

Lecture Notes in Computer Science 5732
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ian P. Gent (Ed.)

Principles and Practice
of Constraint
Programming – CP 2009

15th International Conference, CP 2009
Lisbon, Portugal, September 20-24, 2009
Proceedings

13

Volume Editor

Ian P. Gent
University of St. Andrews
School of Computer Science
North Haugh, St Andrews
Fife KY16 9SX, Scotland, UK
E-mail: ipg@cs.st-andrews.ac.uk

Library of Congress Control Number: 2009933414

CR Subject Classification (1998): D.1.6, D.3, F.3, G.2, D.3.2, F.4.1, G.1.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-04243-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04243-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12753741 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at CP 2009: The 15th International
Conference on Principles and Practice of Constraint Programming. It was held
from September 20–24, 2009 at the Rectory of the New University of Lisbon,
Portugal. Everyone involved with the conference thanks our sponsors for their
support.

There were 128 submissions to the research track, of which 53 were accepted
for a rate of 41.4%. Each submission was reviewed by three reviewers, with a
small number of additional reviews obtained in exceptional cases. Each review
was either by a Programme Committee member, or by a colleague invited to help
by a committee member thanks to their particular expertise. Papers submitted
as long papers were accepted at full length or not at all. It is important to note
that papers submitted as short papers were held to the same high standards of
quality as long papers. There is thus no distinction in these proceedings between
long and short papers, except of course the number of pages they occupy. As it
happens, the acceptance rates of short and long papers were very similar indeed.

There were 13 submissions to the application track, of which 8 were accepted,
for a rate of 61.5%. Papers underwent the same review process as regular papers,
and there was not a separate committee for reviewing application track papers.
However, papers in the application track were not required to be original or
novel research, but to be original and novel as an application of constraints.

The programme included three invited talks from distinguished scientists,
Carla Gomes, Philippe Baptiste, and Barbara Smith. They have each provided
a brief abstract of their talk. Additionally, three tutorials were given during the
main programme. Affiliated workshops were held on September 20, 2009. Details
of tutorials and workshops are given on a separate page.

To help with the review process and constructing the proceedings, I used the
EasyChair conference management system. On another issue of process, while
I did not submit any papers myself to the conference, a number of colleagues
from St Andrews University did. I thank Fahiem Bacchus for overseeing these
papers, assigning PC members and making final decisions on them.

I would like to thank the Association for Constraint Programming for invit-
ing me to be Programme Chair of this conference. A conference proceedings
such as this is the work of literally hundreds of people, including authors, Pro-
gramme Committee, local organizers, tutorial and workshop chairs, the doctoral
programme chairs, and additional reviewers. I would like to thank all of them
for their hard work, especially remembering those authors of papers which were
rejected.

Apart from all those who have played some formal role, many people have
provided special help with a lot of the day-to-day, and often dull, tasks that
arise while preparing the proceedings. For this, I would especially like to thank

VI Preface

Chris Jefferson, Lars Kotthoff, Angela Miguel, Ian Miguel, Neil Moore, Peter
Nightingale, Karen Petrie, Andrea Rendl, and Judith Underwood.

July 2009 Ian Gent

Prize-Winning Papers

A small number of colleagues from the Programme Committee helped me decide
on the papers deserving of being recognized as of the highest standard of those
submitted. As well as prizes, a small number of other papers were designated as
runners-up.

– Ian Gent

Best Paper (Application Track)

A Hybrid Constraint Model for the Routing and Wavelength Assignment Prob-
lem, by Helmut Simonis

Best Paper (Research Track)

Edge Finding Filtering Algorithm for Discrete Cumulative Resources in
O(kn log n), by Petr Viĺım

Runners-Up (in alphabetical order)

– Conflict Resolution, by Konstantin Korovin, Nestan Tsiskaridze, Andrei
Voronkov

– Failed Value Consistencies for Constraint Satisfaction, by Christophe
Lecoutre, Olivier Roussel

– On the Power of Clause-Learning SAT Solvers with Restarts, by Knot Pi-
patsrisawat, Adnan Darwiche

Best Student Paper1

On the Power of Clause-Learning SAT Solvers with Restarts, by Knot Pipatsri-
sawat, Adnan Darwiche

Runner-Up

– Using Relaxations in Maximum Density Still Life, by Geoffrey Chu, Peter
Stuckey, Maria Garcia de la Banda

1 Student papers were those papers declared by the authors to be mainly the work
(both in research and writing) of PhD or other students.

Workshops and Tutorials

Workshops

A range of workshops affiliated with the conference took place the day before
the main conference, on September 20, 2009. The workshops accepted by the
Workshop Chairs were as follows:

– Bin Packing and Placement Constraint (BPPC 2009)
– Local Search Techniques in Constraint Satisfaction (LSCS 2009)
– Mathematical Foundations of Constraint Programming
– Constraint Modelling and Reformulation (ModRef 2009)
– Symmetry and Constraint Satisfaction Problems (SymCon 2009)
– Interval Analysis and Constraint Propagation for Applications (IntCP 2009)
– Constraint-Based Methods for Bioinformatics (WCB 2009)
– Constraint Reasoning and Optimization for Computational Sustainability

(CROCS 2009)

Tutorials

Three tutorial presentations were given during the main programme of the con-
ference. These were as follows:

– Amortized and Expected Case Analysis of Constraint Propagation Algorithms,
by Chris Jefferson, Meinolf Sellmann

– Soft Global Constraints, by Willem-Jan van Hoeve
– Exploiting Fixed-Parameter Tractability in Satisfiability and Constraint Sat-

isfaction, by Barry O’Sullivan and Igor Razgon

Conference Organization

Programme Chair

Ian Gent University of St Andrews, UK

Conference Chair

Pedro Barahona New University of Lisbon, Portugal

Tutorial and Workshop Chairs

Ian Miguel University of St Andrews, UK
Patrick Prosser University of Glasgow, UK

Doctoral Programme Chairs

Karen Petrie University of Oxford, UK
Olivia Smith University of Melbourne, Australia

Publicity Chair

Francisco Azevedo New University of Lisbon, Portugal

Sponsorship Chair

Jorge Cruz New University of Lisbon, Portugal

Organizing Committee

Inês Lynce Technical University of Lisbon, Portugal
Vasco Manquinho Technical University of Lisbon, Portugal
Ludwig Krippahl New University of Lisbon, Portugal

Sponsors
ACP - Association for Contraint Programming
NICTA - National Information and Communications Technology Australia
FCT - Foundation for Science and Technology
CENTRIA - Centre for Artificial Intelligence
APPIA - Portuguese Association for Artificial Intelligence

XII Organization

4C - Cork Constraint Computation Centre
TAP - Air Portugal
Widescope: Optimization Solutions

Programme Committee

Fahiem Bacchus University of Toronto, Canada
Pedro Barahona New University of Lisbon, Portugal
Peter van Beek University of Waterloo, Canada
Frédéric Benhamou University of Nantes, France
Christian Bessiere Université Montpellier, CNRS, France
Lucas Bordeaux Microsoft Research, Cambridge, UK
Ken Brown University College Cork, Ireland
Andrei Bulatov Simon Fraser University, Canada
Mats Carlsson Swedish Institute of Computer Science,

Sweden
Hubie Chen Universitat Pompeu Fabra, Spain
Martin Cooper University of Toulouse, France
Victor Dalmau Universitat Pompeu Fabra, Spain
Jeremy Frank NASA, USA
Enrico Giunchiglia Università di Genova, Italy
Simon de Givry INRA Biometrics and Artificial Intelligence,

France
Alexandre Goldsztejn Centre National de la Recherche Scientifique,

France
Brahim Hnich IEU, Turkey
Christopher Jefferson University of St Andrews, UK
Ulrich Junker ILOG, France
Jimmy Lee The Chinese University of Hong Kong
Ines Lynce Technical University of Lisbon, Portugal
Felip Manya IIIA-CSIC, Spain
Joao Marques-Silva University College Dublin, Ireland
Pedro Meseguer IIIA-CSIC, Spain
Ian Miguel University of St Andrews, UK
Michela Milano Università di Bologna, Italy
David Mitchell Simon Fraser University, Canada
Barry O’Sullivan University College Cork, Ireland
Patrick Prosser University of Glasgow, UK
Claude-Guy Quimper Google, Canada
Ashish Sabharwal Cornell University, USA
Meinolf Sellmann Brown University, USA
Paul Shaw, ILOG France
Kostas Stergiou University of the Aegean, Greece

Organization XIII

Peter Stuckey University of Melbourne, Australia
Michael Trick Carnegie Mellon University, USA
Kristen Brent Venable University of Padova, Italy
Gérard Verfaillie ONERA, France
Mark Wallace Monash University, Australia
Toby Walsh NICTA and UNSW, Australia
Roland Yap National University of Singapore, Singapore
Weixiong Zhang Washington University in St. Louis, USA

Additional Reviewers

Magnus Ågren
Josep Argelich
Francisco Azevedo
Yoram Bachrach
Thanasis Balafoutis
Mauro Bampo
Ralph Becket
Ramon Bejar
Nicolas Beldiceanu
Stefano Bistarelli
Eric Bourreau
Simone Bova
Sebastian Brand
Pascal Brisset
Hadrien Cambazard
Catarina Carvalho
Martine Ceberio
Kenil C.K. Cheng
Raphael Chenouard
Marc Christie
David Cohen
Remi Coletta
Marco Correia
Jorge Cruz
Jessica Davies
Renaud Dumeur
Redouane Ezzahir
Helene Fargier
Thibaut Feydy
Raphael Finkel
Pierre Flener
Jeremy Frank
Marco Gavanelli
Mirco Gelain

Laurent Granvilliers
Andrew Grayland
Diarmuid Grimes
Yunsong Guo
Tarik Hadzic
Fang He
Emmanuel Hebrard
Martin Henz
Willem Jan van Hoeve
Alan Holland
Eric Hsu
Ruoyun Huang
Frank Hutter
Dejan Jovanović
Valentine Kabanets
Serdar Kadioglu
George Katsirelos
Tom Kelsey
Emil Keyder
Zeynep Kiziltan
Lars Kotthoff
Lukas Kroc
Philippe Laborie
Arnaud Lallouet
Javier Larrosa
Christophe Lecoutre
Ho-fung Leung
Olivier Lhomme
Chu-Min Li
Wenkai Li
Wei Li
Chavalit Likitvivatanavong
Lengning Liu
Michele Lombardi

XIV Organization

Yuri Malitsky
Marco Maratea
Paolo Marin
Carles Mateu
Eric Monfroy
Neil Moore
Massimo Narizzano
Nina Narodytska
Jorge Navas
Bertrand Neveu
Peter Nightingale
Gustav Nordh
Alexandre Papadopoulos
Karen Petrie
Maria Silvia Pini
Jordi Planes
Steven Prestwich
Anthony Przybylski
Riccardo Pucella
Luca Pulina
Luis Quesada
Igor Razgon
Pierre Regnier
Andrea Rendl
Juan Antonio Rodŕıguez-Aguilar
Andrea Roli
Emma Rollon
Emanuele Di Rosa
Francesca Rossi

Tyrel Russell
Andras Salamon
Horst Samulowitz
Frédéric Saubion
Thomas Schiex
Joachim Schimpf
Christian Schulte
Charles F.K. Siu
Evgeny Skvortsov
Barbara Smith
Paul Strooper
Guido Tack
Eugenia Ternovska
Kevin Tierney
Guillaume Verger
Petr Viĺım
Richard Wallace
Philipp Weis
Tomas Werner
Mark Weyer
Christoph Wintersteiger
May H.C. Woo
Michal Wrona
William Yeoh
Makoto Yokoo
Evangeline Young
Alessandro Zanarini
Standa Zivny

Association for Constraint Programming

The Association for Constraint Programming aims at promoting constraint pro-
gramming in every aspect of the scientific world, by encouraging its theoretical
and practical developments, its teaching in academic institutions, its adoption
in the industrial world, and its use in application fields.

The ACP is a non-profit association, which uses the profit of the organized
events to support future events or activities. At any given time, members of the
ACP are all attendees of a CP conference in the past five years, and all members
of the Programme Committee of the current CP conference.

Executive Committee

President: Barry O’Sullivan (Elected 2008-2012, President until the end of
2009)

Secretary: Jimmy H.M. Lee (Elected 2006-2009, Secretary until end of 2009)
Treasurer: Thomas Schiex (Elected 2007-2010, Treasurer until end of 2009)
Conference Coordinator: Pedro Meseguer (Elected 2007-2010, Conference

coordinator until end of 2009)
Other Members:

– Christian Bessiere (Non-Elected Member 2007-2009, Programme Chair
of CP2007)

– John Hooker (Elected 2008-2012)
– Karen Petrie (Elected 2008-2012)
– Christian Schulte (Elected 2006-2009)
– Peter Stuckey (Elected 2006-2012)
– Michael Trick (Elected 2006-2009)
– Roland Yap (Elected 2008-2012)

Table of Contents

Invited Talks

Constraint-Based Schedulers, Do They Really Work? 1
Philippe Baptiste

Challenges for Constraint Reasoning and Optimization in
Computational Sustainability . 2

Carla P. Gomes

Observations on Symmetry Breaking . 5
Barbara M. Smith

Application Track Papers

Generating Optimal Stowage Plans for Container Vessel Bays 6
Alberto Delgado, Rune Møller Jensen, and Christian Schulte

Real-Time Tabu Search for Video Tracking Association 21
Ivan Dotu, Pascal Van Hentenryck, Miguel A. Patricio, A. Berlanga,
Jose Garćıa, and Jose M. Molina

Pin Assignment Using Stochastic Local Search Constraint
Programming . 35

Bella Dubrov, Haggai Eran, Ari Freund, Edward F. Mark,
Shyam Ramji, and Timothy A. Schell

Modelling Equidistant Frequency Permutation Arrays: An Application
of Constraints to Mathematics . 50

Sophie Huczynska, Paul McKay, Ian Miguel, and Peter Nightingale

Scheduling the CB1000 Nanoproteomic Analysis System with Python,
Tailor, and Minion . 65

Andrew Loewenstern

Solving Nurse Rostering Problems Using Soft Global Constraints 73
Jean-Philippe Métivier, Patrice Boizumault, and Samir Loudni

Online Selection of Quorum Systems for RAMBO Reconfiguration 88
Laurent Michel, Martijn Moraal, Alexander Shvartsman,
Elaine Sonderegger, and Pascal Van Hentenryck

A Hybrid Constraint Model for the Routing and Wavelength
Assignment Problem . 104

Helmut Simonis

XVIII Table of Contents

Research Track Papers

Memoisation for Constraint-Based Local Search . 119
Magnus Ågren

On the Structure of Industrial SAT Instances . 127
Carlos Ansótegui, Maŕıa Luisa Bonet, and Jordi Levy

A Gender-Based Genetic Algorithm for the Automatic Configuration
of Algorithms . 142

Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney

Filtering Numerical CSPs Using Well-Constrained Subsystems 158
Ignacio Araya, Gilles Trombettoni, and Bertrand Neveu

Minimising Decision Tree Size as Combinatorial Optimisation 173
Christian Bessiere, Emmanuel Hebrard, and Barry O’Sullivan

Hull Consistency under Monotonicity . 188
Gilles Chabert and Luc Jaulin

A Constraint on the Number of Distinct Vectors with Application to
Localization . 196

Gilles Chabert, Luc Jaulin, and Xavier Lorca

Approximating Weighted Max-SAT Problems by Compensating for
Relaxations . 211

Arthur Choi, Trevor Standley, and Adnan Darwiche

Confidence-Based Work Stealing in Parallel Constraint Programming . . . 226
Geoffrey Chu, Christian Schulte, and Peter J. Stuckey

Minimizing the Maximum Number of Open Stacks by Customer
Search . 242

Geoffrey Chu and Peter J. Stuckey

Using Relaxations in Maximum Density Still Life . 258
Geoffrey Chu, Peter J. Stuckey, and Maria Garcia de la Banda

Constraint-Based Graph Matching . 274
Vianney le Clément, Yves Deville, and Christine Solnon

Constraint Representations and Structural Tractability 289
David A. Cohen, Martin J. Green, and Chris Houghton

Asynchronous Inter-Level Forward-Checking for DisCSPs 304
Redouane Ezzahir, Christian Bessiere, Mohamed Wahbi,
Imade Benelallam, and El Houssine Bouyakhf

From Model-Checking to Temporal Logic Constraint Solving 319
François Fages and Aurélien Rizk

Table of Contents XIX

Exploiting Problem Structure for Solution Counting 335
Aurélie Favier, Simon de Givry, and Philippe Jégou

Solving a Location-Allocation Problem with Logic-Based Benders’
Decomposition . 344

Mohammad M. Fazel-Zarandi and J. Christopher Beck

Lazy Clause Generation Reengineered . 352
Thibaut Feydy and Peter J. Stuckey

The Proper Treatment of Undefinedness in Constraint Languages 367
Alan M. Frisch and Peter J. Stuckey

Search Spaces for Min-Perturbation Repair . 383
Alex S. Fukunaga

Snake Lex: An Alternative to Double Lex . 391
Andrew Grayland, Ian Miguel, and Colva M. Roney-Dougal

Closing the Open Shop: Contradicting Conventional Wisdom 400
Diarmuid Grimes, Emmanuel Hebrard, and Arnaud Malapert

Reasoning about Optimal Collections of Solutions . 409
Tarik Hadžić, Alan Holland, and Barry O’Sullivan

Constraints of Difference and Equality: A Complete Taxonomic
Characterisation . 424

Emmanuel Hebrard, Dániel Marx, Barry O’Sullivan, and Igor Razgon

Synthesizing Filtering Algorithms for Global Chance-Constraints 439
Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and
Steven Prestwich

An Interpolation Method for CLP Traversal . 454
Joxan Jaffar, Andrew E. Santosa, and Răzvan Voicu

Same-Relation Constraints . 470
Christopher Jefferson, Serdar Kadioglu, Karen E. Petrie,
Meinolf Sellmann, and Stanislav Živný

Dialectic Search . 486
Serdar Kadioglu and Meinolf Sellmann

Restricted Global Grammar Constraints . 501
George Katsirelos, Sebastian Maneth, Nina Narodytska, and
Toby Walsh

Conflict Resolution . 509
Konstantin Korovin, Nestan Tsiskaridze, and Andrei Voronkov

XX Table of Contents

Propagator Groups . 524
Mikael Z. Lagerkvist and Christian Schulte

Efficient Generic Search Heuristics within the EMBP Framework 539
Ronan Le Bras, Alessandro Zanarini, and Gilles Pesant

Failed Value Consistencies for Constraint Satisfaction 554
Christophe Lecoutre and Olivier Roussel

A Precedence Constraint Posting Approach for the RCPSP with Time
Lags and Variable Durations . 569

Michele Lombardi and Michela Milano

SOGgy Constraints: Soft Open Global Constraints 584
Michael J. Maher

Exploiting Problem Decomposition in Multi-objective Constraint
Optimization . 592

Radu Marinescu

Search Space Extraction . 608
Deepak Mehta, Barry O’Sullivan, Luis Quesada, and Nic Wilson

Coalition Structure Generation Utilizing Compact Characteristic
Function Representations . 623

Naoki Ohta, Vincent Conitzer, Ryo Ichimura, Yuko Sakurai,
Atsushi Iwasaki, and Makoto Yokoo

Compiling All Possible Conflicts of a CSP . 639
Alexandre Papadopoulos and Barry O’Sullivan

On the Power of Clause-Learning SAT Solvers with Restarts 654
Knot Pipatsrisawat and Adnan Darwiche

Slice Encoding for Constraint-Based Planning . 669
Cédric Pralet and Gérard Verfaillie

Evolving Parameterised Policies for Stochastic Constraint
Programming . 684

Steven Prestwich, S. Armagan Tarim, Roberto Rossi, and
Brahim Hnich

Maintaining State in Propagation Solvers . 692
Raphael M. Reischuk, Christian Schulte, Peter J. Stuckey, and
Guido Tack

Cost-Driven Interactive CSP with Constraint Relaxation 707
Yevgeny Schreiber

Table of Contents XXI

Weakly Monotonic Propagators . 723
Christian Schulte and Guido Tack

Constraint-Based Optimal Testing Using DNNF Graphs 731
Anika Schumann, Martin Sachenbacher, and Jinbo Huang

Why Cumulative Decomposition Is Not as Bad as It Sounds 746
Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and
Mark G. Wallace

On Decomposing Knapsack Constraints for Length-Lex Bounds
Consistency . 762

Meinolf Sellmann

Realtime Online Solving of Quantified CSPs . 771
David Stynes and Kenneth N. Brown

Constraint-Based Local Search for the Automatic Generation of
Architectural Tests . 787

Pascal Van Hentenryck, Carleton Coffrin, and Boris Gutkovich

Edge Finding Filtering Algorithm for Discrete Cumulative Resources
in O(kn log n) . 802

Petr Viĺım

Evaluation of Length-Lex Set Variables . 817
Justin Yip and Pascal Van Hentenryck

The Complexity of Valued Constraint Models . 833
Stanislav Živný and Peter G. Jeavons

Author Index . 843

Constraint-Based Schedulers, Do They Really
Work?

Philippe Baptiste

CNRS LIX, Ecole Polytechnique,
91128 Palaiseau, France

Philippe.Baptiste@polytechnique.fr

Constraint programming has been widely applied in the area of scheduling, en-
abling the implementation of flexible scheduling systems. Over the last ten years,
the flexibility offered by CP has been combined with the efficiency of specialized
Operations Research algorithms. As a result, CP tools dedicated to scheduling
are now claimed to be fast, efficient and easy to use.

In this talk, I will show that this claim is partially true and that, indeed,
constraint-based schedulers behave very well on a rather large class of problems.
However, there are several scheduling situations in which CP does not work. I will
try to indentify the key ingredients that make scheduling problems hard for CP. I
will also introduce new mixed integer formulations that could compete/cooperate
with CP for such problems.

I.P. Gent (Ed.): CP 2009, LNCS 5732, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Challenges for Constraint Reasoning and
Optimization in Computational Sustainability

Carla P. Gomes

Cornell University
Ithaca, NY, USA

gomes@cs.cornell.edu

Abstract. Computational Sustainability is a new emerging research
field with the overall goal of studying and providing solutions to com-
putational problems for balancing environmental, economic, and societal
needs for a sustainable future. I will provide examples of challenge prob-
lems in Computational Sustainability, ranging from wildlife preservation
and biodiversity, to balancing socio-economic needs and the environment,
to large-scale deployment and management of renewable energy sources,
highlighting overarching computational themes in constraint reasoning
and optimization and interactions with machine learning, and dynam-
ical systems. I will also discuss the need for a new approach to study
such challenging problems in which computational problems are viewed
as “natural” phenomena, amenable to a scientific methodology in which
principled experimentation, to explore problem parameter spaces and
hidden problem structure, plays as prominent a role as formal analysis.

Extended Abstract

Humanity’s use of Earth’s resources is threatening our planet and the liveli-
hood of future generations. The dramatic growth in our use of natural resources
over the past century is reaching alarming levels. Our Common Future [3], the
seminal report of the United Nations World Commission on Environment and
Development, published in 1987, raised environmental concerns and introduced
the notion of sustainable development: “development that meets the needs of
the present without compromising the ability of future generations to meet their
needs.” Our Common Future also stated the urgency of policies for sustainable
development. The United Nations Environment Program in its fourth Global
Environmental Outlook report published in October of 2007 [4] and the United
Nations Intergovernmental Panel on Climate Change (IPCC) [2] reiterated the
concerns raised in Our Common Future. For example, the fourth Global Envi-
ronmental Outlook report stated that “there are no major issues raised in Our
Common Future for which the foreseeable trends are favorable” [4].

Key sustainability issues translate into decision making and policy making
problems concerning the management of our natural resources involving signifi-
cant computational challenges that fall into the realm of computing and informa-
tion science and related discilines, even though in general they are not studied

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 2–4, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Challenges for Constraint Reasoning and Optimization 3

by researchers in those disciplines. In fact, the impact of modern information
technology has been highly uneven, mainly benefiting large firms in profitable
sectors, with little or no benefit in terms of the environment. It is therefore im-
perative and urgent that we turn our attention to computational problems that
arise in the context of the environment and the way we use our natural resources.

Our vision is that computer scientists can — and should — play a key role
in increasing the efficiency and effectiveness of the way we manage and allocate
our natural resources. Furthermore, we argue for the establishment of critical
mass in the new emerging field of Computational Sustainability. Computational
Sustainability is an interdisciplinary field that aims to apply techniques from
computer science and related fields, namely information science, operations re-
search, applied mathematics, and statistics, to balance environmental, economic,
and societal needs for sustainable development. The range of problems that fall
under Computational Sustainability is rather wide, encompassing computational
challenges in disciplines as diverse as ecology, natural resources, atmospheric sci-
ence, and biological and environmental engineering. Research in Computational
Sustainability is therefore necessarily an interdisciplinary endeavor, where sci-
entists with complementary skills must work together in a collaborative process.
The focus of Computational Sustainability is on developing computational and
mathematical models, methods, and tools for decision making concerning the
management and allocation of resources for sustainable development.

In this talk I will provide examples of computational sustainability challenge
domains ranging from wildlife preservation and biodiversity, to balancing socio-
economic needs and the environment, to large-scale deployment and management
of renewable energy sources. I will discuss how computational sustainability prob-
lems offer challenges but also opportunities for the advancement of the state of the
art of computing and information science and related fields, highlighting some
overarching computational themes in constraint reasoning and optimization, ma-
chine learning, and dynamical systems. I will also discuss the need for a new ap-
proach to study such challenging problems in which computational problems are
viewed as “natural” phenomena, amenable to a scientific methodology in which
principled experimentation, to explore problem parameter spaces and hidden
problem structure, plays as prominent a role as formal analysis [1]. Such an ap-
proach differs from the traditional computer science approach, based on abstract
mathematical models, mainly driven by worst-case analyses. While formulations
of real-world computational tasks lead frequently to worst-case intractable prob-
lems, often such real world tasks contain hidden structure enabling scalable meth-
ods. It is therefore important to develop new approaches to identify and exploit
real-world structure, combining principled experimentation with mathematical
modeling, that will lead to scalable and practically effective solutions.

In summary, the new field of Computational Sustainability brings together
computer scientists, operation researchers, applied mathematicians, biologists,
environmental scientists, and economists, to join forces to study and provide so-
lutions to computational problems concerning sustainable development, offering

4 C.P. Gomes

challenges but also opportunities for the advancement of the state of the art of
computing and information science and related fields.

Acknowledgments

The author is the lead Principal Investigator of an NSF Expedition in Computing
grant on Computational Sustainability (Award Number: 0832782). The author
thanks the NSF Expeditions in Computing grant team members for their many
contributions towards the development of a vision for Computational Sustain-
ability, in particular, Chris Barrett, Antonio Bento, Jon Conrad, Tom Dietterich,
John Gunckenheimer, John Hopcroft, Ashish Sabharwhal, Bart Selman, David
Shmoys, Steve Strogatz, and Mary Lou Zeeman.

References

[1] Gomes, C., Selman, B.: The science of constraints. Constraint Programming Let-
ters 1(1) (2007)

[2] IPCC. Fourth assessment report (AR4). Technical report, United Nations Inter-
governmental Panel on Climate Change, IPCC (2007)

[3] UNEP. Our common future. Published as annex to the General Assembly document
A/42/427, Development and International Cooperation: Environment. Technical
report, United Nations Environment Programme, UNEP (1987)

[4] UNEP. Global environment outlook 4 (GEO4). Technical report, United Nations
Environment Programme, UNEP (2007)

Observations on Symmetry Breaking

Barbara M. Smith

School of Computing, University of Leeds
Leeds LS2 9JT

United Kingdom
b.m.smith@leeds.ac.uk

A common way to exploit symmetry in constraint satisfaction problems is to
transform the symmetric CSP instance by adding constraints in such a way
the new CSP has at least one solution from each symmetry equivalence class of
solutions in the original CSP, and ideally only one. Crawford, Ginsberg, Luks and
Roy, in a 1996 paper, gave a standard procedure for deriving so-called lex-leader
constraints in SAT problems that has subsequently been adapted for the general
CSP, principally for variable symmetries. The lex-leader constraint for a given
element of the symmetry group excludes any solution that is lexicographically
larger than its symmetric equivalent, given a ordering of the variables of the
CSP instance.

Ensuring that there is only one solution in the transformed CSP instance for
every symmetry equivalence class requires in principle a lex-leader constraint
for every element of the symmetry group. Where it is impracticable to generate
so many constraints, we can resort to partial symmetry breaking, and generate
constraints for only a subset of the symmetry group.

Partial symmetry breaking using lex-leader constraints requires us to choose
a subset of the symmetries: I discuss which symmetries might lead to the best
symmetry-breaking constraints. Moreover, a balance has to be struck. The more
constraints we construct, the fewer solutions there will be to the reduced CSP
instance and the less search we can expect to do to solve it, but at the same
time, more constraints mean longer propagation time. For some example CSPs,
I show where the best balance between less search and longer run-time seems to
lie. In constructing lex-leader constraints, we have to choose a variable ordering
and I discuss the effect of changing the ordering and why it might be efficient
to use the same variable ordering for search. I also discuss including auxiliary
variables in the construction of lex-leader constraints.

I.P. Gent (Ed.): CP 2009, LNCS 5732, p. 5, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Generating Optimal Stowage Plans for
Container Vessel Bays

Alberto Delgado1, Rune Møller Jensen1, and Christian Schulte2

1 IT University of Copenhagen, Denmark
{alde,rmj}@itu.dk

2 KTH - Royal Institute of Technology, Sweden
cschulte@kth.se

Abstract. Millions of containers are stowed every week with goods
worth billions of dollars, but container vessel stowage is an all but ne-
glected combinatorial optimization problem. In this paper, we introduce
a model for stowing containers in a vessel bay which is the result of prob-
ably the longest collaboration to date with a liner shipping company on
automated stowage planning. We then show how to solve this model ef-
ficiently in - to our knowledge - the first application of CP to stowage
planning using state-of-the-art techniques such as extensive use of global
constraints, viewpoints, static and dynamic symmetry breaking, decom-
posed branching strategies, and early failure detection. Our CP approach
outperforms an integer programming and column generation approach
in a preliminary study. Since a complete model of this problem includes
even more logical constraints, we believe that stowage planning is a new
application area for CP with a high impact potential.

1 Introduction

More than 60% of all international cargo is carried by liner shipping container
vessels. To satisfy growing demands, the size vessel has increased dramatically
over the last two decades. This in turn has made the traditional manual stowage
planning of the vessels very challenging. A container vessel stowage plan assigns
containers to slots on the vessel. It is hard to generate good stowage plans since
containers cannot be stacked freely due to global constraints like stability and
bending forces and many interfering local stacking rules over and under deck.

Despite of the importance of stowage planning, the amount of previous work
is surprisingly scarce. In the last two decades, less than 25 scientific publica-
tions have been made on the topic and there only exists two patents. The early
approaches were “flat” in the sense that they introduced a decision variable or
similar for each possible slot assignment of the containers (e.g.,[1],[2]). None of
these scale beyond small feeder vessels of a few hundred 20-foot containers. Ap-
proaches with some scalability are heuristic (e.g., [3],[4],[5]) in particularly by
decomposing the problem hierarchically (e.g., [6],[7],[8],[9]). None of these tech-
niques, though, have been commercialized. They are either too slow or neglect
important aspects of the problem due to little contact with industry experts.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 6–20, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Generating Optimal Stowage Plans for Container Vessel Bays 7

We have since 2005 collaborated closely with a large liner shipping company
that has developed an efficient hierarchical stowage planning algorithm using
a more accurate domain model than any published work. An important sub-
problem of this algorithm and other hierarchical algorithms is to assign a set of
containers in a vessel bay. One of our objectives has been to compare different
optimization techniques for this sub-problem. To this end, we have first defined
the complete set of constraints and objectives used by our industrial partner
and then constructed a simplified problem with a representative subset of these
for an under deck bay. We have investigated incomplete methods based on local
search (e.g., [10]) and evaluated these using complete methods.

In this paper, we introduce an optimal CP approach which to our knowledge is
the first application of CP to container vessel stowage planning, to solve the sub-
problem mentioned above. We present our stowage model and show how to solve
it efficiently using Gecode [11]. State-of-the-art modeling techniques are consid-
ered including: different viewpoints to achieve better propagation, extensive use
of global constraints to avoid modeling with boolean variables, and static and
dynamic symmetry breaking. In addition, we use a branching strategy that takes
advantage of the structure of the problem and a set of early failure detection
algorithms that determines whether a partial assignment is inconsistent. The
CP approach presented in this paper has been successfully tested on industrial
data. Our experimental evaluation shows that the modeling decisions we made,
in particularly the ones related to early failure detection, improve computation
times substantially. The definition of the problem and model introduced in this
paper have been slightly modified in order to make them easy to understand. We
consider, though, that this simplification does not make less relevant the results
here presented. Interestingly, preliminary results on the original version of the
problem shows that a less elaborated CP model outperforms two optimal ap-
proaches based on Integer Programming (IP) [12] and Column Generation (CG).
We believe this to be due to the logical nature of local stacking rules and objec-
tives of stowage planning that mathematical programming is unable to handle
efficiently. Thus, we consider CP to be the most efficient general technique to
solve these problems optimally and, it gave us the main motivation to upgrade
the initial CP model to the one presented here.

The remainder of the paper is organized as follows. Section 2 describes stowage
planning problems. Section 3 defines our CP model. Section 4 describes why we
believe CP outperforms mathematical programming on this problem. Finally,
Section 5 presents experimental results, and Section 6 draws conclusions and
discusses directions for future work.

2 The Container Stowage Problem for an under Deck
Location

A container vessel is divided in sub-sections called bays, each bay of a container
vessel consists of over and under deck stacks of containers. A location is a set of
stacks that can be over or under deck. These stacks are not necessarily consec-
utive, but all stacks in the set are either over or under deck. Left figure in Fig.1

8 A. Delgado, R.M. Jensen, and C. Schulte

depicts a bay. The stacks 3, 4 and 5 under deck form a location, stacks 1, 2, 6
and 7 under deck form another location. The same stacks form two extra loca-
tions in the over deck section. This paper focuses on the under deck locations.
The vertical alignments of cells in a location are called tiers. Left figure in Fig.1
shows how the tiers are enumerated for each section of the bay.

1 2 3 4 5 6

1 2 3 4 5 6

3

2

1

4

3

2

1

Over Deck

Under Deck

Port Starboard

Tier

Tier

Stack Under Deck

Stack Over Deck

Stern

Bow

7

7 8 Stack
stackFore stackAft

tier 1

tier 2

tier 3

tier 4

tier 5

20’ R 20’

40’

40’HC

Fig. 1. To the left a back view of a bay, to the right a side view of a partially loaded
stack. Each plug in the right figure represents a reefer slot, reefer containers are the
ones with electric cords.

Each stack has a weight and height limit that must be satisfied by the con-
tainers allocated there. A stack can be seen as a set of piled cells one on top
of the other. Each of these cells is divided in two slots, Fore and Aft. It is also
possible to refer to the Fore and Aft part of a stack, i.e. stackFore refers to the
Fore slots of all cells in a stack . Some slots have a plug to provide electricity to
the containers, in case their cargo needs to be refrigerated. Such slots are called
reefer slots. Right figure in Fig.1 shows the structure of a stack. As depicted
in left figure in Fig.1, it is common for stacks not to have all slots physically
available, they must fit into the layout of the vessel and some of the slots must
be taken away to do so. These slots can be located either in the bottom or in
the top of the stack and we refer to them as Blocked slots.

A container is a box where goods are stored. Each container has a weight,
height, length, port where it has to be unloaded (discharge port) and indicates
whether it11 needs to be provided with electric power (reefer). In an under
deck location, containers have 20 or 40-foot length and 8’6” or 9’6” height. The
weight is limited according to the length of the container and the discharge port
depends on the route of the vessel. Containers that are 9’6” high are called high-
cube containers, and according to the definition of the problem all high-cube
containers are 40-foot long. Each cell in a stack can hold one 40-foot container
or two 20-foot containers.

In order to generate stowage plans for complete vessels an efficient hierar-
chical algorithm has been developed. This algorithm decomposes the process of
generating stowage plans into solving two derived problems: a master and a sub

Generating Optimal Stowage Plans for Container Vessel Bays 9

problem. The master problem focuses on constraints over the complete vessel
i.e. stability constraints, bending forces, etc. and distributes containers in the
different locations of the vessel but it does not assign them to a specific slot.
Here, all containers to be loaded in the actual port are considered, together with
forecasting information of further ports on the route of the vessel.

The sub-problem finds stowage plans for the locations of the vessel according
to the distribution of containers made by the master problem. The constraints
here are mostly stack wise and each container is assigned to an specific slot.
There are two main types of locations in a vessel, over and under deck. Besides
their position on the vessel, they differ in the constraints that the containers
allocated there must fulfilled. As mentioned before, this paper focuses on finding
stowage plans for the under deck locations.

The Container Stowage Problem for an Under Deck Location (CSPUDL is
defined by the following constraints and objectives. A feasible stowage plan for
an under deck location must satisfy the following constraints:

1. Assigned cells must form stacks (containers stand of top of each other in the
stacks. They can not hang in the air).

2. 20-foot containers can not be stacked on top of 40-foot containers.
3. A 20-foot reefer container must be placed in a reefer slot. A 40-foot reefer

container must be placed in a cell with at least one reefer slot, either Fore
or Aft.

4. The sum of the heights and weights of the containers allocated in a stack
are within the stack limits.

Every allocation plan that satisfies these constraints is valid, but since the prob-
lem we are solving here is to find the best allocation plan possible, a set of
objectives must be defined to evaluate the quality of the solutions:

1. Minimize overstows. A container is stored above another container if it
is stored in a cell with a higher tier number. A container A overstows a
container B in a stack, if A is stored above B and the discharge port of A
is after the one of B, such that A must be removed in order to unload B. A
cost is paid for each container overstowing any other containers below.

2. Keep stacks empty if possible. A cost is paid for every new stack used.
3. Avoid loading non reefer container into reefer cells. A cost is paid

for each non reefer container allocated in a reefer cell.

The first objective is directly related to the economical costs of a stowage plan.
The second and third are rules of thumb of the shipping industry with respect
to generating allocation plans for further ports in the route of a vessel. Using
as few stacks as possible increases the available space in a location and reduce
the possibility of overstowage in further ports. Minimizing the reefer objective
allows reefer containers to be loaded also in further ports.

A feasible solution to the CSPUDL satisfies the constraints above. An optimal
solution is a feasible solution that has minimum cost.

As a requirement from the industry, generating a stowage plan for a vessel
should not take more than 10 minutes. Since a big vessel can have an average

10 A. Delgado, R.M. Jensen, and C. Schulte

of one hundred locations, solving the CSPUDL as fast as possible is mandatory
for this problem. An average of one second or less per location has been set as
goal for solving the CSPUDL.

3 The Model

We present here a constraint programming model to find the optimal allocation
plan for a set of containers Containers in a location l. In order to make the
description of the model clearer, some constants are defined: Slots and Stacks
are the set of slots and stacks of location l. stackForei and stackAfti are the
set of Fore and Aft slots in stack i. The weight and height limit of a stack i are
represented by stackw

i and stackh
i . Without loss of generality and in order to

simplify some of the constraints, stacki refers to the set of cells from stack i.
Every time a constraint is posted over a cell of stacki, the constraint is actually
posted over the Aft and Fore slots of the cell.

The set of decision variables of the problem is defined first. To improve prop-
agation, we implement two different viewpoints[13] and channel them together
such that both sets of variables contain the same information all the time.

The first viewpoint is the set of variables S, where each variable corresponds
to a sloti ∈ Slots from location l. The second one is the set of variables C, where
each variable represents a container from Containers.

S = {si|i ∈ Slots} ∧ si ∈ {Containers}, ∀i ∈ Slots

C = {ci|i ∈ Containers} ∧ ci ∈ {Slots}, ∀i ∈ Containers

In order to connect the two viewpoints, it is necessary to define a set of channeling
constraints. Since the number of containers is not guaranteed to be equal to the
number of slots in location l, we consider two possible alternatives to modeling
the channeling. The first one is to declare a new set of boolean variables C×S =
{c×sij|i ∈ Slots, j ∈ Containers}, where c×sij ↔ cj = i∧si = j, that channels
set S and C, and add to the domain of each variable in S the value 0 to represent
an empty slot. The second one is to extend the number of containers to match
the number of slots of l, and define a single global channeling constraint in order
to propagate information from one model to the other.

The main difference between these two approaches is how and when the infor-
mation is propagated among the two viewpoints. Since the first approach uses
boolean variables to channel the two models, the flow of information is limited
to reflect assignment of variables from one viewpoint to the other.

In the second approach, since there is a channeling constraint connecting
the two viewpoints, any update in the domains of the variables are propagated
among viewpoints as they occur, increasing the levels of propagation. An extra
advantage of using the second approach is that the alldifferent constraint is
implied here, all containers must be allocated in a different slot, and all slots
must hold different containers.

Generating Optimal Stowage Plans for Container Vessel Bays 11

Our model implements the second approach. Artificial containers are added
to the original set of containers to match the number of slots in l. Since a 40-
foot container occupies two slots, these containers are split into two smaller
containers of the size of a slot each: Aft40 and Fore40. All 40-foot containers
are removed from the original set of containers and replaced by the new Aft40
and Fore40 containers. Empty containers are also added, they will be allocated
in valid slots where no container is placed. Finally, it is necessary to add some
extra containers that will be allocated in the blocked slots. Once the number
of containers matches the slots of l, a global channeling constraint is used to
connect the two view points, i.e. channeling(S, N).

The first two constraints from the previous section describe how containers
can be stacked according to physical limitations of the problem. They define
the valid patterns the containers in stacks can form. We assign a code to each
type of container, i.e. 0 to blocked containers, 1 to 20-foot containers, 2 to 40-
foot containers and, 3 to empty containers, and define a regular expression that
recognizes all the well-formed stacks according to the first two constraints: R =
{r|r ∈ 0∗1∗2∗3∗0∗}. Then we define a constraint just allowing stacks accepted
by R. In order to do this, a new set of auxiliary variables must be defined.
These variables will represent the type of the container allocated in a slot, and
their domain is the set of possible types for the containers: T = {ti|i ∈ Slots},
ti ∈ {0, 1, 2, 3}. To bind this new set of variables with one of the viewpoints, it is
necessary to declare an array of integers types representing the type associated to
each container, and use element constraints such that: types[si] = ti, ∀i ∈ Slots.

With the new set of auxiliary variables defined, we proceed to declare the
constraints that will just allow well-formed stacks. A regular constraint [14] is
declared for each Aft and Fore stack, together with the regular expression R
that defines the well-formed stacks. In this constraint stacki refers to the subset
of variables from T in stack i.

regular(stacki, R), ∀ i ∈ Stacks

For the reefer constraint two subsets of containers are defined: ¬RC and ¬20RC.
¬RC is the subset of non-reefer containers and ¬20RC is a subset containing
40-foot, 40-foot reefer containers and 20-foot containers. The purpose of these
two subsets is to restrict the domain of some of the slots of location l to allocate
just the allowed containers. The first subset of slots is ¬RS, which are the slots
that are non-reefer and that are not part of reefer cells. The second subset is
RCS, which are slots that are non-reefer but that are part of a reefer cell. Then
we remove the reefer containers from slots where it is not possible to allocate
any reefer containers at all, and remove the 20-foot reefer containers from slots
where it is possible to allocate part of a reefer container.

si ∈ ¬RC, ∀ i ∈ ¬RS ∧ si ∈ ¬20RC, ∀ i ∈ RCS

Some extra sets of auxiliary variables are used in order to model the height and
weight limit constraints for each stack in l. H is a set of variables where each hi

represents the height of the container allocated in si, W represents the same as

12 A. Delgado, R.M. Jensen, and C. Schulte

H but with respect to the weight of the container. Both sets of auxiliary variables
are bound to S with element constraints, as it was previously explained for T .
An extra set of variables is also declared here: HS = {hsi|i ∈ Stacks}, hsi ∈
{0, ..., stackh

i }, ∀i ∈ Stacks, representing the height of each stack in location l.
The constraints restricting the height and weight load of each stack in l are:∑

j∈stackAfti

hj ≤ hsi, ∀i ∈ Stacks

∑
j∈stackForei

hj ≤ hsi, ∀i ∈ Stacks

∑
j∈stacki

wj ≤ stackw
i , ∀i ∈ Stacks

3.1 Objectives

The first objective is overstowage. It is based on a feature of the containers that
is not related to any previous constraint, the discharge port. A new set P of aux-
iliary variables is introduced here, where each pi represents the discharge port of
the container allocated in si. A new function is defined: bottom : Stack→ Slots,
which associates each stack with its bottom slot. The finite domain variable Ov
captures the number of overstows in location l.

Ov =
∑

i∈Stacks

∑
j∈stacki−{bottom(i)}

(j−1∑
k=bottom(i)

(Pj > Pk) > 0
)

Since empty and blocked containers have discharge port 0, we use the previously
declared set of auxiliary variables P to determine the number of stacks used in
a solution. When a stack i is empty, the sum of the values assigned to the subset
of P variables in i should be 0, otherwise the stack is been used. A finite domain
variable Us captures the number of used stacks in location l.

Us =
∑

i∈Stacks

(
(
∑

j∈stacki

Pj) > 0
)

A check over the reefer slots is performed, the reefer objective increases its value
if a non-reefer container is allocated in a reefer slot. A finite domain variable Ro
captures the number of non-reefer containers allocated in reefer slots.

