
Snake Lex: An Alternative to Double Lex

Andrew Grayland1, Ian Miguel1, and Colva M. Roney-Dougal2

1 School of Comp. Sci., St Andrews, UK
{andyg,ianm}@cs.st-and.ac.uk

2 School of Maths and Stats, St Andrews, UK
colva@mcs.st-and.ac.uk

Abstract. Complete row and column symmetry breaking in constraint models
using the lex leader method is generally prohibitively costly. Double lex, which is
derived from lex leader, is commonly used in practice as an incomplete symmetry-
breaking method for row and column symmetries. Double lex is based on a row-
wise canonical variable ordering. However, this choice is arbitrary. We investigate
other canonical orderings and focus on one in particular: snake ordering. From
this we derive a corresponding incomplete set of symmetry breaking constraints,
snake lex. Experimental data comparing double lex and snake lex shows that snake
lex is substantially better than double lex in many cases.

1 Introduction

A variable symmetry in a constraint model is a bijective mapping from the set of vari-
ables to itself that maps (non-)solutions to (non-)solutions. The set of (non-)solutions
reachable by applying all symmetry mappings to one (non-)solution forms an equiva-
lence class. Restricting search to one member (or a reduced set of members) of each
equivalence class can dramatically reduce systematic search: symmetry breaking. The
lex leader method for breaking variable symmetries adds a constraint per symmetry
so as to allow only one member of each equivalence class [3]. The lex leader method
can produce a huge number of constraints and sometimes adding them to a model can
prove counterproductive. One commonly-occurring case is when trying to break sym-
metries in a matrix, where any row (or column) can be permuted with any other row (or
column): row and column symmetries [4].

It is often possible to achieve good results by breaking a smaller set of symme-
tries: incomplete symmetry breaking. One method to do this for row and column sym-
metries is double lex [4], which constrains adjacent pairs of rows and adjacent pairs of
columns. Although this method is incomplete, it can reduce search dramatically. Double
lex is derived from a reduction of a complete set of lex constraints created with a row-
wise ordering as the canonical member of each equivalence class. The use of row-wise
ordering is, however, arbitrary. The possible benefits of varying canonical orderings of
lex constraints in graceful graph models was investigated in [11]. This paper investi-
gates other canonical orderings and selects one (snake ordering) that looks promising
to investigate further. From it, we create a new set of incomplete symmetry breaking
constraints (snake lex). An empirical analysis demonstrates that snake lex can often
deliver substantially better results than double lex.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 391–399, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

392 A. Grayland, I. Miguel, and C.M. Roney-Dougal

2 Background

A constraint satisfaction problem is a triple (X , D, C), where X is a finite set of vari-
ables. Each x ∈ X has a finite set of values D(x) (its domain). The finite set C consists
of constraints on the variables. Each c ∈ C is defined over a sequence, X ′, of variables
in X . A subset of the Cartesian product of the domains of the members of X ′ gives
the set of allowed value combinations. A complete assignment maps every variable to
a member of its domain. A complete assignment satisfying all constraints is a solution.
A variable symmetry of a CSP is a bijection f : X → X such that {〈xi, ai〉 : xi ∈
X , ai ∈ D(xi)} is a solution if and only if {〈f(xi), ai〉 : xi ∈ X , ai ∈ D(f(xi))} is
a solution. The set of all variable symmetries of a CSP is closed under composition of
functions and inversion, and so forms a group, the variable symmetry group of the CSP.

Row and column symmetries appear commonly in CSP models that contain matrices
[2,7,8,9]. When it is possible to map any ordered list of distinct rows to any other such
list of the same length, with the same being true for columns, then there is complete row
and column symmetry. For an n by m matrix there are n! × m! symmetries.

