion. We thus developed a statistically deformable 2D/3D registration approach
to instantiate a patient-specific pelvis surface model from the single standard
X-ray radiograph and then used the instantiated surface model to determine the
post-operative cup orientation.

This paper is organized as follows. Section 2 briefly presents the construction
of the statistical shape model. Section 3 describes the statistically deformable
2D/3D registration approach. Section 4 presents the experimental results, fol-
lowed by the conclusions in Section 5.

2 Construction of the Statistical Shape Model of the
Pelvis

We chose the point distribution model (PDM) as the representation of our sta-
tistical shape model of the pelvis. The pelvic PDM used in this paper was con-
structed from a training database consisted of 14 segmented binary volumes
(12 of them were segmented from CT scans of dry bones and the rest 2 were
segmented from patient CT scans) where the sacrum was removed from each
dataset. Demon’s algorithm [10] as implemented in MedINRIA [11] was used to
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Fig. 1. The first two eigen modes of variation of our PDM of the pelvis. The shape
instances were generated by evaluating x̄ + ασipi with α ∈ {−2,−1, 1, 2}.

estimate the dense deformation fields between the reference binary volume and
the other 13 binary volumes. Each estimated deformation field was then used to
displace the positions of the vertices on the reference surface model, which was
constructed from the reference binary volume, to the associated target volume.
We thus obtained 14 surface models with established correspondences.

Following the alignment, the PDM is constructed as follows. Let xi, i =
0, 1, ...,m − 1, be m (here m=14) members of the aligned training surfaces.
Each member is described by a vectors xi with N (here N=24994) vertices:

xi = {x0, y0, z0, x1, y1, z1, ..., xN−1, yN−1, zN−1} (1)

The PDM is obtained by applying principal component analysis.

D = ((m− 1)−1) ·
∑m−1

i=0 (xi − x̄)(xi − x̄)T

P = (p0,p1, ...); D · pi = σ2
i · pi

(2)

where x̄ and D are the mean vector and the covariance matrix, respectively.
Fig 1 shows the variability captured by the first two modes of variation of our

PDM.

3 Statistically Deformable 2D/3D Registration

Our single image based surface model reconstruction technique is based on the
algorithm that we introduced in [12], which combines statistical instantiation
and regularized shape deformation with an iterative image-to-model correspon-
dence establishing algorithm. The image-to-model correspondence is established
using a non-rigid 2D point matching process, which iteratively uses a symmet-
ric injective nearest-neighbor mapping operator and 2D thin-plate splines based
deformation to find a fraction of best matched 2D point pairs between features
extracted from the X-ray images and the projections of the apparent contours
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(a) (b) (c)

Fig. 2. (a) The radiograph coordinate system and the cone-beam projection model; (b)
Landmarks extracted from the mean model of the PDM; and (c) landmarks extracted
from radiograph

extracted from the 3D model. The obtained 2D point pairs are then used to set
up a set of 3D point pairs such that we turn a 2D/3D reconstruction problem
to a 3D-3D one. The 3D/3D reconstruction problem is then solved optimally
in three sequential stages including iterative scaled rigid registration, statistical
instantiation, and regularized shape deformation. For details, we refer to our
previous works [12].

In our previous work, we asked for 2 or more X-ray images as the input
and that all images should be calibrated. However, these requirements are the
conditions for the application in our previous work rather than the constraints to
our algorithm. Actually, the algorithm that we introduced in [12] can be directly
applied to single image, as long as at least four non-colinear point pairs are
found. Due to the fact that only single image is available, we may not obtain
precise reconstructions as those reported in our previous work, but rather scaled
reconstructions. Similar to the situation when multiple images are used, the
convergence of the single image based 2D/3D reconstruction also depends on
the initialization. Thus, in the following we focus on the establishment of the
projection geometry of the input radiograph, and on a landmark-based scaled
registration for initializing the single image based 2D/3D reconstruction.

3.1 Establishment of Projection Geometry

The local coordinate reference and the cone-beam projection model of the ra-
diograph is established as follows (see Fig. 2(a) for details). The image center
is taken as the coordinate origin. The X-axis and the Y-axis of the image are
taken as the X-axis and the Y-axis of the local coordinate reference of the radio-
graph. The central projection line is perpendicular to the radiograph plane and
its opposite direction is regarded as Z-axis.

3.2 Landmark-Based Scaled Registration for Initialization

Initialization here means to estimate the initial scale and the rigid transfor-
mation between the mean model of the PDM and the input radiograph. For
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this purpose, we have adopted an iterative landmark-to-ray scaled registration.
The five anatomical landmarks that we used here are left and right ASIS, left
and right acetabular centers, and pubic symphysis. Their positions on the mean
model of the PDM are obtained through point picking (for left and right ASIS,
and pubic symphysis) or sphere fitting (for left and right acetabular centers),
while their positions on the radiograph are defined through interactive picking
(for the projections of left and right ASIS, and pubic symphysis) or circle fitting
(for the projections of left and right acetabular centers) (see Fig. 2(b) and 2(c)
for details).

Let us denote those landmarks defined on the mean model of the PDM, i.e.,
the left and the right acetabular centers, the pubic symphysis, and the mid-
dle points of the left and the right ASIS, as v1

Mean, v
2
Mean, v

3
Mean, and v4

Mean,
respectively; and their corresponding landmarks interactively picked from the
radiograph as v1

X−ray, v
2
X−ray, v

3
X−ray, and v4

X−ray (v4
X−ray is the middle point

of the projections of the left and the right ASIS), respectively. And for each
X-ray landmark, we can calculate a projection ray emitting from the focal point
to the landmark. We then calculate the length between v1

Mean and v2
Mean and

denote it as l1,2
Mean. Using the known image scale, we also calculate the length

l1,2
X−ray between v1

X−ray and v2
X−ray. Then, we do:

Data Preparation. In this step, we assume that the line connecting the acetab-
ular centers is parallel to the AP pelvic radiograph plane and is certain distance
away from the imaging plane or the film (in all the experiments reported in this
paper, we used a fixed distance of 150 mm). Using this assumption and the cor-
respondences between the landmarks defined in the CT volume and those picked
from the radiograph, we can first compute two points v̄1

X−ray and v̄2
X−ray on the

projection rays of v1
X−ray and v2

X−ray, respectively, which satisfy:

v̄1
X−ray v̄

2
X−ray//v

1
X−rayv

2
X−ray; and | v̄1

X−ray − v̄2
X−ray| = l1,2

X−ray ×
F − d

F
(3)

where F is the known distance from the focal point to the imaging plane and d
is the assuming distance from the acetabular centers to the imaging plane.

The current scale s between the mean model and the input image is then
estimated as,

s = |v̄1
X−ray − v̄2

X−ray|/l
1,2
Mean (4)

Using s, we scale all landmark positions on the mean model and denote them as
{v̄i

Mean; i=1,2,3, 4}. We then calculate the distances from v̄3
Mean and v̄4

Mean to
line v̄1

Meanv̄
2
Mean and denote it as l̄3,1−2

Mean and l̄4,1−2
Mean, respectively.

Next we find two points, point v̄3
X−ray on the projection ray of v3

X−ray whose
distance to the line v̄1

X−rayv̄
2
X−ray is equal to l̄3,1−2

Mean, and point v̄4
X−ray on the

projection ray of v4
X−ray whose distance to the line v̄1

X−ray v̄
2
X−ray is equal to

l̄4,1−2
Mean. A paired-point matching [13] based on {v̄i

Mean; i=1,2,3,4} and {v̄i
X−ray;

i=1,2,3,4} is used to calculate a updated scale s0 and a rigid transformation
T̄X−ray

Mean (see Fig. 3(a) for details). From now on, we assume that all informa-
tion defined in the mean model coordinate frame has been transformed into the
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Fig. 3. Iterative landmark-to-ray registration. (a) schematic view of data preparation;
and (b) schematic view of finding 3D point pairs.

radiograph coordinate frame using s0 and T̄X−ray
Mean . We denote the transformed

mean model landmarks as {ṽi
Mean}.

Iteration. The following steps are iteratively executed until convergence:

1. For a point ṽi
Mean, we find a point on the corresponding projection ray of

vi
X−ray which has the shortest distance to the point ṽi

Mean and denote it as
ṽi

X−ray (see Fig. 3(b)). We then perform a paired-point matching [13] using
the extracted point pairs to compute a scale s̃ and a rigid transformation
ΔT̃X−ray

Mean .
2. We update the mean model coordinate frame using s̃ and ΔT̃X−ray

Mean .

3.3 2D/3D Reconstruction

The estimated scale and the rigid transformation between the mean model and
the input image are then treated as the starting values for the algorithm that we
introduced in [12]. As a feature-based 2D/3D reconstruction approach, our algo-
rithm requires a pre-requisite image feature extraction. In this paper, observing
the superimposition of the projections of different bone structures around the
pelvis and the post-operative characteristic of the X-ray radiograph, we opt for
an interactive way to identify contours of the pelvis. We thus developed a pro-
gram allowing the user to define up to eight contours by interactively picking
points from the radiograph. Each contour is then interpolated by a cubic-spline
to have the same resolution as the image resolution. The extracted contours are
then used together with the initial estimation of the scale and the rigid trans-
formation as the input to our PDM based 2D/3D reconstruction scheme for an
accurate reconstruction of a surface model of the pelvis. Fig. 4 shows different
stages of reconstruction of a patient-specific surface model of the pelvis from
single standard X-ray radiograph of a patient. The reconstructed surface model
of the pelvis can then be used to determine the post-operative cup orientation.
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(a) (b) (c) (d)

Fig. 4. (a) the image contours (white line); (b) establishment of the initial image-to-
model correspondences (yellow points: projections of the apparent contours extracted
from the mean model; green lines: visualization of the correspondences); (c) the result
of the iterative scaled registration; and (d) the final reconstructed surface model

Table 1. Difference between the estimated results estimated and the ground truths

angle cadaver 01 cadaver 02 cadaver 03 cadaver 04 Patient 01 Patient 02 Mean

anteversion (o) 1.0 4.4 3.0 1.0 1.5 1.2 2.0 ± 1.4

inclincation (o) 0.9 1.1 0.8 0.7 0.8 2.0 1.4 ± 0.5

4 Experiments and Results

We designed and conducted experiments on 4 cadaveric pelvis datasets and 2
patient datasets (one male and one female. Note: none of them has been included
for constructing the PDM) to validate the present approach. Each dataset con-
tains a post-operative X-ray radiograph and a post-operative CT volume. The
cup orientations extracted from the associated post-operative CT volume are
regarded as the ground truths. The results obtained by the present approach are
compared to the associated ground truths to estimate the measurement errors.
Two X-ray machines were used to acquire the X-ray radiograph. The X-ray ra-
diographs for all 4 cadaveric pelvis were acquired by one X-ray machine with a
focal point to film distance of 1200 mm and a pixel size of 0.143 mm while the
X-ray radiographs for two patients were acquired by the other X-ray machine
with a focal point to film distance of 1016 mm and a pixel size of 0.17 mm.

The results of our validation experiment are presented in Table 1. Compared
to the ground truths, differences of 2.0o±1.4o were found for the anteversion and
differences of 1.4o±0.5o were found for the inclination. Although the anteversion
measurement errors are slightly bigger than those based on pre-operative CT
scans [7], they are still in the acceptable range according to Kalteis et al. [1].

5 Conclusions

In this paper, we presented a statistically deformable 2D/3D registration ap-
proach to instantiate a patient-specific pelvis surface model from single standard
X-ray radiograph and then used the reconstructed model to determine the post-
operative cup orientation. We designed and conducted feasibility experiments
to validate the present approach. Our experimental results demonstrate that it
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is feasible to reconstruct a patient-specific model from single standard X-ray
radiograph for accurate determination of post-operative cup orientation.
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Abstract. In this paper we propose a novel similarity metric and a
method for deformable registration of two images for a specific clinical ap-
plication. The basic assumption in almost all deformable registration ap-
proaches is that there exist explicit correspondences between pixels across
the two images. This principle is used to design image (dis)similarity met-
rics, such as sum of squared differences (SSD) or mutual information (MI).
This assumption is strongly violated, for instance, within specific regions
of images from abdominal or pelvic section of a patient taken at two differ-
ent time points. Nevertheless, in some clinical applications, it is required
to compute a smooth deformation field for all the regions within the im-
age including the boundaries of such regions. In this paper, we propose a
deformable registration method, which utilizes a priori intensity distribu-
tions of the regions delineated on one of the images to devise a new similar-
ity measure that varies across regions of the image to establish a smooth
and robust deformation field. We present validation results of the proposed
method in mapping bladder, prostate, and rectum contours of computer
tomography (CT) volumes of 10 patients taken for prostate cancer radio-
therapy treatment planning and verification.

1 Introduction and Background

We address the problem of registering two images and determining the dense de-
formation field mapping one image to the other. Registration of pairs of medical
images (2D or 3D) has been extensively studied (see [9]). In all these approaches,
the main assumption is that an image (dis)similarity metric can be established,
which can evaluate the quality of a deformation field. Furthermore, the deforma-
tion field is required to be continuous, smooth and invertible, so that every pixel
in image one (fixed or target) maps to exactly one pixel in image two (moving
or template), and vice-versa. The smoothness property can be enforced through
regularization of the dense deformation field assuming diffusive [5], elastic [1],
viscous fluid [3], or splines [11] properties.
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Fig. 1. Figure depicts from left to right, a planning CT slice, a treatment CT slice, the
warped version of a treatment CT slice based on a conventional method with SSD as
the similarity measure, and the same image done based on the proposed method

A problem arises when, for some parts within the images, no correspondences
can be established across the two. This happens quite often while registering
medical images. One example is during the registration of CT images from a
male pelvis taken for prostate cancer radiotherapy. Rectum and intestine (bowel)
content may change drastically from the planning to the treatment sessions. This
makes the process of establishing correspondences impossible and more impor-
tantly meaningless. There are two problems with the conventional approaches.
First is that intensity based similarity metric can not be used for these specific
(special) regions within these images. This is mainly due to excessive penalizing
effects that they impose on the deformation field within these regions (see Figure
1). If used, this causes erroneous results for the deformation field within these re-
gions. Second, the regularization constraint, and the associated smoothing effect
it has, causes the erroneous deformation field to spread to the neighboring areas.
The combination intensifies the problem and results an overall unsatisfactory de-
formation field. This problem is also identified in Foskey et. al. [6], where a two
step registration is proposed to deal with the presence of gas in the rectum. We
believe that a good approach for solving this problem should be based on a uni-
fied variational formulation that can recover the dense deformation field and also
deal with these special regions. Joint registration and segmentation approaches
have also been proposed, for example in [12] and [4]. However, in [12], the ap-
proach only produces deformation fields on the border of the regions (contour in
2D or surface in 3D). In [4] also there is no explicit consideration for the special
regions, where no match can exist. We propose a variational registration frame-
work that incorporates statistical intensity constraints on the regions suspected
to not have a one-to-one correspondences within the other image. We formu-
late the problem as a non-linear optimization to solve for the dense deformation,
which is based on a combination of a conventional and the region based intensity
similarity metric and a classic regularization constraint to enforce smoothness
globally on the deformation field.

2 Deformable Registration: Problem Formulation

We consider the problem of deformable registration, where an unknown trans-
formation T : Ωm → Ωf which maps the intensity images Im: Ωm → � (i.e.,
moving ) to If : Ωf → � (i.e., fixed) defined over the space Ω (Ω ∈ �k for k = 2
or 3). We assume to have outlines of special regions specified on the fixed image.
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Fig. 2. Figure shows two images (from left) with three deformable objects and their
corresponding contours. The lower object in both images contains random distribution
of intensities inside, where the pixel-to-pixel correspondences does not exist across
the two. Third image (right) shows the desired deformation, which maps the region
boundaries and provides a smooth deformation within and on the boundaries of the
lower object.

We compartmentalize Ωf to a set of non-overlapping regions Φi
f for i ∈ [0, n−1],

where Φ0
f denotes the region, where matching pairs can be found (i.e., majority

of image pixels) and Φi
f for i �= 0, where matching pairs can not be established.

We assume the contours enclosing regions Φi
f for i �= 0 are known for If and

denoted by Cf
i ∈ Ωf . We are looking for the transformation T with the following

properties (see Figure 2):

– For any point in the fixed image with in the region Φ0
f , there should be a

corresponding point in the moving image (i.e., xf = T (xm) for xf ∈ Φ0
f ).

– A point on the contour of Cf
i for i �= 0 should map to a point on a closed

contour denoted as Cm
i for i �= 0 (i.e., Cf

i = T (Cm
i ) for i �= 0). It is important

to emphasize that this is only a boundary constraint and does not enforce
having correspondences within these regions.

– The transformation T should be smooth.

3 Proposed Solution

We use the classic two term energy functional for solving this problem. We re-
formulate the transformation T as T (x) = x+u(x), where u is the displacement
(deformation) field. We use various image (dis)similarity terms (i.e., MΦi) de-
pending on the region and one overall deformation smoothness constraint (i.e.,
R), as follows:

û = argmin
u

∑
i

βiMΦi(I
f , Im) + α

∫
Ω

R(u(x))dx, (1)

where βi for i ∈ [0, n − 1] needs to be specified empirically. Furthermore, α
signifies the level of smoothness in the deformation field. For region Φ0, where
the correspondences can be found, we could use conventional similarity metrics
such as MI [9] or SSD as follows:
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MΦ0(I
f , Im) =

∫
Φ0

|If (x)− Im(x + u(x))|2dx. (2)

For other regions, we propose to use region based similarity metric with no spe-
cific spatial information. We assume that the a priori intensity distributions for
these regions are known. This information for example can be established based
on outlining various regions within several training data sets. Let us assume that
the a priori intensity distribution of the region Φi for i ∈ [1, n − 1] is denoted
by pi, we can then define a log likelihood based regional energy constraint as
follows:

MΦi(I
f , Im) = −

∑
i

∫
Φi

log(pi(Im(x + u(x)))dx. (3)

It is noteworthy to mention that there is no notion of correspondences present in
this equation. The regional energy is minimized for the deformation field, which
maps the certain area within the moving image into the region with a known
intensity distribution. For example, in a special case, where pi is a Gaussian
distribution, the equation 3 is favoring deformation fields that cause the intensity
mean of the mapped region be close to the mean of the a priori distribution.
The intensity distribution could either be estimated based on the If alone, or it
could be estimated using the same image regions from a number patients’ scans.
The latter is a more reliable option, however can only be used for quantitative
imaging modalities such as CT. Finally, as the global deformation regularization,
we simply use the diffusion criterion R(u) = trace(∇u�∇u) where . denotes
the transpose operation. Any other regularizer, such as linear-elastic or curvature
[10], could be used as well.

3.1 Numerical Treatment

The optimal deformation field minimizing the energy functional (1) is the solu-
tion of the Euler-Lagrange equation of αΔu(x) = f(x), with certain boundary
conditions [10]. In the proposed case, the right hand side in this equation or the
image force is modified according to the regions of the fixed image as follows:

f(x) =
(
β0Xφ0(x)(If (x)− Im(x + u(x)))+∑

i βiXφi(x)∂pi(Im(x+u(x)))
pi(Im(x+u(x)))

)
∇Im(x + u(x)),

(4)

where Xφi(x) = 1 for all x ∈ φi otherwise Xφi(x) = 0. We require a priori
distribution to be differentiable and strictly positive. Furthermore, coefficients βi

should be chosen to decrease the discrepancy in the magnitude of the computed
force across the regions specially along the borders. We choose to solve the
resultant nonlinear parabolic partial differential equation (PDE) using a semi-
backward (implicit) Euler update formula as follows:

ut+1
d = (Id + αδtR)−1(ut

d + δtfd(ut)), (5)

where square matrix R, with each dimension size equal to the total number of
pixels in the image, represents the Laplacian operator Δ and Id is identity matrix
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with the same size as R. Furthermore, d denotes the dimension (e.g., 1, 2, or 3),
the superscript t is iteration step or time, and δt is the time marching coefficient
[10]. The update equation 5 provides a greater stability and faster convergence
compared to a simpler forward update formulation [7]. The downside is that it
involves inverting a large matrix. To accelerate the inversion, we use a multi-grid
method similar to the one outlined in [8].

4 Experimental Results

In this section, we explain the specific clinical application for the proposed
method in details. Furthermore, we provide a detailed explanation regarding
the input data and the desired output for this specific use case. Furthermore, we
explain some implementation details and provide the validation results.

4.1 Adaptive Radiotherapy

During the planning phase in radiation oncology, tumors and the organs at
risk are delineated and the dose distribution is planned using these contours.
The patient undergoes a fractionated treatment process, where the incremental
amount of dose is applied over several days. The original planned dose based on
the planning CT is usually not valid throughout the whole treatment process,
specifically for deformable targets such as prostate and organs at risk such as
bladder and rectum with filling variations [6]. One solution is to acquire CT
images prior to treatment in order to better capture the recent state of the
anatomy. Two options are then available; first is to change the plan according to
the recent state of anatomy, and second is keep the original plan but recompute
the accumulated dose based on the current state of anatomy and to re-plan
only if the accumulated dose deviates too much compared to the planned dose.
Both of these options have pros and cons, however, both require an enabling
technology that is to robustly find the corresponding structures (and voxels)
between the planning and treatment scans. The main registration challenge here,
as explained in the introduction section, is that there are regions within these
two images, where explicit correspondences cannot be established.

4.2 Validation Results

We have acquired 20 pairs of CT data sets from 10 different patients under-
gone prostate radiotherapy. The first CT in each pair is the planning CT, where
the contours of main three organs (prostate, bladder, and rectum) are available.
The second CT in each pair is the treatment CT taken during one treatment
session using a Siemens CTVision (Siemens Oncology Care Systems, Concord,
CA, USA) within the treatment room. The three mentioned structures are then
delineated in all the second CT data sets by expert dosimetrists. The regions of
the images, which demonstrate significant intensity and shape variability with-
out correspondence are considered to be the rectum, which is posterior to the
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Table 1. Quantitative validation of the warped prostate, bladder, rectum contours as
the results of the proposed method

Patient Prostate Bladder Rectum
ρd ρfd sd (mm) sd (mm) sd (mm)

1 0.94 0.10 2.5 2.9 3.9
2 0.81 0.22 2.8 3.2 5.3
3 0.89 0.16 2.2 3.0 4.6
4 0.91 0.11 2.0 3.1 4.0
5 0.85 0.20 2.5 3.0 4.8
6 0.84 0.22 2.3 2.5 4.7
7 0.88 0.20 2.4 2.6 4.2
8 0.85 0.28 2.1 2.1 4.0
9 0.81 0.25 2.9 3.3 5.2
10 0.88 0.27 2.0 4.1 4.7

Average 0.87 0.20 2.4 3.0 4.1

Table 2. Quantitative validation of the warped prostate, bladder, rectum contours as
the results of the conventional deformable registration algorithm with (a) SSD and (b)
MI as (dis)similarity metrics

Patient Prostate Bladder Rectum
ρd ρfd sd (mm) sd (mm) sd (mm)

1 0.66(a)/0.70(b) 0.28/0.15 3.9/4.0 5.1/5.2 6.4/5.9
2 0.71/0.54 0.38/0.34 4.0/4.0 4.9/5.2 5.9/6.1
3 0.62/0.75 0.40/0.21 4.0/3.7 4.9/5.1 7.5/8.2
4 0.73/0.69 0.39/0.46 4.1/4.1 4.9/4.8 6.7/7.1
5 0.66/0.52 0.41/0.23 3.8/4.0 5.3/5.0 7.2/5.9
6 0.69/0.53 0.38/0.37 3.7/4.0 5.0/5.0 7.0/6.9
7 0.59/0.61 0.43/0.34 4.3/4.2 5.1/4.7 7.6/6.9
8 0.68/0.62 0.19/0.22 4.5/4.1 5.2/4.8 8.0/7.8
9 0.68/0.59 0.31/0.29 4.9/3.8 4.7/5.2 6.8/6.1
10 0.67/0.71 0.20/0.31 4.3/4.2 4.6/4.9 7.1/6.8

Average 0.66/0.62 0.33/0.29 4.1/4.0 4.9/5.0 7.2/6.8

prostate and large intestine (bowel) that is superior to the bladder (see Figure
3). We used contours of the rectum in planning CT of first 10 pairs to estimate
the intensity distribution of the rectum (shown in the Figure 4). We also used
rough delineations of the large intestine region superior to the bladder of the
first 10 pairs to estimate an intestine intensity distribution. We chose a rather
large Parzen window of 35 on the Hounsfield scale to make sure the pdf is non-
zero and smooth (differentiable) within the entire intensity range. We used the
second 10 pairs of data as test data. We performed three sets of experiments.
In the experiment set (a), we used the region based similarity metric, where the
SSD is used for ”regular” regions and the proposed similarity metric is used for
the ”special” regions delineated as the part of the planning process, in set (b),
we used SSD as the intensity distance metric for the entire image, and finally
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Fig. 3. The figures from left to right are, the treatment CT with ground truth contours
of bladder, prostate and rectum, the treatment CT with warped version of the planning
contours using a conventional method, and the treatment CT with warped version of
the planning contours based on the proposed method

Fig. 4. Two figures on the left show the deformation grid overlaid on the planning data
for left conventional method, and right proposed method. Right figure depicts the pdf
of the rectum intensity (Hounsfield scale + 1024) based on 10 patient data.

in the set (c), we used MI. We always assume that planning CT is the fixed
(reference) and the treatment CT is the moving (template) and we always first
rigidly aligned the two images.

The images are all downsampled to 256×256×N, where N is a number between
96 and 130. In order to cope with large displacements, equation 5 is solved in
a scale-space setting. We solved the equations over three levels of resolutions
starting with zero displacements as the initial value at the lowest resolution. For
the three dimensional images of the mentioned size range, the overall time for
registration process in average was less than 30 seconds. For these experiments,
we empirically found appropriate values for α, β0, and βi once and kept them
fixed for the entire test. Within the algorithm, the (dis)similarity metric force
is always normalized by the initial (dis)similarity prior to the registration. This
relieves us from adjusting the value of the α for various (dis)similarity metrics.

We used the inverse of the computed deformation field computed using the
method described in [2] to generate the contours on the treatment data sets.
For quantitative evaluation, we used several measures to compare the warped
contours based on the registration process with the ground truth delineated by
the expert clinician. The quantitative measures where; 1) ρd is the probability
of detection, calculated as the fraction of the ground truth volume that over-
laps with the estimated organ volume, 2)ρfd is the probability of false detection,
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calculated as the fraction of the estimated organ that lies outside the ground
truth organ, and 3) sd is the surface distance, calculated as the average distance
between the surfaces of the ground truth and estimated organs. We computed
all measures for prostate but only sd for bladder and rectum. In Tables 1 and 2,
we show the measures computed for all three sets of experiments on the patient
data. The proposed method always outperformed the conventional approaches,
specially by higher margin for the cases where rectum shape changes were signifi-
cant. Un-smooth deformation fields, which are typical results of the conventional
method were problematic for the inverse deformation computation scheme. The
examples of a specific patient data set is also brought in Figure 3.

5 Summary and Conclusion

In this paper, we presented a method for deformable registration of images, in a
scenario, where there exist areas within the images without explicit correspon-
dences. We take advantage of the assumption that although the pixel-to-pixel
correspondence can-not be established, the intensity statistics within these areas
remain consistent from image to image. Therefore, we proposed to use a softer
region specific intensity matching or similarity constraint on these areas. This
problem is clinically prevalent while processing various abdominal and pelvic
scans of same patient at different time points. We outlined a detailed scheme for
implementing the proposed method and focused on the problem of tumor and
organ at risk variability in prostate radiotherapy and demonstrated the perfor-
mance of the proposed solution.
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Abstract. CT guided tumor ablation of the liver often suffers from a lack of 
visualization of the target tumor and surrounding critical structures. This infor-
mation is available on pre-operative contrast enhanced MR images and a non-
rigid registration technique is desirable. However while registration methods 
have been successfully tested retrospectively on patient data, very few have 
been incorporated into clinical procedures. A non-rigid registration technique 
has been evaluated, optimized and validated to be able to perform registration 
of the liver between MR to CT images, and between intra-operative CT images. 
The method requires pre-processing and segmentation of the liver, and presents 
an accuracy of approximately 2mm. A clinical feasibility study has been con-
ducted in 5 liver ablation cases. The method helps clinicians enhance interven-
tional planning, confirm ablation probe location with respect to the tumor, and 
in the case of cryotherapy, evaluate tumor coverage by the ice ball. 

1   Introduction 

Liver cancer, namely hepatocellular carcinoma (HCC), is one of the most common 
cancers in the world, with an estimated 711,000 new cases reported worldwide in 
2007 and 680,000 deaths [1]. Local tissue ablation has become a promising method of 
minimally invasive curative therapy that preserves uninvolved liver parenchyma with 
fewer systematic complications and side effects than major hepatic surgery [2]. Imag-
ing technologies such as computed tomography (CT) can provide the guidance needed 
for the percutaneous placement of needle-like applicators for tumor ablation using 
chemical or thermal methods.  

For procedure planning, an initial CT image of the liver is used to decide on an 
adequate entry point and probe tip location. The lack of soft tissue contrast of the CT 
image impedes a clear visualization of the tumor which is either barely distinguished 
or totally invisible. Most liver tumors are visible on pre-procedure contrast enhanced 
MRI and a visual correspondence of tumor location between the pre-procedure MRI 
and intra-operative CT images is performed by the physician using anatomical struc-
tures as landmarks. Once the position of the tumor is estimated and a plan devised, 
CT images are then taken to guide the probes into the planned location. Once the 
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probes are positioned, CT images are taken to monitor the effects of the ablation, for 
example observing the extent of the ice ball in cryotherapy. The lack of proper visu-
alization of the tumor can lead to sub-optimal ablation applicator placement and in-
adequate coverage of tumor margins. Clinically, this can increase complications and 
rates of recurrence [2].  

Registration between the pre-procedure MR images and the acquired CT intra-
operative images would allow mapping tumor location and size as well as any sur-
rounding critical structures onto the CT images. Carrillo et al. [3] compared several 
semiautomatic voxel-based registration algorithms to perform rigid registration be-
tween pre-procedure MRI and interventional MRI of the liver. Niculescu et al. [4] 
registered pre- and post-treatment CT images by using a surface based non-rigid 
method with a finite element model to simulate volumetric deformation. Archip et al. 
[5] compared several non-rigid registration techniques to match pre-procedure con-
trast enhanced MR images of the liver to intra-operative CT, including a finite ele-
ment based method they had previously developed for neurosurgery. However, while 
these registration methods have been successfully tested retrospectively on patient 
data, very few of these solutions have been incorporated into the clinical setting. In 
this paper we describe the optimization of a multimodal non-rigid registration tech-
nique which will be used to register pre-procedure contrast enhanced MR images to 
intra-operative CT images, and to register CT images obtained during different stages 
of the intervention. The technique is then incorporated in the clinical workflow of CT-
guided liver tumor ablation, with a clinical feasibility study performed in 5 cases. This 
work will form part of a fully integrated liver ablation navigation suite we are cur-
rently developing. 

2   Intra-operative Non-rigid Registration Method 

Although rigid registration has been used before in CT guided liver ablation, the accu-
racy is not sufficient for guidance of therapy [6]. Several non-rigid registration tech-
niques are reported in the literature and reviews of available methods have been ex-
tensively published [7]. Considering the trade off between computation requirements 
and accuracy [5] we decided to use a 3D volumetric non-rigid registration method 
which uses an affine transformation to model the global motion of the liver, and 
which describes local motion by a free-form deformation based on B-splines as de-
scribed in [8] using the mutual information similarity metric. Three important factors 
must be considered for the adequate translation of a registration technique into the 
clinical setting: it must be (i) accurate for the clinical application at hand, (ii) fast 
enough to be performed within the time frame of a clinical intervention and (iii) ro-
bust so that it almost never fails. This section describes the optimization of the regis-
tration method and several pre-processing steps in order for it to fulfill these three 
conditions. The registration method along with all processing steps were made avail-
able in the open source software 3D Slicer [9]. 

Image Acquisition. The T1 weighted MR images were obtained using a 1.5T GE 
SIGNA scanner, 3D image acquisition (TR/TE=4.1/2ms, 5mm slice thickness, 2.5mm 
slice spacing, 512 x 512 matrix size, 400mm field of view) with an 8 channel torso 
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surface coil. The intra-operative CT images were obtained from a 40 channel Siemens 
Sensation Open, with a matrix size of 512 x 512.  

Cropping, Segmentation and Slice Thickness. To eliminate irrelevant voxels in the 
registration process and to reduce the number of voxels in the computations, the im-
age volumes can be cropped. The cropping could occur in plane or in the slice thick-
ness direction. To improve registration accuracy the liver can be segmented from the 
images to produce masked data in order to include only the relevant pixels in the 
similarity measurement. All segmentation was performed by a qualified radiologist 
with 7 years experience. The CT images acquired during the interventional procedure 
could also be reconstructed at different slice thickness.  

Registration Algorithm. Once all the pre-processing steps have been performed on 
the images, they are subject to the registration algorithm, which involves two steps. 
The first is to use an affine transformation to describe the global motion of the liver. 
The second step enforces local deformation by modeling the displacement field using 
a free-form deformation model based on B-spline interpolation, in order to maximize 
mutual information between the images. The efficiency of the registration algorithm 
depends on variables such as spatial samples, iterations and grid size, which will be 
modified to evaluate their effect on the registration. 

2.1   Procedure Optimization 

In order to study the influence of the various pre-processing steps and algorithmic 
variables on both the accuracy and the speed of registration, several experiments were 
performed to register 9 patient datasets. Table 1 shows the range of parameters that 
were considered. In total 9 different parameter values were evaluated over 9 patient 
datasets, giving a total of 81 registrations.  

The first three parameter values consist of changing the slice thickness of the CT 
images to 3mm, 5mm and 7.5mm. Thinner slices provide increased detail although 
make the segmentation process longer. The next three set of parameter values consid-
ered were related with in-plane cropping. The in-plane field of view (FOV) was var-
ied from being 100% of the acquired image, 66% of the image and then just a region 
surrounding the liver. The next parameter was manual segmentation of the liver, with 
the registration being performed with segmentation and then without to see its influ-
ence on accuracy. The following parameter was cropping in the slice thickness direc-
tion, with registration being done with over 75% of the liver volume included and 
then with between 50-75%. Finally the algorithm variables were modified in three 
categories, the first being high resolution (50,000 spatial samples for affine registra-
tion and 500,000 for B-spline), medium resolution (25,000 and 250,000) and low 
resolution (5,000 and 50,000). All the registration steps were performed on a PC with 
4 Dual Core AMD Opteron 2.2GHz processors, 16GB of RAM with Fedore Core 10 
Linux operating system.  

For each set of parameters the time for the entire registration process including the 
pre-processing steps was measured. Following previous studies [5], quantifying regis-
tration accuracy was done by extracting the edges of the segmented livers from the 
registered datasets using a Canny Edge detector and the 95% Hausdorff distance (HD) 
calculated between the sets of points comprising the edges. Perfect alignment will 
produce a 95% Hausdorff distance of 0mm.  
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Table 1. Experiments performed to evaluate the effect of the different parameters on the 
registration process. Set 1 corresponds to a reference set of parameters, and each consecutive 
set involves modifying one parameter from the reference set. 

Parameter 
Set 

Slice Thickness 
(mm) 

FOV 
Size Segmentation Liver 

Volume Resolution 

1 (Ref) 5 66% Yes >75% High 
2 3 66% Yes >75% High 
3 7.5 66% Yes >75% High 
4 5 100% Yes >75% High 
5 5 Liver Yes >75% High 
6 5 66% No >75% High 
7 5 66% Yes 50-75% High 
8 5 66% Yes >75% Med 
9 5 66% Yes >75% Low 

2.2   Results 

Fig. 1 shows the results of the registrations performed on the 9 patient datasets with 
the different parameters specified in Table 1. Regarding accuracy it can be seen that 
except for the case where the pre-processing has not included manual segmentation 
and masking of the data, average accuracy ranged from 1.9 - 3.4mm. This is a satis-
factory result for liver tumor ablation, given that most treated tumors are large in size, 
ranging from 1-20cm. Without segmentation of the liver, registration showed large 
errors which average 10.6mm with a large standard deviation. Segmentation is there-
fore essential to the method. Regarding time, the entire registration process can take 
anything from 28-52 minutes when manual segmentation and masking is performed. 
Segmentation is by far the most time consuming step in the process taking between 
10-15 minutes for each image. One way of reducing segmentation time is to incre-
ment slice thickness, as this means that there are fewer slices per volume. However at 
7.5mm slice thickness the registration error starts to increase as does the standard 
deviation, and image resolution visibly decreases. Regarding robustness, the mutual 
information algorithm proves to be extraordinarily robust over the entire spectrum of 
parameter sets, except for the case with no segmentation. Small standard deviations 
mean that the accuracy of each individual registered dataset is close to the average, 
giving an indirect measure of robustness. For cropping both in-plane and in the slice 
direction the algorithm performed extremely well, hence incomplete image acquisi-
tions of the liver should have little effect. After a thorough analysis of these results 
parameter set 1 was selected as the best protocol for use in the clinical procedure. All 
the pre-processing (cropping and segmentation) of the MR images can be done previ-
ous to the intervention, reducing the actual time needed during the clinical procedure 
to perform the registration.  

With the parameters of the registration method defined, two further measures of 
accuracy were used to ensure validation before applying the protocol in the clinical 
procedure. The first was the Dice Similarity Coefficient  (DSC) which gives a meas-
ure of the spatial overlap between the segmented liver from the registered MRI and  
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Fig. 1. Registration results for the experiments with different parameters. For each parameter 
set the average time and accuracy are presented, along with a standard deviation. 

the CT image [10]. The DSC can range from [0,1], where 1 is perfect alignment. The 
second consists of asking an experienced radiologist to identify well defined corre-
sponding features on the intra-operative CT image of the liver and on the registered 
MR image and to measure the 3D distance between them. Three anatomical points 
were selected in each dataset and the error for each of the three points was averaged. 
Table 2 shows the results obtained by performing both non-rigid and rigid registration 
on the 9 patient datasets with all three evaluation metrics. Using the non-rigid regis-
tration, an obtained improvement of four fold in the 95% HD, 13% in the DSC metric 
and 3.3 fold anatomical landmarks is presented.  

3   Registration during CT Guided Tumor Ablation Procedure 

The registration method was then integrated into the workflow of a CT guided liver 
tumor ablation procedure for a clinical feasibility study. It was applied in parallel 
during 5 cases of liver ablation, although no clinical decisions were made based on 
the information obtained from the registration, in accordance to approval by our Insti-
tutional Review Board. Table 3 shows the patients that underwent the intervention 
with non-rigid registration. Before the intervention, the pre-procedure MR images 
were cropped and manually segmented. Once the patient is located on the table of the 
CT scanner, usually in a different position than the supine in which the MRI is taken, 
a CT image is acquired to plan the intervention and sent to our workstation outside the 
scanner room for registration. The results of the registration are presented in the last 
two columns of Table 3, where both accuracy and time taken for the registration pro-
cedure during the intervention are displayed. 
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Table 2. Validation results for both rigid and non-rigid registration on 9 patient datasets using 
registration parameters set 1 

95% Hausdorff  
Distance (mm) 

DSC Anatomical Landmarks 
(mm) Dataset 

Rigid Non-rigid Rigid Non-rigid Rigid Non-rigid 
1 9.00 1.41 0.86 0.97 8.15 1.21 
2 4.58 1.41 0.83 0.96 11.30 3.19 
3 15.94 2.24 0.79 0.96 23.01 3.77 
4 8.60 2.02 0.85 0.96 10.51 6.11 
5 6.48 2.23 0.84 0.96 8.81 5.05 
6 3.74 1.73 0.92 0.96 4.04 2.73 
7 6.16 1.97 0.87 0.97 5.33 2.24 
8 9.00 2.01 0.84 0.97 15.67 2.57 
9 8.12 1.96 0.90 0.98 12.55 3.28 

Avg 7.96 1.89 0.86 0.97 11.04 3.35 

Table 3. Patients receiving liver ablation procedure with registration, along with accuracy and 
total time of registration during procedure (not including the pre-processing of the MR images 
before the procedure) 

Case Sex Age Therapy Pathology Liver 
Segment 

Accuracy 
(95% HD) 

Time 
(min) 

1 M 63 Cryotherapy Metastasis 7 1.9 22 
2 M 63 Cryotherapy Metastasis 6/5 2.3 21 
3 M 49 RF ablation HCC 5 2 20 
4 M 53 RF ablation HCC 5 2.2 17 
5 M 82 Cryotherapy Metastasis 5 2.4 18 

 
The registration takes approximately 17-22 minutes to complete, and during 

this time the surgeons plan the interventional procedure in their usual manner. 
When the registration is complete, the registered MR image is superimposed on 
the CT image and shown to the practitioners. The tumor is segmented from the 
MR image and overlaid on the CT image to delineate the exact target location 
(Fig. 2(a-c)). 

Registration was also performed between the CT images obtained during the pro-
cedure. This process was done between the planning CT image taken at the beginning 
of the procedure, the CT image which displayed the ablation probes once  positioned 
(before ablation started), and in the case of cryotherapy, the CT image showing the 
maximum sized ice ball. These images were registered to the original pre-procedural 
CT images using the registration method (segmentation was not required). Fig. 2(d)-
(f) show the CT image after probe placement and the CT image after the maximum 
ice ball is performed, both overlaid with the segmented liver tumor taken from the 
MR image. Fig. 2(f) shows a 3D model of the liver, cryoablation probes, ice ball (all 
segmented from the CT image) and the tumor (segmented form the registered MR 
image). This type of model will allow a 3D evaluation of the tumor coverage and 
margins. 
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Fig. 2. (a) Pre-procedure contrast enhanced MR image, (b) CT image for interventional plan-
ning, (c) registered and fused image showing liver from MR image overlaid on CT image, (d) 
CT image showing ablation probes overlaid with segmented tumor from the registered MR 
image, (e) CT image showing iceball (hypointense area around lesion) overlaid with segmented 
lesion (green) from registered MR image, and (f) 3D representation of liver (red), tumor 
(green), iceball (blue) and cryoprobes to evaluate tumor coverage and margins 

4   Discussion and Conclusion 

The objective of this study was to provide an adequate registration algorithm for use 
during CT guided liver tumor ablation. This involves registering pre-procedure MRI 
images with intra-procedure CT images, and to register CT images taken at different 
phases of the procedure. Many of the registration methods described in literature are 
not applicable directly to this clinical problem because they require registration times 
that are unfeasibly long for their implementation during the clinical ablation proce-
dure, and hence need optimization to find a compromise between accuracy and regis-
tration time. In this paper we have optimized and evaluated the accuracy, speed and 
robustness of a non-rigid voxel-based registration technique, which required pre-
processing of the images including manual segmentation. Segmentation is the most 
time-consuming process of the whole registration method, and any gains would di-
rectly impact on the overall process and it’s acceptance in the clinic. Future work is 
directed in evaluating semi-automatic segmentation algorithms, such as intensity 
based thresholding to produce an initial guess of the liver shape and an Estimation 
Maximization method [11]. We are also looking into computationally efficient im-
plementations of Mutual Information [12]. The registration has been performed dur-
ing 5 clinical cases, and with further shortening of registration times, will then be 
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applied in a prospective clinical study to evaluate the impact the registration has on 
clinical outcomes.  
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Abstract. Fractional anisotropy (FA), a very widely used measure of fiber in-
tegrity based on diffusion tensor imaging (DTI), is a problematic concept as it is 
influenced by several quantities including the number of dominant fiber direc-
tions within each voxel, each fiber’s anisotropy, and partial volume effects from 
neighboring gray matter. With High-angular resolution diffusion imaging 
(HARDI) and the tensor distribution function (TDF), one can reconstruct multi-
ple underlying fibers per voxel and their individual anisotropy measures by rep-
resenting the diffusion profile as a probabilistic mixture of tensors.  We found 
that FA, when compared with TDF-derived anisotropy measures, correlates 
poorly with individual fiber anisotropy, and may sub-optimally detect disease 
processes that affect myelination. By contrast, mean diffusivity (MD) as de-
fined in standard DTI appears to be more accurate. Overall, we argue that novel 
measures derived from the TDF approach may yield more sensitive and accu-
rate information than DTI-derived measures. 

1   Introduction 

Diffusion-weighted MRI is a powerful tool to study water diffusion in tissue, provid-
ing vital information on white matter microstructure, such as fiber connectivity and 
integrity in the healthy and diseased brain. To date, most clinical studies still employ 
the diffusion tensor imaging (DTI) model [1,2], which describes the anisotropy of 
water diffusion in tissues by estimating, from a set of K diffusion-sensitized images, 
the 3x3 diffusion tensor (the covariance matrix of a 3-dimensional Gaussian distribu-
tion). Seven independent gradients are mathematically sufficient to determine the 
diffusion tensor, but MRI protocols with higher angular and radial resolutions, such as 
the high angular resolution diffusion imaging (HARDI) [3] or diffusion spectrum 
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imaging techniques [4], have been proposed to resolve more complex diffusion  
geometries, such as fiber crossings and intermixing of tracts. These geometries are 
incorrectly captured by a single-tensor model, as employed in standard DTI.   

Among several recent advances in HARDI, the Q-ball imaging technique has been 
proposed to reconstruct fiber orientation density functions (ODFs) from the raw 
HARDI signal [3]. Deconvolution methods [5] can also yield mathematically rich 
models of fiber geometries using probabilistic mixtures of tensors [6], fields of von 
Mises-Fisher mixtures [7], or higher-order tensors (i.e., 3x3x…x3 tensors) [8,9]. Re-
cent work on stochastic tractography [5, 10] also exploits the increased angular detail 
in HARDI. In most deconvolution-based methods, however, prior assumptions on 
fibers are usually imposed, e.g., all fiber tracts are forced to have the same anisotropy 
profile. Leow et al. recently proposed a more flexible approach, the Tensor Distribu-
tion Function (TDF) [11] to model fiber crossing in HARDI. Using the calculus of 
variations, the TDF approach can separate different dominant fiber directions in each 
voxel and compute their individual eigenvalues.  

Much progress has been made in modeling more complex diffusion geometries that 
a single tensor fails to model, but most clinical studies still rely on simple DTI-
derived scalar measures. Some of these, such as the trace of the covariance matrix or 
mean diffusivity (MD) can adequately describe isotropic water diffusion, but this only 
occurs in the cerebrospinal fluid spaces in the brain. In the white matter, myelinated 
fibers resist water diffusion orthogonal to the local dominant fiber orientation, and 
diffusion occurs preferentially along local fiber tracts. In clinical research, white mat-
ter fiber integrity is commonly assessed by determining how strongly diffusion is 
directionally constrained. One common scalar measure of directional diffusion, the 
fractional anisotropy (FA), is computed from the diffusion tensor’s eigenvalues, and 
quantifies the magnitude of this directional preference.  Clinical studies now routinely 
use FA as an index of white matter integrity, sensitive to white matter deterioration in 
aging and neurodegenerative diseases [12]. Even so, FA does not truly reflect the 
multidimensional complexity of the water diffusion profile. Regions with complex 
fiber-crossing tend to have lower FA values than predominantly unidirectional white 
matter structures (such as the midline corpus callosum; see Figure 2). However, it is 
unlikely that each of these crossing fibers in these regions has a true decrease in its 
integrity when compared to, say, corpus callosum fibers. In this paper, we argue that 
“white matter integrity”, as measured by FA, is somewhat vague and imprecise, and 
may be greatly improved by using the full diffusion gradient information in HARDI. 
Factors that influence FA values may include the number of dominant fiber directions 
in each voxel, the eigenvalues of each of these fibers, partial volume effects from 
neighboring gray matter, and the non-Gaussianity of water diffusion. By using the 
TDF approach, which can separate crossing fibers, we examine where FA fails to 
reflect the underlying diffusion anisotropy. 

2   Methods 

Sixteen volunteers were scanned using a diffusion-sensitized MRI protocol on a 
Bruker Medspec 4 Tesla MRI scanner, with a transverse electromagnetic (TEM) 
headcoil. The timing and angular sampling of the diffusion sequence was optimized 



 A Novel Measure of Fractional Anisotropy Based on the Tensor Distribution Function 847 

for SNR [13]. The protocol used 94 diffusion-sensitized gradient directions, and 11 
baseline scans with no diffusion sensitization (b-value: 1159 s/mm2; TE/TR: 
92.3/8250 ms; FOV=230x230; in-plane resolution: 1.8mmx1.8mm; 55 x 2mm con-
tiguous slices; acquisition time: 14.5 minutes).  