Ro =
∑

i∈RS

(si ∈ ¬RC)

3.2 Branch and Bound

The relevance of the objectives defined for this problem is given by the relation
Ov > Us > Ro. A lexicographic order constraint is used for the branch and

Generating Optimal Stowage Plans for Container Vessel Bays 13

bound search procedure to prune branches not leading to any better solution.
Our model does not rely on an objective function to measure the quality of
the solutions but on an order over the objective variables, which provides us
with a stronger propagation. The branch and bound approach constraints the
objective value of the next solution to be better than the one found so far.
When this objective value is calculated by a mathematical function, the only
constraint branch and bound posts is a relational constraint over this objective
value, considerably reducing the amount of backwards propagation that can
be achieved. In cases where an order determines the quality of the solution,
lexicographic constraints can be used, which in most of the cases, propagate
directly over each objective variable if necessary, increasing the level of backwards
propagation achieved.

3.3 Branching Strategies

In our branching strategy we take advantage of the structure of the problem
and the set of auxiliary variables defined in the model in order to find high-
quality solutions as early as possible. We decompose the branching in three sub-
branchings: the first one focuses on finding high-quality solutions, the second one
in feasibility with respect to a problematic constraint and the third one finds a
valid assignment for the decision variables.

Since two of the three objectives defined for this problem rely on the discharge
port of the containers allocated in the slots of l, we start by branching over the set
of variables P . Slots with discharge ports less or equal than the one assigned to
the slot right below are selected, which decreases the probability of overstowage.
The slots from stacks already used are considered first to reduce the used stack
objective. When it is necessary to select a slot from an empty stack, the highest
discharge port possible for the slot is selected.

After assigning all variables from P , we branch over a new set of auxiliary
variables involved in one of the most problematic constraints: H . The height
limits of the stacks are usually more strict than the weight limits and therefore,
finding allocation plans that respect these limits become a difficult task in itself.
No variable selection heuristic is involved for variables, we fill up stacks bottom-
up and select the maximal height possible for a container to be allocated there.

At last, we branch over the set of variables S in order to generate an allocation
plan. By this time, the discharge port and the height of the container to be
allocated in each slot has been decided, and it is most likely that the objective
value that any possible solution to be generated from this point is already known.
Here we try to allocate slots from bottom-up in each stack, selecting the maximal
possible container in the domain of the slot.

The decomposition of the branching plays along with the branch and bound
strategy. The domain size of variables in P are considerable smaller than the
ones from any of the viewpoints, making the process of finding valid assignments
for P easier. Once the first valid allocation plan is found, most of the time the
backtracking algorithm backtracks directly to the variables of the first branching
in order to find a solution with a better objective value. Therefore, most of the

14 A. Delgado, R.M. Jensen, and C. Schulte

search is concentrated in a considerable smaller sub-problem, branching over the
two other sets of variables just when the possibilities of finding a better solution
are almost certain.

3.4 Improving the Model

Some Extra Constraints. Here some redundant constraints are declared in
order to improve propagation and reduce search time. The first constraint is an
alldifferent constraint over the set S of slots, reinforcing the fact that it is not
possible to allocate one container in more than one slot. This constraint is forced
in the model by the channeling constraint between S and C.

A second constraint deals with a sub-problem presented in the model. Since
all containers have a height, they must be allocated in the stacks from l and each
stack has a height limit, the problem of finding a stack for each container to be
allocated without violating the height capacity can be seen as a bin-packing
problem. A global constraint for this problem is introduced in [15], where the
load of each bin and the position of each item are given as variables. Here
a new set of auxiliary variables CS representing the stack where a container
is allocated is necessary. We use element constraints to bind this new set of
variables with the set C. A modified implementation of [15] is considered to
model this sub-problem, in order to tighten the height limits of each stack and
not allow unfeasible assignments of containers based on their height.

Symmetries on Containers. The weight of the containers make each of them
almost unique, limiting the possibility of applying symmetry breaking constrains.
It is possible, though, to use these constraints on the artificial containers that
were added to the model. First we focus on the set of empty containers, this set is
split into two equal subsets that become the empty containers to be allocated in
each part of the location. By doing this we avoid any set of equivalent solutions
where empty containers are swapped between Aft and Fore slots. Then, a non-
increasing order is applied over each of the subsets mentioned before in order to
avoid any symmetrical solution.

Splitting up all 40-foot containers into two smaller containers, Aft40 and
Fore40, also provoke symmetrical solutions. All Fore40 containers are removed
from Aft slots and all Aft40 from Fore slots in location l.

Symmetries on Slots. The first subset of slots that we consider for symmetry
breaking is the cells: swapping the containers allocated in Aft and Fore slots of a
cell generates equivalent solutions in several cases. Therefore, when the Aft and
Fore slot of a cell can allocate containers with the same features, a non-increasing
ordering constraint is used indicating that the id of the container allocated in
the Aft slot of the cell has to be greater than the one allocated in the Fore slot.
It is not possible to apply an order to the slots in a stack since the tier of the
slot where a container is allocated is related to the overstowage objective. There
are some cases, though, where ordering can be applied. The first case is when
all containers to load in location l have the same discharge port. In this case,

Generating Optimal Stowage Plans for Container Vessel Bays 15

it is possible to use a non-decreasing ordering constraint over all the slots in a
stack that can allocate containers with the same features. In cases where there
are different discharge ports it is not possible to sort the containers from the
beginning. Here we take advantage of the different branching steps described in
the previous section and select the subsets of slots in each stack where an ordering
constraint can be used after the branching over the set of auxiliary variables P
is finished. These subsets are defined by all the slots where containers with the
same discharge port and the same features are allocated. Then a non-decreasing
order constraint is used in each of this subsets.

At last, the possible symmetries between identical stacks are considered. In a
pre-processing stage, stacks with the same features are grouped together: same
slots capacity, reefer capacity, height limit and weight limit. When two stacks
are in the same group, a lexicographic order is applied between them. The lexi-
cographic order is also applied on the set of auxiliary variables P since this set
of variables is assigned first than the set S.

Discussion on Symmetries. There is one relevant issue about the symmetry
breaking constraints described in this section, more specifically on the lexico-
graphic order constraints posted over stacks grouped together. Since these con-
straints are ordering the discharge ports, the height and the id of the containers
in each stack, any assignment of values to these variables that does not follow
such order will be considered invalid. It is necessary to sort the containers at a
pre-processing stage to avoid any conflict among symmetry-breaking constraints
over the different set of variables. The set of containers Containers is sorted
such that containers with the highest discharge port have associated the highest
id. This sorting avoids the lexicographic constraints posted over the set S and
set P of variables in identical stacks to conflict with each other.

Estimators. Three estimators have been defined to determine whether a com-
plete valid solution can be generated from a partial solution, leading to early
pruning of branches from the search tree with no future. Two of the estimators
are simple algorithms that compute lower bounds of objectives from relaxed ver-
sions of the problem, while the third estimator is an early termination detector
for the height constraint.

The first estimator finds the minimum number of stacks necessary to allocate
all containers in a location from a partial solution. It greedily solves a simplified
version of the allocation problem, where the only constraint considered is the
height limit of the stacks and all containers not yet allocated are considered as
normal height containers. The estimator starts by assigning containers to used
stacks, no new penalization is paid to do so. Once all used stacks have been
totally filled up, the remaining containers are allocated in the empty stacks,
which are sorted by capacity before the estimator fills them up. By sorting
the empty stacks we guarantee that the number of stacks used to allocate the
remaining containers will be the smallest possible.

16 A. Delgado, R.M. Jensen, and C. Schulte

Formally, let ≺ρ be a total pre-order defined over the set of stacks:

k ≺ρ m⇔ (k, m ∈ Stacksused) ∨
(k ∈ Stacksused ∧m ∈ Stacksempty) ∨

(k, m ∈ Stacksempty ∧ cap(k) ≥ cap(m)),

where the capacity cap(k) is the remaining number of free slots in stack k. Let
CN denote the number of containers not assigned yet in a partial solution

CN = |{Ci | i ∈ Containers, |Ci| > 1, i /∈ Empty}|.

A recursive function calculating a lower bound of the number of used stacks is
then given by:

μρ(c,≺ρ
j , σ) =

⎧⎨⎩
j : if c = 0

μρ(c− 1,≺ρ
j , σ − 1) : if c > 0 ∧ σ > 0

μρ(c,≺ρ
j+1, cap(≺ρ

j+1)) : if c > 0 ∧ σ = 0

where c is the number of remaining containers to be placed, ≺ρ
j is the jth stack

in the ordering, and σ is the free capacity of this stack. The estimated number
of used stacks for any partial solution is then given by:

ESU = μρ(CN ,≺ρ
1, cap(≺ρ

1))

For the reefer objective, let sR, cR, and cE denote the number of unassigned
reefer slots, unassigned reefer containers, and unassigned empty containers. A
lower bound of the number of non-reefer containers placed in reefer slots Ro is:

ESR =
{

0 : if sR ≤ cR + cE

sR − cR − cE : otherwise

To achieve improved propagation, we restrict the reefer and used stack objective
to be greater or equal to the estimated lower bound: Ro ≥ ESR ∧ Us ≥ ESU .

The third estimator detects inconsistency of the height constraint. Since stacks
are filled bottom-up, a stack j for some partial solution p has some free height
h(j) at the top. Let MN

j and MHC
j denote the maximum number of normal and

high-cube containers that can be placed in stack j, respectively. We have:

MN
j = �h(j)/h(N),

MHC
j = �h(j)/h(HC)

where h(N) and h(HC) denote the height of normal and high-cube containers.
Let CN and CHC denote the number of unassigned normal and high-cube con-
tainers of p. For the height constraint to be consistent for p, we then must have:∑

j∈Stacks

MN
j ≥ CN ∧

∑
j∈Stacks

MHC
j ≥ CHC .

Generating Optimal Stowage Plans for Container Vessel Bays 17

4 Why CP

Despite the fact that several of the capacity constraints of the CSPUDL are
linear, it is non-trivial to represent logical constraints and objectives like no 20-
foot over 40-foot and overstowage using mathematical programming. Moreover,
the under deck stowage problem considered in industry includes more rule-based
constraints and may even affect containers in adjacent stacks. Two of these
constraints are due to pallet-wide containers and IMO containers with hazardous
goods. The former takes up the limited space between stacks and therefore can
not be placed in adjacent stacks, while the latter may require packing patterns
where no IMO containers are placed next to each other in any direction.

We have made a preliminary investigation of two optimal mathematical pro-
gramming approaches for solving a slightly different version of the problem,
where one extra objective related to clustering containers with the same dis-
charge port and pre-placed containers in locations are considered, and the ob-
jective function is a linear inequality with different weights for each objective.

The first of these approaches is described in [12] and uses an IP model with
binary decision variables cjki indicating whether container i is placed in cell k
in stack j. The results are shown in table 1. Despite adding several specialized
cuts and exploiting the general optimization techniques of the CPLEX solver,
this approach only performs significantly better than CP in two instances, 4 and
5, and slightly better (a matter of few milliseconds) in instances 11 and 12.

The second approach uses column generation. The idea is to let each variable
of the master LP problem represent a particular packing of a stack. The dual
variables of the master problem are used by the slave problem to find a packing
with negative reduced price wrt. the current set of candidate packings. In our
preliminary experiments, IP was used to solve the pricing problem. The approach
was implemented in GAMS using CPLEX. As depicted in table 1 the results
are much worse than for IP and CP. Moreover, the LP variables of the master
problem become fractional, which actually means that lower bounds rather than
optimal feasible solutions are found.

The CP model from table 1 was our first attempt to use constraint program-
ming to tackle the CSPUDL. It heavily relies on boolean variables for modeling,
the use of global constraints is limited and not all estimation algorithms were
implemented. The results obtained with this model were promising enough to
continue our work with CP. Four out of seventeen instances were notoriously
performing over the time limit established as goal (one second), all instances
were solved to optimality and, in just four of the instances IP outperformed CP.

Table 1. Preliminary results comparing three optimal approaches to a slightly different
version of the CSPUDL. All the results are in seconds.

Method
(time)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CP(ms) 0.02 0.03 2 30.51 1.32 0.03 0.01 20 5.32 0.01 0.07 0.04 0.02 0.96 8.34 1.7 20.43
IP(ms) 0.06 0.15 - 1.75 0.160 0.12 0.19 0.15 - 0.01 0.01 0.01 0.1 1.17 21.89 4.94 40.05
CG(s) 14 22 1688 15588 - 17 22 22 352 7 12 28 14 27 18 11 37

18 A. Delgado, R.M. Jensen, and C. Schulte

Table 1 shows the results of solving to optimality seventeen instances of the
CSPUDL. The first row shows the problem number. For these experiments, we
used the same industrial problems as described in next section. The next three
rows shows the computation time for the constraint programming (CP), integer
programming (IP), and column generation (CG) approach. The dash in table 1
represents a timeout, the given time for this was thirty minutes.

5 Experimental Evaluation

A representative set of instances from different real-life vessels of different size,
with different configurations of containers and discharge ports, with capacity
location from 16 to 144 slots were gathered for the experiments here presented.

In table 2 the first eight columns of each row gives an overview of the features
of each instance: The first column shows the instance number, the second one
the total number of containers to be allocated, the third and fourth columns
represent the number of 40 and 20-foot containers. The fifth and sixth columns
are the number of reefer and high-cube containers, seventh column is the number
of slots available and, the level of occupancy of the location is in the eight
column. It is important to notice that a 40-foot container requires two slots to
be allocated. All the experiments were run in a Ubuntu Linux machine with a
Core 2 Duo 1.6 GHz and 1GB of RAM. The implementation of the constraint
model took place in the C++ constraint library Gecode [11], version 3.0.2. The
dash in table 2 represents the same as in table 1.

Table 2 shows the results of solving the set of locations using the CP model
presented in this paper. Our main goal here is to present the impact of the
estimator algorithms presented in section 3.4 and how they help to close the
gap between the execution time of the CP approach and the time limit for this
problem. The NS(s) and NS(nodes) columns show the response time in seconds
and explored nodes of solving the instances without estimation algorithms. The
E(s) and E(nodes) columns show the results of solving all instances to opti-
mality including estimation algorithms in the model, time and explored nodes
respectively. The branching strategy defined in section 3.3 was the one used.

From the results in table 2 it can be observed that estimation does have an im-
portant effect on the response time of the solver. Time is reduced in all instances
but one, and in most of the cases the explored nodes also decrease. In instances
where the explored nodes are equal but the time response has decreased, estima-
tion algorithms are making nodes fail faster, avoiding unnecessary propagation.
It is hard to determine the order of magnitude of the impact of the estimators,
since it seems to vary from instance to instance, e.g. instance 4, 11, 13 and
16. The instance where it was not possible to prove optimality before has been
solved in reasonable time, and instances 3 and 9 had a considerable reduction
in their response time. It is also important to notice from the results in table 2,
that our CP approach is getting closer to the goal described in the introduction,
since just three instances out of seventeen remain with an execution time over
one second.

Generating Optimal Stowage Plans for Container Vessel Bays 19

With respect to the results presented in table 1, a small overhead can be
seen in instances where finding the optimal solution usually takes less than 0.2
seconds, e.g. instances 1, 2, 6, etc. However, the substantial reductions in time
response in instances 3, 4, 9 and 15 compensates the overhead.

Table 2. Problem instances and CP experimental results. Each row represents an
instance. The first eight columns are general information of the instance, the extra
four are the response time and explore nodes of the experiments described in this
section.

Inst Conts C20 C40 CR CHC Slots Full(%) NS(s) NS(nodes) E(s) E(nodes)

1 23 0 23 0 2 62 74 0.15 117 0.17 105
2 38 0 38 0 38 86 88 0.24 159 0.19 139
3 75 10 65 0 9 144 97 366.78 120461 0.59 213
4 40 0 40 34 34 90 89 14.14 4405 4.06 2391
5 28 0 28 24 28 90 62 0.79 271 0.31 187
6 28 0 28 0 10 60 93 0.28 119 0.07 61
7 35 0 35 0 8 72 97 0.39 153 0.19 153
8 34 0 34 0 7 70 97 0.34 147 0.17 147
9 53 0 53 0 5 108 98 37.19 9015 0.36 199
10 4 0 4 0 0 16 50 0.06 21 0.03 21
11 7 0 7 0 7 40 35 0.14 53 0.07 51
12 42 0 42 0 42 88 95 1.12 279 0.52 259
13 24 0 24 0 0 90 53 0.47 157 0.20 141
14 23 0 23 0 23 108 42 2.23 553 0.26 151
15 34 0 34 0 8 90 75 2.34 639 1.15 639
16 19 0 19 0 19 90 42 0.84 289 0.40 275
17 37 0 37 1 34 116 63 - - 22.16 10153

6 Conclusion

In this paper we have introduced a model for stowing containers in an under
deck storage area of a container vessel bay. We have shown how to solve this
model efficiently using CP and compared our approach favorably with an integer
programming and a column generation approach. CP is not widely used to solve
problems to optimality. The estimation algorithms introduced in this paper,
however, improves the performance of the branch and bound dramatically, good
lower bounds are generated from partial solutions and unpromising branches are
pruned in early stages without discarding any optimal solution.

We consider that the main reason of CP outperforming IP in most of the
cases presented in this paper is the non-linear nature of some of the constraints
and objectives of this problem, i.e. no 20-foot on top of 40-foot container, over-
stowage. The logical nature of these constraints makes their linearization with
0-1 variables a non trivial task, and since further constraints to be included in
this problem have the same logical nature as the ones mentioned before, i.e.
IMO and pallet-wide containers, the CP approach will be most likely to keep
outperforming an IP implementation.

20 A. Delgado, R.M. Jensen, and C. Schulte

An important objective of our future work is to make instances of stowage
planning problems available to the CP community. We also plan to develop CP-
based LNS stowage algorithms and investigate whether CP can be used to solve
the pricing problem of column generation methods for this problem.

Acknowledgements. We would like to thank the anonymous reviewers and the
following collaborators: Thomas Stidsen, Kent Hj Andersen, Trine Hyer Rose,
Kira Janstrup, Nicolas Guilbert, Benoit Paquin and Mikael Lagerkvist. This
research was partly funded by The Danish Council for Strategic Research, within
the programme ”Green IT”.

References

1. Botter, R., Brinati, M.: Stowage container planning: A model for getting an optimal
solution. In: Proceedings of the Seventh International Conference on Computer
Applications in the Automation of Shipyard Operation and Ship Design (1992)

2. Giemesh, P., Jellinhaus, A.: Optimization models for the containership stowage
problem. In: Proceedings of the International Conference of the German Operations
Research Society (2003)

3. Ambrosino, D., Sciomachen, A., Tanfani, E.: Stowing a conteinership: the master
bay plan problem. Transportation Research 38 (2004)

4. Avriel, M., Penn, M., Shpirer, N., Witteboon, S.: Stowage planning for container
ships to reduce the number of shifts. Annals of Operations Research 76(55-71)
(1998)

5. Dubrovsky, O., Penn, M.: A genetic algorithm with a compact solution encoding
for the container ship stowage problem. Journal of Heuristics 8(585-599) (2002)

6. Ambrosino, D., Sciomachen, A., Tanfani, E.: A decomposition heuristics for the
container ship stowage problem. Journal of Heuristics 12(3) (2006)

7. Kang, J., Kim, Y.: Stowage planning in maritime container transportation. Journal
of the Operations Research society 53(4) (2002)

8. Wilson, I., Roach, P.: Principles of combinatorial optimisation applied to container-
ship stowage planning. Journal Heuristics 1(5) (1999)

9. Gumus, M., Kaminsky, P., Tiemroth, E., Ayik, M.: A multi-stage decomposition
heuristic for the container stowage problem. In: Proceedings of 2008 MSOM Con-
ference (2008)

10. Pacino, D., Jensen, R.: A local search extended placement heuristic for stowing
under deck bays of container vessels. In: Proceedings of ODYSSEUS 2009 (2009)

11. Gecode Team: Gecode: Generic constraint development environment (2006),
http://www.gecode.org

12. Rose, H.T., Janstrup, K., Andersen, K.H.: The Container Stowage Problem. Tech-
nical report, IT University of Copenhagen (2008)

13. Smith, B.: Modelling. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of
Constraint Programming. Elsevier, Amsterdam (2006)

14. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

15. Paul, S.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS,
vol. 3258, pp. 648–662. Springer, Heidelberg (2004)

http://www.gecode.org

Real-Time Tabu Search
for Video Tracking Association

Ivan Dotu1, Pascal Van Hentenryck1, Miguel A. Patricio2,
A. Berlanga2, Jose Garćıa2, and Jose M. Molina2

1 Brown University, Box 1910, Providence, RI 02912
2 Universidad Carlos III, 22, 28270 Colmenarejo (Madrid)

Abstract. Intelligent Visual Surveillance (IVS) systems are becoming a
ubiquitous security component as they aim at monitoring, in real time,
persistent and transcient activities in specific environments. This paper
considers the data association problem arising in IVS systems, which
consists in assigning blobs (connected sets of pixels) to tracks (objects
being monitored) in order to minimize the distance of the resulting scene
to its prediction (which may be obtained with a Kalman filter). It pro-
poses a tabu-search algorithm for this multi-assignment problem that can
process more than 11 frames per seconds on standard IVS benchmarks,
thus significantly outperforming the state of the art.

1 Introduction

Intelligent Visual Surveillance (IVS) systems are becoming a key component in
ensuring security at buildings, commercial areas, public transportation, parking,
ports, etc. [13,26,28]. The primary aims of these systems are the real-time moni-
toring of persistent and transient objects and the understanding of their activity
within a specific environment.

IVS Systems track all the objects (tracks) moving within their local field of
view, giving rise to the so-called Multi-target Joint Estimation (MTJE) problem.
MTJE is concerned with the estimation of the number of objects in a scene,
together with their instantaneous locations, kinematic states, and other relevant
characteristics. These entities, which are used for tracking, are called track states.
A frequently used track state x consists of associating a vector [x, y, ẋ, ẏ, w, h, s]
with each track, representing the x and y coordinates of the centroid, the x and
y velocities, the width, the height and scale of the object [15]. In general, the
number of objects present in the scene is unknown and time-dependent, as is the
state of each object. The tracking problem over time consists of estimating the
sequence X̂

n

k = {N̂k; x̂n
k}Nk

n=1, where k is the time index, using the observations
available up to that point. The observations or measurements concern pixels
belonging to moving objects at time k. These pixels are organized in blobs and
a blob is a connected set of pixels in an image, which is locally distinguishable
from pixels not part of the blob. One of the main tasks of an IVS system is to
associate blobs with tracks, a process which is visualized in Figure 1.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 21–34, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

22 I. Dotu et al.

Fig. 1. (a) Four tracks (from 0 to 3) and their current state (position, size and velocity)
at frame k − 1; (b) Observation/detection of moving objects at frame k, we call blob
to each connected group of detected pixels; (c) Association output at frame k

Fig. 2. The Architecture of an IVS System

Figure 2 depicts a standard architecture for an IVS system. First, a detector
process produces the list of blobs found in a frame, with their positions and
sizes. Then, the association process solves the blob-to-track multi-assignment
problem, which assigns blobs to tracks, allowing a given blob to be assigned to
several tracks. The goal in this step is to find a multi-assignment maximizing
the similarity between the resulting tracks and those produced by the prediction
module. Typically, a Kalman filter is used to predict the track state from the
previous observations [31]. The blob initializer/deleter module eliminates those
blobs not associated with any track (they are considered noise), and initializes
new blobs. Finally, the tracks are updated and the process is repeated.

Real-Time Tabu Search for Video Tracking Association 23

This paper focuses on the association problem. It proposes a tabu-search
algorithm which solves the multi-assignment problem in real time (more than
11 frames per second), thus improving the performance of existing algorithms
by an order of magnitude, while preserving solution quality.

The rest of the paper is organized as follows. Section 2 presents the related work
on the association problem. Section 3 describes the problem formally. Section 4
presents the tabu-search algorithm and Section 5 presents the experimental re-
sults. Section 6 concludes the paper.

2 Related Work

The performance of a IVS depends on two strictly coupled subtasks: the data as-
sociation method used for assigning observations to tracks and the model selected
to estimate the movement of an object. Tracking algorithms can be formulated
as the correspondence of detected objects represented by tracks across frames.
Probabilistic methods are one of the most used algorithms. They consider the
object measurement and the uncertainties to establish the correspondence. The
target-tracking community has usually formulated the total process as an opti-
mal state estimation and a data association problem, with a Bayesian approach
to recursively filter the observations coming from the sensors. Only in the case
that a single target appears, with no false alarms, there is no association prob-
lem and optimal Bayesian filters can be applied, for instance, Kalman filters
under ideal conditions, or suboptimal Bayesian filters such as Multiple Models
(IMM) [32] for realistic maneuvering situations and Particle Filters (PF) [2,12]
in non-Gaussian conditions.

In the Kalman filter tracker, data association is a sequential frame-by-frame
decision process based on current detections and the result of previous assign-
ments. It can be formulated as maximizing the likelihood function of current
observations (detections) conditioned on detections and associations from previ-
ous frames. With the Kalman filter one can estimate the track position based on
previous assignments. The best assignment solution is the one that best matches
the estimation of the Kalman filter.

Let us know review algorithms in the literature that belong to the first subtask
mention: the data association. The most relevant approaches for solving the data
association problem are different variants of evolutionary algorithms and the
Mean-Shift and Particle Filtering ([8]).

Evolutionary Algorithms. Angus et al [1] applied Genetic Algorithms (GAs)
to the data association problem in the radar contex and on a single scan scenario.
GAs were also used by Hillis [17] for the multi-scan data association problem.
Reference [25] proposed and analysed a family of efficient evolutionary com-
putation algorithms designed specifically to achieve a fast video process, the
performance of a family of which is analyzed. This novel approach is called Es-
timation of Distribution Algorithms (EDAs) [21] and these algorithms do not
implement crossover or mutation operators. The new population is generated

24 I. Dotu et al.

by sampling the probability distribution, which is estimated from the informa-
tion of several selected individuals of the previous generations. The estimation
of the joint probability distribution associated to the selected individuals is the
most complex task and is approached in different ways by different authors.
For instance, UMDA [22] assumes linear problems with independent variables,
PBIL (Population-Based Incremental Learning) [6,3] uses a vector of probabil-
ities instead of a population and also assumes variable independence, MIMIC
[4] searches for permutations of variables in each generation in order to find the
probability distribution using the Kullback-Leibler distance (two-order depen-
dencies), and FDA [23] factorizes the joint probability distribution by combining
an evolutionary algorithm and simulated annealing.

To evaluate our research, we implemented three different EDAs approaches:
UMDA, PBIL, and the Compact Genetic Algorithm (cGA) [16]. In the UMDA
algorithm [22], the joint probability distribution is estimated as the relative fre-
quencies of the variable values stored in a data set. UMDA has been shown
to work almost perfectly with linear problems and rather well when the depen-
dencies are not very significant. PBIL mixes genetic algorithms with competitive
learning. It applies a Hebbian rule to update the vector of probabilities. cGA sim-
ulates the performance of a canonical genetic algorithm with uniform crossover.
It is the simplest EDA and only needs a parameter: the population size.

Mean-Shift and Particle Filtering. An implementation of the Mean-Shift
algorithm together with a Particle Filtering algorithm is one of the most powerful
tracking system in the vision community [7]. The Mean-Shift algorithm was
proposed by Comaniciu and Meer [8] as an image segmentation technique. The
algorithm finds clusters in the joint spatial & color space. It is initialized with
a large number of hypothesized cluster centers, which are chosen, randomly,
from a particular image. Then, each cluster center is moved to the mean of the
data lying inside the multidimensional ellipsoid centered on the cluster center.
Clusters can also get merged in some iterations. Mean-shift clustering has been
used in various applications such as edge detection, image regularization [8], and
tracking [9].

Tabu Search. As mentioned, this paper tackles the data association problem
using tabu search [14]. The most related applications of tabu search include [20]
acoustic control, [24] VLSI design, [10] image registration, and [18] 2D object
tracking. This last reference focuses on different issues and does not describe the
local search algorithm.

3 Problem Formalization and Modeling

Let us now formalize the specific problem we will be dealing with from the
constraint-based local search standpoint: Given a set of blobs with information
about their widths, heights, and centroids (measured in a 2-D grid of pixels)
and a set of tracks with predicted information on their widths, heights, and

Real-Time Tabu Search for Video Tracking Association 25

minimize ∑
t∈T (td + ts)

subject to

td = |t̂x−tx|
t̂w

+ |t̂y−ty|
t̂h

(t ∈ T)

ts = |t̂w−tw|
t̂w

+ |t̂h−th|
t̂h

(t ∈ T)

twest = minb∈B:a[b,t]=1(bx − bw/2) (t ∈ T)
teast = maxb∈B:a[b,t]=1(bx + bw/2) (t ∈ T)
tnorth = minb∈B:a[b,t]=1(by − bh/2) (t ∈ T)
tsouth = maxb∈B:a[b,t]=1(by + bh/2) (t ∈ T)
tw = teast − twest (t ∈ T)
th = tsouth − tnorth (t ∈ T)
tx = twest − tw/2 (t ∈ T)
ty = tsouth − th/2 (t ∈ T)

0 ≤ a[b, t] ≤ 1 (b ∈ B & t ∈ T)

Fig. 3. The Model for the Data Association Problem

centroids, assign blobs to tracks to minimize the distance between the predicted
tracks and the tracks specified by the assignment. Additionally, we may have at
our disposal a hypothesis matrix that discards some blob-to-track assignments.

More precisely, we are given a set of blobs B and a set of tracks T . Each
blob b ∈ B is characterized by its centroid (bx, by), its height bh, and its width
bw. Each track t ∈ T is given a prediction which is also characterized by its
centroid (t̂x, t̂y), its height t̂h, and its width t̂w. The goal is to assign the blobs
to the tracks or, more precisely, to determine whether a blob b is assigned to a
track t. The decision variables are thus 0/1 variables of the form a[b, t] which is
equal to 1 when blob b is assigned to track t and 0 otherwise. This assignment
determines the shape of each track t as the smallest box that encloses all its
blobs. This shape is once again characterized by its centroid (tx, ty), its height
th, and its width tw. Note that tx, ty, th, and tw are variables since they depend
on the assignment variables in matrix a.

The objective function consists in maximizing the similarity with the proposed
tracks and their predictions. This is expressed as the minimization of

F =
∑
t∈T

(td + ts) (1)

where td is the normalized distance between the proposed and predicted track t:

td =

∣∣t̂x − tx
∣∣

t̂w
+

∣∣t̂y − ty
∣∣

t̂h
(2)

and ts is the normalized size similarity between the proposed and predicted
track t:

26 I. Dotu et al.

Fig. 4. Auxiliary Information Maintained For Each Blob

ts =

∣∣∣t̂w − tw

∣∣∣
t̂w

+

∣∣t̂h − th
∣∣

t̂h
. (3)

The complete model is specified in Figure 3. The first set of constraints describe
the components of the objective function. The second set of constraints compute
the centroids, widths, and heights of the tracks, using the positions of the blobs.
The first four equations in this group computes the west, east, north, and south
of a track t from the blob assigned to t. The remaining equations specify the
centroid, width, and height of the track from these values. Additional constraints
can be easily added for excluding the possibility of assigning a blob b to a track
t. Observe also that a blob may be assigned to multiple tracks. At this level of
abstraction, when two tracks collide, it may be impossible to decide whether the
blob belongs to one track or another. Forcing a blob to belong to one single track
in these situations may result in the disappearance of one of the objects in the
collision, which is obviously undesirable. Moreover, a blob does not necessarily
need to be assigned to any track, since it is possible that it is only noise. In
our modeling a track cannot be empty but in the pipeline implementation this
can happen and other modules are responsible for losing the track in subsequent
frames. Finally, it is worth mentioning that this model is independent of the
prediction technique, although the Kalman filter is traditionally used but see
[25] for further details.

4 The Tabu Search Algorithm

We now describe the tabu search algorithm for the data association problem.
The neighborhood of the algorithm consists of three moves: removing a blob

Real-Time Tabu Search for Video Tracking Association 27

Table 1. Removing Blob b from Track t. (b, t)λ to denote coordinate λ of blob b with
respect to track t.

Attribute Formula
x coordinate tx + 0.5 ∗ (b, t)west − 0.5 ∗ (b, t)east

y coordinate ty + 0.5 ∗ (b, t)north − 0.5 ∗ (b, t)south

width tw − (b, t)west − (b, t)east

height th − (b, t)north − (b, t)south

from a track, adding a blob to a track, and swapping the tracks of two blobs.
The algorithm maintains two tabu lists. The first list contains pairs of the form
〈b, t〉 to prevent a blob b from being added or removed from track t. The second
list maintains triplets of the form 〈b1, b2, t〉 to avoid swapping blob b1 in track
t with blob b2. The tabu tenure is dynamically and randomly generated in the
interval [4, 100]. The main issue in the implementation of the algorithm is how
to perform and evaluate the moves efficiently, since the algorithm should run
in real time. The problem comes from the fact that the cost function cannot
be calculated directly. It is only when the blobs are assigned to tracks that the
shapes of the tracks, and thus the distance to the prediction, can be computed.

4.1 Incremental Data Structures

To perform and evaluate moves efficiently, the tabu-search algorithm maintains
additional information for each blob. For each blob b and each track t to which
it is assigned, the algorithm maintains the following information:

– North: the number of pixels blob b adds to track t from the centroid toward
a virtual north coordinate.

– South: the number of pixels blob b adds to track t from the centroid toward
a virtual south coordinate.

– East: the number of many pixels blob b adds to track t from the centroid
toward a virtual east coordinate.

– West: the number of many pixels blob b adds to track t from the centroid
toward a virtual west coordinate.

Figure 4 illustrates these concepts and shows only the non-zero values. This
figure indicates that removing block B1 would change the track size from the
North and the West, while block B3 from the South and the East. Removing B2
would not change the track size.

This information allows the algorithm to compute how many pixels a track
t would lose in each dimension if the blob is removed. It is initialized at the
beginning of the algorithm and then updated after each move. It is also used to
compute the costs of possible moves. The algorithm also maintains information
about each track

28 I. Dotu et al.

Table 2. Adding blob b to track t. t∗′ denotes the value of characteristic ∗ of track t
after the move and (b, t)λ to denote coordinate λ of blob b with respect to track t.

Attribute Formula
x coord. min(bleft, tx − 0.5 ∗ tw) + 0.5 ∗ tw′

y coord. min(btop, ty − 0.5 ∗ th) + 0.5 ∗ ty′

width tw + max(0, bright − (tx + 0.5 ∗ tw)) + max(0, (tx − 0.5 ∗ tw) − bleft)
height th + max(0, bbottom − (ty + 0.5 ∗ th)) + max(0, (ty − 0.5 ∗ th) − btop)

btop by − 0.5 ∗ bh

bbottom by + 0.5 ∗ bh

bleft bx − 0.5 ∗ bw

bright bx + 0.5 ∗ bw

Table 3. Swapping blobs b in track t with blob b2. t∗′ denotes the value of characteristic
∗ of track t after the move and (b, t)λ to denote coordinate λ of blob b with respect to
track t.

Formula
x min(b2left, tx − 0.5 ∗ tw) + 0.5 ∗ tw′ + 0.5 ∗ bw − 0.5 ∗ be

y min(b2top, ty − 0.5 ∗ ty) + 0.5 ∗ ty′ + 0.5 ∗ bn − 0.5 ∗ bs

w tw + max(0, b2right − (tx + 0.5 ∗ tw)) + max(0, (tx − 0.5 ∗ tw) − b2left) − bw − be

h th + max(0, b2bottom − (ty + 0.5 ∗ th)) + max(0, (ty − 0.5 ∗ th) − b2top) − bn − bs

bn min((b, t)north, max(0, b2top − b1top))
bs min((b, t)south, max(0, b1bottom − b2bottom))
be min((b, t)east, max(0, b1right − b2right))
bw min((b, t)west, max(0, b2left − b1left))

– The number of blobs currently assigned to it.
– The centroid of the track in a 2-D matrix of pixels.1

– The height and the width in pixels.

The last three items are also maintained for each blob.

4.2 The Moves

Table 1 describes the effect of removing a blob b from a track t. It describes how
to recompute its centroid (first two lines), its width, and its height in terms of
the auxiliary information described earlier. Table 2 describes the effect of adding
a blob b to a track t. Once again, the first four lines describe how to recompute
its centroid (first two lines), its width, and its height in terms of the auxiliary
information, while the last four lines compute some auxiliary information about
the blobs (the top/bottom/left/right corrdinates of the blob). Finally, Table 3
describes the computation to swap blob b in track t with blob b2. These formulas
allow the algorithm to compute the new shape of a track in constant time. As a
consequence, all moves can be performed and evaluated in constant time.
1 The north-west corner is position (0, 0).

Real-Time Tabu Search for Video Tracking Association 29

4.3 The Starting Point

The starting point of a local search may have a significant impact on its efficiency
and solution quality. Two types of starting points were considered in the tabu-
search algorithm.

– Randomly assign 0 or 1 to the a[b, t] variables. This is equivalent to ran-
domly assign blobs to tracks. Whenever a blob is not allowed to belong to
a certain track (given by the hypothesis matrix mentioned in Sect. 3), the
corresponding a[b, t] variable is set to 0.

– In Proximity order to the predicted centroid of a track t, assign blobs to t
until it surpasses either its predicted width or its predicted height. Repeat
for every track.

The experimental results will indicate that the second choice brings significant
benefits.

5 Results

This section reports the experimental results of the tabu-search algorithm for
the data-association problem. Starting with a random or proximity-based initial
solution, the algorithm iteratively chooses the best move possible in the neigh-
borhood until a given number of iterations is reached. The algorithm maintains
the two tabu lists described earlier for forbidden moves and implement the aspi-
ration criterion to overwrite the tabu status whenever a new best solution would
be obtained. This algorithm has been implemented in the language Comet [30]
and experiments were run on a MacBook under Mac OS X with a 2.4 GHz Intel
Core 2 Duo processor and 4 GB of memory. The results are given for several
instances of four different videos:

– CLEAR (Classification of Events, Activities and Relationships)
[29]. This dataset is deployed to evaluate systems that are designed to rec-
ognize events, activities, and their relationships in interaction scenarios. 2
tracks and up to 50 blobs.

– CANDELA [5] (Content Analysis and Network DELivery Archi-
tectures). From 5 to 10 tracks and up to 17 blobs.

– HANDBALL. This video is from the publicly available CVBASE dataset
[11]. It has 16 tracks and 23 blobs.

– Football INMOVE. This video belongs to the Performance Evaluation of
Tracking and Surveillance (PETS) dataset [27]. From 8 to 10 tracks and up
to 42 blobs.

The scenes were chosen based on their complexity. We selected scenes where
there were a large number of blobs to be assigned to a high number of tracks.
These problems become a challenging problem of blob-to-track association.

To establish the solution quality of our approach compared to other methods,
we implemented our algorithm within the pipeline of an IVS system. Table 4

30 I. Dotu et al.

Table 4. Measures of quality of the algorithms applied to HANDBALL. Tracks per
Frame (TPF), Frames per Second (FPS) and Lost Track Probability (LTP).

mean TPF
(ideal=14)

sd TPF FPS LTP

TABU 12.175 1.077 11.33 0.03
CGA 10.769 1.095 0.81 0.20
PBIL 11.639 1.220 0.66 0.20
MSPF 12.920 0.523 0.56 0.22
UMDA 7.353 1.014 0.31 0.71
GA 12.403 1.821 0.04 0.43

Table 5. Best Results from 20 Static Scenarios: 1-4 from CLEAR, 5-13 from CAN-
DELA, 14-15 from HANDBALL and 16-20 from INMOVE

Scenario Optimum Proximity Tabu Tabu/Init Tabu/Swap SAGreedy SA

1 1.021 1.024 1.021 1.021 1.021 1.021 1.021
2 0.369 1.294 0.369 0.369 0.369 0.369 0.369
3 0.385 1.074 0.385 0.385 0.385 0.385 0.438
4 0.372 0.588 0.372 0.372 0.372 0.382 0.372
5 1.403 1.569 1.403 1.403 1.403 1.514 1.403
6 1.040 6.401 1.040 1.040 1.040 1.040 1.040
7 0.893 2.435 0.893 0.893 0.893 0.893 0.893
8 1.807 6.055 3.120 1.807 1.807 1.807 1.807
9 1.784 5.684 1.784 1.784 1.784 1.784 1.784
10 1.023 5.431 1.023 1.023 1.023 1.023 1.023
11 2.587 6.867 2.587 2.587 2.587 2.891 2.587
12 2.853 9.122 5.362 2.853 2.853 2.853 3.735
13 4.162 8.933 5.462 4.162 4.162 4.162 5.274
14 7.177 10.199 13.745 7.177 7.177 7.264 7.264
15 8.067 11.668 21.144 8.067 8.067 8.067 8.067
16 2.532 2.642 10.830 2.635 2.532 2.642 2.635
17 2.823 9.040 9.603 2.823 2.823 2.823 2.823
18 3.433 4.838 9.970 3.433 3.433 3.433 3.433
19 4.805 6.761 6.267 4.805 4.805 4.977 4.977
20 4.080 5.190 7.295 4.108 4.080 4.108 4.080

shows a comparison of the tabu-search algorithm against the methods described
in Section 2. It can be seen that the tabu-search algorithms compares well in
terms of solution quality and outperforms the other approaches in efficiency by
orders of magnitude. In particular, it is the only method that can process video
tracking in real-time (11 Frames Per Second, FPS).

It is hard to reproduce the actual behavior of the algorithms without watching
at the video scene itself, however, the measures used in this paper can give
us an approximate idea of their quality. TPF (Tracks Per Frame) shows how
many tracks appear on every frame, which should be close the actual number of
tracks (ideal number of tracks). However, this does not mean that these tracks

Real-Time Tabu Search for Video Tracking Association 31

Table 6. Average Results from 20 Static Scenarios: 1-4 from CLEAR, 5-13 from
CANDELA, 14-15 from HANDBALL and 16-20 from INMOVE

Scenario Opt. Proximity Tabu Tabu/Init Tabu/Swap SAGreedy SA

1 1.021 1.024 1.937 1.021 1.021 1.021 1.024
2 0.369 1.294 1.083 0.369 0.369 0.369 0.940
3 0.385 1.074 0.657 0.385 0.385 0.385 0.818
4 0.372 0.588 0.784 0.372 0.372 0.382 0.568
5 1.403 1.569 5.492 1.403 1.403 1.514 1.552
6 1.040 6.401 4.249 1.040 1.040 1.040 2.814
7 0.893 2.435 2.324 0.893 0.893 0.893 1.035
8 1.807 6.055 5.739 1.807 1.807 1.807 4.465
9 1.784 5.684 2.814 1.784 1.784 1.784 3.419
10 1.023 5.431 3.705 1.023 1.023 1.023 3.500
11 2.587 6.867 3.055 2.587 2.587 3.277 4.201
12 2.853 9.122 10.036 2.853 2.853 2.889 7.335
13 4.162 8.933 9.334 4.162 4.162 4.162 7.820
14 7.177 10.199 18.693 7.177 7.177 9.002 9.816
15 8.067 11.668 25.503 8.067 8.067 8.814 11.283
16 2.532 2.642 15.292 2.635 2.532 2.642 2.642
17 2.823 9.040 14.644 2.823 2.823 3.646 6.563
18 3.433 4.838 13.976 3.433 3.433 3.445 4.677
19 4.805 6.761 9.074 4.805 4.805 5.004 6.322
20 4.080 5.190 8.228 4.108 4.080 4.108 5.067

are the real tracks we would like to target (noise instead of objects). Thus,
this measure should be taken into account along with the LTP (Lost Track
Probability) measure. This measure tells us how likely it is that we lose a track
using a given algorithm. Note that this measures has also been used in other
frameworks ([19]).

Moreover, we have captured 20 different static scenarios from the 4 different
videos introduced above. Table 5 shows the optimal and best results in terms
of the value of the fitness function F described in section 3 for a variety of al-
gorithms, while Table 6 depicts the average solution quality over 100 runs. The
considered algorithms are the proximity heuristic (Proximity), tabu search with
a random initialization and no swapping (Tabu), tabu search with the proximity-
based initialization (Tabu + Init), tabu search with the proximity-based initial-
ization and swaps (Tabu + Swap). We also report results of simulated annealing
with and without greedy acceptance (SAgreedy and SA respectively) and us-
ing the proximity based initialization. The algorithms all have a time limit to
achieve real-time performance (at least 7 FPS). Note that the data association
is only one part of an IVS system, and other modules can take up to 90% of the
process time. Thus the time limits for the different scenarios range from 30 to
62 miliseconds, depending on the number of blobs and tracks.

The experimental results indicate that the initialization function is key to ef-
ficiency. It allows tabu search to find the optimal solutions to all the instances
except for 2, in the very limited amount of iterations allowed (around 50 it-

32 I. Dotu et al.

erations per track). The two remaining scenarios can also be solved optimally
by tabu search but requires a more complex neighborhood that includes swaps.
Overall, tabu search with the proximity-based initialization and a neighborhood
including swaps finds the optimal solution consistently (i.e, it finds the optimal
solution in every run). The simulated annealing algorithm cannot achieve the
required solution quality in real-time: It can solve very few instances optimally
in the average and its returned solution may be far from the optimal value, high-
lighting the importance of tabu search for this problem. Note that we provide
the optimal fitness using Constraint Programming (CP); the times needed to
solve these instances to optimality range from several hours up to a day.

Finally, we have fixed the number of iterations for all the algorithms and com-
pared the computation times with and without the incremental data structures.
The incremental data structures reduces the execution times by a factor 9 for
the tabu search algorithms (with swaps), showing how critical the incremental
data structures are to achieve real-time performance in video tracking.