For a symmetry group of size s the lex leader method produces a set of s − 1 lex
constraints to provide complete symmetry breaking. We first decide on a canonical order
for the variables in X , then post constraints such that this ordering is less than or equal
to the permutation of the ordering by each of the symmetries. Consider the following
2 × 2 matrix with complete row and column symmetry, where xi ∈ X :

x11 x12

x21 x22

If we choose a row-wise canonical variable ordering, in this case x11x12x21x22, then
we can generate the following 3 lex constraints to break all the symmetries.

row swap: x11x12x21x22 ≤lex x21x22x11x12

column swap: x11x12x21x22 ≤lex x12x11x22x21

both swapped: x11x12x21x22 ≤lex x22x21x12x11

Although this example is trivial, breaking all row and column symmetries by adding lex
constraints is generally counter-productive since we have to add (n!×m!)− 1 symme-
try breaking constraints to the model. Double lex [4] is a commonly used incomplete
symmetry breaking method for row and column symmetries. This method involves or-
dering the rows of a matrix and (independently) ordering the columns. This produces
only n + m − 2 symmetry breaking constraints, shown below for the 2 × 2 example:

x11x12 ≤lex x21x22

x11x21 ≤lex x12x22

The double lex constraints can be derived from the lex leader generated based upon a
row-wise canonical variable ordering. One method of doing so is to use reduction rules
1, 2 and 3′ as given in [5] and [6]. Let α, β, γ, and δ be strings of variables, and x and
y be individual variables. The reduction rules are:

1 If α = γ entails x = y then a constraint c of the form αxβ ≤lex γyδ may be
replaced with αβ ≤lex γδ.

2 Let C = C′ ∪{αx ≤lex γy} be a set of constraints. If C′ ∪{α = γ} entails x ≤ y,
then C can be replaced with C′ ∪ {α ≤lex γ}.

Snake Lex: An Alternative to Double Lex 393

3′ Let C = C′ ∪ {αxβ ≤lex γyδ} be a set of constraints. If C′ ∪ {α = γ} entails
x = y, then C can be replaced with C′ ∪ {αβ ≤lex γδ}.

Rule 1 is subsumed by Rule 3′, but is often useful as a preprocess, as it reasons over an
individual constraint. Algorithms to implement these rules are described in [6,10].

3 In Search of an Alternative Canonical Ordering

Double lex performs well [4], but we are not aware of work exploring similar-sized
sets of incomplete symmetry-breaking constraints derived from other canonical vari-
able orderings. In order to identify other useful canonical orderings we examine a large
number of small cases and test interesting candidates on benchmark problems. A lex
constraint of the form x1x2 . . . xm ≤lex y1y2 . . . ym consists of m pairs of variables.
We compare canonical orderings by counting the pairs remaining after reducing the en-
tire set of corresponding lex leader constraints by Rules 1, 2 and 3’. We hypothesize that
fewer remaining pairs will promote reduced search through more effective propagation.

We began by examining all 6! = 720 canonical variable orderings of a 2 × 3 matrix.
The algorithms described in [10] and [6] were used to reduce the lex constraints, and
the distribution of pairs remaining is shown in Fig. 1. The smallest number of pairs re-
maining after reduction was 15, which was obtained for 108 of the canonical orderings.
The ordering x11x21x22x12x13x23 reduces to 15 pairs and is interesting because it has
a regular form, and might therefore be expected to produce a regular set of incomplete
symmetry-breaking constraints equivalent to double lex. Standard row-wise ordering,
x11x12x13x21x22x23, resulted in 23 pairs, so by this measure is a poor ordering.

Fig. 1 also shows the results of a similar experiment for all 8! canonical orderings
of the 2 × 4 matrix. The ordering x11x21x22x12x13x23x24x14, the natural extension to
that identified in the 2 × 3 results, reduces to just 30 pairs (row-wise reduces to 109).

Fig. 1. Distribution of pairs remaining after reduction over all orderings for matrices with dimen-
sions 2 × 3 (left) , 2 × 4 (centre). Distribution (right) of pairs remaining after reductions for a
2 × 5 matrix on 100 random, columnwise snake and row-wise orderings.

394 A. Grayland, I. Miguel, and C.M. Roney-Dougal

In general this ordering is simple to describe: columnwise the ordering starts at the top-
left corner then moves down the column. It then moves to the neighbouring element in
the next column and then upwards. This pattern continues until all variables have been
listed. The row-wise snake variant is described similarly. We call this snake ordering.

We sampled 100 orderings of the 2 × 5 matrix, and also tested columnwise snake
and row-wise orderings. Figure 1 summarises the results, in which snake ordering again
proves to be one of the best measured by remaining pairs (reducing to 54 vs. 655 for
row-wise). To gain an indication of the importance of matrix dimension we compared
row-wise against snake ordering on a 3 × 3 matrix. In this case, the two orderings
produced much more similar results (reduction to 88 pairs for snake, 92 for row-wise),
suggesting that matrix dimension is significant. Nonetheless, our results suggest that
snake ordering is worth investigating further.