To process the data, a positive definite diffusion tensor was firstly estimated from 
the raw HARDI signal using the MedINRIA software (http://www- 
sop.inria.fr/asclepios/ software/MedINRIA), which projects the tensor manifold to its 
tangent plane at the origin to avoid negative or zero eigenvalues, which do not corre-
spond to a physical diffusion process. Based on the diffusion tensor eigenvalues (λ1, 
λ2, and λ3), the FA (defined in this paper as FADTI to avoid confusion) and MD 
(MDDTI) may be calculated using Equation 1: 

                        (1) 

Values of FADTI range from 0 (no directional dependence of diffusion) to 1 (diffusion 
along a single direction). In addition to modeling the HARDI signal with a single 
tensor, we applied the framework in [11] to the HARDI signal, computing the vox-
elwise tensor distribution function P - a pdf defined on all physiologically feasible 3D 
Gaussian diffusion processes (in the tensor space D) at each voxel that best describes 
the observed signal. In our current implementation, we assume cylindrical fiber tracts 
and exclude planar-shaped tensors. Thus, λ1≥λ2=λ3 for each individual tensor in this 
tensor space. Given any TDF P, the number of dominant fibers is estimated by exam-
ining the local maxima of the tensor orientation distribution (TOD) 
( ). The eigenvalues of each fiber can be calculated by com-
puting their expected values along the principal direction of this fiber.  In this paper, 
we will investigate two sets of eigenvalues, i.e., those of the 1st dominant fiber ( )  
and the voxelwise TDF-averaged eigenvalues ( ) (Equation 2). 

 
               (2) 

To obtain an overall assessment of the anisotropy in each voxel using the TDF 
framework, we propose the differential diffusivity (DD) ( ). 
To compare TDF-derived measures to those from standard DTI, we compute the 1st 
dominant fiber’s FA (FA1) and MD (MD1), as well as the TDF-averaged FA (FATDF) 
and MD (MDTDF) by using the eigenvalues defined in Eq.(2) .  

3   Results and Discussion 

3.1   The Relation between DTI-FA and Actual Individual Fiber Anisotropy 

We first assessed whether FA derived from standard DTI (FADTI) is an accurate 
measure of fiber anisotropy. Even though FADTI is usually intended to measure 
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white matter integrity, it in fact measures the compound effect of several factors, 
including the FA of individual fibers, the number of dominant fiber directions and 
partial volume effect from gray matter. Many of these will vary when the integrity 
of the fibers is not impaired, confounding its interpretation. Since any disease proc-
ess that affects white matter myelination will most likely affect individual fiber 
anisotropy, we here restrict ourselves to investigating how well FA measures the 
anisotropy of individual fibers. As the TDF approach can separate multiple domi-
nant fibers in one voxel and can determine their respective eigenvalues, we may 
answer the above question by investigating how well FADTI correlates with the FA  
 

Table 1. Correlations between DTI-derived measures and TDF-derived measures for the whole 
brain and for voxels with FADTI >0.2 (thus mainly white matter voxels). FADTI correlates poorly 
with actual individual fiber anisotropy computed from the TDF. Compared to FA, MDDTI corre-
lates better with actual individual MD. All correlations reach statistical significance (p<0.001). 

Correlations FADTI 
vs. FA1 

FADTI       
vs. FATDF 

FATDF    
vs. FA1 

MDDTI    

vs. MD1 
MDDTI  

vs. MDTDF 
MDTDF  

vs. MD1 
Whole brain 0.309 0.433 0.884 0.546 0.620 0.849 

Voxels with FADTI >0.2 0.155 0.285 0.827 0.440 0.509 0.821   

 
 
 
 
 
 
 
 
 
 
 
 
           (a)  DTI FA vs. TDF FA                   (b) DTI FA vs. Number of dominant fibers 

Fig. 1.  Comparison between TDF and DTI.  (a) Correlation between DTI FA and TDF FA. 
Here we plotted DTI-derived FA against TDF-averaged FA for the whole brain using one 
control subject as described in the methods section. FA derived from DTI is highly variable; if 
this measure does not accurately reflect the anisotropy of the component fibers, statistical 
power will be sacrificed when investigating group differences in white matter integrity using 
standard statistical testing (e.g., 2-sample t tests or multiple regressions). (b) DTI FA vs. Esti-
mated number of dominant fibers. FADTI values are related to the number of dominant fiber 
directions, determined by thresholding the corresponding TOD at two different values (0.15 and 
0.1) and counting the number of local maxima (e.g., at a threshold of 0.15, 61.2% of white 
matter voxels have one dominant fiber direction, 31.6% have two, and 7.2% have three or 
more). The mean number of dominant fiber directions for different ranges of FADTI is calcu-
lated by averaging the number of fiber directions within that range (e.g., when FADTI is within 
0.6 and 0.7, the mean number of dominant fiber directions is 1.529). Both curves showed a 
non-linear relationship - with an initial increase for the number of fiber directions, followed by 
a decrease as FADTI increases.  
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values of the underlying dominant white matter fibers. As more than one fiber direc-
tion may be present, we examined how well FADTI correlates with either FA1 or the 
overall FATDF. Table 1 shows the results of these correlations. Only moderate correla-
tions are found (0.471 for FADTI vs. FATDF, 0.352 for FADTI vs. FA1) when both gray 
and white matter are included. Correlations are much weaker (0.303 and 0.164. re-
spectively) when we only consider the white matter (operationally defined by a 
threshold of FADTI at 0.2), which is the tissue type FA was originally designed to 
investigate (FATDF correlates well with FA1). By contrast, correlations are better be-
tween DTI- and TDF-derived MD measures (Table 1) than for FA (e.g., 0.631 for 
MDDTI vs. MDTDF in the whole brain). These results support our hypothesis that in the 
white matter, FADTI correlates very poorly with the actual individual fiber anisotropy, 
and thus (1) may be suboptimal for detecting subtle disease processes that affect mye-
lination, and (2) may even be misleading, as low FA values may simply reflect the 
presence of multiple fibers. 

To visualize these correlations, we plotted FADTI against FATDF in Figure 1(a). 
Visual inspection suggests an overall trend of positive correlation between these two 
measures, but a closer look suggests that FADTI is highly variable in the white matter. 
Indeed, for voxels with at least one dominant direction, the mean value of FADTI is 
0.39 with a standard deviation (std) of 0.20, while those for FATDF are 0.74 and 0.16. 

The observation that FA derived from DTI has a higher variability in the white 
matter is important for clinical applications where group comparisons are often con-
ducted using a two-sample t test, or the general linear model. In these studies, the 
larger standard deviation of FADTI inevitably lowers the statistical power of a test with 
a fixed N (requiring more subjects to detect subtle changes). This further suggests that 
FADTI is a suboptimal measure of the underlying white matter myelination. 

3.2   The Relation between FADTI and the Number of Dominant Fiber Directions 

In the previous section, we showed that FADTI does not reflect the actual anisotropy of 
the underlying component fibers. In this section, we further explore the relation be-
tween FADTI and the number of dominant fibers. Here, we determine the number of 
dominant fibers by first thresholding the TOD at two different values (0.1 and 0.15) 
and counting the TOD local maxima exceeding these thresholds. As DTI is a single-
tensor model, one would assume that the correlations with individual fiber measures 
would decrease (be less accurate) as the number of dominant fibers increases. This is 
indeed the case for MD (Table 2). However, the same analysis on FA (Table 2) did not 
reveal a similar trend. Instead, here the correlations first increase (with the number  
of dominant fibers) then decrease. To understand this discrepancy, we plotted the 
number of dominant fibers against FADTI in Figure 1(b), which reveals a similarly 
complex picture. Indeed, the number of dominant fibers first shows an increase when 
FADTI increases, followed by a decrease for voxels with the highest FADTI values. To 
understand this result, we hypothesize that the highest FADTI values usually correspond 
to predominantly uni-directional white matter structures (e.g., corpus callosum). These 
tend to be very heavily myelinated and have fewer dominant fiber directions compared 
to white matter voxels with fiber-crossing (thus lower FADTI values). However, at  
low FADTI values, we have to consider at least two opposite factors, both of which 
tend to cause a decrease in FADTI (but opposite trends for the number of  
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Table 2. Correlations between DTI-derived measures and TDF-derived measures for different 
numbers of dominant fibers 

Correlations MDDTI vs. MDTDF FADTI  vs. FATDF 

Dominant fibers Whole brain Voxels with FADTI>0.2 Whole brain Voxels with FADTI>0.2 

Number=0 0.532 0.523 0.269 0.131 
Number=1 0.445 0.421 0.308 0.160 
Number=2 0.377 0.361 0.314 0.213 
Number≥3 0.317 0.307 0.298 0.211  

 
fiber directions): the partial volume effect from gray matter (causing a decrease in the 
number of dominant fibers as the volume ratio of gray matter increases), and the fi-
ber-crossing effect (causing an increase in number of dominant fibers as more fibers 
cross one another). The combination of these factors may explain the positive correla-
tion of FADTI and the number of dominant fiber directions for low-to-medium FADTI.  
Our results are also consistent with those in [14], where FA was positively correlated 
with fiber density index (which measures how many fibers go through a given voxel) 
in patients with glioblastoma. 

3.3   The Roles of Differential Diffusivity and Exponential Isotropy in 
Visualization 

Here, we note that the TDF-derived differential diffusivity (DD), similar to FA, has 
higher intensities in the white matter than in the gray matter. However, unlike FADTI,  
 

                                 (a)  FADTI                                                            (b) DD 

Fig. 2. FADTI is incorrectly depleted in regions with extensive fiber crossing (blue  box, inset). 
By contrast, the differential diffusivity (DD), derived using the TDF approach, separates the 
dominant fiber directions and their corresponding anisotropy measures. In the highlighted 
region, fiber-crossing is present (fibers of the corpus callosum mix with the corona radiata, and 
superior longitudinal fasciculus). Here FADTI values are lowered relative to those of neighbor-
ing white matter, For DD, the signal is more consistent with that of the fibers entering the high-
lighted region. 
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                     (a)TOD overlaid with FADTI                            (b) TOD overlaid with EI 

Fig. 3. Here, EI quantifies the overall isotropy of any given voxel, and highlights the gray 
matter instead of the white matter as in FA. EI, when overlaid on fiber directional information 
such as the TOD, may help visualizing HARDI data, offering information complementary to 
the FA map. Visually, the EI-TOD plot (right panel) provides a good representation of the 
spatial configurations of fiber tracts connecting with neighboring gray matter. Notice that in 
this figure, the TOD plot nicely resolves the fiber crossing in the Pons.  

it does not suffer much from a drop in values in voxels with fiber-crossing (Figure 2). 
Figure 3 shows that, compared to FA, EI appears to help in visualizing fiber orienta-
tion mappings such as the TOD plot, as it complements the information in the TOD, 
and visually provides a good representation of the spatial configurations of fiber tracts 
connecting with the neighboring gray matter. Notice that in this figure, the TOD plot 
nicely resolves fiber-crossing in the Pons.  

4   Conclusion 

In this paper, we showed that white matter integrity, measured using the fractional 
anisotropy (FA) derived from standard DTI, is imprecise as it depends on several 
quantities including (among others) the number of dominant fiber directions, the 
anisotropy of each component fiber tract, and partial volume effects from neighbor-
ing gray matter. When compared with TDF-derived anisotropy measures, the FA 
obtained from standard DTI does not correlate well with the actual anisotropy of the 
individual component fibers, and may be sub-optimal in detecting subtle disease 
processes that affect white matter myelination. Future imaging studies of white 
matter integrity may benefit from assessing the number of dominant fiber directions 
in each voxel, and their corresponding eigenvalues and anisotropy. The TDF 
framework is ideal for achieving these goals. Lastly, we also demonstrated that the 
exponential isotropy (EI), differential diffusivity (DD) and the tensor orientation 
distribution (TOD) (all novel concepts derived from TDF) may help in visualizing 
HARDI data, as they provide additional information complementary to measures 
obtained from standard DTI. 



852 L. Zhan et al. 

References 

1. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated 
by quantitative diffusion tensor MRI. J. Magn. Reson. B 111(3), 209–219 (1996) 

2. Le Bihan, D.: IVIM method measures diffusion and perfusion. Diagn Imaging (San 
Franc) 12(6), 133–136 (1990) 

3. Tuch, D.S.: Q-Ball Imaging. Magnetic Resonance in Medicine 52, 1358–1372 (2004) 
4. Tuch, D., Diffusion, M.R.I.: of complex tissue structure. PhD thesis, Harvard University-

Massachusetts Institute of Technology, Cambridge, Massachusetts (2002) 
5. Alexander, D.: Maximum entropy spherical deconvolution for diffusion MRI. In: Proceed-

ings of the 19th International Conference on Information Processing in Medical Imaging 
(IPMI), Glenwood Springs, CO, USA (2005) 

6. Hess, C.P., Mukherjee, P., Han, E.T., Xu, D., Vigneron, D.B.: Q-ball reconstruction of 
multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56, 
104–117 (2006) 

7. Jansons, K.M., Alexander, D.: Persistent angular structure: new insights from diffusion 
magnetic resonance imaging data. Inverse Probl. 19, 1031–1046 (2003) 

8. Anderson, A.: Measurement of fiber orientation distributions using high angular resolution 
diffusion imaging. Magn. Reson. Med. 54, 1194–1206 (2005) 

9. Özarslan, E., Shepherd, T., Vemuri, B.C., Blackband, S., Mareci, T.: Resolution of com-
plex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroI-
mage 31(3), 1083–1106 (2006) 

10. Tournier, J.D., Calamante, F., Gadian, D., Connelly, A.: Direct estimation of the fiber ori-
entation density function from diffusion-weighted MRI data using spherical deconvolution. 
NeuroImage 23, 1176–1185 (2004) 

11. Leow, A.D., Zhu, S., Zhan, L., de Zubicaray, G.I., Meredith, M., Wright, M., Toga, A.W., 
Thompson, P.M.: The Tensor Distribution Function. Magn Reson Med. 18; 61(1), 205–
214 (2009) 

12. Zhang, Y., Schuff, N., Jahng, G.H., Bayne, W., Mori, S., Schad, L., Mueller, S., Du, A.T., 
Kramer, J.H., Yaffe, K., Chui, H., Jagust, W.J., Miller, B.L., Weiner, M.: Diffusion tensor 
imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurol-
ogy 68(1), 13–19 (2007) 

13. Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in 
anisotropic systems by magnetic resonance Imaging. Magn. Res. Med. 42(3), 515–525 
(1999) 

14. Roberts, T.P.L., Liu, F., Kassner, A., Mori, S., Guha, A.: Fiber Density Index Correlates 
with Reduced Fractional Anisotropy in White Matter of Patients with Glioblastoma. AJNR 
Am J. Neuroradiol. 26, 2183–2186 (2005) 

 



G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I,  LNCS 5761, pp. 853–860, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Iterative Co-linearity Filtering and Parameterization of 
Fiber Tracts in the Entire Cingulum 

Marius de Groot1, Meike W. Vernooij2,3, Stefan Klein1, Alexander Leemans4,5,  
Renske de Boer1,2, Aad van der Lugt3, Monique M.B. Breteler2,  

and Wiro J. Niessen1,6 

1 Biomedical Imaging Group Rotterdam, Departments of Radiology and  
Medical Informatics, Erasmus MC, Rotterdam, the Netherlands 

marius.degroot@erasmusmc.nl 
2 Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands 

3 Department of Radiology, Erasmus MC, Rotterdam, the Netherlands 
4 Image Sciences Institute, University Medical Center Utrecht, the Netherlands 

5 CUBRIC, School of Psychology, Cardiff University, United Kingdom 
6 Imaging Science and Technology, Faculty of Applied Sciences,  

Delft University of Technology, the Netherlands 

Abstract. We present a method for the fully automated extraction of the  
cingulum using diffusion tensor imaging (DTI) data. We perform whole-brain 
tractography and initialize tract selection in the cingulum with a registered DTI 
atlas. Tracts are parameterized from which tract co-linearity is derived. The 
tract set, filtered on the basis of co-linearity with the cingulum shape, yields an 
improved segmentation of the cingulum and is subsequently optimized in an it-
erative fashion to further improve the tract selection. We evaluate the method 
using a large DTI database of 500 subjects from the general population and 
show robust extraction of tracts in the entire cingulate bundle in both hemi-
spheres. We demonstrate the use of the extracted fiber-tracts to compare left 
and right cingulate bundles. Our asymmetry analysis shows a higher fractional 
anisotropy in the left anterior part of the cingulum compared to the right side, 
and the opposite effect in the posterior part. 

1   Introduction 

The use of diffusion tensor magnetic resonance imaging (DTI) for analyzing brain 
microstructure is well established [1]. The diffusion tensor, estimated from multiple 
diffusion weighted image volumes, captures the local organization of the brain. The 
fractional anisotropy (FA), derived from this tensor, describes the microstructural 
tissue organization in terms of the degree of diffusion directionality [2]. Comparing 
differences between neuroanatomical structures across subjects requires one to estab-
lish correspondence between these subjects. This may involve a common white matter 
skeleton [3], or the identification of separating manifolds between white matter struc-
tures [4] for the projection of individual measures onto a reference frame. Compared 
to FA extraction, streamline tractography in the tensor field provides a richer descrip-
tion of the local white matter structure. Tractography based comparison between sub-
jects will therefore be more sensitive to subtle differences, provided, of course, that 
the abundance of data in the tracts can be interpreted. 
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In this paper, we develop a method to automatically analyze the cingulum in a 
large cohort using streamline tractography.   

The Cingulum. The cingulum is a tube-like structure that courses from the 
hippocampal formation and bends around the ventricles and the corpus callosum (cc) 
up to the genu of the cc. The anterior cingulate is thought to be primarily involved in 
executive functioning, whereas the posterior cingulate is assumed to play a role in 
memory processes. Its role in cognitive functioning has generated a large interest in 
the analysis of various aspects of the cingulum. Due to high curvature in its local 
anatomy, the cingulum is difficult to reconstruct with streamline tractography past the 
bending point around the splenium of the cc [5]. This may explain why most previous 
research focused on tracking only the anterior part of the cingulum. Research aiming 
to study the cingulum with the use of tractography in multiple subjects, has often 
relied on manual ROI definition to allow tract selection (e.g. [6-8]). O’Donnell et al. 
use a spectral embedding function to identify tracts similar to a template tract [9]. 
Their ‘tract based morphometry’ can robustly capture tracts in the anterior cingulate 
bundle, but has not been able to identify tracts when every tract only overlaps partly 
with the anatomical structure of interest. Depending on DTI data quality, the high 
curvature in the cingulum may pose a particular challenge for tractography. We 
propose an automated method that does not rely on individual tracts coinciding with 
the entire cingulum, but rather on extracting the parts of all tracts that describe at least 
some part of the cingulum. The complete filtered set of all (partial) tracts then has 
more power to capture the actual cingulum anatomy, in particular the posterior part. 

2   Methods 

In short, after performing whole-brain tractography, we propose to identify partial 
tracts that make up the cingulate bundle with the use of a registered anatomical atlas. 
We derive a parameterization, which allows for a more accurate selection of tracts 
that belong to the cingulum and facilitates inter-subject comparison. The iterative 
approach, outlined in Fig. 1, consists of the following steps: tract selection, derivation 
of the parameterization, projection of tracts and co-linearity filtering. In the methods 
description, all parameters that need to be set are printed in italic. 
 

Tractography and Atlas Registration. Deterministic streamline tractography is  
performed using the ‘ExploreDTI’ package (www.exploredti.com) [10]. Tracts are 
described by cubic B-splines, and stored as equally spaced points. We adopted the 
neuroanatomical ICBM-DTI-81 atlas of Mori et al. [11] for the initial tract selection. 
This atlas is created by manual segmentation of 50 neuroanatomical structures. We 
nonrigidly registered the atlas’ FA image towards all subjects’ FA image using 
‘elastix’, a publicly available software package that uses an efficient stochastic gradi-
ent descent optimization method [12]. The registration is used to transform the atlas’ 
labels to each subject’s native space, resulting in an initial three-dimensional segmen-
tation of the cingulate bundle. In following iterations, an improved segmentation is 
used, which is derived after filtering for co-linearity. 
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Tract Selection. The cingulate template is used to identify tracts running inside the 
cingulum. Owing to the absence of nearby co-linear structures, we assume that fiber 
tracts which are partially within the cingulum before they divert due to, e.g., partial 
voluming effects, can be included in the analysis [9]. Tracts are cut off when leaving 
the segmented region unless they reenter the segmentation within a maximum dis-
tance (maxDist). In this case they are considered part of the cingulum and included in 
the filtered tract set. A tract-density map is generated from the identified tracts at a 
1mm cubic grid, indicating the number of cingulum tracts visiting each voxel.  
 

Derivation of the Centerline and Projection of Tracts. By extracting the centerline 
of the cingulum, we establish a parameterization axis for the tract set. We achieve this 
by treating the tract-density map as a reciprocal cost image, and find the minimum 
cost centerline from one end of the cingulum to the other. To bridge potential gaps in 
the tract sets, we allow background voxels to be part of the centerline, but only at high 
costs (backgroundWeight). The parameterization should permit direct inter-subject 
comparison and should therefore not depend on individual performance of the fiber 
tracking. Especially at the far ends of the cingulum, tracts are often hard to recon-
struct, leading to decreased tract density, which in turn could lead to problems in es-
tablishing correspondence across subjects. We therefore add the registered atlas mask 
to the tract density map with a fixed weight (atlasWeight), prior to converting it to the 
cost image. In dense regions, this has little effect, but in sparse regions, this allows to 
find the centerline aided by the registered atlas. The centerline is smoothed by fitting 
a B-spline with a fixed number of control points (controlPoints). The parameteriza-
tion is then super sampled using parSegments equally spaced segments. 

We then use the planes normal to the parameterized centerline to associate every 
tract segment to one of the parameterization segments.  
 

Co-linearity Filtering. Because of the linear structure of the cingulum, it is safe to 
assume tracts running inside the cingulum are to a certain extent co-linear. Therefore, 
for every tract segment, we use the local direction to calculate co-linearity defined as 
the absolute dot product of the tract and parameterization segment direction vectors. 
A filtering step is then applied to exclude tract segments that are not co-linear (less 
than minColin) with the parameterization for a prolonged segment length (maxDist). 
After filtering, we construct a binary segmentation of all voxels containing tract(s).  
 

Iterative Approach. The binary tract mask can be regarded as an improved segmen-
tation of the cingulate bundle. It has been allowed to expand, by tracts locally exiting 
and re-entering the previous segmentation. And it has been allowed to shrink, by the 
local absence of co-linear tract segments. The mask is used as an updated segmenta-
tion for the entire procedure. The whole procedure is performed iteratively, until ei-
ther follow-up iteration masks disagree on less than a fixed number of voxels (max-
Voxels), or when a maximum number of iterations (maxIt) has been performed.  
 

Statistical Analysis. Measures describing tracts and tract locations, such as FA, tract 
curvature etc, are at this point associated with a single linear parameterization and can 
thus be compared across subjects. In our application study, we chose to study hemi-
spheric asymmetry in FA of the cingulum. The FA is a well-established measure and 
allows comparison of our results with previously published findings.  
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Fig. 1. Schematic overview of the tract selection procedure 

3   Experiments and Results 

DTI data from the population based Rotterdam Scan Study is used [13]. From this 
prospective cohort study, a random subset of 500 datasets was selected. Mean age of 
participants was 54.9 years, with an SD of 5.52; 52 percent of participants was fe-
male. All subjects were scanned on a 1.5 Tesla GE MRI system, with the following 
DTI acquisition parameters: 25 diffusion gradient directions, FOV= 210x210 mm2, 
scan matrix= 96x64 (zero padded in k-space to 256x256), slice thickness 3.5 mm, 35 
contiguous slices, TR= 8000 ms, TE= 68.7 ms, b-value= 1000 s/mm2 and 3 volumes 
acquired without diffusion weighting. Datasets were preprocessed using the FDT 
toolbox in FSL [14] to correct for head motion and Eddy currents and to calculate FA 
images for the atlas registration. Atlas registration was performed using a 10 mm B-
spline control point spacing with mutual information as similarity measure and took 8 
minutes per subject on a single standard CPU. Streamline tractography was performed 
seeding tracts in a 2 mm cubic grid; and ending tracts when FA dropped below 0.2, 
taking 2 minutes per subject to compute. 
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a B  

Fig. 2. (a) Histogram showing the number of missing segments per subject. (b) Most problem-
atic tract set identified in histogram. The dotted line indicates the centerline; parameterization 
position is indicated by color, parameterization legend in Fig. 3(b). 

a  B  

Fig. 3. (a)Typical tract set. The dotted line indicates the centerline; parameterization position is 
indicated by color. (b) Mean parameterization of the left and right cingulate bundles, serving as 
parameterization legend for Fig. 2(b), 3(a), 4 and 5. Thin lines indicate projections. 

 

The applied setpoints have been determined empirically by visual inspection of re-
sulting tract sets. The maxDist length of a tract part that is allowed outside the seg-
mentation, as well as the maximum non-collinear length has been set to 3mm. The 
backgroundWeight, allowing the parameterization to cross over gaps, is set to 5 times 
the maximum costs encountered in the individual cost image. The atlasWeight is set 
to 1. The number of controlPoints of the parameterization is 15, later super sampled 
to 200 parSegments. Tract segments need to have a minColin of 0.8 to be considered 
co-linear with the parameterization. Iteration stops once the tract mask changes at 
most maxVoxels, 10, in a single iteration, or after reaching maxIt, 5, iterations. Itera-
tive filtering took 9 minutes to compute; per subject per hemisphere. 

The tract selection method does not require a tract to be mapped at every parame-
terization segment. Fig. 2(a) shows a histogram of the number of associated parame-
terization segments per subject. Ideally, all subjects should have no missing segments, 
this is however not the case. For the worst performing subject, the rightmost element 
in Fig. 2(a), the tract set is shown in Fig. 2(b). The procedure identified a very limited 
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number of tract segments; yet it did not make any apparent mistakes in corresponding 
the tract set. A typical tract set is shown in Fig. 3(a). 

The FA is compared between the left and right cingulum for every segment of the 
parameterization, using a two-tailed paired t-test. Subjects therefore need to have a 
mean FA value associated with a particular segment on both their left and right cin-
gulum. Failure in either or both hemispheres leads to exclusion of that subject from 
the analysis at that particular parameterization segment. Fig. 4(a) shows the number 
of subjects included for every tract segment. Resulting log(p)-values, shown in Fig. 
4(b), show highly significant differences in both the anterior and posterior part of the 
cingulum. Mean parameterization coordinates are presented in Fig. 3(b) for reference, 
the mean FA along the left and right cingulate bundles is presented in Fig. 5(a).  

As we are studying hemispheric asymmetry, it is important to rule out asymmetric 
influence of the atlas. To verify our findings, we flipped the atlas over the sagittal 
plane and repeated the registrations to the subjects' FA images. These new registra-
tions were used to again measure FA profiles in cingulate bundles for all subjects. 
The blue lines in Fig. 5(a) present the mean FA profiles for left and right cingulate 
bundles, extracted with the flipped atlas, where left means subject-left. The profiles 
appear nearly identical to the original results, ruling out a bias by the atlas.  

To investigate robustness of our findings, we evaluated the mean left − right FA in 
a subset of 50 subjects, repeatedly drawn random from the full set; shown in Fig. 5(b).  

 
  

 
a 

 
b 

Fig. 4. (a) Number of complete cases, i.e. subjects with FA measurements in both left and right 
cingulate bundle, tested per parameterization segment. (b) Significance per tract segment, re-
ported in log(p)-values. 

  

 
a 

 
b 

Fig. 5. (a)  Mean FA in left and right cingulate bundles, compared to mean FA obtained using a 
flipped atlas. (b) Robustness of left-right FA difference, measured by 200 random draws of 50 
subjects from the total set of 500 subjects. 
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4   Discussion 

We have developed a novel method for selecting tracts of interest from a whole brain 
tract set. The approach is especially useful in large datasets and is aimed at investigating 
tracts that are difficult to follow with more conventional region of interest tract selection 
approaches. The present work allows tracking of tube-like structures such as the cingu-
late bundle or the fornix. We acknowledge that the method contains a number of thresh-
olds, albeit most of them having a physical, intuitive meaning, which have to be prede-
fined. These thresholds were determined by qualitative evaluation of the resulting tract 
selections. To validate our method we compare our analysis results with published find-
ings. To this extent we have studied inter-hemispheric differences in cingulate FA using 
a large sample of 500 subjects from the general population. We have shown that our 
findings are not caused by a bias in the initial atlas segmentation. In the anterior part of 
the cingulum, we observe a very significant difference with the FA being higher left 
than right. This is in agreement with results from other analyses that also used some 
form of tract selection [6, 7, 9]. Less is known, however, for the posterior cingulate. 
Malykhin et al. [7] selected tracts in this region in 24 healthy subjects. They found no 
significant difference between left and right tracts, possibly lacking statistical power. As 
the anterior and posterior cingulate are involved in different processes, the left/right 
difference in FA between the anterior and posterior cingulum might be hypothesized to 
reflect a difference in function between left and right hemispheric processes.  

We tested for differences using a paired t-test on the parameterization-segment 
level, and reported p-values for every segment. To correct p-values for the number of 
tests performed (we tested on 200 segments), a permutation based correction method 
would have been appropriate [15]. Applying a Bonferroni correction results in an 
overly conservative upper bound to the multiple comparison correction, but still 
leaves our findings highly significant, as indicated by the green threshold in Fig. 4(b).  

The method allows capturing the difficult connection between the posterior and an-
terior cingulate, but it does so with varying success along the pathway. For the most 
problematic segment, about half of the subjects give problems in either or both of the 
cingulate bundles, as shown in Fig. 4(a).  

5   Conclusion 

We have developed a fully automated method for the robust extraction and parame-
terization of the cingulum including the posterior cingulate. As an example applica-
tion, we studied asymmetry of FA in the cingulum. Our findings in the anterior part, 
where FA was found to be higher left than right, are in agreement with previous re-
search. Our analysis also found right higher than left FA in the posterior part.  
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Abstract. Estimating the complete set of white matter fascicles (the
projectome) from diffusion data requires evaluating an enormous number
of potential pathways; consequently, most algorithms use computation-
ally efficient greedy methods to search for pathways. The limitation of
this approach is that critical global parameters - such as data prediction
error and white matter volume conservation - are not taken into account.
We describe BlueMatter, a parallel algorithm for global projectome eval-
uation, which uniquely accounts for global prediction error and volume
conservation. Leveraging the BlueGene/L supercomputing architecture,
BlueMatter explores a massive database of 180 billion candidate fasci-
cles. The candidates are derived from several sources, including atlases
and mutliple tractography algorithms. Using BlueMatter we created the
highest resolution, volume-conserved projectome of the human brain.

1 Introduction

The white matter of the human brain comprises more than 150km of long-range
myelinated connections [1]. Understanding the architecture of these long-range
projections (the projectome) is important for understanding brain function [2].
Diffusion weighted imaging fiber tractography (DWI-FT) is the only non-invasive
method for studying the human brain projectome.

While there has been great progress in developing fiber tracking techniques
[3,4,5], there is wide agreement that current methods fail in many specific cases
[6,7,4]. A limitation is that current algorithms find pathways using greedy tech-
niques; that is, the algorithms make decisions based on individual tracts without
considering the entire projectome. Further, current algorithms do not optimize
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the projectome to fit the original diffusion data. Finally, they ignore important
physical constraints, such as the volume occupied by the estimated fascicles.

We introduce the BlueMatter algorithm to address these limitations. Blue-
Matter takes as input fascicles derived from multiple tractography algorithms.
It searches for an optimal combination of these fascicles (the projectome) sub-
ject to two error terms. The first term compares the predicted and measured
diffusion-weighted images. We refer to this constraint as diffusion-fitting (see
also [8,9]). The second term accounts for an upper limit on the fascicle volume.
We refer to this constraint as volume regularization; this term is an important
physical constraint that helps resolve the ill-posed inverse problem of finding a
projectome that minimizes diffusion-fitting error.

Accounting for diffusion-fitting and fiber count was discussed by Zhang and
Laidlaw [10]; however, their technique did not address fascicle volume estimation
and was limited to fascicles derived from deterministic algorithms.

BlueMatter is the first algorithm to produce a human brain projectome that
combines diffusion-fitting and volume regularization. BlueMatter combines fas-
cicle estimates from deterministic and stochastic DWI-FT algorithms; uniquely
integrating algorithms with different strengths. Because BlueMatter has a very
large and complex search space, the algorithm is highly parallelized and takes ad-
vantage of modern distributed computing architectures. Using this algorithm on
a 2048-processor BlueGene/L supercomputer with 0.5 TB of memory we create
the highest resolution, physically plausible projectome to date.

Table 1. Symbols and terms

Name Description (Values)
C Candidate fibers collected from many tractography algorithms
P , Pi Current projectome estimate and portion of estimate intersecting ith voxel
E Total projectome estimate error
E1 Error between diffusion data prediction and measurement
E2 Error from over filling voxels with white matter estimates
λ Balance between E1 and E2 to compute E (0.2)
Ak,i Diffusion attenuation measurement along the kth axis at the ith voxel
Âk,i Predicted diffusion attenuation along the kth axis at the ith voxel
νC,i, νU,i Estimated volume of a voxel attributed to CSF and unoriented tissue
νf,i Estimated volume of a voxel attributed to the fascicle tissue
νT Target volume of white matter
dC , dU Diffusivity in all directions within canonical CSF and unoriented tissue

compartments (3.1, 0.85 μm2/ms)
da, dr Diffusivity along the axial axis and radial axes within a canonical white

matter fascicle compartment (2.0, 0.275 μm2/ms)
Df Canonical white matter diffusion tensor with eigenvalues da,dr and dr,

and first eigenvector oriented with fascicle tangent
σ Standard deviation of the data estimated across all brain voxels
τL Convergence threshold for local improvements (100 in 5000 iterations)
τG Convergence threshold for global improvements (50 in 50 iterations)
ΔN Amount of time to find their next neighbor state (5 minutes)
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2 Algorithm

BlueMatter searches a massive collection of fascicle candidates C to select a
projectome P . The quality of a projectome is evaluated by a global error function
E. C is intended to be very large and contain a superset of the real fascicles. The
collection C must be refined because it (a) contains many implausible fascicles,
(b) reflects the biases of the generating tractography algorithms, and (c) is not
optimized to fit the data or satisfy volumetric constraints. BlueMatter leverages
the BlueGene/L architecture to search for an optimal projectome estimate from
the enormous space of possible projectomes within C.

Table 1 defines key symbols and terms.

Error Terms. The BlueMatter algorithm penalizes a projectome, P , with a
global error metric, E,

E = (1− λ)E1 + λE2. (1)

The error E is a convex combination of E1, which measures the difference be-
tween the predicted and observed diffusion weighted images, and E2, the amount
the volume is overfilled. The parameter λ modulates the balance between E1 and
E2 and is selected empirically (Section 3). We seek solutions that predict the data
to within the measurement noise; we also seek solutions with no more fascicles
than a given voxel volume allows.

The projectome estimates the amount of volume in a voxel occupied by fasci-
cles and the remaining space is then filled with isotropic diffusion according to
the ratio νU,i/νC,i. The diffusion sensitization strength b is set by the MRI scan-
ning sequence. The MRI sequence also specifies the axes of diffusion sensitivity
or qk, where k ∈ [1,K].

We define the diffusion estimation error, E1, and the local volume overfilling
error, E2, at voxel i as

E1,i = 1
K

∑K
k=1

(Âk,i−Ak,i)2

σ2 ,

E2,i =
{

0 if
∑

f∈Pi
νf,i < νT∑

f∈Pi
νf,i − νT otherwise.

(2)

Both E1 and E2 are the sums across voxels of E1,i and E2,i, respectively. E1
is normalized by the variance of the noise and thus represents error in units of
data variance (or transformed into standard deviations). E2 is in units of mm3.

We compute E1 based on a model for the predicted diffusion weighted image
attenuation at voxel i and direction k, Âk,i. BlueMatter uses the powder aver-
age of the separate compartments [11]. This term can be calculated from the
projectome fibers passing through this voxel, Pi

Âk,i =
A0,i

νC,i + νU,i +
∑

f∈Pi
νf,i

(νC,i exp(−bdC) +
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νU,i exp(−bdU ) +
∑
f∈Pi

νf,i exp(−bqT
k Df,iqk)). (3)

Parallel Candidate Generation. The set of candidate fibers is created by
combining estimates from multiple tractography algorithms. It is intended that
C contain a superset of fascicles; hence, we use a large candidate set derived
from STT [3], TEND [12] and ConTrack [7] algorithms.

Projectome Search Overview. BlueMatter searches through C using a paral-
lel stochastic hill climbing algorithm with multiple-restarts. A standard steepest
ascent hill climbing algorithm would take the current state and every one of its
neighbors; and choose the next state to be the neighbor that increases the inverse
of the cost function the most [13]. By contrast, stochastic hill climbing algorithm
only looks at a subset of the current state’s neighbors and selects the next state
that provides the largest improvement. For large neighborhoods and high data
dimensionality, stochastic hill climbing substantially reduces the search time or
in this case makes search feasible.

To reduce the likelihood of being stuck in local maxima, ridges or plateaus,
groups of BlueGene/L processors are devoted to independent stocastic hill climb-
ing processes (multiple-restarts) and the best resulting projectome is selected
after each group converges. This follows the rule of thumb that when the terrain
of the cost function is unknown it is beneficial to devote resources to cover-
ing more variable states rather than designing complex local movements. Thus,
BlueMatter simultaneously exploits inherent data parallelism in the stochastic
hill climbing algorithm and process parallelism in the multiple-restart approach.

Stochastic Search Implementation. For each restart, a subset of processors
is selected to search the current projectome neighborhood. Each processor within
a subset is assigned a random samples of C. The processors perform the following
sequential optimization procedure for a specified amount of processor time.

To start, each processor selects a random voxel group. The processor then
alternates between fiber addition and subtraction operations using the selected
group. During addition, fibers that intersect the current voxel group are sampled
from C. If the addition reduces the total error, the fiber is retained. During
subtraction, fibers that intersect the voxel group are randomly sampled from P .
If removing the fiber reduces the total error, the fiber is deleted. The algorithm
alternates between addition and subtraction for a voxel group until the error
reduction slows below a predefined threshold τL. After local improvement slows,
a new voxel group is selected and the local optimization begins again.

Each processor optimizes its subset of candidate pathways, and processors
within the subset exchange their current projectome estimate. After a small
amount of processor time ΔN has passed each processor points to a unique
guess for the next projectome. The projectome with the lowest error is selected
as the next state.

The volume constraint limits the size of the projectome state information,
which is exchanged between processors quickly. Efficient communication is cru-
cial to achieving the benefit of the massive and distributed database.
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Multiple-Restart. The multiple-restart is achieved by devoting multiple sets
of processors to independent runs of the stochastic hill climbing algorithm. When
the rate of improvement of projectome error of each of the separate stochastic
hill climbing groups slows below a threshold τG, the groups have converged to
a projectome estimate. The projectome with the least error is selected as the
optimal projectome.

The Initial Projectome. BlueMatter’s initial projectome estimate is a subset
of the STT and TEND fibers in the Mori human white matter atlas [14]; these
are selected to minimize the error terms (see 2). This is a very small subset of
candidate fibers (10,000) that are repeatedly found with previous algorithms.

3 Results

We first used a synthetic data set to demonstrate that BlueMatter recovers
ground truth orientation and volume from diffusion-weighted images. We then
used BlueMatter to estimate a projectome in human DWI data.

Synthetic. The synthetic dataset (Figure 1A) consists of two fascicle bundles.
One bundle (blue) fills 60% of each voxel with fibers coherently organized in
one direction. A second bundle (green) occupies 40% of each voxel with fascicles
oriented perpendicular to the blue bundle. At the intersection, voxels are 100%
filled with white matter from the two bundles. After accounting for the white
matter, unfilled space within the bundles is filled with isotropic diffusion of the
same mean diffusivity as white matter. The ends of both bundles are capped
with voxels containing isotropic diffusion at the mean diffusivity of gray matter.
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Fig. 1. Projectome estimation from synthetic data. (A) A synthetic data set compris-
ing two fiber groups (green and blue). (B) A 3D view of the fascicle candidate database,
C. (C) The BlueMatter projectome estimate P accurately recovers the synthetic fas-
cicle ratio. (D) Small fascicle diameters produce a projectome with more accurate
volume estimates. If probabilistic candidate pathways are excluded from C, the error
is significantly worse (black diamond). (E) Increasing λ has a negligible effect on the
diffusion-fitting error, E1 (not shown) and significantly reduces E2. Blue arrows (D
and E) indicate the BlueMatter parameters used in the experiments.
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The other voxels in the 20x20x20 volume are modeled as CSF. Diffusion data
were simulated using the partial compartment model (Eq. 1) measured in six
directions (plus a b=0 measurement) with 8 repeats. Rician noise with the same
standard deviation as the data used in Section 3.2 (σ=48) was added to the
magnitude attenuation signal.

Figure 1B shows the candidate set C derived using the methods described in
Section 2. The fascicles are colored according to which ends they reach with blue
and green matching the original; red fascicles are wrong turns. The candidate
fascicles do not have the correct volume ratios and include incorrect fascicles.
After running BlueMatter on this small synthetic data set, the proper blue-green
ratio is returned and only a small number of wrong turns remain (Figure 1C).

We used this synthetic data to set (a) the fascicle diameter and (b) the bal-
ance between the two error terms. We evaluated the accuracy of the volume
match by varying the modeled fascicle diameter (Figure 1D). A small fascicle
diameter, on the order of 200μm (blue arrow), produces a good match to the
synthetic projectome volume. Including probabilistic candidate pathways is im-
portant to achieving an accurate match. Without these candidate fascicles the
volume estimate is significantly worse (black diamond).

Altering the balance between the diffusion-fitting and volume error terms has
a negligible effect on the diffusion-fitting error (not shown). Setting the balance
parameter, λ, reduces the volume error (E2) error. We selected λ = 0.2 (blue
arrow) for the experiments. With these parameters, BlueMatter recovers the
volume and orientation of the synthetic white matter.

Human Projectome. In the second experiment we used BlueMatter to es-
timate a human projectome. First, 44,000 cortical and subcortical gray matter
voxels were semi-automatically identified using FAST [15] and FIRST [16]. A set
C containing 180 billion candidate fascicles was constructed. The set included
fascicles from each and every gray matter voxel (Section 2). The BlueMatter
search algorithm converged on a projectome with 200,000 fascicles after 9 days
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Fig. 2. Comparison between the BlueMatter and TEND human projectomes. (A)
Diffusion-fit errors E1 for BlueMatter (blue) and TEND (red) projectomes. BlueMat-
ter reduces diffusion-fit error in most voxels. (B) A mid-temporal sagittal section of
the human brain; the color overlay shows voxels overfilled by at least 2x (red) and 3x
(orange) with the TEND projectome. The BlueMatter projectome only overfills two
voxels (blue) by 2x and none by 3x.
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BA

Fig. 3. Important fiber tracts within the BlueMatter projectome. (A) Pathways project
from corpus callosum to lateral surface (blue). (B) Optic radiation (blue) connecting
lateral geniculate nucleus (red) to primary visual cortex.

of compute time on the 2048-processor BlueGene/L supercomputer. We also
computed a projectome using the TEND algorithm (see Izhikevich et al. [17]).
The TEND projectome comprises 300,000 fascicles.

To estimate the white matter volume in each voxel of the TEND projectomes,
we searched over fascicle model diameters (20-300μm) to find the diameter that
has the lowest diffusion-fit error within the white matter core (linearity > 0.3).
The optimal TEND diameter is the same as BlueMatter’s diameter (200μm).

Using the optimal fascicle diameter, we could estimate the diffusion-fitting
(E1) and volume conservation (E2) errors for both algorithms. The mean E1
errors are 2.4 (mode 2.1) and 2 (mode 1.8) for the TEND and BlueMatter pro-
jectomes, respectively (Figure 2A). Using a scatter plot (not shown), we verified
that BlueMatter E1 error is better at nearly every voxel. The smallest possible
mean E1 error can be found by fitting a tensor to the data at each voxel: This
lower bound is 1.7 (mode 1.6), which is slightly better than the BlueMatter fit.

We assessed the volume conservation error by counting the number of over-
filled voxels (Figure 2B). The BlueMatter projectome has only 12 (200) voxels
overfilled by more than 3x (2x); the TEND projectome has 3500 (8200) over-
filled voxels. We explored compensating for TEND’s overfilling by reducing the
fascicle diameter. Reducing the diameter to 100μm reduces the overfilling error
to match BlueMatter, but the mean E1 value rises to 2.7 and many core white
matter voxels, such as the corona radiata, are emptied of white matter.

Important Fiber Tracts. The BlueMatter human projectome contains the
major intra-hemispheric white matter pathways as reported by Wakana et al.
[14]. The projectome also contains fasciculi not present in the atlas a) fascicles
that connect the corpus callosum to lateral cortex (Figure 3A, blue) and b) optic
radiation (Figure 3B). These tracts are rarely found using local, greedy methods.

4 Conclusion

The BlueMatter algorithm searches across a pool of 180 billion candidate fasci-
cles, drawn from many sources, to find a projectome. The highly parallelized im-
plementation takes advantage of the 2048-processor BlueGene/L supercomputer.
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BlueMatter is the first algorithm that simultaneously fits two global parameters
of the projectome: the diffusion data (E1) and volume conservation (E2). The
algorithm successfully identifies the optic radiation and other pathways that are
frequently missed by local, greedy methods.
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Abstract. We propose a method to create a dual tensor atlas from mul-
tiple coregistered non-HARDI datasets. Increased angular resolution is
ensured by random variations of subject positioning in the scanner and
different local rotations applied during coregistration resulting in dis-
persed gradient directions. Simulations incorporating residual coregistra-
tion misalignments show that using 10 subjects should already double the
angular resolution, even at a relatively low b-value of b = 1000 smm−2.
Commisural corpus callosum fibers reconstructed by our method closely
approximated those found in a HARDI dataset.

1 Introduction

The white matter (WM) structure of the human brain can be studied by means
of Diffusion Weighted Magnetic Resonance Imaging (DW-MRI). The diffusion is
measured in multiple directions, from which the principal diffusion orientation
field is reconstructed [1]. Fiber tracking throughout this field allows reconstruc-
tion of WM bundles, such as the corpus callosum [2].

The validity of local comparison of WM properties between different co-
horts depends on good inter-subject anatomical correspondence. Variability in
anatomical correspondence can be minimized by coregistration of the data on
voxel basis. Both an affine and a non-rigid transformation can be computed to
compensate for global and local variability, respectively [3].

Coregistration of data requires an appropriate reference space to be chosen.
The reference space to which the subjects are transformed, can either be repre-
sented by one subject out of the cohort, or by an atlas that is built by averaging
coregistered datasets. The ICBM FA atlas was generated by averaging 81 affinely
transformed DTI datasets [4]. Recently, several DTI atlas-building approaches
have been proposed with some yielding single subject-based atlases, e.g. [5], and
others yielding population-based atlases [6].

By coregistering the data to such an atlas, fiber tracking can be performed in
atlas space, which allows comparing tract statistics between patient and control
groups [7]. However, tracking is known to be biased in regions where fibers are
crossing. Fiber tracts may either deviate or truncate in such regions, due to
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inadequate modeling of the diffusion process by a single tensor. Fiber tracking
through complex tissue regions is facilitated by higher order diffusion models,
such as a dual tensor model or q-ball [8,9]. In order to apply such complex
models, High Angular Resolution Diffusion Imaging (HARDI) data needs to be
acquired [10]. One of the properties of a HARDI-acquisition is a high number of
gradient directions, being more than 100. Clinical data is generally sampled at
6-45 gradient directions.

The design of a comparative study to find structural changes along fibers may
be regarded as sampling a high-dimensional space, spanned by respectively three
spatial coordinates, gradient directions and included subjects. Let us assume that
the amount of available scanning time is constant, such as in a large population
study in which only a few minutes of acquisition time is reserved for DW-MRI.
In order to reduce bias in fiber tracking, one might prefer to acquire HARDI-
data, yielding a denser sampling along the gradient axes. A fixed-time constraint
implicitly imposes a lower sampling density along either the spatial or subject
axes. Both are generally unacceptable, since not only small anatomical structures
but also statistical power in the comparison need to be retained. Therefore,
acquiring HARDI-data for clinical studies is not always realistic, as scanning
time needs to be increased or scanner hardware needs to be upgraded to facilitate
a higher SNR. Also, ongoing studies with conventional DW acquisition protocols,
may not comply with the previously mentioned criteria.

In this study, we propose a method to fit a higher order diffusion model to a
cohort of coregistered non-HARDI data. We consider the diffusion attenuation
profiles of multiple subjects as realizations of one underlying fiber distribution.
After non-rigid coregistration of the datasets, the resulting signal profiles are
gathered to generate an artificial HARDI-dataset (disregarding the low b-value),
with a high sampling density along the gradient axes. First, simulations in-
corporating residual coregistration misalignments are used to demonstrate the
potential increase in angular resolution. Second, a dual tensor model is fitted to
the data to generate a dual tensor atlas. We expect that in this atlas, tracking
will be as accurate as in HARDI-data.

2 Method

2.1 Dual Tensor Model

We propose to estimate a dual tensor model from non-HARDI data of multiple
subjects, with the purpose of precisely estimating two independent diffusion
orientations per voxel. We assert a model for the diffusion weighted signal Sj(qj)
of a subject j, with two tensors combined with an isotropic compartment:

Sj(qj)
Sj,0

=f1exp
(
−qT

j D1qj

)
+(1−f1−fiso) exp

(
qT
j D2qj

)
+fiso exp

(
−qT

j qjDiso

)
.