In summary, the experimental results indicate that a tabu-search algorithm
with the proximity-based heuristic and both assignment and swap moves pro-
duces the required solution in real time and is the only method with these
functionalities. This is a significant contribution to intelligent visual surveillance
systems.

6 Conclusions

This paper considered the data association problem arising in Intelligent Vi-
sual Surveillance (IVS) systems whose aim is to monitor, in real time, persistent
and transcient activities in specific environments. The data association problem
consists in assigning blobs (connected sets of pixels) to tracks (objects being
monitored) in order to minimize the distance of the resulting scene to its pre-
diction (which may be obtained with a Kalman filer). The paper has proposed a
tabu-search algorithm for this multi-assignment problem that finds optimal so-
lutions consistently and processes more than 7 frames per seconds on standard
IVS benchmarks. The resulting algorithms significantly outperforms the state of
the art by providing the first real-time algorithm delivering the required solution
quality.

References

1. Angus, J., Zhou, H., Bea, C., Becket-Lemus, L., Klose, J., Tubbs, S.: Genetic
algorithms in passive tracking. Technical report, Claremont Graduate School, Math
Clinic Report (1993)

2. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on
Signal Processing [see also IEEE Transactions on Acoustics, Speech, and Signal
Processing] 50(2), 174–188 (2002)

Real-Time Tabu Search for Video Tracking Association 33

3. Baluja, S.: Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning, Technical Report
CMU-CS-94-163, CMU-CS, Pittsburgh, PA (1994)

4. de Bonet, J.S., Isbell Jr., C.L., Viola, P.: MIMIC: Finding optima by estimating
probability densities. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in
Neural Information Processing Systems, vol. 9, p. 424. The MIT Press, Cambridge
(1997); Artech House, Inc. (1999)

5. Content analysis and network delivery architectures,
http://www.hitech-projects.com/euprojects/candela/

6. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: ECAI,
pp. 147–149 (1990)

7. Chen, T.P., Haussecker, H., Bovyrin, A., Belenov, R., Rodyushkin, K., Kuranov,
A., Eruhimov, V.: Computer vision workload analysis: Case study of video surveil-
lance systems. j-INTEL-TECH-J 9(2), 109–118 (2005)

8. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space anal-
ysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–
619 (2002)

9. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans.
Pattern Anal. Mach. Intell. 25(5), 564–575 (2003)

10. Cordon, O., Damas, S.: Image registration with iterated local search. Journal of
Heuristics 12(1-2), 73–94 (2006)

11. University of Ljubljana Machine Vision Group. In: Cvbase 2006 workshop on com-
puter vision based analysis in sport environments (2001),
http://vision.fe.uni-lj.si/cvbase06/

12. Djuric, P.M., Kotecha, J.H., Zhang, J., Huang, Y., Ghirmai, T., Bugallo, M.F.,
Miguez, J.: Particle filtering. IEEE Signal Processing Magazine, 19–38 (2003)

13. Ferryman, J.M., Maybank, S.J., Worrall, A.D.: Visual surveillance for moving ve-
hicles. Int. J. Comput. Vision 37(2), 187–197 (2000)

14. Glover, F., Laguna, M.: Modern Heuristic Techniques for Combinatorial Problems.
Blackwell Scientific Publishing, Malden (1993)

15. Han, M., Xu, W., Tao, H., Gong, Y.: An algorithm for multiple object trajectory
tracking. In: CVPR 2004: Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, vol. 01, pp. 864–871 (2004)

16. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE
Transactions on Evolutionary Computation 3(4), 287 (1999)

17. Hillis, D.B.: Using a genetic algorithm for multi-hypothesis tracking. In: ICTAI
1997: Proceedings of the 9th International Conference on Tools with Artificial
Intelligence, Washington, DC, USA, p. 112. IEEE Computer Society, Los Alamitos
(1997)

18. Huwer, S., Niemann, H.: 2d-object tracking based on projection-histograms. In:
Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 861–876.
Springer, Heidelberg (1998)

19. Kan, W.Y., Krogmeier, J.V.: A generalization of the pda target tracking algorithm
using hypothesis clustering. Signals, Systems and Computers 2, 878–882 (1996)

20. Kincaid, R.K., Laba, K.E.: Reactive tabu search and sensor selection in active
structural acoustic control problems. Journal of Heuristics 4(3), 199–220 (1998)

21. Larraaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Kluwer Academic Publishers, Norwell (2001)

22. Mühlenbein, H.: The equation for response to selection and its use for prediction.
Evolutionary Computation 5(3), 303–346 (1997)

http://www.hitech-projects.com/euprojects/candela/
http://vision.fe.uni-lj.si/cvbase06/

34 I. Dotu et al.

23. Mühlenbein, H., Mahnig, T.: The factorized distribution algorithm for additively
decompressed functions. In: 1999 Congress on Evolutionary Computation, pp. 752–
759 (1999)

24. Pisinger, D., Faroe, O., Zachariasen, M.: Guided local search for final placement
vlsi design. Journal of Heuristics 9(3), 269–295 (2003)

25. Patricio, M.A., Garćıa, J., Berlanga, A., Molina, J.M.: Video tracking association
problem using estimation of distribution algorithms in complex scenes. In: Mira,
J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 261–270. Springer,
Heidelberg (2007)

26. Regazzoni, C.S., Vernazza, G., Fabri, G. (eds.): Highway traffic monitoring. Kluwer
Academic Publishers, Dordrecht (1998)

27. 4th IEEE International Workshop on Performance Evaluation of Tracking and
Surveillance (PETS 2003),
http://www.cvg.cs.rdg.ac.uk/VSPETS/vspets-db.html

28. Regazzoni, C.S., Vernazza, G., Fabri, G. (eds.): Security in ports: the user require-
ments for surveillance system. Kluwer Academic Publishers, Norwell (1998)

29. Stiefelhagen, R., Bernardin, K., Bowers, R., Rose, R.T., Michel, M., Garofolo, J.:
The CLEAR 2007 Evaluation. In: Stiefelhagen, R., Bowers, R., Fiscus, J.G. (eds.)
RT 2007 and CLEAR 2007. LNCS, vol. 4625, pp. 3–34. Springer, Heidelberg (2008)

30. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press,
Cambridge (2005)

31. Xiao-Rong, L., Bar-Shalom, Y.: Multitarget-Multisensor Tracking. In: Principles
and Techniques (1995)

32. Yeddanapudi, M., Bar-Shalom, Y., Pattipati, K.: Imm estimation for multitarget-
multisensor air traffic surveillance. Proceedings of the IEEE 85, 80–96 (1997)

http://www.cvg.cs.rdg.ac.uk/VSPETS/vspets-db.html

Pin Assignment Using Stochastic Local Search
Constraint Programming

Bella Dubrov1, Haggai Eran1, Ari Freund1, Edward F. Mark2, Shyam Ramji2,
and Timothy A. Schell2

1 IBM Haifa Research Lab, Haifa, Israel
{bella,haggaie,arief}@il.ibm.com

2 IBM East Fishkill, Hopewell Junction, NY
{efmark,ramji,tschell}@us.ibm.com

http://www.haifa.ibm.com/projects/verification/csp/

Abstract. VLSI chips design is becoming increasingly complex and call-
ing for more and more automation. Many chip design problems can be
formulated as constraint problems and are potentially amenable to CP
techniques. To the best of our knowledge, though, there has been little
CP work in this domain to date. We describe a successful application of
a CP based tool to a particular pin-assignment problem in which tens
of thousands of pins (i.e., connection points) belonging to internal units
on the chip must be placed within their units so as to satisfy certain
constraints and optimize the wirability of the design. Our tool has been
tested on real IBM designs and is now being integrated into IBM’s chip
development environment.

Keywords: Constraint Programming, Stochastic Local Search, EDA,
ASIC, Chip Design, Pin Assignment.

1 Introduction

This paper explores the application of Constraint Programming (CP) for devel-
oping Computer Aided Design (CAD) tools for Integrated Circuit (IC) design
and demonstrates the successful automation of pin-assignment during IC design.

We start with a brief background on the various phases involved in a typi-
cal IC design process. For illustration, we consider an Application Specific In-
tegrated Circuit (ASIC) design flow [1]. ASIC chips are designed for specific
applications or functions such as encoding and decoding digital data, embedded
functions within a factory automation system and so on. Generally, ASIC designs
adopt a standard cell design methodology wherein the circuit layout for prim-
itive logic operations (AND, OR, NAND, XOR etc.) is available as a standard
cell library that is then used to implement the chip logic function. As Figure 1
illustrates, starting with the design specification in a high-level language such
as VHDL or Verilog, the logic synthesis phase generates a cell-level implemen-
tation, i.e., netlist (interconnected cells) that is presented to physical design to
generate a layout mask for chip fabrication. The netlist is then partitioned into

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 35–49, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.haifa.ibm.com/projects/verification/csp/

36 B. Dubrov et al.

blocks based on logic function, physical connectivity or other extraneous design
constraints. At this point, the physical design implementation of the partitioned
logic is considered subject to fabrication technology, chip package, IO cells, metal
layer stack for interconnect, power distribution etc. Floorplanning is the phase
where the circuit blocks (partitions) are assigned an area, shape and location
along with chip IO cell placement. Once the large blocks are floorplanned, the
standard cells are placed and logic optimized (physical synthesis) based on esti-
mated interconnect length. Then the connections are routed along the shortest
length using metal layers on a regular grid (per layer) to complete the chip im-
plementation while meeting the design frequency targets. The generated layout
mask captures the geometrical shapes which correspond to the metal, oxide or
semiconductor layers that make up the components of the integrated circuit.
The enormous design complexity and short time-to-market for ASIC chips has
lead to evolution of CAD tools to automate various phases in this design flow.

The IC design flow presents several feasibility and optimization problems that
demand efficient and effective algorithms to be developed in the CAD tools [2,3].
The growing complexity of VLSI designs in ultra-deep sub-micron technologies
has also driven the need for hierarchical design methodologies to reduce the
overall turn-around time. Each phase in the design flow exhibits a flavor of
constrained optimization problem, as seen in a typical hierarchical IC design
flow. For example, logic synthesis attempts to minimize cell area subject to
available library cells (logic functions), delay, power etc.; partitioning divides
the circuit into sub-blocks called macros with a defined physical boundary and
macro pins serving as the interface for connections from the top (chip) level to
the cells within the macros (i.e., connections between cells in different macros
and connections between cells and the chip’s external pins), where the objective
is to minimize the cuts or interconnect crossings subject to arbitrary cell area
balance criteria between the partitions; floorplanning attempts to shape and
place blocks to minimize estimated interconnect length and chip layout area
subject to constraints such as relative placement of large blocks with respect
to IO cells, spacing of cells, macro pin assignment along the periphery of the
blocks and alignment to the metal layer pitch; placement and routing of cells
within the macro blocks and at the chip level with an objective to minimize
the routed interconnect length subject to meeting design timing (frequency) and
power constraints.

Given the inherently hard sub-problems, several optimization techniques such
as integer linear programming, network flows, quadratic programming, simulated
annealing, and combinatorial optimization integrated with effective heuristics
have been explored in CAD for VLSI [3,4]. However, to the best of our knowledge,
there has been little research on the application of constraint programming (CP)
techniques to IC physical design problems. We explore this aspect in the present
paper.

In particular, we address the macro pin-assignment problem during the chip
floorplanning phase. As described earlier, in a hierarchical design approach, the
partitioned macros have pins which are the logical interface between the internal

Pin Assignment Using Stochastic Local Search Constraint Programming 37

Fig. 1. ASIC design flow

(macro) level cells and the top (chip) level blocks or cells. Assigning pin locations,
typically along the periphery of the macros as shown in Figure 2, in order to
minimize the interconnect length subject to physical technology rules (spacing,
alignment to grid etc.) is referred to as pin-assignment. In such a design flow,
the macro pin assignment heavily influences the quality of cell placement and
routing at both the macro and the chip level which in-turn impacts the overall
chip physical design time. Therefore, a good (optimal) pin assignment is desirable
for any hierarchical VLSI design flow.

Fig. 2. Macro pin-assignment for a given VLSI chip floorplan

Pin-assignment in VLSI physical design has been researched over several
decades with various techniques developed for different design styles ranging
from printed circuit boards [5] to recent multi-million gate integrated circuits
(IC) layouts [6,7]. Broadly, the existing macro pin-assignment algorithms can
be classified as: a) pin placement on the macros to minimize the estimated top
(chip) level wire length [8,9], and b) pin-assignment coupled with global rout-
ing on a net-by-net basis [10,6]. The term net refers to a set of pins (belonging
to different cells) that must all be connected together. More recently, simulta-
neous pin-assignment and global routing for all 2-pin nets using network flow
formulation [7], and pin-placement integrated with analytical cell placement us-
ing quadratic programming methods [11] have also been discussed. However,

38 B. Dubrov et al.

the known pin-assignment algorithms have limitations in that they either use
greedy heuristics, or consider nets (pin-connections) sequentially leading to in-
ferior solutions, or create an abstraction for continuous global optimization that
ignores detailed pin-placement constraints such as pin-spacing, layer restriction
and alignment. Additionally, current methods of macro pin-assignment require
a good deal of manual intervention by a physical design engineer. This paper
explores the use of CP techniques to model the general macro pin-assignment
problem while considering all nets simultaneously. We describe an automated
macro pin-assignment tool using CP techniques and demonstrate the results on
real-world industrial chip designs. We believe that the area of electronic de-
sign automation has the potential to become a fertile application domain for
CP methods since many of its problems have natural formulations in terms of
known constraints. Also, the flexibility offered by CP, whereby constraints may
be easily added or removed, is an important advantage in this domain where dif-
ferent problems (stemming from different design methodologies, different hard-
ware technologies, different levels in the design hierarchy, etc.) are similar but
not identical to each other.

1.1 Stochastic Local Search

Stochastic CSP solvers work by defining a non-negative cost function on the
points of the search space (full assignments to all variables in the problem). The
cost of a point is zero if the point is feasible, i.e., it satisfies all constraints, and
is positive otherwise. Intuitively, the cost of a point corresponds to a measure of
how far the point is from feasibility. Typically, the cost of a point is defined as
the sum of the individual costs attached by the constraints to it, that is, there
is a cost function (on the full assignments) associated with each constraint—
intuitively measuring how violated the constraint is by the assignment, with 0
indicating satisfaction—and the cost of the point is the sum of these individual
costs. It is the job of the problem modeler to provide these cost functions.

The solver then starts with a randomly (or otherwise) chosen full assignment
for the CSP variables, and in each iteration examines a random sample of the
“neighborhood” of the current assignment, and tries to find an assignment with
lower cost. This is repeated until a feasible point is found or a timeout occurs.
Of course, the solver may be augmented with various heuristics to accelerate the
search, escape from local minima, etc.

This approach can also be extended to solve constrained optimization prob-
lems by similarly defining an optimization objective function which is used once
feasibility has been attained.

Our tool is based on Stocs—a stochastic CSP solver developed in IBM [12]
which has the ability to solve constraint optimization problems as well as pure
feasibility ones. Stocs employs different strategies in its decision which neighbor-
ing points to examine at each iteration, ranging from random to user-defined.
The choice of which strategy to use at each step is itself (non-uniformly) random.
One powerful strategy involves learning. During the search Stocs tries to learn
the inherent topography of the search space by remembering the directions and

Pin Assignment Using Stochastic Local Search Constraint Programming 39

step sizes that proved most useful in past iterations. It uses this information to
predict the most promising points to examine next. However, Stocs never aban-
dons completely random attempts, which helps it escape from local minima. We
remark that (in contrast with some other stochastic local search algorithms)
Stocs never moves to a point with a higher cost than the current point. It con-
tinues to improve its position in this manner until it reaches a point with cost 0
(i.e., a feasible point). Stocs will also halt if it cannot find a better point within
a user-defined number of attempts or allotted time.

Stocs provides for optimization problem solving by defining the cost function
as an ordered pair (c1, c2), where c1 is the total cost reported by the constraints
and c2 is the value of the objective function. Comparison between two cost pairs
gives priority to c1, so that a “more feasible” point is always better than a “less
feasible” one, even if the value of the objective function is better in the latter.
When solving an optimization problem, Stocs does not immediately halt upon
reaching a point with c1 = 0. Rather, it continues to search for better points
(i.e., points with lower c2) until it cannot improve further.

1.2 Paper Organization

The remainder of the paper is organized as follows. We define the pin-assignment
problem and its modeling as a CSP within our prototype tool in Section 2; we
present experimental results obtained with the tool in Section 3; and we conclude
in Section 4.

2 The Pin Assignment Problem and Its Modeling

The particular design problem we solve is the following. Logic blocks are already
placed at fixed locations on the floorplan, and the problem is to place the pins
on the block edges. The overall objective is to place the pins such that wiring
them (in later stages in the design process) will be feasible.

The pin assignment problem arises at a point in the design flow at which there
is not enough data available to develop exact constraints that will capture wiring
feasibility. In fact, it is premature to attempt this, since the design is expected
to evolve quite significantly before the wiring stage is reached. Thus rather than
trying to satisfy any number of detailed wiring constraints we substitute an
optimization objective for the feasibility goal. Since the main wiring constraints
typically translate into a wire length constraint, we attempt to minimize the total
wire length. Of course the actual routing is done downstream in the workflow,
so we can only estimate this value roughly. We employ the commonly used
half perimeter wire length (HPWL) measure, which can be computed relatively
quickly and is sufficiently accurate as an approximation. In this method, the
total wire length of a single net is estimated as half the perimeter length of
the smallest bounding rectangle containing the net’s pins. Since wiring is done
rectilinearly, the most economic routing is through the shortest rectilinear Steiner
tree [13] connecting the pins. HPWL is an exact estimate of this length for nets
connecting up to three pins, and a lower bound for larger nets.

40 B. Dubrov et al.

In addition to the wiring objective, there are also various constraints on the
pins’ locations. Specifically, pins may not overlap (on the same metal layer), pins
must be located on macro edges, and pins may not be placed in certain blockage
areas (e.g., on the power or ground grids).

An important consideration with respect to pin-assignment is that macros
are typically reused multiple times in a given design. Thus a design may contain
several copies, refered to as instances, of a given macro, and moreover, these
may be rotated or mirrored as well. The pertinent aspect of this is that pin-
assignment is done per macro, not per instance, so that all copies of a macro
share the same (relative) placement of pins. This makes the problem harder (at
least for humans) because different instances of the same macro may benefit from
different pin-assignments, but only one assignment is allowed, so a compromise
must be struck.

2.1 Formalization

Pin locations. The most natural way, perhaps, to model pin locations is through
their two-dimensional x-y coordinates. However, the requirement that pins must
be placed on the edges of their macros allows us to use a one dimensional model-
ing wherein the location of a pin is given by its distance from the macro’s origin
(lower left corner) going clockwise through the macro’s perimeter. This modeling
has the advantage of reducing the number of variables and simultaneously ob-
viating the pins-on-macro-edges constraint. On the other hand, calculating the
HPWL objective function requires the conversion of relative one-dimensional pin
locations to absolute two-dimensional coordinates. Nevertheless, we found that
the advantage offered by the one-dimensional modeling far offsets the penalty of
increased objective function computation time, so we use the one-dimensional
modeling.

Note that pin locations are non-negative integers in a finite range since pins
must be located on a specific pin placement grid whose lines are called tracks.
Furthermore, if—as is the case in the designs we have encountered—the pin
size is smaller than the distance between two adjacent grid points, then the no-
overlap constraint can be simplified into an all-different constraint on the pin
locations (of pins belonging to the same macro).

Variables and Domains. We denote the set of pins by P , and the set of macros by
M . Let Macro : P →M be the function mapping pins to their macros (i.e., pin
p belongs to macro Macro(p)). Also, for each macro m ∈M , denote the macro’s
perimeter length in track units by Perimeter (m) ∈ N. We define a CSP variable
vp for each pin p ∈ P , with domain Dp = {0, . . . ,Perimeter (Macro(p))− 1}.
Blockages are modeled by simply deleting forbidden pin locations from the corre-
sponding domains. (In actuality, although this issue has been raised, we have not
encountered yet problems with blockages and our tool does not support them.)

Constraints. Having modeled away the pins-on-edges and blockage constraints,
the only remaining ones are the no-overlap constraints. For each macro m we

Pin Assignment Using Stochastic Local Search Constraint Programming 41

introduce a constraint AllDiff {vp | Macro (p) = m}. If pin sizes are greater than
the grid dimension, we instead use a one-dimensional no-overlap constraint (with
wraparound at the macro’s origin).

Optimization Objective Function. In order to describe the objective function we
first need to formalize the connectivity between pin instances in the design. (Note
that pins are defined with respect to macros, hence each pin may have multiple
instances in the design—one per instance of the corresponding macro.) Let I
denote the set of all macro instances, and for each instance i ∈ I let (by a slight
abuse of notation) Macro(i) ∈M denote the corresponding macro. An instance
can be placed anywhere on the grid, rotated by right angles, or mirrored. A pin
instance is a pair (i, p) ∈ I×P such that Macro(p) = Macro(i). The connectivity
between pin instances is defined by a set of nets N . Each net n ∈ N is a subset
of I×P , namely, the set of all pin instances connected by the net. A pin instance
(i, p) may only appear in a single net n ∈ N , which we denote Net(i, p).

For every macro m we define a function Relm : {0, . . . ,Perimeter (m)− 1} →
R2 that converts a one-dimensional pin location on m’s perimeter to the cor-
responding two-dimensional coordinate pair relative to the macro’s origin. This
function can be computed easily by first finding out on which edge the pin loca-
tion falls (based on the macro’s dimensions), then the relative position on that
edge, and finally the relative position with respect to the macro’s origin.

For each macro instance i ∈ I we now define a function Absi : R2 → R2 that
transforms a coordinate pair relative to the macro’s origin to absolute coordi-
nates. This function is implemented by considering the placement, rotation and
mirroring of the instance i, and converting the coordinates accordingly.

Finally, given a pin instance (i, p) and a pin location x ∈ Dp, the corresponding
absolute two-dimensional coordinates are given by Absi(RelMacro(i)(x)).

The objective function is therefore∑
n∈N

Hpwl (
{
Absi(RelMacro(i)(vp)) | (i, p) ∈ n

}
,

where Hpwl(·) is the half perimeter wire length function defined by

Hpwl ({(x1, y1), . . . , (xk, yk)}) =
1
2
(max {x1, . . . , xk} −min {x1, . . . , xk}+

max {y1, . . . , yk} −min {y1, . . . , yk}).

Constraint Violation Cost. Recall that for a given point in the search space,
i.e., an assignment of values to all variables, each constraint must be assigned a
non-negative cost which (intuitively) reflects the degree to which the constraint
is violated by the assignment. We use the natural cost function of total amount of
overlap, defined as the sum over all pin locations in which pins are placed of the
number of pins overlapping in that location minus one (i.e., a location containing
one pin contributes 0 to the cost; a location containing two pins contributes 1;
a location containing three pins contributes 2, etc.).

42 B. Dubrov et al.

2.2 Grouping into Buses

For sufficiently small designs the model above results in good solutions (See
Figure 4(a)). However, for designs with large numbers of pins, the resulting
model is too large (in terms of variable count) for the solver to be able to deal
with in a reasonable amount of time. Our solution is to solve a more constrained
problem: instead of having each pin placed by the solver individually, we group
sets of pins together to form buses1 and have the solver place each bus as a
whole. In a post-processing phase we then place the constituent pins of each bus
contiguously within the space alloted to the bus.

Thus we model the position of each bus as a single CSP variable, and therefore
dramatically reduce the number of variables. The semantics of a bus position
variable is the same as before: it is the distance of the bus’s center from the
macro’s origin, going clockwise through the macro’s perimeter.

Formally, the set of buses is B. Each bus b ∈ B is a set of pins belonging
to the same macro. We denote the macro by Macro(b). We denote the bus to
which pin p belongs by Bus(p). For each bus b ∈ B we have a variable vb whose
domain is Db = {0, . . . ,Perimeter (Macro(b))− 1}. Since the CSP is defined in
terms of buses, we also need to introduce the notion of bus net. Specifically, a
bus instance is a pair (i, b) ∈ I ×B such that Macro(i) = Macro(b). The bus net
corresponding to net n ∈ N is defined as the set of bus instances

BusNet(n) = {(i,Bus(p)) | (i, p) ∈ n} .

Naturally, in the case of nets with identical connectivity relative to the respective
buses (i.e., nets whose corresponding bus nets are identical), we only allow a
single bus net. Thus a given bus net may correspond to multiple nets. We denote
the number of nets for which bus net x substitutes by Width (x), i.e.

Width (x) = |{n ∈ N | BusNet (n) = x}| .

The no-overlap constraints are now defined in terms of buses rather than pins.
They ensure that no two buses overlap, which requires taking the bus sizes into
account. (The size of a bus is proportional to the number of pins in it.)

Finally, we also modify the objective function to use weighted distances be-
tween bus center points rather than between pins. Specifically, let NB denote
the set of bus nets. Then the objective function is∑

x∈NB

Width (x) Hpwl
({

Absi
(
RelMacro(i)(vb)

)
| (i, b) ∈ x

})
.

Bus Grouping Method. We now describe how the set of pins of a given macro
is partitioned into buses. A simple approach could have been to use the names
given by the designer to the pins to group similarly named pins into buses. (Typ-
ically, pins are grouped by the designer into buses and their names reflect this,
1 Some authors use the term bus to refer to a set of wires running in parallel and

connecting what we refer to as buses.

Pin Assignment Using Stochastic Local Search Constraint Programming 43

i.e., the kth pin in bus X is called something like X<k>.) However, this method
could cause problems when different pins in the same bus have different connec-
tivity (e.g., the most significant bit of a data bus may connect identically as all
other bits in the bus, but additionally to macros concerned exclusively with the
sign). The extra constraint that buses must be placed as a whole would impact
the solution’s cost. An opposite problem occurs when designers, who typically
define and name buses based on their functionality rather than connectivity,
group pins with identical connectivity into multiple buses. In this case grouping
by name would be finer than needed and would lead to unnecessary bloating of
the CSP.

We therefore group buses according to their pin destinations. Pins of the
same macro are grouped only when they are connected to the same set of macro
instances. We also split buses in cases where the bus is connected to pins that
would otherwise be grouped into a single bus in one instance, but into multiple
buses in another. More specifically, our grouping algorithm is as follows.

1. Calculate for each pin instance (i, p) its instance set:

{i′ ∈ I | (i′, p′) ∈ Net (i, p)} .

2. Group pin instances that have the same instance set and belong to the same
macro instance.

3. For each pin group, check that all its pins are only connected to pins within
the same pin group. If not split the groups accordingly.
Repeat this step until no such pin groups exist.

4. The resulting partitioning of the macro’s pins defines the grouping of the
macro pins into buses.

Implementation of the Constraint Violation Cost Functions. As we
have mentioned, the no-overlap constraints must take bus sizes into account.
Specifically, given any two buses b1 and b2 (belonging to the same macro) they
must satisfy

First (b1) > Last (b2) ∨ Last (b1) ≤ First (b2) ,

where First (b) and Last (b) are the two endpoints of the bus, calculated based
on the value assigned to vb and b’s size. (Recall that bus locations are modeled
one-dimensionally.) However, this simple condition is not valid for buses that
wrap through the macro’s origin, in which case a more elaborate condition is
required. To sidestep this issue, whenever we detect such a situation we simply
split the bus in two at the origin.

Our algorithm for computing the violation cost of the no-overlap constraint
for a given macro instance is as follows.

1. Split any buses wrapping through the origin.
2. Sort together the starting and ending points of all buses. Maintain for each

point its identity as a starting point or ending point.

44 B. Dubrov et al.

3. Iterate through the sorted list of points keeping track of the number of start-
ing points encountered, ns, and the number of ending points encountered,
ne. Let x′ be the previous point and x′′ be the current point. Then ns−ne is
the number of buses passing through the interval between x′ and x′′. Thus
add max {0, l(ns − ne − 1)} to the violation cost, where l is the length of the
interval between x′ and x′′.

The running time of this algorithm is linear in the number of buses, except for
the sorting step, which takes O(n log n) time.

Post-Processing. After solving the CSP, we still need to provide a placement
for the individual pins. This is done in a short post-processing phase that orders
the pins of each bus in the region allotted to that bus. The ordering of the pins
within buses is done so that two buses connected at the ends of a bus net have
the same relative pin ordering, thus avoiding wire crossovers (in the future rout-
ing stage). However, it is not always possible to eliminate all crossovers. Keeping
in mind that all instances of the same macro share the same pin ordering, and
that macro instances may be rotated or mirrored, it is easy to envision situa-
tions in which a particular ordering of pins in a given bus eliminates crossovers
between macro instances X and Y but necessitates crossovers between X and Z,
while reversing this order eliminates crossovers between X and Z but introduces
crossovers between X and Y . It is also easy to see that the problem is only sensi-
tive to order reversals—not the particulars of the order. (I.e., given an ordering
of the pins in one of the buses, it is easy to find orderings of the other buses
connected to it such that all crossovers are eliminated. However the constraint
that all macro instances share the same pin placement might force some of these
orderings to be reversed, and no amount of tweaking the order will prevent this.)
Thus in our post-processing phase we first compute the pin order within each
bus up to its clockwise/counter clockwise orientation, and then heuristically test
both orientations for each bus independently and choose the one that yields
lower cost. More specifically, We start with random orientations, iterate through
the buses in random order, and for each bus, invert its orientation if doing so
lowers the overall cost.

2.3 Model Improvements

When experimenting with the above model, some of the buses were occasionally
placed close to the corners of their macros, wrapping around the corner. This
was due to the fact that the objective function only considered the center of the
bus, and did not care whether or not the entire bus was on the same edge as the
center point. However, such a placement usually entails a greater cost (once the
individual pins are laid out) than a placement in which the entire bus is located
on the same edge. To alleviate the problem we use a modified version of the cost
function which calculates for each bus net the average of two HPWL values, one
for each of the two ends of the connected buses. This way, the cost of wrapping
around a corner tends to be higher than not doing so, and the solver gravitates
to solutions in which buses do not wrap around corners.

Pin Assignment Using Stochastic Local Search Constraint Programming 45

3 Experimental Results

We developed a prototype tool for automated pin-assignment implementing the
ideas described in this paper. We applied the tool to five real-life IBM designs,
with satisfying results. While there are still unresolved issues, the results were
sufficiently encouraging that designers have expressed interest in using our tool.
We are currently in the process of integrating the tool into ChipBench [14], the
chip design environment in use across IBM hardware development labs.

In this section we describe the results we have obtained on the five designs
with the solver running on a Pentium 4 3GHz Linux machine with 2GB of RAM.

Table 1 summarizes the characteristics of the five designs. As can be seen,
while the number of blocks is quite small, the number of pins and buses is large.

Table 1. The hardware designs used in the experiments

Macros Instances Pins Buses
Design 1 4 6 1,956 1,610
Design 2 12 46 40,899 133
Design 3 20 20 87,492 254
Design 4 12 43 22,391 366
Design 5 9 10 14,623 55

We carried out the following experiments. For each of the five designs we ran
the solver twice, once using a random point (i.e., random pin placement) as the
search’s starting point, and once using the solution obtained by ChipBench’s
current semi-automatic pin-assignment tool mcport as the starting point (thus
using our tool to improve a given solution). We refer to the former as random
init and to the latter as manual init. In each case we halted the solver after five
hours. (However, for Designs 2 and 5 the engine’s internal heuristics halted it
much earlier, after it reached a local minimum from which it could not escape.)
In addition, for the smallest design (Design 1) we also ran the solver without
first grouping pins into buses (i.e., using AllDiff on the individual pins).

In order to compare our results with mcport ’s one must understand mcport ’s
nature. Mcport ’s work is comprised of three stages. The first stage is constraint
generation. Constraint generation consists of grouping of pins based on internal
(intra-macro) and external (inter-macro) connectivity, as well as pin names, and
then generating constraints which assign each group of pins to a certain portion
of one of the macro edges. This is done based on connectivity and an abstract
floorplan provided by the designer by means of a graphical user interface. Fol-
lowing constraint generation mcport performs pin spreading, legalization, and
refinement. Pin spreading generates an evenly spaced initial pin distribution
respecting the pin constraints, based on the length and depth (number of lay-
ers) of the pin constraint. Individual pins within a group are ordered based on
their name and other criteria. In this stage pins are placed along a macro edge
without regard to design constraints, e.g., they may be placed on top of power
shapes, other blockage shapes, or other fixed pins. Legalization then moves pins

46 B. Dubrov et al.

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5
C

os
t r

el
at

iv
e

to
 m

cp
or

t (
%

) mcport
random init
manual init

Fig. 3. Improvement over the semi-automatic mcport method. The random init ex-
periment of Design 1 resulted in a higher ratio than the chart shows (280%) and was
truncated in order to enhance the chart’s clarity.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100 1000
 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

F
ea

si
bi

lit
y

C
os

t (
nu

m
be

r
of

 o
ve

rla
ps

)

O
pt

im
iz

at
io

n
C

os
t (

na
no

m
et

er
s)

Time (Minutes, logarithmic scale)

feasibility, random init
feasibility, manual init

optimization, random init
optimization, manual init

mcport

(a) Without grouping

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 1 10 100 1000
 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

F
ea

si
bi

lit
y

C
os

t (
nu

m
be

r
of

 o
ve

rla
ps

)

O
pt

im
iz

at
io

n
C

os
t (

na
no

m
et

er
s)

Time (Minutes, logarithmic scale)

feasibility, random init
feasibility, manual init

optimization, random init
optimization, manual init

mcport

(b) With grouping

Fig. 4. Design 1

the minimum distance to legal locations that do not violate design rules. Finally,
refinement may improve upon the existing pin placement, e.g., by swapping pin
locations to improve the estimated net wire length between macros. Mcport al-
lows a high degree of user intervention and control over its various stages, and
is best described as a semi-automatic pin placement tool.

Figure 3 compares our results with mcport ’s. (The data for Design 1 is with
pin grouping.) In all cases except for Design 1 with random init, our tool achieved
significant improvement. We also see that in the other cases, manual init did
not offer an advantage over random init in terms of solution quality.

Pin Assignment Using Stochastic Local Search Constraint Programming 47

 0

 10

 20

 30

 40

 50

 60

 0.001 0.01 0.1 1 10
 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

F
ea

si
bi

lit
y

C
os

t (
nu

m
be

r
of

 o
ve

rla
ps

)

O
pt

im
iz

at
io

n
C

os
t (

na
no

m
et

er
s)

Time (Minutes, logarithmic scale)

feasibility, random init
feasibility, manual init

optimization, random init
optimization, manual init

mcport

(a) Design 2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.01 0.1 1 10 100 1000
 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

F
ea

si
bi

lit
y

C
os

t (
nu

m
be

r
of

 o
ve

rla
ps

)

O
pt

im
iz

at
io

n
C

os
t (

na
no

m
et

er
s)

Time (Minutes, logarithmic scale)

feasibility, random init
feasibility, manual init

optimization, random init
optimization, manual init

mcport

(b) Design 3

 0

 100

 200

 300

 400

 500

 600

 700

 0.01 0.1 1 10 100 1000
 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

F
ea

si
bi

lit
y

C
os

t (
nu

m
be

r
of

 o
ve

rla
ps

)

O
pt

im
iz

at
io

n
C

os
t (

na
no

m
et

er
s)

Time (Minutes, logarithmic scale)

feasibility, random init
feasibility, manual init

optimization, random init
optimization, manual init

mcport

(c) Design 4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.001 0.01 0.1 1 10 100
 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

F
ea

si
bi

lit
y

C
os

t (
nu

m
be

r
of

 o
ve

rla
ps

)

O
pt

im
iz

at
io

n
C

os
t (

na
no

m
et

er
s)

Time (Minutes, logarithmic scale)

feasibility, random init
feasibility, manual init

optimization, random init
optimization, manual init

mcport

(d) Design 5

Fig. 5. Experimental Results

48 B. Dubrov et al.

Figures 4(a)–5(d) show the solver’s progress on each of the designs. To con-
serve space, each figure depicts the results of the two experiments (random init
and manual init) for one design. For each experiment we plot two graphs (for a
total of four graphs per figure): one depicting the decline with time of the total
constraint violation cost until feasibility is reached (violation cost = 0), and the
other depicting the decline with time of the optimization function (HPWL) once
feasibility has been reached. The X axis corresponds to time. The left Y axis is
labeled with constraint violation cost values, while the right Y axis is labeled
with HPWL values. In addition, each figure contains a horizontal dotted line in-
dicating the HPWL value of the solution found by mcport. Note the logarithmic
scale used for time.

In the experiments in which our tool’s starting point is mcport ’s solution, one
would expect that feasibility would be reached immediately (since mcport ’s so-
lution is feasible) and the HPWL graph would start at the dotted line (the cost
of mcport ’s solution). However, the graphs show that this is not the case. (The
feasibility cost is shown in the graphs by the curve with × markers. Note that
these curves are barely visible in the bottom left corners of Figures 4(a), 4(b) and
5(a).) The reason is that mcport places pins in different metal layers, whereas
our tool does not. (Although we have written the code to accommodate mul-
tiple metal layers, it was not necessary in these particular designs, and so we
have disabled it.) Thus the search’s starting point was actually a projection of
mcport ’s solution onto one layer, which accounts for the initial infeasibility and
slightly different cost. There were also some numerical inaccuracies introduced
by rounding errors in the conversion of mcport ’s solution (described in absolute
floating point coordinates) into the coordinates used by our tool (relative integer
coordinates).

The graphs show that manual init and random init both converge to approx-
imately the same result, but, as expected, manual init does so much faster. We
also see that for Design 1, not grouping pins into buses yielded better results
(especially with random init), which is also to be expected since the solver then
has more flexibility in assigning the pins. Of course, retaining individual pins is
only possible for small designs due to the issue of scalability.

4 Conclusion

In this work we have demonstrated a fruitful application of constraint program-
ming technology to automated chip design. Using CP allowed us to focus our
work on the details of the problem, and not on the solvers and search algorithms.

An important lesson (re)learnt was to invest time working out the model and
the choice of CSP variables. These had great impact on the running time relative
to the constraint implementation.

Our future plans include enabling the support for multi-layer placement of
pins, supporting blockages, improving the bus grouping algorithm, and improv-
ing the bus orientation post-processing algorithm. We believe that CP technology
could be useful for other chip design problems as well. In fact we are currently
developing a CP-based tool for floorplaning using a systematic CSP solver.

Pin Assignment Using Stochastic Local Search Constraint Programming 49

Acknowledgment. We thank Ariel Birnbaum for helpful ideas on bus grouping.

References

1. Smith, M.J.S.: Application Specific Integrated Circuits. VLSI Systems Series.
Addison-Wesley, Reading (1997)

2. Sherwani, N.A.: Algorithms for VLSI Physcial Design Automation, 3rd edn. Kluwer
Academic Publishers, Norwell (1998)

3. Lengauer, T.: Combinatorial algorithms for integrated circuit layout. John Wiley
& Sons, Inc., New York (1990)

4. Drechsler, R.: Evolutionary algorithms for VLSI CAD, 2nd edn. Springer, Heidel-
berg (1998)

5. Koren, N.L.: Pin assignment in automated printed circuit board design. In:
ACM/IEEE Design Automation Conference, pp. 72–79 (1972)

6. Liu, L., Sechen, C.: Multi-layer pin assignment for macro cell circuits. IEEE Trans.
Computer-Aided Design 18, 1452–1461 (1999)

7. Xiang, H., Tang, X., Wong, D.F.: An algorithm for simultaneous pin assignment
and routing. In: Proc. of International Conference on Computer Aided Design, pp.
232–238 (2001)

8. Brady, H.: An approach to topological pin assignment. IEEE Trans. Computer-
Aided Design CAD-3, 250–255 (1984)

9. Yao, X., Yamada, M., Liu, C.L.: A new approach to pin assignment problem. In:
Proc. of Design Automation Conference, pp. 566–572 (1988)

10. Wang, L., Lai, Y., Liu, B.: Simultaneous pin assignment and global wiring for cus-
tom vlsi design. In: Proc. IEEE International Symposium on Circuits and Systems,
vol. 4, pp. 2128–2131 (1991)

11. Westra, J., Groeneveld, P.: Towards integration of quadratic placement and pin
assignment. In: IEEE Proc. of ISVLSI, pp. 284–286 (2005)

12. Naveh, Y.: Guiding stochastic search by dynamic learning of the problem topogra-
phy. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 349–354.
Springer, Heidelberg (2008)

13. Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22(1), 55–89 (1992)
14. Sayah, J., Gupta, R., Sherlekar, D., Honsinger, P., Apte, J., Bollinger, S., Chen, H.,

DasGupta, S., Hsieh, E., Huber, A., Hughes, E., Kurzum, Z., Rao, V., Tabtieng,
T., Valijan, V., Yang, D.: Design planning for high-performance asics. IBM Journal
of Research and Development 40(4), 431–452 (1996)

Modelling Equidistant Frequency Permutation Arrays:
An Application of Constraints to Mathematics

Sophie Huczynska2, Paul McKay1, Ian Miguel1, and Peter Nightingale1

1 School of Computer Science, University of St Andrews, UK
{ianm,pn}@cs.st-andrews.ac.uk, pgm9@st-andrews.ac.uk

2 School of Mathematics and Statistics, University of St Andrews, UK
sophieh@mcs.st-andrews.ac.uk

Abstract. Equidistant Frequency Permutation Arrays are combinatorial objects
of interest in coding theory. A frequency permutation array is a type of constant
composition code in which each symbol occurs the same number of times in each
codeword. The problem is to find a set of codewords such that any pair of code-
words are a given uniform Hamming distance apart. The equidistant case is of
special interest given the result that any optimal constant composition code is
equidistant. This paper presents, compares and combines a number of different
constraint formulations of this problem class, including a new method of repre-
senting permutations with constraints. Using these constraint models, we are able
to establish several new results, which are contributing directly to mathematical
research in this area.1

1 Introduction

In this paper we consider Equidistant Frequency Permutation Arrays (EFPAs), combi-
natorial objects of interest in coding theory. A frequency permutation array (introduced
in [1]) is a special kind of constant composition code (CCC), in which each symbol
occurs the same number of times in each codeword. CCCs have many applications, for
example in powerline communications and balanced scheduling, and have recently been
much studied (eg [2], [3]). The situation when CCCs are equidistant is of particular in-
terest, since it is known that any CCC which is optimal must be equidistant. EFPAs are
introduced in [4], where various bounds and constructions are obtained; other results
on families of such codes can be found in [5].

Informally, the problem is to find a set (often of maximal size) of codewords, such
that any pair of codewords are Hamming distance d apart. Each codeword (which may
be considered as a sequence) is made up of symbols from the alphabet {1, . . . , q}, with
each symbol occurring a fixed number λ of times per codeword.

The problem has parameters v, q, λ, d and it is to find a set E of size v, of sequences
of length qλ, such that each sequence contains λ of each symbol in the set {1, . . . , q}.
For each pair of sequences in E, the pair are Hamming distance d apart (i.e. there are d

1 Sophie Huczynska is supported by a Royal Society Dorothy Hodgkin Research Fellowship,
and Ian Miguel was supported by a UK Royal Academy of Engineering/EPSRC Research
Fellowship. Peter Nightingale is supported by EPSRC grant EP/E030394/1.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 50–64, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Modelling EFPAs: An Application of Constraints to Mathematics 51

Table 1. EFPA example with v = 5, q = 3, λ = 2, d = 4

c1 0 0 1 1 2 2
c2 0 1 0 2 1 2
c3 0 1 2 0 2 1
c4 0 2 1 2 0 1
c5 0 2 2 1 1 0

places where the sequences disagree). For the parameters v = 5, q = 3, λ = 2, d = 4,
Table 1 shows a set E = {c1, c2, c3, c4, c5}.

Computers have long been used to assist in solving related mathematical problems.
Slaney et al. found great success in using automated reasoning to attack quasigroup
existence problems [6].

We model and solve EFPA in constraints, using the Minion solver [7,8] and the Tailor
modelling assistant [9]. Constraint solving proceeds in two phases. First, the problem is
modelled as a set of discrete decision variables, and a set of constraints (relations, e.g.
x1+x2 ≤ x3) on those variables that a solution must satisfy. Second, a constraint solver
is used to search for solutions to the model: assignments of values to variables satisfy-
ing all constraints. Many constraint solvers (including Minion) interleave propagation
and depth-first backtracking search. Propagation simplifies the problem by removing
values from variable domains, and search assigns values to variables, searching for a
solution. A successful model must propagate well, and will also include an ordering of
the variables for search.

We investigate six different formulations, starting with two simple models based on
two viewpoints (where a viewpoint is a choice of variables and domains sufficient to
characterise the problem). A set of implied constraints is derived, which prove to be use-
ful in experiments. Furthermore, we develop a novel method of modelling permutations
with constraints.

The work described in this paper has direct application in mathematics. During the
course of this work, we generated 24 EFPAs (21 of which were proven to be maximal) to
assist with the mathematical research of one of the authors (Huczynska). Some of these
EFPAs directly refuted a working conjecture, and others provided supporting evidence
that a construction is maximal. This illustrates that, with careful modelling and the
power of fast constraint solvers such as Minion and modelling assistants such as Tailor,
constraint programming can contribute to research in other disciplines.

Experiments are performed to compare the different models, using 24 carefully cho-
sen instances of EFPA.