4 Snake Lex

Recall that double lex is derived by reducing a complete set of lex constraints with a
row-wise ordering. In this section, we derive a corresponding small, easily-described set
of constraints for the snake ordering, called snake lex. First we give a formal definition
of columnwise snake ordering. Row-wise snake ordering is defined similarly.

Definition 1. Let X = (xij)n×m be a matrix of variables. The columnwise snake or-
dering on variables is x11, x21, . . . , xn1, xn2, . . . , x12, . . . , x1m, . . . xnm, if m is odd,
and x11, x21, . . . , xn1, xn2, . . . , x12, . . . , xnm, . . . x1m if m is even. That is, snake or-
der on variables starts at row 1, column 1. It goes down the first column to the bottom,
then back up along the second column to the first row. It continues, alternating along
the columns until all variables have been ordered.

From the columnwise snake ordering, columnwise snake lex can be derived:

Definition 2. Let X (xij)n×m be a matrix of variables. The columnwise snake lex set
of constraints, C, is defined as follows. C contains 2m−1 column constraints, beginning

c1 x11x21 . . . xn1 ≤lex x12x22 . . . xn2

c2 x11x21 . . . xn1 ≤lex x13x23 . . . xn3

c3 xn2x(n−1)2 . . . x12 ≤lex xn3x(n−1)3 . . . x13

c4 xn2x(n−1)2 . . . x12 ≤lex xn4x(n−1)4 . . . x14

...

and finishing with

c2m−1 x1(m−1) . . . xn(m−1) ≤lex x1m . . . xnm

if m is odd and

c2m−1 xn(m−1) . . . x1(m−1) ≤lex xnm . . . xnm

Snake Lex: An Alternative to Double Lex 395

if m is even. C contains n − 1 row constraints. If m is odd then these are

r1 x11x22x13 . . . x1m ≤lex x21x12x23 . . . x2m

r2 x21x32x23 . . . x2m ≤lex x31x22x33 . . . x3m

...
rn−1 x(n−1)1 . . . x(n−1)m ≤lex xn1 . . . xnm.

If m is even then these are:

r1 x11x22x13 . . . x2m ≤lex x21x12x23 . . . x1m

r2 x21x32x23 . . . x3m ≤lex x31x22x33 . . . x2m

...
rn−1 x(n−1)1 . . . xnm ≤lex xn1 . . . x(n−1)m.

The following theorem shows that columnwise snake lex is derived from the column-
wise snake lex leader, and is therefore sound.

Theorem 1. The columnwise snake lex constraints are sound.

PROOF. We show that each constraint can be derived from a constraint in the full set of
lex leader constraints by applying Rule 1 and then using only a prefix.

In each case the left hand side of the unreduced lex leader constraint is
x11x21 . . . xn1xn2x(n−1)2 . . . x12x13 . . . xn3xn4 . . .

We first consider the column constraints, ck. First let k ≡ 1 mod 4 and a = (k + 1)/2.
The symmetry which swaps columns a and a + 1 and fixes everything else gives

Ax1ax2a . . . xnaB ≤lex Cx1(a+1)x2(a+1) . . . xn(a+1)D,

where A, B, C and D are strings of variables and A = C. Rule 1 removes A and C,
and then considering only the first n pairs gives constraint ck. If k ≡ 2 mod 4 then let
a = k/2, replace a + 1 by a + 2 on the right hand side, and apply the same argument.

Next let k ≡ 3 mod 4 and a = (k + 1)/2. The symmetry which swaps columns a
and a + 1 and fixes everything else gives a constraint of the form

Axnax(n−1)a . . . x1aB ≤
Cxn(a+1)x(n−1)(a+1) . . . x1(a+1)D,

where A, B, C and D are strings of variables and A = C. Again, using Rule 1 on
A and C, and then taking only a prefix gives constraint ck. If k ≡ 0 mod 4 then let
a = k/2, replace a + 1 by a + 2 on the right hand side, and apply the same argument.
Consider now the rows. There is a symmetry that interchanges rows a and a + 1 and
fixes everything else. The unreduced lex leader constraint for this symmetry is:

x11 . . . xa1x(a+1)1 . . . xn1xn2 . . . x(a+1)2xa2 . . . ≤lex

x11 . . . x(a+1)1xa1 . . . xn1xn2 . . . xa2x(a+1)2 . . .