(1)
Here Sj,0 is the signal for subject j measured without diffusion weighting and
f... are the normalized volume fractions, while Diso is the isotropic diffusion
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constant. The vector qj =
√
bgj reflects the diffusion weighting b in gradient di-

rection gj. The diffusion tensors are spectrally decomposed, D1,2 = R1,2ER1,2,
with E = diag

(
λ‖ λ⊥ λ⊥

)
being the eigenvalue matrix with axial and planar

diffusion values (assuming axially symmetric tensors). The two rotation matrices
R1,2 are parametrized using Euler angles α1−4. The vector of eight parameter
values θ =

(
λ‖ λ⊥ α1−4 f1 fiso

)
is estimated in a least-squares sense.

2.2 Simulating Variation in the Cohort

A cohort of subjects that is studied for epidemiological processes or pathology is
carefully defined by setting precise inclusion criteria. Thus, undesirable variations
unrelated to the process of interest are minimized and may include handedness,
sex, age and education [11]. Remaining variations are to be seen as normally dis-
tributed axial and planar diffusion values. Anatomical variations between subjects
are apparent as differences in size and position of WM bundles. Non-rigid coreg-
istration of the data accounts for the majority of these differences, residual mis-
alignment of the principal diffusion direction was found to be 20◦ [12,13].

In an experiment on synthetic data, the expected angular resolution (i.e. the
absolute error in the angle between the major axes of the tensors) will be com-
puted, as a function of the number of included datasets. The abovementioned
variations are incorporated by generating a signal profile per subject with nor-
mally perturbed eigenvalues and angles (using equation 1). Also, Rician noise is
included to distort the simulated data. Gradient directions are randomly rotated
per subject (see section 2.3). The parameter vector θ is subsequently estimated
on the combined data of multiple subjects. In this experiment, a diffusion weight-
ing of b = 1000 smm−2 is used to reflect our conventional clinical protocol.

2.3 Building a Dual Tensor Atlas

Coregistration. The DWI datasets of multiple subjects need to be transformed
to a common reference space. In this study, a population-based atlas is build.
To generate this atlas, all datasets are first affinely coregistered to the ICBM
FA template [4]. As an intermediate step, we construct a (single tensor) DTI
atlas that contains the full diffusion information [6]. The original DWIs were
coregistered to our DTI atlas using an algorithm based on a viscous fluid model
and optimization of mutual information as the coregistration criterion [12]. This
coregistration consists of a combination of an affine and a non-rigid transfor-
mation to correct for global and local morphological differences, respectively.
The effect of deformation discontinuities is removed by smoothing of the final
deformation field with a Gaussian kernel of FWHM = 3mm.

Transformation. A diffusion-weighted image describes the MR signal attenu-
ation due to diffusion in a specific gradient direction. If it is rotated, in our case
during registration, signal correspondence with the gradient direction needs to
be retained. This was done previously by fitting a single tensor to the data, after
which preservation of principal direction (PPD) was applied to realign tensors
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with the underlying fiber structure after transforming the tensor field [12]. The
DWIs were then recomputed from the rotated tensor field. In the latter step,
the number of degrees of freedom (DOF) is reduced to six (i.e. the DOF of the
single tensor model), which prohibits a higher order model fit to the data. We
therefore transform the original DWIs without intensity correction. Instead, the
gradient directions are rotated, such that the vectors qj become:

qj =
√
b ·Rnonrigid,j(x, y, z) ·Raffine,j · gj. (2)

The rotational component of the affine transformationRaffine,j is applied globally,
while the rotation due to non-rigid transformation Rnonrigid,j(x, y, z) is applied
per voxel (x, y, z).

An advantage of our reorientation method is that both Raffine,j and Rnonrigid,j

will be dispersed among subjects (as demonstrated in figure 2(c)). Patient po-
sitioning in the scanner and inter-subject variations in bundle trajectories con-
tribute to this distribution. The combined set of multiple subjects is sampled
at a higher angular resolution than the original acquisition protocol. Hence,
the merged dataset not only has an increased SNR, but indeed approaches a
HARDI-dataset due to random dispersion of gradient directions per subject af-
ter coregistration.

Tensor Estimation and Fiber Tracking. The dual tensor model can now
be estimated (equation 1) on the merged dataset, using the dispersed sam-
pling of gathered gradient directions. The least squares difference of the model
and data is minimized using Levenberg-Marquardt optimization. Error-function
parametrization ensures positiveness of the parameters. Next, WM fibers are
reconstructed using High Angular Fiber Tracking (HAFT) [14]. As an extension
to common streamline tracking algorithms, this method generates branches of
fibers if within a voxel the angle between both tensors exceeds a certain thresh-
old. One seed Region of Interest (ROI) and one AND-ROI through which fibers
should pass have to be defined.

3 Results

3.1 Synthetic Data

Synthetic data was generated according to the model in equation 1. The eigen-
values were λ‖ = 1.5 · 10−3 mm2s−1 and λ⊥ = 0.4 · 10−3 mm2s−1 [15] and the
angle between both tensors was 45◦. For second and further realizations, the
eigenvalues and the angle were normally perturbed with a standard deviation of
10%. S0 was set to 230, whereas a volume fraction f1 = 0.5 was used. Sixteen
icosahedric and dodecahedric gradient directions on a half sphere [16] and along
the 16 corresponding, antipodal directions were chosen, conform to our clinical
scanning protocol. Rician noise (SNR = 20:1) distorted the data.

Next, data of different numbers of datasets with dispersed gradient directions
were gathered and the dual tensor model was fit to the data. The isotropic vol-
ume fraction fiso was included to account for inter-subject diffusion variations,
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Fig. 1. (a) Illustration of the dual tensor atlas generation, the gradient directions are
randomly dispersed after coregistration, such that a dual tensor fit becomes possible.
(b) Mean angular error (bold) with standard deviation (gray) in degrees as a function of
the number of included datasets. The two tensors per subject were slightly perturbed,
such that the angles were normally distributed with σ = 5◦. The average angle between
both tensors was 45◦, 32 random gradient directions were used per subject.

whereas the isotropic diffusion was set constant: Diso = 0.5 · 10−3 mm2s−1. The
mean and standard deviation of the angular error (defined in section 2.2) as a
function of the number of subjects are depicted in figure 1. Initially, both the
mean error and the standard deviation remained high when data of up to four
subjects were used. For small sample sizes, modeled residual misalignments in-
duce a slight fitting instability. Adding more subjects lowered the mean error
and the standard deviation to 2◦ ± 1◦ for 64 subjects. Further increase of data
did not result in a lower error, again due to the applied perturbations.

This experiment shows that the angular resolution may be increased by esti-
mating tensors based on a cohort.

3.2 Clinical Data

The proposedmethod was applied to a small cohort of 11 healthy subjects, of which
DTI data were acquired on a 3.0T scanner (Intera, Philips, Best, The Nether-
lands). The spatial resolution was 2.0× 2.0× 2.2 mm, such that 64 axial slices of
matrix size 128x128were acquired, while 32 gradient directions were used (see sec-
tion 3.1) with a diffusion weighting of b = 1000 smm−2. Additionally, one set of im-
ages was acquired without any diffusion-weighting. Eddy current distortions were
corrected for by an affine registration in the phase direction [17]. For comparison,
a HARDI-dataset was acquired, with 92 gradient directions and b = 1800 smm−2.
The acquired datasets were coregistered as described in section 2.3. The DWIs
were resampled without intensity correction, and diffusion weighting vectors qj

were rotated (equation 2) and stored per voxel per deformation field of a subject.
The merged dataset in total contained 32 · 11 = 352 DWIs.
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Fig. 2. Dual tensor atlas results. (a) Coronal cross-section through the estimated dual
tensor atlas field, with principal diffusion orientations per voxel scaled by the volume
fraction. Anatomical references are given (CST = corticospinal tract, CC = corpus
callosum, cing = cingulum) together with an impression of bundle trajectories (drawn
by the authors). (b) Aggregated ADC-profile plotted as points and fitted model in
gray with principal orientations. Conventional color coding is used. (c) Aggregated
gradient directions plotted in spherical coordinates. (d-e) HARDI-data and dual tensor
atlas tracking result: part of the corpus callosum is tracked (green fibers), as well as
commissural fibers (magenta fibers).
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The dual tensor fit was initialized by positioning the principal eigenvectors
in the plane of the first two eigenvalues of a single tensor fit. Dual tensor pa-
rameters were then estimated in each intercranial voxel. The results of the dual
tensor atlas estimation are shown in figure 2. In figure 2(a), two distinct orienta-
tions within one voxel are mainly seen in the region where the corpus callosum is
known to cross the corticospinal tract. Aggregated signal values within one voxel
with the fitted model are depicted in figure 2(b). Due to the low b-value, low
contrast is seen in the modeled signal. Moreover, significant noise and/or inter-
subject variation may be observed (e.g. in the extension of the blue vertical
vector in figure 2(b)). This confirmed the need for a sufficient amount of data in
order to precisely estimate the orientation. In fact, high inter-voxel consistency
in orientation in figure 2(a) is observed, indicating high fitting stability. Unfor-
tunately, the gradient directions were not distributed uniformly, as displayed in
figure 2(c). Still, a gain in angular resolution was achieved using our approach.

Fibers were reconstructed through the crossing and are displayed in figure
2(a). The fiber branching threshold was set to 12.5◦, the angular threshold was
25◦ and the single tensor FA threshold 0.1. The obtained fibers in the HARDI-
dataset and the dual tensor atlas are shown in figures 2(d) and (e) respectively.
Both corpus callosum fibers (in green) as well as commissural fibers (in magenta)
were successfully reconstructed in both datasets. A higher number of 38 com-
missural fibers was measured in the HARDI-dataset, compared to 11 in the dual
tensor atlas. This is explained by the fact that in the HARDI-dataset a high
number of fibers was running over the same trajectory.

4 Discussion

We proposed a method to create a dual tensor atlas from multiple coregis-
tered non-HARDI datasets. Increased angular resolution was ensured by ran-
dom variations of subject positioning in the scanner and different local rotations
applied during coregistration resulting in dispersed gradient directions. Simula-
tions showed that using 10 subjects should already double the angular resolution,
even at a relatively low b-value of b = 1000 smm−2. Experiments on clinical data
revealed distinct orientations within a fiber crossing as well as inter-voxel consis-
tency. Commisural corpus callosum fibers reconstructed by our method closely
approximated those found in a HARDI dataset.

Although the adopted coregistration method uses DWIs generated with a
single tensor model, as argued in section 2.3, we have apparently obtained a
good correspondence in regions with crossing fibers. In a single tensor model,
fiber crossings manifest themselves by an oblate spheroid. Although the oblate
spheroid does not contain orientation information in the plane of the crossing, it
permits accurate location of the crossing. The required orientational information
for correct steering of the coregistration comes from its surrounding regions in
which a single tensor model suffices.
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We aim to apply our method to a large cohort in order to create an atlas that
can be made available to the neuro-imaging community. WM bundles traveling
through fiber crossings can then be included in comparative studies.
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Abstract. High angular resolution diffusion imaging (HARDI) has become an
important magnetic resonance technique for in vivo imaging. Current techniques
for estimating the diffusion orientation distribution function (ODF), i.e., the prob-
ability density function of water diffusion along any direction, do not enforce the
estimated ODF to be nonnegative or to sum up to one. Very often this leads to
an estimated ODF which is not a proper probability density function. In addition,
current methods do not enforce any spatial regularity of the data. In this paper, we
propose an estimation method that naturally constrains the estimated ODF to be
a proper probability density function and regularizes this estimate using spatial
information. By making use of the spherical harmonic representation, we pose
the ODF estimation problem as a convex optimization problem and propose a
coordinate descent method that converges to the minimizer of the proposed cost
function. We illustrate our approach with experiments on synthetic and real data.

1 Introduction

Diffusion magnetic resonance imaging (MRI) is a technique that produces in vivo images
of biological tissues by exploiting the constrained diffusion properties of water molecules.
An important area of research in diffusion MRI is the development of methods for re-
constructing the orientation distribution function (ODF) – a probability density function
(pdf) that characterizes the distribution of water diffusion along different directions on the
sphere. A very successful reconstruction technique is high angular resolution diffusion
imaging (HARDI) [1], which measures water diffusion along N uniformly distributed
directions on the sphere. Given these signals, several reconstruction techniques can be
used to characterize diffusion. Higher-order tensors leverage the work done in diffusion
tensor imaging (DTI) [2] by using higher-order polynomials to model diffusivity [3,4].
[5] fits the HARDI signals with a mixture of tensors model whose weights are speci-
fied by a probability function defined on the space of symmetric positive definite ma-
trices. Another approach is to construct the ODF directly from HARDI signals. One of
the earliest methods, known as Q-ball imaging (QBI), uses the Funk-Radon transform
to estimate ODFs [6]. ODFs have also been approximated with different basis functions
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such as spherical harmonics [7,8,9,10,11] and the Poussin kernel [12]. Such methods are
typically very fast because the ODF can still be computed analytically.

A first important limitation of existing QBI methods is that they can give large dif-
fusion estimates outside the major fiber directions. [8] addresses this by assuming that
there is a distribution of fiber orientations in each voxel and using a sharpening spherical
deconvolution method to transform the diffusion ODF into a sharp fiber ODF (fODF). A
second limitation of existing QBI methods is that they do not enforce the estimated ODF
to be nonnegative. When the diffusion MR signal is corrupted by noise, this can cause
the estimated ODF to have negative values, a situation that does not obey the underly-
ing principle of diffusion. [13] attempts to alleviate this problem by using a constrained
spherical deconvolution (CSD) method to estimate the fODF. Even though CSD reduces
the occurrence of negative values, it does not completely eliminate them. A more recent
method [14] eliminates the negative values by minimizing a nonnegative least-squares
cost function. A third limitation of existing QBI methods is that the ODF at each voxel is
estimated independently of the information provided in the spatial neighborhood. This
results in noisy estimates of the ODF field. While regularization methods have been de-
veloped [15,16], we are not aware of any work addressing all three issues for HARDI.

We present an estimation method that gives sharp diffusion ODFs, constrains the
estimated ODF to be a proper pdf, and incorporates spatial regularization. Our algorithm
is based on the ODF reconstruction scheme in [11], which derives the ODF taking into
account the solid angle consideration and is able to give naturally sharp ODFs. This is
different from existing works [8,10], where the computed ODF is the linear projection
of the actual diffusion probability and gives an artificial weight to points according to
their distances from the origin. Our method represents the ODF as a linear combination
of spherical harmonic (SH) functions, whose coefficients are found by minimizing an
energy that incorporates a regularization term and nonnegativity constraints. This results
in a convex optimization problem whose global minimizer can be found using coordinate
descent. We illustrate our method with experiments on synthetic and real data.

2 Analytical Computation of ODFs with Spherical Harmonics

We first review the ODF reconstruction scheme in [11]. Let S0 be the baseline signal
and S(θ, φ) be the HARDI signal acquired at the gradient direction (θ, φ). The ODF
is p(θ, φ) = 1

4π + 1
16π2FRT {∇2

b ln(− ln(S(θ,φ)
S0

))}, where FRT is the Funk-Radon
transform and∇2

b is the Laplace-Beltrami operator independent of the radial component.
Notice that the first term integrates to 1 over the sphere, and the second term integrates
to 0 [11]. The (modified) SH basis [8] of order l contains R = (l+1)(l+2)

2 terms defined

for j(k,m) = k2+k+2
2 + m, k = 0, 2, 4, . . . , l and m = −k, . . . , 0, . . . , k, as

Yj =
√

2 Re(Y |m|
k ) if − k ≤ m < 0; Y 0

k if m = 0;
√

2 Im(Y m
k ) if 0 < m ≤ k;

where Y m
l (θ, φ) =

√
2l+1
4π

(l−m)!
(l+m)!P

m
l (cos θ)eimφ, θ ∈ [0, π], φ ∈ [0, 2π], Pm

l is a
Legendre polynomial, and Re(·) and Im(·) are the real and imaginary parts, respectively.
Notice that Y1(θ, φ) = 1

2
√

π
is a constant function on the sphere that integrates to a

constant, whereas the integral of Yj(θ, φ), j > 1 over the sphere is always 0.
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In order to estimate the ODF, letS(θi, φi) be the HARDI signal acquired at each of the
N gradient directions, (θi, φi)N

i=1, and define the N × 1 vector s=
[
ln(− ln(S(θ1,φ1)

S0
))

. . . ln(− ln(S(θN ,φN )
S0

))
]�

. The signal s is first approximated as s ≈ Bc, where B is the

N×R SH basis matrix whose i-th row of B is given as Bi =
[
Y1(θi, φi) . . . YR(θi, φi)

]
,

and c is the R× 1 vector of SH coefficients that parametrize the signal s. Given s and
B, the unknown vector c is found by solving the least-squares problem

min
c∈RR

f(c) =
1
2
‖Bc− s‖2. (1)

Assume now that the ODF is reconstructed using a tessellation scheme with M gradient
directions, (θr

i , φ
r
i )

M
i=1. It is common for N , the number of gradient directions with

which the HARDI signal is acquired, to be less than M . The reconstructed ODF is

p = Cd, (2)

where C is anM×RSH basis matrix whose i-th row is Ci=
[
Y1(θr

i , φ
r
i ) . . . YR(θr

i , φ
r
i )
]
,

and d is the vector of SH coefficients of the ODF, which is given by [11]

d =
[

1
2
√

π
01×(R−1)

]�
+

1
16π2 LPc. (3)

L is the R×R diagonal Laplace-Beltrami eigenvalues matrix with Ljj = −lj(lj + 1),
where lj is the order of the j-th term, and P is theR×R diagonal Funk-Radon transform
matrix, where Pjj =2πPlj (0) and Plj (0) is the Legendre polynomial of degree lj at 0.

3 Nonnegative and Spatially Regularized ODF Estimation

Notice that while the least-squares estimation method in §2 enforces the sum of p to
be one, it does not restrict p to be nonnegative. In addition, the ODF reconstruction
at a voxel is done independently of the information contained in the spatial neighbor-
hood of that voxel. In this section, we present our estimation method that constrains
the estimated ODF to be a proper probability density function and incorporates spatial
regularity.

Let V denote the HARDI volume and |V | the number of voxels in V . At each voxel
xi = (xi, yi, zi), we have the base-line signalS0,i and theN×1 HARDI signalSi. Thus,

we can define the signal vector si =
[
ln(− ln(Si(θ1,φ1)

S0,i
)) . . . ln(− ln(Si(θN ,φN )

S0,i
))
]�

and its corresponding vector of SH coefficients ci. In order to enforce that the ODF pi at
xi is nonnegative, we need to enforce the additional constraint pi = Cdi ≥ 0. Making
use of Eqns. (2) and (3), we rewrite the constraint as −CLPci ≤ 4π1.

To solve the ODF estimation problem in a way that accounts for the nonnegativity of
p and incorporates spatial regularization, we define the following optimization problem

min
c1,...,c|V |

g(c1, . . . , c|V |) =
1
2

V∑
i=1

‖Bci − si‖2 + λ
∑

‖xi−xj‖<r

wij‖ci − cj‖2,

subject to −CLPci ≤ 4π1, i = 1, . . . , |V |, (4)

The first term corresponds to the data term and the second term corresponds to the regu-
larization term. The following parameters need to be set: 1) λ is the nonnegative regular-
ization factor and marks the tradeoff between the data term and the regularization term.
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When λ → 0, spatial regularity is ignored whereas if λ → ∞, the data term is disre-
garded. 2) r is the spatial radius defining the neighborhood of each voxel. Examples of
defining the voxel connectivity in the 3D volume include choosing the 6 nearest voxels
or those that lie within a certain distance. 3) wij are nonnegative weights that measure
the similarity of the data at xi and xj within the local neighborhood. A common way of

defining these weights is to use the Gaussian kernel and define wij = exp(− ‖si−sj‖2

σ2 ).
It is possible to restate the optimization problem in Eqn. (4) as a large quadratic

optimization problem and one could theoretically attempt to solve for [c1, . . . c|V |] si-
multaneously. However, adopting such a strategy will require a tremendous amount
of memory and intensive computational power as a typical HARDI volume contains
|V | ≈ 106 voxels, the signal at each voxel is acquired at N ≈ 100 gradient directions,
and the ODF reconstruction is done with a few hundred tessellation directions. Instead,
we adopt an iterative algorithm, specifically the coordinate descent method, and we
show that coordinate descent will converge to the minimizer of Eqn. (4).

Theorem 1. [17] Consider minimizing functions of the form

φ(β1, . . . , βp) = κ(β1, . . . , βp) +
p∑

k=1

χk(βk), (5)

where βk is a vector, κ(·) is a differentiable and convex function, and χk(·) are con-
vex functions. When the different vectors βk’s do not have overlapping entries and∑p

k=1 χk(βk) is separable, coordinate descent converges to the minimizer of φ(·). The
coordinate descent method is formally described as
1. Initialization: Set t = 0 and choose any β0 = (β0

1 , . . . , β
0
p) ∈ domain(φ).

2. At each iteration t + 1, t ≥ 1: Given βt = (βt
1, . . . , β

t
p) ∈ domain(φ), choose an

index s ∈ {1, . . . , p} and compute a new estimate βt+1 = (βt+1
1 , . . . , βt+1

p ) ∈
domain(φ) such that

βt+1
s = argmin

βs

φ(βt
1, . . . , β

t
s−1, βs, β

t
s+1, . . . , β

t
p), and βt+1

k = βt
k, ∀k �= s.

Now, the optimization problem in Eqn. (4) is equivalent to minimizing the Lagrangian

min
c1,...,c|V |

φ(c1, . . . , c|V |) = g(c1, . . . , c|V |)−
|V |∑
i=1

γ�
i (CLPci − 4π1), (6)

where γi ≥ 0. Since g(c1, . . . c|V |) is the sum of two quadratic functions, it is dif-
ferentiable and convex. In addition, since any affine function is convex (and concave),
γ�

i (CLPci − 4π1) is convex. Finally, the different ci’s, belonging to different vox-
els, do not overlap with each other and

∑|V |
i=1 γ�

i (CLPci − 4π1) is separable. From
Theorem 1, it is immediate to see that coordinate descent will converge to the mini-
mizer for Eqn. (6) or equivalently, the minimizer for Eqn. (4). In addition, at each itera-
tion, ct+1

i = arg minci
φ(ct

1, . . . , ci, . . . , ct
|V |) = arg minci

g(ct
1, . . . , ci, . . . , ct

|V |) −
γ�

i (CLPci − 4π1). Therefore, we can solve for ct+1
i from the quadratic program-

ming problem, ct+1
i = argminci

g(ct
1, . . . , ci, . . . , ct

|V |) = arg minci

1
2‖Bci− si‖2 +

λ
∑

‖xi−xj‖<r wij‖ci− ct
j‖2 subject to −CLPci ≤ 4π1. Algorithm 1 gives our ODF

estimation method in detail. Even though Algorithm 1 estimates one ci in each iteration,
it is possible to partition the problem to estimate a subset of ci’s simultaneously.
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Algorithm 1. Nonnegative ODF Estimation with Spatial Regularization

Given the HARDI volume si = [ln(− ln(Si(θ1,φ1)
S0,i

)), . . . , ln(− ln(Si(θN ,φN )
S0,i

))]�, i = 1...|V |,
and predefined parameters: spatial radius r defining the voxel connectivity, threshold ε and maxi-
mum number of iterations P .

1. Calculate the nonnegative weights wij .
2. First pass p = 0 through the entire volume:

At each voxel xi, calculate using a quadratic programming solver,

c0
i = arg min

c

1
2
‖Bc − si‖2, subject to − CLPc ≤ 4π1.

3. Subsequent passes p ≥ 1 through the entire volume:

a. Initialize t = 1. While t ≤ |V |,
i. Set i = t and compute using a quadratic programming solver a new estimate for voxel xi,

c
(p−1)|V |+t
i = arg min

c

1
2
‖Bc − si‖2 + λ

∑
‖xi−xj‖<r

wij‖c − c
(p−1)|V |+(t−1)
j ‖2,

subject to − CLPc ≤ 4π1.

ii. For the remaining voxels, set c(p−1)|V |+t
j = c

(p−1)|V |+(t−1)
j for ∀j �= i.

iii. Set t ← t + 1.

b. Set p ← p + 1. The stop criterion used is when p = P or the decrease in cost function g(·)
between the pth and (p − 1)th iterations is less then ε.

4 Experiments

We present experiments on synthetic and real datasets using the proposed estimation
method. We examine the quality of the estimated ODF given by: 1) the commonly used
least-square (LS) estimate obtained by solving Eqn. (1), 2) the estimate obtained with
nonnegativity constraint solely (QP) by solving Eqn. (4) with λ = 0, and 3) the estimate
obtained with nonnegativity constraint and spatial regularization (QP-S) by solving Eqn.
(4) with non-zero λ. ODFs are computed using a l = 6th order SH expansion in all our
experiments. Note that if the least-square solution results in an ODF that have negative
values, the common treatment is to set such values to a small positive number.

We first evaluate the performance on synthetic data generated using the multi-tensor
method in [8]. The first synthetic experiment studies the improvement of the QP esti-
mate over the LS estimate when the signal is corrupted by noise at a single voxel, in 100
trials. We first construct the true ODFs of 1, 2, and 3 fibers, as shown in Fig. 1(a), and
the corresponding HARDI signals {S(θi, φi)}N

i=1 at N = 100 gradient directions with
S0 = 1. Noisy versions of {S(θi, φi)}N

i=1 are generated by adding complex Gaussian
noise with zero mean and standard deviation σ = S0

ζ , where ζ is the signal-to-noise
ratio (SNR). We use the Riemannian distance distRie(·, ·) between probability density
functions [18] to compare different ODFs. Fig. 1(b) shows the error distRie(φt,φe)
between the true ODF φt and estimated ODF φe using LS and QP when the voxel
contains 1, 2 or 3 fibers for varying levels of SNR. Notice that QP always gives a lower
error than LS and does not give any negative values of p whereas LS results in 6%
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Fig. 1. Synthetic experiments. The first experiment (Figs. 1(a)-1(b)) studies the improvement of
the QP estimate over the LS estimate when the signal is corrupted by noise. The second experi-
ment (Figs. 1(c)-1(g)) studies the effect of having spatial regularization under varying values of
regularization parameter λ for the ODF field shown in Fig. 1(d).

of the values being less than zero. In addition, the error increases when the number of
fibers increases. This is expected as more acquisition directions are required to estimate
an ODF with 3 fiber crossings compared to an ODF with a single fiber.

The second synthetic experiment shows the improvement of QP-S over QP in a ODF
field over 100 trials. We construct an ODF field φt as shown in Fig. 1(d). The voxels in
the 1st and 3rd quadrants contain 1 fiber, the 2nt quadrant 2 fibers and the 4th quadrant
3 fibers (with 1 fiber pointing out of the plane). We study the effects of varying the
regularization parameter λ from 0.01λ0 to 10λ0, where λ0 = 1. Fig. 1(c) shows the
% decrease in error when estimation is done with QP-S compared to only doing QP,
for varying SNR and λ. The error is measured as

∑
x distRie(φt(x),φe(x)) where φe

is the estimated ODF field. At low SNR, QP-S gives an estimated ODF field that is
significantly closer to the true ODF field. When λ is too small or too large, the resulting
φe is about the same quality of the LS estimate. Figs. 1(e)-1(g) show the estimated ODF
fields for LS, QP, and QP-S with p = 5 passes of one trial at SNR= 10.

Finally, we apply our estimation method to a HARDI human brain dataset. Diffu-
sion weighted MR images were obtained using the following imaging parameters: 55
axial slices (2mm thick), TR/TE=8250/92.3ms, with a 128 × 128 acquisition matrix
(1.8mm in-plane resolution). 105 images were acquired, 11 with no diffusion
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(a) LS estimate (b) QP estimate

(c) QP-S with p = 1 pass estimate (d) QP-S with p = 2 passes estimate

(e) Zoomed-out LS esti-
mated ODF field

(f) Zoomed-out QP-S
with p = 2 estimated
ODF field

Fig. 2. Estimation results for real
brain data. Fig. 2(a) is the LS es-
timate, Fig. 2(a) the QP estimate,
Figs. 2(b) and 2(c) are the QP-S
estimates with p = 1 and p =
2 passes through the volume, re-
spectively. Figs. 2(e)-2(f) show the
zoomed-out LS ODF field and QP-
S with p = 2 estimated ODF
field with the results of the red box
shown in Figs. 2(a)-2(d). The ODFs
are superimposed on top of the gen-
eralized fractional anisotropy maps.
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sensitization and N = 94 diffusion weighted images at b = 1159 s/mm2. A portion of
the results are shown in Fig. 2, where the ODFs are superimposed on top of the gen-
eralized fractional anisotropy maps. Figs. 2(a), 2(b), 2(c), and 2(d) show the estimates
given by LS, QP, QP-S with p = 1 pass, and QP-S with p = 2 passes, respectively.
Figs. 2(e) and 2(f) show the LS and QP-S with p = 2 estimated ODF fields of one slice
where the zoomed-in results of the red box are shown in Figs. 2(a)-2(d). Notice that the
ODF field estimated by LS is the noisiest, whereas QP-S with p = 2 gives a smoother
ODF field and still preserves the discontinuities between different regions. In addition,
the generalized fractional anisotropy map of QP-S shown in Fig. 2(f) is significantly
cleaner than that of LS in Fig. 2(e) and the different regions of the brain can be seen
more clearly.

5 Conclusion

We have presented an ODF estimation method that gives sharp diffusion ODFs, con-
strains the estimated ODF to be a proper pdf, and incorporates spatial regularization.
Results on synthetic and real data demonstrate the advantage of working with our
proposed algorithm. Future work will extend to multiple q-shell reconstruction
method in [19].
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Abstract. In this paper, we compare a representative selection of cur-
rent state-of-the-art algorithms in diffusion-weighted magnetic resonance
imaging (dwMRI) tractography, and propose a novel way to quantita-
tively define the connectivity between brain regions. As criterion for the
comparison, we quantify the connectivity computed with the
different methods. We provide initial results using diffusion tensor, spher-
ical deconvolution, ball-and-stick model, and persistent angular struc-
ture (PAS) along with deterministic and probabilistic tractography al-
gorithms on a human DWI dataset. The connectivity is presented for a
representative selection of regions in the brain in matrices and connec-
tograms.Our results show that fiber crossing models are able to reveal
connections between more brain areas than the simple tensor model.
Probabilistic approaches show in average more connected regions but
lower connectivity values than deterministic methods.

1 Introduction

Diffusion-weighted magnetic resonance imaging (dwMRI) provides a non-
invasive way to gain insight into the fibre architecture of the brain white matter,
and thereby opens a window for the in vivo exploration of the anatomy of neu-
ral networks. In the past few years, a number of algorithmic approaches to the
reconstruction of nerve fibre tracts from dwMRI have been proposed, collectively
known as tractography. However, only few attempts have been made so far to quan-
titatively compare these different methods [1]. In this study, we compare a repre-
sentative selection of state-of-the-art tractography algorithms, using connectivity
matrices and connectograms based on a novel quantitative connectivity measure.

Most of the current techniques in dwMRI tractography can be divided into
two major components: local modeling of the diffusion propagator or the fibre
orientation structure in each voxel, and fibre tracking algorithms integrating this
local information into streamlines representing fibre tracts.

Local modelling techniques convert the diffusion weighted MR signal into some
quantity that can be used to determine the local fibre directions. There are two
major classes of algorithms. The first one comprises methods aiming at a more or
less simplified reconstruction of the diffusion propagator. Under the assumption
of Gaussian anisotropic diffusion, this leads to the diffusion tensor (DT) model
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[2], which can represent only one main direction within each voxel and therefore
fails to capture crossing or branchings of fibre populations. More complex models
use e.g. compositions of ellipsoids or cylinders, like the multiple-tensor model [3]
and the ball-and-stick model [4]. Another type of methods provides a less param-
eterized representation of the diffusion propagator. For example, if the q-space is
completely sampled, one may use the spatial Fourier transform to reconstruct a
restricted and blurred version of the diffusion propagator. This method is referred
to as q-space imaging (QSI) or diffusion spectrum imaging (DSI) [5]. If only one
b-value was used, one may compute the radial integral of the diffusion propagator
(q-ball imaging, QBI, [6]) or its persistent angular structure (PAS, [7]).

The second class of methods directly aims at the reconstruction of the dis-
tribution of fibre orientations, e.g., by spherical deconvolution (SD) [8]. This
approach requires an explicit model of the diffusion properties of a single fibre
(convolution kernel). Its results are naturally more directly interpretable in terms
of quantitative connectivity measures, as compared to methods that describe the
diffusion propagator.

A detailed review of these methods can be found in [9]. In our comparison,
we only include such local modelling methods that are suitable for high-angular
resolution diffusion imaging (HARDI) data with a single b-value of b=1000. This
naturally excludes QSI, which would require a complete Cartesian sampling of
the q-space. Also QBI, which requires a higher b-value to provide a better angu-
lar discrimination than the tensor model [6], is not suitable for our dataset. The
selection comprises the DT, multiple ball-and-stick, PAS and SD approaches.
It can be considered representative, because it exemplifies all major approaches
to the problem: (1) models assuming only one main fibre direction (DT), (2)
models that allow for a small number of main fibre directions that has to be de-
termined by some model selection procedure (multiple ball-and-stick), (3) models
that represent the angular structure of the diffusion propagator (PAS), and (4)
approaches that model the fibre orientation density directly, rather than the
diffusion propagator (SD). Most other methods can be assigned to one of these
classes (except QSI).

Based on these local models, tractography techniques integrate the local infor-
mation connecting the voxels. There are two major approaches. With determin-
istic tractography, the reconstructed fibres are exclusively guided by the most
likely directions in each voxel. In contrast, probabilistic fibre tracking methods
repeat the streamlining process multiple times, each time with a new set of direc-
tions drawn from a probability distribution, which is based on the local model.
In this study we evaluate each local model with both of these approaches, except
for the multiple ball-and-stick model, which is only used with probabilistic trac-
tography. The resulting collection of techniques also covers a range of software
packages, which have been used in a large number of studies (see table 1).

For the quantitative comparison of the methods we focused on a type of
information that is most naturally associated with tractography, namely if, and
to what degree, two regions in the brain are connected by nerve fibres.This
measure might also be a useful way to express prior information on connectivity
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within various techniques for modelling functional networks in the brain, such
as dynamic causal modelling [10].

The remainder of the paper is organized as follows. In section 2, the evaluated
dwMRI tractography algorithms and the operational definition of the quantita-
tive connectivity is presented in detail. The results of the experiments are shown
in section 3, and details of difference among methods are discussed in section 4.

2 Methods

Dataset and Regions of Interests. All compared methods are applied to
the HARDI dataset of one human subject. Diffusion images were acquired on
a Siemens 3T Trio scanner with isotropic resolution of 1.7 mm (60 directions,
b=1000s/mm2, GRAPPA/2, NEX3). Data is corrected for subject motion and
registered to the anatomical T1 weighted image.

Fourteen language-related brain regions are selected as the regions of interests
(ROI) for the quantification of anatomical connectivity (see Fig. 1). Eleven of the
selected areas are located on the cortical sheet. In these cases the ROIs are placed
at the interface between white and grey matter, which is defined as those voxels
with fractional anisotropy (FA) greater than 0.15, which neighbour voxels with an
FA of less than 0.15. Three additional regions comprise a mid-sagittal cross section
of the corpus callosum, a horizontal cross section of the pyramidal tract, and the
surface of the thalamus. The size of each selected ROI can also be found in figure 1.

Compared Algorithms. Table 1 summarizes all algorithms and software pack-
ages used for fibre reconstruction. The concept and implementation of each al-
gorithm can be found in the corresponding references.

Definition of Quantitative Anatomical Connectivity. We define a mea-
sure, which reflects the influence the mean neuronal activity in one region has

Fig. 1. Locations of selected regions of interests (ROIs). The names and sizes (number
of voxels) are: 1. anterior superior temporal gyrus (STG) (497); 2. posterior STG
(378); 3. angular gyrus (507); 4. Brodmann area 45 (BA 45) (319); 5. BA 44 (164);
6. precentral gyrus (PCG) ventral (796); 7. PCG dorsol (615); 8. precuneus (731); 9.
corpus callosum (316);10. anterior cingulate (155);11. thalamus (385);12. cortical spinal
tract (180);13. BA45, right hemisphere (400);14. BA44, right hemisphere (347).
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Table 1. DWI tractography methods included in the comparison and related refer-
ences. The computation time is mainly dominated by the local model fitting, and can
be different due to the implementation.

Local Model Comp. Probabilistic Deterministic
Time Tractography Tractography

Diffusion tensor (DT [2]) ∼10 sec. [11] MedINRIA1 [12]
Multiple ball-and-stick [4] ∼2 days FSL2 [4] -
Sph. deconv. (SD[8]) 20-120 min. MRtrix3 [8] BrainVisa4 [13]
Per. ang. str. (PAS[7]) ∼1 month Camino5 [14] Camino [15]

on the mean activity in another region. If WA and WB are the sizes of the start
and target regions, respectively (proportional to the number of output neurons
as well as to the number of voxels), and F is the number of fibres connecting
the two regions (proportional to the number of tracts, random walks, or simi-
lar), then the influence CA→B of the mean activity of the start region NA onto
the mean activity of the target region NB can be derived as follows. The mean
activity NB can be computed as the cumulative activity on the fibre tract NF

divided by the size of the target region WB . The cumulative activity NF is in
turn proportional to the product of the mean activity of the start region NA and
the number of fibres F . The connectivity can then be computed as:

CA→B =
NB

NA
∝ F

WB
, (1)

This connectivity measure is used throughout the comparison.
For probabilistic algorithms, we simulate fibres from each source point (e.g.

voxel) n times. The connectivity is then computed as the ratio of the fibres
that reach the target region divided by n times the number of source points in
region B. For deterministic algorithms, we generate fibres starting from each
voxel with FA> 0.15 in the entire brain. We then count the number of fibres
that run through A and B, as well as the number of fibres that run through A.
The ratio of these two numbers multiplied by the ratio of the regions’ sizes is
then taken as an estimate of the connectivity.

3 Results

Figure 2 shows the logarithm of derived connectivity measures for each method
in the matrix form. The ROIs are sorted with the spectral reordering algorithm
[16] so that ROIs with high connectivity values will be clustered together. To

1 http://www-sop.inria.fr/asclepios/software/MedINRIA/
2 http://www.fmrib.ox.ac.uk/fsl/
3 http://www.nitrc.org/projects/mrtrix/
4 http://brainvisa.info/
5 http://www.cs.ucl.ac.uk/research/medic/camino/

http://www-sop.inria.fr/asclepios/software/MedINRIA/
http://www.fmrib.ox.ac.uk/fsl/
http://www.nitrc.org/projects/mrtrix/
http://brainvisa.info/
http://www.cs.ucl.ac.uk/research/medic/camino/
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avoid confusion, all matrices are presented in the same ordering, which is based
on the connectivity value derived from FSL. By comparing figure 2 with figure
1, we can see that anatomically closer areas are always clustered together, and
the disconnection between the left and right hemisphere is very obvious.

Among different algorithms, the pattern of the connectivity matrix are similar,
but the magnitude of connectivity values differ. A darkly shaded row of cc,
which represents a high connectivity toward the corpus callosum, can be found
throughout all methods. Also, the general pattern of highly connected regions is
consistent across different methods.

The difference between deterministic (right column) and probabilistic (left col-
umn) tractography can also be seen in figure 2. Both deterministic tracking with
DT and SD show significant white areas (i.e., no connection) in the matrices, while
their probabilistic counterparts fill up almost the whole matrices. In addition, for
SD, PAS and DT with probabilistic tractography, the shaded areas are lighter (i.e.,
lower connectivity) than those with deterministic fibre tracking algorithms.

Another way to visualize the quantitative connectivities is by graphs, called
connectograms. The vertices are placed in the positions which approximately rep-
resent the locations of the ROIs, and the edges represent the magnitude of the
connectivity measure. Figure 3 shows the resulting connectograms. In the con-
nectograms, connectivity values above 10−1 are shown in red, 10−2 are in blue,
and 10−3 in green. Edges with connectivity values bellow 10−3 are not shown,
and the arrows represent the direction of connection. All methods show many
arrows pointing toward vertex 9, corpus callosum, which is consistent with the
heavily shaded rows in figure 2. The higher connectivity in deterministic tractog-
raphy and more connections in more complicated local models can also be found
in the connectograms. However, the PAS model shows less edges in probabilistic
than deterministic tractography due to the in average lower connectivity values.

Fig. 2. Connectivity matrices derived from the collection of DWI tractography algo-
rithms in logarithmic scale
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Fig. 3. Connectograms of DWI tractography algorithms. Connectivity values above
10−1 are shown in red, 10−2 are in blue, and 10−3 in green.

Due to the difference in theory and implementation, none of the compared
methods give identical results to another. Nevertheless, there is clearly a great
degree of similarity. The Mantel test is a technique used to estimate the re-
semblance between two proximity matrices computed about the same objects.
This technique computes a covariant statistic between the two matrices, and
then tests it against the null hypothesis of “no association” based on a non-
parametric distribution obtained from permuting rows and columns together in
one matrix. Several covariant statistics have been designed for different purposes,
and we chose the Spearman rank correlation, ρM , as recommended in [17].

The Mantel test based on 1000 random permutations is applied to the connec-
tivity matrices derived from all methods. As expected, all results are significantly
correlated (p = 0, i.e., none of the 1000 permutations can produce a higher cor-
relation). This result not only further confirms the similarity we observe from
the shaded matrices and the connectograms, but also shows the proposed con-
nectivity measure does retain certain structural information which is consistent
across dwMRI tractography methods.

4 Discussion

Differences Among Methods. Considering the nature of the evaluated meth-
ods one would expect two major differences among the methods.

First, deterministic methods as compared to probabilistic ones are expected to
feature a sparser connectivity matrix, i.e. there are fewer connections, but with
higher connectivity values. This is due to the fact that probabilistic tractography
produces a greater variability of fibre trajectories. In deterministic algorithms,
fibres tend to follow the same trajectories to a much higher extent, resulting in
more extreme connectivity values, i.e. two areas are more likely either strongly
connected to not at all.
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Fig. 4. Histograms of the connectivity values in logarithmic scale (zeroes are not
counted). The left panel shows the histogram of the probabilistic tractography meth-
ods, and the right panel shows the deterministic ones.

Looking at the results, it turns out that this prediction clearly holds for the
DT and SD model, but not for PAS. For PAS, the probabilistic PICo algorithm
produces a clearly sparser connectivity matrix and connectogram than deter-
ministic tracking. The reason for this could be the threshold we put at 10−4

in the matrix and 10−3 in the connectogram. Figure 4 shows the histograms of
compared methods. It is clear that the histogram for PAS with deterministic
tracking has a mode in 10−3, and it with PICo in 10−4.

The second prediction would be that, with the same tracking method, local
models which can represent multiple fibre orientations (e.g. PAS, ball-and-stick,
SD) will generate more connections between areas. This is logical because the
additional fibre orientations might lead to new fibres that cross the major tracts.
From our results, this prediction is only partially confirmed, since this trend is
not as strong in the probabilistic tracking.

Concluding Remarks. In this study, we have compared a collection of state-
of-the-art dwMRI tractography algorithms based on a quantitative connectivity
measure. It has been shown that the proposed criterion give similar patterns
across different methods, and also reasonably distinguish algorithms from each
other. The results suggest that local models represent multiple fiber orientations
can reconstruct more connections with a cost of more computation time (see
table 1), as well as the probabilistic tractography. Since the difference in com-
putational cost of tractography algorithms does not differ much, the choice of
local models may dominate the computational resource required for this task.
Although the optimal combination of methods can not be concluded from our
findings, this study proposes a methodology to quatitatively compare different
methods, which is of utmost importance for the community.

Future work will be focused on validating the comparison across different sub-
jects, and to find a proper way to incorporate the quantified brain connectivity
with other brain modelling techniques.
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Abstract. We describe a technique to simultaneously estimate a weighted,
positive-definite multi-tensor fiber model and perform tractography. Existing
techniques estimate the local fiber orientation at each voxel independently so there
is no running knowledge of confidence in the estimated fiber model. We formulate
fiber tracking as recursive estimation: at each step of tracing the fiber, the current
estimate is guided by the previous. To do this we model the signal as a weighted
mixture of Gaussian tensors and perform tractography within a filter framework.
Starting from a seed point, each fiber is traced to its termination using an un-
scented Kalman filter to simultaneously fit the local model and propagate in the
most consistent direction. Further, we modify the Kalman filter to enforce model
constraints, i.e. positive eigenvalues and convex weights. Despite the presence of
noise and uncertainty, this provides a causal estimate of the local structure at each
point along the fiber. Synthetic experiments demonstrate that this approach sig-
nificantly improves the angular resolution at crossings and branchings while con-
sistently estimating the mixture weights. In vivo experiments confirm the ability
to trace out fibers in areas known to contain such crossing and branching while
providing inherent path regularization.

1 Introduction

The advent of diffusion weighted magnetic resonance imaging has provided the oppor-
tunity for non-invasive investigation of neural architecture. Using this imaging tech-
nique, neuroscientists can investigate how neurons originating from one region connect
to other regions, or how well-defined these connections may be. For such studies, the
quality of the results relies heavily on the chosen fiber representation and the method of
reconstructing pathways.

To begin studying the microstructure of fibers, we need a model to interpret the dif-
fusion weighted signal. Such models fall broadly into two categories: parametric and
nonparametric. One of the simplest parametric models is the diffusion tensor which
describes a Gaussian estimate of the diffusion orientation and strength at each voxel.
While robust, this model can be inadequate in cases of mixed fiber presence or more
complex orientations, and so to handle more complex diffusion patterns, various al-
ternatives have been introduced: weighted mixtures [1,2,3,4], higher order tensors [5],
and directional functions [6]. In contrast, nonparametric techniques estimate an orien-
tation distribution function (ODF) describing an arbitrary configuration of fibers. For
this estimation, several techniques have been proposed, among them Q-ball imaging
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Fig. 1. System overview illustrating relation between the neural fibers, the scanner signal, and
the unscented Kalman filter as it is used to estimate the local model. At each step, the filter uses
its current model state to reconstruct a synthetic signal and then compares that against the actual
signal from the scanner in order to update its internal model state.

[2], spherical harmonics [7,8], spherical deconvolution [9,10,11,6], and diffusion orien-
tation transforms [12].

Based on these models, several techniques can be used to reconstruct pathways. De-
terministic tractography using the single tensor model simply follows the principal dif-
fusion direction, while multi-fiber models use various techniques for determining the
number of fibers present or when pathways branch [3,13]. While parametric methods
directly describe the principal diffusion directions, interpreting the ODFs from model
independent representations typically involves a separate algorithm to determine the
number and orientation of diffusion patterns present [14,9,8,15]. Several filtering ap-
proaches have been proposed. For example, Kalman and particle filters [16,17,18], as
well as a moving least squares approach [19], have been used with single tensor stream-
line tractography, but these have been used for path regularization and not to estimate
the underlying fiber model. One approach has used a linear Kalman filter, although this
method was applied to estimate each voxel independently during acquisition [20].

1.1 Our Contributions

Of the approaches listed above, nearly all fit the model at each voxel independent of
other voxels; however, tractography is a causal process: we arrive at each new position
along the fiber based upon the diffusion found at the previous position. In this paper, we
treat model estimation and tractography as such by placing this process within a causal
filter. As we examine the signal at each new position, the filter recursively updates the
underlying local model parameters, provides the variance of that estimate, and indicates
the direction in which to propagate tractography.

To begin estimating within a finite dimensional filter, we model the diffusion signal
using a weighted mixture of two tensors. This enables estimation directly from the raw
signal without separate preprocessing or regularization. Because the signal reconstruc-
tion is nonlinear, we use the unscented Kalman filter to perform local model estimation
and then propagate in the most consistent direction (Fig. 1). Further, we use a con-
strained version of the unscented Kalman filter to ensure the tensor eigenvalues are
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positive and the mixture weights are non-negative and convex. Using causal estimation
in this way yields inherent path regularization, consistent partial volume estimation, and
accurate fiber resolution at crossing angles not found with independent optimization.

2 Approach

Section 2.1 provides the necessary background on modeling the measurement signal
using tensors and defines the specific weighted two-fiber model employed in this study.
Then, Section 2.2 describes how this model can be estimated using an unscented
Kalman filter and further how the constraints are enforced.

2.1 Modeling Local Fiber Orientations

In diffusion weighted imaging, image contrast is related to the strength of water dif-
fusion, and our goal is to accurately relate these signals to an underlying model of
putative fibers. At each image voxel, diffusion is measured along a set of distinct
gradients, u1, ...,um ∈ S2 (on the unit sphere), producing the corresponding signal,
s = [ s1, ..., sm ]T ∈ R

m. For voxels containing a mixed diffusion pattern, a general
weighted formulation is expressed as, si = s0

∑
j wje

−buT
i Djui , where s0 is the base-

line signal intensity, b is an acquisition-specific constant, wj are convex weights, and
Dj are tensors, each representing a diffusion pattern.