2 Modelling the EFPA Problem

First we present two straightforward models based on two viewpoints. One represents
the set of sequences explicitly in a two-dimensional table (like Table 1). The other is
similar, but extends the two-dimensional table in a third dimension, expanding each
original variable into a set of Boolean variables corresponding to each original value.
The problem constraints and symmetry breaking constraints are quite different on these

52 S. Huczynska et al.

two models. The three-dimensional model is able to break symmetry in three planes
rather than two, and the two-dimensional model is able to take advantage of the Global
Cardinality Constraint (GCC) [10] to enforce the requirement that there are λ occur-
rences of each symbol. Both straightforward models perform reasonably well, which
reflects well on constraint programming.

The two simple models are developed in various ways to give six variants in total.
Firstly, the two models are channelled together, combining the symmetry breaking con-
straints on the three-dimensional Boolean model with problem constraints on the two-
dimensional model. The channelled model is superior to the Boolean model in almost
all cases in our experiments.

Secondly, a set of implied constraints are derived for the two-dimensional model. The
first row of the table is fixed by the symmetry breaking constraints. All other rows are
related to the first by the Hamming distance d, and we derive additional GCC constraints
from this. The implied constraints are somewhat similar to those proposed for BIBD
[11]. The implied constraints are beneficial in most cases in our experiments.

Thirdly, we explicitly model the permutation between each pair of sequences, using
a representation of cycle notation. While permutation has been modelled frequently in
CSP and SAT (e.g. [12,13]), this is to the best of our knowledge the first time cycle no-
tation has been explicitly modelled using standard CSP integer variables. This approach
greatly reduces the search space. Unfortunately this model has a large number of con-
straints and is not always superior in terms of solver time. However, it shows promise
because of the reduction in search space.

To model the EFPA problem, we used the Tailor modelling assistant [9]. We for-
mulated each model in the solver-independent modelling language ESSENCE′ and used
Tailor v0.3 to flatten each instance for input to the constraint solver Minion 0.8.1. Tailor
provides optional common subexpression elimination (CSE) [14]. Preliminary experi-
ments revealed that CSE improved the speed of Minion by a small margin, without
affecting the search tree explored. We use CSE throughout.

2.1 Boolean and Non-Boolean Models

In this section, we investigate two viewpoints and construct two models based on the
viewpoints, and a third which channels them together. The three models are compared
experimentally.

A Non-Boolean Model. Viewed abstractly, the problem is to find a fixed-size set of
codewords, where a codeword is a permutation of a multiset of symbols. Therefore the
decisions are how to represent the set, and how to represent the permutations. In the
non-Boolean model, we use an explicit representation of the set [15] (i.e. each element
is explicitly represented). For each codeword, we use the primal model of a permutation
[12]. Each position in the codeword has one variable whose domain is the alphabet. We
do not explore the dual model here, because it would complicate the Hamming distance
constraints.

There is an additional set of Boolean variables representing where pairs of codewords
differ. The variables are as follows.

Modelling EFPAs: An Application of Constraints to Mathematics 53

– ∀a ∈ {1 . . . v}, ∀i ∈ {1 . . . qλ} : c[a, i] ∈ {1 . . . q} representing the set of se-
quences. a is the sequence number and i is the index into the sequence.

– ∀a ∈ {1 . . . v}, ∀b ∈ {a + 1 . . . v}, ∀i ∈ {1 . . . qλ} : diff[a, b, i] ∈ {0, 1} repre-
senting whether two sequences a and b differ at position i.

For each sequence, a GCC constraint is used to ensure that there are λ occurrences of
each symbol in the alphabet. A reified disequality constraint is used to connect the diff
variables to c, and a sum is used to enforce the Hamming distance d.

– ∀a ∈ {1 . . . v} : GCC(c[a, 1 . . . qλ], 〈1 . . . q〉, 〈λ . . . λ〉)
– ∀a ∈ {1 . . . v}, ∀b ∈ {a + 1 . . . v}, ∀i ∈ {1 . . . qλ} : diff[a, b, i] ⇔ (c[a, i] �=

c[b, i])
– ∀a ∈ {1 . . . v}, ∀b ∈ {a + 1 . . . v} :

∑qλ
i=1 diff[a, b, i] = d (any pair of sequences

differ in d places)

The matrix c has a number of symmetries. In a solution, rows, columns and symbols
of the alphabet may be freely permuted to create other solutions. To break some of the
symmetry, we apply lexicographic ordering (lex-ordering) constraints to the rows and
columns, following Flener et al. [16].

– ∀a ∈ {2 . . . v} : c[a− 1, 1 . . . qλ] ≤lex c[a, 1 . . . qλ] (rows are lex-ordered)
– ∀b ∈ {2 . . . qλ} : c[1 . . . v, b− 1] ≤lex c[1 . . . v, b] (columns are lex-ordered)

These two constraint sets do not explicitly order the symbols. It would be possible to
order the symbols by using value symmetry breaking constraints [18]. However we
leave this for future work.

These constraints are all found in Minion 0.8.1. The GCC constraint enforces GAC
in this situation (with a fixed number of occurrences of each symbol). The reified not-
equal constraint enforces Bounds(Z)-consistency [17]. The sum constraint above is de-
composed into ≤ d and ≥ d constraints (sumleq and sumgeq in Minion) which also
enforce Bounds(Z)-consistency. The lex ordering constraints enforce GAC.

The variable order is row-wise on c, in index order, as follows.

c[1, 1], . . . , c[1, qλ], c[2, 1], . . . , c[2, qλ], . . .

The values are searched in ascending order.

A Boolean Model. In this section we consider another simple model for EFPA, based
on a different viewpoint to the one above. The difference is in the representation of
each symbol in each codeword using a vector of Boolean variables. The model uses
a three-dimensional matrix m of Boolean variables to represent occurrences of the q
symbols in the v codewords. The first dimension is the codeword 1 . . . v, the second is
the symbol 1 . . . q and the third is the codeword position 1 . . . qλ.

– ∀i ∈ {1 . . . v}, ∀j ∈ {1 . . . q}, ∀k ∈ {1 . . . qλ} : m[i, j, k] ∈ {0, 1}

Variable m[i, j, k] is 1 iff the codeword i has symbol j at position k.
We must ensure that exactly one symbol appears at each position in each codeword.

This is done with the following set of constraints.

– ∀i ∈ {1...v}, ∀j ∈ {1...qλ} :
∑q

k=1 m[i, k, j] = 1

54 S. Huczynska et al.

To ensure that there are λ of each symbol in each codeword we post the following set
of constraints.

– ∀i ∈ {1...v}, ∀j ∈ {1...q} :
∑qλ

k=1 m[i, j, k] = λ

The final problem constraint set states that the Hamming distance between any pair of
codewords is exactly d. The two codewords are represented as planes in the matrix.
For each position where the pair of codewords differ, the planes in m differ in two
places corresponding to one symbol being removed and another inserted. Therefore the
number of places where the two planes differ is 2d.

– ∀i ∈ {1...v}, ∀j ∈ {i + 1...v} : [
∑qλ

k=1

∑q
l=1(m[i, l, k] �= m[j, l, k])] = 2d

Symbols, codewords and positions may all be freely permuted. In order to break some
of this symmetry, we lexicographically order (lex order) planes of the matrix in all three
dimensions, using the technique of Flener et al. [16]. (We rely on Tailor to vectorize the
planes in a consistent manner.) This set of symmetry breaking constraints orders the
symbols, in contrast to those of the non-Boolean model.

– ∀i ∈ {1...qλ− 1} : m[1 . . . v, 1 . . . q, i] ≤lex m[1 . . . v, 1 . . . q, i + 1]
– ∀i ∈ {1...q − 1} : m[1 . . . v, i, 1 . . . qλ] ≤lex m[1 . . . v, i + 1, 1 . . . qλ]
– ∀i ∈ {1 . . . v − 1} : m[i, 1 . . . q, 1 . . . qλ] ≤lex m[i + 1, 1 . . . q, 1 . . . qλ]

Preliminary experiments reveal that these three constraint sets drastically improve per-
formance. In one instance the addition of symmetry breaking constraints improved the
performance of the model by approximately 40 times. The variable ordering is as fol-
lows. For each i in ascending order: for each j in ascending order: for each k in ascend-
ing order: m[i, j, k]. To illustrate:

m[1, 1, 1], . . . , m[1, 1, qλ], m[1, 2, 1], . . . , m[1, q, qλ], m[2, 1, 1], . . .

For all variables, value 0 is branched on first.

Channelling Boolean and Non-Boolean Models. The Boolean model may have better
symmetry breaking than the non-Boolean model, because the value symmetry of the
non-Boolean model is transformed into variable symmetry [16] and broken using lex
constraints. However, in the non-Boolean model, the first row is invariant because of
the column lex constraints and therefore some of the value symmetry is broken there.

The non-Boolean model is able to exploit the GCC constraint on the rows, and also
has a neater representation of the Hamming distance requirement. In this section we
aim to gain the advantages of both models by connecting the two with channelling
constraints, given below.

– ∀i ∈ {1 . . . v}, ∀j ∈ {1 . . . q}, ∀k ∈ {1 . . . qλ} : m[i, j, k]⇔ (c[i, k] = j)

Modelling EFPAs: An Application of Constraints to Mathematics 55

The symmetry breaking constraints in the non-Boolean model are removed, because
they contradict those in the Boolean model.

The Boolean model has three sets of constraints other than the symmetry breaking
constraints. Inspection of each set suggests that they will provide no useful propaga-
tion, because the non-Boolean representation of the same constraint set is equivalent or
stronger. Preliminary experimentation on instance d = λ = q = 4, v = 9 showed that
removing all three sets does not affect the node count (2,350,155) but does reduce the
time taken from 86 s to 52 s. Therefore we do not include the three sets of constraints.

Preliminary experiments suggest that searching on the c (non-Boolean) variables is
not effective when channelling, using either an ascending or descending value ordering
(with the variable ordering described for c above). Therefore we search on m, using
the same variable and value ordering as the standard Boolean model. Given that the
constraints on the non-Boolean formulation appear to be stronger, we expect that the
channelled model will improve on the Boolean model in terms of search nodes.

Empirical Evaluation. To compare the three models empirically, we picked twelve
tuples 〈d, λ, q〉 with a range of different values of d, λ and q. For each parameter set,
the usual task is to find the maximal set of codewords. This can be done by solving
iteratively, increasing v until the instance is unsatisfiable. This provides a maximal set
of codewords, and a proof that there is no larger set. Typically the unsatisfiable instance
is much more difficult than the others, because of the need to exhaust the search space.
Instances are identified by the tuple 〈d, λ, q, v〉.

For each parameter set, we use two consecutive values of v such that the smaller
instance is satisfiable and the larger one is unsatisfiable or it takes longer than the time
limit of 2 hours to solve. This provides 12 satisfiable instances, 11 unsatisfiable in-
stances and one 〈6, 4, 4, 14〉 which is unknown2. We used Minion 0.8.1 on an Intel
Xeon E5430 2.66 GHz 8-core machine, using all cores. The three models are named as
follows.

Non-Boolean refers to the two-dimensional model.
Boolean refers to the three-dimensional model.
Channelled refers to the combined model described in the section above.

We enabled the SAC [19] preprocessing option of Minion to be consistent with our
other experiments presented below. SAC preprocessing is cheap, taking less than 0.2 s
on the largest instances.

Both the non-Boolean and Channelled models include some variables which are not
necessary here, but are required for the implied constraints and permutation model de-
scribed below3. For satisfiable instances, these spurious variables are set at the end of the
search process. Assigning each variable takes 1 search node, and a very small amount

2 The problem instances are available at
http://minion.sourceforge.net/benchmarks.html

3 Several models were expressed in one Essence′ file for convenience. Essence′ allows con-
straints to be included or excluded as required, and we used this to generate the different
models, however the set of variables remains the same.

56 S. Huczynska et al.

of time. For unsatisfiable instances, these variables do not affect search or propagation
in any way.

Figure 1 shows our results for the three models. Instance 〈6, 4, 4, 14〉 times out for
all three models, and is the only time-out for the channelled model. The non-Boolean
model times out on five instances. The channelled model improves upon the Boolean
model in both nodes and time, except for the very easy satisfiable instance 〈4, 4, 3, 7〉.
In this case, there are 327 spurious variables, and the channelled model explores 396
nodes. Therefore the spurious variables account for most of the nodes, and this instance
should be disregarded for comparing Boolean and channelled models.

For the non-Boolean and channelled models, neither always dominates the other,
either in nodes or time. The non-Boolean model is faster on 13 instances, and the chan-
nelled model on 10 instances. For the instance that timed out, we can observe that the
channelled model explores fewer nodes than the other two. For this instance, the chan-
nelling has some overhead, as one would expect.

2.2 Extensions of the Non-Boolean Model

In this section we explore two extensions of the non-Boolean model, both of which
exploit knowledge about the permutation of d elements between pairs of codewords.

Implied Constraints. It is possible to derive some implied constraints between pairs
of sequences. Consider the sequence 〈1, 1, 1, 2, 2, 2, 3, 3, 3〉, and assume that d = 4.
To construct another sequence with the appropriate Hamming distance, we can swap
two 1’s with two 2’s: 〈1, 2, 2, 1, 1, 2, 3, 3, 3〉. However, it is not possible to move all
three 1’s, since that would cause six disagreements. In general, for each symbol, the
maximum number which can be moved is �d

2.
If �d

2 < λ, then this observation allows us to add useful constraints to the model.
Between any pair of sequences in the set, and for each symbol a, at least λ − �d

2
instances of a must remain in the same place. We do not exploit this observation for
every pair of rows, but only for the pairs containing the first row. This is because the
first row is fixed and this makes the statement of the constraints considerably simpler.

The first row is fixed by the combination of column lex ordering constraints and
the cardinality constraint. If q = λ = 3 then the first row is 〈1, 1, 1, 2, 2, 2, 3, 3, 3〉 in
the non-Boolean model. It is arranged in q blocks of length λ, and each of the other
sequences is divided into q blocks in the same way, as shown in the table below.

c[1, 1 . . . qλ] 1 1 1 2 2 2 3 3 3
c[2, 1 . . . qλ] Block 1 Block 2 Block 3

To state the constraints, we have auxiliary variables occa
b,d ∈ {0 . . . λ} representing

the number of occurrences of value d in sequence a, block b (where the blocks are
numbered 1 . . . q in index order). We post q GCC constraints to count the symbols in
each block, as follows. Also, we constrain the occurrences of the relevant occ variables.

– ∀a ∈ {2 . . . v}, ∀b ∈ {1 . . . q} : GCC(ca
(b−1)λ+1...bλ, 〈1 . . . q〉, occa

b,1...q)
– ∀a ∈ {2 . . . v}, ∀b ∈ {1 . . . q} : occa

b,b ≥ λ− �d
2

Modelling EFPAs: An Application of Constraints to Mathematics 57

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

3-7-7-6

3-7-7-7

3-8-8-7

3-8-8-8

3-9-9-8

3-9-9-9

4-3-4-6

4-3-4-7

4-4-3-7

4-4-3-8

4-4-4-8

4-4-4-9

4-4-5-10

4-4-5-11

4-5-4-10

4-5-4-11

5-4-3-7

5-4-3-8

5-4-4-8

5-4-4-9

6-4-3-12

6-4-3-13

6-4-4-13

6-4-4-14

S
ea

rc
h

no
de

s

Comparison of non-Boolean, Boolean and channelled models
Search nodes

Non-Boolean
Boolean

Channelled

 0.01

 0.1

 1

 10

 100

 1000

 10000

3-7-7-6

3-7-7-7

3-8-8-7

3-8-8-8

3-9-9-8

3-9-9-9

4-3-4-6

4-3-4-7

4-4-3-7

4-4-3-8

4-4-4-8

4-4-4-9

4-4-5-10

4-4-5-11

4-5-4-10

4-5-4-11

5-4-3-7

5-4-3-8

5-4-4-8

5-4-4-9

6-4-3-12

6-4-3-13

6-4-4-13

6-4-4-14

S
ea

rc
h

tim
e

(s
)

Comparison of non-Boolean, Boolean and channelled models
Search time

Non-Boolean
Boolean

Channelled

Fig. 1. Comparison of non-Boolean, Boolean and channelled models

58 S. Huczynska et al.

Fig. 2. The action of permutation (2,5,4,3) on codeword c1 to form c2

To improve the propagation of these constraints, we also state that for each symbol,
the occurrence variables for all blocks in a sequence must sum to λ.

– ∀a ∈ {2 . . . v}, ∀b ∈ {1 . . . q} :
∑

occa
1...q,b = λ

The GCC constraint (with variables as its third argument) performs a hybrid consis-
tency. It reads the bounds of the occurrence variables, and performs GAC over the target
variables only, using Régin’s algorithm [10]. Also, it uses a simple counting algorithm
to prune the occurrence variables. For example, if two target variables are assigned to
0, and five variables have 0 in their domain, then the lower bound for occurrences of 0
is two, and the upper bound is five. This implementation of GCC is named gccweak in
Minion.

Note that this constraint set cannot be applied to the channelled model, because it re-
lies on the symmetry breaking constraints of the non-Boolean model. In the channelling
model, the first row is in descending order.

Modelling Permutations. Between any pair of codewords c1 and c2, there are d indices
where they differ. Since the two codewords have the same multiset of symbols, the
difference between them can be represented as a permutation. In order to have d points
of disagreement, d symbols in the first codeword must be moved to a different position
in the second codeword. We consider permutations of the indices 1 . . . qλ, specifying
which indices of the first codeword are moved to form the second. Any permutation can
be represented in cycle notation — for example, the cycle (1, 3, 2) moves the symbol at
index 1 to index 3, 3 to 2 and 2 to 1. We do not allow the permutation to permute index
i to j if c1[i] = c1[j], since this would leave c1 and c2 the same at position j.

Figure 2 shows an example of a permutation in cycle form acting on a codeword to
create another codeword with Hamming distance d = 4.

From any sequence to any other, there is a permutation of d indices. The implied
constraints in the section above make some use of this fact between the first sequence
and all others. In this section we consider all pairs of sequences, and we explicitly model
the cycle notation, using an array of d variables containing indices into the sequences.
A further variable cform represents the form of the cycle notation. For example, when
d = 4, there are two possible forms of the cycle notation: (p, q, r, s) and (p, q)(r, s),
therefore cform has two values. In fact we have only implemented the permutation
model for d = 4. The subclass of EFPA where d = 4 is of interest to mathematicians
as it is the smallest value of d where the precise upper bound for the size of an EFPA
is not obvious (due to the fact that there is more than one possible cycle structure for a
derangement of 4 points).

Modelling EFPAs: An Application of Constraints to Mathematics 59

Table 2. Example of p

1 2 3 4
1 (1, 3)(4, 6) s1[3] = 2 s1[1] = 1 s1[6] = 3 s1[4] = 2
2 (1, 3, 4, 6) s1[6] = 3 s1[1] = 1 s1[3] = 2 s1[4] = 2

– ∀e ∈ {1 . . . d} : perm[e] ∈ {1 . . . qλ}
– cform ∈ {1 . . . cforms} where cforms is the number of cycle forms.

To allow us to map from one sequence to another using the permutation, we introduce a
table of variables p. There are cforms rows and d columns in p. The rows correspond to
different forms of the cycle notation. Each row contains elements of the first sequence
(those elements indexed by perm) permuted according to the form of the cycle notation.

– ∀i ∈ {1 . . . cforms}, ∀j ∈ {1 . . . d} : p[i, j] ∈ {1 . . . q}

For example, if the first sequence is s1 = 〈1, 1, 2, 2, 3, 3〉, d = 4 and perm is 〈1, 3, 4, 6〉,
then p is given in Table 2. In the first row, indices for each pair are swapped, and in the
second row the indices are rotated according to the inverse of the 4-cycle.

For the second sequence s2, positions 1,3,4 and 6 (i.e. the values of perm) must
equal the appropriate value from p. cform is used to select the appropriate row in p.
For position 1, s2[1] = p[cform, 1]. Also, constraints are posted stating that s1 and
s2 are equal at all positions not in perm. In this example, if cform = 1 then s2 =
〈2, 1, 1, 3, 3, 2〉, and if cform = 2 then s2 = 〈3, 1, 1, 2, 3, 2〉.

The basic set of constraints is given below.

– ∀i ∈ {1 . . . cforms}, ∀j ∈ {1 . . . d} : p[i, j] = s1[k] where k is the inverse mapping
of j by the permutation (perm with cycle form i).

– ∀i ∈ {1 . . . d} : s2[perm[i]] = p[cform, i]
– ∀i ∈ {1 . . . qλ} : (

∧d
j=1 perm[j] �= i) ⇔ (s1[i] = s2[i]) (If index i is not present

in perm, then the value at position i remains the same, and vice versa)

We add symmetry breaking constraints to perm. In general, within each cycle, the small-
est element is placed at the front, and cycles of equal length are ordered by their first
element. The ordering constraints are shown below for d = 4. Only one of the con-
straints is conditional on cform; the other three are true for either cycle form.

– (cform = 1)⇒ (perm[3] < perm[4])
– (perm[1] < perm[2]) ∧ (perm[1] < perm[3]) ∧ (perm[1] < perm[4])

As a special case for d = 4, we add an allDifferent to the values permuted by the
4-cycle form. The reason is that if the values are not all different, the 4-cycle can be
reformulated as two 2-cycles.

– (cform = 2)⇒ allDifferent(p[2, 1 . . . d])

60 S. Huczynska et al.

The expression above is decomposed as a reified allDifferent and an implies constraint
on two Boolean variables. GAC is enforced on both these constraints, which is equiva-
lent to GAC on the original expression.

When cform = 1, the transposed values must be different, therefore we add the
following constraints. These constraints are also true when cform = 2, so there is no
need for them to be conditional.

– p[1, 1] �= p[1, 2] ∧ p[1, 3] �= p[1, 4]

Empirical Evaluation. In this section we compare the following four models, using
the same set of instances and experimental details as in the previous experiment.

Non-Boolean refers to the two-dimensional model.
Implied is the non-Boolean model with additional constraints described in the section

with heading Implied Constraints.
Permutation is the non-Boolean model with additional permutation constraints de-

scribed in the Modelling Permutations section.
Implied+Perm is the non-Boolean model with both Implied and Permutation con-

straint sets.

All the above models have the same set of variables, including all variables used by
the implied constraints and the permutation model. For solvable instances, the unused
variables are enumerated at the end of the search process, adding a small constant to
the node count. The permutation models are only used where d = 4, since they are not
defined for other values.

We found it important to perform singleton consistency (SAC) [19] preprocessing. It
is a very cheap preprocessing step which is nevertheless very important for the permu-
tation model. Table 3 shows that SAC preprocessing is important on the instance where
d = λ = q = 4 and v = 9, for two of the four models listed above. For both models
that include the permutation constraint set, the preprocessing is vital. Therefore we use
SAC preprocessing throughout.

Figure 3 shows our results for these models. It is clear that both the implied con-
straints and the permutation model are effective in reducing the number of search
nodes, and in most cases the combined model gives a further reduction. The permu-
tation model is particularly effective. For example, on the instance 〈4, 5, 4, 11〉 the non-
Boolean model takes 25,271,680 nodes, the implied model takes 14,607,410 nodes and
the permutation model takes 6,032,900 nodes, a reduction of 76%. Where d = 4, there
is a clear ordering among the four models.

Table 3. Search nodes with and without SAC preprocessing, d = λ = q = 4, v = 9

Search nodes Non-Boolean Implied Permutation Implied+Perm
No preprocessing 6,788,586 4,032,510 6,021,363 3,471,775

SAC preprocessing 6,788,361 4,032,306 1,674,826 1,340,546

Modelling EFPAs: An Application of Constraints to Mathematics 61

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

3-7-7-6

3-7-7-7

3-8-8-7

3-8-8-8

3-9-9-8

3-9-9-9

4-3-4-6

4-3-4-7

4-4-3-7

4-4-3-8

4-4-4-8

4-4-4-9

4-4-5-10

4-4-5-11

4-5-4-10

4-5-4-11

5-4-3-7

5-4-3-8

5-4-4-8

5-4-4-9

6-4-3-12

6-4-3-13

6-4-4-13

6-4-4-14

S
ea

rc
h

no
de

s

Comparison of non-Boolean, Implied, Permutation and Implied+Perm models
Search nodes

Non-Boolean
Implied

Permutation
Implied+Perm

 0.01

 0.1

 1

 10

 100

 1000

 10000

3-7-7-6

3-7-7-7

3-8-8-7

3-8-8-8

3-9-9-8

3-9-9-9

4-3-4-6

4-3-4-7

4-4-3-7

4-4-3-8

4-4-4-8

4-4-4-9

4-4-5-10

4-4-5-11

4-5-4-10

4-5-4-11

5-4-3-7

5-4-3-8

5-4-4-8

5-4-4-9

6-4-3-12

6-4-3-13

6-4-4-13

6-4-4-14

S
ea

rc
h

tim
e

(s
)

Comparison of non-Boolean, Implied, Permutation and Implied+Perm models
Search time

Non-Boolean
Implied

Permutation
Implied+Perm

Fig. 3. Comparison of non-Boolean, Implied, Permutation and Implied+Perm models

62 S. Huczynska et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

3-7-7-6

3-7-7-7

3-8-8-7

3-8-8-8

3-9-9-8

3-9-9-9

4-3-4-6

4-3-4-7

4-4-3-7

4-4-3-8

4-4-4-8

4-4-4-9

4-4-5-10

4-4-5-11

4-5-4-10

4-5-4-11

5-4-3-7

5-4-3-8

5-4-4-8

5-4-4-9

6-4-3-12

6-4-3-13

6-4-4-13

6-4-4-14

S
ea

rc
h

no
de

s

Comparison of Implied and Channelled models
Search nodes

Implied
Channelled

 0.01

 0.1

 1

 10

 100

 1000

 10000

3-7-7-6

3-7-7-7

3-8-8-7

3-8-8-8

3-9-9-8

3-9-9-9

4-3-4-6

4-3-4-7

4-4-3-7

4-4-3-8

4-4-4-8

4-4-4-9

4-4-5-10

4-4-5-11

4-5-4-10

4-5-4-11

5-4-3-7

5-4-3-8

5-4-4-8

5-4-4-9

6-4-3-12

6-4-3-13

6-4-4-13

6-4-4-14

S
ea

rc
h

tim
e

(s
)

Comparison of Implied and Channelled models
Search time

Implied
Channelled

Fig. 4. Comparison of Implied and Channelled models

Modelling EFPAs: An Application of Constraints to Mathematics 63

However, the search times are not so straightforward. In most cases, the implied
constraints are worthwhile. However, the permutation model is never worthwhile, and
likewise for the Implied+Perm model. It is clear that the permutation constraint set adds
a considerable overhead to the search process, and therefore it takes longer to solve even
though it is exploring many fewer nodes.

Finally, we compare the Implied model with the Channelled model from the previ-
ous experiment. These models use a different variable and value ordering as well as a
different constraint set, so there is no reason to expect one to always dominate the other
in terms of search nodes. The Implied model is the most efficient when searching on c
variables, and likewise the channelled model is the most efficient when searching on m,
therefore this makes an interesting final comparison. The data are plotted in Figure 4.
Recall that the implied constraint set cannot be added to the channelling model, because
it is incompatible with the symmetry breaking constraints.

The two models behave remarkably similarly, given their considerable differences.
For the instance which times out, it can be seen that the two models explored a similar
number of nodes, indicating a similar node rate. The implied model was faster for 13
instances, and the channelled model was faster for 10. However, the implied model
timed out on five instances, and the channelled model timed out on one.

3 Conclusions

We have modelled the equidistant frequency permutation array problem using constraint
programming, investigating a range of models. We devised a channelled model which
exploits symmetry breaking constraints on one viewpoint and problem constraints on
the other viewpoint. We invented a set of implied constraints and showed their benefit
in most cases. This set of constraints may generalise to other problems involving fixed
Hamming distance. As a potential item of future work for EFPA, the implied constraints
could be reformulated to be compatible with the channelled model.

We gave a novel representation of cycle notation, modelling a permutation with a
fixed number of move points. This was shown to be very effective for cutting down
the search space, which indicates its potential. However, the overhead of the additional
constraints negated the benefits. With a different formulation or a different constraint
solver, the permutation model could prove to be beneficial. Also, it may apply to other
problems involving fixed Hamming distance. It would be interesting to investigate this
further.

Our work has direct application in mathematics. One of the authors (Huczynska) is a
mathematician and is exploiting our novel results in her own theoretical investigations
[4]. This illustrates that, with careful modelling and the power of fast constraint solvers
such as Minion and modelling assistants such as Tailor, constraint programming can
contribute to research in other disciplines.

References

1. Huczynska, S., Mullen, G.: Frequency permutation arrays. J. Combin. Des. 14, 463–478
(2006)

2. Chu, W., Colbourn, C., Dukes, P.: Constructions for permutation codes in powerline commu-
nications. Designs, Codes and Cryptography 32, 51–64 (2004)

64 S. Huczynska et al.

3. Chu, W., Colbourn, C., Dukes, P.: On constant composition codes. Discrete Applied
Math. 154, 912–929 (2006)

4. Huczynska, S.: Equidistant frequency permutation arrays and related constant composition
codes. Designs, Codes and Cryptography (to appear, 2009)

5. Ding, C., Yin, J.: A construction of optimal constant composition codes. Designs, Codes and
Cryptography 40, 157–165 (2006)

6. Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search: Quasigroup
existence problems. Computers and Mathematics with Applications 29, 115–132 (1995)

7. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast, scalable, constraint solver. In: Proceed-
ings 17th European Conference on Artificial Intelligence (ECAI 2006), pp. 98–102 (2006)

8. Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in minion. In:
Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 182–197. Springer, Heidelberg (2006)

9. Gent, I.P., Miguel, I., Rendl, A.: Tailoring solver-independent constraint models: A case
study with Essence′ and Minion. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI),
vol. 4612, pp. 184–199. Springer, Heidelberg (2007)

10. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proceedings
13th National Conference on Artificial Intelligence (AAAI 1996), pp. 209–215 (1996)

11. Frisch, A.M., Jefferson, C., Miguel, I.: Symmetry breaking as a prelude to implied con-
straints: A constraint modelling pattern. In: Proceedings ECAI 2004, pp. 171–175 (2004)

12. Hnich, B., Smith, B.M., Walsh, T.: Dual modelling of permutation and injection problems.
JAIR 21, 357–391 (2004)

13. Velev, M., Gao, P.: Efficient SAT techniques for absolute encoding of permutation problems:
Application to hamiltonian cycles. In: Proceedings SARA 2009 (to appear, 2009)

14. Rendl, A., Miguel, I., Gent, I.P., Jefferson, C.: Automatically enhancing constraint model
instances during tailoring. In: Proceedings of the Eighth International Symposium on Ab-
straction, Reformulation and Approximation, SARA 2009 (to appear, 2009)

15. Jefferson, C.: Representations in Constraint Programming. PhD thesis, Computer Science
Department, York University, UK (2007)

16. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking
row and column symmetries in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 462–476. Springer, Heidelberg (2002)

17. Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds consistency revis-
ited. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 49–58. Springer,
Heidelberg (2006)

18. Walsh, T.: Breaking value symmetry. In: Proceedings of AAAI 2008 (2008)
19. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint satisfac-

tion problem. In: Proceedings 15th International Joint Conference on Artificial Intelligence
(IJCAI 1997), pp. 412–417 (1997)

Scheduling the CB1000 Nanoproteomic Analysis
System with Python, Tailor, and Minion

Andrew Loewenstern

Andrew Loewenstern Consulting
andrew@gigagig.org

Abstract. An effective scheduler for parallel jobs on a robotic protein
analysis system was created with Python, Tailor, and the Minion con-
straint solver. Tailor’s implementation of the expressive Essence’ con-
straint modeling language allowed the use of the powerful Minion solver
by non experts. Constructing the model in Python allowed its use in
several parts of the software, including generation of the Essence’ model
used by Minion, visualization of the schedule, and verification of the
correct execution of the system.

1 Introduction

1.1 Cell Biosciences CB1000

The CB1000 is a commercial nanoproteomic analysis system that provides new
analytic capabilites to life sciences researchers. It is produced by Cell Biosciences
of Palo Alto California, USA.[1] The CB1000 possesses a robotic arm which
moves glass capillaries containing cell samples from location to location within
the instrument over the course of job. The embedded software controlling the
system is primarily written in Python and runs on the Ubuntu platform.

The use of the robotic arm is the primary physical constraint in the system
as it performs several vital functions but can be used by only one job at a time.
In addition to manipulating capillaries and transferring them from location to
location, the arm is also used for loading samples and reagents into the capillaries,
and dispensing and cleaning up liquids.

The other constrained resource in the system is the separation chamber, which
can also only be used by one job at a time but parallel to the arm. The separation
chamber is used not only at the beginning of the job but also has the instruments
for collecting data at the end.

The system contains a finite supply of capillaries, reagents, and other liquids
used in the job. At this time only eight jobs can be executed before the system
requires manual intervention by a human. The goal of the scheduler is to improve
the throughput of the system, minimizing the amount of time it takes to process a
run of up to eight jobs. This represents a major upgrade from the first generation
sytems which are only capable of executing jobs sequentially.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 65–72, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

66 A. Loewenstern

1.2 Job

The job performed by the CB1000 produces results similar to a Western Blot
but with new quantification capabilities and extremely small sample sizes.[5,6]
It consists of a series of steps that are fixed but can vary in duration for
each experiment. A simplified schematic of a typical job is shown in Fig.1.
The black lines are robotic arm steps. The two steps labeled S and D, Sep-
aration and Detection respectively, use the separation chamber. There are two
periods of incubation, labeled PI (Primary Incubation) and SI (Secondary In-
cubation), where the capillaries lay undisturbed in a drawer and provide op-
portunity for other jobs to run. This schematic does not show that most of

Fig. 1. Simplified schematic of a job. Arm
steps are black. S = Separation, H = Hold,
PI & SI = Incubation, D = Detection.

the arm steps partially overlap the
step preceeding or following it. Those
arm steps are modeled as separate
steps to optimize running time. Each
step in the constraint model com-
prises a series of actual steps on the
system that cannot be interrupted.

At the point labeled H the exper-
iment is in a semi-stable state. The
duration of this step may vary in or-
der to optimize the utilization of con-
strained resources. Some users may
not desire to have an additional vari-
able in their experiment so this step
may be skipped.

1.3 Interface

Users control the CB1000 from an application written in Java that runs on a
regular PC positioned next to the system. Once the user has set the parameters
for up to eight jobs the control application signals the embedded software in the
CB1000 to start the run. The scheduler operates while the system prepares for
the run of jobs.

2 Implementation

2.1 Tailor and Minion

Tailor and Minion are under active development, have a file based interface that
integrates with any language through subprocesses, and possess permissive li-
censes. Key to the decision to use Tailor is the high level Essence modeling
language.[2] Tailor implements a subset of Essence called Essence’, provides
an interactive compilation tool, and outputs models suitable for the Minion
constraint solver.[3] Models constructed in Essence’ are easily understandable
to professional software developers who may not be experts in constraint pro-
gramming. Minion, a powerful constraint solver with years of development, was
treated as a “black box.”[4]

Scheduling the CB1000 Nanoproteomic Analysis System 67

2.2 Model

The goal of the scheduler is to find the start and end time of every step relative
to the beginning of the run so the machine can execute them in the correct
order. Since two jobs cannot start at the same time, each job is started after
delay relative to the beginning of the run. This delay comprises one of the two
objective variables to be found by the solver.

Step start and stop times are modeled as expressions representing the sums
of the durations of all preceding steps in the job. Step durations are determined
empirically and all are known prior to scheduling except for the delay from the
beginning of the run prior to starting a job and the hold step at point H in
Fig. 1 for each job. This hold step in the middle of the job comprises the second
objective variable for each job that must be found by the solver.

Once the solver finds the start delay and hold times they must be plugged
back into the schedule to determine the start times for each step. To avoid
having duplicate models of the job in both Essence’ and Python, the model is
constructed once in Python. The same model is used to generate Essence’ and
subsequently to compute the complete schedule.

The job performed by the CB1000 has 12 separate steps using the arm. Since
each arm step must end before or start after every other arm step for every
other job in a run of up to eight jobs, there are 4032 disjunctions forming the
constraints for the arm. The forall operator in Essence’ makes writing out
every constraint unnecessary but it would still be tedious. Generating Essence’
from Python simplifies the creation of Essence’ and allows is to be generated on
the fly. The complete Python source for generating the model, including Essence’
templates and lists of steps and names used by other parts of the software but
not the solver, is only 250 lines.

Since the step marked S in Fig. 1 fixes the experiment and makes it more
stable, the solver is instructed to minimize the delay prior to starting a job from
the beginning of the run. This is accopmlished with a minimizing statement in
Essence’.

Essence’ Template. The Python code contains a string template template of
the Essence’ model leading up to the constraints. This portion of the Essence’ has
the definition of step durations that are referenced in the expressions representing
the start and stop times for each step. The durations are defined with a series
of let statements. At scheduling time, this template has all of the actual step
durations inserted using Python string substitution. Then the constraints are
generated and appended to the Essence’ code.

Python. The model of the job itself consists of a set of Python variables that
each represent either the start time or stop time of a step relative to the start
of the run. Each of these variables is a string containg an expression that eval-
uates to either the start or stop time for a step. By a happy coincidence, these
expressions are valid in either Essence’ and Python. Each expression is simply
the sum of the variables represting the start delay plus the durations of all steps

68 A. Loewenstern

preceeding the one being defined. The start of the first step is equal to start
delay. The end of the first step is equal to the start of the first step plus the
duration of the first step. The start of second step is equal to the end of the
first, and the end of the second step is equal to its start plus its duration, and
so forth.

Simplified Python code showing the definition of the first three steps in a job.

firstStepStart = "jobDelay"

firstStepEnd = "jobDelay + firstStepDuration"

secondStepStart = "jobDelay + firstStepDuration"

secondStepEnd = "jobDelay + firstStepDuration + secondStepDuration"

thirdStepStart = "jobDelay + firstStepDuration + secondStepDuration"

thirdStepEnd = "jobDelay + firstStepDuration + secondStepDuration

+ thirdStepDuration"

In this manner all of the steps in the model are constructed as strings in Python.
These strings are be emitted in the constraints portion of the Essence’ code to
ensure that no two steps using the same resource overlap. Later, the strings are
evaluated in a Python environment that contains all of the variables referenced
by the expressions, including the ones found by the solver, to determine the
actual start time of each step.

Constraints. Two sets of constraints ensure mutually exclusive access to the
arm and separation chamber. This is done simply by ensuring all steps using
the same resource do not overlap with any other step in any job using the same
resource. For every job, each arm step must must be compared against the arm
steps for every other job. If the step begins after the other step ends or the step
ends before the other step begins, the mutually exclusive constraint for the pair
of stepms is satisfied.

The Python listing below demonstrates the loop that generates mutually ex-
clusive constraints for all steps for a constrained resource. allsteps below con-
tains the string expressions representing the start and stop times for each step
that uses the resource. The same code is used to output constraints for the usage
of the separation chamber.

for a in range(jobCount):
for b in range(jobCount):
if b > a:

for aStart, aFinish in allsteps:
for bStart, bFinish in allsteps:

emitEssence("(((%s) > (%s)) \/ ((%s) < (%s))),\n"
% (aStart, bFinish, aFinish, bStart)

The listing below shows the Essence’ constraint for comparing the first step of
the first job against the first step of the second job.

(((jobDelay1) > (jobDelay2 + firstStepDuration)) \/
(jobDelay1 + firstStepDuration) < (jobDelay2)))

Scheduling the CB1000 Nanoproteomic Analysis System 69

2.3 Scheduling

Once the durations for each step, which are dependent on user supplied param-
eters, are collected the Essence’ model is emitted. Tailor is run on the Essence’
model and a model suitable for Minion is generated. Tailor reports 26288 con-
straints and 15104 auxiliary variables in the output. Finally, Minion is run and
the values for the two objective variable arrays are sent to standard output on
two lines. Execution of Tailor and Minion is accomplished through the built in
Python subprocess module.

Once the values for the objective variables are parsed, they are added to
a Python dictionary containing the durations of each step. The keys in this
dictionary are the same as the variable names used in the model expressions and
in the Essence’ code. This dictionary is used as an environment for evaluating
the model strings specifying the start and stop times for each step. Each model
string evaluates to an integer representing the elapsed time in seconds since the
beginning of the run. In this way the start and stop times for steps relative to the
start of the run can be computed using the same model as used in the constraint
solver. Once the start time for each steps is known, scheduling is simply a matter
of sorting by start time the Python object instances containing the code for the
steps for all job and executing them in order.

2.4 Visualization

Once the schedule is computed the start and stop times are fed to Matplotlib
and a horizontal bar chart is generated.[7] A set of plots are shown in Fig. 2,
Fig. 3, and Fig. 4. As the system operates the start and stop time of each step
is recorded. At the end of the run another plot is generated using the actual
start and stop times. Code used to generate the Essence’ model is also used to
transform the data into a format acceptable to Matplotlib. The lists of steps in
the Python model are also used to assign colors to the plots. These plots are
used to quickly and informally verify the correct operation of the scheduler and
the CB1000 itself.

3 Results

3.1 Modeling

Modeling with Essence’ greatly eased the development of the scheduler and
reduced the risk of creating code that would be very difficult to understand by
someone unfamiliar with constraint programming. Being able to examine the in-
termediate Essence’ code and execute it using Tailor’s interactive facilities made
debugging the model fairly simple. Conversely, increasing the complexity of the
tool chain introduced an unknown risk of bugs resulting in explicable results or
failure.

Development was done with an early version of Tailor, version 0.2.0. Generating
Essence’ fromPythoncodealsomade it easy avoid limitationswithforeach expres-
sion in the early version of Tailor. Once a workingmodel was constructed, however,
the combination of Tailor and Minion never failed to find a correct solution.

70 A. Loewenstern

Approximately one day was required to learn Essence’ and construct a working
model and scheduler. Much more time was subsequently spent refining the model,
creating a visualization tool, and integrating the scheduler into a code base that
had been written for serial execution of jobs.

Python and Essence’ sharing syntax for array access is a happy coincidence that
opened the door to powerful meta programming techniques. The same code speci-
fying the start and stop times of steps in a job was used in several places. Reducing
duplication reduced the chance of error and allowed the scheduler to get up and
running quickly. Refinements and corrections to the model since the original de-
velopment were easy to apply and did not produce any unexpected results.

3.2 Execution

On the CPU embedded in the CB1000, a 1.6 GHz Celeron, the entire process of
computing the schedule takes approximately 12 seconds. This is done in parallel
with the system initialization performed at the beginning of the run so it adds
no additional time to the run. This performance is acceptable for the opera-
tion of the system. Adding substantially more arm steps, however, would likely
dramatically increase the search time required to find a solution.

3.3 Throughput

The ratio of the duration of arm usage, separation chamber usage, and passive
incubation of a typical job allows the scheduler to increase throughput dramati-
cally. The first generation system performed the job sequentially, leading to long
run times as shown in Fig.2.

Fig. 2. Unscheduled run with sequential execution, time in seconds

Scheduling the CB1000 Nanoproteomic Analysis System 71

Figure 3 shows the same run with the scheduler. In this case there is no hold
step in the middle of the job. Even without that optimization, the scheduler
decreases the time to complete the run by 30%

Figure 4 shows the same run with the scheduler using the hold step in the
middle of the run. In this case the scheduler minimizes the delay before starting
a job, which results in all of the separations being done first. With the hold step
the scheduler is able to effectively double the throughput of the system.

Fig. 3. Scheduled run with no delay before adding first reagent, time in seconds

Fig. 4. Scheduled run with variable hold step in the middle of the job, time in seconds

72 A. Loewenstern

References

1. Cell Biosciences web site, http://www.cellbiosciences.com/
2. Frisch, A.M., Harvey, W., Jefferson, C., Hernandez, B.M., Miguel, I.: ESSENCE:

A Constraint Language for Specifying Combinatorial Problems. To appear in Con-
straints 13(3) (July 2008)

3. Gent, I.P., Miguel, I., Rendl, A.: Tailoring Solver-independent Constraint Models:
A Case Study with Essence and Minion. In: Proceedings of SARA 2007 (2007)

4. Gent, I.P., Jefferson, C., Miguel, I.: MINION: A Fast, Scalable, Constraint Solver.
In: The European Conference on Artificial Intelligence 2006, ECAI 2006 (2006)

5. O’Neill, R.A., Bhamidipati, A., Bi, X., Deb-Basu, D., Cahill, L., Ferrante, J., Gen-
talen, E., Glazer, M., Gossett, J., Hacker, K., Kirby, C., Knittle, J., Loder, R.,
Mastroieni, C., MacLaren, M., Mills, T., Nguyen, U., Parker, N., Rice, A., Roach,
D., Suich, D., Voehringer, D., Voss, K., Yang, J., Yang, T., Vander Horn, P.B.: Iso-
electric focusing technology quantifies protein signaling in 25 cells. PNAS 103(44),
16153 (2006)

6. Neal Burnette, W.: ‘Western blotting’: electrophoretic transfer of proteins from
sodium dodecyl sulfate — polyacrylamide gels to unmodified nitrocellulose and ra-
diographic detection with antibody and radioiodinated protein A. Analytical Bio-
chemistry 112(2), 195–203 (1981)

7. Matplotlib web site, http://matplotlib.sourceforge.net/

http://www.cellbiosciences.com/
http://matplotlib.sourceforge.net/

Solving Nurse Rostering Problems Using Soft
Global Constraints

Jean-Philippe Métivier, Patrice Boizumault, and Samir Loudni

GREYC (CNRS - UMR 6072) – Université de Caen
Campus II – Boulevard du Maréchal Juin

14000 Caen Cedex

Abstract. Nurse Rostering Problems (NRPs) consist of generating ros-
ters where required shifts are assigned to nurses over a scheduling period
satisfying a number of constraints. Most NRPs in real world are NP-hard
and are particularly challenging as a large set of different constraints and
specific nurse preferences need to be satisfied. The aim of this paper is
to show how NRPs can be easily modelled and efficiently solved using
soft global constraints. Experiments on real-life problems and compari-
son with ad’hoc OR approaches are detailed.