Rule 1 deletes all pairs of the form (xij , xij) to obtain:

xa1x(a+1)1x(a+1)2xa2xa3x(a+1)3x(a+1)4xa4 . . . ≤lex

x(a+1)1xa1xa2x(a+1)2x(a+1)3xa3xa4x(a+1)4 . . .

396 A. Grayland, I. Miguel, and C.M. Roney-Dougal

Rule 1 simplifies xaix(a+1)i ≤lex x(a+1)ixai to xai ≤ x(a+1)i, and similarly for
x(a+1)ixai ≤ xaix(a+1)i, resulting in constraint rk:

xa1x(a+1)2xa3x(a+1)4 . . . ≤lex x(a+1)1xa2x(a+1)3xa4 . . .

Since each of the snake lex constraints is derived by first applying Rule 1 to a lex leader
constraint and then taking only a prefix, the snake lex constraints are sound. 	

There are similarities between the columnwise snake lex and double lex constraints on
columns. Columnwise snake lex constrains the first column to be less than or equal
to both the second and the third columns. It also constrains the reverse of the second
column to be less than or equal to the reverse of the third and fourth columns. This pat-
tern continues until the penultimate column is compared with the last. As an example,
consider a 4 × 3 matrix. Double lex constrains adjacent columns (left), while snake lex
produces the set of constraints on the columns on the right:

x11x21x31 ≤lex x12x22x32,
x12x22x32 ≤lex x13x23x33,
x13x23x33 ≤lex x14x24x34.

x11x21x31 ≤lex x12x22x32,
x11x21x31 ≤lex x13x23x33,
x32x22x12 ≤lex x33x23x13,
x32x22x12 ≤lex x34x24x14,
x13x23x33 ≤lex x14x24x34.

Generally, given m columns and n rows, double lex adds m−1 constraints on columns,
each with n pairs. Snake lex adds 2m−1 constraints on columns, each with n pairs. We
could increase the number of double lex constraints to the same number as snake lex by
allowing each column to be less than or equal to the column two to its right, however
lex-chain, which considers an entire set of rows or columns globally, has been shown to
perform no better than double lex in practice[1].

We next consider the rows. Double lex gives the following for our sample matrix:

x11x12x13x14 ≤lex x21x22x23x24,
x21x22x23x24 ≤lex x31x32x33x34.

The snake lex method is slightly more complicated, but gives the same number of con-
straints. We take the first two rows and zig zag between them to produce a string of
variables starting at row 1, column 1, and a second string starting at row 2, column 1.
We then constrain the first of these strings to be lexicographically less than or equal to
the second one. Next we produce a similar constraint between rows i and i +1 for all i.
The set of constraints for our 3 × 4 matrix are:

x11x22x13x24 ≤lex x21x12x23x14,
x21x32x23x34 ≤lex x31x22x33x24.

Generally, double lex and snake lex both add n− 1 row constraints, each with m pairs.
Thus far, we have considered columnwise snake ordering. We can also consider row-

wise snake ordering, which may be useful if, for example, the rows are more heavily
constrained (by the problem constraints) than the columns. To do so we simply trans-
pose the matrix and then order as before. The transpose of our example 3 × 4 matrix is
shown below (left), along with the corresponding constraints (right):

Snake Lex: An Alternative to Double Lex 397

x11 x21 x31

x12 x22 x32

x13 x23 x33

x14 x24 x34

x11x12x13x14 ≤lex x21x22x23x24,
x11x12x13x14 ≤lex x31x32x33x34,
x24x23x22x21 ≤lex x34x33x32x31,

x11x22x31 ≤lex x12x21x32,
x12x23x32 ≤lex x13x22x33,
x13x24x33 ≤lex x14x23x34.

Note that the double lex constraints do not change for this transposition, hence double
lex is insensitive to switching between a row-wise and columnwise search ordering.