From that general mixture model, we choose a restricted form with only two
weighted components. This choice is guided by several previous studies which found
two-component models to be sufficient at b= 1000 [2,3,13,14,4,21]. Also, we assume
the shape of each tensor to be ellipsoidal, i.e. there is one dominant principal diffusion
direction m with eigenvalue λ1 and the remaining orthonormal directions have equal
eigenvalues λ2 = λ3 (as in [4,6]). These assumptions leave us with the following
model used in this study:

si = s0w1e
−buT

i D1ui + s0w2e
−buT

i D2ui , (1)

where w1, w2 are convex weights and D1, D2 are each expressible as D = λ1mmT +
λ2
(
ppT + qqT

)
, with m,p,q ∈ S2 forming an orthonormal basis aligned to the

principal diffusion direction m. The free model parameters are then m1, λ11, λ21,
w1, m2, λ12, λ22, and w2. Lastly, we wish to constrain this model to have positive
eigenvalues and convex weights (w1, w2 ≥ 0 and w1 + w2 = 1).

2.2 Estimating the Fiber Model

Given the measured signal at a particular voxel, we want to estimate the underlying
model parameters that explain this signal. As in streamline tractography, we treat the
fiber as the trajectory of a particle which we trace out. At each step, we examine the
measured signal at that position, use that measurement to update our model parameters
within the filter, and propagate forward in the most consistent direction. Fig. 1 illustrates
this filtering process.

To use a state-space filter for estimating the model parameters, we need the
application-specific definition of four filter components:
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Algorithm 1. Unscented Kalman Filter

1: Form weighted sigma points Xt = {wi, xi}2n
i=0 around current mean xt and covariance Pt

with scaling factor ζ

x0 = xt xi = xt + [
√

ζPt]i xi+n = xt − [
√

ζPt]i

2: Predict the new sigma points and observations

Xt+1|t = f [Xt] Yt+1|t = h[Xt+1|t]

3: Compute weighted means and covariances, e.g.

x̄t+1|t =
∑

i

wi xi Pxy =
∑

i

wi(xi − x̄t+1|t)(yi − ȳt+1|t)
T

4: Update estimate using Kalman gain K and scanner measurement yt

xt+1 = x̄t+1|t + K(yt − ȳt+1|t) Pt+1 = Pxx − KPyyKT K = PxyP−1
yy

1. The system state (x): the model parameters
2. The state transition function (f ): how the model changes as we trace the fiber
3. The observation function (h): how the signal appears given a particular model state
4. The measurement (y): the actual signal obtained from the scanner

For our state, we directly use the parameters for the two-tensor model in Eq. 1:

x = [m1 λ11 λ21 w1 m2 λ12 λ22 w2 ]T , m ∈ S
2, λ ∈ R

+, w ∈ [0, 1]. (2)

For the state transition we assume identity dynamics; the local fiber configuration does
not undergo drastic change as it moves from one location to the next. Our observation
is the signal reconstruction, y = h[x] = s = [ s1, ..., sm ]T using si described by the
model in Eq. 1, and our measurement is the actual signal interpolated directly on the
diffusion weighted images at the current position.

Since our signal reconstruction in Eq. 1 is nonlinear, we employ an unscented
Kalman filter to perform estimation. Similar to classical linear Kalman filtering, the un-
scented version seeks to reconcile the predicted state of the system with the measured
state and addresses the fact that these two processes–prediction and measurement–may
be nonlinear or unknown. In Algorithm 1 we present the standard version of this filter;
for more thorough treatments, see [22,23]. It is important to note that while particle
filters are a common approach to nonlinear estimation, we chose instead the unscented
Kalman filter primarily for its low computational complexity. With respect to state di-
mension, particle filters require the number of particles to be exponential to properly
explore the state space. In contrast, the unscented filter requires 2n+ 1 particles (sigma
points) for a Gaussian estimate of the n-dimensional state.

In this standard formulation, we have ignored the constraints on our model. This re-
sults in instabilities: the diffusion tensors may become degenerate with zero or negative
eigenvalues, or the weights may become negative. To enforce appropriate constraints,
one can directly project any unconstrained state x onto the constrained subspace [23].
In other words, we wish to find the state x̂ closest to the unconstrained state x which
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still obeys the constraints, Ax̂ ≤ b. Using Pt as a weighting matrix, this becomes a
quadratic programming problem:

min
x̂

(x − x̂)TP−1
t (x − x̂) subject to Ax̂ ≤ b. (3)

This projection procedure is applied within unscented Kalman filter procedure to correct
at every place where we move in the state-space: after spreading the sigma points Xt,
after transforming the sigma points Xt+1|t, and after the final estimate xt+1.

In this study, for voxels that can be modeled with only one tensor, we found it prefer-
able to have both the tensor components similarly oriented. Upon encountering a region
of dispersion, the second component is poised and ready to begin branching instead of
having zero weight and arbitrary orientation. To favor such solutions, we require the
weights of each of the components to be not just non-negative but also greater than 0.2,
and so, in our current implementation, D and b are constructed to encode the following
state constraints:

λ11, λ21, λ12, λ22 > 0 w1, w2 ≥ 0.2 w1 + w2 = 1. (4)

3 Experiments

We first use experiments with synthetic data to validate our technique against ground
truth. We confirm that our approach accurately recognizes crossing fibers over a broad
range of angles and consistently estimates the partial volumes (Section 3.1). We then
examine a real dataset to demonstrate how causal estimation is able to pick up fibers
and branchings known to exist in vivo yet absent using other techniques (Section 3.2).

In these experiments, we compare against two alternative techniques. First, we use
sharpened spherical harmonics with peak detection as described in [8] (order l = 8,
regularizationL = 0.006). This provides a comparison with an independently estimated
nonparametric representation. Second, when performing tractography on real data, we
also compare against single-tensor streamline tractography for a baseline.

3.1 Synthetic Validation

Following the experimental method of generating multi-compartment synthetic data
found in [2,8,15], we averaged the eigenvalues of the 300 voxels with highest fractional
anisotropy (FA) in our real data set: {1200, 100, 100}μm2/msec. We used these eigen-
values to generate synthetic MR signals according to Eq. 1 at b=1000 with 81 gradient
directions on the hemisphere and introduced Rician noise (SNR ≈ 5 dB).

While the independent optimization techniques can be run on individually generated
voxels, care must be taken in constructing reasonable scenarios to test the causal fil-
ter. For this purpose, we constructed a set of two-dimensional fields through which to
navigate. In the middle is one long pathway where the filter starts at one end estimat-
ing a single tensor but then runs into voxels with two crossed fibers at a fixed angle
and weighting. In this crossing region we calculated error statistics to compare against
sharpened spherical harmonics.
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50%-50% 60%-40% 70%-30% 80%-20%

Fig. 2. Comparison of sharpened spherical harmonics (red) against filtered approach (black) over
several different metrics: detection rate, angular resolution, estimated primary fiber weight (rows,
top to bottom). Each column is a different primary fiber weighting. The filter provides superior
detection rates, accurate angular resolution, and consistent weight estimated. Trendlines indicate
mean while dashed bars indicate one standard deviation.

From these synthetic sets, we examined detection rate, angular resolution, and es-
timated volume fractions and we plot the results in Fig. 2. Each column looks at a
different primary-secondary weighting combination, and each row looks at a different
metric. In the top row, we count how many times each technique distinguishes two sep-
arate fibers. The filtered approach (black) is able to detect two distinct fibers at crossing
angles far below that using spherical harmonics (red). Further, the filtered approach
maintains such relatively high detection rates even at 80/20 partial voluming (far right
column). In the middle row, we look at where each technique reported two fibers and we
record the error in estimated angles. From this, we see that spherical harmonics result in
an angular error of roughly 15◦ at best and fails to detect a second component at angles
below 60◦. In contrast, the filtered approach has an error between 5-10◦ and is able to
accurately estimate down to crossing angles of 30◦. In the bottom row, we look at the
primary fiber weight estimated by the filter. As expected, this estimate is most accurate
closer to 90◦ (blue line indicates true weight).

3.2 In Vivo Tractography

This study focuses on fibers originating in the corpus callosum. Specifically, we sought
to trace out the lateral transcallosal fibers that run through the corpus callosum out to
the lateral gyri. It is known that single-tensor streamline tractography only traces out the
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Single-tensor Spherical harmonics Filtered

Fig. 3. Filtered tractography picks up many fiber paths consistent with the underlying structures.
Both single-tensor streamline and sharpened spherical harmonics are unable to find the majority
of these pathways. Seed region indicated in yellow.

Single-tensor Spherical harmonics Filtered

Fig. 4. Tracing fibers originating from the center of the entire corpus callosum viewed from above.
The proposed filtered tractography is able to find many of the lateral projections (blue) while
single-tensor is unable to find any and few are found with sharpened spherical harmonics. Seed
region indicated in yellow.

dominant pathways forming the U-shaped callosal radiation while spherical harmonics
only capture some of these pathways [8,15].

We begin by seeding each algorithm up to thirty times in voxels at the intersection
of the mid-sagital plane and the corpus callosum. To explore branchings found using
the proposed technique, we considered a component to be branching if it was separated
from the primary component by less than 40◦ with FA≥0.15 and weight above 0.3.
Similarly, with sharpened spherical harmonics, we considered it a branch if we found
additional maxima over the same range. We terminated fibers when either the gener-
alized fractional anisotropy [2] of the estimated signal fell below 0.1 or the primary
component FA fell below 0.15 or weight below 0.3.

We tested our approach on a human brain scan using a 3-Tesla magnet to collect
51 diffusion weighted images on the hemisphere at b = 900 s/mm2, a scan sequence
comparable those of [8,15]. Fig. 3 shows tracts originating from within a few voxels
intersecting a chosen coronal slice. Confirming the results in [8,15], sharpened spher-
ical harmonics only pick up a few fibers intersecting the U-shaped callosal radiata. In
contrast, our proposed algorithm traces out many pathways consistent with the apparent
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anatomy. Fig. 4 shows a view of the whole corpus callosum from above. The filtered
approach is able to pick up many transcallosal fibers throughout the corpus callosum
as well as infiltrating the frontal gyri to a greater degree than either alternate technique.
To emphasize transcallosal tracts, we color as blue those fibers exiting a corridor of
±22 mm around the mid-sagittal plane.

4 Conclusion

In this work, we demonstrated that using the unscented Kalman filter provides robust
estimates of the fiber model with much higher accuracy than independent estimation
techniques. Specifically, the proposed approach gives significantly lower angular error
(5-10◦) in regions with fiber crossings than using sharpened spherical harmonics (15-
20◦), and it reliably estimates the partial volume fractions.
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Abstract. In this paper we deal with the problem of quantification of
diffusion tensor (DT) data sets. A set of measures and a 2D tract map-
ping technique are proposed to analyze the fiber structures in brain white
matter and to allow for comparisons between different subjects, either
patients or controls. Features such as integrity, discontinuity and connec-
tivity of the fiber bundles are proposed and analyzed, taking into account
longitudinal and transverse information of the fiber bundle under study.
The performance of the proposed characterization framework is shown
analyzing the corticospinal tracts of control data sets and pathological
cases, comparing the measures between controls and patients and also
between the right and left hemispheres. A reproducibility study is also
performed to show the robustness of the proposed measures.

1 Introduction and State of the Art

Diffusion tensor imaging (DTI) is a modality that measures the diffusion of
water molecules in tissues, and allows to visualize the fiber structure of the
brain, since water diffusion is constrained by myelin coat of the axons. Using the
main diffusion direction at each voxel, the fiber trajectories can be estimated and
then visualized in order to give to the specialist a better understanding of the
white matter structure. This technique, known as fiber tracking or tractography,
has been studied in many works before, and it can be used to compute measures
along a given set of tracts to quantitatively analyze the connectivity in the brain.

DTI analyses have been performed to assess the effect of neurological dis-
eases in the fiber structure. In most cases, scalar measures such as the fractional
anisotropy (FA) or the mean diffusivity (MD) have been computed in the whole
brain or in regions of interest. However, recent works propose to compute such
measures in a given fiber tract of interest. To compare tracts between controls
and patients, the same tract should be identified in every volume under study.
Usually, seed regions are manually placed to generate these tracts. However,
some atlas-based approaches [1,2,3,4] have been proposed to automatically iden-
tify the tracts of interest, and then measures are computed along such tracts. For
� This work has been funded by the national spanish grant TEC-2007-67073/TCM,
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instance, in [2] the authors compare tracts among healthy subjects and patients
with temporal lobe epilepsy. The work in [4] measures the FA, MD and eigen-
values along the pyramidal tract. Measures along fibers are also proposed [5],
such as fiber length, weighted fiber length, etc. to analyze the integrity of the
white matter. Other interesting approach that avoids the use of fiber tracking is
the Tract Based Spatial Statistics (TBSS) [6], but this method reduces the fiber
structure of the brain to a projection onto the skeleton of the FA.

In this paper we propose a quantification method for anatomical fiber bundles
using an automatic tractography method. We will show the application of this
method in the pyramidal tract, although other fiber bundles can be used. We
compare the obtained measures between a control group and a group of patients
with neuro-degenerative diseases, as well as between the hemispheres of patients
affected by a tumor with a healthy hemisphere.

2 Automated Extraction of Fiber Tracts

The fiber tract extraction is an atlas based method. For this reason we have con-
structed first a DTI model of the brain using 30 control healthy subjects. The
data sets used have been acquired in a GE Signa 1.5 T MR scanner using 15 gra-
dient directions, b = 1000 s/mm2, 1.015x1.015x3 mm of voxel size, TR=9999.9
ms, TE = 80.90 ms, NEX=8, and spanning the entire brain. For the model con-
struction we have registered all the Diffusion Weighted Images (DWI) of control
subjects to the same reference framework. Then the DWI images were averaged,
to finally estimate the tensor using the averaged DWI data. This model is then
used to define a set of regions of interests (ROIs) each of them corresponding
to one fiber bundle of anatomical interest. The ROIs are identified in the model
using the white matter atlas in [7].

To automatically obtain the tracts of a given subject, the ROIs obtained
for the model are deformed to fit the subject data. This deformation is a non
linear transformation, that is obtained by means of a multi-resolution template
matching registration between the model FA and the subject FA volumes.

Then a tractography method is executed using the voxels in the deformed
ROIs as seeds. In this work a fourth order Runge-Kutta method is employed, due
to its efficiency. In order to obtain more reliable tracts, a brute force approach is
followed: the fiber tracts for the whole brain are computed, using a FA threshold
of 0.15, and each fiber tract is assigned with an index value. Therefore each voxel
with a FA value greater than 0.15 will point to an array of indexes corresponding
to the fibers that pass through it. Then, the fibers selected for each ROI are those
that pass through the voxels that belongs to that particular ROI.

Note that this methodology of fiber tracts identification does not warp the
fibers in the subject, and this is done to perform robust measures over the original
fibers computed from each subject, and not over the warped fibers (as in [3]),
or over a set of voxels in the skeleton (as in [6]). Of course, this methodology
is not error free, and is affected by the accuracy of the tractography and the
registration. Although both methods can be improved, the effect of registration
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errors has negative impact only in the case that the deformed regions do not
cover completely the target regions in the subject data, because only the voxels
with FA> 0.15 are finally considered. Also, more complex methods can be used
to solve fiber crossings, but it will affect drastically the execution time and the
acquisition requirements, making this method non practical for clinical use.

3 Fiber Tracts Quantification

The goal of this work is to obtain quantitative measures that allows to discrim-
inate between normal and abnormal fiber bundles, using the automatic tractog-
raphy described above. It is important to highlight that the so computed fibers
are not warped, and due to the automatic method to extract them the user
variability is removed from the process.

3.1 Longitudinal Measures

We propose three new measures computed along the fiber paths that we will
call longitudinal measures. As an example, we show in figure 1 (a) and (b) the
average FA profiles obtained in the trajectory followed by two fiber bundles.
They correspond to the right pyramidal tracts of a healthy subject (a) and a
tumor patient (b). Notice the different behavior presented by these two profiles.

– Tract integrity measure. The first measure proposed is the integrity of
the fiber tracts, and is defined using the FA, because it is directly related
to the number of axons aligned in a predominant direction. Therefore, the
FA is a good descriptor here, and the proposed integrity measure for a given
tract is defined as the total amount of FA computed at the points involved
in the fiber paths, divided by the number of fibers in the tract:

I =
1
M

M∑
f=1

Nf∑
i=1

FAf (xi),

where FAf is the FA profile of fiber f , xi are its fiber points, Nf is the
number of points of fiber f , and M is the number of fibers computed. Notice
that short fibers will contribute with low values to this measure which is
desirable because we want to compare similar fiber bundles, and therefore
we want to take into account length discrepancy between tracts. For this
reason the mean FA is not used.

– Tract discontinuity measure. The integrity measure is related to the
amount of directional diffusion in a fiber bundle. But if a fiber tract is affected
in small zones along its path, its integrity could be slightly reduced by a
negligible quantity. Thus, discontinuities or local changes along the fibers
will have small impact on the previous measure. In order to consider this
effect, we define the discontinuity of a fiber tract as the number of local
minima of the fiber FA profiles, weighted by their distance to the maximum
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FA value, which is 1. Individual fiber measures are averaged as before, to
obtain a unique measure for the whole tract. If yj are the positions of the local
minima of each FA profile, in the fiber tract considered, the discontinuity
measure is

D =
1
M

M∑
f=1

Lf∑
j=1

(1− FAf (yj)),

where again M is the number of fibers computed and Lf is the number
of local minima obtained for fiber f . In order to avoid non relevant local
minima, the noise of the FA profile is reduced with gaussian filtering. Low
values of this measure means more continuous and reliable fibers.

– Tract connectivity measure. Finally, the measures obtained before are
used to define a connectivity measure, that is associated with the fiber tract
and with two ROIs. For the pyramidal tract case, two different ROIs are
defined (one of them is placed at the internal capsule, and the other one at
an axial plane above the corpus callosum). For the aforementioned reasons,
each fiber tract will have different features, and just counting the number of
them connecting the two ROIs will give rise to erroneous information. For
instance for two different subjects, the same number of fibers connecting the
two defined ROIs can be very similar, but the integrity and the disconti-
nuity of the fibers can be quite different between them. For this reason the
connectivity measure is based on the two measures proposed before:

C =
M · I
1 + D

which increases with the integrity, and decreases with the discontinuity.

3.2 2D Tract Mapping

The defined measures are longitudinal and do not use the transverse direction or
information between neighbor fibers. Hence, we propose to introduce information
about this transverse direction using a 2D tract mapping method to visualize
and measure the FA profiles in a two dimensional way. This consists in projecting
the fiber tracts in a plane. Starting from the seeds, the FA along the fibers are
stored in a 2D matrix where the rows represent the longitudinal dimension and
the columns represent the transverse dimension. The implementation of this
mapping is easy in the pyramidal tract, because the fibers can be ordered from
anterior to posterior direction, and the longitudinal dimension is ordered from
inferior to superior. Figure 1 (c) and (d), shows an example of these maps for
the pyramidal tract of a control and a patient with a tumor.

We can therefore use this mapping to obtain again the measures proposed
before, but instead of using only the longitudinal dimension, we can also use the
transverse dimension to have more reliable measure results, using the map as a
2D image. The new measures are then defined as:
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Fig. 1. Average FA profiles in the right pyramidal tract of a control (a) and a patient
with a tumor in this hemisphere (b), and corresponding 2D FA tract maps (c) and (d)

I2d =
1
M

N∑
i=1

FA(xi)

1 + αl

∣∣∣∂FA(xi)
∂x

∣∣∣+ αt

∣∣∣∂FA(xi)
∂y

∣∣∣
where now FA is a 2D image, xi are its pixels, N is the total number of pixels
in the 2D map 1, αl and αt are weights used for the longitudinal and transverse
dimensions respectively. In this work we will use αl = 1 and αt = 0.5 to give
more relevance to the longitudinal dimension which is a more reliable dimension.

D2d =
1
M

L∑
j=1

|∇FA(yj)|(1− FA(yj))

where yj are the pixels that corresponds to the same local minima as in the
longitudinal discontinuity measure, and L is the total number of them. Finally,
the connectivity 2D measure is:

C2d =
M · I2d

1 + D2d

In order to explain better the measures behavior, 4 synthetic semicircular
tracts, shown in figure 2, are analyzed. Comparison between the C2d values
obtained: 1079, 1040, 885 and 423, against the average FA values: 0.915, 0.830,
0.904, 0.918, from a to d respectively, demonstrate that C2d provides a more
natural ordering and a higher sensitivity to discriminate between different tracts.

4 Experiments

In this section several experiments are presented to show the performance of
our quantification method. The used data has been acquired with the same
parameters described in section 2.

1 Due to difference in fiber sizes, N is greater than the number of points in the fiber
tract, but there is no contribution of these additional pixels because they are zero.
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Fig. 2. Synthetic tracts used to explain the measures behavior

4.1 Real Case Study

The measures here proposed have been computed in the pyramidal tract of a
group of 10 control subjects and in a group of 7 patients affected by a neuro-
degenerative disease (3 multiple sclerosis patients and 4 epilepsy patients). The
mean and standard deviation from both groups are shown in table 1, and rep-
resented in figure 3. It is clear from these results that the integrity values are
lower in the patient group, and the discontinuity is higher in the patient group
as well. Consequently the connectivity measures obtained are also higher in the
control group. The difference of the mean values between controls and patients
are statistically significant in the integrity and connectivity measures with a sig-
nificance level of p < 0.05, using a t-test. This is not the case for the mean FA
or the number of fibers. For the left pyramidal tract, for instance, the mean FA
values are 0.48± 0.02 and 0.45± 0.04 for the control and patients group respec-
tively, and there are not statistical significant differences between both groups.
With respect to the number of fibers, we obtain 222± 39 for controls and even
higher values in the patient group: 242± 57, therefore it is not a valid measure
for comparisons.

Other interesting study has been made to compare the measures in the two
hemispheres of the same patient. In this case two patients affected with a tumor
in only one hemisphere are considered. We show in figure 4 the pyramidal tracts
of a control and a patient, using a colormap for the FA between 0.2 and 0.7.
It is clear that although the fiber structure is similar in both cases, the FA is
highly reduced in the patient due to the tumor. The connectivity values are also
shown in figure 4 for the set of 10 controls used in the previous study and for
the two patients. Values for the left pyramidal tract are in general higher than

Table 1. Quantitative measures. Mean values (and standard deviation) in the control
and patients group.

Measure (side) I (R) I (L) D (R) D (L) C (R) C (L)
Control 21.53 (1.4) 22.53 (1.5) 0.37 (0.21) 0.23 (0.23) 3322 (697) 4126 (955)
Patient 18.74 (1.2) 19.34 (1.0) 0.50 (0.18) 0.40 (0.35) 2733 (823) 3653 (1671)

Measure (side) I2d (R) I2d (L) D2d (R) D2d (L) C2d (R) C2d (L)
Control 18.83 (1.2) 19.74 (1.3) 0.42 (0.21) 0.31 (0.17) 2808 (584) 3412 (825)
Patient 16.34 (1.0) 16.88 (0.8) 0.59 (0.16) 0.48 (0.42) 2238 (617) 3061 (1445)
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Fig. 3. Measures for the left and right pyramidal tracts of the two groups studied.
Integrity 2D, Discontinuity 2D and Connectivity 2D.
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Fig. 4. Differences between the pyramidal tract in two hemispheres. Right: control
subject; middle: tumor patient; left: connectivity measures in 10 controls and 2 patients.

Table 2. Mean and std values in 3 different DTI data sets from the same volunteer

Measure(side) I (R) I (L) D (R) D (L) C (R) C (L)
Mean (std) 22.92 (0.45) 23.61 (0.34) 0.21 (0.15) 0.13 (0.04) 3729 (198) 4627 (179)

Measure(side) I2d (R) I2d (L) D2d (R) D2d (L) C2d (R) C2d (L)
Mean (std) 19.89 (0.49) 20.56 (0.22) 0.27 (0.24) 0.17 (0.04) 3099 (208) 3885 (147)

the left, because the controls are right hand sided. In that figure it is clear that
patient values differ significantly from the healthy hemisphere with respect to
the pathological. We have also observed that there is a good correlation between
the obtained values and the state of the patient, although clinical tests have to
be done to validate these results.

4.2 Reproducibility Study

The reproducibility has been studied using three different data sets from the
same subject, acquired with different parameters. The first volume was acquired
with the same parameters as the data from section 2, in the second one we used
NEX=2, and in the third data we used a matrix size of 192x192. Table 2 shows
the mean and standard deviation (std) of the measures obtained in the pyramidal
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tract, where the std values obtained now, almost one order of magnitude lower
than in table 1, proves that our quantification method is reproducible.

5 Conclusions

We have demonstrated that our proposed methodology to measure fiber tracts
is useful to differentiate between control subjects and patients. The values ob-
tained with our new integrity, discontinuity and connectivity measures are more
discriminant than usual measures such as the mean FA, or number of fibers. Also
the quantification method presented here is valid to distinguish clearly between
different hemispheres in the case of a neurological disorder affecting the corti-
cospinal tract. These measures are also extensible to other main fiber bundles
such as the corpus callosum, the uncinate fasciculus or the cingulum.

We have also shown the validity of the measures proposed with the repro-
ducibility study, although further analysis have to be done using other tractog-
raphy techniques, to try to deal with fiber crossings, other fiber bundles and
other acquisition parameters.
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Abstract. Compared with Diffusion Tensor Imaging (DTI), High Angular Reso-
lution Imaging (HARDI) can better explore the complex microstructure of white
matter. Orientation Distribution Function (ODF) is used to describe the proba-
bility of the fiber direction. Fisher information metric has been constructed for
probability density family in Information Geometry theory and it has been suc-
cessfully applied for tensor computing in DTI. In this paper, we present a state of
the art Riemannian framework for ODF computing based on Information Geom-
etry and sparse representation of orthonormal bases. In this Riemannian frame-
work, the exponential map, logarithmic map and geodesic have closed forms. And
the weighted Frechet mean exists uniquely on this manifold. We also propose a
novel scalar measurement, named Geometric Anisotropy (GA), which is the Rie-
mannian geodesic distance between the ODF and the isotropic ODF. The Renyi
entropy H 1

2
of the ODF can be computed from the GA. Moreover, we present

an Affine-Euclidean framework and a Log-Euclidean framework so that we can
work in an Euclidean space. As an application, Lagrange interpolation on ODF
field is proposed based on weighted Frechet mean. We validate our methods on
synthetic and real data experiments. Compared with existing Riemannian frame-
works on ODF, our framework is model-free. The estimation of the parameters,
i.e. Riemannian coordinates, is robust and linear. Moreover it should be noted
that our theoretical results can be used for any probability density function (PDF)
under an orthonormal basis representation.

1 Introduction

Diffusion Tensor Imaging (DTI) [1], based on the assumption of Gaussian diffusion, is
a popular way to probe the white matter in vivo. Riemannian frameworks (Affine In-
variant framework and Log-Euclidean framework) have been proposed for computing
on tensor valued data [2,3,4,5]. These frameworks have proved useful for regularizing,
registering, segmenting, and interpolating tensor data. The Riemannian framework pro-
vides the intrinsic way to deal with objects in a non-Euclidean space. High Angular
Resolution Diffusion Imaging (HARDI) is used to probe non-Gaussian diffusion which
represents more intricate microstructure in the tissue. In HARDI data modeling the
role of the Orientation Distribution Function (ODF) [6] is pivotal. It is an antipodally
symmetric probability density function defined on S 2 that is sufficiently smooth to be
represented by an orthonormal basis, such as the High Order Tensor (HOT) basis [7],

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 911–918, 2009.
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the Spherical Harmonic (SH) basis [8], or the Spherical Wavelet basis [9], using only a
few coefficients.

A Riemannian framework has never been proposed to our knowledge for the or-
thonormal basis representation of ODFs. In [6], the author used Kullback-Leibler diver-
gence, however, it’s not a real metric. In [10], ODFs were represented in the SH basis
and the authors used the L2 distance between the coefficient vectors as the distance be-
tween ODFs. The L2 distance is computationally efficient but it’s an ambient distance,
not a geodesic. Apart from orthonormal bases, special function mixture models have
also been proposed to represent ODFs [11,12]. In the case of the von Mises-Fisher dis-
tributions, the Riemannian framework can be constructed on the mixture model [13].
However, not every ODF can be represented by these functions, as the von Mises-Fisher
distributions don’t form a basis. Additionally, there is no efficient method for estimating
the parameters and the authors used an iterative optimization approach. Also, there is no
natural way to define a metric in a multiplicative space because different spaces should
have different weighted coefficients, but the authors considered the same weights in all
the spaces.

In this paper, we propose a natural, computationally efficient and model-free Rie-
mannian framework for computing on ODFs. First we study the parameter space of
ODFs based on the orthonormal basis representation, and propose the geodesic, the
exponential map, the logarithmic map, the weighted Frechet mean, and the Geometric
Anisotropy (GA) and the Renyi entropy (RE). The GA we propose is the Riemannian
geodesic to a spherical ODF, it indicates how non-spherical an ODF is. Next we also
propose the Affine-Euclidean (AE) and the Log-Euclidean (LE) frameworks to be able
to work in an Euclidean space. Finally we propose an interpolation method and compu-
tation of the mean ODF of a set of ODFs as example applications, based on weighted
Frechet mean, and demonstrate our method on synthetic and real data.

2 Riemannian Framework for ODF

ODFs have been successfully represented in orthonormal bases. Compared with the
special function mixture model in [11,12], basis representations are model-free methods
because linear combination of these bases can represent all ODFs. In this section, we
will construct the Riemannian framework under the orthonormal basis representation.

2.1 Parametric Family and Riemannian Framework

The ODF is a PDF denoted by p(x), x ∈ χ, χ = S 2. Let the square-root of the ODF
be denoted by

√
p : x → √

p(x),∀x ∈ χ. We assume a very weak and reasonable
assumption that the square-root

√
p can be represented by the linear combination of the

first K bases, i.e.
√

p(x) =
∑K

i=1 ciBi(x). {Bi(x)}i∈N is any orthonormal basis function set,
and c = (c1, c2, ..., cK)T is called the Riemannian Coordinate. Thus c is the parameter of
ODF p(x|c), and we have the probability family PFK as

PFK =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

p(x|c) =

⎛
⎜⎜⎜⎜⎜⎝

K∑

i=1

ciBi(x)

⎞
⎟⎟⎟⎟⎟⎠

2

:
∫

χ

p(x|c)dx =
K∑

i=1

c2
i = 1,

K∑

i=1

ciBi(x) ≥ 0, ∀x ∈ χ
⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
(1)
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Fig. 1. Left & Middle: Riemannian framework. Right: Parameter space, Affine-Euclidean and
Log-Euclidean frameworks. The isotropic ODF u is only marked as an example and may not be
at the center of the cone.

All ODFs will be in PFK if K is large enough thanks to the orthonormal basis represen-
tation. Let ∂i =

∂
∂ci

, then we have the information metric as [13]:

gi j(c) =
∫

χ

∂i log (p(x|c)) ∂ j log (p(x|c)) p(x|c)dx = 4
∫

χ

∂i

√
p(x|c)∂ j

√
p(x|c)dx (2)

= 4
∫

χ

∂i

⎛
⎜⎜⎜⎜⎜⎝

K∑

m=1

cmBm(x)

⎞
⎟⎟⎟⎟⎟⎠ ∂ j

⎛
⎜⎜⎜⎜⎜⎝

K∑

n=1

cnBn(x)

⎞
⎟⎟⎟⎟⎟⎠ dx = 4

∫

χ

Bi(x)B j(x)dx = 4δi j (3)

We do not care about a constant multiplier in a metric if we want to devise a compu-
tational method. So we consider gi j = δi j. From the formulae above, we can find that
the parameter space PS K = {c | ‖c‖ = ∑K

i=1 c2
i = 1,

∑K
i=1 ciBi(x) ≥ 0, ∀x ∈ χ} is just a

subset of the sphere S k−1. The sphere is a simple manifold which has been well studied.
Thus we can get the geodesic (the part of the great circle on the sphere), exponential
map, and logarithmic map very easily [14,11,15]. If we let

√
p(x|c) =

∑K
i=1 ciBi(x),√

p(x|c′) = ∑K
j=1 c′jB j(x), and vc is the tangent vector at c towards c′, then we have the

Riemannian framework (see Fig-1):

Distance : dgi j(p(·|c), p(·|c′)) = dδi j(c, c
′) = arccos(

K∑

i=1

cic
′
i ) (4)

Exp : Expc(vc) = c′ = c cosϕ +
vc
‖vc‖ sinϕ, where ϕ = ‖vc‖ (5)

Log : Logc(c′) = vc =
c′ − c cosϕ
‖c′ − c cosϕ‖ϕ, where ϕ = arccos(

K∑

i=1

cic
′
i) (6)

The geodesic between ODF p(x|c) and ODF p(x|c′) is γ(t): p(x|c(t)), where c(t) =
Expc(tLogc(c′)). Then γ(0) = c, dγ(t)

dt |t=0 = vc, γ(1) = c′. Actually, it’s the part of the
great circle that connects c and c′.

2.2 Parameter Space, Affine-Euclidean and Log-Euclidean Frameworks

To use the Riemannian framework, we see from Equ-1 that we should keep the param-
eter c in PS K . To do so we derive useful theoretical results on PS K .
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Property-1: PS K is closed. The boundary of PS K is {c | ∑K
i=1 c2

i = 1, ∃C ⊂ χ, s.t. x ∈
C,

∑K
i=1 ciBi(x) = 0, ∀x � C,

∑K
i=1 ciBi(x) > 0}. Therefore, PS K is closed by definition.

Property-2: PS K is a convex subset of sphere S K−1. If c ∈ PS K and c′ ∈ PS K , let
c(t), t ∈ [0, 1] be the geodesic between them. Now, ∀t ∈ [0, 1], ∃λ ∈ [0, 1], s.t. c(t) =
λc+(1−λ)c′
‖λc+(1−λ)c′‖ , because c(t) is on the great circle (geodesic) and λc + (1 − λ)c′ is on the

chord between c and c′. And p(x|c(t)) =
∑K

i=1 ci(t)B(x) =
∑K

i=1(λ
√

p(x|c)+(1−λ)p(x|c′))
‖λc+(1−λ)c′‖ ≥ 0.

Property-3: PS K is contained in a convex cone with angle 90o. ∀c, c′ ∈ PS K,∫
χ

√
p(x|c)

√
p(x|c′)dx=

∫
χ

∑K
i=1 ciBi(x)

∑K
j=1 c jB j(x)dx =

∑K
i=1 cic′i = cos(c, c′) ∈ [0, 1].

That means the angle between any two points in PS K is less than 90o (see Fig-1).
Property-4: The projection of any c ∈ PS K on the Riemannian Coordinate u of the
isotropic ODF should be more than 1√

4π
. If the isotropic ODF is denoted by U(x) =

1
|χ| =

1
4π , and

√
U(x) = 1√

|χ| =
∑K

i=1 uiBi(x), then ∀c ∈ PS K , cT u = cos(c, u) =
∫
χ

√
p(x|c) 1√

|χ| >
1√
|χ|

∫
χ

p(x|c)dx = 1√
4π

. That means the projection of c on u should

be more than 1√
4π

. If we choose the SH basis, ∀c = (c1, c2, ..., cK) ∈ PS K , c1 >
1√
4π

because u = (1, 0, ..., 0).
Result-1: Geometric Anisotropy (GA). Thanks to property-2, in order to measure the
anisotropy of an ODF, it is possible to define GA, a scalar function, as the geodesic
distance between the ODF p(x|c) and the isotropic ODF U(x), i.e.

GA(p(x|c)) = d(p(·|c),U(·)) = arccos(cT u) ∈ [0, arccos(
1√
4π

)) (7)

Result-2: Renyi Entropy (RE). The RE of order 1
2 is

H 1
2
(p(x|c)) = 2 log

(∫

χ

√
p(x|c)dx

)
= 2 log (cos(GA(p(x|c)))) + log(4π)

= log(4π(cT u)2) ∈ (0, log(4π)] (8)

Result-3: Affine-Euclidean (AE) & Log-Euclidean (LE) frameworks. Since PS K is a
closed and convex subset of a hemisphere including u (properties-1,2,3,4), it is diffeo-
morphic to a subset, named Euc, of the tangent space of u. We can define a diffeomor-
phism F : PS K ⊂ S K−1 → Euc ⊂ Tu. We can use the metric in Euc to redefine the
metric in PS K . Then the Riemannian framework will be changed so that we can work
in an Euclidean space, which will approximate the Riemannian framework (see Fig-1).
If we Let F∗ and F∗ denote respectively the push forward and pull back maps, then

Distance : dPS K (p(·|c), p(·|c′)) = dEuc(F(c), F(c′)) = ‖F(c) − F(c′)‖ (9)

Exp : Expc(vc) = c′ = F−1(F(c) + F∗vc) (10)

Log : Logc(c′) = vc = F∗(F(c′) − F(c)) (11)

If we choose F(c) = Logu(c), then we get the Log-Euclidean framework like the one in
tensor space [4]. If we choose F(c) = c

uT c − u, we get the Affine-Euclidean framework,
which is very popular in Statistical Shape Analysis (SSA) [5,16].
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2.3 Weighted Frechet Mean

Another important property of PS K is that the weighted Frechet mean exists uniquely
[14]. The weighted Frechet mean is defined as the point on the manifold PS K that mini-
mizes the summation of weighted squared Riemannian geodesic distances to each sam-
ple point [3]. If f1, f2, ..., fN ∈ PS K , Qw( f ) =

∑N
i=1 wid( f , fi)2, w = (w1, ...,wN)T , wi ∈

[0, 1],
∑N

i=1 wi = 1, then

μw = arg min
f∈PS K

Qw( f ) = arg min
f∈PS K

N∑

i=1

wid( f , fi)2 (12)

Qw(μw) is called as sample weighted variance. In [14], the author proved that Frechet
mean on hemisphere exists uniquely, so it does in our parameter space because cT u >

1√
4π

. Borrowing from the notation in [14], we denote μw �
∑̃N

i=1wi fi � w1 f1 ⊕ w2 f2 ⊕
· · · ⊕ wN fN . Here is a gradient descent method to calculate the weighted Frechet mean.

Algorithm 1. Weighted Frechet Mean
Input: f1, ..., fN ∈ PS K , w = (w1, ...,wN)′, wi ≥ 0, i = 1, 2, ...,N,

∑N
i=1 wi = 1.

Output: μw, the Weighted Frechet Mean.

Initialization: μ(0)
w =

∑N
i=1 wi fi

‖∑N
i=1 wi fi‖ , k = 0

Do
vμ(k)

w
=

∑N
i=1 wiLogμ(k)

w
( fi)

μ
(k+1)
w = Expμ(k)

w
(vμ(k)

w
)

k = k + 1
while ‖vμ(k)

w
‖ > ε

For AE and LE frameworks, because we use the distance on Euclidean spaces to ap-
proximate the distance on PS , obviously there is a closed form:

μw = F−1

⎛
⎜⎜⎜⎜⎜⎝

N∑

i=1

wiF( fi)

⎞
⎟⎟⎟⎟⎟⎠ (13)

3 Riemannian Coordinate Estimation and ODF Interpolation

In the previous section, our theoretical results are independent of the choice of the
basis function, and we assume that for every ODF p(x|c), we know the Riemannian
Coordinate c. Here we show a simple and linear method to estimate it from raw HARDI
data under the SH basis representation.

First, we can use any method to estimate the ODF p(x). Here we choose the ro-
bust, linear, analytical Q-ball imaging [8] with the regularization term. Second, we take
discrete samples p(xi) of the ODF on the continuous sphere, and calculate the square-
root of these samples

√
p(xi). Third, we use these square-root samples to estimate the

square-root of the ODF through a least squares SH basis fit linearly without regulariza-
tion. If we choose the first N order SH bases in the first step (N ≥ 4) [8], and the first
M order in the third step, we should keep M ≥ N. The advantages of our estimation
method are its linearity, robustness and speed, thanks to the analytical Q-ball imaging.
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Based on the weighted Frechet mean in section 2.3, we propose a Lagrange inter-
polation method on ODF space as an application. In 1-dimension case, if we have N
ODFs { f (xi), i = 1, 2, ...,N} in N spatial position {xi, i = 1, 2, ...,N}. , we can inter-
polate the ODF in the whole spatial axis as the weighted Frechet mean of { f (xi)}, i.e.

f (x) =
∑̃N

i=1wi(x) f (xi), wi(x) =
∏N

l=1,l�i
x−xl
xi−xl

. It should be noted that if N = 2, then
f (x) = (1 − t) f (x1) ⊕ t f (x2), t = x−x1

x2−x1
. Actually, in that case, f (x) is the geodesic

determined by f (x1) and f (x2), i.e. f (x) = Exp f (x1)

(
tLog f (x1)( f (x2))

)
. For HARDI

image in 3-dimension, if we have N1, N2 and N3 for ODFs for each dimension, i.e.
{ f (xi, y j, zk), 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3}, we can interpolate ODF in the
continuous 3D space as the weighted Frechet mean of { f (xi, y j, zk)}.

f (x, y, z) =
∑̃N1

i=1

∑̃N2

j=1

∑̃N3

k=1
w(1)

i (x)w(2)
j (y)w(3)

k (z) f (xi, y j, zk) (14)

w(1)
i (x) =

N1∏

l=1,l�i

x − xl

xi − xl
, w(2)

j (y) =
N2∏

m=1,m� j

y − ym

y j − ym
, w(3)

k (z) =
N3∏

n=1,n�k

z − zn

zk − zn
(15)

4 Experiments and Results

Experiments were conducted to illustrate the proposed metrics. Synthetic ODFs were
generated using the multi-tensor model (1 or 2 fibers, every tensor with eigenvalues
[1700, 300, 300]× 10−6mm2/s) [17]. Riemannian Coordinates of ODFs were estimated
using the method proposed in section-3. In the experiments, we chose order 4 to esti-
mate the ODF and its square-root with satisfactory results. Then the Lagrange interpo-
lation method was applied to interpolate the ODFs in 1D or 2D cases.

GA was calculated for synthetic data and clinical real data, and compared with GFA
[6]. No normalization was used for ODF visualization. Since RE H 1

2
∈ (0, log(4π)],

we plotted its normalized version H 1
2
/ log(4π). From the results, we find that the three

proposed metrics – AE, LE, Riemannian (RM), give very similar results. The RE is close
to 1. This is because the ODF proposed in [6] is very smooth and close to the isotropic
ODF. The results of the experiments-A to E are given in the Fig-2.

Exp-A: We interpolate from the isotropic ODF U(x) to a single fiber using the (1)AE,
(2) LE, (3) RM metrics. As expected, the GA is linear, since the GA is the Riemannian
distance to u. Exp-B: We illustrate Riemannian geodesic interpolation between different
fiber configurations, and plot the corresponding GA. Exp-C: 2D Lagrange interpolation
using the (1)AE, (2) LE, (3) RM metrics. The background is the GA. Exps-A,B,C: ODFs
coloured by GA. Exp-D: GA (left) from clinical real data compared to GFA (right).
ODFs estimated using [8]. Exp-E: Mean ODF computation from a field of ODFs using
the (1) LE and (2) RM metrics.

5 Conclusion

In this paper, we proposed a novel Riemannian framework based on Information Geom-
etry and orthonormal basis representation. Our framework is model-free and computa-
tionally efficient. The estimation method of Riemannian Coordinates is fast, linear and
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Fig. 2. Exp-A: Interpolation from Isotropic to 1-fiber using (1) AE, (2) LE, (3) RM metrics. Rie-
mannian (RM) GA is linear as expected. Exp-B: Various RM geodesics with corresponding GA
plotted. Exp-C: 2D Lagrange interpolation (given 4 ODFs in the 4 corners) using (1) AE, (2) LE,
(3) RM metrics. Background is GA. Exp-D: GA (left) and GFA (right) from clinical real data.
ODFs estimated using [8] Exp-E: (1) LE & (2) RM mean from a field of ODFs. Results and
computation time of the metrics are comparable. For mean computation, LE has a closed form.
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robust. The weighted Frechet mean exists uniquely. Moreover, we present the AE and
the LE frameworks so that the computation is simplified further and we have closed
forms. A Lagrange interpolation method was proposed as an application. The results
validate our framework. Last but not least, this framework can be used for any kind of
PDF under orthonormal basis representation, which is part of our future plans.
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Abstract. Least Squares (LS) and its weighted version are standard
techniques to estimate the Diffusion Tensor (DT) from Diffusion Weighted
Images (DWI). They require to linearize the problem by computing the
logarithm of the DWI. For the single-coil Rician noise model it has been
shown that this model does not introduce a significant bias, but for mul-
tiple array coils and parallel imaging, the noise cannot longer be modeled
as Rician. As a result the validity of LS approaches is not assured. An ana-
lytical study of noise statistics for a multiple coil system is carried out, to-
gether with the Weighted LS formulation and noise analysis for this model.
Results show that the bias in the computation of the components of the
DT may be comparable to their variance in many cases, stressing the im-
portance of unbiased filtering previous to DT estimation.

1 Introduction

Least Squares (LS) techniques have become the standard to estimate the Diffu-
sion Tensor (DT) in DT–MRI [1]. Although other approaches are possible [2],
LS are fast and robust, and they show optimal properties (minimum variance)
when Weighted Least Squares (WLS) is used [1]. For single-coil acquisition sys-
tems where the noise is Rician distributed [3], the estimation is nearly unbiased,
so WLS is in this case the Best Linear Unbiased Estimator (BLUE). With the
advent of multiple receiver coils for similtaneous acquisition and parallel recon-
struction schemes (pMRI), the noise in the Diffusion Weighted Images (DWI)
is no longer Rician [4,5,6] and the properties of WLS have not been analyzed
for these composite signals. In addition, although the importance of the bias
in DWI has been studied in filtering problems, [7,8,9,10], the necessity of bias
removal for DT estimation has not been either thoroughly analyzed to the very
best of our knowledge. Therefore the main contributions of the present paper
are: first, we theoretically justify the conclusions of [1] regarding the bias and
variance of log–Rician distributed signals; for array coils, the log–non–central χ
model has been suggested [5], so we derive both analytical expressions and prac-
tical approximations for its statistical characterization. Based on this analysis,
we secondly extend the work in [1] to multiple coils DT–MRI, showing that
it admits the same WLS formulation. Third we show that, as opposed to the
case of Rician noise, the bias in WLS estimation is relevant with array coils as
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a consequence of the estimation of the composite magnitude signal by means of
Sum of Squares (SoS). This implies that the analysis may be generalized to some
pMRI reconstruction schemes based on SoS, such as the popular GRAPPA tech-
nique. At the same time, the need for unbiased filtering before DT estimation is
evidenced.

2 Statistics of Noise in the Log–Domain

Under the assumption of narrow pulses, and for mono–compartment Gaussian
diffusion, the tensor model relates the DWI signal Ai for each gradient direction
i to the T2 baseline image A0 following the Stejskal–Tanner equation [11]:

Ai = A0 exp(−bgT
i Dgi) ⇔ log (A0)− log (Ai) = bgT

i Dgi, 1 ≤ i ≤ N (1)

where gi are the N gradient directions, b is the diffusion weighting parameter,
and D is the DT. Assuming Ai real, for a single–coil acquisition the received
signal Mi is the Rician distributed envelope of a complex Gaussian process [3]:

Mi =
√(

Ai + n2
c,i

)2 + n2
s,i (2)

where nc,i and ns,i are independent Gaussian processes with zero mean and
standard deviation σ. In phased array systems with multiple coils –assuming
no subsampling in the k-space–, the composite magnitude signal after sum-of-
squares combination may be modeled as [4,5]:

Mi =

√√√√ L∑
l=1

(
Ai,l + n2

c,i,l

)2
+ n2

s,i,l (3)

for L receiving coils. This correponds to a non–central χ distribution. Note that
the Rician distribution is a particular case for L = 1, so the latter may be seen
as a general model for single and multiple coils acquisition schemes. However, as
shown in Section 3, the statistics of interest are those related to the logarithm
of M ; the following expressions for the mean and variance may be proved1:

E{log(M)} =
1
2

log
(
2σ2

n

)
+

1
2
a

L
2F2 (1, 1 : 2, 1 + L;−a) +

1
2
ψ(L); (4)

Var{log(M)} =
1
4

[
ÑL (a)− 2 log(2σ2)

a

L
2F2(1, 1 : 2, 1 + L;−a)

−
(
ψ(L) +

a

L
2F2 (1, 1 : 2, 1 + L;−a)

)2
]

; (5)

with:

Ñk (x) = e−x
∞∑

p=0

xp

Γ (p + 1)

[
(ψ(p + k))2 + ψ1)(p + k)

]
, (6)

1 We have to omit the detailed proof here due to space constraints.



Bias of Least Squares Approaches for DT Estimation 921

where ψ(x) is the polygamma function and ψ1)(x) is its first derivative. For con-
venience we have dropped the i subindex and used the notation A2

L =
∑L

l=1 A
2
l

and a = A2
L/2σ

2. Eq. (4) generalizes the expression given in [1, eq. (11)] for
the mean of the log–Rician distribution, while eq. (5) has not been previously
reported to the best of our knowledge. The complexity of these expressions does
not allow a detailed analysis, so we use practical approximations. To do so, let
us compute the Taylor series expansion of log(M) for σ # AL; without loss of
generality, we may assume that A2

L = LA2, and then:

log (M) = log (AL) +
1
AL

L∑
i=1

nc,l +
1

2A2L2

L∑
k=1

L∑
l=1

(Lδkl − 2)nc,knc,l

+
1

2LA2

L∑
l=1

n2
s,l +O

(
σ3

A3

)
(7)

with δ the Kronecker delta function. From eq. (7) it follows:

E {log (M)} = log (AL) + (L− 1)
σ2

A2
L

+O
(
σ3

A3

)
(8)

In fact, since the expectation of all terms in O(σ3/A3) represent odd–order
moments of Gaussians, we could have written O(σ4/A4) instead. The Mean
Squared Error (MSE) in the estimation may be computed as the variance plus
the squared bias, so we must compute the expansion of the variance to order 4
(comparable to bias2 = O(σ4/A4

L) ≡ O(a−2)), being necessary to compute the
expansion of log(M) to order 3. After some calculations, it yields:

Var {log (M)} =
1
2
a−1 − 3L− 4

4
a−2 +O

(
a−3) (9)

bias2 {log (M)} =
(L− 1)2

4
a−2 +O

(
a−3) (10)

For the Rician case (L = 1), the squared bias is in the order of O(a−3) =
O(σ6/A6

L), so it is not so important, as has been noted in [1]. For L > 1, the
bias may be important if L is in the same order of magnitude as AL/σ.