1 Introduction

Due to their complexity and importance in real world modern hospitals, Nurse
Rostering Problems (NRPs) have been extensively studied in both Operational
Research (OR) and Artificial Intelligence (AI) for more than 40 years [5,11]. Most
NRPs in real world are NP-hard [16] and are particularly challenging as a large
set of different rules and specific nurse preferences need to be satisfied to warrant
high quality rosters for nurses in practice. Other wide range of heterogeneous
and specific constraints makes the problem over-constrained and hard to solve
efficiently [1,27].

NRPs consist of generating rosters where required shifts are assigned to nurses
over a scheduling period satisfying a number of constraints [5,7]. These con-
straints are usually defined by regulations, working practices and preferences of
nurses and are usually categorised into two groups: hard constraints and soft
constraints (with their violation costs).

From a Constraint Programming (CP) point of view, global constraints are
often key elements in successfully modelling and solving real-life problems due
to their efficient filtering. Global constraints are particularly well suited [31] for
modelling NRPs: sequence constraints on every nurse planning, daily capacity
constraints, etc. But, for over-constrained problems as NRPs, such filtering can
only be performed in very particular cases. Soft global constraints proposed
by [30,26,33] take advantage from the semantics of a constraint and from the
semantics of its violation to efficiently perform filtering. The aim of this paper
is to show how NRPs can be modelled using soft global constraints and solved
efficiently with solutions quality and computing times close to those obtained
using ad’hoc OR methods.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 73–87, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

74 J.-P. Métivier, P. Boizumault, and S. Loudni

Section 2 gives a synthetic overview of NRPs and describes the problem we
selected as example for our presentation. Although this problem is fictional, hard
and soft constraints it contains are representative of constraints encountered in
most NRPs. Section 3 is devoted to soft global constraints and their filtering.
In Section 4, we show how NRPs can be modelled in a concise and elegant way
using soft global constraints.

The next two sections are devoted to the resolution of NRPs. First, we in-
troduce (Section 5) the global constraint regularCount (and its soft version)
which combines regular and atleast/atmost constraints in order to provide
a more efficient filtering. Then, we motivate and present our resolution method
VNS/LDS+CP [18] based on a Variable Neighborhood Search (VNS [22]) where
the reconstruction step is performed using a Limited Discrepancy Search (LDS
[13]) combined with filtering (CP) performed by soft global constraints.

The ASAP site (Automated Scheduling, optimization And Planning) of Uni-
versity of Nottingham (http://www.cs.nott.ac.uk/~tec/NRP/) records a large
and various set of NRPs instances as well as the methods used to solve them.
We performed experimentations over different instances we selected in order to
be representative of the diversity and the size of NRPs. For each instance, we
compare quality of solutions and computing times for our method with the best
known method for solving it [14]. Experimentations show (Section 7) that, de-
spite its genericity and flexibility, our method provides excellent results on small
and middle size problems and very promizing results on large scale problems.

2 Nurse Rostering Problems

2.1 An Overview of NRPs

NRPs consist of generating rosters where required shifts are assigned to nurses
over a scheduling period (planning horizon) satisfying a number of constraints
[5,11]. These constraints are usually defined by regulations, working practices
and nurses preference. Constraints are usually categorised into two groups: hard
and soft ones. Hard constraints must be satisfied in order to obtain feasible
solutions for use in practice. A common hard constraint is to assign all shifts
required to the limited number of nurses. Soft constraints are not obligatory but
are desired to be satisfied as much as possible. The violations of soft constraints in
the roster are used to evaluate the quality of solutions. A common soft constraint
in NRPs is to generate rosters with a balanced workload so that human resources
are used efficiently.

Shift types are hospital duties which usually have a well-defined start and end
time. Many nurse rostering problems are concerned with the three traditional
shifts Morning, (7:00–15:00), Evening (15:00–23:00), and Night (23:00–7:00).
Shift constraints express the number of personnel needed for every skill category
and for every shift or time interval during the entire planning period. Nurse
constraints refer to all the restrictions on personal schedules. All the personal
requests, personal preferences, and constraints on balancing the workload among
personnel belong to this category.

Solving Nurse Rostering Problems Using Soft Global Constraints 75

2.2 Example: A 3-Shifts NRP

The 3 shifts are Morning (M), Evening (E) and Night (N). Off (O) will represent
repose. 8 nurses must be planned over a planning horizon of 28 days satisfying
the below constraints.

1. Hard Constraints:

(H1) From Monday to Friday, M , E, N shifts require respectively (2, 2,1) nurses.
For weekend, the demand of all shifts is reduced to 1.

(H2) A nurse must have at least 10 days off.
(H3) A nurse must have 2 free Sundays.
(H4) A nurse is not allowed to work more than 4 N shifts.
(H5) The number of consecutive N shifts is at least 2 and at most 3.
(H6) Shift changes must be performed respecting the order: M , E, N .

2. Soft Constraints:

(S1) For a nurse, the number of M and N shifts should be within the range [5..10].
Any deviation δ is penalised by a cost δ × 10.

(S2) The number of consecutive working days is at most 4. Any excess δ generates
a penality of δ × 1000.

(S3) Every isolated day off is penalised by a cost 100.
(S4) Every isolated working day is penalised by a cost 100.
(S5) Two working days must be separated by 16 hours of rest. Any violation gen-

erates a cost 100.
(S6) An incomplete weekend has cost 200.
(S7) Over a period of 2 weeks a nurse must have 2 days off during weekends. Any

deviation δ is penalised by a cost δ × 100.
(S8) A N shift on Friday before a free weekend is penalised by a cost 500.

Related CP Works. An operational system GYMNASTE using (hard) global
constraints is described in [31]. Other practical systems are also mentionned.
But, dealing with over-constrained problems is only discussed as perspectives.
Three directions are indicated (Hierarchical CP [1], heuristics and interactions).
The last two proposals are problem dependent. As quoted by [31], the main
difficulty with the Hierarchical CP approach is that global constraints have to
be extended to handle constraint violations. This is the aim of this paper.

3 Soft Global Constraints

3.1 Principles

Over-constrained problems are generally modelled as Constraint Optimization
Problems (COP). A cost is associated to each constraint in order to quantify its
violation. A global objective related to the whole set of costs is usually defined
(for example to minimize the total sum of costs). Global constraints are often
key elements in successfully modelling and solving real-life problems due to their
efficient filtering. But, for over-constrained problems, such filtering can only be
performed in very particular cases. Soft global constraints proposed by [30,26,33]
take advantage from the semantics of a constraint and from the semantics of its
violation to efficiently perform filtering.

76 J.-P. Métivier, P. Boizumault, and S. Loudni

Definition 1 (violation measure). μ is a violation measure for the global
constraint c(X1, ..., Xn) iff μ is a function from D1 ×D2 × ... ×Dn to �+ s.t.
∀A ∈ D1 ×D2 × ...×Dn, μ(A) = 0 iff A satisfies c(X1, ..., Xn).

To each soft global constraint c are associated a violation measure μc and a
cost variable Zc that measures the violation of c. So the COP is transformed
into a CSP where all constraints are hard and the cost variable Z =

∑
c Zc will

be minimized. If the domain of a cost variable is reduced during the search,
propagation will be performed on domains of other cost variables.

Definition 2 (soft global constraint). Let c(X1, ..., Xn) be a global con-
straint, Zc its cost variable, and μ a violation measure. The soft global con-
straint Σ-c([X1, ..., Xn], μ, Zc) has a solution iff ∃A ∈ D1 ×D2 × ... ×Dn s.t.
min(DZc) ≤ μ(A) ≤ max(DZc).

Example (decomposition based violation measure). Let c(X1, ..., Xn) be a
global constraint which can de decomposed as a conjunction of binary constraints
ci,j over variables Xi and Xj . Let ϕi,j be the violation cost of ci,j ; let A ∈
D1 ×D2 × ...×Dn and unsat(A) be the set of constraints ci,j unsatisfied by A.
Then, μdec(A) =

∑
ci,j∈unsat(A) ϕi,j .

3.2 Relaxation of gcc

i) A Global Cardinality Constraint (gcc) on a sequence of variables spec-
ifies, for each value in the union of their domains, an upper and lower bound to
the number of variables that are assigned to this value [28].

Definition 3. Let X={X1,. . . ,Xn}, Doms=∪Xi∈XDi. Let vj∈Doms, lj and uj

the lower and upper bounds for vj. gcc(X , l, u) has a solution iff ∃A ∈ D1×D2×
...×Dn s.t. ∀vj ∈ Doms, lj ≤| {Xi ∈ X | Xi = vj} |≤ uj.

Each constraint gcc(X , l, u) can be decomposed as a conjunction of atleast and
atmost constraints over values in Doms:

gcc(X , l, u) =
∧

vj∈Doms(atleast(X , vj , lj) ∧ atmost(X , vj , uj))

ii) Global constraint Σ-gcc is a soft version of gcc for the decomposition
based violation measure μdec[20]. Σ-gcc allows the violation of the lower and/or
upper bounds of values. To each value vj∈Doms are associated a shortage func-
tion s(X , vj) measuring the number of missing assignments of vj to satisfy
atleast(X , vj, lj), and an excess function e(X , vj) measuring the number of
assignments of vj in excess to satisfy atmost(X , vj, uj). Each constraint Σ-gcc
is modelled by adding violation arcs to the network of gcc [28]. These violation
arcs represent the shortage or the excess for each value of Doms [33,20].

Definition 4 (μdec). For each value vj ∈ Doms, let ϕatleast
j be the violation

cost of its lower bound lj and ϕatmost
j the violation cost of its upper bound uj,

μdec(X) =
∑

vj∈Doms μcard(X , vj)
where μcard(X , vj) = s(X , vj)× ϕatleast

j + e(X , vj)× ϕatmost
j

Solving Nurse Rostering Problems Using Soft Global Constraints 77

Property 1 (filtering). Let Z be a cost variable and Φ a violation structure,
Σ-gcc(X , l, u, μdec, Φ, Z) is domain-consistent iff for every arc a = (Xi, vj), there
exists an integer s − t flow f of value max(n,

∑
vj∈Doms lj) with f(a) = 1 and

weight p s.t. min(DZ) ≤ p ≤ max(DZ).
Worst case time complexity: O(n2log(n)× d) where d = max(|Di|).

3.3 Relaxation of Regular

i) Global Constraint Regular [25]

Definition 5. Let M be a Deterministic Finite Automaton (DFA), L(M) the
language defined by M , X a sequence of n variables. regular(X ,M) has a so-
lution iff ∃A ∈ D1 ×D2 × ...×Dn s.t. A ∈ L(M).

A DFA is defined by a 5-tuple M={Q, Σ, δ, q0, F} where Q is a finite set of states,
Σ is an alphabet, δ : Q×Σ → Q is a transition function, q0 is the initial state
and F ⊆ Q is the set of final (or accepting) states. A regular constraint over a
sequence of n variables is modelled by a layered directed graph G = (V, U):

- vertex set V = {s} ∪ V0 ∪ . . . ∪ Vn ∪ {t} where ∀i ∈ [1..n], Vi ={qi
l | ql ∈ Q}

- arc set U = {(s, q0
0)} ∪ U0 ∪ . . . Un ∪ {(qn

l , t) | ql ∈ F}
where ∀i ∈ [1..n], Ui = {(qi

l , q
i+1
m , vj) | vj ∈ Di, δ(ql, vj) = qm}

Property 2. Solutions for regular(X ,M) correspond to s-t paths in graph G.

ii) Global Constraint Cost-Regular enables to model the fact that some
transitions of an automaton may have a cost. To each cost-regular constraint
is associated a directed weighted layered graph G = (V, U, Φ), where each arc
representing a transition is valued by the cost of this transition [10]. For an
instantiation A, the measure μreg(A) is defined as the total sum of the transition
costs for arcs belonging to the path associated to A.

Property 3 (filtering). Let Z be a cost variable and Φ a violation structure.
cost-regular(X , M, μreg, Φ, Z) is domain-consistent iff for every arc a=(Xi, vj)
there exists an s-t path of weight p s.t. min(DZ) ≤ p ≤ max(DZ).

Worst case time complexity: O(n × |Q| × |Σ|). For each layer i, each vertex qi
l

may have at most |Σ| successors.

iii) Cost-Regular used as a soft constraint for NRPs every hard constraint
of sequence c will be modelled using a DFA Mc (see Section 4.3). A soft constraint
of sequence Σ-c will be modelled by adding new transitions to Mc as well as
their costs. Let M ′

c be this new DFA; then a cost-regular constraint over M ′
c

is stated. So, for modelling NRPs, cost-regular will be used as a soft version
of regular (L(Mc) ⊂ L(M ′

c)).

4 Modelling a 3-Shifts NRP

This section presents the modelling of the problem specified in Section 2.2 and
shows how soft global constraints are well suited for modelling NRPs.

78 J.-P. Métivier, P. Boizumault, and S. Loudni

4.1 Variables and Domains

Let J=[1..28] be the scheduling period and I=[1..8] the set of nurses; variable
X i

j , with domain Di
j=Doms={M ,E,N ,O}, will represent the shift assigned to

nurse i for day j. For gcc constraints, values will be ordered as in Doms.

4.2 Capacity Constraints

(H1) ∀j ∈ [1, 2, 3, 4, 5, 8, 9, ..., 24, 25, 26], gcc([X1
j , . . . , X8

j], [2, 2, 1, 0], [2, 2, 1, 8]).
∀j ∈ [6, 7, 13, 14, 20, 21, 27, 28], gcc([X1

j , . . . , X8
j], [1, 1, 1, 0], [1, 1, 1, 8]).

(H2) ∀i ∈ I, atleast([X i
1, . . . , X

i
28], O, 10).

(H3) ∀i ∈ I, atleast([X i
7, X

i
14, X

i
21, X

i
28], O, 2).

(H4) ∀i ∈ I, atmost([X i
1, . . . , X

i
28], N, 4).

(S1) ∀i ∈ I, Σ-gcc([X i
1,. . . ,X i

28], [5, 5], [10, 10], [10, 10], [10, 10], Zi) for values M
and E with ϕatleast

M =ϕatmost
M =10 (violation costs for E are the same).

(S7) is also modelled using Σ-gcc constraints.

(H2), (H4) and (S1) can be grouped together using Σ-gcc constraints:

∀i ∈ I, Σ-gcc([X i
1,. . . ,X

i
28],[5,5,0,10],[10,10,4,28],[10,10,0,∞],[10,10,∞,0],Zi).

As (H2) is a hard atleast constraint, then uO=28, ϕatleast
O =∞ and ϕatmost

O =0.
As (H4) is a hard atmost constraint, then lN=0, ϕatleast

N =0 and ϕatmost
N =∞.

4.3 Sequence Constraints

Let Σ be an alphabet, x will represent any symbol y ∈ Σ s.t. y �= x.

(H5) ∀i ∈ I, regular([X i
1, . . . , X

i
28], A1) (Figure 1)

(H6) states that shift changes must be performed respecting the order: M, E, N .
(see automaton A2 (Figure 2)). For modelling (S5), two arcs are added: one
for transition (e3, e2, E) with cost 100 and one for transition (e2, e1, M)
with cost 100. So, ∀i ∈ I, cost-regular([X i

1, . . . , X
i
28], A2, Z

A2
i).

(S6) ∀ i∈I, cost-regular([X i
6,X i

7,X i
13,X i

14,...,X i
27,X i

28,],A3,ZA3
i) (Figure 3).

Finally, (S2), (S3) and (S4) can be grouped together using cost-regular. (S8)
can also be modelled by cost-regular.

Fig. 1. Automaton A1 for (H5)

Solving Nurse Rostering Problems Using Soft Global Constraints 79

Fig. 2. Automaton A2 for (H6) and (S5) Fig. 3. Automaton A3 for (S6)

5 Interaction between Global Constraints

Despite the efficient filtering of each global constraint, the lack of communica-
tion between them reduces significantly the quality of the whole filtering. In-
deed, each global constraint uses its internal representation (bipartite graph,
network,...) and does not (or partially) exploit information deduced by other
global constraints. In most NRPs, a great number of global constraints share a
common set of variables (e.g. constraints over the entire planning of a nurse).
Few works have been done on the interaction between global constraints:

– cardinality matrix constraint [29] combining several gcc as a matrix,
– multi-cost-regular [19] merging multiple cost-regular.

In this section, we propose the regularCount (resp. cost-regularCount) con-
straint which combines a regular (resp. cost-regular) constraint with several
atleast/atmost constraints on a same value.

5.1 Motivating Example

Rule (H4) is modelled as: ∀i ∈ I, atmost([X i
1,. . . , X i

7],N ,4) and rule (H5) as:
∀i ∈ I, regular([X i

1,. . . , X i
7],A1) (see Section 2.2 & Section 4.3). Let us consider

the following reduced variable domains associated to the first week of nurse
i: Di

1=Di
2=Di

3={N}, Di
4={O} and Di

5=Di
6=Di

7={N, O}. Filtering separately
atmost and regular will not detect that value N should be removed from Di

5.
Indeed, if X i

5=N then X i
6=N by (H5) but (H4) fails. For analogous reasons,

value N should also be removed from Di
6 and Di

7. This example illustrates the
weakness of separate filterings.

5.2 regularCount Constraint

For an automaton and a particular value vj ∈ Doms, a regularCount constraint
will combine a regular constraint with several atleast/atmost constraints on
value vj .

80 J.-P. Métivier, P. Boizumault, and S. Loudni

Fig. 4. Graph representation for regularCount([Xi
1 ,. . . , Xi

7],A1,N ,0,4)

Definition 6. Let M={Q, Σ, δ, q0, F} be a DFA, L(M) its associated language,
X a sequence of n variables, vj ∈ Σ, lj (resp. uj) an upper (resp. lower) bound
for vj. regularCount(X ,M ,vj,lj,uj) has a solution iff ∃A ∈ D1× . . .×Dn | A ∈
L(M) ∧ lj ≤| {Xi ∈ X | Xi = vj} |≤ uj.

The regularCount constraint has been used for developping a track planner for
a local Radio station. A new track has to be broadcast a bounded number of
times into the daily planning which must respect musical transitions expressed
as regular expressions. Other potential use for regularCount would be planning
advertising for TV stations or planning maintenance periods for assembly-lines.

Graph Representation. As for regular (see Section 3.3), a constraint
regularCount (X ,M ,vj ,lj ,uj) is modelled by a layered directed graph G′(V, U).
For each layer i, states ql are labelled both by the layer (qi

l as for regular) and
by k the number of occurrences of vj found so far (qi

l,k for atleast and atmost
constraints).

V = {s} ∪ V0 ∪ . . . ∪ Vn ∪ {t}
Vi = {qi

l,k | ql ∈ Q, k ∈ [0 . . .n]}, ∀i ∈ [1..n]
U = {(s, q0

0,0)} ∪ U0 ∪ . . . Un ∪ Ut

Ut = {(qn
l,k, t) | ql ∈ F ∧ (lj ≤ k ≤ uj)}

Ui = {(qi
l,k, qi+1

m,k′ , v) | v ∈ Di, δ(ql, v) = qm}, ∀i ∈ [1..n]
where if (v = vj) then k′ = k + 1 else k′ = k

Example (Section 5.1) is modelled as: ∀i ∈ I, regularCount([X i
1,. . . ,

X i
7],A1,N ,0,4). Figure 4 describes its graph representation. regularCount fil-

tering will remove value N from domains Di
5, Di

6 and Di
7.

Property 4 (filtering). Let M={Q, Σ, δ, q0, F} be a DFA, vj ∈ Σ, lj (resp. uj)
the upper (resp. lower) bound for vj . regularCount(X ,M ,vj,lj ,uj) is domain-
consistent iff for every arc a = (Xi, vj) ∈ Ui there exists an s-t path in G′(V, U).

Proof. There is an arc from qi
l,k to qi+1

m,k′ iff there exists a value v ∈ Di such
that δ(ql, v)= qm. If (v = vj) then k′= k + 1 (i.e., the number of variables that
are assigned to vj is k + 1), otherwise k′=k. If an arc belongs to an s-t path, it
belongs to a path from q0

0,0 to qn
l,k, with ql ∈ F and lj ≤ k′ ≤ uj.

Solving Nurse Rostering Problems Using Soft Global Constraints 81

Fig. 5. Graph representation for cost-regularCount([Xi
6 ,...,Xi

28],A3,Φ,O,2,2,ZA3
i)

Worst case time complexity: O(n2/2 × |Q| × |Σ|). For layer i, there are at
most i×|Q| vertices as at most i occurrences of vj may be assigned to vari-
ables X1, ..., Xi. As for regular, each vertex may have at most |Σ| successors.
Summing for all layers leads to

∑n
i=1 i× |Q| × |Σ|.

5.3 Cost-regularCount Constraint

Let M={Q, Σ, δ, q0, F} be a DFA and vj ∈ Σ. cost-regularCount is a soft
version of regularCount for which some transitions may have a cost and which
also allows the violation of lower/upper bounds for a value vj .

Definition 7 (violation measure μreg). Let ϕatleast
j (resp. ϕatmost

j) be the
violation cost associated to lower bound lj (resp. upper bound uj). ∀vj ∈ Σ,
μreg(X , vj) = μreg(X) + μcard(X , vj).

Definition 8. Let M a DFA, vj ∈ Σ, Z a cost variable and Φ a viola-
tion structure. cost-regularCount(X , M, μreg, Φ, vj , lj , uj , Z) has a solution iff
∃A ∈ D1 × . . .×Dn s.t. A ∈ L(M) ∧ min(DZ) ≤ μreg(A, vj) ≤ max(DZ).

Graph Representation. There are two main differences between G′′(V, U, Φ)
and G′(V, U) : i) transition costs are associated to corresponding arcs (as for
cost-regular), ii) arcs Ut are replaced by violation arcs Ũt= {(qn

l,k, t) | ql ∈
F, k ∈ [0 . . .n]} which enable to model shortage or excess for a value vj . To each
violation arc a=(qn

l,k, t) is associated a cost w(a):

w(a) =

⎧⎨⎩ (lj − k) × ϕatleast
j if k < lj

(k − uj) × ϕatmost
j if k > uj

0 otherwise

Figure 5 gives the graph representation of (S6) and (S7) modelled as:

∀i ∈ I, cost-regularCount([Xi
6,X

i
7,X

i
13,...,X

i
27,X

i
28,],A3,μreg,Φ,O,2,2,ZA3

i).

82 J.-P. Métivier, P. Boizumault, and S. Loudni

Table 1. Comparative results for Filtering. (�) denotes optimal values.

Instance |I | × |J | |D | UB Σ-Gcc & cost-regular cost-regularCount

Time (s.) �backtracks Time (s.) �backtracks
inst 01 07 28 2 3000� 1.4 1 559 0.2 342

inst 01 11 44 2 1500� 20.9 14 113 6.7 6002

inst 01 14 56 2 2500� 380.1 193 156 122.6 63395

inst 02 07 49 3 1100� ≥5 400 – 3303.1 2891874

inst 02 14 98 3 100� 73.6 24 100 120.2 16587

inst 02 21 147 3 100� 4 886.7 1 216 908 940.5 107612

Property 5 (filtering). Let M={Q, Σ, δ, q0, F} be a DFA, vj ∈ Σ, lj (resp.
uj) the upper (resp. lower) bound for vj , Φ a violation structure and Z a cost-
variable. cost-regularCount(X , M, μreg, Φ, vj , lj , uj, Z) is domain consistent iff
for every arc a = (Xi, v) ∈ Ui there exists an s-t path in G′′(V, , Φ) of cost p s.t.
min(Dz) ≤ p ≤ max(Dz).

Proof. If a transition associated to arc (qi
l,k,qi+1

m,k′) uses vj , then k′=k + 1 else
k′=k. An s-t path using a violation arc in Ũt corresponds to a solution with a
shortage or an excess for value vj and the cost to pay is reported on this violation
arc. As transition costs are reported on their associated arcs in Ui, the cost of
an s-t path A using a violation arc in Ũt corresponds exactly to μreg(A, vj).

Worst case time complexity: O(n2/2× |Q| × |Σ|) as for regularCount.

Table 1 compares the efficiency of cost-regularCount filtering vs separate fil-
terings in terms of computing times and number of backtracks. Experiments have
been performed on small or medium NRPs instances using Depth First Branch
and Bound and run on a 2.8 Ghz P4 processor. cost-regularCount filtering
always performs better than separate filterings except for inst 02 14 which is
an instance easy to solve where filtering is not so crucial. The extra-cost comes
from the fact that the complexity of cost-regularCount is slightly higher than
those of cost-regular and Σ-gcc.

6 Variable Neighborhood Search

A great variety of approaches that have been proposed for solving NRPs are
either ad’hoc OR methods (including preprocessing steps to reduce the problem
size), or local search methods combining OR techniques to find an initial solution.
NRPs seem to be well suited for defining large-scale neighborhoods (2-opt, swap
and interchange of large portions of nurse plannings, . . .).

Variable Neighborhood Search (VNS) [22] is a metaheuristic which systemat-
ically exploits the idea of large neighborhood change, both in descent to local
minima and in escape from the valleys which contain them. Variable Neighbor-
hood Decomposition Search (VNDS) [12] extends basic VNS within a successive

Solving Nurse Rostering Problems Using Soft Global Constraints 83

Algorithm 1. Pseudo-code for VNS/LDS+CP.
function VNS/LDS+CP(X , C, kinit, kmax, δmax)

begin
s ← genInitialSol(X)
k ← kinit

while (k < kmax) ∧ (not timeout) do
Xunaffected ← Hneighbor(Nk, s)
A ← s\{(xi = a) s.t. xi ∈ Xunaffected}
s′ ← NaryLDS(A,Xunaffected, δmax,V(s), s)
if V(s′) < V(s) then

s ← s′

k ← kinit

else k ← k + 1
return s

end

approximations method. For a solution of size n, all but k variables are fixed,
and VNDS solves a sub-problem in the space of the k unfixed variables.

VNS/LDS+CP. [18] is a generic local search method based on VNDS [12].
Neighborhoods are obtained by unfixing a part of the current solution according
to a neighborhood heuristic. Then the exploration of the search space related
to the unfixed part of the current solution is performed by a partial tree search
(LDS, [13]) with CP in order to benefit from the efficiency of global constraints
filtering (See Algorithm 1). However, as the size of neighborhoods can quickly
grow, the exploration of (very) larger neighborhoods may require a too expensive
effort. That is why, in order to efficiently explore parts of the search space, LDS
is used.

LDS+CP: Our variable ordering for LDS is Dom/Deg and our value ordering
selects the value which leads to the lowest increase of the violation cost. CP is
performed using soft global constraints filtering.

Neighborhood Heuristics. A lot of soft global constraints are stated over the
whole planning of a nurse. So, all variables related to a nurse planning will be
together unassigned. k will represent the number of nurse plannings to be unas-
signed (and not the number of variables as depicted in general Algorithm 1). In
order to show the interest of soft global constraints filtering, only two ”basic”
heuristics have been considered: (i) rand which randomly selects a nurse plan-
ning, and (ii) maxV which selects the nurse planning having the highest violation
cost.

7 Experimental Results

We performed experimentations over different instances we selected in order to
be representative of the diversity and the size of NRPs. For each instance, we
always compare with the best method for solving it [14]. As experiments

84 J.-P. Métivier, P. Boizumault, and S. Loudni

have been run on various machines, we will report, for each instance, the original
CPU time and the processor. For all instances, except the first three ones where
the processor is unknown (they are noted in italic Table 1.), CPU times will be
normalised1 and denoted CPUN. Some methods include a pre-treatment.
As CPU times for this step are not given in papers, reported CPU times concern
in fact the second step. Finally, reported CPU times for our method always
include the computing time for obtaining the initial solution.

Experimental Protocol. Each instance has been solved by VNS/LDS+CP,
with a discrepancy varying from δmin=3 to δmax=8. kmin has been set to 2 and
kmax to 66% of the total number of nurses. Timeout has been set according to
the size of each instance. For the rand heuristic, a set of 10 runs per instance has
been performed. VNS/LDS+CP has been implemented in C++. Experiments
have been performed under Linux on a 2.8 Ghz P4 processor, with 1GB RAM.

Comparisons with ad’hoc Methods. Heuristic maxV, which is better in-
formed that rand, provides the best performances except for instances LLR and
Azaiez.

A) Ozkarahan instance [24]: we find the optimum in less than 1s. using maxV.

B) MILLAR instance: (2 methods)
B1) Network programming [21]: All feasible weekly shift patterns of length at
most 4 days are generated. An ILP model is defined and solved using CPLEX.
B2) TS+B&B [15]: Nurse constraints are used to produce all feasible shift pat-
terns for the whole scheduling period for each nurse (independently from shift
constraints). Best combinations of these shift patterns are found using mathe-
matical programming and Tabu Search.

With B1, a solution of cost 2.550 is found after 500 s. on an IBM
RISC6000/340. With B2, a solution of cost 0 is obtained in 1 s. on a 1Ghz
Intel P3 processor. We find the optimum in less than 1 s. using maxV.

C) Musa instance [23]: A solution of cost 199 is found in 28 s. on UNIVAC-1100.
We find the optimum (cost 175) in 39 s. using maxV.

D) LLR instance: A hybrid AI approach (TS+CP), which combines CP tech-
niques and Tabu Search is used in [17]. A solution of cost 366 is found after
96 s. on a PC/P-545MHz (CPUN 16 s.). With rand, we obtain (on average) a
solution of cost 319 after 265 s. The best solution (over the 10 runs) has a cost
314 (79 s.). The first solution (cost 363) is obtained in less than 1 s. Using maxV,
a solution of cost 326 is found in 186 s.

E) BCV-5.4.1 instance: (3 methods). All the results are obtained on a same
machine (2.66GHz Intel P4 processor). Hybrid Tabu search [4] is the best of
the 3 methods for this instance. VDS [6] finds the optimum after 135 s. (CPUN
128 s.). In [3], a solution of cost 200 is found after 16 s. (CPUN 15 s.). With maxV,
we obtain the optimum after 180 s.
1 For a machine κ times slower than ours, reported CPU times will be divided by κ.

Solving Nurse Rostering Problems Using Soft Global Constraints 85

Table 2. Comparative results. (�) denotes optimal values.

Instances |I | × |J | |D | Best Ub Ad’hoc methods VNS/LDS+CP
Algo. Cost Time(s) Cost Time(s)

Ozkarahan 14×7 3 0� [24] - - 0 1

Millar 8×14 3 0� Network 2550 500
0 1

TS+B&B 0 1

Musa 11×14 2 175� [23] 199 28 175 39
LLR 26×7 4 301� TS+CP 366 16 314 79

BCV-5.4.1 4×28 5 48� Hybrid TS 48 5
48 180VDS 48 128

[3] 200 15

Azaiez 13×28 3 0� (0,1)-LGP 0 150 0 233

GPOST 8×28 3 3� 2-Phase 3 14 8 234

Valouxis 16×28 4 20� VDS 120 4200 160 3780
Ikegami

25×30 4 6 TS+B&B 6 111060 63 671
3Shift-DATA1

F) Azaiez instance: An optimal solution is provided with the (0,1)-LGP method
[2] after 600 s. on a PC/P-700MHz (CPUN 150 s.). rand (resp. maxV) finds the
optimum in 233 s. (resp. 1.050 s.).

G) GPOST instance is solved using a 2 steps method [14]. First, all feasible sched-
ules are enumerated for each nurse. Then, the final schedule is generated using
CPLEX. An optimal solution of cost 3 is found in 8 s. on a 2.83GHz Intel Core2
Duo processor (CPUN 14 s.) without taking into account the time used in the first
step [14]. We find a solution of cost 8 in 234 s. using maxV.

H) Valouxis instance [32]: In [6], Variable Depth Search (VDS) obtains a so-
lution of cost 120 (6 workstretches of length 3) after 2.993 s. on a 2.66GHz
Intel Core2 Duo processor (CPUN 4.200 s.). We obtain a solution of cost 160 (8
workstretches of length 3) after 3.780 s. using maxV.

I) Ikegami-3shift-DATA1 instance: Experiments have been performed on a
PENTIUM3-1Ghz. TS+B&B [15] finds a solution of cost 10 after 543 mns (CPUN
194 mns) with a timeout of 24h and a solution of cost 6 after 5.783 mns (CPUN
1.851 mns) with a timeout of 100h. maxV provides a solution of cost 63 (where
all unsatisfied constraints are of weight 1) after 671 s. with a timeout of 1h.

Contrary to other instances, nurse constraints are hard and shift constraints are
soft for Ikegami. So our neighborhood heuristics which unassign whole nurse
plannings are irrelevant. If the timeout is increased, the solution quality is im-
proved but it is not enough to bring the optimum. As it is more efficient to
unassign variables related to soft constraints than hard ones, one may consider
that basic heuristics unassigning shift constraints would be efficient. But it is

86 J.-P. Métivier, P. Boizumault, and S. Loudni

not the case as it is very difficult to obtain a first solution: nurses constraints
are larger than soft ones and more difficult to satisfy.

Conclusions. For each instance, we have compared our method with the best
ad’hoc method for solving it [14]. Despite its genericity and flexibility, our
method has obtained: (i) solutions of better quality and better computing times
for Ozkarahan, Millar, Musa and LLR, (ii) solutions of equal quality with com-
puting times close to those for BCV541 and Azaiez, (iii) very promising solution
quality on large scale instances as GPOST and Valouxis.

8 Conclusion

In this paper, we have shown how NRPs can be modelled in a concise and elegant
way using soft global constraints. For each instance, we have compared quality of
solutions and computing times for our method with the best known method for
solving it. Experimentations show that, despite its genericity and flexibility, our
method provides excellent results on small and middle size problems and very
promizing results on large scale problems. For large instances or very specific
ones like Ikegami, performances of our method could be greatly improved by
using neighborhood heuristics especially designed for NRPs. In order to reduce
the lack of communication between soft global constraints, it would be interesting
to extend arc consistency for soft binary constraints [9,8].

References

1. Meyer auf’m Hofe, H.: Solving rostering tasks as constraint optimisation. In: Burke,
E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 191–212. Springer, Hei-
delberg (2001)

2. Azaiez, M., Al Sharif, S.: A 0-1 goal programming model for nurse scheduling.
Computers and Operations Research 32(3), 491–507 (2005)

3. Brucker, P., Burke, E., Curtois, T., Qu, R., Vanden Berghe, G.: A shift sequence
based approach for nurse scheduling and a new benchmark dataset. J. of Heuristics
(to appear, 2009)

4. Burke, E., De Causmaecker, P., Vanden Berghe, G.: A hybrid tabu search algorithm
for the nurse rostering problem. In: McKay, B., Yao, X., Newton, C.S., Kim, J.-H.,
Furuhashi, T. (eds.) SEAL 1998. LNCS (LNAI), vol. 1585, pp. 187–194. Springer,
Heidelberg (1999)

5. Burke, E., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The state
of the art of nurse rostering. Journal of Scheduling 7(6), 441–499 (2004)

6. Burke, E., Curtois, T., Qu, R., Vanden Berge, G.: A time predefined variable depth
search for nurse rostering, TR 2007-6, University of Nottingham (2007)

7. Burke, E., Li, J., Qu, R.: A hybrid model of Integer Programming and VNS for
highly-constrained nurse rostering problems. In: EJOR 2009 (to appear, 2009)

8. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M.: Virtual arc con-
sistency for Weighted CSP. In: AAAI 2008 (2008)

9. Cooper, M., Schiex, T.: Arc consistency for soft constraints. Artificial Intelli-
gence 154(1-2), 199–227 (2004)

Solving Nurse Rostering Problems Using Soft Global Constraints 87

10. Demassey, S., Pesant, G., Rousseau, L.-M.: A cost-regular based hybrid column
generation approach. Constraints 11(4), 315–333 (2006)

11. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering:
A review of applications, methods and models. EJOR 153(1), 3–27 (2004)

12. Hansen, P., Mladenovic, N., Perez-Britos, D.: Variable neighborhood decomposi-
tion search. Journal of Heuristics 7(4), 335–350 (2001)

13. Harvey, W., Ginsberg, M.: Limited Discrepancy Search. In: IJCAI 1995, pp. 607–
614 (1995)

14. http://www.cs.nott.ac.uk/~tec/NRP/
15. Ikegami, A., Niwa, A.: A subproblem-centric model and approach to the nurse

scheduling problem. Mathematical Programming 97(3), 517–541 (2003)
16. Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer

Computations, pp. 85–103. Plenum Press, New York (1972)
17. Li, H., Lim, A., Rodrigues, B.: A hybrid AI approach for nurse rostering problem.

In: SAC, pp. 730–735 (2003)
18. Loudni, S., Boizumault, P.: Combining VNS with constraint programming for solv-

ing anytime optimization problems. EJOR 191(3), 705–735 (2008)
19. Menana, J., Demassey, S.: Sequencing and counting with the multicost-regular con-

straint. In: van Hoeve, W.J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547,
pp. 178–192. Springer, Heidelberg (2009)

20. Métivier, J.-P., Boizumault, P., Loudni, S.: Softening gcc and regular with pref-
erences. In: SAC 2009, pp. 1392–1396 (2009)

21. Millar, H., Kiragu, M.: Cyclic and non-cyclic sheduling of 12h shift nurses by
network programming. EJOR 104(1), 582–592 (1996)

22. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers &
OR 24(11), 1097–1100 (1997)

23. Musa, A., Saxena, U.: Scheduling nurses using goal-programming techniques. IIE
transactions 16, 216–221 (1984)

24. Ozkarahan, I.: The zero-one goal programming model of a flexible nurse scheduling
support system. In: Int. Industrial Engineering Conference, pp. 436–441 (1989)

25. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

26. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-
constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463.
Springer, Heidelberg (2001)

27. Qu, R., He, F.: A hybrid constraint programming approach for nurse rostering
problems. In: 28th SGAI International Conference on AI, pp. 211–224 (2008)

28. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: AAAI
1996, pp. 209–215 (1996)

29. Régin, J.-C., Gomes, C.: The cardinality matrix constraint. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 572–587. Springer, Heidelberg (2004)

30. Régin, J.-C., Petit, T., Bessière, C., Puget, J.-F.: An original constraint based
approach for solving over-constrained problems. In: Dechter, R. (ed.) CP 2000.
LNCS, vol. 1894, pp. 543–548. Springer, Heidelberg (2000)

31. Simonis, H.: Models for global constraint applications. Constraints 12(1), 63–92
(2007)

32. Valouxis, C., Housos, E.: Hybrid optimization techniques for the workshift and rest
assignment of nursing personnel. A.I. in Medicine 20(2), 155–175 (2000)

33. van Hoeve, W., Pesant, G., Rousseau, L.-M.: On global warming: Flow-based soft
global constraints. Journal of Heuristics 12(4-5), 347–373 (2006)

http://www.cs.nott.ac.uk/~tec/NRP/

Online Selection of Quorum Systems for
RAMBO Reconfiguration

Laurent Michel2, Martijn Moraal2, Alexander Shvartsman2,
Elaine Sonderegger2, and Pascal Van Hentenryck1

1 Brown University, Box 1910, Providence, RI 02912
2 University of Connecticut, Storrs, CT 06269-2155

Abstract. Rambo is the Reconfigurable Atomic Memory for Basic Ob-
jects, a formally specified algorithm that implements atomic read/write
shared memory in dynamic, rapidly changing networking environments.
Rambo is particularly apt at dealing with volatile environments such as
mobile networks. To maintain availability and consistency, even as hosts
join, leave, and fail, Rambo replicates objects and uses reconfigurable
quorum systems. As the system dynamically changes, Rambo installs
new quorum configurations. This paper addresses the reconfiguration
problem with three approaches based on a finite-domain model, an hy-
brid master-slave decomposition and a parallel composite to find optimal
or near-optimal configurations. Current behaviors of Rambo participants
are observed, gossiped, and used as predictors for future behaviors, with
the goal of finding quorum configurations that minimize read and write
operation delays without affecting correctness and fault-tolerance prop-
erties of the system.

1 Introduction

Providing consistent shared objects in dynamic networked systems is one of the
fundamental problems in distributed computing. Shared object systems must be
resilient to failures and guarantee consistency despite the dynamically chang-
ing collections of hosts that maintain object replicas. Rambo, which stands
for Reconfigurable Atomic Memory for Basic Objects [7,4], is a formally spec-
ified distributed algorithm designed to support a long-lived atomic read/write
memory service in such a rapidly changing network environment. To maintain
availability and consistency of the memory service, Rambo uses reconfigurable
quorum systems, where each object is replicated at hosts that are quorum mem-
bers, and where the intersection among quorum sets is used to guarantee atom-
icity. Rambo specifications and algorithms provide a tailorable framework for
implementing optimizable research testbeds [3] and robust enterprise storage
systems [1].

The ability to rapidly reconfigure quorum systems in response to failures and
delays is at the heart of the service. Rambo allows for any configuration to be
installed at any time, enabling it to adapt to changes in the set of participants

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 88–103, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Online Selection of Quorum Systems for RAMBO Reconfiguration 89

and tolerate failures while maintaining atomicity of the objects. However, de-
ciding when reconfigurations should be done and what the new configurations
should look like remain external to its specification.

This paper focuses on the task of determining what a new configuration should
be and how it should be deployed. Note that a poorly crafted configuration may
affect Rambo’s performance in negative ways: it may deteriorate the response
time if the quorum members are over-burdened and slow to respond; it may also
weaken fault-tolerance when failure-prone hosts are chosen to maintain object
replicas. In response, Rambo may need to perform additional reconfigurations,
in the hope of installing a better quorum system, possibly thrashing between
ill-chosen configurations. Applying optimization techniques to the design and
deployment of sensible configurations addresses these issues. We pursue a me-
thodic approach to producing strong configurations that will positively affect
the performances of read and write operations, while balancing the workload
and increasing the likelihood that the configuration will be long-lived.

The production of a new configuration is an activity that occurs online while
Rambo is running. Any participant may request a reconfiguration, after which
consensus is used to agree on the new configuration. A participant ought to
be able, based on historical observations, to propose a well-designed quorum
configuration that is optimized with respect to relevant criteria, such as being
composed of members who have been communicating with low latency, and con-
sisting of quorums that will be well-balanced with respect to read and write op-
eration loads. This paper investigates three optimization methods for producing
high-quality configurations, namely: a CP method, a hybrid CBLS/CP master-
slave similar in spirit to a Benders decomposition, and a parallel composite. The
methods grow in their level of sophistication and offer non-trivial integrations
of several optimization techniques. Results on instances with up to 16 hosts and
half a dozen quorums indicate that excellent solutions can be found in a second
or two, and proved optimal reasonably quickly (from a few seconds to a few
minutes depending on the nature of the quorum system). This makes it possible
to perform rapid online decisions for what quorum configurations to propose for
deployment, substantially increasing the effectiveness of the reconfiguration in
Rambo. We believe our approach can be generalized to serve as a valuable tool
for dynamic distributed systems in enabling swift online optimization decisions.

Section 2 presents Rambo in more detail, including the reconfiguration prob-
lem and our approach. Section 3 introduces a high-level deployment model, and
Section 4 presents the CP model. Section 5 presents the CBLS model, while Sec-
tion 6 covers the hybridization. Section 7 reports the experimental results and
analyzes the behavior of the models in detail. Section 8 concludes the paper.

2 The RAMBO System and Configuration Selection

The original Rambo framework provides a formal specification for a reconfig-
urable atomic shared memory service, and its implementation as a distributed
algorithm [7]. Basic read/write objects are replicated to achieve availability in

90 L. Michel et al.

the presence of failures. In order to maintain memory consistency in the presence
of small and transient changes, the algorithm uses quorum configurations. In
order to accommodate larger and more permanent changes, the algorithm sup-
ports dynamic reconfiguration, by which the quorum configurations are modified.
Rambo supports three activities, all concurrently: reading and writing objects,
introducing new configurations, and removing obsolete configurations. Atomicity
is guaranteed in all executions.

Each quorum configuration consists of a set of members, a set of read-quorums,
and a set of write-quorums. Members are hosts for the replicated object. Quo-
rums are subsets of members, with the requirement that every read-quorum has
a non-empty intersection with every write-quorum. The algorithm performs read
and write operations using a two-phase strategy. The first phase gathers infor-
mation from at least one read-quorum of every active configurations, and the
second phase propagates information to at least one write-quorum of every ac-
tive configuration. The information propagates among the participants by means
of background gossip. Because every read-quorum and write-quorum intersect,
atomicity of the data object is maintained.

The distributed reconfiguration service uses consensus to agree on the suc-
cessive configurations. Any member of the latest configuration may propose a
new configuration at any time; different proposals are reconciled by an execu-
tion of consensus among the members of the latest configuration. The algorithm
removes old configurations when their use is no longer necessary for maintaining
consistency. This is done by “writing” the information about the new configu-
ration and the latest object value to the new configuration.

Rambo is designed as a flexible and optimizable service, in particular allowing
for any configuration to be installed at any time. Exactly when to reconfigure
and what new configuration to choose are left as decisions for an external service.
Given the dynamic nature of the intended deployment environments, it is neither
feasible nor desirable to pre-specify future configurations. The decision of what
configuration to choose next ought to be made dynamically in response to ex-
ternal stimuli and observations about the performance of the service. Choosing
sensible configurations is critical in maintaining good performance.