5 Experimental Results

We used four benchmark problem classes to compare snake and double lex empirically.
All models used exhibit row and column symmetry. Preliminary experimentation re-
vealed the superiority of row-wise snake lex on the tested instances, which we therefore
used throughout. This is correlated with the rows being significantly longer than the
columns in 3 of 4 classes. For each class we carried out four experiments per instance.
We tested double lex and snake lex, each with row-wise and then snake static variable
heuristics, separating the effects of the search order from those of symmetry breaking.
Each time given is the mean of five trials and all results are presented in Fig. 2. The
solver used was MINION.

The first problem class studied is balanced incomplete block design (BIBD) [9], in
which b blocks and v objects must be related such that: each block contains k objects,
each object appears in r blocks, and each pair of objects must appear together in a block
λ times. We use the standard model, a v × b 0/1 matrix, with columns summing to k,
rows summing to r, and the scalar product of every pair of rows equal to λ. Note that the
parameters v, k and λ of the BIBD fix the values of b and r. Results show that snake lex
outperforms double lex in every tested case. Where it was possible to find all solutions,
snake lex both reduces search and breaks more symmetry (finds fewer symmetrically-
equivalent solutions). The single solution cases show a speed up over double lex of
several orders of magnitude, possibly due to interaction with the λ constraint.

The second problem class is the equidistant frequency permutation array problem
(EFPD) [8], which is to find a set of c codewords drawn from q symbols such that each
symbol occurs λ times in each codeword and the hamming distance between every pair
of codewords is d. Our model [8] is a c× qλ matrix of variables with domain {1, ..., d}.
In order to give a fair comparison between the four combinations of search order and
lex constraints, we picked six instances with no solutions. This means that we are not
examining the case where we did best in the previous experiment, that of finding the first
solution, but instead exhausting the search space. Solve time decreases by around 30%
when the lex method is changed from double to snake lex, and then by a further 30%
when the search order is changed to snake. Notice also that the search time increases
when double lex is used in conjunction with the snake order, suggesting both that it
is important for the search order to mirror the constraints, and that it is the snake lex
constraints that are causing the improved solve times.

The third problem class is the fixed length error correcting codes (FLECC) [7] prob-
lem, which is to find d length-q codewords drawn from 4 symbols such that the Lee

398 A. Grayland, I. Miguel, and C.M. Roney-Dougal

BIBD:

Lex: Double Snake
Search: Row Snake Row Snake
(v, k, λ)
(7, 3, 5) 8.02,600557 8.38,606002 6.79,490784 6.78,455984
(7, 3, 6) 70.47,4979664 75.86,4321932 55.87,3984264 50.47,3448478

(7, 3, 20) 0.52,17235 0.47,15010 0.04,577 0.02,321
(7, 3, 30) 2.80,67040 2.53,60600 0.05,754 0.02,481
(7, 3, 40) 9.14,182970 8.58,168915 0.05,1063 0.03,641
(7, 3, 45) 16.09,278310 14.94,258860 0.06,1526 0.03,721
(7, 3, 50) 25.11,406525 23.70,380455 0.08,1671 0.05,801

EFPD:

Lex: Double Snake
Search: Row Snake Row Snake

(q, λ, d, c)
(3, 3, 5, 9) 4.1,164755 4.3,174677 3.6,120106 2.9,110666
(3, 4, 5, 9) 26.1,941061 27.1,1127011 15.9,537270 11.5,448329

(3, 5, 5, 10) 45.9,1556198 53.5,1841688 29.6,855950 20.0,678540
(3, 6, 5, 10) 68.9,2064850 76.8,2439205 39.7,1046091 27.4,811734
(3, 7, 5, 11) 94.5,2496190 103.0,2890581 54.5,1194583 35.0,910269
(3, 8, 5, 12) 124.6,2756291 123.4,3187617 71.0,1337286 43.1,1003119

FLECC:

Lex: Double Snake
Search: Row Snake Row Snake
(q, d, c)
(9, 5, 5) 23.34,662995 8.23,199720 13.09,293735 0.83,19817

(8, 6, 4) 0.73,5607 0.74,6122 0.53,6850 0.52,6359
(15, 5, 22) 0.77,15100 0.72,15136 0.41,8235 0.39,8205
(20, 5, 30) 3.28,51216 3.28,51223 1.31,19601 1.30,19603
(25, 5, 40) 3.88,49030 4.00,49002 1.44,17558 1.42,17600
(30, 5, 50) 4.56,49175 4.83,49112 1.86,17668 1.70,17750

Howell:

Lex: Double Snake Nodes
Search: Row Snake Row Snake All
(s, n)
(4, 9) 0.98 0.97 1.19 1.23 60,799
(5, 11) 28.18 27.22 29.65 30.27 3,557,740
(6, 13) 1148.3 1153.8 1179.6 1196.2 231,731,046

Fig. 2. Double vs. row-wise snake lex, with both row and snake search ordering. BIBD & FLECC:
searches above double line are for all solutions, remainder for one solution. Format: (time(s),
nodes), except Howell, where nodes uniform throughout.

distance (see cited paper for definition, or CSPLib 36) between every pair of codewords
is c. Our model [7] uses a d × q matrix, with each of q symbols appearing once in each
row, and Lee distance c between each pair of rows. As with the BIBD test case both all
solution and single solution problems were tested. Results show a speedup of almost
two orders of magnitude in the all solution case. In the all solutions case, snake lex
(with either order) requires on average less than half the time that the double lex with
row-wise order uses, and the speedup seems to be increasing with instance size.

The final experiment involved solving the Howell design [2] problem. A Howell
design is an s by s matrix M , whose coefficients are unordered pairs of symbols from a
set S of size n. Each of the n(n− 1)/2 pairs occurs at most once. Every row and every
column of M contain at least one copy of every symbol from S. There exists an empty
symbol which can be used as many times as necessary, provided all other constraints
are met. Three unsolvable instances were tested. Results show that, in this case, snake
lex is slightly slower than double lex. One reason for this could be that Howell Designs
are square (cf. Section 3). Note, however, that the nodes taken is the same throughout.

Snake Lex: An Alternative to Double Lex 399

The extra time taken could therefore simply be due to the overhead incurred by snake
lex adding a slightly larger number of constraints than double lex.

6 Discussion

This paper highlights the need for further investigation into incomplete row and column
symmetry breaking. We have demonstrated that double lex can be outperformed by
snake lex in many instances and indeed, there may be another variable ordering that can
create a small set of constraints capable of beating both. Future research will investigate
the production on the fly of tailored sets of lex constraints, depending on a variable
ordering specified by a modeler. The initial direction of future work will be to examine
the other lex leaders found to have a small number of pairs upon reduction comparing
them to both double lex and the snake lex and to investigate whether the shape of the
matrix affects solve times, particularly with square matrices.

Acknowledgements. A. Grayland is supported by a Microsoft Research EPSRC CASE
studentship. I. Miguel is supported by a Royal Academy of Engineering/EPSRC Re-
search Fellowship. C. M. Roney-Dougal is partially supported by EPSRC grant number
EP/C523229/1.

References

1. Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering con-
straints. Technical Report T2002-18, SICS (2002)

2. Colbourn, C.J., Dinitz, J.H.: The CRC Handbook of Combinatorial Designs. CRC Press, Inc.,
Florida (1996)

3. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for search
problems. In: Proc. KR, pp. 148–159 (1996)

4. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking
row and column symmetries in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 462–476. Springer, Heidelberg (2002)

5. Frisch, A.M., Harvey, W.: Constraints for breaking all row and column symmetries in a three-
by-two-matrix. In: Proc. Symcon (2003)

6. Grayland, A., Jefferson, C., Miguel, I., Roney-Dougal, C.: Minimal ordering constraints for
some families of variable symmetries. Annals Math. A. I. (to appear, 2009)

7. Hammons, A.R., Vijay Kumar, P., Calderbank, A.R., Sloane, N.J.A., Sol, P.: The z 4 -linearity
of kerdock, preparata, goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–
319 (1994)

8. Huczynska, S.: Equidistant frequency permutation arrays and related constant composition
codes. Circa Preprint 2009/2 (2009)

9. Meseguer, P., Torras, C.: Solving strategies for highly symmetric csps. In: IJCAI, pp. 400–
405 (1999)

10. Öhrman, H.: Breaking symmetries in matrix models. MSc Thesis, Dept. Information Tech-
nology, Uppsala University (2005)

11. Smith, B.M.: Sets of Symmetry Breaking Constraints. In: Proceedings of SymCon 2005, the
5th International Workshop on Symmetry in Constraints (2005)

	Snake Lex: An Alternative to Double Lex
	Introduction
	Background
	In Search of an Alternative Canonical Ordering
	Snake Lex
	Experimental Results
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