3 Tensor Fitting Based on Weighted Least Squares

From the linearized version of the Stejskal–Tanner model in eq. (1), the estima-
tion of the 6 free coefficients of the DT may be seen as a WLS problem [1]:

log (A0)− log (Mi) =
[
g2

i,1, 2gi,1gi,2, 2gi,1gi,3, g2
i,2, 2gi,2gi,3, g2

i,3
]

· [bD11, bD12, bD13, bD22, bD23, bD33]
T + εi (11)

As opposed to [1], we do not include A0 in the estimation, i.e., we consider that
A0 is known without any uncertainty (A0=M0); since the baseline is generally far
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less noisy than the gradient images (its value of a is much higher), and moreover
several baseline images are often available, the error due to A0 is negligible and
therefore it does not affect our analysis. Nevertheless, a similar analysis to that
here presented may be carried out including A0 in the estimation with almost
identical conclusions. The WLS problem may then be written:

GTW (Y −GX) = 0 ⇒ X =
(
GTWG

)−1
GTWY (12)

where Y is an N×1 vector representing each of the DWI data log(Mi)− log(A0),
X is the 6× 1 vector of unknowns (bDij), G is the N × 6 matrix resulting from
the concatenation of each row in eq. (11), [g2

i,1, . . . , g
2
i,3], and W is the N × N

matrix of weights. The Gauss–Markov theorem states that under very weak
assumptions the WLS is the minimum variance estimate if W is chosen to be
the inverse of the covariance matrix of data, CYY. If the estimator is unbiased
(as is approximately the case for Rician noise), WLS is in fact the BLUE. Since
the noise in each gradient image is assumed to be independent, CYY reduces
to a diagonal matrix with diagonal elements equal to the variance of each term
log(Mi)− log(A0), which is the same as the variance of log(Mi) since we consider
A0 known. Therefore, W = diag(Wii) with:

Wii = Var−1 {Yi} )
1

a−1
i /2− a−2

i (3L− 4) /4
) 2ai + (3L− 4) (13)

However, we are going to neglect the terms of order a−2
i , so that we will fix

Wii = 2ai = AL
2
i /σ

2. We do so for two reasons:

1. This formulation is identical to the traditional WLS for Rician noise, see [1],
and is the one implemented in all the software tools for DT estimation. Note
that even in the case of Rician noise the term in a−2 is not null (but very
small), and even so the DT is always estimated with this formulation.

2. The weights Wii in fact have to be only proportional to 2ai, so with this
formulation it is not necessary to know the exact value of σ, since we may
take any weight proportional to AL

2
i ; if we include the term in a−2, it is

necessary to estimate σ at each image location and to include the number
of coils, L, as an additional parameter of the algorithm.

Once again, the whole analysis may be performed with the exact expression for
Wii with very similar conclusions. Finally, note that the weights Wii depend on
ALi (not Mi), so they cannot be known a priori; this pitfall may be obviated
by iteratively estimating X and updating the value of W [1]. Therefore, in what
follows we will consider that Wii are known without uncertainty.

4 Variance and Bias of the Tensor Components

In what follows, we are going to call L = (GTWG)−1. Then, from eqs. (9), (10)
and (12), and with our election of Wii the covariance matrix of X is:

CXX = E
{
(X− E{X}) (X− E{X})T

}
= LGTWCYYWTGLT
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= LGTWdiag
(

1
2
a−1

i − Θ(L)
4

a−2
i

)
WGL

= LGTWGL−Θ(L)
4

LGTWdiag
(
a−2

i

)
WGL = L−Θ(L)LGTGL (14)

where Θ(L) = 3L−4 and W , L are symmetric. Note that the second term in eq.
(14) appears due to the fact that we are using Wii = 2ai instead of the true value
of Var−1{Yi}, and it is not null even for the Rician case (yet, Θ(L) is negative
for L = 1, so for the Rician case the variance is greater than L, contrary to the
case of L > 1). For the bias, since bias{Yi} = a−1

i (L − 1)/2, we have:

bias {X} = (GTWG)−1GTWbias {Y} = (L− 1)LGTe1 (15)

where e1 is an N×1 vector of ones. For the 6×1 vector GTe1, let us assume that
the gradient directions are uniformly distributed on the sphere; each component
gk, k = 1, 2, 3 may be seen as a uniform random variable, gk∼U(−1, 1), so
that

∑N
i=1 g

2
i,k ≡ NE{g2

k} = N/3,
∑N

i=1 2gi,jgi,k ≡ 2NE{gj}E{gk} = 0 and
GTe1 = [N/3, 0, 0, N/3, 0, N/3]T = Nν. Although this reasoning may seem quite
naive, we have checked this result to be extremely accurate for all N in the case
of antipodal symmetric gradients. Finally, we define the MSE as:

MSE = Var {X}+ bias2 {X} = b2
(
Δ2

11 + Δ2
12 + Δ2

13 + Δ2
22 + Δ2

23 + Δ2
33
)

= tr (L)−Θ(L)tr
(
LGTGL

)
+ (L− 1)2N2νTL2ν (16)

for Δij = Dij − D̃ij and D̃ij the WLS estimate of Dij .

5 Results and Discussion

To begin with, we will verify the accuracy of the approximations given by eqs.
(9) and (10): in Fig. 1 (left) we represent the true values given by eqs. (4) and
(5), together with empirically obtained values (for 2000 independent samples for
each a and L), superimposed to the proposed approximations. As may be seen,
these approximations are very accurate except for very low (unrealistic) values of
a; the larger L, the larger the value of a below which the approximation diverges
from the actual value. Nevertheless, note that the difference is noticeable only
for L = 8 (below a = 60). As shown later on (and in Fig. 1, right) for L = 8
the values of interest for a are in the order of 140; for larger values of L, the
approximations are inexact for higher a, but at the same time the study of the
bias is of interest for higher a, so our approximation is good enough in all cases.

We now assess the impact of the bias compared to the variance in the com-
ponents of the DT. First, let us assume a simplified scenario where all Wii are
equal to 2ai = 2a; then the MSE reduces to:

MSE =
(
a−1

2
− a−2

4
Θ(L)

)
tr
((

GTG
)−1
)
+a−2 (L− 1)2N2

4
νT
(
GTG

)−2
ν (17)
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Fig. 1. Left: bias and variance in the DWI signals as a function of a for different
numbers of coils; we represent true and empirically computed values together with our
approximations. Right: minimum number of receiving coils required (for each a and
N) so that the (squared) bias equals the variance in the DT components (see eq. (18)).

since L = a−1/2(GTG)−1. Therefore it is interesting to study the behavior of
GTG; a similar reasoning to that made for the calculation of ν shows that it
always has the eigenvector ν/‖ν‖ associated to the eigenvalue N/3 for antipodal
symmetric gradient directions. On the other hand, we have empirically tested
that the approximation: tr((GTG)−1) ) 29.3/N is very accurate for all values
of N . Therefore, we may write:

MSE ) 29.3
N

(
a−1

2
− a−2

4
(3L− 4)

)
+ a−2 9(L− 1)2N2

4N2 νT ννT

‖ν‖2 ν

=
29.3
N

(
a−1

2
− a−2

4
(3L− 4)

)
+ a−2 3(L− 1)2

4
(18)

since (GTG)−2 has the eigenvector ν/‖ν‖ associated to 9/N2 and all other eigen-
vectors are orthogonal to ν. While the variance diminishes with the number of
gradients, this is not the case for the bias: in Fig. 1 (right) we show the number
of coils needed for each a and N so that the term corresponding to the bias in
eq. (18) equals the term corresponding to the variance. For example, with L = 8
coils and 51 gradient directions, it is shown that if a < 139.95 the bias is more
important than the variance. Alternatively, for a < 139.95 and L = 8 it makes
little sense to take more than 51 gradients, since the variance is reduced but not
the bias, so the acquisition time is increased unfruitfully; for a = 50, L = 8, the
situation is the same for more than 15 gradients. Therefore, it may be more con-
venient to increase the number of repetitions (NEX) in the acquisition; this has
the effect of dividing the noise power σ2 by NEX (since the signals are averaged
in the k–space, where the noise is Gaussian distributed), so that:

MSE =
29.3

N · NEX

(
a−1

2
− a−2

4 NEX
(3L− 4)

)
+ a−2 3(L− 1)2

4 NEX2 (19)

A constant value of N · NEX takes a constant amount of acquisition time,
and besides provides a constant reduction factor for the variance, but the bias
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Fig. 2. Log–plot of the maximum value of a0 = LA2
0/2σ2 which makes the squared

bias equal to the variance in the components of the DT for different tensor shapes. We
show minimum, mean and maximum values among all possible tensor orientations.

depends only on NEX. We may conclude that, for a given combination of a, N
and L which makes the squared bias similar to the variance (see Fig. 1), it is
preferable to increase NEX than using more gradient directions.

As a final experiment, we test the behavior when the weigths Wii are not
equal (non–isotropic diffusion). To do so, we use typical values L = 8, N =
15, 27, and 51, b = 1500s/mm2, and Mean Diffusivity (MD) 0.8 · 10−3mm2/s,
and compute the maximum value of a0 (defined as a0 = AL

2
0/2σ

2 with AL0
the amplitude of the baseline image) for which the contribution of the bias is
greater or equal than the contribution of the variance, using eq. (16). Since
this result depends on the orientation of the DT, in Fig. 2 we show maximum,
minimum and mean values of a0 for different Fractional Anisotropies (FA). Two
cases are considered: a prolate tensor (λ1 > λ2 = λ3) and an oblate tensor
(λ1 = λ2 > λ3). For FA=0 (isotropic diffusion, equal weights), we have the same
case as in Fig. 1 (right). With non–isotropic tensors the bias becomes even more
important (a0 may be one order of magnitude over the value for FA=0 with the
prolate tensor), so the conclusions arised from our previous experiment are even
reinforced. For example, with 51 directions and a prolate tensor with FA=0.8,
even for a0 = 104 (AL0/σ ) 140) the bias is as important as the variance;
although this corresponds to the baseline image, which typically shows a high
SNR, it is evident that this value may be found in many image voxels. Besides,
for AL0/σ ) 300 (this SNR is an upper limit for a realistic DWI data set) the
bias will be roughly 1/4 of the variance, which is clearly not negligible.

6 Conclusions

We have shown that the impact of the bias in Rician signals for WLS tensor–
fitting may be neglected in any realistic case; on the contrary, for non–central
χ distributed signals, the bias may be an important source of error, the larger
the number of receiving coils L the more critical. While the variance in the esti-
mation may be reduced increasing the number of gradient directions, this is not
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the case for the bias. In some cases, increasing the number of gradients will not
improve the estimation, since the main source of error will be the bias and not
the variance. In these cases, it may be preferable to improve the SNR by increas-
ing NEX (unless a minimum number of gradient directions is needed for some
purpose). As an additional difficulty, we have shown that the traditional WLS
approach is not optimal for non–central χ signals, since the weights commonly
used are not those yielding minimum variance; although we have proposed a
modification to avoid this problem, it makes necessary to characterize the noise
power for all image voxels. Summarizing, the importance of the bias in non–
central χ distributed DWI has been stated; this kind of statistics are usually
found in multiple receiving coils systems with SoS reconstruction, but may be
used as well to model some pMRI algortihms like GRAPPA. Therefore, an ade-
quate unbiased filtering scheme (or a high NEX, increasing the acquisition time)
should be implemented before DT estimation with modern DT–MRI protocols.

Acknowledgments. Work partially funded by grant numbers TEC2007–67073/
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A Novel Global Tractography Algorithm Based
on an Adaptive Spin Glass Model

Pierre Fillard, Cyril Poupon, and Jean-François Mangin
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Abstract. This paper introduces a novel framework for global diffusion
MRI tractography inspired from a spin glass model. The entire white
matter fascicle map is parameterized by pieces of fibers called spins.
Spins are encouraged to move and rotate to align with the main fiber
directions, and to assemble into longer chains of low curvature. More-
over, they have the ability to adapt their quantity in regions where the
spin concentration is not sufficient to correctly model the data. The op-
timal spin glass configuration is retrieved by an iterative minimization
procedure, where chains are finally assimilated to fibers. As a result,
all brain fibers appear as growing simultaneously until they merge with
other fibers or reach the domain boundaries. In case of an ambiguity
within a region like a crossing, the contribution of all neighboring fibers
is used determine the correct neural pathway. This framework is tested
on a MR phantom representing a 45◦ crossing and a real brain dataset.
Notably, the framework was able to retrieve the triple crossing between
the callosal fibers, the corticospinal tract and the arcuate fasciculus.

1 Introduction

The emergence of diffusion MRI for the past two decades enabled the in vivo
study of anatomical connectivity via white matter tractography. Deterministic
tractography algorithms reconstruct putative fascicles incrementally by following
the main fiber directions as revealed by diffusion models (e.g, tensor or Q-Ball).
However, such approach is prone to local errors in the estimate of the fiber di-
rections (caused by noise and partial voluming) and may deviate from the true
neural pathway. Probabilistic tractography [1,2,3] appeared as a way to handle
the uncertainty of the fiber orientations by sampling each direction from a prob-
ability density function related to the diffusion model, and by repeating several
thousands of times this technique from a seed point. While those methods was
shown to be less noise-sensitive compared to their deterministic counterparts,
their output is also very different: they return a connectivity map where each
voxel is proportional to the probability of being connected to the seed. This
raises the question of the statistical significance of those maps (which value is
significant, which is not?). Moreover, further decomposition of fibers into mor-
phological descriptors (e.g., length, curvature) for shape analysis becomes diffi-
cult. Recently, global alternatives to tractography were developed [4,5]. In those,
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the entire neural pathway is the parameter to be optimized, which elegantly adds
robustness to deterministic tractography.

In this work, we propose a novel framework for global tractography which is
a complete overhaul of the spin glass model introduced in [6]1. The entire set of
white matter fibers is parameterized by small segments called spins. Contrary
to [6] (where spin positions and number are fixed), spins are allowed to move,
rotate and duplicate. To control their degrees of freedom, spins are endowed with
three potential energies: a diffusion, an interaction, and a generative potential.
The diffusion potential attracts spins towards the main fiber directions, while
the interaction potential encourages them to form longer chains of minimal cur-
vature. The generative potential prevents a spin chain to end inside the domain
by allowing the creation of new spins. The optimal spin configuration is finally
retrieved by a global minimization procedure. As a result, all brain fibers appear
as growing simultaneously until they merge with other fibers or reach the white
matter boundaries. The advantages of such approach are fourfold: 1) it only re-
lies on the two generally admitted priors that brain fibers have a low curvature
and do not end inside white matter, 2) it does not require an estimation of the
number nor directions of the fiber compartments in each voxel, 3) it automati-
cally adapts the number of parameters (i.e., spins) to the data, and 4) it can be
adapted to any type of diffusion model.

The rest of the paper is organized as follows. The framework for spin glass
tractography (SGT) is exposed in Sec. 2. Experiments on real datasets are con-
ducted in Sec. 3, before concluding in Sec. 4.

2 An Adaptive Spin Glass Model for Tractography

A spin s is an oriented particle defined by its position x and orientation −→v (of
unit length). A spin glass S is an ensemble of N spins contained within a closed
domain Ω: S = {si(xi,−→v i)/xi ∈ Ω}0≤i<N . A spin can be interpreted as a piece
of fiber (point plus tangent), while Ω is the definition domain of the fibers.

Spins are endowed with three types of potential energy: a diffusion potential,
an interaction potential and a generative potential. The diffusion potential acts
as a non-stationary magnetic field attracting the spin orientations towards the
main fiber directions. The interaction potential controls how spin associate with
neighbors and embeds the prior that fibers have a low curvature. The generative
potential authorizes the spontaneous generation of new spins to ensure that fibers
do not end inside white matter. Note that the term ”adaptive spin glass” is due
to this last potential, which adapts the quantity of spins to the data. Fibers are
finally retrieved by minimizing the sum of those three potentials over all spins
in the glass. In the following, we first introduce each potential and present the
algorithm for fiber reconstruction based on this spin glass model.

1 We keep the terminology ”spin glass” although we do not rigorously follow the
concepts of the original spin glass model developed in statistical physics.
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2.1 The Diffusion Potential

Within our framework, the minima of the diffusion potential Ed should coincide
with the main fiber directions. The expression of this potential obviously depends
on the diffusion model chosen to represent the data. However, we may follow this
principle for a general definition. When the probability of finding a fiber in a di-
rection is high, the potential should be low and conversely. Furthermore, when the
probability is close to zero, the potential should tend towards infinity as it is very
unlikely to find a fiber in that direction. Thus, Ed should be proportional to the
log-likelihood of the fiber presence in a direction. One can write, for any model:

Ed(x,−→v ) = − log (p(x,−→v )) , (1)

where p(x,−→v ) is the probability of existence of a fiber at location x and in direc-
tion −→v . Assuming that the main tensor eigenvectors are good estimates of the
fiber directions, we provide the following expression of p for a tensor field D(x):
p(x,−→v ) = −→v �D(x)−→v (D(x) should be normalized to ensure

∫
S2 p(x,−→v )dv = 1,

S2 being the unit sphere). Dedicated expressions can be derived for other mod-
els. In particular, the orientation distribution functions (ODF) [7] are appealing
since they directly provide the probability p. Note that multiple maxima are
possible: in this case, the diffusion potential will act as a multi-modal magnetic
field and attract a spin towards one particular fiber direction depending on its
initial orientation.

2.2 The Interaction Potential

The interaction potential Eint controls how spins interact with each others and
encourages them to assemble into longer chains. Following [6], this potential
embeds the prior that brain fibers have a low curvature. Basically, a spin orien-
tation separates the spin glass into two sets: those which are behind it (backward
spins) and those in front of it (forward spins). We define the set of forward (resp.
backward) neighbors as Nf(s) = {si ∈ S/‖xi − x‖ < r and −→v .−→xxi > 0} (resp.
N b(s) = {si ∈ S/‖xi − x‖ < r and −→v .−→xxi ≤ 0}). r is the radius controlling the
size of the neighborhood. A spin s associates with a unique backward sb(xb,−→v b)
and forward sf (xf ,−→v f ) neighbor such that the interaction potential of their
trajectory sb − s− sf is minimal.

We propose to define the interaction potential between a spin and its backward
and forward neighbors as:

Eint(s, sb, sf ) = −1
5

5∑
j=1

log
(

cosαj − cosαmax

1− cosαmax

)
, (2)

where α1 (resp. α2,3,4,5) is defined as the angle between −→v b and x − xb (resp.
x− xb and −→v , −→v and xf −x, xf − x and −→v f , −→v b and −→v f ) (see Fig. 1). αmax is
the maximum angular deviation allowed and lie within the range ]0, π/2]. Any
angular difference greater than αmax will produce an infinite potential which
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Fig. 1. Angular differences between a spin s and its backward (sb) and
forward (sf) neighbors. A spin is represented by a blue circle (position), and a
black line (orientation). The role of α5 is to prevent the creation of a junction between
two incompatible neighbors, which would result in an angular deviation greater than
αmax.

forbids the spin association. Conversely, spins perfectly aligned will associate as
their interaction potential is null. If a spin leads outside the glass, i.e., x±−→v /∈ Ω,
then no interaction potential is added for this half-neighborhood.

2.3 The Generative Potential

This last potential plays a particular role: it ensures that brain fibers do not end
inside white matter, which can be translated by spin chains do not stop within
the glass. There are situations where a spin cannot find a candidate neighbor to
associate with, which causes a chain to end prematurely. This is the case when
all neighbors have already been associated (we recall that a spin associates to
a unique backward and forward neighbor), or when available neighbors lead to
an infinite interaction potential (angular differences greater than αmax). In this
case, the generative potential will become infinite, ordering the creation of a new
spin to complete the broken chain. We formulate this potential as follows:

Egen(s) = ∞ if ∀(sb, sf) ∈ N b(s)×Nf (s), Eint(s, sb, sf ) = ∞ (3)
= 0 otherwise

2.4 Global Potential and Algorithm Overview

The combination of the interaction (Eq. 1) and diffusion potentials (Eq. 2) has
a competitive influence on the spin orientations and localizations. Hence, the
optimal spin glass configuration corresponds to a trade-off between fidelity to
the diffusion data and low curvature. The generative potential (Eq. 3) only
affects the quantity of spins so that chains do not stop within the glass. The
optimal spin configuration S∗ is obtained when the sum over all spins of the
three potentials is minimal, i.e.:

S∗ = min
S={si}

N∑
i=1

Ed(si) + λEint(si, s
b
i , s

f
i ) + Egen(si), (4)

where λ controls the trade-off between interaction and diffusion potentials.
The optimal configuration is retrieved via an alternate minimization proce-

dure. For a given spin glass configuration, spin positions and orientations are
optimized to minimize their diffusion and interaction potentials only. Once the
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Fig. 2. Example of SGT of a synthetic fiber crossing. a) The tensor field. b)
The initial spin glass: spins (represented by green and red cylinders) were randomly
placed and aligned with the main tensor eigenvectors. The blue links represent the spin
associations. c) The minimal energetic configuration of the spin glass in b). d) After
convergence: spin chains have grown and merged to reconstruct the crossing area.

stable spin configuration is found, the generative potential is minimized by merg-
ing together compatible spin chains and by adding new spins at the extremities
of remaining broken chains. During this phase, the contribution of all neighbor-
ing spin chains in regions of crossing fibers is used to determine the most likely
pathways (the ones with the lowest possible curvature). Thus, there is no need
for knowing the number of fiber compartments in each voxel, as those are au-
tomatically determined by the neighborhood. Finally, the process is reiterated
until convergence (no more spin association and generation). Depending on the
size of the dataset, from 10 to 100 iterations are necessary and tens to millions
of spins are required. Example of SGT of a synthetic crossing is shown in Fig.
2 top row (20 iterations, 230 initial spins, 314 spins after convergence, λ = 1.0,
αmax = 45◦, r = 3mm). In the next section, we evaluate the performance of the
SGT algorithm on real datasets.

3 Experiments

We evaluated the spin glass algorithm on two datasets: a MR phantom consist-
ing of a 45◦ crossing and a real brain dataset. For each dataset, we compared the
output of the SGT algorithm to a tensor-based streamline tractography (TBT)
(the tensorlines [8]) and a Q-Ball-based streamline tractography (QBT) [9] (gen-
eralization of classical streamline techniques to Q-Ball) algorithms. For tensor
fitting, we used the Rician noise removal strategy developed in [10]. For Q-Ball
estimation, we opted for the spherical harmonics decomposition of [9] which
provides an analytical formulation of the ODF. Note that the diffusion potential
of the SGT was derived from the ODF and not the tensor. Parameters of the
spin glass algorithm are: λ = 1, αmax = 45◦ and r = 3mm. The same angular
threshold was used for the TBT and QBT to obtain comparable results.

3.1 MR Phantom

The crossing phantom was elaborated with hydrophobic fibers strongly tightened
with a medium and immersed in a solution of water doped with gadolinium [11].
Acquisitions were done on a 1.5T MRI scanner (4000 directions, b-value of
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Fig. 3. SGT of the 45◦ crossing MR phantom. a) Result of TBT. Tensors con-
tained within the green rectangle are displayed. b) Result of QBT. ODF contained
within the green rectangle are displayed (those circled in greens had only one maxima
out of two detected). c) Result of SGT. The same ODF were used for QBT and SGT.

2000s.mm−2, image size: 32×32×3, resolution: 1×1×1.4mm). Results of tractog-
raphy are shown in Fig. 3. Obviously, TBT was not able to recover a crossing of this
low angular difference, since tensors are unable to model the two-fiber compart-
ment inside the crossing area. QBT algorithm was able to recover part of the cross-
ing but deviates in regions where the ODF peaks are not well defined (mainly due
to noise and partial voluming). Indeed, maxima are generally detected by thresh-
olding the ODF not to extract small noisy peaks. In our case, the ODF circled in
green (Fig. 3 b) had only one maxima detected out of the two expected, which
caused several erroneous pathways. SGT, however, was able to pass the crossing
by using the neighborhood to infer the most likely pathways (Fig. 3 c).

3.2 Real Brain Dataset

The brain dataset was acquired on a 1.5T scanner with two protocols. First, a
DT-MRI dataset of 41 directions and a b-value of 700s.mm−2 was acquired for
TBT. Second, a HARDI dataset of 200 directions with a b-value of 3000s.mm−2

was acquired for QBT and SGT. Image size is 128×128×60, resolution is: 1.8×
1.8× 2mm. Results of trackings are presented in Fig. 4. For clarity reasons, only
fibers passing through a sagittal slice of the corpus callosum (CC) are presented.
Fibers are colored depending on the CC position they traverse (linear color
gradient from the posterior in red to the anterior in blue of the CC). Nearly all
fibers reconstructed by the TBT algorithm were redirected vertically because of
the projection fibers (corona radiata) crossing the callosal fibers. QBT performed
slightly better and fibers connecting the lateral part of the frontal and parietal
lobes were found, showing that QBT is able to pass the corona radiata. However,
the quality of the ODF was not good enough to allow QBT to recover the full set
of association fibers crossing the CC. SGT was able to resolve this crossing area
and exhibits many more interhemispheric connections. Moreover, the consistency
of the coloring scheme indicates that the position of a fiber connecting the cortex
is related to its anteroposterior position in the CC. SGT required 2 million spins
to reconstruct the entire brain and three days of computations on a regular PC.

To further illustrate the performance of the SGT, we display in Fig. 5 the
intersection between the CC, the corticospinal tract (CST), the arcuate
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Fig. 4. Reconstruction of callosal fibers with three methods. Left: TBT. Mid-
dle: QBT. Right: SGT. All fibers of TBT are redirected vertically because of the sur-
rounding corona radiata. QBT performed slightly better but missed a large part of
the callosal fibers. SGT, by using the neighborhood to determine the most plausible
pathways, was able to recover the myriad of fibers passing the corona radiata.

Fig. 5. Intersection between the CC (red), the CST (dark blue), the AF (green), the
CB (orange) and the ILF (light blue) revealed by spin glass tractography. This region is
one of the most complex crossing area accessible at this resolution of diffusion images.

fasciculus (AF), the cingulum bundle (CB), and the inferior longitudinal fas-
ciculus (ILF). The triple-crossing region made by the CC, the CST and the AF
was successfully reconstructed by the SGT algorithm.

4 Conclusion

In this work, we presented a new methodology for white matter fiber reconstruc-
tion inspired from a spin glass model. Spins are fiber elements endowed with a
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diffusion, interaction and generative potentials. The combination of those three
potentials allows the creation of long chains of spins of low curvature and fitting
the diffusion data at best, which grow until they merge with other chains or reach
the domain boundaries. In case of an ambiguity (like a crossing), the pathways
leading to the lowest curvature are automatically chosen. Such approach has the
advantage not to require a prior knowledge on the number of fiber compartments
per voxel, and can be adapted to any type of diffusion model. Experiments on
a synthetic MR phantom and a real brain dataset indicated that such a global
approach is more successful than deterministic streamline tensor or q-ball-based
methods to recover crossing fibers. Notably, we showed that spin glass tractogra-
phy can successfully reconstruct the triple crossing between the corpus callosum,
the corticospinal tract and the arcuate fasciculus, which is one of the most com-
plex crossing area accessible at this level of image resolution.
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Abstract. Determining cortical functional areas is an important goal
for neurosciences and clinical neurosurgery. This paper presents a method
for connectivity-based parcellation of the entire human cortical surface,
exploiting the idea that each cortex region has a specific connection pro-
file. The connectivity matrix of the cortex is computed using analytical
Q-ball-based tractography. The parcellation is achieved independently
for each subject and applied to the subset of the cortical surface en-
dowed with enough connections to estimate safely a connectivity profile,
namely the top of the cortical gyri. The key point of the method lies
in a twofold reduction of the connectivity matrix dimension. First, par-
cellation amounts to iterating the clustering of Voronöı patches of the
cortical surface into parcels endowed with homogeneous profiles. The
parcels without intersection with the patch boundaries are selected for
the final parcellation. Before clustering a patch, the complete profiles are
collapsed into short profiles indicating connectivity with a set of putative
cortical areas. These areas are supposed to correspond to the catchment
basins of the watershed of the density of connection to the patch com-
puted on the cortical surface. The results obtained for several brains are
compared visually using a coordinate system.

1 Introduction

Characterization of functional areas and their relationships is a key to under-
stand how brain works. Recent studies follow this goal and represent the brain
as a graph, analyzing this network using graph theory [1,2,3]. The construction
of this human “connectome” requires the definition of basic structural elements
(nodes of the network), which can be chosen at different scales: level of single
neurons (microscale), neuronal populations (mesoscale), or anatomically distinct
brain regions (macroscale) [4]. In this context, a parcellation of the human brain
into functional areas can be a solution to the definition of a first network at a
macroscale. Following the idea that each brain module has a specific connectional
fingerprint [5], the connectivity information based on diffusion-weighted imag-
ing is an interesting candidate for defining the connectome nodes. A comparison
with a functional connectivity study could be very useful for a validation [6,7].
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The main trouble to deal with when addressing connectivity-based parcel-
lations from diffusion imaging is the huge dimension of the raw connectivity
profiles. For instance, a standard mesh of the cortical surface is made up of more
than 10 000 nodes. Segmenting this surface into parcels with homogeneous con-
nectivity profiles amounts to performing clustering among vectors of dimension
10 000. Clustering is prone to the well-known curse of dimensionality. Therefore,
reduction dimension seems mandatory. Several approaches have been proposed
for this purpose. The first one is based on a segmentation of the brain to collapse
the connectivity profiles: all the tracts reaching the same segment are summed
up. This segmentation can be anatomical, for instance based on lobes or gyri
[8,9,10], but the same idea could be applied with fMRI-based activation maps.
In the papers cited above, the segmentation used for collapsing was based on
individual data. This segmentation could also stem from the results of voxel-
based group analysis or the results of invasive anatomical tracing performed in
primates [11]. Such a priori knowledge is mapped into individual space using
spatial normalization or sulcal landmarks. Finally, performing the clustering in
a small area of the brain can overcome the curse of dimensionality. It was shown
that Broca’s area [12,13] and lateral premotor cortex [14] can be reproducibly
parcellated from connectivity profiles towards the whole brain.

In this paper, the goal is to design a dimension reduction strategy efficient
enough to allow reproducible parcellation of the whole cortical surface. We ex-
plore the possibility to reach this goal without using any information about the
geometry of the cortical surface (sulco-gyral anatomy, coordinate systems). This
is a challenging objective, but in our opinion, it has to be tackled to examine
the extent to which one can get rid of hypotheses about the connectome struc-
ture that could bias the connectivity-based parcellation. The objective is all the
more challenging since the parcellation is applied independently on each sub-
ject. Hence tractography errors cannot be averaged out by a group analysis. Our
method is based on three key points that are described in the paper:

1. The algorithm is applied to the subset of the cortical surface endowed with
enough connections to safely estimate a connectivity profile. This subset
turns out to match the top of the cortical gyri. In this paper, we focus on
long diffusion-based tracts that are supposed to convey more reproducible
connectivity information than short U-fiber tracts.

2. The clustering is not performed on a whole brain basis but with an iterative
patch by patch strategy.

3. The connectivity profiles are collapsed in an adaptive way for each patch to
be parcellated: the segmentation for collapsing is based on the catchment
basins of the watershed of the density of connection to the patch computed
on the cortical surface.

An original visualization of the resulting parcellation has been developed. It
consists in superimposing on each parcel a small replica of the whole brain
indicating either the density of connection to the underlying parcel or the tracts
terminating in this parcel. We compare the results obtained with four subjects
using a coordinate system provided by BrainVISA based on the main sulci [15].
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2 Materials and Method

2.1 Data and Pre-processings

The present study has been performed on four subjects of the NMR public
database [16]. Diffusion weighted data were acquired with HARDI scheme, result-
ing in high-quality datasets based on 200 directions and a b value of 3 000 s/mm2.
Perfect alignment between diffusion data and a T1-weighted 1mm resolution im-
age is achieved using a dedicated set of distortion corrections. The T1 pipeline
of BrainVISA open software1 is used to compute a mesh S of the cortical sur-
face and a sulcus-based coordinate system used to compare subjects. The mesh
is made up of two hemispheric spherical representations of the grey/white in-
terface including about 40 000 vertices. The direct parcellation of the cortical
surface capitalizes on the current knowledge of the columnar organization of the
cortex: local populations of neurons form elementary processing units organized
orthogonally to the cortex surface [4].

A deterministic tractography based on analytical Q-ball field [17] is performed
using BrainVISA diffusion toolbox. The tracts are the trajectories of particles
with inertia, which is leading to regularize curvature [18]. Tractography was
initiated from two seeds in each voxel of the high resolution white matter mask
computed from the T1-weighted acquisition, in both retrograde and orthograde
directions, according to the maximal direction of the underlying ODF. Tracking
is stopped either when the particle exits the propagation mask, when the angle
between the two last moves exceeds 30◦, or when the tract length exceeds 200
mm. Finally, tracts shorter than 20mm were filtered out, leading to a set of
about 1.5 millions tracts per subject.

Then histograms of tract lengths were computed for each subject (see Fig. 1)
showing a reproducible two mode distribution. This study explores the connectiv-
ity information provided by the second mode defined by a 10 cm threshold. This
ad hoc choice is based on the hypothesis that long range bundles are more re-
producible across individuals than shorter U-fiber bundles. This threshold might
at first glance look very high, but histograms show that about one third of the
tracts are longer than 10cm.

Fig. 1. Fibers length histograms

1 http://brainvisa.info
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2.2 Cortical Connection Matrix Construction

The cortex surface is divided into Voronoi cells centered around the surface mesh
vertices. Then a raw connectivity matrix Craw is computed by counting fibers
connecting cells [19]. The raw matrix Craw is then smoothed over the surface
to account for a reasonable uncertainty on the tracking result. The smoothed
matrix C used further results from the convolution of Craw with a Gaussian.
Gaussian weigths stem from geodesic distances computed using fast marching
over triangulations [20]. The Gaussian standard deviation has been set to 5 mm.

2.3 Parcellation of the Cortex Mesh

The cortex surface S is parcellated according to an iterative algorithm sum-
marized in Fig.2. The algorithm is applied to the subset of the cortical surface
endowed with enough connections to safely estimate a connectivity profile. The
density of connexions for each vertice is the L1-norm of the corresponding row
in C. A threshold on density provides the initial domain which turns out to
correspond to the top of the gyri. In the following, we call resp. cortex sub-mesh
connected component of the graph formed by the evoluting cortex triangulation
S, patch Voronöı parcellation’s segment, parcel final parcellation’s component.

Fig. 2. A sketch of the parcellation Method

Each iteration begins with the random tessalation of the current domain into
large patches of similar sizes. This splitting of the domain, aiming at reduc-
ing the complexity of the clustering problem, is performed cortex sub-mesh by
cortex sub-mesh. Each cortex sub-mesh is split using the Centröıdal Voronöı tes-
salation algorithm [21]: a set of points is chosen randomly in the domain, a first
Voronöı diagram is computed from these points, then the process is iterated
using the Voronöı patch centröıds as seeds. We stop the process after five iter-
ations. Assuming a value of 150 areas per hemisphere, each individual cortical
area would occupy an average of 6 cm2, with some much larger areas and some
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Fig. 3. Dimension Reduction Step 1. In the composite image on the right, the tract
colors correspond to the color of the basin they connect with the Voronoi patch.

much smaller [22]. The number of random points used aims to split the domain
into patches whose area correspond to ten times this average area of 6 cm2.

Then each Voronöı patch is segmented into parcels with homogeneous con-
nectivity profiles. The parcels larger than a minimum area and which do not
intersect with the patch boundary are added to the final parcellation and re-
moved from the domain during the next iterations. The algorithm stops as soon
as one iteration did not add any parcel in the final result. The minimum area of
a parcel is set to 2 cm2, to account for the size variability of functional areas.

The clustering of the profiles of a Voronöı patch begins with an adaptive
dimension reduction (Fig.3). The mean connectivity profile of the patch is com-
puted and represented as a texture on the complete cortical surface. This texture
is the density of connection to this patch (Fig.3.a). Then, a watershed is com-
puted for this texture in order to split the cortical surface into catchment basins.
The set of basins is pruned using a standard merging procedure based on depth
and area. Each basin catches a set of tracts supposed to connect the patch with
a meaningful brain area. The smallest basins are discarded in order to keep only
95% of the tract density (Fig.3.b) and the connectivity profiles are collapsed
using the resulting set of basins (Fig.3.c). Finally, the reduced connectivity pro-
files are normalized (L2-norm) and clustered using a kmedoids algorithm (PAM
in R language [23]). The number of clusters K which gives the highest average
silhouette width is considered as optimal [23].

3 Results

The method finds on average 140 parcels per hemiphere. The complexity of the
data manipulated in this paper and the absence of gold standard prevents a
straightforward evaluation of the results obtained for the four subjects. Hence
we have decided to provide original visualizations that convey some insights
about the level of reproducibility. A 3D object gathering all connectivity pro-
files is created. The parcellations are projected to an inflated cortex surface. For
each parcel, a small cortex mesh textured with the normalized mean connectivity
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Fig. 4. A The parcels and their connectivity profiles for subject 1. The grid is a spher-
ical coordinate system based on sulci. The thick line is the central sulcus. B Zoom
on Parcellation around Broca’s Area for the four subjects. A tract image is used to
describe the profiles that show similarities across subjects.
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profile of the parcel is put in the parcel’s centröıd. An additional structure rep-
resenting meridians and parallels of a sulcus-based spherical coordinate system
is superimposed [15] (see Fig.4.A).

While the coordinate system could allow the definition of quantitative evalua-
tions of the reproducibility of the parcellation, we prefer to rely on visualization.
The localization power of sulci relative to fiber bundles, is indeed a subject of
research. The 3D scenes of profiles can be rotated in 3D in order to explore
similarities across subjects. Additional windows can be opened to visualize the
tracts: clicking on a parcel selects the connected tracts. We use this second func-
tionality to create composite images of the 4 subjects centered around Broca’s
area. 3D images of the tracts were superimposed on the parcels whose profiles
could be visually matched across subjects (see Fig.4.B). Tract images provide
more information than profile images.

4 Discussion

Achieving a parcellation of the human brain cortex is fraught with difficulties,
especially in the context of this study. A connectivity-based parcellation with-
out anatomical a priori and performed independently for each subject is very
ambitious. This study is still largely exploratory, relying on several parameters
such as tracking method, fiber length threshold, clustering algorithm or optimal
cluster’s number, whose influence should be studied. Although this paper does
not reach clearly reproducible results, the original visualization presented in this
work leads to a better understanding of connectivity data and could also be
used for studies of functional connectivity or any other vertex-based correlation
measure.

Diffusion-based tractography is a rapidly developing field. The new genera-
tion of 1mm resolution acquisition that can now be achieved with highly parallel
imaging and high fields could qualitatively change the individual parcellation
obtained by our method. Furthermore, using the most advanced ODF deconvo-
lution tools or probabilistic tracking could also improve our results. Nevertheless,
the lack of reproducibility highlighted in this paper will lead us to address the
parcellation at the level of the group of subjects. Surface-based coordinate sys-
tem can be used to design such group studies. Other improvements will stem
from using a segmentation of the deep structures (thalamus, basal ganglia, etc.)
to increase the information coded in the connectivity profiles. Finally, a thresh-
old free approach will be interesting for tuning the contributions of each tract
to the profile according to its length.
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Abstract. This paper presents a belief propagation approach to the segmentation
of the major white matter tracts in diffusion tensor images of the human brain.
Unlike tractography methods that sample multiple fibers to be bundled together,
we define a Markov field directly on the diffusion tensors to separate the main
fiber tracts at the voxel level. A prior model of shape and direction guides a full
segmentation of the brain into known fiber tracts; additional, unspecified fibers;
and isotropic regions. The method is evaluated on various data sets from an atlas-
ing project, healthy subjects, and multiple sclerosis patients.

1 Introduction

Diffusion-weighted imaging (DWI) has become a major tool for the study of connec-
tivity in the living human brain in health and disease [1,2]. Although DWI tractogra-
phy methods provide useful information about the connectivity between remote regions
of the brain [3], the segmentation of fiber bundles or tracts that correspond to known
anatomical atlases requires additional grouping, trimming, and labeling, which usually
requires manual assistance [4,5]. The development of automatic solutions for white
matter tract segmentation is a challenging problem for several reasons. For example,
since the reliability of fiber tracking varies with imaging resolution, noise, and patient
orientation [6], it is difficult to consistently recover the same fiber tracts in repeated ob-
servations of the same individual. As well, lesions in the white matter caused by disease
or aging can impair fiber tracking, resulting in poor definition of the tracts.

As an alternative to the reconstruction of fiber samples, level set [7] and non-
parametric fuzzy classification methods [8] have been investigated for the segmenta-
tion of a given bundle from a set of initial regions of interest (ROIs). These methods
focus on a single tract, and often require a careful initialization in order to succeed.
Deformable atlas registration techniques segment the white matter into homogeneous
regions rather than tracts [9,10], but the relationship between these regions and the tracts
is unclear. Probabilistic connectivity methods evaluate the connection strength between
regions or voxels [11,12,13], but do not explicitly recover fiber tracts.

In this work, we propose a Markov Random Field (MRF) to model the diffusion
properties and a belief propagation (BP) technique to estimate the most likely tracts at
every voxel. Shape and direction priors are used to identify the tracts, and the MRF
connects regions along their diffusion direction. With this approach, we can automati-
cally and simultaneously segment multiple tracts with known anatomical and functional
meaning, reduce the variability of the estimated tracts without manual initialization or
post-processing, and handle robustly the presence of white matter lesions.
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2 Methods

2.1 Problem Description and Notations

The goal of this work is to extract from this data set several of the major fiber tracts
of the human brain: anterior thalamic radiation (ATR), cortico-spinal tract (CST), body
of the corpus callosum (CCB), forceps of the corpus callosum (CCF), cingulum (CG),
inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), inferior
fronto-occipital fasciculus (IFO), uncinate fasciculus (UNC). These tracts are first de-
fined using a probabilistic atlas of shape and direction co-registered to the studied im-
ages, and then refined by estimating the most likely diffusion pathways from the FA
and diffusion directions by belief propagation.

Starting from a series of diffusion-weighted images, we first obtain a set of diffusion
eigenvectors and associated eigenvalues {vn

j , λ
n
j }1,N with the standard linear recon-

struction method [2], as well as a fractional anisotropy (FA) map aj for each voxel j of
the image. Extra-cranial tissues are removed with a semi-automatic method [14] applied
to the mean diffusivity image.

When manipulating direction vectors vj , we denote v̄j the unsigned orientation axis
without direction, i.e., +vj and −vj correspond to the same orientation v̄j . We use the
following definitions for the inner product and addition of these orientations:

v̄i · v̄j = |vi · vj |, v̄i + v̄j = vi + sign(vi · vj)vj . (1)

Finally, the eigenvalues are ranked and normalized so that the largest eigenvalueλ1
j = 1.

2.2 Diffusion Based Tract Gain Functions

The central question for this approach is how to adequately translate our knowledge of
fiber tracts observed in DTI into a MRF model of the tracts, represented by gain functions
Lij(xi, xj), which we define to be a large positive value if there is evidence that the state
xi is likely conditioned on the state xj , a large negative value if the data goes against this
hypothesis, and close to zero if there is no information for or against it.

Several well-known fiber tracts like the optic radiation or even the corpus callosum
were not included in the original, tractography-based atlas because it is difficult to de-
fine them consistently based on tractography and ROIs [6]. In addition, many smaller
tracts between neighboring regions are present and distinct from these tracts. To pro-
vide a complete parcellation, we add two labels to the nine fiber tracts from the atlas:
isotropic regions or background (BG), and other fiber tracts (OFT).

Background Model. We assume the background is composed of regions of very low
FA, with the following gain function:

LB
i = 2 exp(− ai

a0
)− 1 (2)

with a0 a parameter representing the expected transition value for FA (a0 = 0.1 in our
experiments, see Fig. 1a).
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a b c

Fig. 1. Gain and atlas functions: a) background gain LB
i , b) diffusion gains LP for the X and Y

directions, c) shape and direction atlas building steps for CCF (left: original delineation, middle:
extrapolated image, right: average of seven images)

Diffusion Model. The evidence for fiber tracts comes from the diffusion tensors: if
two tensors are aligned they likely correspond to the same tract. Note that we cannot
differentiate between the type of tracts based on the diffusion direction alone, without
considering some global models of the tracts. However, we can model the similarity
between tensors as follows:

LP
j|i = maxabsn,mλn

i λ
m
j exp(−

1 − max(v̄n
i · d̄ij , v̄

m
j · d̄ij)

v1
)
(

2 exp(−
1 − v̄n

i · v̄m
j

v1
) − 1

)
(3)

with d̄ij the direction between voxels i and j, and v1 a constant representing the average
expected deviation in angle between similar directions. maxabsng(n) selects for the
function g(n) with maximum absolute value.

This gain function is positive when the diffusion directions from i to j and from j to
i are aligned with the path from i to j. If both diffusion directions are orthogonal to that
path, we cannot assume that they are related even if they are aligned: many fiber tracts
have “kissing” fibers that follow the same direction before diverging. In such case, the
gain goes to zero in order to model the uncertainty. When the diffusion directions are
orthogonal and one of them is aligned with the path, then it is clear that both points
cannot be part of the same tract, which translates into a large negative gain value (see
Fig. 1b).

Shape and Direction Prior. To provide a labeling for the tracts, we use an atlas of
shape and direction that gives for each voxel i and tract label l a probability pl

i of
existence, and a probable diffusion orientation d̄l

i, with |d̄l
i| a function of the orientation

variability in the atlas.
Our atlas is based on the fiber tract atlas of Mori and Wakana [4,6]. We obtained

the individual tensor images and fiber tract delineations used in building this atlas, so
we could complement the atlas with tracts that were not originally delineated because
of their lower reproducibility [6]. For this work, we added our delineation of the body
of the corpus callosum in seven atlas images (see Fig. 2). The remaining, unspecified
fibers were segmented as the regions of FA above a0 = 0.1.
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ATR CCB CCF CG CST IFO ILF SLF UNC

Fig. 2. Shape and direction atlas for the delineated fiber tracts on selected axial slices: shape prior
pl (top) and direction prior d̄l (bottom) for each tract

To build the shape and direction atlas, each of the delineated fibers is smoothed over
neighborhood of 10mm and its principal orientation is extrapolated as follows:

v̄t
i =

∑
j st

j v̄t
j∑

j st
j

∀j ∈ Ni s.t. st
j > st

i, (4)

where v̄t
i is the principal direction at voxel i in image t and st

i the smoothed delineation
on image t for the considered fiber. The shape and orientation are then averaged from
the seven images as shown in Fig. 1-c. The 10mm neighborhood was chosen empirically
to ensure that tracts from the image to segment are fully included in the neighborhood,
making the atlas more generic, even with low numbers of atlas images. As the segmen-
tation is driven simultaneously by the atlas and the diffusion data, it is not necessary
that the atlas matches accurately the images to segment.

From the atlas, we define the shape prior gain as follows:

LS
i (xi = l) = pl

i −max
m �=l

pm
i (5)

giving positive values where the prior for l is higher than any other, negative values
where is it dominated by another prior, and zero where two or more tracts compete. The
direction prior gain is similar to the diffusion gain:

LD
i (xi = l) = pl

i|d̄l
i|maxabsnλ

n
i

(
exp(−|d̄

l
i| − d̄l

i · v̄n
i

|d̄l
i|v1

)− exp(− d̄l
i · v̄n

i

|d̄l
i|v0

)
)

(6)

with v0 an angular constant. The gain is positive when the data is well aligned with
the prior, negative when it is orthogonal, and goes toward zero in the uncertain area
between v0 and v1 or when the shape prior is low, i.e., where the orientation is likely to
be unknown. For the unspecified fibers, we set LD

i (OFT) = 0.

Gain Function. The complete gain function is built from these separate terms for all
the different cases as follows:

Li|j(BG|BG) = LB
i + αLS

i (BG) + β
Li|j(BG|l) = LB

i + αLS
i (BG)

Li|j(l|BG) = −LB
i + αLS

i (l) + γLD
i (l)

Li|j(l|l) = LP
i|j pbj(l) + αLS

i (l) + β + γLD
i (l)

(7)
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Li|j(l|m) = −max(LP
i|j , 0) pbj(l) + αLS

i (l) + γLD
i (l)

where pbj(l) = exp bj(l)∑
m exp bj(m) is the current estimate of the posterior probability for

label l, and α, β, γ three parameters that modulate the importance of shape priors (α),
smoothing (β), and direction priors (γ). Because isotropic regions do not include a
direction prior, the relative value of γ with regard to α, β influences the global amount
of recovered tracts. In all our experiments, we set α = 0.1, β = 0.2 and γ = 0.5.