In this work we focus on the expedient determination of new configurations.
We do not explicitly address the problem of when to reconfigure: we consider this
to be an application-level decision made on the basis of the observations about
the performance of the service and the suspected failures of object replicas.

We assume that the hosts have no knowledge of the underlying network,
particularly as nodes join and leave. We further assume that the best available
estimate of the network connections and host performance is the measurement
of average round trip message delays. In particular, a measurement of round trip
delay from host h1 to host h2 and back to h1 can be used as an assessment of: (a)
the communication “distances” between h1 and h2, (b) the communication loads
on h1 and h2, (c) the processing loads at h1 and h2, and (d) the likelihood that
host h2 is failing, or even failed. The hosts can record delay measurements as
running averages for the recent past, reasonably assuming that the measurements

Online Selection of Quorum Systems for RAMBO Reconfiguration 91

are quickly impacted by failures or slowdowns. Each host also measures the
average frequency of read and write operations it initiates. The hosts share
gathered operation frequencies and messaging delays by adding them to the
gossip messages of Rambo. Our overall guiding principle is that observations of
current behaviors are the best available predictors of future behaviors.

Note that the Rambo algorithms require minimal changes. The sole modifica-
tion is the addition of local observations about system performance piggy-backed
onto the gossip messages. Upon receipt of a gossip message, a host updates its
local knowledge using the piggy-backed information and then delivers the mes-
sage to Rambo. Any participant can compute a new configuration using only
the local knowledge about the behavior of the participants and submit it di-
rectly to the Rambo reconfiguration service. This paper focuses exclusively on
recommending a good or optimal candidate for reconfiguration.

The approach attempts to optimize the mapping of an abstract quorum sys-
tem to a subset of hosts participating in the service. We assume that the par-
ticipants have at their disposal an abstract specification of a quorum system,
consisting of the members, the read-quorums, and write-quorums, and the prob-
lem to be solved is to assign each member to a participating host in such a way
that delays to the members of the read and write quorums are minimized.

Once the mapping is computed, the resulting configurations may be aug-
mented to include information recommending the best read and write quorums
for each host to use, where use of best quorums will result in minimum delays
for read and write operations and the most balanced load on replica hosts (until
failures occur in those best quorums). Of course the use of this information is
optional and a host can always use other quorums if it does not observe good
responses from the recommended quorums.

Finally, it is worth amplifying that our approach uses observation about the
recent and current behavior as the basis for optimization. Future behaviors may
of course differ from the observed current behaviors. To avoid quorum configura-
tion failure and performance degradation, the speed of reconfiguration is impor-
tant. Consequently, there is substantial value in computing a good deployment
mapping quickly and reconfiguring to it, even if it may end up not being the
optimal mapping. Then, once an optimal mapping is determined, it is always
possible to reconfigure one more time from the “good” to the “best” quorum
configuration.

3 Modeling the RAMBO Configuration Selection

Model Parameters. The input data of the Rambo deployment model consists of:

– The set of hosts H .
– For every host h ∈ H , the average frequency fh of its read and write requests.
– For every pair of hosts h1, h2 ∈ H , the average round trip delay dh1,h2 of

messages from h1 to h2.
– The abstract configuration c to be deployed on H , where c consists of:

92 L. Michel et al.

• The set of members M , each of which maintains a replica of the data.
• The set of read quorums R ⊆ P(M).
• The set of write quorums W ⊆ P(M).

– The load balancing factor α, restricting the spread of loads on the configu-
ration members, assuming each host first tries to contact its fastest read and
write quorums.

Decision Variables. A decision variable xm with domain H is associated to
each configuration member m. xm = h when replica m is deployed on host h.
Each host h is also associated with two decision variables readQh and writeQh

(with domains R and W) denoting, respectively, one read (write) quorum from
the minimum average delay read(write)-quorums associated to h. Finally, an
auxiliary variable loadm represents the load of a configuration member m which
is induced by the traffic between the hosts and their chosen read/write quorums.

The Objective. An optimal deployment minimizes∑
h∈H

fh ×
(

min
q∈R

(
max
m∈q

dh,xm

)
+ min

q∈W

(
max
m∈q

dh,xm

))
where each term in the summation captures the time it takes in Rambo for
a host h to execute the read/write phase of the protocol. Indeed, a read (or
a write) in Rambo requires the client to contact all the members of at least
one read quorum before it can proceed to a write round of communication with
all the members of at least one write quorum to update the data item. The
maxm∈q dh,xm reflects the time it takes to contact all the members of quorum
q as one must wait for an answer from its slowest member. The outer minq∈R

reflects the fact that Rambo must hear back from one quorum before it proceeds,
and this happens when the “fastest” quorum replies.

The Constraints. A configuration is subject to the following constraints. First,
all configuration members must be deployed on separate hosts.

∀m, m′ ∈M : m �= m′ ⇒ xm �= xm′

An implementation of Rambo can use different strategies when contacting the
read and write quorums. A conforming implementation might simply contact
all the read quorums in parallel. Naturally, this does not affect the value of the
objective, but it induces more traffic and work on the members of the quorum
system. Another strategy for Rambo is to contact what it currently perceives
as the fastest read quorum first and fall back on the other read quorums if it
does not receive a timely response. It could even select a read quorum uniformly
at random. These strategies strike different trade-offs between the traffic they
induce and the workload uniformity. The model presented below captures the
greedy strategy, namely, Rambo contacts its closest quorum first, and the model
assumes that this quorum replies (unless a failure has occurred).

Online Selection of Quorum Systems for RAMBO Reconfiguration 93

The model uses the readQh and writeQh variables of host h to capture which
read (write) quorum Rambo contacts. Recall that a read (write) quorum is a
set and therefore the domain of readQh is the set of read quorums (similarly for
writeQh). More formally,

readQh = r ⇒ max
m∈r

dh,xm = min
q∈R

(
max
m∈q

dh,xm

)

writeQh = w ⇒ max
m∈w

dh,xm = min
q∈W

(
max
m∈q

dh,xm

)
In each equation, the first conjunct requires the chosen quorum to be a member of
the possible quorum sets while the second requires the chosen quorum to induce
a minimal delay. Note that several quorums might deliver the same minimal
delay, so this constraint alone does not determine the ideal read (write) quorum.

The third constraint defines the load of a configuration member as

loadm =
∑
h∈H

⎛⎝ ∑
m∈readQh

fh +
∑

m∈writeQh

fh

⎞⎠
Clearly, the load on m depends on which read (write) quorums are chosen among
those that induce minimal delays. Finally, the load balancing constraint requires
the maximum load on a member be within a factor α of the minimum load.

max
m∈M

loadm ≤ α×
(

min
m∈M

loadm

)

4 The CP Model

The Comet program for the CP model is shown in Figure 1. The data dec-
larations in lines 2–8 correspond to the input data of the Rambo model in
Section 3. Line 9 declares an additional input used for breaking symmetries
among the members of the quorum configuration. Lines 10–14 define derived
data. Specifically, nbrQ[m] is the number of quorums in which m appears, and
degree[h] is the number of neighbors of host h in the logical network graph. RQ
and WQ are the index sets of the read and write quorums, respectively. The
auxiliary matrices readQC and writeQC are encodings of the quorum mem-
bership, e.g., readQC[i, j] = true ⇔ j ∈ R[i]. Lines 15–20 declare the decision
variables. Variable x[m] specifies the host of configuration member m. Variables
readD[h, r] and writeD[h, w] are the communication delays for host h to ac-
cess read quorum r and write quorum w. The variables readQ[h] and writeQ[h]
represent the read and write quorum selections for host h. Finally, the variable
load[m] represents the communication load on configuration member m, given
the current deployment and quorum selections.

Line 22 specifies the objective function, which minimizes the total communi-
cation delay over all operations. Line 24 specifies the fault tolerance requirement,

94 L. Michel et al.

1 Solver<CP> cp();
2 range M= ...; // The members of the quorum configuration
3 set{int}[] R = ...; // An array storing all the read quorums in the configuration
4 set{int}[] W = ...; // An array storing all the write quorums in the configuration
5 range H = ...; // The host nodes
6 int[] f = ...; // The frequency matrix
7 int[,] d = ...; // The delays matrix
8 int alpha = ...; // The load factor
9 set{tuple{int low; int high}} Order = ...; // The order of quorum members

10 int nbrQ[m in M] = ; // The number of quorums for each member
11 int degree[H] = ...; // The degree of a host (number of neighbors)
12 range RQ = R.getRange(); range WQ = W.getRange();
13 boolean readQC[RQ,M] = ...;
14 boolean writeQC[WQ,M] = ...;
15 var<CP>{int} x[M](cp,H);
16 var<CP>{int} readD[H,RQ](cp,0..10000);
17 var<CP>{int} writeD[H,WQ](cp,0..10000);
18 var<CP>{int} readQ[H](cp,RQ);
19 var<CP>{int} writeQ[H](cp,WQ);
20 var<CP>{int} load[M](cp,0..10000);
21 minimize <cp>
22 sum(h in H) f[h] ∗ (min(r in RQ) readD[h,r]+ min(w in WQ) writeD[h,w])
23 subject to {
24 cp.post(alldifferent(x), onDomains);
25 forall (o in Order) cp.post(x[o.low] < x[o.high]);
26 forall (h in H, r in RQ)
27 cp.post(readD[h,r] == max(m in R[r]) d[h,x[m]]);
28 forall (h in H, w in WQ)
29 cp.post(writeD[h,w] == max(m in W[w]) d[h,x[m]]);
30 forall (h in H) {
31 cp.post(readD[h,readQ[h]] == min(r in RQ) readD[h,r]);
32 cp.post(writeD[h,writeQ[h]] == min(w in WQ) writeD[h,w]);
33 }
34 forall (m in M) cp.post(load[m] == sum(h in H) f[h] ∗ (readQC[readQ[h],m]+
35 writeQC[writeQ[h],m])));
36 cp.post(max(m in M) load[m] <= alpha ∗ min(m in M) load[m]);
37 } using {
38 while (sum(k in M) x[k].bound() <M.getSize())
39 selectMax(m in M: !x[m].bound()) (nbrQ[m])
40 tryall<cp>(h in H : x[m].memberOf (h)) by (− degree[h])
41 cp.label(x[m], h);
42 onFailure cp.diff(x[m], h);
43 once<cp> phase2search(cp, readQ, writeQ);
44 }
45 function void phase2search (Solver s, int readQ[H], int writeQ[H]) {
46 forall (h in H : !readQ[h].bound() || !writeQ[h].bound()) by (− f[h]) {
47 label(readQ[h]);
48 label(writeQ[h]);
49 }
50 }

Fig. 1. The CP Model in Comet

Online Selection of Quorum Systems for RAMBO Reconfiguration 95

namely, all members of the configuration must be deployed to distinct hosts. The
onDomains annotation indicates that arc-consistency must be enforced. Line 25
breaks the variable symmetries among the configuration members [8].

Lines 26–36 constraint the auxiliary delay variables and quorum selection
variables needed in the load-balancing constraint. The constraints on lines 27
and 29 capture the delays incurred by host h to use a read (write) quorum. Lines
30–33 require the quorums assigned to host h, namely readQ[h] and writeQ[h],
to be among the quorums with minimum delay for that host. Lines 34-35 specify
the communication load on m as the sum of the operation frequencies of each
host for which m is a member of its assigned read and/or write quorum. Line
36 is the load-balancing constraint and requires the load on the most heavily
loaded configuration member to be no more than alpha times the load on the
most lightly loaded configuration member.

The search procedure operates in two phases. The first phase (lines 38–42)
assigns configuration members to hosts. The variable selection heuristic first
focuses on variables that appear in many quorums. The value selection heuristic
first considers hosts that have many neighbors ‘close by’ as these would be ideal
locations for quorum members. The second phase, which finds an assignment of
hosts to read and write quorums that satisfies the load-balancing constraint, is
invoked on line 43. This second phase cannot impact the value of the objective
function. Instead, its role is to decide which quorum among its best options
each host should use to meet the load-balancing requirement. Clearly, only one
such assignment is needed which explains the once<cp> annotation enclosing the
second phase call. The phase two procedure, shown on lines 45–50, considers the
most “talkative” hosts first (by decreasing frequencies) and attempts to assign
one of the remaining legal (minimal) quorums from its domain.

5 An Hybrid CBLS/CP Master-Slave Algorithm

Determining a new configuration for Rambo is, unarguably, an online problem.
It must be solved quickly to submit a new proposal that Rambo then puts up for
consensus with the other participants. While an approach based on finite-domain
is appealing based on its ability to prove optimality, it might not scale nicely
or take a long time to establish optimality. This section investigates a hybrid
CBLS/CP master-slave algorithm based on the assumption that local search
can deliver high-quality solutions in short-order, a highly desirable property in
an online setting. A first natural attempt recycles the finite-domain model and
uses a search procedure with a neighborhood structure that re-assigns either
the deployment or the quorum selection variables. Unfortunately, this direct
approach is unsuccessful as load-balancing provides little to no guidance on the
quorum selection until the deployment is fixed. The recognition of this difficulty
suggests a second approach where a master local search is first used to find
a deployment that minimizes the communication volume. For each candidate
solution produced in the master, a slave model focuses on finding a quorum
selection. Note that the slave does not affect the objective. Instead, it handles the

96 L. Michel et al.

1 FunctionSum<LS> O(ls);
2 forall (h in H) O.post(f[h] ∗ (min(r in RQ) (max(m in R[r]) d[h, x[m]]) +
3 min(w in WQ) (max(m in W[w]) d[h, x[m]])));
4 var{int} v(ls,0..1) := 1;
5 var{float} w(ls) := 0.5;
6 var{float} obj(ls) <− sqrt(O.value()ˆ2 + (w∗v)ˆ2);
7 ls.close();

Fig. 2. The Constraint System for the CBLS Model in Comet

feasibility of the load-balancing constraint. Finding a feasible quorum selection
is typically quite hard in its own right and this paper uses a finite-domain model
to solve the slave. In summary, our hybrid uses a master local search to find
the deployment and a slave CP model to establish feasibility and influence the
master problem through a violation term in its objective function. The approach
is reminiscent of Benders decompositions [2].

The hybrid master-slave model uses the same input parameters and decision
variables as its finite-domain cousin. Namely, the core decision variable is an
array x[m] that associates with every member of the configuration the host on
which it is deployed. Before delving into the modeling, it is useful to consider a
few invariants that maintain key properties. Given a deployment x, the invariants

1 int readD[h in H,r in RQ] <− max(m in R[r]) d[h,x[m]]
2 set{int} bestReadQ[h in H] <− argMin(r in RQ) readD[h,r]
3 int readQMax[r in RQ] <− sum(h in H : member(r,bestReadQ[h])) f[h]
4 int readQMin[r in RQ] <− sum(h in H : card(bestReadQ[h]==1 &&
5 member(r,bestReadQ[h])) f[h]

maintain the read delay, the set of read quorums that yield a minimal delay
(bestReadQ), and upper and lower bounds on the communication volume for
each quorum. Similar invariants are defined for the write quorums. The invariants

1 loadMin[m in M] <− sum(r in RQ : member(m,R[q])) readQMin[r] +
2 sum(r in WQ : member(m,W[q])) writeQMin[r]
3 loadMax[m in M] <− sum(r in RQ : member(m,R[q])) readQMax[r] +
4 sum(r in WQ : member(m,W[q])) writeQMax[r]

maintain lower and upper bounds on the load of any quorum member. The true
load load[m] for a configuration member m satisfies

loadMin[m] ≤ load[m] ≤ loadMax[m]

The alldifferent constraint on the deployment variables x that was needed in
the finite-domain model can be avoided here by simply starting from a candidate
assignment that satisfies it and relying on a neighborhood structure based on
swaps that will not introduce violations. The load-balancing constraint is more
delicate to handle as it cannot be verified until the model has selected which
quorum (among its best quorums) each host will contact. This decision (picking

Online Selection of Quorum Systems for RAMBO Reconfiguration 97

1 while (it < maxIt) {
2 select (m in c.members, n in H : m !=n) {
3 float delta = (lookahead(ls, obj) v := makeMove(m, n);) − obj;
4 if (distr.accept(−delta/t)) {
5 v := makeMove(m, n);
6 if (v == 0) bf = min(obj, bestFeasible);
7 else bi = min(obj, bestInfeasible);
8 }
9 }

10 it++; stableIt++; t = t ∗ 0.9995; w := w + 0.01;
11 if (bf < bestFeasible || bi < bestInfeasible) updateBest();
12 if (stableIt >= 1000) reheat();
13 if (rounds >= 10) diversify();
14 }
15 function int makeMove(int m, int n) {
16 x[m] :=: x[n];
17 if ((O.value() < bestFeasible) && (max (m in M) loadMin[m] <= alpha
18 ∗ min (m in M) loadMax[m])) {
19 Solver<CP> cp();
20 cp.limitFailures(1000);
21 boolean feasible = false;
22 var<CP>{int} readQ[h in H](cp, RQ);
23 var<CP>{int} writeQ[h in H](cp, WQ);
24 var<CP>{int} load[M](cp, 0..100000);
25 solve<cp> {
26 forall (h in H) {
27 cp.post(readD[h, readQ[h]] == min(r in RQ) readD[h,r]);
28 cp.post(writeD[h, writeQ[h]] == min(w in WQ) writeD[h,w]);
29 }
30 forall (m in M)
31 cp.post(load[m] == sum(h in H) f[h] ∗ (readQC[readQ[h],m]+
32 writeQC[writeQ[h],m])));
33 cp.post(max (m in M) load[m] <= alpha ∗ min (m in M) load[m]);
34 } using { phase2search(cp, readQ, writeQ);feasible = true; }
35 return (feasible) ? 0 : 1;
36 } else return 1;
37 }

Fig. 3. The Hybrid Master-Slave Model in Comet

a quorum) used to be carried out during the phase 2 of the finite-domain model
and cannot be easily modeled in the master. Note that it is possible to state
an approximation of the load-balancing constraint. However this complicates
the model and presentation and is not shown in the sake of brevity. Instead,
the load-balancing constraint satisfaction is entrusted to the slave which now
produces a simple Boolean output v indicating whether the load-balancing is
satisfied.

98 L. Michel et al.

The remainder of the model, shown in Figure 2, declares the objective function
O which mimics the finite-domain model. Line 6 declares the objective obj as
the combination of the objective value and the scaled measure of violations v
established by the slave. This objective is reminiscent of the coloring objective in
[5]. The scaling is carried out by a weight w which is used to shift the emphasis
back and forth between the objective and the load-balancing constraint.

The Master. Figure 3 illustrates the implementation of a master-slave decompo-
sition. The master (lines 1–14) uses simulated annealing [6] to find a deployment.
It selects a random move on line 2, evaluates it on line 3, and accepts with prob-
ability e−delta/t on line 4. As is typical in simulated annealing, the temperature
t is decreased during the search, so that many moves are accepted initially, but
converges to a (local) minimum as the temperature drops. This effect is magni-
fied by the weight w, which initially has a low value to place the emphasis on
improving the objective and which is increased during the search to shift towards
finding feasible solutions. If the selected move is accepted, it is performed on line
5 and both bi and bf are updated to reflect the best feasible and infeasible solu-
tions thus far. After each iteration, line 10 updates the temperature and weight.
Line 11 records the best feasible and infeasible solutions. Line 12 resets the tem-
perature and weight when no improvements have been seen for 1000 iterations.
After 10 reheats (resetting of temperature and weight) a diversification step is
carried out on line 13 that replaces x by a random permutation of the hosts.

The Slave. The slave, shown in lines 15–37 of Figure 3, is invoked via a call to
makeMove. It performs the swap and uses a CP model to determine the feasi-
bility of the solution. It assigns the quorums and returns a Boolean to report
feasibility w.r.t. the load balancing. The CP model can be costly and is only
executed when there is some hope of finding a feasible solution. In particular,
if the scaled minimum of the upper bounds on the load is smaller than the
maximum of the lower bounds on the load, the load-balancing constraint is nec-
essarily infeasible and line 36 returns 1 to report a violation. If the load-balancing
constraint is potentially feasible, the body (lines 19–35) looks for a quorum as-
signment and returns 0 if it finds a solution. This CP model is essentially the
same as the phase 2 model from Section 4. It contains the same decision vari-
ables (readQ[h], writeQ[h] and load[m]). Naturally, the read and write delays
(readD and writeD) are constants here. As before, lines 26–29 state the con-
straints on the quorum assignments readQ[h] and writeQ[h], lines 30–32 set up
the load-defining constraints, and line 33 sets up the load-balancing constraint.

6 Parallel Composition

This model is a parallel composition of the two previous models. The two models
run in separate threads and communicate through events [10].

1 thread t performCBLSmodel(center, benchmark, configuration);
2 performCPmodel(center, benchmark, configuration);

Online Selection of Quorum Systems for RAMBO Reconfiguration 99

5

1

3

10 1

10

2

2

6
8

5

4

7

11

5 1

3

10
12

10

2

6

8

5
4

7

11

5

10

3

1

4

1

1

2

5

8

2

10

6

71

Stars2

Stars2c3

Stars3 Switch

12 10

30

30 66 80 30 30

S
w
itc
h

Fig. 4. Network Configuration Benchmarks Stars3, Stars2, Stars2c3, and Switch

The CBLS notifies the CP search each time it finds a new solution with

1 center.tellNewSolution(new Solution(ls, MinimizeIntValue(O.value())));

Finally, the snippet

1 whenever center@newSolution(Solution s)
2 if (s.getObjectiveValue().compare(cp.getObjective().getPrimalBound()) < 0)
3 cp.setPrimalBound(s.getObjectiveValue());

is added to the CP model to update the bound on the objective every time a
new solution is received. Similarly (but not shown), whenever the CP model
terminates, it notifies an event to ask the CBLS model to terminate.

7 Experimental Results

The Benchmarks. Six network configurations and four quorum systems are used
as benchmarks, representing common networks and quorums. The first four net-
works, Stars3, Stars2, Stars2c3, and Line, use different interconnects for 15
hosts; Stars3, Stars2, and Stars2c3 arrange the hosts in clusters, as illustrated
in Figure 4, and Line arranges the hosts in a single line (a bus). Hyper16 uses
16 hosts and an hypercube interconnect. Switch, which is shown in Figure 4,
consists of 10 hosts on a switch and 4 other hosts hooked up via point-to-point
links. The frequencies of the read/write operations for each host are given in
Figure 4, and the delays are the number of “hops” between hosts. The bench-
marks run equally well, but somewhat slower, when random noise is added to
these frequencies and delays to more faithfully simulate network measurements.

Figure 5 shows the 3x2, 3Step, and 3x3 quorum systems, where horizontal
groups are read quorums and vertical groups are write quorums. Maj uses ma-
jority quorums [9], with its six members grouped into four read quorums and
four write quorums, each with four members.

Experimental Results for the CP Model. Table 1 reports the results for the CP
model with Comet 1.1 (on a Core 2 @ 2.16 GHz) using α = 2. The table provides

100 L. Michel et al.

3x2 3x33Step

Fig. 5. Quorum System Benchmarks 3x2, 3Step, and 3x3

Table 1. Experimental Results for the CP Model with α = 2

3x2 3Step 3x3 Maj
Benchmark Opt Tend Topt Opt Tend Topt Opt Tend Topt Opt Tend Topt

Stars3 μ 261 0.98 0.41 285 0.37 0.09 284 42.12 10.95 340 5.30 0.03
σ 0.18 0.29 0.03 0.06 5.37 10.71 0.12 0.01

Stars2 μ 303 5.70 2.76 284 0.57 0.30 316 536.50 92.69 374 20.76 1.35
σ 9.71 9.67 0.24 0.21 203.53 197.01 3.62 3.71

Stars2c3 μ 238 1.16 0.21 239 1.52 1.37 268 1414.09 914.20 270 8.07 0.03
σ 0.15 0.14 1.79 1.79 402.47 609.09 0.17 0.01

Line μ 485 4.02 2.76 479 2.92 2.59 517 445.28 319.96 607 26.04 6.91
σ 0.57 0.80 1.88 2.02 109.01 155.78 0.87 0.48

Hyper16 μ 246 9.87 5.04 256 2.13 0.85 249 508.28 226.04 305 66.94 3.37
σ 1.24 2.27 0.16 0.60 82.37 153.78 0.89 0.24

Switch μ 610 1.59 0.71 620 0.46 0.30 620 59.03 45.06 620 0.23 0.08
σ 0.80 0.70 0.58 0.57 69.38 69.67 0.05 0.05

two rows for each benchmark: the first reports averages and the second reports
standard deviations. Columns are grouped by quorum system type. Within each
group, column Opt gives the objective for the optimal solution found, Tend gives
the time in seconds to find the optimum and prove optimality, and column Topt

reports the time in seconds to find the optimum. The results are the average
and standard deviation over 50 runs. It is useful to review these results in more
detail.

1. For all but two network configurations, the easiest quorum system to solve
is 3Step, followed by 3x2, Maj, and then 3x3.

2. There is a lot of variation in the time it takes to find optimal solutions. With
Maj, the optimum is found quickly, sometimes as soon as one percent into the
run. In contrast, Stars2c3 and Line with 3Step do not find the optimum
until the very end.

3. The standard deviation for TOpt and Tend tend to be highly dependent on
the benchmarks. While the Maj quorum system induces small deviations,
the 3x3 quorum system exhibits deviations that are often larger than the
averages. A closer examination of the runs reveals that most runs are similar
and a few outliers are significantly longer.

Online Selection of Quorum Systems for RAMBO Reconfiguration 101

Table 2. Experimental Results for the Hybrid Master-Slave Model with α = 2

3x2 3Step 3x3 Maj
Benchmark Tend Tbest #Opt Tend Tbest #Opt Tend Tbest #Opt Tend Tbest #Opt

Stars3 10.02 0.74 50 8.18 1.43 50 10.48 1.61 50 19.99 0.36 50
Stars2 9.37 2.24 50 7.37 0.38 50 11.03 1.79 50 17.85 0.29 50
Stars2c3 8.74 0.11 50 7.07 0.32 50 33.12 17.10 13 18.71 0.25 50
Line 10.83 1.24 50 8.52 2.23 48 11.25 5.57 16 22.53 0.70 50
Hyper16 12.46 2.97 48 9.69 2.80 46 13.35 2.98 3 23.61 8.37 48
Switch 16.26 0.10 50 7.26 0.03 50 9.95 0.09 50 18.66 0.12 50

Table 3. Experimental Results for the Composite Model with α = 2

3x3 Maj
CP Composite CP Composite

Benchmark Tend Topt Tend Topt Tend Topt Tend Topt

Stars3 μ 42.12 10.95 40.88 3.16 5.30 0.03 6.16 0.41
σ 5.37 10.71 3.52 5.78 0.12 0.01 0.21 0.28

Stars2 μ 536.50 92.69 490.79 3.14 20.76 1.35 21.30 0.58
σ 203.53 197.01 32.87 3.60 3.62 3.71 0.76 0.92

Stars2c3 μ 1414.09 914.20 779.81 175.85 8.07 0.03 9.07 0.27
σ 402.47 609.09 59.78 221.15 0.17 0.01 0.34 0.32

Line μ 445.28 319.96 257.86 75.15 26.04 6.91 26.95 0.78
σ 109.01 155.78 27.09 78.05 0.87 0.48 0.80 0.48

Hyper16 μ 508.28 226.04 553.73 262.76 66.94 3.37 73.62 6.83
σ 82.37 153.78 114.81 194.29 0.89 0.24 2.25 5.90

Switch μ 59.03 45.06 15.14 0.10 0.23 0.08 0.28 0.13
σ 69.38 69.67 3.14 0.10 0.05 0.05 0.05 0.08

The particular properties of network configurations and quorum systems that
cause these variations in behavior need further study.

Experimental Results for the Hybrid Master-Slave. Table 2 reports the results
for the hybrid master-slave with Comet 1.1 (on a Core 2 @ 2.16 GHz) using
α = 2. Tend reports the total runtime, Tbest gives the time to the best solution,
and #Opt indicates how frequent the best solution was found (out of 50 runs).
Optimal solutions are found very reliably. The hardest benchmark is Hyper16
on a 3x3 quorum system where the model was only able to find the optimum 3
times. Even here, though, the average best solution is only 1% away from the
optimum. In most other instances, the model finds the optimum on all runs.
Furthermore, most runs show a fast time to the best solution, pointing to a
robust model. The standard deviations are consistently very small.

Although not shown, the results are consistent across α values with one no-
table exception. The Stars2c3 with 3x3 and α = 2 takes significantly more time
than any other benchmark. This is due to a larger number of invocations of the
slave search. In the other benchmarks most of the slave searches are eliminated

102 L. Michel et al.

through the conditions described in Section 5. Compared to a pure CP model,
the hybrid finds the optimum faster on all but the easiest benchmarks.

Experimental Results for the Parallel Composition. Table 3 reports the results
for the parallel composition on the hardest instances and compares them to
the CP model. The composite was run with Comet 1.1 (on a Core 2 @ 2.16
GHz). Tend and Topt carry the same meaning as in Table 1. The values from the
composite are the average and standard deviation over 50 runs.

The composite clearly benefits from its local search component as it con-
sistently delivers the optimum very early on and quite reliably. The time to
complete the optimality proof offers a mixed set of results. For some instances
(e.g., instances based on Maj quorums), there are no benefits to speak of. For
others, the availability of the optimum early on translates into a shorter optimal-
ity proof and decreased standard deviation. The most dramatic instances in this
respect are, perhaps, Switch, Line, and Stars2c3 with 3x3 quorum systems.

8 Conclusion

This paper considered an online problem that arises during the execution of
Rambo, a distributed algorithm offering reconfigurable atomic memory for ba-
sic objects. The optimization problem consists of producing a new configuration
for the quorum system used by Rambo. The objective is to produce a configura-
tion that minimizes communication traffic while retaining good fault-tolerance
through load-balancing. Three approaches were considered, namely: a CP model,
a hybrid CBLS/CP, and a parallel composition of the two. The approaches were
evaluated on a suite of instances capturing different networks and quorum sys-
tems. The experimental results show that this problem is quite challenging and
that a composite approach can deliver excellent solutions within the real-time
requirements of an online setting.

References

1. Arif, S.F., Merchant, A., Saito, Y., Spence, S., Veitch, A.: Fab: enterprise storage
systems on a shoestring. In: Operating Systems, Lihue, HI, May 18-21, pp. 133–138.
USENIX Association (2003)

2. Benders, J.F.: Partitioning procedures for solving mixed variables programming
problems. Numerische Mathematik 4, 238–252 (1962)

3. Georgiou, C., Musial, P.M., Shvartsman, A.A.: Long-lived rambo: Trading knowl-
edge for communication. Theor. Comput. Sci. 383(1), 59–85 (2007)

4. Gilbert, S., Lynch, N.A., Shvartsman, A.A.: RAMBO II: Rapidly reconfigurable
atomic memory for dynamic networks. In: DSN, pp. 259–268. IEEE Computer
Society, Los Alamitos (2003)

5. Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by Simulated
Annealing: An Experimental Evaluation; Part I, Graph Partitioning. Operations
Research 37(6), 865–893 (1989)

Online Selection of Quorum Systems for RAMBO Reconfiguration 103

6. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Sci-
ence 220, 671–680 (1983)

7. Lynch, N., Shvartsman, A.: RAMBO: A reconfigurable atomic memory service
for dynamic networks. In: Proceedings of the 16th International Symposium on
Distributed Computing, pp. 173–190 (2002)

8. Smith, B.M.: Sets of symmetry breaking constraints. In: Proc. of SymCon, vol. 5
(2005)

9. Thomas, R.H.: A majority consensus approach to concurrency control for multiple
copy databases. ACM Trans. Database Syst. 4(2), 180–209 (1979)

10. Van Hentenryck, P., Michel, L.: Control Abstraction for Local Search. In: Rossi,
F. (ed.) CP 2003. LNCS, vol. 2833, pp. 65–80. Springer, Heidelberg (2003)

A Hybrid Constraint Model for the Routing and
Wavelength Assignment Problem

Helmut Simonis�

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

h.simonis@4c.ucc.ie

Abstract. In this paper we present a hybrid model for the demand acceptance
variant of the routing and wavelength assignment problem in directed networks,
an important benchmark problem in optical network design. Our solution uses a
decomposition into a MIP model for the routing and optimization aspect, com-
bined with a finite domain constraint model for the wavelength assignment. If a
solution to the constraint problem is found, it provides an optimal solution to the
overall problem. If the constraint problem is infeasible, we use an extended ex-
planation technique to find a good relaxation of the problem which leads to a near
optimal solution. Extensive experiments show that proven optimality is achieved
for more than 99.8% of all cases tested, while run-times are orders of magnitude
smaller than the best known MIP solution.

1 Introduction

The routing and wavelength assignment problem (RWA) [12,2,21] in optical networks
considers a network where demands can be transported on different optical wavelengths
through the network. Each accepted demand is allocated a path from its source to its
sink, as well as a specific wavelength. Demands routed over the same link must be
allocated different wavelengths, while demands whose paths are link disjoint may use
the same wavelengths.

The RWA problem is a well studied, important problem in optical network design, for
which many problem variants have been considered. Depending on the technology used,
the network may be assumed to be directed or undirected. The static design problem
considers the problem of allocating all given demands on a network topology, using
the minimal number of frequencies. The demand acceptance problem considers a fixed,
given number of frequencies on all links in the network. The objective is to accept
the maximal number of demands in the network. In this paper we discuss the demand
acceptance problem in a directed network, a companion paper [17] describes a solution
for the easier static design problem variant.

More formally, we are considering a directed network G = (N, E) of nodes N
and edges E. A demand d ∈ D is between source s(d) and sink t(d). We use the

� This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886). Support
from Cisco Systems and the Silicon Valley Community Foundation is gratefully acknowl-
edged.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 104–118, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Hybrid Constraint Model for the Routing and Wavelength Assignment Problem 105

notation In(n) and Out(n) to denote all edges entering resp. leaving node n. The set Λ of
available wavelengths is fixed and identical throughout the network. We can formulate
a basic model of the problem with two sets of 0/1 integer variables. Variables yλ

d denote
whether demand d is accepted using wavelength λ, variables xλ

de state whether edge e
is used to transport demand d on wavelength λ.

max
∑
d∈D

∑
λ∈Λ

yλ
d (1)

s.t.

yλ
d ∈ {0, 1}, xλ

de ∈ {0, 1} (2)

∀d ∈ D :
∑
λ∈Λ

yλ
d ≤ 1 (3)

∀e ∈ E, ∀λ ∈ Λ :
∑
d∈D

xλ
de ≤ 1 (4)

∀d ∈ D, ∀λ ∈ Λ :
∑

e∈In(s(d))

xλ
de = 0,

∑
e∈Out(s(d))

xλ
de = yλ

d (5)

∀d ∈ D, ∀λ ∈ Λ :
∑

e∈Out(t(d))

xλ
de = 0,

∑
e∈In(t(d))

xλ
de = yλ

d (6)

∀d ∈ D, ∀λ ∈ Λ, ∀n ∈ N \ {s(d), t(d)} :
∑

e∈In(n)

xλ
de =

∑
e∈Out(n)

xλ
de (7)

Constraint (2) enforces integrality of the solution, constraint (3) states that a demand
can use atmost one wavelength. The clash constraint (4) states that on each edge, only
one demand may use any given wavelength. Constraints (5) and (6) link the x and y
variables at the source (resp. sink) of each demand. Finally, constraint (7) enforces flow
balance on all other nodes of the network.

The main contributions of this paper are

– a novel, two-step problem decomposition for the RWA problem into a MIP (Mixed
Integer Programming) and finite domain constraint model,

– a new, very accurate upper bound to the RWA problem based on a resource-based
relaxation of an existing, source aggregation MIP solution,

– the use of explanation techniques to understand infeasibility of the constraint model,
suggesting good candidates for problem relaxation,

– extension of the model to handle parallel fibers without increasing problem size,
– experimental results showing that very high quality solutions are obtained by this

method in seconds, outperforming the best MIP model by orders of magnitudes.

In the next section we will describe existing solutions to the problem, with special
emphasis on complete MIP models. We then describe our decomposition strategy, pre-
senting a resource-based MIP relaxation and the finite domain constraint model. In sec-
tion 4, we describe how we can detect and explain infeasibility of the constraint model,
and how we can relax the problem to obtain good, but possibly sub-optimal solutions.

106 H. Simonis

We then extend our approach to allow parallel links in the network without increas-
ing the size of the model. This is followed in section 6 by an extensive experimental
evaluation of the proposed technique, before we consider possible further research in
section 7.

2 Related Work

The RWA problem has been studied using many different solution approaches, see [4]
for an overview. We can distinguish two main approaches. Greedy heuristics use local
search techniques to accept demands incrementally, providing fast solutions for large
problem cases, but without a formal guarantee of solution quality. Alternatively, com-
plete methods, mainly based on ILP (Integer Linear Programming) techniques, can pro-
vide optimal solutions, but are restricted in the problem size handled.

The MIP formulation (1) does not scale well with increasing number of demands
and network size. A major factor is the potential symmetry between all frequencies
as well as additional symmetries due to multiple demands between the same source
and sink. In [5], different ILP reformulations of the problem are considered, the best
alternative uses a source aggregation, described below. In this model, one does not
consider individual demands, but aggregates all demands starting in the same source
node. We introduce integer variables ysd to denote how many demands from a source
s to a sink d are accepted. The upper limit for these variables is given by Psd, the total
number of requested demands between s and d. We then define variables xλ

se to state
whether wavelength λ on edge e is used to transport a demand originating in s, without
identifying which demand is carried. We use the notation Ds for the set of destinations
of requested demands originating in s.

max
∑
s∈N

∑
d∈Ds

ysd (8)

s.t.

ysd ∈ {0, 1...Psd}, xλ
se ∈ {0, 1} (9)

∀e ∈ E, ∀λ ∈ Λ :
∑
s∈N

xλ
se ≤ 1 (10)

∀s ∈ N, ∀λ ∈ Λ :
∑

e∈In(s)

xλ
se = 0 (11)

∀s ∈ N, ∀d ∈ Ds, ∀λ ∈ Λ :
∑

e∈In(d)

xλ
se ≥

∑
e∈Out(d)

xλ
se (12)

∀s ∈ N, ∀d ∈ Ds :
∑
λ∈Λ

∑
e∈In(d)

xλ
se =
∑
λ∈Λ

∑
e∈Out(d)

xλ
se + ysd (13)

∀s ∈ N, ∀n �= s, n /∈ Ds, ∀λ ∈ Λ :
∑

e∈In(n)

xλ
se =

∑
e∈Out(n)

xλ
se (14)

Constraints (9) define the integrality conditions. Constraint (10) specifies the clash con-
straint between demands from different sources. Constraint (11) states that demands

A Hybrid Constraint Model for the Routing and Wavelength Assignment Problem 107

originating in s can not be routed through s, while constraints (12) and (13) consider the
destinations of demands originating in s and state that the correct number of demands
must be dropped in each node, linking the x and y variables. Finally, constraint (14)
enforces flow balance at all other nodes of the network.

The solution of formulation (8) does not provide an immediate, unique solution for
the demand acceptance problem. The path for each accepted demand must be extracted
from the solution by a small procedure, which can also be used to eliminate loops in the
paths at the same time.

A very nice property of the model is that the LP relaxation, replacing the integrality
constraint (9) with continuous domain restrictions, provides a very tight upper bound
for the ILP solution.

The aggregated model (8) performs much better than model (1), especially if the
number of demands is increasing. But experiments in [5] show that obtaining optimal
solutions even for small networks may still require several hours, if not days, of com-
putation time. As network size increases, the number of sources to consider increases
as well, leading to a dramatic performance loss.

The use of column generation has been considered [6] for a path-based [16] for-
mulation of the problem. This increases the problem size that can be handled, but still
requires solution times of several hours.

So far constraint programming has not been used to solve the RWA problem; a gen-
eral overview of constraint applications in the network domain is given in [16]. Smith
in [18] discusses a design problem for optical networks, but this is restricted to a ring
topology, and minimizes the need for ADM multiplexers.

On the other hand, the RWA problem considered here is not too far removed from the
demand acceptance problem in MPLS traffic engineering (MPLS-TE) in IP networks,
which has been approached with multiple hybrid constraint solution techniques as de-
scribed in [9,8,16]. The main difference is that demands in the MPLS-TE problem have
integer sizes and overall link capacity limits are enforced instead of clash constraints.
This motivated our solution approach to the RWA problem using a decomposition using
a resource based relaxation, which we will describe in the next chapter.

3 Solution Approach

It seems unlikely that the complete optimization problem can be solved as a finite do-
main constraint program. In this section we describe our solution approach which is
based on a simple decomposition strategy.

3.1 Problem Decomposition

A solution to the RWA problem must consider the following three activities:

1. Select demands to be accepted
2. Choose paths for each accepted demand
3. Assign wavelength

We choose a decomposition technique which handles the first two steps with a MIP
program which is a relaxation of model (8), and a second step which consists of a finite

108 H. Simonis

MIP Resource Model

Extract Accepted Demands

FD Graph Coloring

Infeasible

Solution

Provide Explanation

Remove Demand

No

Yes

Fig. 1. Solution Approach

domain model for a resulting graph coloring problem, where each accepted demand is a
node and there are disequality constraints between demands which are routed over the
same link. The overall solution approach is shown in figure 1.

In the MIP model, we replace the clash constraints with simple capacity constraints
which limit the number of demands that can be routed through each link. The optimal
solution to this problem is an upper bound to the RWA problem. We then generate a
graph coloring problem by imposing disequality constraints between all accepted de-
mands which are routed over the same link. The number of available colors is limited
by the available wavelengths. Using finite domain constraint programming, we search
for a feasible solution to the problem. If we are successful, we have an optimal solution
to the overall problem. If the constraint problem is infeasible, we drop some demands
until a feasible solution is obtained. This solution may be sub-optimal, but usually is
very close to the previously obtained upper bound. In order to choose which demand
to drop, we have to understand why the constraint problem is infeasible. We use two
techniques to find an explanation, one, structurally by detecting large cliques in the con-
straint graph, the other based on the QuickXplain [7] method. Once an explanation is
obtained we heuristically choose one of its demands for relaxation in the overall prob-
lem. This creates a new graph coloring problem, which we recursively solve with our
procedure.

Note that the suggested approach is not guaranteed to find an optimal solution, as a
sub-optimal, infeasible solution to the second step only affects the second phase of the
algorithm. To obtain a complete procedure, we would have to extend the feedback loop
from the explanation generation back to the first phase MIP model. We will consider
such an extension in future work.

3.2 Resource Allocation MIP Model

In order to simplify model (8), we relax the wavelength constraints and replace them
with capacity constraints over all links. Each link has capacity C = |Λ|. We still use the
integer variables ysd, which state how many demands from s to d are accepted, but we

A Hybrid Constraint Model for the Routing and Wavelength Assignment Problem 109

replace the xλ
se variables with integer zse variables. These variables count how many

demands originating in s are routed over link e. We use Ts =
∑

d∈Ds
Psd, the total

number of requested demands starting in s, as the upper bound on the zse variables.

max
∑
s∈N

∑
d∈Ds

ysd (15)

s.t.

ysd ∈ {0, 1...Psd}, zse ∈ {0, 1...Ts} (16)

∀e ∈ E :
∑
s∈N

zse ≤ C (17)

∀s ∈ N :
∑

e∈In(s)

zse = 0 (18)

∀s ∈ N, ∀d ∈ Ds :
∑

e∈In(d)

zse =
∑

e∈Out(d)

zse + ysd (19)

∀s ∈ N, ∀n �= s, n /∈ Ds :
∑

e∈In(n)

zse =
∑

e∈Out(n)

zse (20)

Constraint (16) describes the integrality constraints, note that all variables have integer,
not 0/1 domains. Constraint (17) is the link capacity constraint, which relaxes the clash
constraints (10) for individual wavelengths. Constraint (18) limits the use of the source
node, while constraint (19) describes the balance around the destination nodes, linking
the y and z variables. Finally, constraint (20) imposes flow balance for all other nodes.

The optimal solution to model (15) provides an upper bound to the RWA problem.
Perhaps surprisingly, this bound was not discussed in [5], although an equivalent relax-
ation based on a path formulation [16] was presented.

Similar to the situation for model (8), the solution does not directly tells us which de-
mands are accepted and which paths they should take. A simple, but non-deterministic
program is required to extract these elements, which are required in the second step of
our procedure. At the same time, this procedure removes possible loops in the paths,
which would cause problems in the graph coloring model. A simple example is given in
figure 2. It shows the result obtained for one source (in green, marked S) and all possi-
ble sinks for demands starting in S. The thick, black links show the non-zero values of
the zse variables for this source, the nodes in blue show the non-zero values of the ysd

variables. The node marked A can be reached on two different paths. Which path is used
for which demand is not defined in the MIP model, but will be selected by the solution
extraction routine. The isolated, red nodes show demands which are not accepted.

3.3 Graph Coloring Model

After running the MIP model (15), and extracting the accepted demands and their paths,
we can now try to allocate the available wavelengths with a simple finite domain con-
straint model. For each of the a accepted demands, a finite domain variable fd ranging
over all available wavelengths Λ is generated. For each link, we consider all demands

110 H. Simonis

2

1

1

1 1

S

1

1

2
A

2

4

1

4

1

2

1

1

Fig. 2. Non-deterministic Solution Extraction

which are routed over it. The corresponding domain variables must be pairwise differ-
ent, or, alternatively, an alldifferent constraint must hold between all of them. Consid-
ering all links together, we can express the constraints by either

– a set of binary disequality constraints between any two demands which are routed
over a common link

– a set of alldifferent constraints [19], one for each link in the network
– a single some-different global constraint [14], expressing the complete disequality

constraint network

More formally, using De to denote all accepted demands routed over link e, we generate
the alldifferent constraints:

∀e ∈ E : alldifferent({fd|d ∈ De}) (21)

Alternatively, we can generate an equivalent set of disequality constraints:

∀d1, d2 ∈ D, d1 �= d2, ∃e ∈ E s.t. d1 ∈ De, d2 ∈ De : fd1 �= fd2 (22)

We initially use bounds consistent alldifferent constraints to provide a good compromise
between computational effort required and resulting propagation.