2.3 Belief Propagation Algorithm

Belief propagation [15] is the method of choice for maximizing functions that can be de-
composed into a sum or product of pairwise interactions E =

∑
i,j Li|j(l|m) as above.

In this work, we use the tree-reweighted belief propagation (TRBP) variant of Kol-
mogorov, which offers convergence guarantees not present in the original max-product
algorithm [16].

First we register the atlas to the image to segment with a multi-scale gradient descent
method maximizing ER0 =

∑
j

∑
l ||ajp

l
T (j)||2, where aj is the computed FA, and T a

rigid transform. The direction atlas is rotated accordingly. Then, the algorithm alternates
belief propagation with a refinement of the atlas registration:

1. compute the beliefs: bi(xi) ←
∑

j∈Ni
mji(xi),

2. estimate the gain function Li|j for all labels,

3. update the messages: mij(xj)←maxxi

(
|Ni|
2 Lij(xi, xj)+ 2

|Ni|bi(xi)−mji(xi)
)

4. refine the registration by maximizing ER =
∑

j

∑
l ||pbj(l)pl

T (j)||2

These steps are repeated until the computed beliefs are stable, only about 10-20 iter-
ations in practice thanks to the efficient TRBP propagation method. A 181x217x181
voxel image (1mm cubic resolution) is processed in less than two hours, and a more
classical 256x256x60 voxel image takes between 45 minutes and an hour on a modern
workstation with 6GB of available memory.

3 Experiments

The algorithm is evaluated in several experiments that test its accuracy and reproducibil-
ity in real DTI images of the human brain in health and disease, as well as its use in
complement to more classical tractography methods. First, we evaluate the algorithm
on a set of ten images from the original atlas [4], distinct from the seven images used in
building the shape and direction priors (“atlas images” experiment). In clinical practice,
two or more DWI acquisitions are often used to reconstruct the DTI tensors in order to
mitigate the noise. We reconstructed two separate tensor images from the DWI acqui-
sitions for a set of five healthy subjects. These images have low SNR but describe the
exact same anatomy in the same orientation (“healthy repeats” experiment). We also
tested the method on a set of seven pairs of DTI acquisitions from multiple sclerosis
(MS) patients with extensive white matter lesions, imaged twice at an interval of about
six month (“MS repeats” experiment). Finally, we investigate the use of this voxel-based
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Table 1. Overlap and distance results for the experiments: average values (standard deviation)

Structures
ATR CCB CCF CG CST IFO ILF SLF UNC

Atlas Inclusion 0.60 n/a 0.67 0.45 0.73 0.50 0.36 0.49 0.32
images ratio (0.10) n/a (0.06) (0.09) (0.08) (0.08) (0.09) (0.07) (0.10)
Atlas Surface 3.90 n/a 2.40 3.99 3.49 4.26 3.31 3.70 4.12
images distance (1.25) n/a (0.25) (2.00) (1.09) (3.53) (0.48) (0.89) (1.31)
Healthy Dice 0.64 0.70 0.61 0.48 0.73 0.48 0.39 0.54 0.26
repeats overlap (0.10) (0.17) (0.11) (0.13) (0.09) (0.19) (0.20) (0.12) (0.19)
Healthy Surface 0.87 0.83 0.88 1.38 0.92 1.24 1.27 1.03 2.30
repeats distance (0.29) (0.78) (0.37) (0.94) (0.42) (0.76) (0.64) (0.49) (1.42)
MS Dice 0.57 0.55 0.56 0.35 0.65 0.42 0.33 0.39 0.22
repeats overlap (0.11) (0.15) (0.07) (0.18) (0.12) (0.13) (0.10) (0.12) (0.13)
MS Surface 1.50 1.51 1.47 3.01 1.51 1.84 2.32 2.03 2.66
repeats distance (0.62) (0.91) (0.47) (1.87) (0.84) (0.95) (1.15) (1.10) (1.36)

method in conjunction with fiber tractography. Tractography does provide a much finer,
sub-voxel representation of connectivity, but automatically labeling regions and bun-
dles of fibers is challenging [17,18]. Our method provides a probabilistic labeling of
the entire space, thus we can classify each fiber by its mean belief value.

In DTI segmentation, validation is a challenging issue as there is no accepted gold
standard or ground truth beyond simplistic simulations. Even the carefully edited fiber
tracts of [4] have limitations, and often portions of the tracts are missing if the underly-
ing fibers are interrupted or stray into a neighboring bundle. Furthermore, the typically
elongated shape and small volume of fibers make the classical measures of overlap very
sensitive to differences.

For the atlas images, we measured the amount of the original delineation (D) in-
cluded in the segmentation (S): I = D∩S

D , while we used the Dice overlapD = 2S1∪S2
S1+S2

in the repeats. Average surface distances were computed in all cases, see Table 1. In
this context, our experiments still demonstrate that our segmentations correlate well
with fiber delineations, and more importantly that they are reproducible in successive
acquisitions of clinical quality.

As can be seen on Fig. 3-a, the tractography-based delineations of the atlas were very
conservative, and our proposed segmentation is overall more inclusive. For the largest,
most distinct tracts (ATR, CC, CST) the segmentation includes most of the original
delineations, but the smaller (CG, UNC) and heavily overlapping tracts (IFO, ILF, SLF)
are more variable, due to the small number of voxels in the delineation. The repeat
experiments show fairly high overlap and very low surface distance for most tracts,
and the differences in the resulting segmentations appear mostly to be related to noise,
see Fig. 3-b. The method succeeds in the presence of lesions, however with slightly
worse overlap than in the healthy cases. This is likely reflecting the added variability
due to different head position, different geometric distortions and registration errors.
The presence of lesions only impairs the segmentation locally, leading to thinner or
missing tracts in some of the diseased regions, but the healthy parts of the tracts remain
unaffected, see Fig. 3-c. When tractography is reliable, our method offers an efficient
way to cluster the fibers into compact bundles, mostly free of straying fibers as shown
in Fig. 3-d.
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a. Atlas images

b. Healthy repeats

c. MS repeats

d. Fiber bundles

Fig. 3. Experiments: a) Atlas images: automatic segmentation (top) compared to tractography-
based delineation (bottom), b) Healthy repeats: segmentation for two successive acquisitions, c)
MS repeats: segmentations of two separate acquisitions, after coregistration (left) and 3D render-
ing of the reconstructed fibers intersecting estimated lesions (in green) in the same subject, d)
fibers clustered by our segmentation in an atlas image

4 Conclusion

In this paper, we propose a new approach to the segmentation of white matter tracts in
DTI. By combining shape and direction priors with a belief propagation method, the
algorithm recovers nine of the major fiber tracts in the human brain automatically and
simultaneously. Several real data experiments indicate that the method is consistent with
manual delineations based on tractography, and can handle clinical quality images with
noise and even lesions in a reproducible way. These properties are important for clinical
applications, where the interaction of white matter lesions or tumors with the main fiber
tracts can inform the diagnosis and treatment for individual patients and provide more
insight on the systems targeted by the disease.
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Abstract. A methodology to build a realistic phantom for the assess-
ment of filtering performance in Diffusion Weighted Images (DWI) is
presented. From a real DWI data–set, a regularization process is car-
ried out taking into account the diffusion model. This process drives to
a model which accurately preserves the structural characteristics of ac-
tual DWI volumes, being in addition regular enough to be considered
as a noise–free data–set and therefore to be used as a ground–truth. We
compare our phantom with a kind of simplified phantoms commonly used
in the literature (those based on homogeneous cross sections), conclud-
ing that the latter may introduce important biases in common quality
measures used in the filtering performance assessment, and even drive to
erroneous conclusions in the comparison of different filtering techniques.

1 Introduction

Diffusion Tensor Imaging (DTI) allows the study of the fiber tracts in the white
matter of the brain in vivo. DTI are obtained from Diffusion Weighted Images
(DWI); each of them is acquired by applying a sensitizing gradient in a known
direction, which produces an attenuation in the T2 (baseline) image following an
exponential law [1]. By collecting six or more independent gradient directions,
the underlying fiber structure at each voxel may be inferred in terms of the six
free components of the Diffusion Tensor (DT) [2]. As opposed to conventional
MRI, DWI show a poor Signal to Noise Ratio (SNR), since the signal power is
lower due to the DWI attenuation. This is especially the case with modern High
Angular Resolution Diffusion Imaging (HARDI) techniques, where very strong
gradients (and therefore very strong attenuation) have to be applied in order
to improve the angular contrast [3]. Moreover, the Rician nature of the noise in
DWI [4] prevents the use of conventional Gaussian-based filtering techniques.

The adverse effect of Rician noise in DWI has been previously reported in [5,6],
where it has been shown that it produces artifacts which hinder the recovery of
the original signal once the DT has been estimated. To palliate the effect of noise,
a number of techniques may be used, including regularization after DT estima-
tion [7], regularized estimation of the DT [8] and DWI restoration before DT es-
timation. In this last category, a number of techniques have been proposed: the
Conventional Approach [9] (CA), based on the properties of the second order mo-
ment of Rician data; Maximum Likelihood (ML) estimation [10]; anisotropic dif-
fusion [11]; wavelets [12]; total variation [13]; Unbiased Non Local Means (UNLM)
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[14,15]; Linear Minimum Mean Squared Error (LMMSE) filtering [16,17]; multi–
channel, Rician–corrected Wiener filtering [18], and others.

The quantitative assessment of filtering performance has been carried out in
different ways. They include visual assessment [14,15,16,17] and indirect mea-
sures based on the properties of the DTI volumes recovered from filtered DWI
[16,18]; in this case, the computation of related parameters such as the smooth-
ness in the fiber tracts estimated from DTI [18] make it difficult to evaluate the
filtering performance, since the final result depends on a number of factors others
than the filtering itself. On the other hand, direct evaluation on the filtered DWI
is a difficult task; in [14] 12 acquisitions of the same patient are available, so a
leave–one–out strategy is used to filter one of the volumes each time and com-
pare the result to a noise–free image obtained from the remaining 11 volumes.
When multiple observations are not available, synthetic data has to be used.
As opposed to conventional MRI, for which very realistic phantoms exist and
have been intensively used [19], there is not a DWI synthetic data–set widely ac-
cepted as a standard, so over-simplified models are used like in [15,16,17], based
on large homogeneous regions simulating coarse crossing fiber tracts. Commonly
used configurations are crossing sections in two [15,16,18] and three [17] dimen-
sions, although other approaches like the “Earth” and “logarithm” in [18] or
the logmarithmic spiral in [16] are possible. Nevertheless, these simple configu-
rations are not representative of the complex architecture of the white matter of
the brain, which in general presents multiple fiber crossings, bending and sharp
changes in curvature/orientation in the space of a few voxels. Thus, we propose
a novel methodology to design a highly realistic DWI phantom to be used as a
gold standard for filtering performance assessment. It is built from a real DWI
data–set, so it is able to account for the high complexity of the human brain,
but at the same time we use a number of regularization techniques which allow
us to obtain a nearly noise–free signal which may be used as a ground truth.
Additionally, we empirically show that commonly used phantoms may bias the
results on performance assessment, driving to erroneous conclusions. We illus-
trate this by the comparison of two popular DWI filtering schemes (UNLM and
LMMSE) based on a conventional phantom and the one here introduced.

2 Materials

The phantom has been built from a real DWI volume of a volunteer. We use a
SENSE EPI data–set scanned in a 3 Tesla General Electrics Echospeed system.
(Sequence: Maximum gradient amplitudes: 40 mT/M. Rectangular Field of view
of 220 x 165 mm. Slice thickness 1.7 mm. Receiver bandwidth: 6kHz. TE 70 ms;
TR 80 ms (effective TR 2500 ms)). It comprises 8 non–weighted baseline images
and 51 gradient directions, and is 256×256×81 voxels in size, with a resolution
of 0.94× 0.94× 1.7 mm3. The b value is 586 s/mm2; although this value is quite
small for practical applications (typical values are greater than 1000 s/mm2), it
has the advantage that its SNR is also greater.
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Fig. 1. Overview of the construction of the synthetic phantom. The input is the original
(real) DWI volume, and the output the synthetic volume.

3 Method

3.1 Overview

Fig. 1 summarizes the steps on the design of the phantom, which we detail later
on. We filter the 8 baseline images (A0 . . . ALb−1, with Lb = 8) and the 51 gradi-
ent directions (ALb

. . . ALb+Lg−1, with Lg = 51) to reduce the amount of noise
(A′

0 . . . A
′
Lb+Lg−1). The 8 baselines are then averaged to obtain one single, nearly

noise–free baseline (A′′
0 ). All gradient directions are divided by the baseline to

obtain the attenuation signal, and from it the Apparent Diffusion Coefficient
(ADC) by taking its logarithm (D1 . . . DLg). We use a Spherical Harmonics rep-
resentation to regularize the ADC. This smoothed ADC (D′

1 . . . D
′
L′

g
), together

with the noise–free baseline A′′
0 is used to produce synthetic gradient directions

(A′′
1 . . . A

′′
L′

g
). The resulting DWI volume is median filtered (A′′′

0 . . . A′′′
L′

g
) to re-

move outliers and obtain the noise–free ground truth. The input to the filters
will be the noise–corrupted phantom (M0 . . .ML′

g
).

3.2 Filtering and Baseline Average

Although the low b value of the DWI volume produces a relatively high SNR,
a previous filtering is needed to drastically reduce noise. We use the popular
UNLM as described in [15], with a search radius of 5 voxels, a comparison radius
of 2 voxels, and h = σ. Assuming that the residual noise in the baselines after
filtering is of zero mean, we average A′

0 . . . A
′
Lb−1 to obtain A′′

0 , which is assumed
to be noise–free. The gradient images have lower SNR, so they need further
regularization taking into account the diffusion model, as explained next.

3.3 Computation of the Apparent Diffusion Coefficient

Under the assumption of Gaussian diffusion, the (true) diffusion signal Ei is
related to the (true) baseline E0 by the Stejskal–Tanner equation [1]:

Ei = E0 exp
(
−b · gT

i Dgi

)
, i = 1 . . . Lg (1)
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with gi the i-th direction and D the diffusion tensor. However, this equation
cannot model the diffusion process in the event of complex configurations such
as fiber crossing or bending [3]. In this case, the diffusion may be represented in
terms of a positive function D defined on the unit sphere, the ADC:

Ei = E0 exp (−b ·D (gi)) ⇒ D (gi) � − log (A′
i/A

′′
0 ) /b, i = 1 . . . Lg (2)

3.4 Analysis in the Basis of Spherical Harmonics

Since the ADC is defined on the unit sphere, it may be represented in the basis of
Spherical Harmonics. We use the regularized least squares approach in [3] with
λ = 0.006 and order 6 (28 basis functions), which in our experiments showed
the best trade–off between representation capability (i.e. it does not hinder the
ability to resolve crossings or alter the angular contrast) and regularization. This
way, the noise–free (due to least squares regularization) ADC is:

D′(g) =
∑27

l=0ClYl(g) (3)

where Yl are the basis functions and Cl are the coefficients of the expansion
obtained from D(gi) in eq. (2) (see [3] for details). Note that the basis functions
Y (g) are continuous–valued. Therefore, once we have chosen an arbitrary set of
gradient directions g′j , j = 1 . . . L′

g, the noise free diffusion signal is, see eq. (2):

A′′
j = A′′

0 exp
(
−b′

∑27
l=0ClYl(g′j)

)
, j = 1 . . . L′

g (4)

The set of gradient directions g′j and the magnitude of the sensitizing gradients
b′ are not necessarily the same as the original ones, gi and b. In fact, we use
a more realistic value for practical applications, b′ = 1200 s/mm2. For gj , we
generate 15 gradient directions as antipodal pairs.

3.5 Median Filtering

As a final processing, all gradient images and the baseline are filtered slice–by–
slice with a median filter of size 3 × 3. This step is required to remove isolated
outliers due to a poor fit of the spherical harmonics. Although very few voxels
are affected by this artifact, this is useful to achieve a visually adequate result.

3.6 Noise Corruption

To produce the inputs to the filter, we corrupt the image with Rician noise [4]:

Mj =
√(

A′′′
j + nc

)2 + n2
s, j = 0 . . . L′

g (5)

where nc and ns are independent Gaussian random processes with zero mean
and power σ2. The noise in MRI is usually not white, but it is correlated inside
each slice due to the spatial interpolation produced by the zero padding of the
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Fig. 2. Illustration of the whole process of phantom construction; from the original
gradients Ai (a), UNLM is used to drastically reduce noise (A′

i in b). Then the ADC
(Di) is computed and regularized (D′

j) via spherical harmonics decomposition, with
a total of 28 coefficients Cl (c shows the first one). Arbitrary gradient directions A′′

j

are generated with a higher b value (d). Finally, a median filter is used to obtain the
noise–free phantom A′′′

j , comprising the averaged baseline A′′′
0 (e) and each of the 15

gradient images A′′′
j (f). Correlated noise is added to produce the noisy phantoms Mi,

with a maximum SNR of 54 dB (g) and a minimum of 48 dB (h) (Original: 51.7dB).

spectrum of the image in the k–space. To account for this characteristic, we
generate white noise processes ñc,s and low–pass filter them inside each slice
with a 2–D Gaussian kernel G(p1, p2) in the spatial (image) domain. It has an
isotropic variance η2:

nc,s(p1, p2) =

(∑
q1,q2

G2(q1, q2)

)−1 ∑
q1,q2

ñc,s(q1, q2)G(p1 − q1, p2 − q2) (6)

where dividing by the energy of G is necessary to keep the noise power constant.

4 Results and Discussion

We show in Fig. 2 an illustration of the whole process described in Section 3.
First, note that although UNLM is able to achieve very clean images (compare
a and b), the filtered image is not an adequate phantom: there is some residual
noise, and the contrast of the image is very poor. This justifies the need for
the regularization of the ADC (c and d) and the increase in b. As a result, the
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Fig. 3. Filtering performance (PSNR and SSIM) for Linear Minimum Mean Squared
Error (LMMSE), Unbiased Non–Local Means (UNLM) and Conventional Approach
(CA) filters, for a simple cross sections phantom and the proposed phantom. Results
are shown for 15 gradient directions.

synthetic gradient images (d) are cleaner and have a realistic contrast. On the
contrary, the baseline image obtained from UNLM filtering and averaging (e)
has an excellent quality, since the original baselines are far less noisy than the
original gradient images. Although the synthetic gradients are very clean, some
outliers may be appreciated in d, so median filtering is used to obtain the final
phantom f. Nevertheless, note that the majority of outliers are located in the
background and the CSF (where no fiber bundles are present), which should be
removed for the assessment of filtering performance. The final result (e and f)
is a very clean image, but yet it has well defined borders, being an appropriate
phantom. In g and h we show noise corrupted images, in a high SNR1 (g) and a
low SNR case (h). Note that practically any realistic situation will lie between
these two extreme cases. For the correlation filter, we use η2 = 0.82, estimated
from the original image (a), so the noisy spots accurately resemble those in a.

To show the importance of an adequate phantom, we have intended an illustra-
tive example. We are going to numerically compare different filtering algorithms
for DWI, using the phantom here presented and a more typical phantom based
on cross sections; the phantom is a clone of the 3D cross described in [17], but
we have used 15 gradient directions and scaled the magnitude of the baseline
and the gradient images so that they all show mean values equal to the mean
values of our own phantom. Regarding the algorithms, we have chosen two re-
cent approaches: the popular UNLM implemented as described in [15], with the

1 We use the Peak Signal to Noise Ratio (PSNR) (maximum SNR in the baseline
image) to give numeric results in all cases.
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parameters proposed in Section 3.2, and the LMMSE filter described in [17] with
the code issued by the authors and the parameters suggested in [17]. Additionally,
we test the Conventional Approach (CA), see [9], implemented as an isotropic
Gaussian low–pass filter with η = 1.5 applied to the squared signal, followed
by bias removal and computation of the squared root. As similarity measures,
we use the PSNR and the Structural Similarity (SSIM) index [20] between the
filtered volume and the ground truth (see Fig. 2–f). Results may be found in Fig.
3. CA, although being a very simple approach, shows better results than UNLM
for PSNR (for low input SNR) and than LMMSE for SSIM (practically for all
input SNR) when using the cross sections phantom. When we use our realistic
phantom, CA obviously shows worse results than the other filters, since it is
not designed to preserve the borders. In the cross sections phantom there are
practically no borders, so this is not an issue. If we center our attention in the
SSIM index, it is worth notice that the two phantoms give completely opposite
results for UNLM and LMMSE for all input PSNR; the realistic phantom shows
that LMMSE shows a better behavior than UNLM for this particular index, but
using the over–simplified phantom would lead to the erroneous conclusion that
UNLM yields better SSIM indices. Although this behavior cannot be general-
ized from this single experiment, it is useful to show the bias that an unrealistic
phantom may induce.

5 Conclusions

A methodology to build a realistic DWI phantom to assess the accuracy of filter-
ing algorithms for DWI has been described. Contrary to other validation methods
proposed in the literature, see [14], our methodology does not require multiple
observations of the same volume; the phantom may be built from one single
DWI data–set. Moreover, the same real–data volume may be used to produce
phantoms with very different configurations (different b values and numbers of
gradient directions) as described in Section 3.4, so it may be used to test filtering
algorithms in a wide variety of situations. On the other hand, we have shown
an example of how an inadequate phantom may lead to erroneous conclusions
in the assessment of filtering performance, which justifies the importance of the
work presented.

Acknowledgments. Authors would like to acknowledge grant number TEC2007
–67073/TCMfrom the Comisión Interministerial de Ciencia y Tecnoloǵıa (Spain).
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Abstract. The automatic analysis of longitudinal changes between Dif-
fusion Tensor Imaging (DTI) acquisitions is a promising tool for monitor-
ing disease evolution. However, few works address this issue and existing
methods are generally limited to the detection of changes between scalar
images characterizing diffusion properties, such as Fractional Anisotropy
or Mean Diffusivity, while richer information can be exploited from the
whole set of Apparent Diffusion Coefficient (ADC) images that can be
derived from a DTI acquisition. In this paper, we present a general frame-
work for detecting changes between two sets of ADC images and we in-
vestigate the performance of four statistical tests. Results are presented
on both simulated and real data in the context of the follow-up of mul-
tiple sclerosis lesion evolution.

1 Introduction

The automatic analysis of longitudinal changes between diffusion tensor imaging
(DTI) acquisitions is a promising tool for monitoring neurodegenerative disease
and particularly for the follow-up of patients suffering from Multiple Sclerosis
(MS) [1]. Indeed, studies have already highlighted diffusion property alterations
induced by MS by comparing Fractional Anisotropy (FA) and/or Mean Diffu-
sivity (MD) values in some manually selected regions of interest (ROI) [2,3,4].
However, few works address the issue of automatically detecting changes be-
tween DTI acquisitions. Recently, a statistical framework based on nonparamet-
ric permutation testing has been proposed to automatically detect significant
changes between scalar images characterizing diffusion properties [5]. An alter-
native parametric statistical test, which relies on the Generalized Likelihood
Ratio Test, have also been proposed to detect changes in DTI-derived scalar
images [6].

� We would like to thank the ARSEP (Association pour la Recherche sur la Sclérose
En Plaques) and the Région Alsace for their support.
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The main limitation of these previous approaches is that they can only de-
tect changes between scalar images such as FA or MD, while richer information
can be obtained from the whole set of Apparent Diffusion Coefficient (ADC)
images that can be derived from a DTI acquisition. Indeed, a DTI acquisition
is composed of a T2-weighted image (without diffusion weighting) and a set of
N diffusion weighted (DW) images, from which can be derived N ADC images
characterizing the diffusion properties in N directions. These images have the po-
tential to finely characterize brain microstructure organization. Here, we present
a general framework for detecting changes between two sets of ADC images. This
framework is composed of preprocessings that aim at registering the two DTI
acquisition in a common coordinate system and at correcting them from unde-
sirable geometrical distortions, and of a statistical detection step. In this paper,
we investigate the performance of four statistical tests [7]. First, we consider the
independent t-test that tests if the two sets of ADC represent samples drawn
according to Gaussian distributions with different mean values. The three other
tests under investigation assumed that the two sets of ADC are dependent sam-
ples, that means that for a given direction, the ADC of the two acquisitions are
correlated. This assumption makes sense since the ADC profile is representative
of brain tissue organization. Under the hypothesis that no change occurs, ADC
profiles of two acquisitions of the same subject mapped in a common coordinate
system should correlate well for each voxel. Thus, we consider a parametric test
(dependent t-test) and two nonparametric tests (sign test and Wilcoxon signed-
ranks test) dedicated to dependent samples. Since the two acquisitions may have
been obtained according to different gradient sampling schemes and since ADC
profiles may require to be reoriented when registering DTI acquisition [8], the
ADC values of the two exams may not be sampled according to same directions.
To make the use of dependent tests valid, we resample the ADC values of one
exam according to the same gradient directions as the second one. To this end,
we resort to an appropriate spherical interpolation method that extends stan-
dard linear interpolation to data sampled on a spherical grid [9]. Results are
presented on both simulated and real data in the context of the follow-up of
multiple sclerosis lesion evolution.

2 Method

2.1 General Framework for Change Detection

The goal of change detection is the following: given two longitudinal DTI ac-
quisitions A1 and A2, decide for each voxel whether a significant change has
occurred. The proposed detection scheme is composed of the following steps:
(i) eddy-current distortion correction of A1 and A2, (ii) registration of A1 onto
A2, (iii) resampling of ADC images of A1 according to gradient directions of A2
(required only when considering dependent statistical test), and (iv) statistical
detection test. Eddy-current distortion correction is achieved by affinely register-
ing each slice of the DW-images onto the corresponding slice of the T2-weighted
image using mutual information.
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The two ADC images datasets are then affinely registered, the transformation
being estimated by considering the mutual information between the FA image
of the two acquisitions. Such transformation may not always be sufficient to
compensate all the undesired global differences that may be present between
two acquisitions. These remaining changes, that are not of interest, may be
the consequence of additional geometrical distortion or of brain atrophy. Thus,
a deformable registration method is required. We use the topology preserving
B-spline based registration method presented in [10], the estimation of the trans-
formation being also done by considering the FA images. In order not to remove
the changes of interest, which are supposed to be focal changes, we only consider
a transformation with 10 125 parameters.

For resampling the ADC values of A1 according to gradient directions of
A2, we resort to an appropriate spherical interpolation scheme that extends the
standard linear interpolation scheme to data sampled on a spherical grid [9].
Indeed, ADC values can be considered as data sampled on a spherical grid,
the location on the sphere being given by the corresponding gradient direction.
Thus, an interpolated value is computed as a weighted sum of its three nearest
neighbor values, the weights being computed by considering the areas of spherical
triangles calculated thanks to the L’Hullier’s theorem [9].

Finally, statistical change detection is achieved.

2.2 Statistical Detection of Changes between ADC Images

Let S0 be the image without diffusion weighting, Si the ith DW image charac-
terizing diffusion in gradient direction

[
gi;x, gi;y, gi;z

]t, b the diffusion weighting
factor and N ≥ 6 the number of diffusion directions. Let Y =[1/b log(S0/S1),
· · · , 1/b log(S0/SN)]t be the corresponding ADC. Let Y1(v) and Y2(v) be the
ADC values at a given voxel v of acquisitions A1 and A2 respectively. Y1(v)
and Y2(v) are assumed to be of dimension N1 and N2 respectively. After the
resampling step, required for dependent tests, Y1(v) and Y2(v) are assumed to
be of the same dimension N .

In our experiments, N is equal to 33. This is a somewhat limited number of
samples to allow using the normal approximation in most of the tests presented
in the sequel. This is why, for statistical testing at a given voxel, we also consider
the ADC values of the 26 neighbors. Thus, this is both a mean of increasing the
statistical power of the tests and a way to account for spatial information.

Among the broad panel of existing statistical tests, we choose to consider
the independent t-test, the dependent t-test, the sign test and the Wilcoxon
signed-ranks test. These statistical tests are briefly summarized in the sequel.
Notice that all the considered tests are able to evaluate whether two sets of ADC
are different in average (two-tailed hypothesis: μ1 �= μ2 ), of whether one set of
ADC is in average higher or lower than the other one (one-tailed hypothesis: e.g.
μ1 > μ2 ). In our experiments, we are interested in all kinds of changes (two-
tailed hypothesis). Thus, the statistical detection map are built by considering
the absolute value of the statistical test, so that change areas can be obtained
just by an upper thresholding.
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Independent Student’s t-test: The independent Student’s t-test [7] evaluates
the following hypothesis: do the two sets of ADC, assumed to be independent
measures with unequal variance, represent samples drawn according to Gaussian
distributions with different mean values ? The t statistic to test has the following
expression:

t =
μ1 − μ2√

σ2
1

N1
+ σ2

2
N2

, (1)

where μ1, μ2 and σ2
1 , σ

2
2 are the sample mean and the sample variance of the

ADC values of acquisitions A1 and A2 respectively. The distribution of t can
then be approximated by a Student’s t distribution with the degrees of freedom
calculated using:

dof =

(
σ2

1/N1 + σ2
2/N2

)2

(σ2
1/N1)

2
/(N1−1) + (σ2

2/N2)
2
/(N2−1)

. (2)

Dependent Student’s t-test: The dependent Student’s t-test [7] evaluates
the following hypothesis: do the sets of differences between corresponding ADC
values in the two acquisitions represent samples drawn according to a Gaussian
distribution with zero mean value ? The t statistic to test can be calculated as
follows:

t =
μd√

σ2
d

N

, (3)

where μd and σ2
d designate the sample mean and the sample variance of the sets

of differences between paired ADC values. In that context, t is assumed to follow
a Student’s distribution with N − 1 degrees of freedom.

Sign Test: The sign test [7] is a simple nonparametric method to compare two
dependent samples. It is based on the distribution of the signs of the differences
observed between paired samples, whatever the amount of these differences. The
sign test evaluates the following hypothesis: are there equal numbers of positive
and negative differences in the samples ? i.e. H0: P (+) = P (−) = 1

2 . We consider
the normal approximation involving a correction for continuity of the sign test,
which can be written as follows:

Z =
|N+ −N | − 0.5

√
N
2

, (4)

where N+ is the number of positive differences between paired ADC values.
Under these assumptions, Z follows a normal distribution.

Wilcoxon Matched-Pairs Signed-Ranks Test: The Wilcoxon matched-
pairs signed-ranks test [7] is an extension of the sign test. Contrary to the sign
test, it takes into account the amount of the differences, which leads to a more
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powerful test. The absolute differences between paired ADC values are arranged
in ascending order. The sign is then re-attached to each rank. Under null hy-
pothesis, the sum of the ranks with a negative sign must be roughly equal to the
sum of the ranks with a positive sign. We consider the normal approximation of
the Wilcoxon signed-ranks test, which can be written as follows:

Z =
T −N(N + 1)/4√

N(N + 1)(2N + 1)/24
, (5)

where T is the sum of the ranks with the less frequent sign. Under these assump-
tions, Z follows a normal distribution.

3 Experimental Results

3.1 Experiments on Simulated Data

To assess the proposed approach, we first resort to synthetic simulations. Four
kinds of changes have been simulated: (i) increase of radial diffusion, (ii) increase
of mean diffusion, (iii) change of diffusion orientation and (iv) decrease of lon-
gitudinal diffusion. To this end, we consider the DTI acquisition (33 directions)
of a healthy subject (the baseline) and a second DTI dataset obtained the next
day from the same subject. By this way, we account for undesired changes that
may appear between two acquisitions (change in patient positioning, drift of ac-
quisition parameters between scans, acquisition artifacts, noise) and which may
possibly increase the rate of false detections. Lesion evolutions are then simulated
in several ROI of the second dataset. For a realistic simulation, the ROI have
been defined by segmenting lesions in an image from a patient suffering from MS
and by transporting them in the coordinate system of the healthy subject using
a non-rigid registration method [10]. Since simulating decrease of longitudinal
diffusion is relevant only in areas of anisotropic diffusion, we consider for this
very simulation only regions with FA higher than 0.7. Modifications of longitu-
dinal, radial and mean diffusions are achieved by first estimating tensors and
corresponding eigenvalues, and then by modifying appropriately these eigenval-
ues and propagating these changes to DW images [6]. Modification of diffusion
orientation is done by rotating the gradient directions

[
gi;x, gi;y, gi;z

]t in the ROI.
Areas between regions of change and areas with no change are modified in order
to obtain smooth transitions.

To compare the performance of the four statistical tests, ROC (Receiver Oper-
ating Characteristic) curves have been plotted by considering several thresholds.
The results presented in Figure 1 highlight that the different tests achieve de-
tection with a performance that vary with the kind of simulated changes. For
simulated changes in the radial diffusion (Fig. 1a), the three paired tests lead
roughly to same results and outperform the independent t-test. For detecting
changes of the mean diffusivity (Fig. 1b), the Wilcoxon matched-pairs signed-
ranks test is the best performer. The results of the sign test are slightly worse but
better compared to the dependent t-test. The independent t-test, which leads
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Fig. 1. ROC curves comparing detection results on different kinds of simulated changes
with the sign test, the ranks test, the dependent t-test and the independent t-test

to the worst results for high detection thresholds, yields results similar to the
signed-ranks test for lower thresholds. Concerning simulated changes of diffu-
sion orientation, all the tests reveal to be very inefficient since results are not
better than if they were due to chance. This can easily be explained for the in-
dependent t-test since modification of diffusion orientation does not change the
mean ADC value, thus leaving the result of this test unchanged. For the other
three tests, it turns out that changes in diffusion orientation induce in average
a similar amount of positive and negative differences, thus having less impact
in the evaluation of these tests. Finally, detecting decrease in longitudinal dif-
fusion (Fig. 1d) is best achieved with the independent t-test. The three paired
methods all perform roughly with the same performance. Such kind of modifica-
tion only affects a limited number of ADC values (only those whose direction is
almost colinear with the principal diffusion direction), thus being quite difficult
to detect because of a lack of statistical power. In summary, the three paired
tests show similar results, with a little better performance for the ranks test and
a slightly poorer performance for the dependent t-test. The independent t-test
shows a quite different behavior, generally leading to worse results except for
the detection of decreases of longitudinal diffusion.
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3.2 Follow-Up on MS Patients

The different methods have been tested for an MS patient that underwent two
MR exams at one year distance. An expert manually labelled evolving lesions on
the T2-weighted images between these two exams. We compare the segmentation
from the expert with the detections obtained with the four tests (Fig. 2 and 3).
The ROC curve presented in Fig. 3 shows that the three paired tests lead to
almost similar results, while the independent t-test is significantly better. Notice
that this ROC curve should be analyzed carefully since the segmentation from
the expert cannot really be considered as a ground truth (changes may occur in
diffusion imaging without being visible in T2-weighted images.).

T2 exam 1 independent dependent
t-test t-test

T2 exam 2 sign test ranks test

Fig. 2. Results obtained with the four
tests on a real case
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Fig. 3. ROC curves comparing detec-
tion results with the four tests on a real
case

When analyzing qualitatively the detections (Fig. 2: detections have been
obtained by selecting a threshold, according to the ROC curves presented in
Fig. 3, that allows 0.1% of false detections), we can observe that most lesion
evolutions visible in the T2-weighted image have also been detected by the four
statistical tests (Fig. 2), except one (not shown here), corresponding to a decrease
of longitudinal diffusion combined with an increase of radial diffusion and with
an unchanged mean diffusivity.

4 Conclusion

We have proposed a framework to compare two sets of ADC and investigated
the performance of four statistical tests. To the best knowledge of the authors,
this is the first work that investigate to detect longitudinal changes between DTI
acquisitions by using statistical hypothesis testings on ADC images. Results on
simulated and real data highlighted different behaviors of these tests. Among
the paired tests, the ranks test seems to always lead to slightly better results
than the two other tests. However, the comparison between independent and
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paired tests did not enable to point out a best performer, the ranks test being
more effective on simulated data for detecting increase of radial diffusion and
mean diffusivity while the independent t-test showed a better performance for
detecting decrease of longitudinal diffusion and also for detecting lesion evolution
on the real case. This conclusion seems at first sight quite surprising since one
can expect that a paired test is more sensitive for detecting changes. This is in
fact the case, the main limitation being that such tests are also more sensitive
for detecting unwilling changes induced, for instance, by registration errors. The
independent t-test appears to be more robust, thus leading to better results on
the real scenario.

An important issue has been ignored in this work, which is how to auto-
matically choose the threshold to get the significant detections. Although all
the statistical tests under investigation yield p-values maps, defining a thresh-
old while controlling the false detection rate is not an easy task because of the
multiple comparisons problem and also because of the spatial correlation of the
data. Further work will be done to investigate this issue.
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Abstract. Information from the full diffusion tensor (DT) was used to compute 
voxel-wise genetic contributions to brain fiber microstructure. First, we de-
signed a new multivariate intraclass correlation formula in the log-Euclidean 
framework [1]. We then analyzed used the full multivariate structure of the ten-
sor in a multivariate version of a voxel-wise maximum-likelihood structural 
equation model (SEM) that computes the variance contributions in the DTs 
from genetic (A), common environmental (C) and unique environmental (E) 
factors. Our algorithm was tested on DT images from 25 identical and 25 fra-
ternal twin pairs. After linear and fluid registration to a mean template, we 
computed the intraclass correlation and Falconer’s heritability statistic for sev-
eral scalar DT-derived measures and for the full multivariate tensors. Covari-
ance matrices were found from the DTs, and inputted into SEM. Analyzing the 
full DT enhanced the detection of A and C effects. This approach should em-
power imaging genetics studies that use DTI.  

1   Introduction 

Imaging genetics is a rapidly growing field that combines mathematical methods from 
genetics and imaging to identify factors that contribute to variations in brain structure 
and function. A more mechanistic understanding of brain structure could be achieved 
if the contributing genes could be identified. Each gene’s contribution is expected to 
be minor, so researchers have first looked for genetically influenced measures in im-
ages in the hope of finding specific features or brain regions in which gene effects are 
the strongest. Twin studies, in particular, examine statistical differences between pairs 
of identical and fraternal twins; as these twins share all or half their genes on average, 
structural equation models may be fitted to understand what proportion of the vari-
ance in image-derived measures is attributed to genetic differences. 

Genetic factors influence various aspects of brain anatomy including cortical 
thickness [16], regional gray and white matter volumes [4], and univariate measures 
of fiber integrity derived from DTI [4,10]. Even so, few studies have analyzed genetic 
influences on signals that are inherently multidimensional, such as diffusion tensors. 



968 A.D. Lee et al. 

By reducing the full DT to scalar measures of diffusion anisotropy, potentially rele-
vant information is thrown away. DTI measures the multidirectional profile of water 
diffusion in brain tissue, revealing information on brain architecture and composition. 
In most DTI studies, a diffusion tensor (DT) is fitted to model at each voxel; its  
eigenvalues represent the magnitude of diffusion along three orthogonal principal 
directions - fiber directions may be inferred from the principal eigenvector. The local 
fractional anisotropy (FA), computed from the eigenvalues, is widely accepted as an 
index of fiber integrity and is correlated with intellectual performance [5]. An alterna-
tive anisotropy measure, the geodesic anisotropy (GA) [3], measures the geodesic 
distance between tensors on the symmetric positive-definite tensor manifold. In [9], 
we found that a multivariate statistical analysis of the full diffusion tensor outper-
formed derived scalar signals in detecting group differences in the blind; others also 
suggest that effect sizes in group DTI studies can be greater when retaining the full 
tensor information [17]. 

Here we present a new approach that compute differences and correlations between 
DTs using the “Log-Euclidean” framework. Our new intraclass correlation is derived 
from a Mahalanobis-like distance in the SPD(3) manifold of symmetric positive defi-
nite matrices. DTs that correspond to a physically possible diffusion process must lie 
in the SPD(3) Lie group, and do not form a vector subspace of the vector space of 
matrices with the usual matrix addition and scalar multiplication. To account for this, 
we performed all statistical computations in the Log-Euclidean framework [2], which 
allows standard Euclidean computations on the DT manifold. We used this manifold 
distance to compute 3D whole-brain maps of heritability using the classical Falconer 
method [6], and we compared heritability maps from the full DT to maps based on 
standard univariate measures (including FA, GA and tGA).  

We also generalized the A/C/E model used in quantitative genetics, to assess ge-
netic influences on multidimensional signals such as DTI. This method enables us to 
assess genetic influences in brain architecture by computing variances within and 
between members of twin pairs, using distances computed on the diffusion tensor 
manifold. We compared multivariate and scalar DTI-derived measures to determine 
the most heritable measures. Honing in on heritable measures is typically the first step 
in identifying specific genes that affect brain structure and function [7]. 

2   New Multivariate Statistical Formulae for Twin Study 

2.1   Intra-class Correlations on the Tensor Manifold 

The intraclass correlation [14] between pairs of observations is defined, for univariate 
quantities such as FA, as:  

runi = MSbetween − MSwithin

MSbetween + MSwithin

, (1) 

where MSbetween and MSwithin  are mean-square estimates of the between-pair and 
within-pair variance, respectively.  
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For tensor-valued data such as the full 3 x 3 DT, equation (1) cannot be used. In-
stead we use a distance in the tensor manifold measuring the deviation of subject’s 
diffusion tensor Ti from the mean of the entire sample, weighted by the variances: 

rmulti =

1
Np

(
i=1

Np

∑ (logT1
i − logT

_

)T I(logT2
i − logT

_

))

σ x ⋅σ y

, (2) 

where σ x = 1
Np

(
i=1

Np

∑ (logT1
i − logT

_

)T I(logT1
i − logT

_

))  and 

σ y = 1
Np

(
i=1

Np

∑ (logT2
i − logT

_

)T I(logT2
i − logT

_

)) , T
_

 is the mean of a set of vectors Ti, 

i=1,...,m, T1
i and T2

 i represent the log-transformed tensors for each member of the i-th 
twin pair (for simpler notation, we consider the 6 unique components of the log-
transformed tensor as belonging to a 6-component Euclidean vector). Here, we re-
shaped 3x3 diffusion tensor matrix to 6x1 matrix as diffusion tensor is symmetric 
giving only 6-variate data. We define T

_

= exp(
1

M
m logT i)

i=1

∑  where M is the total num-

ber of subjects, Np is number of twin pairs and I is the 6x6 identity tensor. I could be 
omitted, but is included to show that it could be generalized to an inverse covariance 
matrix expressing the empirical correlation between the 6 unique DT components at 
each voxel (we reserve this generalization for future work).  

2.2   Structural Equation Modeling (A/C/E model) of Variance in DTI Volume  

To understand the relative contribution of additive genetic (A) versus shared (C) and 
unique (E) environmental effects on the variance in a DTI-derived measure, for ex-
ample the FA or GA, we compute the measure at each voxel in a set of MZ pairs and 
DZ pairs and measure the covariance between twin 1 and twin 2 at each voxel. These 
empirically estimated covariance matrices can be computed for any observed variable 
(Z), and a structural equation model (SEM) can be fitted to the covariances to infer 
the proportion of the variance attributable to each of A, C and E. Measurement errors 
or inter-subject registration errors will both be classified as part of the E component 
of variance. Z for one twin pair may be modeled as:  

Z = aA + cC + eE . (3) 

where A/C/E are latent variables and a, c, e are the weights of each parameter to be 
determined.  

We used a maximum-likelihood estimate (MLE) [12] to estimate the proportion of 
the voxel-based intersubject variance that is attributable to each of the 3 free model 
parameters. The 3 variance components combine to create the total observed inter-
individual variance, so that a2+c2+e2=1. The weights θ = (a, c, e) are estimated by com-
paring the covariance matrix implied by the model, Σ(θ), and the sample covariance 
matrix of the observed variables, S, using maximum-likelihood fitting: 
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FML,θ = logΣ(θ) + trace(Σ−1(θ)S) − logS − p, (4) 

where p = 2 is the number of observed variables. Under the null hypothesis that Z is 
multivariate normal (i.e., each of A, C and E are normally distributed), the MLE 
model follows a χ2 distribution with p(p +1) - t degrees of freedom, where t is number 
of model parameters (3 in our case). We used the Broyden-Fletcher-Goldfarb-Shanno 
method [13] to obtain the minimum FML,θ . This algorithm is used for both univariate 

and multivariate data, the only difference being in the computation of the components 
of the covariance matrix S. 

2.3   Illustration of the Covariance Computations on the Manifold 

For the univariate data such as FA, the covariance matrix is defined as: 

Cov(t1,t2) = 1
Np

(t1
i − t1

−
)(t2

i − t2

−
)

i=1

Np

∑ . (5) 

where t
_

 is the mean of a set t i i=1,...,m, t1 and t2 represent each subject of the twin 
pair, t

_

= exp(
1

M
m log t i)

i=1

∑ . 

In the case of the 3-component vector whose elements are the eigenvalues, or the 
full DT, there are either 3 or 6 parameters per voxel, all containing potentially useful 
information for genetic analysis. The covariance matrices can no longer be computed 
using the previous general formula. Here we propose a new multivariate generaliza-
tion of Eq. 5 in the Log-Euclidean formalism (Fig 1). In the Log-Euclidean  
formalism, distances are computed in the tangent space at the origin of the manifold 
of positive-definite, symmetric matrices. This plane is reached via a matrix logarithm. 
Hence, for multivariate measures such as 3x3 full DT, which has been reshaped to 
6x1 matrix for the computational purpose, the covariance equation becomes: 

Cov(T1,T2) = 1

Np
(

i=1

Np

∑ (logT1
i − logT

_

)(logT2
i − logT

_

)T )  (6) 

This distance is illustrated in Fig 1, where each twin’s tensors are represented as 
points on the curved manifold. This distance may be thought of as a bilinear form that 
takes two tensors as arguments and returns their discrepancy. As noted earlier, the  
 

 
Fig. 1. Here we define a distance between two tensors in the tensor manifold, SPD(3), as 
(x1 − μ)T (x2 − μ) , where μ is the mean tensor of all the twins in log-Euclidean space 
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distances in the manifold could be generalized to take into account the naturally oc-
curring (and perhaps genetically mediated) correlations between the tensor component 
i in twin 1 and tensor component j in twin 2. For simplicity, we use the standard met-
ric on Log-Euclidean space, not a statistical metric. 

3   Implementation 

To test our analysis methods, we acquired 3D structural brain MRI and DTI scans 
from 100 subjects: 25 identical (MZ) twin pairs (25.1±1.5SD yrs old) and 25 fraternal 
(DZ) twin pairs (23.1±2.1 yrs) on a 4 Tesla Bruker Medspec MRI scanner with an 
optimized diffusion tensor sequence. Imaging parameters were: 21 axial slices (5 mm 
thick), FOV = 23 cm, TR/TE 6090/91.7 ms, 0.5 mm gap, with a 128x100 acquisition 
matrix. 30 gradient images were collected: three scans with no diffusion sensitization 
(i.e., T2-weighted images) and 27 diffusion-weighted images for which gradient di-
rections were evenly distributed on the hemisphere [7]. The reconstruction matrix was 
128x128, yielding a1.8x1.8 mm2 in-plane resolution.  

3.1   Image Preprocessing and Registration   

3D structural MR images were automatically skull-stripped using the Brain Surface 
Extraction software (BSE) [15] followed by manual editing, and registered via 9-
parameter affine transformation to a high-resolution single-subject brain template 
image, the Colin27 template, using the FLIRT software [8]. 3D structural images 
were registered to a Mean Deformation Template (MDT) using a 3D fluid registration 
[11]. Jacobian matrices were obtained from the resulting deformation fields. 

DTs were computed from the diffusion-weighted images and smoothed using Log-
Euclidean tensor denoising to eliminate singular, negative definite, or rank-deficient 
tensors, using MedINRIA ( http://www.sop.inria.fr/asclepios/software/MedINRIA). 
To eliminate extracerebral tissues, non-brain tissues were manually deleted from one 
of the diagonal component images (Dxx), yielding a binary brain extraction mask 
(cerebellum included). Masked images were registered by 12-parameter transforma-
tion to the corresponding 3D structural images in the standard template space using 
FLIRT [8]. 

Transformation parameters from affine and nonlinear registrations were used to ro-
tationally reorient the tensors at each voxel [1] to ensure that the multidimensional 
tensor orientations remained consistent with the anatomy after image transformation 
[1,18]. We used two separate algorithms to compute the tensor rotations: the finite 
strain (FS) and the preservation of principal direction (PPD) algorithms ([1,18])  

3.2   Statistical Analysis for Twins 

We computed FA, GA and tGA values and the matrix logarithms of the full diffusion 
tensors for each subject. GA is the manifold equivalent of the FA in the Log-
Euclidean framework [2,10]: 
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GA(S) = Trace(log S− < log S > I)2 . (7) 

with < logS >= Trace(logS)

3
. 

We used the hyperbolic tangent of GA, tGA as in [3], to create maps with a compa-
rable range to the FA, i.e., [0,1]. Two sets of voxel-wise covariance matrices for the 
MZ pairs and DZ pairs were computed for all the univariate and multivariate meas-
ures detailed above. For each statistic, we estimated the intraclass correlation, herita-
bility (i.e., variance proportion due to genetic differences among individuals), and 
computed the best-fitting A/C/E model. For intraclass correlations, we computed 
permutation-based p values to assess their significance.  