In our search routine, we are interested only in finding a feasible solution quickly,
not in proving infeasibility, as this is handled separately. We try three different search
routines, each limited by a timeout (5 seconds) to restrict the effort expended:

– We first use an incomplete search routine, in our case credit-based search [3,1],
which explores the top of the search tree completely, but allows only limited back-
tracking in lower parts of the tree. The variable selection method used is first-
fail, and we use a randomized value selection method. We consecutively try credit
amounts of a, a2 and a3 to improve chances of finding a solution quickly.

A Hybrid Constraint Model for the Routing and Wavelength Assignment Problem 111

– In a second step, we try a complete search routine, still using bounds-consistent
alldifferent constraints, keeping the same variable and value selection strategies.
This might succeed when a larger amount of backtracking steps is required to find
a solution.

– In a third step, we again use a complete search, but impose domain consistent ver-
sions of the alldifferent constraints, so that more propagation may detect failures
which cause deep backtracking in earlier steps.

We could add specialized symmetry breaking techniques to handle the existing value
symmetries between the available frequencies, as well as potential variable symmetries
between demands sharing the same source, sink and path. These constraints will inter-
fere with our method to detect infeasibility, and therefore were not implemented.

In the absence of additional symmetry breaking constraints, we can use a combina-
tion of shaving, impact analysis and symmetry breaking to preassign one of the large
cliques to values. For each of the alldifferent constraints, we try to fix all their vari-
ables to values 1 to C, and measure the product of the domain sizes of the remaining
variables in the problem. We fix the clique whose assignment will lead to the largest
problem reduction before starting the overall search. We also observe that in a few
cases this preassignment leads to a immediate failure, which we will exploit in the next
section to explain infeasibility.

4 Handling Infeasibility

In the vast majority of examples tested, the finite domain solver quickly finds a feasible
solution, which results in an optimal solution of the overall problem. In relatively few
cases, the constraint problem is infeasible, which means we have to drop additional
demands to obtain a complete RWA solution. We use two specialized methods to detect
infeasibility and provide an explanation, which we can use to suggest likely demands
to be rejected.

4.1 Clique Detection

A simple technique considers the structure of the constraint graph. For many links, the
number of demands routed over them is equal to the overall capacity C, the number of
available wavelengths. The variables corresponding to these demands form a clique in
the disequality constraint graph. We can easily check each such clique if any additional
variable (demand) must be different from each of its variables. This increases the size
of the clique beyond the number of possible values and makes the problem infeasible.
This can occur if demands routed over multiple links interact with each other. To obtain
a feasible solution, we have to remove at least one of the demands in the infeasible
clique from the problem.

As the graph coloring problem in this case is already given as a collection of cliques,
many of which are already at limit size, we don’t have to search for large cliques in
the disequality constraint graph. This more generic method has been used in other con-
straint solvers for graph coloring problems.

112 H. Simonis

4.2 Explanation

When we create the constraint variables and set up the alldifferent constraints, there
will be no initial constraint propagation, if the size of the largest clique is equal to or
smaller than the number of available frequencies. But we noticed that sometimes the
preassignment of a single clique to initial values will lead to a failure, showing the
problem to be inconsistent. At this point, we can use traditional explanation techniques
like QuickXplain [7] to find a conflict set in the constraint graph after the preassign-
ment. Together with the alldifferent constraint corresponding to the preassignment this
explanation provides an (not necessarily minimal) explanation of the overall infeasibil-
ity. We run the explanation procedure at the level of individual alldifferent constraints,
not their binary decomposition, in order to profit from the bounds consistent reasoning
of the constraints. It might be possible to reduce the explanation further by removing
some of the variables from the alldifferent constraints, we don’t attempt this. Instead,
we provide an explanation for each of the failed preassignments, and consider that set
of possible explanations.

An explanation for the infeasibility in our system is a set of alldifferent constraints
over variables which correspond to accepted demands. This means that this set of de-
mands routed on the paths which were assigned in the first phase can not be allocated to
the given wavelengths while satisfying the clash constraints. If (some of) the demands
were allocated on different paths, such a solution might exist. We do not consider this
possibility in our current approach, but resolve the infeasibility by rejecting one of the
demands occurring in the explanation.

In order to suggest which demand should be removed to make the problem feasible,
we count how often a demand occurs in an explanation and in how many explanations
it is present. We order the demands by decreasing number of occurrences and try to
remove the demands with the largest count first. This creates a new constraint problem,
which we try to solve recursively with the same technique. The method will always
terminate, as we remove one demand at each step, but fortunately will require only one
or two steps in most cases before a feasible solution is found.

5 Extension to Multigraphs

An interesting extension of the problem considers the possibility of using more than one
fiber between nodes in the network, e.g. replacing the directed graph with a multigraph.
This is often done to increase capacity on connections which carry a lot of traffic, and
can typically be achieved at little extra cost as cables between locations already carry
many fibers in a single cable strand.

At first sight, we can use our existing model without change, modelling each parallel
fiber as a separate edge in the multigraph, for which we generate variables in our MIP
model and constraints in the finite domain graph coloring model. The disadvantage is
that we increase the number of variables and introduce additional symmetries in our
model, as the choice between the parallel fibers is unrestricted.

We can reduce the size of our models by changing some of the constraints slightly. In
the MIP model (15), we only introduce one variable for every set ê ∈ Ê of kê parallel
fibers. We then adjust the capacity constraints (17) to

A Hybrid Constraint Model for the Routing and Wavelength Assignment Problem 113

∀ê ∈ Ê :
∑
s∈N

zse ≤ kê ∗ C (23)

The rest of the model is not affected, and the number of constraints and variables is the
same as in the case without multiple fibers.

The second phase of our decomposition is no longer a standard graph coloring prob-
lem, as on a set of parallel fibers we can use the same wavelength up to kê times. Our
constraint model is only slightly affected. We have to replace the alldifferent constraint
with a global cardinality constraint (gcc)[13,11], which allows values to be used repeat-
edly. The variables and their domains don’t need to be modified, and for every connec-
tion which uses multiple fibers we have to use gcc instead of alldifferent constraints.
Note that we can no longer model the problem with disequality constraints alone, nor
can we use a single some-different constraint. The explanation part of the program is
not affected, the QuickXplain procedure works for any constraint network. In the ex-
periments below we have not included scenarios with multiple fibers, as we did not find
realistic network scenarios using them in the literature.

6 Experimental Results

Most of the published results on the RWA problem use randomly generated demands
on a few given network structures. We also use this approach and generate given num-
bers of demands between randomly chosen source and sink nodes. Multiple demands
between the same nodes are allowed, but source and sink must be different.

6.1 Fixed Network Structure

In the literature we found four actual optical network topologies used in experiments.
Their size is quite small, ranging from 14 to 27 nodes.

nsf 14 nodes, 42 edges
eon 20 nodes, 78 edges
mci 19 nodes, 64 edges
brezil 27 nodes, 140 edges

We explored all combinations of number of demands (100-800 demands in incre-
ments of 50, 15 cases) and available wavelengths (5-50 in increments of 5, 10 cases)
for the four networks, and created 100 random problems for each combination. This
created 60000 problems ranging over a variety of typical scenarios. In many cases,
all demands can be accepted, as there are enough frequencies available. At the other
extreme, when there are many demands for few frequencies, most demands between
far-distant nodes will be dropped, and only demands which can be satisfied with a short
route will be used. This is an artifact of the objective function which does not reward
the acceptance of long-distance demands. In between the two extreme cases, difficult
optimization problems are found where most, but not all demands can be accepted and
near-optimal solutions are important for customer satisfaction and revenue generation.

Table 1 shows the distribution of outcomes over all 60000 test cases considered. Only
88 (0.14%) are infeasible, the vast majority is solved to optimality. In more than 98%

114 H. Simonis

of the cases the first search routine using only a units of credit finds a feasible solution.
There are very few instances where complete search is required. As graph coloring
problems, these instances do not seem to be very hard, given the structural information
we can exploit.

Table 2 shows the result for selected, interesting parameter combinations. The entries
summarize the results over 100 runs with the same parameters, but different random
seeds. The column Opt. tells how many solutions were proven optimal. The columns
Avg LP, Avg MIP and Avg FD show the average cost obtained by the LP relaxation of
the MIP model (15), the MIP model itself and the final number of accepted demands
obtained by the finite domain solver. The LP relaxation already is a very good approx-
imation of the total cost, for the examples shown the LP and MIP cost coincide, and
even on the full set of tests the LP cost is very tight, the MIP-LP gap never exceeds
0.94. The next column, Max Gap, shows the largest gap between MIP and FD solution,

Table 1. Overall Distribution of Solutions

Type Technique Count
Infeasible clique 50

preassign 38
Feasible credit total 59962

of that, credit a units 58861
of that, credit a2 units 940
of that, credit a3 units 161
complete search, BC alldifferent 25
complete search, GAC alldifferent 12

Table 2. Selected Examples (100 Runs Each)

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg
FD

Max
Gap

Avg
Time

Max
Time

brezil 500 15 98 483.86 483.86 483.84 1.00 0.92 1.34
brezil 600 20 100 590.96 590.96 590.96 0.00 1.00 1.34
brezil 700 20 100 672.53 672.53 672.53 0.00 1.19 1.78
brezil 800 25 99 781.39 781.39 781.37 2.00 1.44 11.47
eon 500 20 100 471.56 471.56 471.56 0.00 0.65 0.77
eon 600 25 100 574.80 574.80 574.80 0.00 0.82 1.13
eon 700 30 100 677.35 677.35 677.35 0.00 1.05 1.81
eon 800 35 100 779.17 779.17 779.17 0.00 1.28 1.94
mci 500 25 100 486.38 486.38 486.38 0.00 0.80 2.28
mci 600 30 100 585.18 585.18 585.18 0.00 1.27 29.81
mci 700 35 100 684.00 684.00 684.00 0.00 1.30 3.53
mci 800 40 100 782.86 782.86 782.86 0.00 1.68 5.21
nsf 500 35 100 495.20 495.20 495.20 0.00 0.50 0.60
nsf 600 40 100 588.63 588.63 588.63 0.00 0.66 0.98
nsf 700 45 100 678.44 678.44 678.44 0.00 0.86 1.35
nsf 800 45 100 727.15 727.15 727.15 0.00 0.95 1.56

A Hybrid Constraint Model for the Routing and Wavelength Assignment Problem 115

i.e. the number of demands removed due to infeasibility of the graph coloring model.
This value never exceeds 2 in the examples shown, it never exceeds 4 in any of the tests
run. We then show average and maximal total run times on a Windows XP laptop with a
2.4GHz processor and 2GB of memory. Results were obtained using ECLiPSe 6.0 [20]
with the eplex library [15] for the Coin-OR [10] CLP/CBC MIP solver.

In table 3 we compare our results (Hybrid Model) to the Full MIP model (8) pre-
sented in [5]. One can see that the difference in solution quality is minimal, but the
times required for the full model (again, using ECLiPSe 6.0 with eplex and the Coin-
OR CLP/CBC solver) are much higher, especially for larger network size and/or large
number of demands. Note that for the brezil network with 700 demands and 25 frequen-
cies (results are shown in italics), only 99 of the MIP models were solved. One problem
instance did not terminate within 5 days of execution.

Table 3. Compared to MIP Model for Complete Problem

Hybrid Model Full MIP

Network Dem. λ Opt.
Avg
FD

Avg
Time

Max
Time

Avg
Opt

Avg
Time

Max
Time

brezil 500 15 98 483.84 0.92 1.34 483.86 1218.40 14103.84
brezil 600 20 100 590.96 1.00 1.34 590.96 6076.81 87767.95
brezil 700 25 98 695.48 1.01 1.80 695.48 13623.15 78463.89
brezil 800 25 99 781.37 1.44 11.47 781.39 7567.68 15456.50
eon 500 20 100 471.56 0.65 0.77 471.56 352.21 585.45
eon 600 25 100 574.80 0.82 1.13 574.80 1411.67 2877.88
eon 700 30 100 677.35 1.05 1.81 677.35 1727.52 3568.13
eon 800 35 100 779.17 1.28 1.94 779.17 2485.64 4116.11
mci 500 25 100 486.38 0.80 2.28 486.38 1023.16 1664.31
mci 600 30 100 585.18 1.27 29.81 585.18 1621.30 2895.88
mci 700 35 100 684.00 1.30 3.53 684.00 1987.23 3428.41
mci 800 40 100 782.86 1.68 5.21 782.86 2316.88 4402.44
nsf 500 35 100 495.20 0.50 0.60 495.20 82.85 173.19
nsf 600 40 100 588.63 0.66 0.98 588.63 155.90 373.63
nsf 700 45 100 678.44 0.86 1.35 678.44 205.82 586.61
nsf 800 45 100 727.15 0.95 1.56 727.15 173.53 410.97

6.2 Increasing Number of Demands

Table 4 shows results for another series of tests, where we increase the number of de-
mands for the eon network, increasing at the same time the number of available fre-
quencies so that over 90%, but below 100% of the demands can be accepted. We split
the reported run-times into the average and maximum time needed for phase 1 (MIP),
and phase 2 (FD). One can see that the time for phase 1 is not affected, as the MIP
model (15) does depend neither on the number of demands, nor on the number of fre-
quencies available. The average time for phase 2 slowly increase with problem size,
while the number of optimal solutions stays very high (99-100%). The time for finding
and exploiting the explanation in an infeasible scenario increases significantly, but not
prohibitively.

116 H. Simonis

Table 4. Increasing Number of Demands

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg
FD

Max
Gap

Avg MIP
Time

Max MIP
Time

Avg FD
Time

Max FD
Time

eon 800 30 100 741.78 741.78 741.78 0.00 0.15 0.17 0.83 1.61
eon 900 40 100 880.59 880.59 880.59 0.00 0.14 0.16 1.18 2.17
eon 1000 40 100 950.36 950.36 950.36 0.00 0.15 0.17 1.37 3.42
eon 1100 50 100 1082.61 1082.61 1082.61 0.00 0.14 0.16 1.71 2.83
eon 1200 50 100 1156.38 1156.38 1156.38 0.00 0.15 0.17 2.07 5.92
eon 1300 50 100 1219.82 1219.82 1219.82 0.00 0.16 0.17 2.22 5.24
eon 1400 60 100 1361.47 1361.47 1361.47 0.00 0.15 0.16 2.92 4.94
eon 1500 60 99 1428.78 1428.78 1428.77 1.00 0.15 0.17 4.22 106.97
eon 1600 70 100 1565.90 1565.90 1565.90 0.00 0.15 0.16 3.89 8.48
eon 1700 70 100 1637.47 1637.47 1637.47 0.00 0.16 0.17 4.58 13.59
eon 1800 80 100 1769.86 1769.86 1769.86 0.00 0.15 0.16 5.19 8.81
eon 1900 80 99 1844.46 1844.46 1844.45 1.00 0.15 0.17 7.23 163.41
eon 2000 90 100 1972.66 1972.66 1972.66 0.00 0.15 0.17 6.34 9.61

Table 5. Random Networks (Edge Density 0.25, 100 Runs Each)

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg
FD

Avg MIP
Time

Max MIP
Time

Avg FD
Time

Max FD
Time

r30 500 30 100 391.82 391.82 391.82 0.45 0.55 0.12 0.16
r40 500 30 100 424.58 424.58 424.58 1.07 1.23 0.14 0.17
r50 500 30 100 437.69 437.69 437.69 2.13 2.38 0.09 0.13
r60 500 30 100 447.21 447.21 447.21 3.92 4.34 0.08 0.16
r70 500 30 100 453.41 453.41 453.41 6.78 7.50 0.10 0.17
r80 500 30 100 457.65 457.65 457.65 10.75 11.95 0.10 0.17
r90 500 30 100 464.69 464.69 464.69 16.08 17.45 0.08 0.22
r100 500 30 100 466.67 466.67 466.67 22.74 25.22 0.09 0.25

6.3 Random Networks

We also wanted to check the stability of the proposed method for larger network sizes.
For this we generated random network structures with 30 to 100 nodes and an average
edge density of 0.25. We tested these for randomly generated problems of 500 demands
and 30 frequencies, with 100 instances for each problem case.

Table 5 shows the results, again splitting the execution times into the MIP and FD
components. One can see that with increasing network size the MIP solution times start
to dominate. Unfortunately, the LP solver times also increase proportionately, which
means that just obtaining an upper bound with the model shown becomes expensive
when we consider more than 100 nodes.

7 Future Work

Our current model works very well with large number of demands, but does not handle
large network sizes well. In order to extend the problem size further, we will have to

A Hybrid Constraint Model for the Routing and Wavelength Assignment Problem 117

consider a further hybridization of the first phase of the algorithm, along the lines of [9],
if we want to find proven optimal solutions.

We so far have only considered the directed network variant of the problem. It seems
straightforward to extend the model to handle the undirected case discussed in [4] as
well.

At the moment, we do not attempt to generate minimal explanations, or indeed a
minimal set of explanations, as we are only interested in them to suggest a further
relaxation of the demand acceptance problem. By creating a more compact representa-
tion, we might be able to feed them as no-good constraints into the first phase of the
algorithm, generating a complete, hybrid algorithm for the RWA problem.

Another task will be a further study of the problem environment to determine which
additional features are required to bring this method to real-life use.

8 Conclusion

In this paper we have described a hybrid combination of ILP and constraint programming
to solve the demand acceptance variant of the routing and wavelength assignment (RWA)
problem. We have shown that decomposing the problem into a resource-constrained,
optimized routing problem and a graph coloring problem works very well, producing
either proven optimal or near optimal solutions for all cases tested. This method out-
performs a full MIP model by orders of magnitude, making the proposed method an
efficient solution for realistic problem sizes.

Acknowledgment

We want to thank Paul Davern and Hadrien Cambazard for helpful comments on a draft
of the paper.

References

1. Apt, K.R., Wallace, M.: Constraint Logic Programming using ECLiPSe. Cambridge Univer-
sity Press, New York (2007)

2. Banerjee, D., Mukherjee, B.: A practical approach for routing and wavelength assignment in
large wavelength-routed optical networks. IEEE Journal on Selected Areas in Communica-
tions 14(5), 903–908 (1996)

3. Beldiceanu, N., Bourreau, E., Chan, P., Rivreau, D.: Partial search strategy in CHIP. In: 2nd
International Conference on Metaheuristics MIC 1997, Sophia Antipolis, France (1997)

4. Jaumard, B., Meyer, C., Thiongane, B.: ILP formulations for the routing and wavelength
assignment problem: Symmetric systems. In: Resende, M., Pardalos, P. (eds.) Handbook of
Optimization in Telecommunications, pp. 637–677. Springer, Heidelberg (2006)

5. Jaumard, B., Meyer, C., Thiongane, B.: Comparison of ILP formulations for the RWA prob-
lem. Optical Switching and Networking 4(3-4), 157–172 (2007)

6. Jaumard, B., Meyer, C., Thiongane, B.: On column generation formulations for the RWA
problem. Discrete Applied Mathematics 157, 1291–1308 (2009)

118 H. Simonis

7. Junker, U.: Quickxplain: Conflict detection for arbitrary constraint propagation algorithms.
In: IJCAI 2001 Workshop on Modelling and Solving problems with constraints (CONS-1),
Seattle, WA, USA (August 2001)

8. Lever, J.: A local search/constraint propagation hybrid for a network routing problem. Inter-
national Journal on Artificial Intelligence Tools 14(1-2), 43–60 (2005)

9. Liatsos, V., Novello, S., El Sakkout, H.: A probe backtrack search algorithm for network
routing. In: Proceedings of the Third International Workshop on Cooperative Solvers in Con-
straint Programming, CoSolv 2003, Kinsale, Ireland (September 2003)

10. Lougee-Heimer, R.: The common optimization interface for operations research. IBM Jour-
nal of Research and Development 47, 57–66 (2003)

11. Quimper, C.-G.: Efficient Propagators for Global Constraints. PhD thesis, University of Wa-
terloo (2006)

12. Ramaswami, R., Sivarajan, K.N.: Routing and wavelength assignment in all-optical net-
works. IEEE/ACM Trans. Netw. 3(5), 489–500 (1995)

13. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: AAAI/IAAI,
vol. 1, pp. 209–215 (1996)

14. Richter, Y., Freund, A., Naveh, Y.: Generalizing alldifferent: The somedifferent constraint.
In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 468–483. Springer, Heidelberg (2006)

15. Shen, K., Schimpf, J.: Eplex: Harnessing mathematical programming solvers for constraint
logic programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 622–636. Springer,
Heidelberg (2005)

16. Simonis, H.: Constraint applications in networks. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

17. Simonis, H.: Solving the static design routing and wavelength assignment problem. In:
CSCLP 2009, Barcelona, Spain (June 2009)

18. Smith, B.M.: Symmetry and search in a network design problem. In: Barták, R., Milano, M.
(eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 336–350. Springer, Heidelberg (2005)

19. van Hoeve, W.J.: The alldifferent constraint: A survey. CoRR, cs.PL/0105015 (2001)
20. Wallace, M., Novello, S., Schimpf, J.: ECLiPSe: A platform for constraint logic program-

ming. ICL Systems Journal 12(1) (May 1997)
21. Zang, H., Jue, J.P., Mukherjee, B.: A review of routing and wavelength assignment ap-

proaches for wavelength-routed optical WDM networks. Optical Networks Magazine, 47–60
(January 2000)

Memoisation for Constraint-Based Local Search

Magnus Ågren

Swedish Institute of Computer Science
Box 1263, SE – 164 29 Kista, Sweden

magnus.agren@sics.se

Abstract. We present a memoisation technique for constraint-based lo-
cal search based on the observation that penalties with respect to some
interchangeable elements need only be calculated once. We apply the
technique to constraint-based local search on set variables, and demon-
strate the usefulness of the approach by significantly speeding up the
penalty calculation of a commonly used set constraint.

1 Introduction and Background

Memoisation [1] is an optimisation technique often used to speed up function
calls in programming languages. By caching the calculated results for inputs to
a given function, subsequent calls for already seen inputs to the function do not
need to be recalculated but can be looked up and returned directly. In this paper
we apply memoisation to constraint-based local search.

In constraint-based local search [2], constraint measures are used to navigate
in the search space and move towards (optimal) solutions. Given a constraint,
such measures include penalties and variable conflicts, which are estimations
on how far the constraint currently is from being satisfied and how much each
variable contributes to that distance, respectively. Since a local search algorithm
may perform many moves, and each move may mean evaluating the constraint
measures with respect to a large number of configurations (complete assign-
ments), the evaluation must be done efficiently. This is often achieved by using
incremental algorithms (see for example [3]).

In [4] we presented constraint measures with such incremental algorithms
for using monadic existential second-order logic (∃MSO) for modelling set con-
straints in local search. For example, the set constraint S ⊂ T (strict subset)
can be modelled in ∃MSO by:

∃S∃T ((∀x(x /∈ S ∨ x ∈ T))∧(∃x(x /∈ S ∧x ∈ T))) (1)

We call such constraint models ∃MSO constraints. Now, given a common universe
U for all set variables and an element u of this universe, the penalty of a primitive
constraint of the form u ∈ S or u /∈ S is zero if it is satisfied, and one otherwise;
the penalty of a conjunction (disjunction) is the sum (minimum) of the penalties
of its conjuncts (disjuncts); and the penalty of a first-order universal (existential)

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 119–126, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

120 M. Ågren

{() �→ 3} {() �→ 3}

{() �→ 1}
{(a) �→ 2,
(b) �→ 2,
(c) �→ 1}

{(a) �→ 1,
(b) �→ 1,
(c) �→ 0}

{(a) �→ 1,
(b) �→ 1,
(c) �→ 1}

{() �→ 2}
{(a) �→ 1,
(b) �→ 1,
(c) �→ 0}

∃S∃T ∧

∃x ∧ x /∈ S

x ∈ T∀x ∨

Fig. 1. Penalty dag of ∃S∃T ((∀x(x /∈ S ∨x ∈ T))∧(∃x(x /∈ S ∧x ∈ T)))

quantification is the sum (minimum) of the penalties of the quantified formula
where the occurrences of the bound variable are replaced by each element of U.

The practical relevance of using ∃MSO constraints in local search was demon-
strated in [4], where a necessary built-in global constraint was assumed missing
and replaced by a corresponding ∃MSO constraint, while still obtaining compet-
itive results in terms of runtime and robustness.

In this paper we use penalty dags (directed acyclic graphs), namely attributed
parse trees, for illustrative purposes only, and not as an implementation device
for supporting incremental maintenance algorithms, as in [4]. For instance, the
calculation of the penalty of (1) under the configuration k = {S �→ {a, b}, T �→ ∅}
is illustrated by the penalty dag in Fig. 1; the map {() �→ 3} above the sink ∃S∃T
indicates that the penalty of (1) is 3.

Interchangeable elements (or values) must often be identified in order to solve
problems efficiently. The constraint programming community has traditionally
done this in the context of symmetry breaking for complete search, where the
aim is to avoid rediscovering (symmetrically) already encountered (non)solutions
(see [5] for an early reference).

On the contrary, we here take advantage of interchangeable elements, and the
dag in Fig. 1 can also be used to illustrate the key idea of this paper. Consider the
penalty maps above the (rightmost) ∧ and ∨ connectives in the dag which, for
the corresponding subformulas rooted at those connectives, indicate the penalties
with respect to each element of the universe U = {a, b, c}. Note that, in both of
these penalty maps, the penalties are the same for the elements a and b. This is
not by chance but because a and b are interchangeable in the sense that they are
both in S and not in T under the configuration k. In fact, any element (of the
universe) in S and not in T would be interchangeable with a and b and would also
share these same penalty maps in the dag. Hence, the penalty maps need only
be calculated once for all interchangeable elements, and can then later simply
be returned from a cache taking interchangeability into account. We show in the
following that this can lead to a significant speedup of local search algorithms
with ∃MSO constraints. Note that although we only consider penalties in this
paper, all results can be generalised for variable-conflicts as well.

Memoisation for Constraint-Based Local Search 121

2 Memoising ∃MSO Penalties Using Signatures

Recall that the penalties of first-order quantifications are sums and minima of
the penalties of the quantified subformula where the occurrences of the bound
first-order variable are replaced by each element of the universe, and consider
again (1) and k = {S �→ {a, b}, T �→ ∅}. The key idea of this paper is based on
the following observation: since the elements a and b are both in S and not in
T , the penalties of, for example, the quantified subformula x /∈ S ∧x ∈ T are
the same when x is replaced by a or b. Indeed, both a and b are bound to 2 in
the map above the rightmost ∧-node in Fig. 1. So a and b are interchangeable
in the sense that it is only necessary to calculate the penalty of the subformula
given one of the elements, and then reuse that value for the other element. We
characterise such interchangeable elements by their signatures. The signature of
an element u ∈ U with respect to a sequence of set variables 〈S1, . . . , Sn〉 under
a configuration k is a bit string b1 · · · bn such that bi = 1 if and only if u ∈ k(Si).

Example 1. The respective signatures of a, b, c with respect to 〈S, T 〉 under
k = {S �→ {a, b}, T �→ ∅} are 10, 10, 00. So a and b share the same signature.

Using signatures to reason about interchangeable elements (or values) was done
also in [6], but there in the context of symmetry breaking for complete search.

We will now present a penalty maintenance algorithm for ∃MSO constraints
based on memoisation and element signatures. Given an ∃MSO constraint Φ =
∃S1 · · · ∃Snφ, this algorithm operates on a data structure D with the following
fields:

– D.penalty , the penalty of Φ under the current configuration;
– D.signature, an array indexed by the elements of the universe such that

D.signature[u] is the signature of u with respect to 〈S1, . . . , Sn〉 under the
current configuration;

– D.cache , an array indexed by the (first-order) quantified subformulas φ of Φ
such that D.cache[φ] is the penalty cache of φ (these penalty caches corre-
spond to the penalty maps of the quantified subformulas in Fig. 1, but are
based on element signatures and not on elements);

– D.min , an array indexed by the first-order existential quantifications ∃xφ of
Φ such that D.min [∃xφ] is a multiset of the penalties of φ under the current
configuration, where the occurrences of x in φ is replaced by each element
of U. So the minimum value of D.min [∃xφ] is the penalty of ∃xφ.

Following the ideas in [7], the penalty maintenance algorithm consists of two
parts: an initialisation part and an update part. Both of these parts call a generic
function proj penalty which is used to traverse the ∃MSO constraint. The in-
tuition behind this is that a call proj penalty(D, Φ, A) returns the penalty of
Φ projected on some subset A of the universe. By initially setting A to U, the
penalty of Φ is obtained. By later setting A to {u}, for example, the penalty
of Φ projected on {u} is obtained. So given a move, for example, of the form
add(S, u)(k) (the result of adding u to S under k), the penalty change of Φ

122 M. Ågren

Algorithm 1. Generic function for initialising and updating ∃MSO penalties
1: function proj penalty(D, Φ, A)
2: if Φ is of the form ∀xφ then
3: p ← 0
4: for all u ∈ A do
5: if D.signature [u] ∈ D.cache [φ] then
6: p ← p + D.cache [φ][D.signature [u]]
7: else
8: q ← proj penalty(D, φ[u/x], ∅)
9: D.cache [φ][D.signature [u]] ← q

10: p ← p + q

11: return p

12: if Φ is of the form ∃xφ then
13: for all u ∈ A do
14: if D.signature [u] ∈ D.cache [φ] then
15: add(D.cache [φ][D.signature [u]], D.min[∃xφ])
16: else
17: q ← proj penalty(D, φ[u/x], ∅)
18: D.cache [φ][D.signature [u]] ← q
19: add(q, D.min [∃xφ])
20: return min(D.min[∃xφ])
21: if Φ is of the form φ∧ψ then
22: return proj penalty(D, φ, A) + proj penalty(D, ψ, A)
23: if Φ is of the form φ∨ψ then
24: return min(proj penalty(D, φ,A), proj penalty(D, ψ, A))
25: if Φ is of the form u ∈ Si then return 1 − D.signature [u][i]
26: if Φ is of the form u /∈ Si then return D.signature [u][i]

can be obtained by two calls proj penalty(D, Φ, {u}) before and after the move,
the penalty change being the difference of the results of these two calls. Note
that this difference is the same as the difference of the results of two such calls
where {u} is replaced by U. Also note that the current configuration would be
a superfluous argument to proj penalty since it is implicit from D.signature.

The function proj penalty is shown in Algorithm 1. We here only discuss the
quantifier cases on lines 2 to 20 as the other cases closely follow the penalty
function described in the first section. For a call proj penalty(D, ∀xφ, A), the
sum is calculated by looking up D.cache[φ] given the signature of each element
of A. When a value is in the cache it can be directly used (line 6). Otherwise, the
value is calculated by a recursive call where the occurrences of the bound variable
x are replaced by the element u ∈ A, and stored in the cache for subsequent
calls with the same signature (lines 8 to 10). A call proj penalty(D, ∃xφ, A) is
similar, the only difference being that the minimum is calculated by first adding
the penalty for the signature of each element of A to the multiset D.min [∃xφ]
(lines 15 and 19), of which the minimum value is then returned (line 20).

Note that D.signature is used to represent the current configuration. So be-
fore a call proj penalty(D, Φ, A), D.signature must be updated to reflect this.

Memoisation for Constraint-Based Local Search 123

Algorithm 2. Initialise and update procedures for ∃MSO penalties
1: procedure initialise(D, ∃S1 · · · ∃Snφ,U)(k)
2: for all u ∈ U do
3: D.signature [u] ← the signature of u with respect to 〈S1, . . . , Sn〉 under k

4: D.penalty ← proj penalty(D, φ,U)
5: procedure update(D, Φ)(k, �)
6: if � is of the form add(Si, u)(k) or drop(Si, u)(k) then
7: for all subformulas ∃xφ of Φ do
8: remove(D.cache [φ][D.signature [u]], D.min[∃xφ])
9: p0 ← proj penalty(D, Φ, {u})

10: for all subformulas ∃xφ of Φ do
11: remove(D.cache [φ][D.signature [u]], D.min[∃xφ])
12: flip the value D.signature [u][i]
13: p1 ← proj penalty(D, Φ, {u})
14: D.penalty ← D.penalty + (p1 − p0)
15: else
16: failure

Also note that, before a call proj penalty(D, Φ, A) on an already initialised D,
the penalties in any multiset D.min[∃xφ] corresponding to the elements of A,
must be removed. This is necessary since projecting the penalty of an existential
quantification on A ⊆ U still requires taking the penalties with respect to all
elements of U into account (since it is a minimum value).

The procedure initialise is shown in Algorithm 2. A call initialise(D, Φ,U)(k)
initialises the signatures of D.signature to reflect the configuration k (lines 2 to
3) after which a call to proj penalty is used to initialise D.penalty (line 4).

The procedure update is also shown in Algorithm 2. Given a move � of the
form add(Si, u)(k) or drop(Si, u)(k) (the results of adding or dropping u from Si

under k), a call update(D, Φ)(k, �) must (twice) update each multiset in D.min by
removing one occurrence of the value corresponding to the signature of u (lines 7
to 8 and 10 to 11). (See also the note above concerning this.) The penalty change
is then obtained as the difference of the results of two calls to proj penalty (lines
9 and 13), before and after the move � has been reflected on D.signature (line
12). This penalty change is then used to update D.penalty (line 14).

Example 2. Let Φ denote (1) and let ∀xφ and ∃xψ denote respectively the (first-
order) universal and existential quantifications of Φ. Given k = {S �→ {a, b}, T �→
∅} and U = {a, b, c}, the call initialise(D, Φ,U)(k) initialises the fields of the
data structure D such that:

D.penalty = 3 D.signature = [a �→ 10, b �→ 10, c �→ 00]

D.min = [∃xψ �→ {1, 2, 2}] D.cache =
[
φ �→ [00 �→ 0, 10 �→ 1]
ψ �→ [00 �→ 1, 10 �→ 2]

]
Considering now adding c to T , the subsequent call update(D, Φ)(k, �), where
� = add(T, c)(k), changes the fields of D such that:

124 M. Ågren

D.penalty = 2 D.signature = [a �→ 10, b �→ 10, c �→ 01]

D.min = [∃xψ �→ {0, 2, 2}] D.cache =
[
φ �→ [00 �→ 0, 01 �→ 0, 10 �→ 1]
ψ �→ [00 �→ 1, 01 �→ 0, 10 �→ 2]

]
The penalty is decreased to two since the constraint is now closer to being
satisfied. This is calculated by:

1. removing 1 (the penalty cached for 00 in D.cache[ψ]) from D.min [∃xψ],
setting this multiset temporarily to {2, 2} (lines 7 to 8 of Algorithm 2);

2. obtaining p0 = 1 by the call proj penalty(D, Φ, {c}), which also adds 1 back
to D.min [∃xψ] (line 9);

3. removing 1 from D.min [∃xψ] again (lines 10 to 11);
4. updating the signature of c to 01 (line 12);
5. obtaining p1 = 0 by the call proj penalty(D, Φ, {c}), which also adds 0 to

D.min [∃xψ], setting it to {0, 2, 2} (line 13);
6. increasing D.penalty by the difference p1 − p0 = 0− 1 = −1 (line 14).

3 Evaluation

The algorithms of the previous section were implemented in Objective Caml
(http://caml.inria.fr) and the experiments were performed on a 2.67 GHz
Intel Core i7 Linux machine (using only one processor core).

In order to evaluate the memoisation-based penalty maintenance algorithm
(called memo below) we have compared it to the incremental penalty mainte-
nance algorithm of [4] (called nomemo below). We compared these two algo-
rithms by measuring their speed in terms of average number of iterations per
second when solving two given problems subset and partition . Both problems
are stated on n set variables S = {S1, . . . , Sn} all with a common universe U of
cardinality n such that:

– for subset , there is an Si ⊂ Si+1 constraint for each 1 ≤ i < n;
– for partition , there is a single Partition(S) constraint.

While the Si ⊂ Si+1 constraints are modelled in ∃MSO as (1), the Partition(S)
constraint (requiring all set variables to be pairwise disjoint and their union to
equal U, where any set variable may be empty) is modelled in ∃MSO as:

∃S1 · · · ∃Sn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∀x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x ∈ S1 → (x /∈ S2 ∧ · · · ∧ x /∈ Sn))
∧

(x ∈ S2 → (x /∈ S3 ∧ · · · ∧ x /∈ Sn))
∧ · · · ∧

(x ∈ Sn−1 → x /∈ Sn)
∧

(x ∈ S1 ∨ · · · ∨x ∈ Sn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
We chose both simple 2-ary constraints as well as a more complex n-ary con-
straint in order to compare the overhead versus the gain for memo. Intuitively,

http://caml.inria.fr

Memoisation for Constraint-Based Local Search 125

Algorithm 3. A simple hill climber for evaluating memo
1: function HillClimber(V,C)
2: k ← a random configuration for V
3: while penalty(C)(k) > 0 do
4: choose a possible move � of the form add(S, u)(k) or drop(S, u)(k)
5: minimising penalty(C)(�) for
6: k ← �
7: return k

the gain should be greater for more complex constraints (that is longer ∃MSO
formulas), since each saved recalculation would have been more costly for such
constraints.

The local search algorithm used for the experiments is a very simple hill
climber, shown in Algorithm 3. After initialising the variables V to a random
configuration, the hill climber greedily chooses an add or a drop move minimising
the penalty of all constraints C as the next configuration. If a configuration
satisfying all constraints is found (that is, if the penalty of all constraints is
zero), this solution is returned. This hill climber serves our purposes simply since
none of the problems subset or partition are particularly hard. This is however
irrelevant as we are here only interested in measuring the speed of a memoisation-
based penalty maintenance algorithm (that is memo) and comparing this speed
with the speed of another incremental penalty maintenance algorithm (that is
nomemo). Solving open instances of hard problems or making comparisons with
other solving approaches are thus not purposes of this paper.

We ran the instances where n = |U| ∈ {20, 25, 30, 35, 40, 45, 50, 55} for both
problems and the results are shown in Table 1. For each of the problems subset
and partition and with respect to a given instance n, the columns labelled memo
and nomemo indicate the number of iterations per second (in Algorithm 3,
higher values are better) achieved by using the respective penalty maintenance

Table 1. Comparing memo with nomemo when solving the problems subset and
partition for the instances in the column labelled n. For each problem, the columns
labelled memo and nomemo indicate the number of iterations per second achieved by
using the respective algorithms, and the column labelled speedup indicates the speedup
of running memo compared with nomemo. All values are averages over ten runs.

subset partition
n memo nomemo speedup memo nomemo speedup

20 665.7 893.4 0.7 1017.4 193.5 5.3
25 421.8 572.1 0.7 432.8 93.2 4.6
30 292.1 389.3 0.8 332.6 50.5 6.6
35 214.4 285.0 0.8 248.5 29.3 8.5
40 163.5 217.9 0.8 164.2 18.4 8.9
45 129.4 171.1 0.8 112.9 12.3 9.2
50 104.6 133.9 0.8 73.6 8.4 8.8
55 86.1 111.5 0.8 47.4 5.9 8.0

126 M. Ågren

algorithms. The column labelled speedup indicates the speedup of running memo
compared with nomemo. All values are averages over ten runs. The same random
seeds were used when comparing the two different algorithms. Hence, the number
of iterations (not reported here) as well as the solutions were the same for the
two different algorithms.

On the one hand, using memo is slower for subset on all instances, although
by a small (and seemingly constant) factor. On the other hand, using memo is
significantly faster for partition on all instances. As suspected above, the over-
head can be larger than the gain for simple 2-ary constraints since the cost for
(re)calculating the penalty (or incrementally updating the same) is small for
such constraints. This is not the case for more complex n-ary constraints, which
is why the gain can be larger than the overhead for such constraints. This clearly
shows the usefulness of memoisation-based penalty maintenance algorithms for
local search with ∃MSO.

4 Conclusion

We have applied memoisation to the calculation of penalties for ∃MSO con-
straints. Our approach is based on identifying interchangeable elements in the
first-order quantifications of the ∃MSO constraints, and characterising these el-
ements by their signatures. Such interchangeable elements share penalties and
need only be calculated and cached once, thereby lowering the number of nec-
essary calculations as well as the number of cached penalties. Our results show
that this can lead to a significant speedup when using ∃MSO constraints in local
search.

Acknowledgements. I thank Pierre Flener and Justin Pearson for discussions
and comments, as well as the anonymous referees for constructive reviews.

References

1. Michie, D.: Memo functions: a language feature with “rote-learning” properties.
Research Memorandum MIP-R-29. Edinburgh: Department of Machine Intelligence
& Perception (1967)

2. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cam-
bridge (2005)

3. Van Hentenryck, P., Michel, L.: Differentiable invariants. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 604–619. Springer, Heidelberg (2006)

4. Ågren, M., Flener, P., Pearson, J.: Generic incremental algorithms for local search.
Constraints 12(3), 293–324 (2007); Collects the results of papers at CP-AI-OR 2005,
CP 2005, and CP 2006

5. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction prob-
lems. In: Proceedings of AAAI 1991, pp. 227–233 (1991)

6. Sellmann, M., Van Hentenryck, P.: Structural symmetry breaking. In: Proceedings
of IJCAI 2005, Professional Book Center, pp. 298–303 (2005)

7. Ågren, M.: Set Constraints for Local Search. PhD thesis, Uppsala University (2007)

On the Structure of Industrial SAT Instances�

Carlos Ansótegui1, Maŕıa Luisa Bonet2, and Jordi Levy3

1 Universitat de Lleida (DIEI, UdL)
2 Universitat Politècnica de Catalunya (LSI, UPC)

3 Artificial Intelligence Research Institute (IIIA, CSIC)

Abstract. During this decade, it has been observed that many real-
world graphs, like the web and some social and metabolic networks, have
a scale-free structure. These graphs are characterized by a big variability
in the arity of nodes, that seems to follow a power-law distribution. This
came as a big surprise to researchers steeped in the tradition of classical
random networks.

SAT instances can also be seen as (bi-partite) graphs. In this paper
we study many families of industrial SAT instances used in SAT compe-
titions, and show that most of them also present this scale-free structure.
On the contrary, random SAT instances, viewed as graphs, are closer to
the classical random graph model, where arity of nodes follows a Pois-
son distribution with small variability. This would explain their distinct
nature.

We also analyze what happens when we instantiate a fraction of the
variables, at random or using some heuristics, and how the scale-free
structure is modified by these instantiations. Finally, we study how the
structure is modified during the execution of a SAT solver, concluding
that the scale-free structure is preserved.

1 Introduction

The Satisfiability problem (SAT) is central in Computer Science. It was the first
problem to be proven NP-Complete, and it is used extensively to encode many
other problems into it. Therefore, finding good algorithms to solve SAT is of
practical use in many areas of Computer Science. Even though the general SAT
problem is NP-Complete, many very large industrial instances can be solved
efficiently by modern solvers. The aim of this work is to study the body of
industrial instances to detect general properties that are shared by the majority
of instances. We focus on the structure of the instances viewed as bi-partite
graphs, where nodes represent variables and clauses, and edges represent the
presence of a variable in a clause. In particular, we try to detect the distribution
on the frequencies of the variables and of the sizes of the clauses, in SAT instances
used in the latest SAT Competitions and SAT Races. Our work was inspired
by [BDIS05], where they suggest that industrial instances, as many other real-
world graphs could have a scale-free structure.
� Research partially supported by the projects TIN2007-68005-C04-{01,03,04} and

TIN2006-15662-C02-02 funded by the MEC.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 127–141, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

128 C. Ansótegui, M.L. Bonet, and J. Levy

The classical random graph model [ER59] was one of the best studied during
the last century, and set the basis of graph theory. In [WS98], a new model of
random graphs is proposed, called small-world to describe the structure of some
social collectivities. In [AJB99], they show that the world wide web, viewed
as a graph, has a structure than cannot be described by the classical random
graph model. They propose a new model called scale-free. The name comes
from the fact that, in this new model, the arity of nodes follows a power-law
distribution p(k) ∼ k−α, and these distributions are scale-free. However, the
name also suggests that these graphs present some kind of self-similarity. In
recent years it has been observed that many other real-world graphs, like some
social and metabolic networks, also have a scale-free structure.

Power-law (zeta and Pareto) distributions are characterized by a big vari-
ability, consequence of a polynomially decreasing tail. A small fraction of the
individuals is responsible for most of the average, in what is popularly known
as the 80:20 rule (i.e. 80% of the land is owned by the 20% of the population).
Many other heterogeneous distribution are also called power-law or heavy-tailed
when their tail decreases polynomially, in contrast with other classical distri-
butions, like normal, Poisson, or binomial that have a exponentially decreasing
tail. Experience tells us that power-law distributions are as frequent in nature,
if not more frequent, as exponentially decreasing distributions. For instance, the
CPU time of the different executions (with different random variable selection)
of a solver on a formula follow a power-law distribution [GFSB04].

The topology of graphs have a major impact on the cost of solving search
problems on these graphs. Gent et al. [GHPW99] analyze the impact of a small-
world topology on the cost of coloring graphs, and Walsh [Wal01] does the same
in the case of scale-free graphs. Therefore, we can expect that SAT solving,
viewed as a search process of on a graph (the formula), will be affected by the
topology of this graph.