4   Results and Discussion  

To examine the intra-pair variance for each type of twin, Fig 2 shows intraclass corre-
lation (r) maps between MZ pairs and DZ pairs for FA (Fig 2a and e), GA (Fig 2b and 
f), tGA (Fig 2c, g), and the full multivariate DT (Fig 2d, h).  

Supporting the validity of these measures, the ventricles, corpus callosum and 
some anterior temporal regions show higher resemblance among MZs than among DZ 
twins for all anisotropy measures. Maps based on DT-derived scalars (FA, GA, tGA) 
are relatively noisy, but maps from the full multivariate tensor show higher SNR than 
the univariate analyses. Maps of Falconer’s heritability estimate for FA, GA, tGA, 
and the full DT matrix (Fig 2i-l) show that the fiber characteristics of the corpus cal-
losum and some anterior temporal regions are heritable (as confirmed statistically in 
the p(A/E) maps of Fig 3), consistent with prior studies that only examined FA [5]. 
Heritability maps confirm the correlation patterns seen in the MZ twins, but adjust for 
the correlations in DZ twins.  

Contributions of factor A and C are shown in Fig 3a-h for the scalar measures (FA, 
GA, tGA) and the multivariate full DT. Probability maps based on voxel-wise chi-
squared statistics confirm the A/C/E model’s goodness of fit for all measures. We 
stress that in A/C/E and other structural equation models, a probability of less than 
0.05 indicates that the model is not a good fit, so values of p>0.05 are the values of 
interest (contrary to the usual case in brain maps). 

Importantly, maps based on the full diffusion tensor have higher p-values, which 
means the models are a better fit, and they also appear more spatially coherent. The A 
and C factors are higher too, suggesting that there is less unmodeled residual variance 
(which is lumped into the E term).  

The p-values from SEM are corrected for the multiple comparisons using FDR.  
pFDR values for each of the DT-derived measures are pFDR=0.038 for the FA, 
pFDR=0.0234 for the GA, pFDR=0.038 for the tGA, pFDR=0.0408 for the full DT, 
indicating that the A/C/E model is a good fit after multiple comparisons correction. 

In the r-value maps (Fig 2), maps generated using multivariate data (Fig 3d and h) 
have higher SNR than the univariate data (Fig 3a-c and e-g). Our genetic maps based 
on the full DT afford better fitting of genetic and environmental models than scalar 
indices that discard relevant information. These highly heritable phenotypes should 
facilitate the quest for single-gene polymorphisms that influence the fiber architecture  
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Fig. 2. (a-h) show intraclass correlation maps for FA, GA, tGA and the full DT 

 

Fig. 3. Maps (a-d) show genetic (A) and (e-h) shared environmental (C) proportions of vari-
ance for various DTI-derived measures: FA, GA, tGA and the full DT. The goodness of fit of 
the A/C/E genetic model is confirmed at voxels where p exceeds 0.05 in panels (i-l). In general, 
the full DT shows best effect sizes for fitting a genetic model; the anisotropy indices show a 
moderately good fit.  

of the living brain, as they hone in on measures and specific brain regions where ge-
netic influences are the most powerfully detected.   

The resulting maps show the expected phenotypic patterns of genetic and environ-
mental influences. The ventricles, corpus callosum and anterior temporal regions that 
develop earlier in life showed strong genetic influences even after multiple compari-
sons correction. Multivariate analysis also offered improved SNR.  
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Abstract. In this paper, we present a fast numerical scheme to estimate
Partition Functions (PF) of 3D Ising fields. Our strategy is applied to
the context of the joint detection-estimation of brain activity from func-
tional Magnetic Resonance Imaging (fMRI) data, where the goal is to
automatically recover activated regions and estimate region-dependent
hemodynamic filters. For any region, a specific binary Markov random
field may embody spatial correlation over the hidden states of the vox-
els by modeling whether they are activated or not. To make this spatial
regularization fully adaptive, our approach is first based upon a classical
path-sampling method to approximate a small subset of reference PFs
corresponding to prespecified regions. Then, the proposed extrapolation
method allows us to approximate the PFs associated with the Ising fields
defined over the remaining brain regions. In comparison with preexist-
ing approaches, our method is robust to topological inhomogeneities in
the definition of the reference regions. As a result, it strongly alleviates
the computational burden and makes spatially adaptive regularization
of whole brain fMRI datasets feasible.

1 Introduction

In fMRI, one usually resorts to spatial filtering to enhance the signal-to-noise
ratio at the expense of a loss of spatial resolution. A more challenging approach
works on the unsmoothed data by introducing some prior knowledge on the
sought spatial structures through for instance local interaction models such as
Markov Random Fields (MRFs). Discrete MRFs, which have been used in seg-
mentation and clustering, typically involve a set of hyper-parameters: the smaller
this number the less complex the patterns modelled by the corresponding MRF.
For instance, a single temperature level controls the amount of spatial correlation
in symmetric Ising fields. In the considered fMRI application [1], such Ising fields
are hidden since the activation detection process is modelled a priori through a
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two-class Spatial Mixture Model (SMM). Moreover, their definition varies within
a brain parcellation that segregates the 4D data into Γ functionally homogeneous
non-regular parcels (Γ ≈ 500) in order to take the regional fluctuations of the
Hemodynamic Filter (HF) into account. The Joint Detection-Estimation (JDE)
analysis thus consists of a parcel-based analysis where Γ independent HFs as well
as stimulus-dependent SMMs are identified in order to detect the regions involved
in the paradigm and their underlying dynamics (see Section 2). Therefore, sev-
eral hundreds of temperature levels have to be estimated making a hand-tuning
procedure unrealistic. Moreover, since the optimal setting of such a parameter
may be different when considering different parcels, all parameters cannot be
fixed to the same value. The purpose of this paper is then to provide an un-
supervised scheme for adapting the amount of spatial regularization in several
hundreds of Ising fields with different topological configurations.

For a single Ising field, estimating the temperature hyper-parameter requires
a precise estimation of its Partition Function (PF)1 since the exact PF com-
putation is intractable (see Section 3). This estimation can be achieved using
importance sampling techniques [2,3]. Recently, alternative strategies have been
introduced in the literature [4,5]. In short, they resort to continuous MRFs and
logistic transform to build up an approximation that maps continuous weights to
the binary latent variables in a mixture model. While efficient, these approaches
require the setting of an additional scale parameter that controls the accuracy
of the approximation and whose optimal value may depend on the application.
Moreover, these approximation techniques have been validated only for MRFs
defined over regular grids. Hence, we propose in Section 3 a fast and robust
extrapolation technique to multiple PF estimation. In comparison to preexisting
approaches, our method is robust against grid inhomogeneities and efficient irre-
spective of the parcel configurations. Validation on real fMRI data is perfomed
in Section 4. In Section 5, we discuss the pros and cons of our approach, which
has applications in image processing beyond the fMRI context.

2 Joint Detection-Estimation of Brain Activity in fMRI

The JDE framework proposed [1, 6] relies on a prior parcellation of the brain
into P = (Pγ)γ=1:Γ functionally homogeneous and connected parcels [7]. Every
parcel Pγ comprising voxels (Vj)j=1:J is characterized by a region-based model
of the BOLD signal, which consists in estimating a single HF shape hγ whatever
the number of experimental conditions involved in the paradigm.

In a given parcel Pγ , voxel-dependent and stimulus-induced fluctuations of
the BOLD signal are encoded by spatially varying magnitudes � = (am

j )m=1:M
j=1:J ,

where m stands for the stimulus type index. The fMRI time course measured in
voxel Vj ∈ Pγ then reads: yj =

∑M
m=1 a

m
j xm  hγ + bj , where xm stands for the

mth binary stimuli vector and bj stands for the serially correlated noise compo-
nent [1, 6]. Within the Bayesian framework, prior probability density

1 The normalizing constant that makes the MRF measure of unit mass over its domain.



Robust Extrapolation Scheme for Fast Estimation of 3D Ising Field PF 977

functions (pdfs) are introduced on every sought object i.e., (�,hγ) [1]. Spa-
tial Gaussian mixture models are expressed on � through the introduction of
hidden variables � = (qm

j )m=1:M
j=1:J that encode whether voxel Vj is activating in

response to stimulus m (qm
j = 1) or not (qm

j = 0). Hence, stimulus-dependent
hidden symmetric Ising fields are introduced on these states:

Pr(qm |βm) = Z(βm)−1 exp (βmU(qm)) , (1)

with Z(βm) =
∑

qm∈{0,1}n

exp (βm U(qm))

and U(qm) =
∑

i∼j I(q
m
i = qm

j ) is the global “negative energy” where I(A) = 1
whenever A is true and 0 otherwise. The parameter βm ≥ 0 controls the amount
of spatial correlation between the components of qm according to the grid G,
while Z(βm) defines the partition function. The global prior SMM then reads:

p(� |Θ�) =
∏
m

p(am |θm) =
∏
m

{∑
qm

[∏
j

f(am
j | qm

j ,θm)
]
Pr(qm |βm)

}
where f(am

j | qm
j = i) ∼ N (μi,m, vi,m). Parameters μi,m and vi,m define the prior

mean and variance of class i = 0, 1, respectively for the stimulus type m. Let the
set θm gather mixture parameters {μ0,m, μ1,m, v0,m, v1,m, βm}. Samples of the
full posterior pdf p(hγ ,�,�,Θ |�) are simulated using a Gibbs sampler algorithm
and posterior mean estimates are then computed from these samples. Here, we
specifically deal with the sampling of parameter βm, which is achieved using a
symmetric random walk Metropolis-Hastings step: at iteration k, a candidate
β

(k+1/2)
m ∼ N (β(k)

m , σ2
ε ) is generated. It is accepted (i.e., β(k+1)

m = β
(k+1/2)
m ) with

probability: α(β(k)
m → β

(k+1/2)
m ) = min(1, Ak,k+1/2), where the acceptation ratio

Ak,k+1/2 follows from Eq. (1):

Ak,k+1/2 =
p(β(k+1/2)

m |q(k)
m )

p(β(k)
m |q(k)

m )
=

p(q(k)
m |β(k+1/2)

m )p(β(k+1/2)
m )

p(q(k)
m |β(k)

m )p(β(k)
m )

=
Z(β(k)

m )

Z(β(k+1/2)
m )

exp
(
(β(k+1/2)

m − β(k)
m )U(q(k)

m )
)
,

using Bayes’ rule and considering a uniform prior for βm. The βm sampling step
then requires to estimate ratios of Z(.) or log-PF differences for all Pγ parcels
prior to exploring the full posterior pdf. This motivates the need for developing
fast approximation techniques of these constants.

3 Ising Field PF Estimation

3.1 Single PF Estimation

Exact evaluation of Z(·) in a reasonable amount of time is impossible except on
tiny grids. Robust and fast estimation of Z(β) is thus a key issue for numerous
3D imaging problems involving Ising models and more generally discrete MRFs.
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Path-sampling is an extension of importance sampling for estimating ratios
of normalizing constants, by considering series of easy-to-sample unormalized
intermediate densities. Such a strategy was proven efficient to tabulate the PF
for the Ising case; see [8] for details. Time dedicated to a single PF estimation
using this method is acceptable but becomes penalizing when numerous PFs
need to be estimated as required when dealing with several hundreds of grids of
variable size and shape. Since this typical situation occurs in our fMRI applica-
tion, a fast compromise consists in resorting to path-sampling to get log-scale
estimates (log ẐGp(β))p=1:P for a small subset of reference grids (Gp)p=1:P and
then in using extrapolation formulas to obtain log Z̃T (β) for the large remaining
set of brain parcels to be analyzed, referenced here by a test grid T .

3.2 Multiple PF Estimation

In [8], the authors address linear regression on (log ẐGp(β))p=1:P as a function of
the number of cliques in the grids (Gp)p=1:P . Estimates log Z̃T (β) are then linearly
computed from the regression coefficients and the number of cliques in T . A bi-
linear extension of this technique, which also accounts for the number of sites in
the grid, can be thought of to estimate log-PFs in small and non-regular grids2

such as those appearing in our fMRI application. However, it can be shown that
the accuracy of regression-based techniques strongly depends on the homogeneity
and the number of reference grids: the more inhomogeneous the reference set, the
larger the approximation error. These reasons motivate the development of more
reliable approaches regarding the reference PFs.

3.3 Proposed PF Extrapolation Technique

The appropriate reference grid is selected by means of a similarity measure
and the accuracy of the approximation is controlled by an error criterion. Our
algorithm proceeds in two steps: 1) Akin to [8], reference PFs ẐGp(βk) are esti-
mated using path-sampling. The topological configurations of the reference grids
(Gp)p=1:P can now be inhomogeneous to cover a maximum of grid configurations
that may occur in further PF estimations. 2) For any test grid T , logZT is ap-
proximated using a single reference log-PF estimate out of (log ẐTp(β))p=1:P .

Let rT = σn,T /μn,T be a measure of grid homogeneity where μn,T and σn,T
respectively provide the average number of neighbors per site over T and the
corresponding standard deviation. The smaller rT the more regular T . Using
this criterion, our similarity measure is defined by LT (Gp) = ‖rT − rGp‖2, which
helps us choose the closest reference grid Gref to T in combination with the
approximation error criterion AT (β,Gp) given by:

AT (β,Gp) = ‖ logZT (β) − log Z̃T (β,Gp)‖2/‖ logZT (β)‖2 (2)

where log Z̃T (β,Gp) =
(
cT (log ẐGp(β) − log 2)/cGp + log 2

)
. (3)

2 Here, non-regular grids make reference to regular lattices combined with non-straight
boundaries.
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Fig. 1. The blue curves correspond to path-sampling estimates of the reference log-PFs
log ẐGp(βk), p = 1 : 4. The red curve defines the ground truth (path-sampled log ẐT ).
Our extrapolation method provides the crossed-line (×–) log-PF estimate log Z̃T .

Here, (cT , cGp) and (sT , sGp) are the number of cliques and sites of the Ising
fields defined over T and Gp. Z̃T (β,Gp) corresponds to the ZT (β) estimate com-
puted using Gp. Our extrapolation formula (3) is built up according to two
principles directly derived from the PF definition: i.) an unbiased asymptotic
approximation error (limβ→+∞AT (β,Gp) = 0) and ii.) an exact approximation
of the first derivative of logZT (β) for β → 0+. Interestingly, our extrapolation
technique makes also possible the analytical computation of the approximation
error A(β,Gp) at β = 0, a value for which the error is maximal when LT (Gp) is
sufficiently low. This property were empirically verified on more than 300 fields
simulated over regular and non-regular grids. The reference grid is then exhib-
ited using a min-max principle, which consists in minimizing the error A(0,Gp)
wrt all reference grids (Gp)p=1:P when the homogeneity of T and Gp is similar:

Gref = arg min
(Gp)p=1:P

AT (0,Gp) subject to LT (Gp) ≤ ε (4)

with AT (0,Gp)
Δ= ‖(sT − 1) − cT (sGp − 1)/cGp‖2/s2

T (5)

where ε is positive threshold fixed by hand3. In practice, we first compute LT (Gp)
and AT (0,Gp), ∀Gp and only keep the subset S of reference grids for which the
constraint LT (Gp) ≤ ε is fulfilled and AT (0,Gp) is below another threshold (typ-
ically 4%). If S is empty, logZT (β) is estimated using path-sampling. Otherwise,
in a second stage, Gref is exhibited from S as the minimizer of AT (0,S) and the
log-PF estimate in T is thus given by log Z̃T (β,Gref) according to Eq. (3).

Our method is illustrated in Fig. 1 with P = 4: by comparing the distance
between the blue and red curves at β = 0, it appears that log Ẑref is the closest
curve above the path-sampled red curve log ẐT considered here as the ground
truth. As shown in Fig. 1, our extrapolation log Z̃T is superimposed on log ẐT .

3 We used ε = 0.02 in our experiments.



980 L. Risser et al.

4 Results

4.1 Simulated Ising Fields

For validation purpose, we compared log-PF estimates computed using our ex-
trapolation technique with the linear and bilinear alternatives proposed in [8].
Here, the ground truth was given by the PF estimates computed using path-
sampling. Reference and test grids are either regular or irregular. Each subset of
reference or test grids contains at least 30 grids whose number of voxels varied
between 53 and 163. Irregular grids were stochastically generated as a function
of a regularization level α taking its values between 0.2 (highly irregular) and
0.5 (almost regular). All tests were performed on 3D Ising fields defined using a
6-connectivity system. Percentages of approximation errors are shown in Table 1.

Table 1. Mean maximal approximation errors (given in %) over regular and irregular
test grids reported for the linear, bilinear and extrapolation techniques

Scheme / Reference grid
Test grid E=Extrapolation, B=bilinear, L=linear / R=regular, I=irregular

E / I & R B / I B / R L / I L / R

re
gu

la
r small 0.639 3.84 66.3 93.0 2728

medium 2.77 0.991 2.17 6.37 49.5
large 3.68 1.31 2.48 7.18 19.4

ir
re

gu
la

r α = 0.2 0.375 1.29 94.6 83.9 3270
α = 0.3 0.281 0.784 2.91 18.3 219
α = 0.4 0.621 0.264 3.23 8.28 34.8
α = 0.5 0.693 1.27 1.96 1.52 34.2

Thebilinear andextrapolationmethods clearly outperformthe linear one.More-
over, as shown in col. (B/ R) and rows (regular small and irregular, α = 0.2), the
bilinear method provides inaccurate estimates when there are strong topological
differences between the reference and test grids. The regular reference grids are
actually composed of large grids with cubic, planar and curvilinar shapes whereas
those lying in (regular small) and (irregular α = 0.2) are very small and highly
sparse. In this case, our extrapolation method detects such differences and still
succeeds in providing reliable log-PF estimates. While the linear/bilinear meth-
ods take all reference grids into consideration to derive a log-PF approximation,
our approach computes a log-PF estimate using the most appropriate reference
grid. Hence, the larger the set of reference grids the more accurate our extrapo-
lation method becomes. This explains why the reference subsets are successfully
mixed in the proposed approach, as shown in the first column of Table 1. Interest-
ingly, when both the reference and test grids are non-regular the bilinear method
may provide a competitive alternative to our extrapolation technique.

4.2 Real fMRI Dataset

Our extrapolation algorithm was applied to the spatially adaptative regulariza-
tion of real fMRI data recorded during an event-related experiment designed to
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IMM β = 0.8 SSSM USMM

Fig. 2. From left to right: comparison of the IMM, SSMM and USMM models wrt
the estimated normalized constrat maps: left vs. right auditory clicks: âLAC − âRAC

β̂LAC β̂RAC

Fig. 3. Left: β̂LAC parcel-dependent map computed for the LAC condition. Right:
β̂RAC parcel-dependent map computed for the RAC condition.

quickly map main sensory cortices (auditory, visual, motor) as well as higher
cognitive functions (reading, computation). Acquisition consisted of a single ses-
sion (125 scans, TR=2.4 s, 64x64x32 volumes). The paradigm comprised sixty
stimuli, declined in 10 experimental conditions.

We compare three versions of the JDE procedure: Independent Mixture Mod-
els (IMM), Supervised SMM (SSMM, β = 0.8) and unsupervised SMM (USMM),
in order to assess the impact of the adaptive spatial correlation model. Fig. 2
shows normalized contrast maps (âLAC − âRAC) of auditory induced left versus
right clicks (LAC vs RAS). As expected, the activations lie in the contralateral
right motor cortex. Here, only USMM is more sensitive illustrating therefore
the advantage of an adaptive spatial correlation model. Indeed, estimated β̂PM

with USMM for the left auditory click was 0.56 so that the supervised set-
ting of SSMM with β = 0.8 leads to too much correlation and less sensitive
results.

Interestingly, Fig. 3 depicts the parcel-dependent maps of the β̂PM estimates
for the RAC and LAC experimental conditions. The gain in sensitivity in the
USMM contrast map (âLAC − âRAC) clearly results from a difference in the
amount of spatial regularization introduced between the two conditions involved
in the contrast. A lower regularization level is estimated (β̂LAC ≈ 0.5 vs. β̂RAC ≈
0.75) in parcels located in the right motor cortex since the BOLD signal is
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stronger for the LAC condition than for the RAC one in these regions. Hence,
the noise induced by the RAC condition is smoothed using a large amount of
spatial regularization.

On these real fMRI data, our extrapolation scheme provides log-PFs estimate
for a brain parcellation (Pγ)γ=1:300 and (Gp)p=1:50 reference grids. In terms of
computational complexity, these log-PF estimates were computed in about ten
seconds, a very appealing approach in comparison to path-sampling, which re-
quires about one hour for estimating all log-PF estimates for a negligable gain in
accuracy (less than 3%). Finally, we did not observe any significant difference be-
tween the USSM effect maps derived using path sampling and our extrapolation
scheme (results not shown).

5 Discussion and Conclusion

In order to make spatially adaptive regularization feasible, the considered joint
detection-estimation of brain activity from unsmoothed fMRI data requires a
reliable and fast estimation of 3D Ising field partition function. To this end,
an extrapolation algorithm that exploits pre-computed path-sampled log-PF
estimates on reference grids has been proposed. The approximation error is
controlled so that the approach defaults to the robust path-sampled PF esti-
mates if no suitable reference candidate is found. Obviously, efficiency is condi-
tionned by the number of reference grids, and more importantly by their similar-
ity to the topologies encountered in the conducted analysis. In practice, about
ten additional problem-specific reference grids are enough to provide good PF
estimates.

Using our fast extrapolation technique, the computational burden remains
acceptable since whole brain data analysis at the subject level takes about 1h30.
The application to real fMRI data showed a gain in statistical sensitivity for
the unsupervised version. In order to be properly validated, these promising
within-subject results have to be confirmed in a group-level analysis.
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Abstract. Inter-subject parcellation of functional Magnetic Resonance
Imaging (fMRI) data based on a standard General Linear Model (GLM)
and spectral clustering was recently proposed as a means to alleviate the
issues associated with spatial normalization in fMRI. However, for all its
appeal, a GLM-based parcellation approach introduces its own biases,
in the form of a priori knowledge about the shape of Hemodynamic
Response Function (HRF) and task-related signal changes, or about the
subject behaviour during the task.

In this paper, we introduce a data-driven version of the spectral clus-
tering parcellation, based on Independent Component Analysis (ICA)
and Partial Least Squares (PLS) instead of the GLM. First, a number
of independent components are automatically selected. Seed voxels are
then obtained from the associated ICA maps and we compute the PLS
latent variables between the fMRI signal of the seed voxels (which cov-
ers regional variations of the HRF) and the principal components of the
signal across all voxels. Finally, we parcellate all subjects data with a
spectral clustering of the PLS latent variables.

We present results of the application of the proposed method on both
single-subject and multi-subject fMRI datasets. Preliminary experimen-
tal results, evaluated with intra-parcel variance of GLM t-values and PLS
derived t-values, indicate that this data-driven approach offers improve-
ment in terms of parcellation accuracy over GLM based techniques.

1 Introduction

Inter-subject parcellation based on a standard General Linear Model (GLM) and
spectral clustering was recently proposed as a means to alleviate the issues asso-
ciated with spatial normalization in the analysis functional Magnetic Resonance
Imaging (fMRI) datasets: lack of true anatomical correspondence, inaccuracy of
the normalization process (see [1] for an in-depth overview), etc. In a parcellation
framework, voxels are first clustered into functionally homogeneous regions or
parcels. Then, the parcellations are then homogenised across subjects, so that
statistics can be carried out at the parcel level rather than at the voxel level.
Here we focus on the optimization of the first step of the parcellation scheme.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 984–991, 2009.
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We present a data-driven, model-free, parcellation technique, based on Inde-
pendent Component Analysis (ICA) and Partial Least Squares (PLS, [2]) instead
of a GLM, so as to use more of the information contained within the fMRI time
series. First, a number of independent components are automatically selected.
Seed voxels are then obtained from the associated ICA maps and we compute
the PLS latent variables between the fMRI signal of the seed voxels (which cov-
ers regional variations of the stimuli related BOLD responses) and the principal
components of the signal across all voxels. Finally, we parcellate all subjects data
with a spectral clustering of the PLS latent variables. We also introduce PLS
t-values as an alternative way to validate parcellation results.

We detail our approach in the following Section 2. Preliminary results are
given in Section 3, where we also compare them to GLM-based parcellation.

2 Materials and Methods

2.1 Datasets and Preprocessing

We applied our method to two functional datasets: a single-subject fMRI exper-
iment with a standard finger tapping task and a multi-subject experiment where
volunteers were presented with hand gestures or face expressions [3].

Single-subject data were acquired on a Philips Intera 1.5T with a TR of 3s
and a sequential finger tapping task auditorily paced with a metronome. The
auditory signals were given every 0.6 seconds. The digit order of the tapping was
1 - 3 - 2 - 4, repeated 6 times in each period, with a 14.4 second rest between
periods. The period of one on-and-off block was then 28.8 seconds.

Multi-subject data, our main concern in this paper, were acquired from 25
subjects viewing angry gestures or expressions. Scanning was performed on a
Philips Intera 1.5T, with TR=3s. During the scan, four types of visual stimuli
are given to the subjects, which are angry hand gestures, neural hand gestures,
angry facial expression and neural facial expression.

Both datasets were preprocessed with FSL for slice-timing, motion correction
and registration [4,5].

2.2 Independent Components Selection

For the multi-subject experiment, we used FSL to decompose the input fMRI
data into independent components (ICs). We obtained between 30 and 60 ICs per
subject, for a total of 1203 ICs. Here we propose to use a hierarchical clustering
approach, similar in spirit to Partner Matching [6] as a means to find the ICs
that best capture the Blood Oxygen Level Dependent Haemodynamic (BOLD)
response to the stimuli. This method is based on the assumption that very few
of the 1203 ICs contain information about the stimuli-related BOLD responses.
Consequently, the task-related ICs should be more similar with each other than
with the other ICs since they share the same source. We aim to group those ICs
that correspond to the response to the same task features in different subjects
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together into one cluster. The other ICs which do not contain relevant (i.e. task-
related) information should be grouped inside another cluster.

We take those constraints into account when design the similarity function to
be used in our hierarchical clustering.

Let Na and Nb be the number of ICs for subjects A and B respectively, with
ICA

i and ICB
j the ith IC of subject A and jth IC of subject B. t = 1, . . . , T is

the time index. Their correlation coefficients is given by:

ρ(ICA
i , IC

B
j ) =

∑T
t=1(IC

A
i (t) − ICA

i )(ICB
i (t) − ICB

i )√∑T
t=1(IC

A
i (t) − ICA

i )2
√∑T

t=1(IC
B
i (t) − ICB

i )2
, (1)

The normalized correlation coefficients ρnorm is:

ρnorm(ICA
i , IC

B
j ) =

ρ(ICA
i , IC

B
j ) − mean(ρ(ICA

i , IC
B
j )|j=1,2,...,Nb

)

std(ρ(ICA
i , IC

B
j )|j=1,2,...,Nb

)
(2)

Since the aim of the clustering is to put similar ICs from different subjects into
one cluster, all the ICs of the same cluster should come from different subjects,
therefore we need to set the similarity between ICs of the same subject to 0. The
similarity between two ICs is finally defined as

S(ICA
i , IC

B
j ) =

{
0 if A = B

min(ρnorm(ICA
i , IC

B
j ), ρnorm(ICB

j , IC
A
i )) other wise .

(3)

In the case of the single-subject data, the ICs representing BOLD signals could
not be selected by comparing ICs across subjects as above. Therefore, we man-
ually picked those ICs that best matches the canonical HRF-convoluted task
design from the 34 ICs produced by FSL.

2.3 Seed Selection

In order to calculate the PLS latent variables that best capture the BOLD re-
sponse, a number of seeds representing different active regions should be selected.
For instance, in a GLM-based parcellation approach, we could select as seeds the
voxels with the largest t-values. Here, we pick them on the basis of the ICA re-
sults.

Within each IC map [5], the first seed is chosen as the voxel with the largest
value. The second seed is then chosen, amongst the voxels at least R voxels
away from the first seed voxel, as the voxel with the largest IC map value. The
iterative process is repeated until all the seeds have been selected.

In the multi-subject case, two IC maps were used. We picked R = 6 voxels
and obtained Nseed = 15 seeds for each map. In the single-subject data, 30 seeds
were selected from each IC map with R = 6.

2.4 PCA/PLS Feature Space for Parcellation

Let XV ×T = xij denote the data matrix, where each row corresponds to the
fMRI signal of a given voxel. Then, we propose to denoise the signal with PCA.
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We first center the signal at each voxel by substracting its mean, before decom-
posing XV ×T into PPCA and TPCA using Principal Component Analysis (PCA)
as XV ×T = PPCAT′

PCA [7,8]. T′
PCA is the transpose of the PCA score matrix of

X (the matrix whose columns are the Principal Components (PCs) of the fMRI
data), and PPCA is the PCA loading matrix. Ranking the PCs according to the
variance they cover, the first few. PCs usually have exceptionally high variances.
And the last PCs are slow-variant artefacts. These PCs are considered as noise
and removed.

Let DT×Nseed
represent the fMRI signals of the seed voxels, where each column

correspond to the fMRI signal in a given seed. We then use the PCs in matrix
TPCA for the prediction of D with Partial Least Square (PLS). The original de-
sign of PLS is to predict D with the components decomposed from TPCA and D as
regressor. These components, the latent variables, should contain the information
from both TPCA and D. Here PLS is used to calculate the time series components
that represent the individual specific functional activity signals. We decompose
TPCA into the product of TPLS and P′

PLS with T′
PLSTPLS = I. D is predicted as

D̂ = TPLSBC′, where the columns of TPLS, ti, i = 1, 2, ...,K, are the latent vec-
tors of size T ×1. B is a diagonal matrix with the “regression weights” as diagonal
elements and C is the “weight matrix” of the dependent variables [9].

Given TPCA and D, the latent vectors could be chosen in a lot of different ways.
The canonical way is to find the latent vectors that maximize the covariance be-
tween the columns of TPLS and D. Specifically, the first latent vector is calculated
as t1 = TPCAw1 and u1 = Dc1 with the constrains that t′1t1 = 1, w′

1w1 = 1 and
t′1u1 be maximal. Then first component is subtracted from TPCA and D, and the
rest latent variables are calculated iteratively as the above until TPCA becomes a
null matrix. The first PLS latent variables are the signals of interest. Let X0 be
derived from X after the signal variance has been revmoed: x0 = x/||x||, where
x and x0 are the row vectors of X and X0. We use the covariances between fMRI
signals and latent variables, ri = X0ti, as feature space for parcellation.

2.5 Parcellation Method

Following Thirion et al.[1], we chose spectral clustering for parcellation. This
method represents the relationships between voxels as a graph whose vertices
correspond to the voxels with the functional distance between voxels (GLM-
based in their approach) associated to the edges. The complete distance matrix
ΔG between all pairs of voxels is obtained by integrating the local distances
along the paths in the graph. Singular Value Decomposition (SVD) is applied to
the centered square distance matrix ΔG. Finally, they apply C-means clustering
to the singular vectors with largest singular values. Please see [1] for details.

Here, rather than using GLM to define local distances, we use our ri’s:

d(v, w) = ||r(v) − r(w)|| =
√

(r(v) − r(w))(r(v) − r(w))′, (4)

where v and w are two neighbouring voxels and r(v) = [r1(v) r2(v))... rK(v)].
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3 Results

3.1 Intra-parcel Functional Homogeneity

As in [1], we use the intra-parcel functional variance to assess the quality of
the parcellation. However, instead of using GLM parameters to represent the
functional information, we use GLM t-values and PLS t-values (described below)
for each regressor as functional features. Let Nr be the number of regressors and
f i ∈ RNr×1 be the vector of t-values for voxel i. For any parcel p, the functional
variance of p, v(p), is:

v(p) =

√√√√ Nr∑
k=1

(std(f i
k))2, where, f i = [f i

1 f i
2 . . . f i

Nr]
′ and i ∈ p (5)

The distribution of v(p) across all parcels is used to compare the accuracy of the
parcellations.

PLS t-values. Given a design matrix Y ∈ RT×Nr, where yk ∈ RT×1 is the
kth column of Y, instead of using D, the regressor yk is used to calculate latent
variables as in section 2.4. If rk is the covariance between the fMRI time series
and the first latent variable, then,

t =
r
√
T − 2

1 − r2 (6)

has a t-distribution with T−2 degrees of freedom. The null hypothesis of this test
is that the signal of that voxel is not covariant with the PLS components. Thus,
we can generate statistical maps to represent the significance of the covariance
between the signals in each voxel and the first latent variable calculated from
data and the kth regressor of the design matrix.

3.2 Results on Single-Subject Data

As mentioned above in section 2.2, our automatic IC selection approach cannot
be applied to single subject data. Here, we manually selected the IC whose
time course best matches the experiment design, to be used in the seed selection
process. The fMRI signals of the whole brain are decomposed into PCs. It should
be noted that the PCs covering the largest variance in X are not the most
interesting signals in the fMRI dataset. Indeed it appears that the respiratory,
cardiac or instrumental artifacts may have a larger influence on the BOLD signal
than the task. Such noise-related PCs are removed before the PLS step.

In Fig. 1, the first two latent variables are shown. The shape of the first latent
variable matches the experiment design. It can be considered as a subject-specific
response model, which will allow a better detection of task-related activity. Based
on the latent variables, the whole brain is parcellated into 600 parcels using a
spectral clustering as explained in section 2.5. The intra-parcel variances of GLM
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Fig. 1. First two PLS components
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Fig. 2. Comparison of Parcellation results from Spatial Clustering (SC), Spectral Clus-
tering with GLM (GLM), Spectral Clustering with 1 PLS latent variable (PLS1), 2 PLS
latent variable (PLS2) and 3 PLS latent variable (PLS3)
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Fig. 3. Comparison of functional intra-parcel homogeneity

t-values and PLS t-values are used to compare parcellation results based on GLM
and PLS. Here, the bars illustrate the mean, the first and the third quartile of
the t-values variance of 600 parcels from each method. From Fig. 2, we can
see that with both functional measures, spectral clustering with PLS increases
the intra-parcel functional homogeneity. One latent variable is optimal for the
parcellation of this dataset.

3.3 Results on Multiple-Subject Data

Using the similarity matrix described in section 2.3 and Ward’s linkage, we
grouped all the ICs into three clusters. The ICs in cluster 1 match the first and
second task regressors. The ICs in cluster 2 match the third and fourth task
regressor. Meanwhile, in feature space, these two clusters keep large distances
from the rest of the ICs. There are 20 ICs in cluster 1 from 19 subjects and 20
ICs in cluster 2 from 20 subjects. For each subject we use the ICs from these for
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Fig. 4. Parcels respond to stimuli. Parcels with average GLM t-values larger than 2
are shown. The first row shows activation. The second row shows intra-parcel variance.
Three columns show the results from three parcellation methods.

Fig. 5. Parcels respond to stimuli. Parcels with average PLS t-values larger than 3 are
shown.

sampling seed voxels. If a subject doesn’t have an IC in cluster 1 or 2, we use
the ICs that are closest to those clusters to sample the seeds.

All the datasets are then parcellated into 600 parcels. The functional variances
of GLM parcellation and ICA-PLS parcellation on 25 subjects are compared in
Fig. 3. Subjects are split across the horizontal axis. The parcels respond to the
stimuli of angry hand gestures are shown in Fig. 4. The activation and intra-
parcel functional variance are evaluated with GLM t-values. Similarly, in Fig. 5,
the parcellation results are evaluated with PLS t-values.

4 Conclusion and Future Work

We presented a data driven method for parcellation of fMRI data. Preliminary
experimental results indicate that such approach adapts to the variability of the
BOLD response across subjects and increase the accuracy of the parcellation.
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The cost of this improvement is the complexity of parcellation. Future work will
tackle the homogenisation of those parcellations across different subjects.

Acknowledgments. This research is funded by the European Commission FP6
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Abstract. In neuroimaging cluster-based inference has generally been
found to be more powerful than voxel-wise inference [1]. However stan-
dard cluster-based methods assume stationarity (constant smoothness),
while under nonstationarity clusters are larger in smooth regions just by
chance, making false positive risk spatially variant. Hayasaka et al. [2]
proposed a Random Field Theory (RFT) based nonstationarity adjust-
ment for cluster inference and validated the method in terms of control-
ling the overall family-wise false positive rate. The RFT-based methods,
however, have never been directly assessed in terms of homogeneity of
local false positive risk. In this work we propose a new cluster size adjust-
ment that accounts for local smoothness, based on local empirical cluster
size distributions and a two-pass permutation method. We also propose
a new approach to measure homogeneity of local false positive risk, and
use this method to compare the RFT-based and our new empirical ad-
justment methods. We apply these techniques to both cluster-based and
a related inference, threshold-free cluster enhancement (TFCE). Using
simulated and real data we confirm the expected heterogeneity in false
positive risk with unadjusted cluster inference but find that RFT-based
adjustment does not fully eliminate heterogeneity; we also observe that
our proposed empirical adjustment dramatically increases the homogene-
ity and TFCE inference is generally quite robust to nonstationarity.

1 Introduction

When detecting changes in functional or structural brain image data, it is nec-
essary to have powerful inference methods that offer precise control of false pos-
itive risk. To assess the evidence of a change at each voxel of a statistic image,
the two most common approaches are voxel- and cluster-based inferences. While
voxel-wise methods use a single threshold to classify signals as real, cluster-based
inference defines clusters as contiguous voxels whose intensity exceeds a prede-
fined cluster-forming threshold uc, and then detects signals based on the spatial
extent of a cluster. Cluster-based inference is known to have a higher sensitivity
compared to voxel-intensity-based tests when the signal is spatially extended.

Cluster-size tests have been widely used under different implementations [1,3],
including simulation-based tests [4,5], random field theory (RFT-based) tests [6],
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and permutation tests [7,8]. However most of these proceedures are based on
a stationarity assumption, that the spatial autocorrelation function is shift-
invariant. When stationarity assumption is violated, the sensitivity and speci-
ficity of the test depend on local smoothness of the image, which justifies the
use of adjusted cluster size which measures cluster size relative to local smooth-
ness [6,2]. Independent of the stationarity issue, cluster-based inference also is
limited by the arbitrariness of its important uc parameter and the amount of
pre-smoothing. To address these problems, threshold-free cluster enhancement
(TFCE) was introduced [9], which in essence integrates out the uc parameter
while produces an image of local cluster-like evidence of a signal and was shown
to generally have better detection power while being less sensitive to the amount
of smoothing used [9,10].

In this work we propose a new adjustment for nonstationarity based on the
local empirical distribution of cluster size in a two-pass permutation method. We
evaluate this new approach, in the context of both standard cluster-based and
TFCE inferences. We compare the impact of using no adjustment, RFT-based
adjustment, and our proposed empirical adjustment under various simulated and
real data with spatially-varying smoothness.

2 Method

A fitted general linear model at a voxel i has residuals

ε̂i = Yi −Xβ̂i (1)

where Yi is the observed intensity (M×1), β̂v is the parameter vector (P×1), X
is the design matrix (M×P), and ε̂v is the residual error (M×1), the estimated
residuals of the linear model fit (ε̂) can be used to yield a smoothness estimation.
This estimator explains the spatial correlation structure of the SPM (statistical
parameter map) by assuming that it can be modeled as being due to a convo-
lution of the signal with a Gaussian filter with an unknown, but determinable,
width (σ), which is used to estimate the effective resolution of the data.

2.1 Kiebel et al.’s Method

Using the RFT concepts [11], an unbiased estimator for the covariance of the
partial derivatives (at direction j) at voxel i in a D-dimensional Gaussian random
field is calculated as

λi,j =
ν − 2
ν − 1

· 1
M

M∑
t=1

(
∂Sit

∂xj

)2

(2)

where S is the standardized error, ν is the number of degrees of freedom, and M
is the number of observations (time points or subjects), which yields a voxel-wise
estimate of smoothness as

RESELi =
D∏

j=1

(8 · ln(2))1/2 σi,j (3)
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where σi,j = (2λi,j)−1/2, and RESELi is the volume of a resolution element
(resel) at voxel i (note that 1/RESEL is resels per voxel or RPV). As an al-
ternative, a more robust estimate can be defined using just the control group
observations or using all the observations after excluding any outlier (in terms
of their smoothness estimates) observations.

2.2 Jenkinson et al.’s Method

As the smoothness extent decreases Kiebel’s estimator becomes increasingly in-
accurate. An alternative estimate can use the autocorrelation of the standard
error at voxel i (S2

i ) and its cross-correlation with neighboring voxels (i.e., SSi,j

for the next voxel in direction j) with a Gaussian autocorrelation function as-
sumption [12,13]. A voxel-wise smoothness can be estimated using the σ from

σ2
i,j =

(
4 · ln

(
S2

i

SSi,j

))−1

(4)

with the rest of the operation as before (which can also result in a robust estimate
as in Kiebel’s).

2.3 Empirical Cluster-Size Normalization

In FSL’s randomise analysis1, after NP permutations, let Nv ≤ NP be the
number of permutations that clusters with sizes S1(v), S2(v), ... SNv(v) hit the
voxel v. The empirical cluster size per voxel (ECSPV) for this voxel is calculated
as

ECSPV (v) =

(∑Nv

i=1 Si(v)E

Nv

)1/E

(5)

where E is the cluster size histogram’s normalization parameter. Having ECSPV
from the first run, the adjustment in the second run can either be voxel-wise

Svn
C =

∑
v∈C

1
ECSPV (v)

(6)

or cluster-wise

Scn
C =

SC∑
v∈C ECSPV (v)

. (7)

Cluster-based inference using these normalized statistics (Svn
C or Scn

C ) is ex-
pected to be adjusted for nonstationarity (estimating the smoothness/roughness
of each area by using the cluster sizes hitting each voxel at different permutations
under the null hypothesis).
1 see http://www.fmrib.ox.ac.uk/fsl/randomise/
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2.4 Empirical TFCE Normalization

TFCE is a tool developed based on the idea of cluster size accumulation on
a range of possible cluster-forming thresholds [9]. In order to adjust the TFCE
statistic for nonstationarity, either its corresponding cluster sizes can be adjusted
or TFCE scores at each voxel can be empirically normalized by

ETPV (v) =
∑Nv

i=1 TFCE(v)
Nv

(8)

TFCEN(v) =
TFCE(v)
ETPV (v)

where Nv is the number of permutations a voxel has a nonzero TFCE score and
ETPV is the empirical TFCE per voxel.

2.5 Nonstationarity Assessment

Using null data, spatial variation in cluster-related inference’s false positive rate
(P-value) is used to assess different methods’ performance in correction for non-
stationarity. In case of using a stationary null data for a statistical inference,
the output P-value volume should follow a uniform distribution (U(0, 1) with
the mean of 0.5) at each voxel. Since − ln P-values are easier to visualize, note
that if X has a uniform distribution, − ln(X) has an exponential distribution
with parameter λ = 1, so E[− ln(X)] = 1

λ = 1, and V ar[− ln(X)] = 1
λ2 = 1, and

hence E[− log10(X)] = 1
ln(10) = 0.4343, and V ar[− log10(X)] = 0.4343.

Thus, the deviation of an inference from this expected distribution can be a
good indicator of the existence of nonstationarity in the image. Three statistical
indicators (mean, standard deviation or SD, and coefficient of variation or CV)
are employed to assess this deviation for each adjustment technique. To imple-
ment this idea, a group of permutations in the first run result in a distribution of
cluster-related statistic. Then, for the same group of permutations in the second
run, the resulting cluster-related statistic image is converted to a P-value volume
with respect to the distribution from the first run. This P-value volume is then
converted to − log10(P ) volume. Averaging these -log10(P ) volumes across all
the permutations results in a single -log10(P ) volume whose mean, SD and CV
indicates the extent of nonstationarity in the data. Note that, as a result of the
averaging of − log10(P) images, the mean can be compared with the expected
mean (0.4343), however the SD should be smaller than the expected SD (0.4343).

2.6 Data

To assess different methods’ performance, both simulated and real data are
tested. For the stationary null data simulation, two groups of 150×150×150
Gaussian noise (∼ N(0, 1)) images (with 20 images in each group) are generated
and smoothed with a Gaussian smoothing kernel (with σ=2, 3, 4 and 5 voxels).
To avoid the nonstationarity at the edge, the outer 30 voxels are excluded. To
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simulate the nonstationary data, two groups of 150×150×150 white noise im-
ages (with 20 images in each group) are first smoothed with three different 3D
Gaussian kernels (representing the low, medium, and high smoothness extents).
These images are combined in a way that an outer layer smoothed with σ1 en-
closes a middle layer smoothed with σ2, which encircles a core smoothed with σ3
(referred to as σ1σ2σ3). The center core is 30×30×30 voxels, centered within a
60×60×60 voxel middle layer, which itself was centered in a 90×90×90 volume.
The combined image is smoothed again with a 3D Gaussian filter with σ =1.5
voxels (to eliminate discontinuities at the borders), and just as in the stationary
case, to avoid the nonstationarity at the edges, outer 30 voxel are excluded.

To assess each method’s performance on real data, null fMRI and VBM
datasets are also fed into the analysis. The fMRI dataset is a pain study with 16
healthy subjects. The first-level analysis of the data using FSL includes motion
correction and spatial smoothing (FWHM (full width half maximum) = 2, 4,
5, 7 and 10mm) prior to temporal model fitting (including autocorrelation cor-
rection), and a two-step registration to the MNI152 standard brain space. The
null VBM dataset includes structural gray matter images of 35 healthy control
subjects smoothed with different Gaussian kernel sizes (σ =2, 3, 4 and 5mm).
Dividing these subjects into two groups results in a null data analysis (with
no expected difference). The final assessment of the methods’ performance is on
real VBM data with three groups of subjects: 46 controls, 50 Alzheimer’s disease
(AD) and 57 mild cognitive impairment (MCI).

3 Results

Fig. 1 illustrates statistical indicators (mean, SD and CV of − log10(P ) volumes)
of the previously mentioned analyses on both simulated and real data. Kiebel’s
and Jenkinson’s method have very similar results, which is why only Jenkinson’s
results (referred to as RPV1) are shown (RPV0 refers to no adjustment). Also,
results for E = 1 and 2 are not shown as E = 2/3 shows a better adjustment; vw
and cw refer to voxel-wise and cluster-wise normalization. Fig. 2 and 3 illustrate
the effect of different adjustment techniques in localizing the differences between
two groups of subjects in real data, by assessing the change in P-value as a
function of clusters’ unadjusted P-value and average FWHM (see figure captions
for details).

4 Discussion

Using cluster-size adjustment techniques, cluster sizes depend on both their con-
nected component’s size and the local roughness of their region. The results show
that there is a substantial spatial variation in cluster-based inference’s FPR that
cannot be completely corrected. Using the uniformity indices, adjustments im-
prove the homogeneity of the result image. According to the results, empirical
adjustment causes a reduction of sensitivity, which may also be an indication of
increased power of the inference. The optimal empirical adjustment is seen at
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Fig. 1. The spatial mean and CV of -log10(p) as a function of smoothing extent. These
results show how adjustment can improve the stationarity of the cluster-related infer-
ences and TFCE’s robustness to nonstationarity in the data. Note that the legend in
the first (third) row can be used for the third (fourth) row.
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Fig. 2. Smoothness map corresponding the three-group VBM data (top image) and
the resulting clusters after thresholding the T-statistic map at T = 4 (for the MCI-AD
contrast). Smoothness estimates and clusters formed in this images are the basis of
the analyses and the results sin Fig. 3. Note that the displayed slices are selected from
z=-32mm to z=64mm including every eighth millimeters (in MNI coordinates).

Fig. 3. The effect of the adjustment on significance level of clusters as a function of its
FWHM (right column) and unadjusted P-value (left column). This figure illustrates the
increase in sensitivity (specificity) in rough (smooth) regions after appropriate adjust-
ments. Note that the clusters in this figure are shown in Fig. 2, which will remain the
same for all the adjustment analyses. According to the right column, the expected vari-
ation of the significance (increase/decrease in rough/smooth regions) can be observed
in empirical adjustment when no RFT-based adjustment is present, and RFT-based
adjustment without empirical adjustment. Also, according to the left column, adjust-
ing the cluster-based inference for nonstationarity seems to reduce the significance-level
of the clusters, which agrees with the result in the top row to some extent (as more
clusters are to be formed in smooth regions, where adjustment is expected to result in
a significance decrease.

E = 2/3 and voxel-wise normalization in ECSPV calculation. The empirical ad-
justment is not recommended for adjusted cluster-sizes as the second correction
applied to a unified field, may be similar to using CS =

∑
v∈C 1, which is the

classic unadjusted cluster size. Note that, the use of cluster sizes to extract a
voxel-wise characteristic (i.e., ECSPV) can be an imprecise estimate, because of
the censoring (the P-value corresponding to a cluster, is not a precise voxel-wise
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P-value). On the other hand, TFCE inference is very robust with respect to
spatial variations in image smoothness. In both adjusted and unadjusted TFCE
inferences, the summary measure of performance, perfectly matches the expected
measure of a uniform image at all of the tested smoothing extents.
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Abstract. We present a method for controlling a dynamical system
using real-time fMRI. The objective for the subject in the MR scanner is
to balance an inverted pendulum by activating the left or right hand or
resting. The brain activity is classified each second by a neural network
and the classification is sent to a pendulum simulator to change the force
applied to the pendulum. The state of the inverted pendulum is shown
to the subject in a pair of VR goggles. The subject was able to balance
the inverted pendulum during several minutes, both with real activity
and imagined activity. In each classification 9000 brain voxels were used
and the response time for the system to detect a change of activity was
on average 2-4 seconds. The developments here have a potential to aid
people with communication disabilities, such as locked in people. Another
future potential application can be to serve as a tool for stroke and
Parkinson patients to be able to train the damaged brain area and get
real-time feedback for more efficient training.

1 Introduction

Despite the enormous complexity of the human mind, fMRI, functional Magnetic
Resonance Imaging, techniques are able to partially observe the state of a brain
in action. In conventional fMRI, the experiment is performed and the data is
analyzed afterwards to calculate a level of brain activity for each voxel. In real-
time fMRI, the data is analyzed directly and the result from the analysis can
be used to change the stimulus presented to the subject, see figure 1. The brain
state can be interpreted by a computer and the setup is then often called a brain
computer interface (BCI).

Brain computer interfaces first used electroencephalography (EEG). Some
consider EEG to be superior to fMRI since it has a much higher temporal res-
olution. fMRI, however, has a higher spatial resolution than EEG. Even if the
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(a) A conventional fMRI experiment
setup. The data is collected during the
stimulus paradigm and is analyzed after
the experiment to get a measure of brain
activity in each voxel. The analysis can
be made in real-time but is not used to
change the stimulus given to the subject.

(b) The experiment setup for a bio-
feedback loop using real-time fMRI. The
subject sees the red pendulum. The activ-
ity for each new volume of data is classi-
fied and sent to the pendulum simulator.
The blue arrow shows the current classifi-
cation of the brain activity.

Fig. 1. The experiment setups for conventional fMRI and bio-feedback using real-time
fMRI. In real-time fMRI we can achieve a bio-feedback loop, by using the result from
the real-time analysis to change the stimulus, where the subject can control a dynamical
system.

EEG signal is sampled with 5 kHz, most of the brain activity is below 100 Hz and
an inverse problem has to be solved in order to reconstruct the spatial position
of the brain activity. In most clinical applications, 19 recording electrodes are
used according to the international 10-20 system [1]. The usable bandwidth of a
normal clinical EEG application is thus 19 channels at 100 Hz, resulting in 1900
sample points per second. In our fMRI setup, we have 9000 channels (brain vox-
els) at 1 Hz, resulting in 9000 sample points per second. Faster scanning schemes
using compressed sensing [2], can in the future increase the temporal resolution
of fMRI. With stronger MR scanners it is also becoming easier to detect the
small initial dip of the BOLD signal [3], and thus making it unnecessary to wait
for the peak of the delayed BOLD response.

We have tested our BCI with a dynamical pole balancing experiment. In the
experiment, the subject was given the possibility to move an inverted pendulum.
The pendulum could be pushed to the left or right by activating the parts of the
motor cortex associated with activity of the left and right hand. Similar projects
have been presented in. [4] and [5]. Laconte et al. uses a similar setup in [5] but
the arrow that they control can not be considered to be a dynamical system that
changes by itself. The dynamical properties of the inverted pendulum make our
setup a more challenging problem. We have to interpret the desire of the subject
and set out a control signal moving the pendulum as often as once a second to
have a chance to handle the fast dynamics of the pendulum.

The area of real-time fMRI is relatively new compared to conventional fMRI.
Laconte et al. [5] were one of the first to perform real-time classification of brain
activity. Ohlsson et al. [6] use real-time fMRI to determine where you are looking.
deCharms et al. [7] use real-time fMRI for learning a subject to suppress its own
pain. Weiskopf et al. [8] use real-time fMRI for self-regulation of local brain activity.
An overview of fMRI brain computer interfaces is given by Sitaram et al. [9].
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2 Methods

2.1 Measuring Brain Activity by Correlation

In fMRI the objective is to find the intensity and spatial position of brain activity.
The estimation of brain activity is based on the fact that the magnetic properties
of the blood changes when the neurons demand more oxygen to compensate for
their increased activity. The body overcompensates the amount of oxygen sent
to the neurons. The signal that is measured in fMRI is called the BOLD signal,
where BOLD stands for blood oxygen level dependent.

In conventional fMRI, brain activity is often measured using correlation be-
tween the stimulus paradigm and the intensity time series of each voxel. A stim-
ulus paradigm can for example consist of alternating between finger tapping
and rest in periods of 20 seconds each. Since the subject is told what to do
we calculate the brain activity for each voxel as the correlation with the stimu-
lus paradigm. In order to improve the novel correlation method, several methods
have been proposed. The most frequently used is the general linear model (GLM),
e.g. Friston et al. [10].

2.2 Classification of Brain Activity

In our real-time fMRI setup, the subject acts independently of any paradigms.
Thereby we do not have anything to correlate with. The BOLD signal that is
detected in fMRI does not occur directly when some brain activity is started but
is delayed 3-5 seconds. This is a property of the human physiology that we can
not change. This makes it hard to control a system in real-time. In conventional
fMRI it does not matter other than that the delay is unknown. Other difficulties
in real-time fMRI are that it is harder, compared to conventional fMRI, to
detrend the time series of each voxel and that all calculations have to be made
in real-time. Detrending is needed since there are drifts and trends in the fMRI
data that will corrupt the estimates if not removed [11].

Instead of using correlation, we classify each volume of data to know what the
current brain activity is. In this project we classify between left hand activity,
right hand activity and rest. A training phase is used to learn how to classify
between the different types of brain activity. We used a one layer neural network
to classify the brain activity as a first approach since it is easy to implement and
to explain and provided sufficient discrimination

2.3 Neural Networks

Neural networks [12] are used in many applications to classify data into a number
of predetermined classes. Often some informative properties are first extracted
from the data instead of using the raw data itself in the classification. Our first
approach was to find active voxels in the left and right motor cortex and use
them for the classification, to reduce the dimension of the original data. However,
it is a known fact that even if the subject is only activating one hand, there will



Using Real-Time fMRI to Control a Dynamical System 1003

be activity in both the left and right part of the motor cortex. Hence it is hard
to create a stimulus paradigm for the training phase of the classifier to find
voxels that only are active in each state. In the more simple case with only two
states, rest and activity, we can find the best voxels, by correlation, to use in the
classification.

Neural networks can have arbitrary many layers of perceptrons. A one layer
neural network is sufficient if the classes are linearly separable, otherwise at least
two layers have to be used in order to classify the data. The best weights w of the
discriminant function is derived during the training phase where training vectors
and the according correct classifications are presented to the neural network. In
our training phase the subject follows a pre-determined stimulus paradigm. We
trained the neural network with all the brain voxels in each collected volume,
using a spatial mask. Normally 9000 voxels, out of 64000, were considered to be
brain voxels. Each volume was also filtered by a 3 x 3 x 3 Gaussian lowpass filter
to make the classifications more robust to motions.

We used a one layer neural network with 3 output nodes. Each output node
has a weight vector of dimension 9000 that is achieved during the training phase.
In the training phase we used a 240 second long stimulus paradigm consisting
of 20 seconds of left activity, followed by 20 seconds of rest and then 20 seconds
of right activity, repeated 4 times. A volume of data was collected each second
resulting in 240 training vectors, each of dimension 9000, for the neural network.

Since the dimension of the data is 9000 and the number of training vectors
is only 240, we use a linear activation function during the training of the neural
network. This means that our neural network is equivalent to using linear regres-
sion for classification. If for example tanh would have been used as an activation
function instead, the risk of overfitting would have been large since the number
of dimensions is much higher than the number of training examples. To make a
classification, three scalar products are calculated and the class corresponding
to the output node with the highest output, meaning the furthest distance from
the decision boundary, is selected. In the real-time phase, each volume was spa-
tially smoothed (3 x 3 x 3 Gaussian lowpass filter) and detrended (by removing
the mean value calculated 45 seconds backwards for each voxel separately). A
control signal (apply a force to the left, right or do nothing) was then computed
by applying the, in the training phase computed, neural network. The control
signal was used as an input to the simulation of the dynamical pendulum sys-
tem. The simulation uses the control signal to change the state of the system by
applying an according force to the pendulum.

2.4 Head Movement

One potential cause of error in fMRI is that the subject may involuntarily move
the head in pace with the stimulus paradigm and thereby induce high correlation
in voxels on the edge of the brain or outside the brain.

For a neural network it is straight forward to calculate the importance of each
voxel for each classification. From this we can eliminate the possibility that the
reason that our experiment setup works is due to head movement.
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(a) The most important voxels for
classification of left hand activity
at one timepoint.

(b) The most important voxels for
classification of right hand activity
at one timepoint.

Fig. 2. The figures show which voxels that are the most important for classification of
brain activity at two timepoints. The importance maps should not be interpreted as
activity maps. It is clear that the voxels in the motor cortex, as expected, are the most
important. If head movement was the reason that the experiment setup worked, the
voxels at the edge of the brain would have been important for each classification. The
explanation for the overlap for left and right hand activity classification, which is not
present for all timepoints, is that the information that there is no activity in one side
of the motor cortex is important for the classification and that bilateral activation of
the motor cortex is common (but different for left and right hand activation). We use
the radiological display convention and have marked the left and the right side with L
and R.

If the distance to the decision boundary, for a classification at one timepoint
t, is denoted with dt, then the importance i of voxel vnt (voxel vn at timepoint
t) can be calcuclated as

ivnt =
wnvnt

dt
=

wnvnt∑
k wkvkt

(1)

where wn is the weight in the neural network for voxel vn. Before the calculation
is made, one has to make sure that the voxel contributes to the right direction
from the decision boundary, i.e. that wnvnt > 0. If these calculations are made
for all the brain voxels, there will be a lot of voxels that are important for some
timepoint but not for a set of continuous timepoints. In order to remove the
flickering voxels, a median filtering of the time series of the importance value for
each voxel can be made. The resulting importance maps are shown in figure 2.
A 3 x 3 gaussian lowpass filter has been used to improve the appearance of the
importance maps.

3 Experiment Setup

The data was acquired using a 1.5 T Philips Achieva MR scanner. The acquisition
resolution was 80 x 80 x 10 voxels. Field of view and slice thickness were chosen
to obtain a voxel size of 3 x 3 x 3 mm. Echo time (TE) was set to 40 ms and
repetition time (TR) was set to 1000 ms. The classification of the brain activity
and the simulation of the inverted pendulum was carried out in Matlab on a
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standard laptop. The current state of the inverted pendulum was shown to the
subject in a pair of VR goggles.

The resulting angular acceleration was calculated in each iteration and we
used a small timestep to calculate the angular velocity and the angle of the
pendulum. The simulation of the pendulum was carried out continously and
each time we collected a new volume of data (once a second), a classification of
brain activity was made and used to set the force applied to the pendulum.

4 Results

The subject was able to balance the inverse pendulum both with real activity
and imagined activity. When the subject used imagined activity, the pendulum
was balanced by only thinking of activating the left or right hand. To justify
the success of the controller figure 3 shows the logged angle of the pendulum
and the classified activity during the real-time phase. The figure shows that the
subject could balance the pendulum for 250 s. The figure also shows the dynam-
ical properties of the pendulum. To validate that this significantly differs from
chance, 5000 simulation runs of 800 s each was performed with the pendulum
simulator with random activity. 35 out of 59446 simulated balancing attempts
(0.059%) were then longer than 250 s.

We also tested the neural network offline with four different datasets, two
generated by real activity (R1, R2) and two generated by imagined activity
(I1, I2). All datasets were 240 s long. The detrending was performed as in the
real-time phase. The number of correct classifications, as function of training
dataset and evaluation dataset used, is given in table 1 below. A phase based
3D rigid body motion compensation algorithm was implemented. It did not run
in real-time during the experiment but was used offline for validation.

Table 1. Neural network classification performance as function of training dataset and
evaluation dataset

Training dataset / Evaluation dataset R1/R2 R2/R1 I1/I2 I2/I1 R1/I1 R1/I2
Without motion compensation 93.7% 86.3% 86.7% 85.8% 90.4% 83.3%

With motion compensation 93.4% 90.4% 86.3% 86.7% 90.8% 83.8%

Training dataset / Evaluation dataset R2/I1 R2/I2 I1/R1 I1/R2 I2/R1 I2/R2
Without motion compensation 87.5% 77.1% 90.0% 90.0% 89.6% 91.7%

With motion compensation 87.1% 77.9% 89.2% 88.8% 87.1% 91.7%

It is worth to mention that classification with ordinary linear regression per-
forms as well as the far more advanced support vector machines (SVM) approach
used by Laconte et al. [5].
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Fig. 3. The figure shows the angle of the pendulum, the red line, and the classifications
of activity, the blue stars, as a function of time in the real-time phase. If the angle
exceeds −π

2
or π

2
the pendulum is restarted and the angle is set to zero, this happened

9 times in this real-time phase. The test subject has to compensate for the delayed
BOLD-signal by changing activity a few seconds in advance. It is easy to see that the
test subject needed a couple of attempts first to learn the dynamics of the system.
The effective force applied to the pendulum depends on the angle of the pendulum as
cos(α). Angle 0 means that the pendulum is standing straight up, −π

2
means that the

pendulum lies along the negative x-axis and π
2

means that the pendulum lies along the
positive x-axis. This means that it is easy to move the pendulum when it is standing
straight up, but it takes a long time to straighten it up if the angle is close to −π

2
or π

2
.

If the activity is classified as left activity, a force to the left on the pendulum is applied
and the angle of the pendulum decreases. If the activity is classified as right activity,
a force to the right is applied and the angle of the pendulum increases. If the activity
is classified as rest, no force is applied (other than the gravitational force) and the
pendulum continues to rotate in its current angular direction. Between approximately
timepoint 350 and 600 in the figure the pendulum was successfully balanced by the
subject.

5 Discussion

We have presented an fMRI based BCI realization. The human brain and a
computer were here linked by fMRI and worked together as a controller of a
dynamical system. The dynamical system was made up of an inverted pendulum.
The subject had the ability to induce a force by evoking brain activity in the
motor cortex. A neural network was trained to separate between left and right
hand activity and rest. The subject was able to balance the inverted pendulum
both with real activity and with imagined activity. In the future we would like
to improve the detection speed of the system. One way to do this is to train the
classifier on the transitions between the different states instead of the states them
self, as mentioned in [5]. This can be done by looking back at the signal a number
of seconds to learn what the different transitions look like, to earlier detect a
change of activity. We would also like to increase the bandwidth of the bio-
feedback loop by including a larger number of different simultaneous activities
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to make the subject able to control a more advanced dynamical system. We
also want to make our motion compensation algorithm to run in real-time and
compare it to existing techniques [13].

The developments here can be used for neuro-scientific investigations [14] and
also have a potential to aid people with communication disabilities, such as
locked in people [15]. Other possible applications are to learn how control your
own pain [7] or to serve as a tool for stroke [16] and Parkinson [17] patients to
be able to train the damaged brain area and get real-time feedback for more
efficient training.
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Abstract. The standard general linear model (GLM) for rapid
event-related fMRI design protocols typically ignores reduction in hemo-
dynamic responses in successive stimuli in a train due to incomplete
recovery from the preceding stimuli. To capture this adaptation effect,
we incorporate a region-specific adaptation model into GLM. The model
quantifies the rate of adaptation across brain regions, which is of
interest in neuroscience. Empirical evaluation of the proposed model
demonstrates its potential to improve detection sensitivity. In the fMRI
experiments using visual and auditory stimuli, we observed that the
adaptation effect is significantly stronger in the visual area than in the
auditory area, suggesting that we must account for this effect to avoid
bias in fMRI detection.

1 Introduction

Rapid event-related (ER) functional magnetic resonance imaging (fMRI) is one
of the most popular imaging methods in cognitive neuroscience. In the rapid
ER fMRI studies, individual stimuli are presented every few seconds or faster.
Although less efficient for localizing activation, rapid ER fMRI has several ad-
vantages over the traditional block design, including the ability to randomize
trial types and to sort data based on behavioral responses.

The standard analysis for rapid ER fMRI models activation as a linear sys-
tem [2,5,9]; the hemodynamic response to multiple input stimuli is assumed to
be a superposition of the responses to individual stimuli. This approach es-
timates the impulse response function, also known as the hemodynamic re-
sponse function (HRF), of this linear system via de-convolution, and compares
the estimates to the null hypothesis or to estimates from other experimental
conditions.

fMRI signals commonly do not comply with the linear assumption. Indepen-
dent studies have demonstrated a substantial adaptation effect in the hemo-
dynamic response [1,11,12,16,17], i.e., if two stimuli are presented within the
adaptation period, the amplitude of the response to the second stimulus is re-
duced. Furthermore, the adaptation effect strengthens as the inter-stimulus in-
terval (ISI) decreases. Several studies demonstrated that when a pair of visual
stimuli is presented less than 1 sec apart, the response amplitude to the second
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stimulus is approximately 55% of that to the first stimulus, with recovery to 90%
at a 6 sec ISI [12,16,17]. This evidence suggests that the adaptation effect must
be modeled in the analysis, especially when stimuli are presented frequently.

The adaptation effect is expected to vary spatially due to differences in neural
and hemodynamic properties of functional areas in the brain [1,13,16]. While
physiological mechanisms for adaptation are not clearly understood, it is still
useful to model it for the purposes of improving detection.

Previous studies of the adaptation effect separated detection and adaptation
modeling [12,13,15,16,17], fitting the adaptation model to the estimated HRF ob-
tained using the standard general linear model (GLM) [9]. This approach ignores
the trial-to-trial variation. Work by Buxton et al. [4] introduced the biophysical
balloon model for fMRI signals where the adaptation effect is captured through
interactions among blood flow, blood volumes, and de-oxyhemoglobin content,
instead of an explicit interaction between stimuli. Friston et al. [10] proposed a
statistical model using the Volterra kernels to capture interaction between stim-
uli. The interaction can be efficiently estimated and statistically examined via
the F -test. However, the physiological interpretation of the model parameters is
challenging, since the model treats the stimuli symmetrically, effectively ignoring
the causal nature of the adaptation effect.

In this work, we extend the basic GLM by incorporating a region-specific
model of adaptation. In addition to the stimulus onset, our design matrix also
depends on the ISIs between stimuli via a single-parameter exponential function.
Specifically, this model captures the decrease in the magnitude of the hemody-
namic response if the time interval to the preceding stimuli is short. In other
words, we only model causal interactions among stimuli, in contrast to the bi-
directional interaction model in [10]. By combining detection and adaptation
modeling, the proposed method takes into account trial-to-trial variation. It is
expected that the adaptation effect strengthens when more stimuli are presented
prior to the current stimulus. We summarize this effect from multiple stimuli
through a multiplicative model. This extension allows for a more flexible choice
of an experimental paradigm in contrast to previous fMRI adaptation studies
which were restricted to presentations of stimulus pairs [12,13,16,17].

We jointly estimate the decay parameter of the exponential function for each
region and the HRF for each location in the brain. The estimated parameter
of the exponential function reflects the length of the adaptation period for the
corresponding region, and the estimated HRF indicates the activation status of
the corresponding location. Our experimental results demonstrate a significant
improvement in detection sensitivity and confirm previously known adaptation
phenomena in the sensory systems.

2 Method

The univariate GLM [9] assumes that the fMRI signal yn at location n is the
superposition of the hemodynamic responses to the stimuli in the paradigm, of
physiological signal, and of noise:
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yn = Xβn + Φαn + εn, (1)

where X is the design matrix, constructed based on the experimental protocol.
Columns of matrix Φ = [φ1, · · · , φR], often in the form of low-order polynomials,
model the protocol-independent factors such as cardiac activity and breathing.
The measurement noise εn can be modeled as white Gaussian noise or as colored
noise with an auto-regressive (AR) structure [3]. Vectors βn and αn are the cor-
responding coefficients of the protocol-dependent and the protocol-independent
signals, respectively. To determine the activation status at location n, one com-
pares the estimated protocol-dependent coefficient β̂n to the null hypothesis or
to the corresponding estimates for other experimental conditions.

Without loss of generality, we assume a single type of stimulus. The matrix
form of GLM represents the convolution of experimental protocol and HRF:

yn(t) =
∑K

k=1 h(t− sk)  βn(t) +
∑R

r=1 αrnφr(t) + εn(t), (2)

where s = [s1, s2, · · · , sK ] is the vector of onset times of the K stimuli in the
experiment. When modeling the HRF using a finite impulse response (FIR)
model, h is the impulse train, and βn contains the values of the FIR model.
When modeling HRF with a fixed kernel, h is the convolution of the stimulus
train and the kernel, and βn is a scalar that modulates the HRF magnitude.

The above model fails to capture the fact that previous stimuli can decrease
the hemodynamic response to subsequent stimuli if the recovery period is longer
than the ISI presented. Therefore, we incorporate an adaptation model into the
standard GLM by introducing a damping weight wk for each stimulus. Due
to the regionally varying neuronal and vascular architecture of the brain, we
parameterize the weight wk(s; θm) with a region-specific parameter, i.e., θm for
region m. wk(s; θm) accumulates the adaptation effect from stimuli prior to
stimulus k, presented at time sk. Therefore, in the new model, the fMRI signal
at location n of region m is the superposition of the weighted version of the
response to each stimulus:

yn(t) =
∑K

k=1 [wk(s; θm)h(t− sk)]  βn(t) +
∑R

r=1 αrnφr(t) + εn(t). (3)

In the matrix notation this equation reads

yn = X̃(θm)βn + Φαn + εn ∀ n ∈ Vm, (4)

where Vm is the set of locations in region m. The new design matrix X̃ depends
not only on the stimulus onset times, but also on the ISIs between stimuli.
Compared to the standard GLM model in Eq. (1), the nonlinear effect is captured
in the design matrix X̃.
Adaptation model. We combine the adaptation effects for stimulus k using
a multiplicative exponential model, ranging between zero and one:

wk(s; θm) =
∏k−1

j=1

(
1 − e−θm(sk−sj)

)
. (5)

The exponential decay parameter θm models the length of the adaptation period.
A larger value of θm indicates a weaker adaptation effect, or a shorter period for



1012 W. Ou et al.

the region to recover. The multiplicative nature of the model reflects the fact
that multiple preceding stimuli can affect the amplitude of the response to a
particular stimulus. In other words, the brain response is modeled as a Markov
process of order K.

Inference. We estimate the unknown parameters {θm, {βn,αn}n∈Vm} in Eq. (4)
by minimizing the sum of squares of the residual errors for each region indepen-
dently. For a given θm, the optimal linear parameters β̂n and α̂n can be found
in a closed-form: [

β̂n, α̂n

]
=

(
HT(θm)H(θm)

)−1
HT(θm)yn, (6)

where H(θm) = [X̃(θm) Φ]. Substituting Eq. (6) into the expression for the
residual error, we obtain the optimal θ̂∗m:

θ̂∗m = argmin
θ

∑
n∈Vm

∥∥∥(
I −

(
HT(θ)H(θ)

)−1
HT(θ)

)
yn

∥∥∥2
. (7)

With the proposed adaptation model, Eq. (7) is a nonlinear function of a single
scalar parameter θm. We can simply exhaustively search for the parameter value
within a specified range. We then obtain the optimal values β̂

∗
n and α̂∗

n by
substituting θ̂∗m into Eq. (6).

Due to the nonlinearity of the model, the true value of θ is needed to compute
the covariance of the estimate, Cov(β̂

∗
n). Since θ is not known in real experiments, we

approximate Cov(β̂
∗
n) with Cov(β̂

∗
n; θ̂∗

m). Hence, the statistic β̂
∗
n
TCov−1(β̂

∗
n; θ̂∗

m)β̂
∗
n/Nβn

,
where Nβn

is the number of regression coefficients in βn, does not follow a known
probability distribution under the null hypothesis, in contrast to theF -distribution
in the standard GLM analysis. This represents a challenge in testing significance
similar to GLM with AR noise modeling [3]. The exact statistical test can be
achieved with Markov Chain Monte Carlo simulation, but it is too computation-
ally intensive for a standard analysis procedure. We will see in the next section
that comparing the values of the statistic across locations provides insight into
the adaptation effect. Developing efficient methods for assessing statistical signif-
icance of the statistic is clearly a direction for future research.

To summarize, by accounting for the adaptation effects, we obtain a more
accurate estimate of the HRF which leads to more accurate detection results. The
estimates of the adaptation parameter θ promise to provide an insight into the
neuronal and vascular architecture across different brain regions. In the following,
we refer to our approach as GLMA (GLM with adaptation).

3 Results

Due to the lack of ground truth in real experiments, we first study GLMA’s sen-
sitivity to noise and parameter settings using simulated data. We then compare
GLMA to GLM using human fMRI data from a visual-auditory study.

In both simulations and analysis of human fMRI data, we constrain the detec-
tion to the cortex and define different brain regions based on the cortical folding
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Fig. 1. The two panels on the left compare the true positive rates for GLM (solid)
and GLMA (dashed) as a function of θ, for two false positive rates and four SNR
values. The rightmost panel shows the estimates θ̂∗ of the adaptation parameter θ.
The standard error bars of the true positive rates and estimates θ̂∗ are presented in
the corresponding panels.

patterns, obtained with the FreeSurfer software [6,8], 35 regions per hemisphere.
Moreover, since the adaptation weight wk recovers exponentially with respect to
ISI, we only consider the stimulus interactions within a 16 sec window.

Simulation studies. Since our model is estimated for each region separately,
it is sufficient to study the performance of the model for a range of values of θ
using data in a single region. For each value of θ, we generated 100 activation
time courses by convolving a two-gamma function [14] with a train of stimuli
whose onset times were generated randomly (mean ISI=4.0 sec, std=3 sec). The
adaptation effect was modeled according to Eq. (5). We also generated 100 time
courses without activation. We then added i.i.d. Gaussian noise to these 200
time courses, and repeated the simulation procedure 50 times for each value
of θ. We chose noise levels to be within the typical SNR range of real fMRI
data.

We separately processed the data set using GLM and GLMA. In both cases,
HRF was modeled with the two-gamma function used in the simulation. Thus,
β is a scalar in this case. Based on the activation statistic (β̂∗)2/Var

(
β̂∗

)
, we

evaluated the detection accuracy of both methods at two false positive rates,
5 × 10−4 and 5 × 10−2, as shown in Fig. 1(a,b). As expected, a better SNR in
the data allows for a higher detection rate over the range of θ we examined.
When θ is larger than 0.5, there is essentially no adaptation effect present in
the data. Hence, the performance of the two methods is almost identical. The
adaptation effect strengthens as θ decreases. We can clearly see an up-to 80%
higher detection rate achieved by modeling the effect.

We also investigated the robustness of the estimation of the adaptation param-
eter θ. As illustrated in Fig. 1(c), the estimates θ̂∗ closely match the simulation.
As θ decreases, the response to the subsequent stimuli is very small for the cho-
sen mean ISI, and θ̂∗ starts to deviate from the true value θ for noisy data, i.e.,
SNR= −10 dB.
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Fig. 2. The thresholded statistical parametric maps for three subjects using GLM with
full length data (first row) and with 1/4 of the data (third row), as well as using GLMA
with full-length data (second row) and with 1/4 of the data (fourth row)

Human experiments. We illustrate the application of the proposed method
in a visual-auditory fMRI study. In this experiment, three healthy right-handed
subjects were presented with visual-auditory stimuli in a random rapid ER
fMRI paradigm in three runs, with mean ISI of 1.5 sec (std=0.7 sec), 3.0 sec
(std=1.3 sec), and 6.0 sec (std=2.1 sec), respectively. To keep subjects engaged
throughout the experiment, they were asked to respond to a rare target stimu-
lus by pressing a button. The fMRI data were acquired using a 3T Siemens Trio
scanner (TR 1.15 sec, TE=30 msec, flip angle 90 degree, 3.1×3.1×4 mm3). Struc-
tural T1-weighted MRI scans of the subjects were acquired with a 1.5T Siemens
Avanto scanner. The anatomical images were processed with the FreeSurfer soft-
ware [6,8]. Individual subject functional scans were morphed through a spherical
mapping into an atlas constructed with 40 subjects [7].

We applied GLM and GLMA to data combined from all three runs (Fig. 2
left) and data combined from the first quarter of each of the three runs (Fig. 2
right). Since the statistics across methods are not directly comparable, and the
ground truth activation is not known, we select top 5% of vertices in a hemi-
sphere with the highest statistics, and visually evaluate the results to assess the
importance of modeling the adaptation effect. We emphasize that in order to
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Fig. 3. Estimated 90% recovery period, t90, for the three subjects presented in Fig. 2

develop valid detectors, further work is required in building statistical tests for
assessing significance of the detected activations.

Fig. 2 shows that the two methods provide similar detection results in the
auditory area. However, the visual region detected by GLM has a smaller spa-
tial extent than the corresponding results using GLMA. Without modeling the
adaptation effects, the activation statistics in the visual area are smaller than
those in the auditory area. Therefore, many activations on the visual cortex will
be missed if a single threshold is applied to the whole brain. Furthermore, com-
pared to GLM, our detection results with shorter length data are more similar
to the results using full-length data, indicating improved robustness.

For the selected auditory and visual areas, we present the time required for
the attenuation coefficient wk to recover to 90%, i.e., t90 = −θ−1 ln(1 − 0.9),
assuming a single stimulus presented prior to the current one (Fig. 3). Across all
three subjects, t90 in the auditory areas is shorter than that in the visual areas,
reflecting a stronger adaptation effect in the visual areas than in the auditory
areas. Furthermore, in Subjects 1 and 2, the early visual regions, such as the
lateral-occipital area, exhibit a weaker adaptation effect than high-order visual
regions, such as the lingual and fusiform areas. For these two subjects, t90 is
about 6 sec at the calcarine area which agrees with findings reported in [12,16,17].
The adaptation effects in Subject 3 are significantly longer than those in the other
two subjects. Further experiments are needed to better understand and model
the variability of the effect across subjects. To further validate our method, we
also applied GLM, with HRF modeled as a two-gamma function, separately
to each of the three runs. Fig. 4 shows the average estimated HRFs for the 50
most active vertices in each of the three selected regions for Subject 2. We can
clearly see that the lingual area exhibits the strongest adaptation effect (t90 =
5.8 sec in Fig. 3), indicated by substantial differences in response magnitude to
stimuli presented with different mean ISI conditions. The difference in response
magnitudes to the three conditions is smaller in the lateral-occipital area (t90 =
3.8 sec), reflecting a weaker adaptation. On the other hand, the estimated HRFs
across different ISIs are almost identical in the superior-temporal area (t90 =
2.3 sec). That means the most active locations in the superior-temporal area
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Fig. 4. Estimated HRFs for stimuli presented at three different mean ISI conditions,
1.5, 3.0, and 6.0 sec, obtained with standard GLM analysis in Subject 2. The error
bars indicate standard deviation of the 50 selected vertices.

can almost fully recover in about 1.5 sec. The results of the HRF analysis for
separate conditions agrees with our estimates of the adaptation effects in Fig. 3.

4 Conclusions

We proposed and demonstrated a novel method for modeling the adaptation
effects in fMRI. Experimental results indicate a significant improvement in de-
tection sensitivity. The proposed method also quantifies the adaptation effects
across brain regions, providing insight into neuronal and vascular organization
of the brain. The current adaptation model focuses on the ISIs. We plan to ex-
tend it to include information about the amplitude of the response to previous
stimuli, since the adaptation effect is expected to be more pronounced immedi-
ately after a strong response than after a weak response. Our framework can be
readily modified to include different functional forms of the magnitude changes
due to adaptation. We will explore alternative functions, such as the sigmoid
function, in adaptation modeling in future work.
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A Cluster Overlap Measure for Comparison of
Activations in fMRI Studies
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Abstract. Most fMRI studies use voxel-wise statistics to carry out intra-
subject as well as inter-subject analysis. We show that statistics derived
from voxel-wise comparisons are likely to be noisy and error prone, es-
pecially for inter-subject comparisons. In this paper we propose a novel
metric called weighted cluster coverage to compare two activation maps.
This metric is based on the intersection of spatially contiguous clusters
of activations. It is found to be more robust than voxel-wise comparisons
and could potentially lead to more statistical power in fMRI-based group
studies.

1 Introduction

Theoretical considerations as well as ample experimental evidence suggest that
brain function is, to some extent, supported by the correlated activity of groups
of neurons. These groups, in turn, tend to be spatially contiguous and consistent
with the spatial continuity of anatomical patterns of connectivity and neuronal
identity. However, the field of fMRI image analysis is dominated by techniques
that use a voxel-wise linear model, the General Linear Model (GLM) approach.
As evidence, Grinband et al. [1] identified 170 papers published in leading jour-
nals just in the first six months of 2007 that used this approach.

An open problem in the fMRI analysis literature is how to appropriately con-
duct inter-subject studies and summarize their results. The typical approach
is to apply the GLM method, which results in candidate regions responsive to
the particular experimental stimulus or protocol. This is followed by voxel-wise
comparison amongst different subjects. A major drawback of this approach is
that voxel-based methods do not give robust inter-subject results. By robustness
we mean the sensitivity of the results with respect to small changes in the po-
sitions of the voxels or their contents. Several reasons contribute to the lack of
robustness across subjects, and even across sessions for the same subjects: mis-
alignment, movement, field distortions and noise, and morphological differences
in individual brains. Usually, these problems are addressed by the application of
significant spatial smoothing, which effectively leads to a loss of resolution.

A number of recent publications have proposed different algorithms to identify
functional clusters. Thirion et el. [2, 3] have explored the issue of comparing
inter-subject fMRI activation maps. They developed a functional parcellation
technique based on spectral clustering, to group similar regions across multiple
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subjects. Most other methods are heavily based on a priori knowledge of the
anatomy and connectivity, in particular sulcal identification [4, 5, 6]. This peak
of interest highlights the need for a consistent measure to compare cluster-based
maps.

At the same time, recently developed techniques for functional network anal-
ysis have shown promise. They are based on extracting graph structures from
spatio-temporal datasets [7], and then computing relevant statistical properties
of these graphs. For instance, hub density maps can be computed, which capture
the degree of linkage of voxel nodes in the graph. This measure of activity tends
to be more highly localized, or compact, than that of the more diffuse activity
captured via GLM maps.

The above observations lead naturally to the concept of resolution, to de-
scribe how well localized the measured brain activity is. We consider a higher
resolution technique to be one that potentially generates a larger number of spa-
tially compact candidate regions. Hence there is a need for an improved method
to perform group studies and compare maps across subjects. With this aim in
mind, we have created the following set of desired capabilities that we seek, and
which would be present in an ideal method.

1. Robustness with respect to misregistration. An ideal method is one whose
results do not degrade with small spatial shifts in the data, especially when
they arise from differences in the brain anatomies of subjects.

2. Robustness with respect to different runs for the same subject. This issue
addresses temporal shifts, including temporal partitioning of the data sets,
i.e. the analysis of different time segments should yield consistent results if
the experimental paradigm is time-invariant.

3. Robustness across multiple scales of resolution. An ideal method would be
able to perform comparisons between both high and low resolution data.

4. Generic applicability. An ideal method would be applicable across multiple
maps, including maps obtained via GLM or other methods.

The main contribution of this paper is to propose a method called the weighted
cluster coverage method, which is able to satisfy the four requirements that we
seek in an ideal method, as identified above. The cluster coverage method over-
comes many of the limitations of applying simple voxel-based image difference
or correlation metrics that are typically used. The method is described in detail
in Section 2.3.

2 Comparison of Statistical Maps

In this section we present three metrics, namely voxel correlations, weighted
set overlap and weighted cluster coverage to compare two fMRI maps. The voxel
correlation and set overlap metrics arise naturally under the assumptions made in
typical voxel-wise group analysis methods. The weighted cluster coverage metric
designed by us, uses spatial contiguity information to overcome the limitations
of voxel-wise methods.
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2.1 Voxel Correlations

In a typical fMRI-based study, a set of maps is computed for each subject using
the GLM analysis. Each map in the set represents “brain activations” in a specific
experimental condition, suitably transformed into a normalized statistic such as
“Z”, “t” or an “F” score. These maps are then aligned to a standardized brain
atlas (such as the MNI or Talairch atlases). A voxel-wise comparison of the
aligned maps of each subject is carried out using various statistical techniques
(e.g., ANOVA) to arrive at the final conclusions of the study [8].

An implicit assumption in such an approach is that value represented by
each voxel in the aligned map remains the same (modulo the noise) in a given
experimental condition for all subjects in a given group. The voxel-correlation
metric is designed to evaluate this assumption.

Given a map μ of N voxels, define Top(μ, p) as the set of Np voxels with the
highest values in the map μ. Here, p denotes a percentile. The voxel correlation
between two maps μ1 and μ2 at a percentile p is defined as the Pearson correlation
coefficient between μ1 and μ2, restricted to the set S = Top(μ1, p) ∩ Top(μ2, p).
Intuitively, voxel correlation represents the similarity between the voxel values of
the active voxels of the two maps. Note that if μ1 = μ2, then the voxel correlation
is 1; if μ1 = −μ2 then voxel correlation is −1 and if μ1 and μ2 are independent
then the voxel correlation is zero for all values of p1.

2.2 Weighted Set Overlap

The machine-learning based fMRI data analysis techniques (such as MVPA
[9] or [10]) rely upon extracting a set of meaningful “features” that are used
to build models of the data. The model and the corresponding features are
used to interpret the results of the experiment and derive scientific conclu-
sions.

An implicit assumption in all such models is that each voxel represents the
same physical (or physiological) process in different experimental conditions and
subjects. The weighted set overlap metric is designed to evaluate this assumption.

Define the weight of a map μ with respect to the set S as the sum of the map
values of voxels in the set S. Formally W (μ, S) =

∑
i∈S μi. The weighted set

overlap of two maps μ1 and μ2 at percentile p is given by

W (μ1 + μ2, S1 ∩ S2)
W (μ1, S1) + W (μ2, S2)

where S1 = Top(μ1, p) and S2 = Top(μ2, p). Intuitively, this measure represents
the degree of overlap of voxels found active in the two maps. Note that if μ1 = μ2
then the weighted set overlap is 1 for all the values of p. It is 0, if the top p fraction
of the voxels of μ1 and μ2 do not have any common voxel.

1 The choice S = Top(μ1, p)∪ Top(μ2, p) which gives more voxels, was not used since
it introduces an artificial negative bias in the correlations.
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2.3 The Cluster Coverage Metric

The cluster coverage metric is designed to overcome the limitations of voxel-wise
methods by taking spatial contiguity of voxels into account.

Consider two sets of voxels in space, S1 and S2. These could arise from two
fMRI trials on two subjects, or from two trials on the same subject, for instance.
The voxels in the two sets are first clustered into groups of spatially connected
3-d components (two voxels are said to be connected if they share a common
face, i.e. we use 6-connectedness in three dimensions). Let these components be
denoted by the sets {r1j} and {r2j}. The weighted cluster coverage of S1 by S2
is defined as the ratio of the weight of clusters of S1 that intersect with clusters
of S2, to the total weight of clusters of S1. Formally,

Cw(S1, μ1, S2, μ2) =

∑
j:r1j∩S2 �=φ W (μ1, r1j)∑

j W (μ1, r1j)
(1)

The weighted cluster coverage Cw(S1, μ1, S2, μ2) is an asymmetric measure,
which ranges from 0 to 1. If Cw(S1, μ1, S2, μ2) is zero, this implies that S1 and
S2 have no voxels in common. As Cw(S1, μ1, S2, μ2) → 1, this indicates that
many connected components of S1 intersect with connected components in S2.
A cluster coverage of one implies that every spatially contiguous component in
S1 intersects with a component in S2.

The mean weighted cluster coverage of two maps μ1 and μ2 at a percentile p
is defined as (Cw(S1, μ1, S2, μ2) + Cw(S2, μ2, S1, μ1))/2 where S1 = Top(μ1, p)
and S2 = Top(μ2, p). This is a symmetric variant of the cluster coverage metric.

3 Evaluation and Results

3.1 Evaluation Methodology

We used fMRI data from a simple finger tapping experiment. The data consists
of fMRI scan of three sessions of six healthy subjects. The sessions, which lasted
for 800 seconds, consisted of blocks of a self-paced finger-tapping task. Each
session was split into two sub-sessions corresponding to the first and the second
half of the session. For each of the sub-sessions, GLM analysis using FSL [11]
was carried out to find the areas in the brain active during the finger-tapping
task. The resulting maps of Z-statistics were registered to the MNI atlas, and
then used for comparisons.

Three types of comparisons were carried out. The intra-session comparisons
refer to the comparisons between the first half and the second half of the ses-
sions (leading to 6 × 3 comparisons). The inter-session comparisons refer to
comparisons between two different sessions of the same subject (leading to 6×
3C2 × 2 comparisons. Here nCr refers to the number of ways in which r objects
can be chosen from n distinct objects). The inter-subject comparisons refer to
the comparisons between the same sub-sessions of different subjects (leading to
6C2 × 3 × 2 comparisons). For each of the comparison, seven different values of
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p ranging from 0.2 to 0.002 were considered. All the three comparison metrics
(discussed earlier) were computed for all the p-values considered. For each value
of p, the mean and standard deviation of the similarity metrics were computed.

3.2 Results

Figure 1(A) shows the voxel correlations of the Z-maps of the finger tapping
experiment at different values of p. The mean value of intra-session, inter-session
and inter-subject overlap (using the voxel correlation metric) are plotted as a
function of p. The error bars represent the standard deviation of the metric.

The mean voxel correlations for inter and intra-session comparison remain in
the range 0.87 to 0.70 and 0.85 to 0.55 respectively. The intra-session overlap is
slightly higher and within 27 percent of the inter-session overlap for all values
of p. In contrast, the mean inter-subject overlap starts at 0.36 and becomes
negative for values of p less than or equal to 0.02. This shows that the actual
values of the Z-statistic, although fairly consistent within a subject, are highly
inconsistent across multiple subjects.

Figure 1(B) shows the weighted set overlap of the Z-maps for different values
of p. The results are similar to those of the voxel-correlation metric. For the
intra and inter-session comparisons the mean value of weighted set overlap is in
the range 0.82 to 0.76 and 0.78 to 0.68 respectively, with inter-session overlap
slightly higher than the intra-session overlap (but within 12% of each other).
However, the weighted set overlap in the inter-subject comparisons starts at
0.55 for p = 0.2 and becomes as small as 0.067 for p = 0.002, indicating its
inconsistency across the subjects.

The mean weighted coverage measure performs much better as shown in Fig-
ure 1(C). For inter- and intra-session comparisons, the mean weighted coverage
is almost the same (within 5%) with a low standard deviation. For inter-subject
comparison, it is in the range 0.97 to 0.71. This indicates that the weighted clus-
ter coverage measure, which takes into account the spatial contiguity of active
voxels, is much more robust for intra- and inter-subject comparisons as com-
pared to the voxel-wise methods discussed above.

Overlap with misregistration: In order to evaluate the impact of misregis-
tration, the second sub-session of each session was spatially shifted by differ-
ent amounts. For each shift, all the three overlap measures were computed for
p = 0.05. Figure 1(D) shows the overlap as a function of the shift amount. The
voxel correlations and weighted set overlap are very sensitive to misregistration.
A shift of less than 5mm (which is not uncommon across subjects) reduces the
voxel correlation from 0.63 to 0.23 and weighted set cover from 0.70 to 0.40. The
weighted cluster coverage metric is more tolerant to shifts up to 25mm (primar-
ily because the areas functionally active in the finger tapping task have a similar
spatial extent). If the amount of shift is more than 25mm, then all the metrics
fall to zero as there is not overlap in the functionally active areas of the first
sub-session with the misregistered second sub-session.
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Random Maps: The weighted cluster coverage metric has a positive bias since
it computes the overlap of spatially contiguous clusters. If a large fraction of
voxels are chosen, many clusters of the one map may intersect with the second
map by chance, leading to an unreasonably high weighted cluster coverage value.
To evaluate the extent of this bias, we compared randomly generated maps using
the three metrics.

To make a random map, first each voxel was assigned a normally distributed
random value. To make the map similar to fMRI activation maps, a spatially
smoothing 2.5mm Gaussian filter was applied to the randomly generated voxel
values. The resulting map was masked using the brain mask of one of the subject
in the study. Now pairs of random maps were compared with each other.

Figure 1(E) shows the overlap of random maps. The voxel correlations re-
main close to zero for all the values of p, as expected. The bias in weighted set
overlap follows the p-value as expected. The weighted cluster coverage shows
biases of 0.95, 0.73, 0.39 for values of p in 0.2, 0.1, 0.05 respectively. However,
for p = 0.02, 0.01, 0.005, 0.002, this bias rapidly diminishes to 0.1, 0.05, 0.02, 0.01
respectively. These results are not unexpected since the spatially contiguous
clusters become large when large fraction of voxels is chosen. This increases the
chance of intersection of clusters, making the weighted cluster coverage metric
more liberal at large values of p. However, when the fraction of voxels chosen is
small (say ≤ 0.02), this bias quickly reduces to acceptably small values.

In general, random maps induce a probability distribution on the value of the
weighted cover metric. This distribution may be used to convert the cover metric
to a p-value representing the chance likelihood of the event.

Maps generated using different techniques: Brain maps can be generated
using several other techniques in addition to GLM. For example the network
analysis technique [7] generates hub maps representing the density of functional
network connections. The functionally active areas are also found to have high
connectivity and therefore high link-density in the hub maps. In addition, several
other areas of high link-density which are not found active in the GLM analysis
are also present in the hub maps. Figure 1(G) shows one such slice of a subject
in the finger tapping experiment, where the threshold was held at the same
percentile for both maps. The Supplementary Motor Area, which is found active
by GLM analysis (colored blue), also has high link-density (red). However, one
can see other areas that have high link-density (red) but not found active by
the GLM analysis; in particular, there is a prominent cluster centered in the
Posterior Cingulate that is not locked to the experimental protocol.

Figure 1(F) shows the overlap of GLM maps and the hub maps using different
metrics. The overlap using voxel correlations and the weight set cover is symmet-
ric and in the range 0.5 to 0.3. However, the cluster coverage metric shows much
larger overlap starting from close to 1 for high values of p to close to 0.6 for low
values of p. The asymmetric nature of the cluster coverage measure also uncov-
ers the property of these maps discussed above, also visible in Figure 1(G). This
confirms that most of the clusters found active by GLM analysis also contain
voxels with high connectivity, and that the converse is not true.
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4 Conclusions and Future Work

We have shown that the cluster coverage metric gives better consistency, lower
standard deviations and robustness with respect to activation thresholds than
metrics that do not exploit the a priori information about the spatial contiguity
of brain function. The metric clearly reduces intra-subject variability, but its
effect is more dramatic for inter-subject comparisons, making it particularly
promising for large group studies. The effectiveness of the metric is also reflected
in the slow degradation upon misregistration, when compared to non-cluster
metrics, a feature of particular importance for both inter- and intra-subjects
studies. Our metric meets the four requirements for an ideal comparison method,
as described in the introduction.

This metric could be extended to the surface-based methods [5] by computing
spatially contiguous clusters (and their intersections) on the manifold defined by
the cortical surface.
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Dougherty, Robert F. I-861
Drabycz, Sylvia II-522
Dubuisson, Florian I-475
Duchateau, Nicolas II-759
Duncan, James S. I-206
Dundar, Murat II-1009

Duong, Christophe I-9
Duriez, Christian I-377, II-291
Durrleman, Stanley I-214, I-297

Ebrahimi, Mehran I-811
Edenbrandt, Lars I-664
Edwards, Philip J. I-34
Eggers, Georg I-402
Ehrhardt, Jan I-755
Eklund, Anders I-1000
El-Baz, Ayman I-281, II-682, II-943
Elhawary, Haytham I-837
Elson, Daniel I-483
Emberton, Mark I-787
Engelbrecht, Rainer I-467
Eom, Jaesung II-348
Ernst, Floris II-356
Ersoy, Ilker II-617
Essafi, Salma II-919
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Höller, Kurt I-459, I-467
Horiuchi, Tetsuya I-451
Hornegger, Joachim I-17, I-132, I-255,

I-394, I-459, I-467, I-549, II-26,
II-575, II-767, II-819

Houle, Helene II-767
Howe, Robert D. I-26
Hu, Mingxing I-34, I-491
Hu, Yipeng I-787
Huang, Albert II-474
Huang, Wei II-803
Huang, Xiaolei II-673, II-1059
Huber, Martin I-17, II-575
Huisman, Henkjan J. II-836, II-927
Hunter, Peter II-323
Hurtig, Mark I-75



Author Index 1031

Ibrahim, Joseph G. II-192
Idier, Jérôme I-975
Iliescu, Nicolae II-316
Inoue, Jiro I-75
Ionasec, Razvan Ioan I-17, II-767
Iordachita, Iulian I-108
Irfanoglu, Mustafa Okan I-181
Iseki, Hiroshi I-443
Isguder, Gozde Gul II-776
Ishii, Masaru I-91
Ishikawa, Hiroshi I-100
Islam, Ali II-373, II-901
Itoh, Kazuko I-443
Iwano, Shingo II-707

Jacques, Robert II-100
Jacques, Steven L. II-657
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Lorenz, Christine H. II-741

Lorenz, Cristian I-747
Lovat, Laurence B. I-491
Lu, Le II-715, II-1009
Lu, Yingli II-750
Lurz, Philipp I-214
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Pérez, Frederic II-275
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