It is well-known in the SAT community that classical random k-CNF formulas
and industrial (or real-world) formulas have a distinct nature. This makes SAT
solvers to specialize in one or the other kind of formulas. In the SAT competition
there is a special track for each kind of formulas, whereas in the SAT Race
competition, only industrial formulas are used to test the solvers. Random k-
CNF formulas, as graphs, follow the Erdös-Rényi model. In the phase transition
point for k = 3, for instance, most of the variables have a number of occurrences
very close to 12.75.1 In this paper, we show that most industrial instances are
better modeled as scale-free graphs.

We think that the present study provides a step towards a theoretical ex-
planation of why some SAT solvers perform better on industrial instances, and
others on random SAT instances. Moreover, the better understanding of real-
world instances could lead to the improvement of existing SAT solvers.

The paper can also serve as basis for new random SAT generation models that
produce instances closer to real-world ones. This problem is distinguished as one

1 The number 12.75 comes from multiplying the size of the clauses k = 3 by the
clause/variable ratio m/n = 4.25 at the phase transition point.

On the Structure of Industrial SAT Instances 129

of the 10 challenge problems in SAT [SKM97, Sel00, KS03, KS07]. Recently, in
[ABL09], we have proposed some random SAT instance generators that produce
formulas with variable frequencies following a power-law distribution. We show
that solvers specialized on industrial instances perform better in these random
industrial-like instances than solvers specialized on random formulas.

Another application of the study could be to evaluate which is the best family
of solvers to use on a particular instance, by analyzing the distribution of variable
frequencies or clause sizes. In particular, this could be use as one more selection
criteria in a portfolio approach [XHHLB08].

The paper proceeds as follows. In Section 2, we present the study of the dis-
tributions that best represent the frequencies of variable occurrences and clause
sizes. Also we describe the statistical techniques we use in our work. In Section 3,
we study whether the scale-free nature is preserved under partial instantiations
of variables. In Section 4, we analyze the structure of the formulas during the
execution of complete SAT solver of different nature. We conclude in Section 5.

2 Analysis of Industrial SAT Instances

2.1 Methodological Background

Every SAT instance can be seen as a bi-partite graph, with a set of nodes V ∪C,
where V represents the variables and C represents the clauses. The edges are
the pairs (v, c) ∈ V ×C such that variable v appears in clause c. In what follows,
n = |V | and m = |C|. In order to analyze if a bi-partite graph is scale-free, we
have to study the arity of the nodes. Notice that the arity of a node v ∈ V is
the number of occurrences of the variable v, and the arity of c ∈ C is the size of
the clause c.

For every bi-partite graph we can compute f real
v (k) as the number of vari-

ables that have a number of occurrences equal to k, divided by n, and similarly,
f real

c (k) is the number of clauses of size k divided by m. We add the label real
to emphasize that these functions come from empirical data. We can also define
the accumulative versions of these functions as F real

v (k) =
∑

i≥k f real
v (i) and

F real
c (k) =

∑
i≥k f real

c (i). Notice that, assuming that there are no empty clauses
and all variables occur somewhere, F real

v (1) = F real
c (1) = 1.

In the scale-free model, the arity of nodes is characterized by a random vari-
able K that follows a power-law distribution fpow(k) = P (K=k) = c k−α.
The exponent α has typically values inside [2, 3]. This distribution diverges at
zero, and there is a lower bound kmin for the values of k from where we get
the power-law behavior or heavy tail. In the discrete case (the one that con-
cerns us), the normalizing constant is c = 1/ζ(α, kmin) = 1/

∑∞
i=0(i + kmin)−α,

where ζ is the Hurwitz zeta function. For big values of kmin we can approxi-
mate this distribution using the continuous version. In this case the probability

density function is fpow(k) = α−1
kmin

(
k

kmin

)−α

, and the cumulative function is

F pow(k) =
(

k
kmin

)−α+1

.

130 C. Ansótegui, M.L. Bonet, and J. Levy

There is not a proper (formal) definition of what a scale-free graph is, but
one of their basic properties –usually taken as a definition– is that the arity of
nodes seems to follow a power-law distribution. Therefore, we must check if, for
some values of αv and αc, we have f real

v (k) ≈ c k−αv and f real
c (k) ≈ c k−αc .

Notice that, applying logarithms to both sides, we get log f(k) = log c−α log k.
Therefore, if f real

v (k) and f real
c (k) are power-law, representing them as a function

of k with double-logarithmic axes, we should get closed to a straight line with
slope −α.

In some papers, the value α is calculated by linear regression of log f(k) as a
function of log k. In [LADW05, section 2.1.3] there is a discussion of why it is
better to plot the cumulative logarithm log F (k), instead of log f(k), to compute
the regression. But, in this case, the slope is −α + 1. Following this argument,
in Figure 1 we represent Fv(k) and Fc(k) versus k with double-logarithmic axes,
for some families of industrial formulas.

We will follow the maximum likelihood method for computing an estimation of
α, as described in [CSN07]. To estimate the value of α for a collection of empirical
data k1, . . . , kn, we compute the value of α that maximizes the probability that
the data were drawn from the model:

P (k1, . . . , kn |α) =
n∏

i=1

α− 1
kmin

(
ki

kmin

)−α

We take logarithms, since the maximum will be in the same place, then we take
derivatives and make the function equal to zero:

∂

∂α
log P (x1, . . . , xn |α) =

=
∂

∂α

(
n log

α− 1
kmin

− α

n∑
i=1

log
ki

kmin

)
=

=
n

α− 1
−

n∑
i=1

log
ki

kmin
= 0

we get
α̂ = 1 +

n∑n
i=1 log(ki/kmin)

For the discrete case, a good approximation for big values of kmin is

α̂ = 1 +
n∑n

i=1 log ki

kmin−1/2

Notice that the estimated α depends on kmin. To compute the value of ˆkmin,
we try to minimize the distance between the (experimental) cumulative distri-
bution function F real(x) and the (theoretical) cumulative distribution function
F pow(x; α, kmin). The distance between both distributions is calculated as the
maximal difference between both functions. Then, we compute the value of kmin

that minimizes this distance:

d = min
kmin≥1

{
max

k≥kmin

{∣∣∣∣ F real(k)
F real(kmin)

− F pow(k; α̂, kmin)
∣∣∣∣}}

On the Structure of Industrial SAT Instances 131

We get so the value of kmin and of d. The value of this distance d is an indicator
of the fitness of the estimation.

When we say that arity of nodes seems to follow a power-law distribution,
we emphasize the seems because it is obvious that SAT formulas, as well as the
WWW and other scale-free graphs, are not randomly generated. Therefore, we
do not expect the arity of nodes to follow exactly any distribution. However, we
want to check if some distribution fits the data better than others. In partic-
ular, we have tried to fit, apart from a power-law distribution, an exponential
distribution.

The probability density function for an exponential distribution has the form
c e−β x. Calculating the constant, for the discrete case, we get fexp(k; β, kmin) =
(1−e−β) e−β (k−kmin) and its cumulative function F exp(k) = e−β(k−kmin). In this
case the estimation of the β parameter by the method of maximum likelihood
gives:

∂

∂β
log P (k1, . . . , kn |β) =

=
∂

∂β

(
n log(1− e−β)− β

n∑
i=1

(ki − kmin)

)
=

=
n e−β

1− e−β
−

n∑
i=1

(ki − kmin) = 0

Hence,

β̂ = log
(

n∑n
i=1(ki − kmin)

+ 1
)

The value of kmin is calculated as in the case of the power-law distribution.
For distinct families of industrial formulas, we have calculated f real

v (k)and
f real

c (k), as well as their cumulative functions. First, we have studied instances
independently in each family, observing that they all have the same nature.
Thus, we decide to group them by families, assuming that all formulas of the
same family follow the same probability distribution. Therefore, for a family,
f real

v (k) is the sum for every formula of the number of variables that have k
occurrences, and similarly for f real

c (k). Notice that, under this assumption, the
arity of a variable, independently of in which formula of the family it occurs,
is an independent realization of the same random variable. Therefore, we can
do this addition. Later, we have fitted a power-law distribution and an expo-
nential distribution, and we have calculated the distance dpow between F real

v (k)
and the estimated F pow

v (k; α, kmin), and the distance dexp between F real
v (k) and

the estimated F exp
v (k; β, kmin). When dpow < dexp, we say that the power-law

distribution fits better than the exponential distribution. We use this criteria to
state that a family of formulas has a scale-free structure. It is also important to
compare the value of kmin obtained in each estimation, noted kpow

min and kexp
min. A

big value of kmin means that we need to discard a lot of values of F real(k) to fit
the distribution, and it must be taken as a point against the fitted distribution.
Also a value of α far away from the interval [2, 3] must be read as a point against
the scale-free structure.

132 C. Ansótegui, M.L. Bonet, and J. Levy

Table 1. Most likelihood values of α and β estimated for a power-low and an expo-
nential distribution. In bold we remark the smallest distance between the real and the
fitted distributions. We also report the total number of variable occurrences n, mean
E[V] and variance Var[V], and the respective values for clause sizes.

Variables (V)

Power-law Exponential
Family #inst n E [V] Var [V] α kpow

min dpow β kexp
min dexp

cmu 3 16678 7.95 12.11 3.49 5 0.072 0.224 4 0.176
een 12 739744 7.60 13.26 2.67 10 0.043 0.054 15 0.136
fuhs 2 73486 9.05 14.56 2.79 62 0.075 0.181 4 0.158
goldb 11 114038 21.02 88.71 2.05 21 0.042 0.003 100 0.204
grieu 9 6914 364.21 42.23 1.77 100 0.577 0.004 100 0.538
ibm 38 4985723 10.75 23.97 2.63 7 0.027 0.017 45 0.083
manol 59 7827736 6.93 16.24 2.95 57 0.059 0.017 76 0.033

mizh 13 725644 12.49 148.12 4.09 15 0.172 0.034 22 0.247
narai 6 9642548 9.72 16.38 3.85 5 0.152 0.109 1 0.347
palac 2 298266 10.82 60.55 1.84 20 0.087 0.003 100 0.074
post 10 12906872 7.90 44.15 2.57 12 0.132 0.135 1 0.334
schup 7 2196731 8.09 12.40 2.59 41 0.120 0.063 9 0.182
simon 12 798804 7.78 11.96 2.53 14 0.028 0.022 50 0.065
uts 10 1420464 13.01 74.70 1.76 69 0.111 0.003 75 0.088

velev 60 8442829 88.31 379.04 1.82 13 0.030 0.003 87 0.287

random 40 400000 12.75 3.57 18.65 24 0.019 0.777 25 0.008

SAT’08 100 27964721 13.30 113.48 2.29 12 0.051 0.003 73 0.254

Clauses (C)

Power-law Exponential
Family #inst m E [C] Var [C] α kpow

min dpow β kexp
min dexp

cmu 3 53769 2.46 1.21 5.35 3 0.126 1.778 3 0.048

een 12 2278059 2.47 0.69 3.80 4 0.044 2.420 3 0.046
fuhs 2 256742 2.59 0.82 4.89 5 0.041 2.182 3 0.020

goldb 11 710559 3.37 1.46 10.48 5 0.158 4.803 5 0.008

grieu 9 961030 2.62 0.76 8.54 26 0.108 3.878 3 0.020

ibm 38 21084555 2.54 1.57 3.77 6 0.023 0.375 4 0.032
manol 59 23244626 2.33 0.47
mizh 13 3036234 2.98 0.91 1.58 1 0.328 0.408 1 0.334
narai 6 37639556 2.49 2.05 3.33 2 0.088 1.113 2 0.090
palac 2 1274356 2.53 9.33 1.71 4 0.116 1.055 2 0.116
post 10 42441234 2.40 1.39 3.33 2 0.143 2.884 33 0.053

schup 7 6947242 2.56 1.36 4.30 4 0.093 2.585 3 0.046

simon 12 2675233 2.32 0.90 3.76 4 0.033 0.498 5 0.026

uts 10 7101806 2.60 11.56 3.63 2 0.114 0.004 35 0.116
velev 60 253221473 2.94 9.01 3.35 72 0.042 0.021 28 0.040

random 40 1700000 3.00 0.00
SAT’08 100 140942860 2.64 5.68 3.03 17 0.054 0.074 10 0.068

On the Structure of Industrial SAT Instances 133

IBM EEN

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

variables
α=2.63

β=0.017
clauses
α=3.77

β=0.375

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

variables
α=2.67

β=0.054
clauses
α=3.80

β=2.420

VELEV FUHS

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

variables
α=1.82

β=0.003
clauses
α=3.35

β=0.021

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

variables
α=2.79

β=0.181
clauses
α=4.89

β=2.182

SIMON GOLDB

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

variables
α=2.53

β=0.022
clauses
α=3.76

β=0.498

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

variables
α=2.05

β=0.003
clauses

α=10.48
β=4.803

MANOL POST

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

variables
α=2.57

β=0.135
clauses
α=3.33

β=2.884

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

variables
α=2.95

β=0.017

Fig. 1. Plotting of F real
v (k) and F real

c (k), and their respective power-law (characterized
by α) and exponential (characterized by β) estimations, for some families of formulas.
In families where all clauses are small, we have avoided the representation of F real

c (k).

134 C. Ansótegui, M.L. Bonet, and J. Levy

SAT Race’08 random 3-CNF

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

variables
α=2.29

β=0.003
clauses
α=3.03

β=0.074

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100

variables
α=18.65
β=0.777

Fig. 2. Plotting of F real
v (k) and F real

c (k), and their respective power-law and expo-
nential estimation, for the formulas of the SAT’08 Race and random 3CNF

2.2 Results of the Analysis

We have selected a set of families of formulas from the industrial category of
the 2002–2005 and 2007 SAT Competitions, and the 2006 and 2008 SAT Races.
For these families, Table 1 presents the estimations of the parameters of the
distributions power-law and exponential for variables occurrences and clause
sizes. We have also extended the study to a family of 40 random 3-CNF instances
of 104 variables in the phase transition point; and to the heterogeneous family
composed by the 100 instances used in the latest SAT Race 2008 competition.
In Table 1 we also include information about the sum of the number of variables
and clauses of all formulas of the family, and the average number of occurrences
of variables and sizes of clauses, as well as their variance. For the computation of
kmin (the value where the data starts to fit the distribution) we impose a limit
value of 100. We consider that, if the distance d between the observed data and
the distribution is smaller than 0.1, then it is plausible that the data follows
that distribution. To conclude that the family follows a power-law distribution
we also require that dpow < dexp and the value of kmin to be small. For the
families where all clauses have size at most 3, we obviate the study for the
distribution of clause size.

In Figure 1 we plot the distributions of some families, as well as the estimated
power-law and exponential distributions that best fit them. In Figure 2 we also
plot the distributions for the heterogeneous family of the SAT Race 2008, and
the random 3-CNF formulas.

We can conclude that for the families: CMU, EEN, FUHS, GOLDB, IBM,
SIMON and VELEV, the number of variable occurrences follow a power-law
distribution. In the case of clause size, only the families EEN, IBM and NARAI
seem to follow a power-law distribution. Therefore, in general, the variable oc-
currences follows a power-law distribution in more families than the clause size.
The value of α for variables is also smaller than the α for clauses, that tends to

On the Structure of Industrial SAT Instances 135

fall out of the interval [2, 3]. We think that the explanation for this phenomena
is that, when the formulas are encoded, people try to avoid the use of very big
clauses, since they weak the propagation power in SAT solvers. We also observe
that some families, like MANOL, do not seem to follow a particular distribution.

In the random 3-CNF formulas, the exponential distribution fits better than
the power-law, although the distance dpow is surprisingly small. If we plot the
distribution for each formula of the family, we see that it is very homogeneous,
without the typical peeks that we find in industrial data. Moreover, the value of
α = 18.65 is big enough to discard a power-law distribution.

Looking at the plot of the SAT Race’08 heterogeneous family, we see that the
data fits better the power-law distribution than other homogeneous families. In
this case, we have to take into account that the addition of so many instances,
by a kind of law of the big numbers, tends to make distributions smoother. The
values of α that we get are α = 2.29 for variable occurrence and α = 3.03 for
clause size. As in some homogeneous families, we observe that the value of α in
the case of clause size is bigger than the value of α for variable occurrence, and
falls in the limit of the interval [2, 3].

3 Instantiating Variables in Industrial Instances

Albert, Jeong & Barabási [AJB00] studied the effect of failure and attack ac-
tions in the diameter of an Erdös-Rényi graph and of a scale-free graph. The
diameter is the average minimum distance between two nodes, failure consists
in removing a certain percentage of randomly selected nodes, and attack con-
sists in removing the nodes following a certain heuristic (e.g. those nodes with
higher arity). They observed that failure and attack have the same effect on
Erdös-Rényi graphs (after removing 5% of the nodes, the diameter increases in
the same way independently of how nodes are chosen). However, while failure
almost does not change the diameter of scale-free graphs, attack increases the
diameter even more than in the case of an Erdös-Rényi graphs. Considering that
Internet is a scale-free graph, they conclude that it is robust against random
failures of the servers, but it is specially susceptible to terrorism attacks.

In the case of SAT solvers, the instantiation of variables removes nodes in the
bi-partite graph representing the formula (e.g. the instantiation v = true removes
the variable-node v, and all those clause-nodes c, where c contains the literal v).
Since classical random SAT instances are similar to Erdös-Rényi graphs, we can
expect the same behavior on random formulas, when we instantiate variables
randomly, as when we use some heuristics. However, in scale-free industrial in-
stances, we expect a very different effect.

We have conducted a series of experiments where we instantiate up to 10% of
the variables of some families of formulas, and we analyze the decrease in size
of the formula. Notice that we only instantiate variables, i.e., we do not apply
any local inference like unit propagation, and we do not discard the obtained
subformula, even if it contains the empty clause. In Section 4 we perform a
similar experiment using real SAT solvers.

136 C. Ansótegui, M.L. Bonet, and J. Levy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

random
IBM

EEN
MANOL

Fig. 3. Percentage of the formula-size decrease as a function of the percentage of in-
stantiated variables. For the 3 lines of each family, the upper one corresponds to the
random strategy, the middle to the Jeroslow-Wang, and the lower to the most-frequent
strategy.

We experiment with the IBM and the EEN families –the ones with a more
clear scale-free structure–, with the MANOL family –that does not seem to follow
a neat distribution–, and with the random 3CNF set –that we know have an
absolutely different structure–. Apart from the random selection of variables, we
have analyzed the use of the most-frequent variable2 and of the Jeroslow-Wang
heuristics [JW90]. Results are shown in Figure 3. We observe that instantiating
randomly selected variables has the same effect in all families: after instantiating
10% of the variables, the size of the formula decreases between 16% and 19%.
The size-decrement seems to be proportional to the percentage of instantiated
variables, i.e. the slope seems to be constant and the same in all families.

For the other two heuristics (most-frequent variable and Jeroslow-Wang), the
size-decrease in random formulas is bigger, but not so much as in the indus-
trial formulas: in random formulas, after instantiating 10% of the variables, the
decrease is around 30%, whereas in industrial formulas the decrease is around
50%. Moreover, the size-decrease seems to be constant in the case of random
formulas, whereas in industrial formulas, the use of these heuristics speeds up
the size-decrease, but at a certain point, when we have instantiated around 1%
or 2% of the variables, the slope decreases substantially. Both heuristics seem
to have the same effect, although the most-frequent heuristic is always a little
better (bigger decrease) than the Jeroslow-Wang heuristic.

The natural question is now: after instantiating a significant part of the vari-
ables, is the formula still scale-free? We have studied the formulas that we
get after instantiating some variables of the IBM formulas following the three

2 The most-frequent heuristic consists in selecting the variable with a higher number
of occurrences, and the polarity with it appears more times.

On the Structure of Industrial SAT Instances 137

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000

IBM orig.
random 10%
Jeroslaw 1%

Most freq. 1%
Jeroslaw 2%

Most freq. 2%
Jeroslaw 5%

Most freq. 5%
Jeroslaw 10%

Most freq. 10%

Fig. 4. Function Fv(k) for IBM formulas where 1%, 2%, 5% and 10% of the variables
have been instantiated using the random, Jeroslow-Wang and most-frequent strategies

Table 2. Analysis of the partially instantiated IBM formulas

random Jeroslow-Wang Most freq.
Power-law Exponential Power-law Exponential Power-law Exponential

α dpow β dexp α dpow β dexp α dpow β dexp

0% 2.63 0.027 0.017 0.083 2.63 0.027 0.017 0.083 2.63 0.027 0.017 0.083
1% 2.56 0.027 0.017 0.078 2.72 0.017 0.046 0.036 2.79 0.020 0.052 0.034
2% 2.57 0.025 0.017 0.076 2.82 0.015 0.083 0.026 2.89 0.012 0.093 0.030
5% 2.59 0.020 0.018 0.075 3.27 0.029 0.218 0.019 3.39 0.029 0.250 0.014

10% 2.62 0.021 0.019 0.077 5.79 0.023 0.407 0.014 5.90 0.023 0.510 0.021

heuristics. Results are shown in Figure 4. As we can see, the random instantia-
tion of variables has almost no effect on the probability distribution of variable
occurrences fv(k). However, heuristics tend to remove variables with high num-
ber of occurrences. As a consequence, after partially instantiating around 5% of
the variables, the formula looses its scale-free property, and seems to follow an
exponential distribution (see Table 2).

4 Formulas during SAT Solvers Search

We want to answer the question of what kind of formula a state-of-the-art SAT
solver sees during the search. The question is important because, if we implement
solvers specialized in industrial instances (assuming that they are scale-free)
during the execution of the solver, when some variables are already instantiated,
we can be dealing with a not scale-free formula anymore. This means that, when

138 C. Ansótegui, M.L. Bonet, and J. Levy

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000

IBM orig.
max. depth

orig. + learned
orig + learned instant.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

IBM orig.
α=2.63

satz at max depth
α=2.90

Fig. 5. Study of IBM formulas during the search. Left: with minisat, right: with satz.

a significant part of the variables are instantiated, the solver would do better
changing its strategy.

Any complete SAT solver will backtrack immediately once it checks the cur-
rent partial assignment is not consistent (in contrast to the setting in section 3),
and second, state-of-the-art SAT solvers specialized on industrial instances aug-
ment the formula during search by adding new clauses, due to the learning
mechanism they incorporate.

We havemodified twoverydifferentSAT solvers,minisat [ES03]and satz [LA97].
Apart from the different heuristics and data structures these solvers incorporate,
minisat applies a learning mechanism while satz does not.

We conducted experiments to answer the previous stated question, execut-
ing the solvers on each instance of the IBM family. We selected this family as
the representative of scale-free formulas and random formulas as non scale-free
formulas. The results reflect the average behavior of the family.

First, we study the formula under the longest partial assignment after 1000
seconds of search. Second we study, both the formula under the current partial
assignment and the complete formula (original formula plus learned clauses)
after 200000 decisions.

Figure 5 (left), shows the results of our experimentation on the IBM instances
with minisat. As we can see, the scale-free structure is preserved in all cases. At
maximal depth the distribution of frequencies is almost the same as in the origi-
nal formulas. This seems to contradict the effect of partial assignments described
in previous section but we have to remark that here the partial assignment is
consistent. Moreover, it seems that the effect of the learned clauses makes the α
exponent decrease.

We have repeated the same experiment with the same IBM formulas but after
at most one hour of execution time of satz. Recall that here apart from applying
a different heuristic we have not learned clauses. In Figure 5 (right), we can see
that at the deepest assignments the formulas are still scale-free, although the
exponent has been increased.

On the Structure of Industrial SAT Instances 139

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

RANDOM orig.
β=0.566

max depth
β=0.571

orig. + learned
α=1.70

orig. + learned instant.
α=3.09

Fig. 6. Study of random formulas during the search

Therefore, very different SAT solvers seem to preserve the scale-free nature of
formulas during their execution. Now the question is, what happens if we start
with a random formula? For our experiment we have generated 50 random 3-
CNF formulas of 500 variables at the phase transition point. Figure 6 shows the
results. At the deepest decisions, after 1000 seconds, we see that the formulas
still show an exponential decay with the same β as in the original formulas.
However, after 2 · 106 decisions the formulas show a clear scale-free structure
due to the addition of the learned clauses. As in the first experiment with the
IBM family, the exponent α is smaller for the uninstantiated formula. To explain
this phenomenon recall that the solvers like minisat, decide on the most active
variables in learned clauses and learn clauses that contain decided variables. This
creates an effect of rich get richer that has been proposed as a mechanism for
creation of scale-free networks [BA99].

5 Conclusions

We have shown that most of the industrial formulas have a scale-free structure
whereas random formulas have an Erdös-Rényi graph structure. This difference
makes heuristics to perform better in industrial formulas than in random formulas.

We have observed that heuristically guided partial assignments (without guar-
anteeing consistency) make frequency distributions decay faster, destroying the
power-law tail after instantiating 5% of the variables. However, if the assignments
are consistent, as during the search in a SAT solver, we can instantiate up to
70% variables preserving the power-law tail (although increasing the exponent).

140 C. Ansótegui, M.L. Bonet, and J. Levy

Finally, we have observed that the learning mechanism incorporated in mod-
ern SAT solvers tends to preserve the power-law distribution and even decrease
its exponent.

References

[ABL09] Ansótegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random
SAT instances. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelli-
gence, IJCAI 2009 (2009)

[AJB99] Albert, R., Jeong, H., Barabási, A.-L.: The diameter of the www. Na-
ture 401, 130–131 (1999)

[AJB00] Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of
complex networks. Nature 406, 378–482 (2000)

[BA99] Barabási, A.-L., Albert, R.: Emergence of scaling in random networks.
Science 286, 509–512 (1999)

[BDIS05] Boufkhad, Y., Dubois, O., Interian, Y., Selman, B.: Regular random
k-sat: Properties of balanced formulas. J. of Automated Reasoning 35,
181–200 (2005)

[CSN07] Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in
empirical data. Arxiv, 0706.1062 (2007)

[ER59] Erdós, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6,
290–297 (1959)

[ES03] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer,
Heidelberg (2004)

[GFSB04] Gomes, C.P., Fernández, C., Selman, B., Bessière, C.: Statistical regimes
across constrainedness regions. In: Wallace, M. (ed.) CP 2004. LNCS,
vol. 3258, pp. 32–46. Springer, Heidelberg (2004)

[GHPW99] Gent, I.P., Hoos, H.H., Prosser, P., Walsh, T.: Morphing: Combining
structure and randomness. In: Proc. of the 16th Nat. Conf. on Artificial
Intelligence, AAAI 1999, pp. 654–660 (1999)

[JW90] Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems.
Annals of Mathematics and Artificial Intelligence 1, 167–187 (1990)

[KS03] Kautz, H.A., Selman, B.: Ten challenges redux: Recent progress in
propositional reasoning and search. In: Rossi, F. (ed.) CP 2003. LNCS,
vol. 2833, pp. 1–18. Springer, Heidelberg (2003)

[KS07] Kautz, H.A., Selman, B.: The state of SAT. Discrete Applied Mathemat-
ics 155(12), 1514–1524 (2007)

[LA97] Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability prob-
lems. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 341–355.
Springer, Heidelberg (1997)

[LADW05] Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of
scale-free graphs: Definition, properties, and implications. Internet Math-
ematics 2(4), 431–523 (2005)

[Sel00] Selman, B.: Satisfiability testing: Recent developments and challenge
problems. In: Proc. of the 15th Annual IEEE Symposium on Logic in
Computer Science, LICS 2000, p. 178 (2000)

[SKM97] Selman, B., Kautz, H.A., McAllester, D.A.: Ten challenges in proposi-
tional reasoning and search. In: Proc. of the 15th Int. Joint Conf. on
Artificial Intelligence, IJCAI 1997, pp. 50–54 (1997)

On the Structure of Industrial SAT Instances 141

[Wal01] Walsh, T.: Search on high degree graphs. In: Proc. of the 17th Int. Joint
Conf. on Artificial Intelligence, IJCAI 2001, pp. 266–274 (2001)

[WS98] Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ net-
works. Nature 393, 440–442 (1998)

[XHHLB08] Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based
algorithm selection for SAT. J. of Artificial Intelligence Research 32, 565–
606 (2008)

A Gender-Based Genetic Algorithm for the
Automatic Configuration of Algorithms�

Carlos Ansótegui1, Meinolf Sellmann2, and Kevin Tierney2

1 Universitat de Lleida, Spain
carlos@diei.udl.cat

2 Brown University, Department of Computer Science,
P.O. Box 1910, Providence, RI, 02912, USA
{sello,ktierney}@cs.brown.edu

Abstract. A problem that is inherent to the development and efficient use of
solvers is that of tuning parameters. The CP community has a long history of ad-
dressing this task automatically. We propose a robust, inherently parallel genetic
algorithm for the problem of configuring solvers automatically. In order to cope
with the high costs of evaluating the fitness of individuals, we introduce a gender
separation whereby we apply different selection pressure on both genders. Exper-
imental results on a selection of SAT solvers show significant performance and
robustness gains over the current state-of-the-art in automatic algorithm configu-
ration.

1 Introduction

We consider the problem of automatic solver configuration. Practically all solvers have
parameters that are partly fixed by the programmer and partly set by the user. In recent
years, systems have been devised which automate the task of tuning parameters for a
given set of training instances that are assumed to represent typical instances for the
target algorithm.

There are several motivations for such an automation, the first being that it is of
course time consuming to tune parameters and it may lead to better results when leaving
the configuration of solvers to a computer rather than doing it by hand.

Moreover, it is conceivable that the existence of an effective tuning environment
will cause algorithm developers to parameterize more aspects of their algorithms and
thus leave more freedom for algorithmic solutions that are automatically tailored to the
problems of individual users. In particular, many of the SAT solvers that are available
today have parameters which cannot be set through the command line. These parameters
have been fixed to values that the developers have found beneficial without knowledge
about the particular instances a user may want to use the solver for. Automatic parameter
tuning allows solvers to adapt to the final environment in which they need to perform.
After being shipped, rather than relying on default parameters, an algorithm can be

� This work was partly supported by the projects TIN2007-68005-C04-04 and TIN2006-15662-
C02-02 funded by the MEC, and by the the National Science Foundation through the Ca-
reer: Cornflower Project (award number 0644113).

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 142–157, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms 143

tuned automatically for the common tasks it is actually used for, and without requiring
the user to learn about the algorithm parameters. For this very reason, Cplex 11 now
comes with an automatic performance tuning tool.

Another argument for automatic solver configuration regards our own science: when
we re-implement algorithms to conduct experimental comparisons with competing ap-
proaches, it is not unreasonable to assume that scientists spend much more time tuning
their own algorithm than the algorithms of their competitors. A fair comparison could
be achieved if all algorithms were tuned by an independent system. That way, we would
come closer to understanding the true potential of algorithmic approaches rather than
the ability of solver development teams to tune their solvers well. In this regard, it could
be very interesting to add a new category to solver SAT/CSP/SMT competitions where
solvers are first configured automatically on a training set and then evaluated on a re-
lated yet different test set.

1.1 Existing Approaches

Several approaches exist in the literature for the automatic tuning of algorithms. The
first methods were created for tuning specific algorithms for a certain task. [13] devised
a modular algorithm for solving constraint satisfaction problems (CSPs) and used a
combination of exhaustive enumeration of all possible configurations and a parallel
hill-climbing technique to automatically configure the system for a given CSP with an
associated set of training instances. [4] classified local search (LS) approaches for SAT
by means of context-free grammars and devised a genetic programming approach to
select a good LS algorithm for a given set of SAT problems. [15] embedded a sequential
parameter optimization approach in a wider framework for the design of evolutionary
algorithms.

To tune the continuous parameters of general algorithms, [3] suggested an approach
that determines good parameters for individual training instances. These parameters are
found by trying configurations where parameters are at their extreme values and then
fitting a regression function to the parameter/value tuples obtained in this way. The
minimization of the resulting function yields a set of parameters for the given instance.
A parameter set for the entire collection of instances was then obtained by averaging
the parameter tuples for the individual instances.

Tuning problems with small sets of parameter configurations were considered in [2],
a setting which is closely related to that in algorithm portfolios [6,7]. In this case, it is
possible to race the different algorithms against each other, whereby a statistical test
is used to eliminate inferior algorithms before the remaining algorithms are run on the
next training instance.

In [14], Oltean used evolutionary algorithms by means of linear genetic program-
ming. The genome of an individual is an encoding of an actual C-program for the
problem to be solved, and crossover and mutation operators are problem dependent.
The linear genetic program generates new individuals which replace the current worst
individual in the population.

The CALIBRA system, proposed by [1], starts with a factorial design of the parame-
ters. Once these initial parameter sets have been run and evaluated, an intensifying local

144 C. Ansótegui, M. Sellmann, and K. Tierney

search routine is started from a promising design, whereby the range of the parameters
is limited according to the results of the initial factorial design experiments.

The only system we know of that can configure arbitrary algorithms with very large
numbers of parameters was proposed by [9]. Their system, called ParamILS, conducts
an iterated local search, whereby a special technique is used to limit the number of
training instances that need to be run for each parameter set by focusing the test runs on
promising parameter sets. In particular, a new set of parameters is not considered better
than the current best until it has been evaluated on at least as many training instances
as the current best. If a very large set of training instances is available, this approach
allows quick movement through the search space while still avoiding an “over-tuning”
effect which would be caused by considering few training instances only.

1.2 Our Approach

CALIBRA and ParamILS have shown that automatic configuration of algorithms is
possible, and can, in fact, lead to massive improvements over hand-tuned parameter
sets. Based on these successes, we aim to provide a configuration system which is very
robust and provides high-quality parameter sets in an affordable amount of time, po-
tentially by exploiting parallelism which is becoming more and more widely available
given the current trends in hardware technology.

To this end, we propose a genetic algorithm for the problem of configuring solvers.
There are two main reasons for this choice of approach. First of all, genetic algorithms
are known to be very robust with respect to optimization problems that have undesir-
able objective landscapes [5]. Note that, in ordinary optimization, we usually have the
freedom to adjust the objective in such a way that it is better suited for sequential local
search which often yields good solutions faster than population-based approaches. In
contrast, in our setting, where the target algorithm is given and the effect of changing
parameters is a priori unknown, we must be able to cope with whatever objective land-
scape we encounter. The other reason is that genetic algorithms are inherently parallel.
When trying to assess which individuals are competitive (the most time-intensive step
in solver configuration), genetic algorithms allow us to race them against each other.
Therefore, the time spent for the evaluation is determined by the good parameter sets,
and this saves a lot of time in practice. In order to really exploit this last aspect, we
introduce the concept of gender in the genetic algorithm. Before we apply this idea
to solver configuration, we will explain the potential benefits of gender separation in
genetic algorithms in the following section.

2 A Gender-Based Genetic Algorithm

The idea to exploit genders in genetic algorithms has been considered before in various
publications, inspired by nature’s example.

2.1 Related Work

In [10], Lis and Eiben use multiple genders for multi-objective optimization. Each gen-
der is associated with one of the multiple objectives, and the fitness of each individual
is evaluated according to the gender-specific fitness function. Cross-over is limited to

A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms 145

mating individuals of different gender. This latter restriction used for single-objective
problems is introduced in [16] which uses a gendered genetic algorithm to solve graph
partitioning problems.

[12] discusses that, in nature, mate choice is more likely to guide evolution than nat-
ural selection. [18] introduces two genders where individuals of the first are evaluated
according to standard fitness, while individuals of the second gender are associated with
a second criterion, a so-called cooperative fitness. This second criterion depends on the
potential mating partner. Mating couples are formed by selecting the fittest individuals
from the first gender and mating them with good cooperative partners from the second.

Finally, Vrajitoru experiments with a population that consists of different gender
types (self-fertilizing, sexual, and hermaphrodite) [19].

2.2 Gender-Specific Selection Pressure

Previously, gender separation has been realized only as a restriction of the way in which
mating pairs are formed. We propose to take the gender separation beyond just the
formation of parent couples. Instead, we propose to apply different selection pressure
on the two gender populations. In particular, we apply intra-specific competition only
in one part of the population. Individuals in this group must compete for the right of
mating, and only the fittest in each generation win the right to mate with some of the
individuals of the opposite gender. The individuals in this other group are not subjected
to intra-specific selection.

With our application of tuning solver parameters in mind, we choose this setting for
two reasons. First, the runtime of our algorithm will largely depend on the time that
it takes to evaluate the fitness of individuals. Note that this requires running the given
solver on some benchmark instances. By selecting only a small portion of the fittest
individuals in one subgroup of the population, we can save a substantial number of
fitness evaluations compared to the traditional way of applying a fitness ranking on all
individuals.

Second, because of the expected very large cost to evaluate the fitness of an indi-
vidual, in our application we will not be able to sustain a very large number of indi-
viduals in the population. Consequently, we cannot afford to lose partially good genes
just because they first occurred in a less fit individual. By randomly assigning new off-
spring to one of the two groups, we increase the chance that good genes survive as they
may occur in individuals which belong to the non-competitive part of the population.
That is, the individuals in this group serve as a “variety store” of potentially beneficial
gene-collections which are only indirectly subjected to the selection process. Note that
recombining information from non-competitive solutions has been found beneficial in
other contexts as well – for example when solving vehicle routing problems [17].

The individuals in the non-competitive part of the population can of course still be
expected to improve in average fitness over time. However, this happens without the
need to evaluate directly the fitness of these individuals: Less fit parents are likely to
have less fit children and half of those can be expected to belong to the competitive
part of the population. These children, if they are indeed not fit enough, will not be
able to propagate their genes into the grandchild-generation. Consequently, the chances
that the genetic line of unfit parents will survive are greatly diminished. Note that this

146 C. Ansótegui, M. Sellmann, and K. Tierney

X1

X3

X X4

X

X2 X

&

&2

3

0 1

5

Fig. 1. Variable Tree

dynamic system agrees more closely with our modern understanding of evolution where
the “survival of the fittest” is viewed more as the struggle for survival of genetic lines
rather than that of individual beings.

2.3 Variable Trees

Apart from the fact that the introduction of gender will help reduce the number of fitness
evaluations, in nature the invention of gender went hand-in-hand with the invention of
recombination. Only sexual organisms have separate chromosomes which can be com-
bined in arbitrary ways. This recombination process is realized by individuals having
multiple sets of the entire genome – in humans for example there is one set of chromo-
somes from each parent. In our design we did not go quite as far as to introduce multiple
copies of the genome. However, the idea that certain genes ought to be inherited as a
set while others may be permuted and recombined arbitrarily aligns nicely with our
expectation that certain groups of parameters will be linked more closely than others.

Therefore, we allow the user to define the design of the genome by passing a specific
structure of the problem variables. With our application in mind, the variables will of
course be the parameters of the solver to be tuned. In particular, to couple and de-
couple variables (parameters), the user passes a variable structure which is inspired by
And/Or-trees (see, e.g., [11]). The idea is that And-nodes separate variables that can be
optimized independently.

To specify the parameters of a solver and their relation, we distinguish three types of
variables: continuous and integer variables, both associated with an upper and a lower
bound, and categorical variables that come with an explicit list of feasible values. A
variable tree is a tree where:

– Each node is labelled with a variable or the additional label “&”, and each problem
variable is associated with at least one node.

– Nodes associated with continuous or integer variables have at most one child, and
And-nodes have at least two child-nodes.

– The children of categorical nodes partition the set of values that their parent variable
can take. Branches leading to the children are labelled by the respective value(s) of
the categorical variable.

A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms 147

&

&

0 1

0

.9 1

.6

.7

1 2

C:

&

&

0 1

.9

0

O

O

N

C

C CC

C N

1 2

1

.6

2

&

&

0 1

1

1

.5 2

.7 3

0N:

Fig. 2. Crossover Operator

In Figure 1, we illustrate a variable tree for the minimization of the function

(1 − x1)
(

x2 sin(π(x2 − x3))
x3

+ (x4 − 2)2
)

+ 2x1

(
|x5

x3
− 7|+ (x2x3 − 1)2

)
whereby x1 is categorical and takes values 0 or 1, x2, x3 are continuous and take values
in [12 , 1], and x4, x5 are integer variables taking values in {1, 2, 3}. This function is used
merely to show an interesting semantic tree for illustration purposes. We see that the
structure reflects that, once x1 is set to 0, the pair of variables x2, x3 can be optimized
independently of x4. Also, once x1 is set to 1 and x3 has been assigned a value, variables
x2 and x5 can be optimized independently.

2.4 A Gender-Based Genetic Algorithm

We now have all concepts in place to describe our Gender-based Genetic Algorithm
(GGA) for the automatic configuration of solvers. GGA uses parameters (X, P, M, A, S)
which are used in the following way:

– Initialization: First, we randomly initialize the population and assign a gender C
(for competitive) or N (for non-competitive) and an “age” of 1 to A years uniformly
at random to each individual. In our experiments, we set A to 3.

– Mating Rules: Among the individuals with gender C, we select the top X% (in our
experiments we set X to 10%). These have gained the right to mate in this season.
200/A% of individuals of gender N are assigned uniformly at random to one of
the mating individuals of gender C. The individuals of gender C then mate with all
individuals of gender N which have been assigned to them.

– Crossover: Each mating of a couple results in one new individual with age 0 and
random gender. The genome of the offspring is determined by traversing the variable

148 C. Ansótegui, M. Sellmann, and K. Tierney

Crossover(ParameterTrees TC , TN , T3)

1. curNode ← rootOf(T3), nodeC ← rootOf(TC), nodeN ← rootOf(TN)
2. if (type[curNode]=And) OR (value[nodeC]=value[nodeN]) then
3. label[curNode] ← O, value[curNode] ← value[nodeC]
4. else
5. if rand() mod 2 = 0 then
6. label[curNode] ← C, value[curNode] ← value[nodeC]
7. else
8. label[curNode] ← N, value[curNode] ← value[nodeN]
9. end if

10. end if
11. S ← {curNode}
12. while (S �= ∅) do
13. curNode ← pick(S), S ← S \ {curNode}
14. for all childNodes of curNode do
15. S ← S ∪ {childNode}
16. nodeC ← correspondingNode(TC , childNode)
17. nodeN ← correspondingNode(TN , childNode)
18. if label[curNode]=O then
19. if type[childNode]=OR then
20. if value[nodeC]=value[nodeN] then
21. label[childNode] ← O, value[childNode] ← value[nodeC]
22. else
23. if rand() mod 2 = 0 then
24. label[childNode] ← C, value[childNode] ← value[nodeC]
25. else
26. label[childNode] ← N, value[childNode] ← value[nodeN]
27. end if
28. end if
29. else
30. label[childNode] ← O, value[childNode] ← value[nodeC]
31. end if
32. continue
33. end if
34. if label[curNode]=C then
35. parLabl ← C, parVal ← value[nodeC]
36. oParLabl ← N, oParVal ← value[nodeN]
37. else
38. parLabl ← N, parVal ← value[nodeN]
39. oParLabl ← C, oParVal ← value[nodeC]
40. end if
41. if rand() mod 100 < δ then
42. label[childNode] ← oParLabl, value[childNode] ← oParVal
43. else
44. label[childNode] ← parLabl, value[childNode] ← parVal
45. end if
46. end for
47. end while

Algorithm 1. Crossover Algorithm

A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms 149

tree top-down (compare with Algorithm 1 and Figure 2). A node can be labelled O
(“open”), C, or N. If the root is an And-node, or if both parents agree on the value
of the root-variable, we label it O. Otherwise, we randomly assign it label C or N
(Lines 5 and 23). The algorithm continues by looking at the children of the root
(and so on for each new node). If the label of the parent node is C (or N) then with
probability P% we also label the child with C (N), otherwise with N (C) (Line 41).
In our experiments we set P to 90%.

Finally, the variable assignment associated with the offspring is given by the val-
ues from the C (N) parent for all nodes labelled C (N). For variable-nodes labelled
O both parents agree on its value, and we assign this value to the variable. Note
that this procedure effectively combines a uniform crossover for child-variables of
open And-nodes in the variable tree (thus exploiting the independence of different
parts of the genome) and a randomized multiple-point crossover for variables that
are more tightly connected.

– Mutation: As a final step to determine the offspring’s genome, with probability
M% we mutate the value of each variable (in our experiments, we set M to 10%).
If we mutate a categorical variable, we choose a new value in its domain uniformly
at random. For continuous and integer variables, we choose a new value according
to a Gaussian distribution where the current value marks the expected value and the
variance is set as S% of the variable’s domain. In our experiments, we set S to 10%.

– Death: After the new offspring is created, all individuals’ ages are increased by 1.
Those with age greater than A are removed from the population. In combination
with the mating rules that only 200/A% of individuals of gender N mate in every
season, this stabilizes the total population size.

Before we use this algorithm for the configuration of solvers, we first test it on some
generic optimization functions of three different types: f1 =

∑
i(x2ix2i+1 − pi)2,

f2 =
∑

i(x3ix3i+1x3i+2 − qi)2, and f3 =
∑

i((x3ix3i+1 − vi)2 + (x3ix3i+2 −wi)2),
whereby all variables take integer values in {0, . . . , 15} and constants pi, vi, wi ∈
[0, 152], qi ∈ [0, 153] are chosen uniformly at random.

For each of these functions we compare three different variable trees that determine
the genome structure: The completely independent structure (IND) with one And-node
at the root and all variables as its children, the completely dependent structure (DEP)
where all variables form one long chain, and the semantic structure (SEM) that results
from the static analysis of each of the functions (with independent tuples (x2i, x2i+1) in
f1, (x3i, x3i+1, x3i+2) in f2 and f3, whereby in the latter x3i+1 and x3i+2 are indepen-
dent once x3i has a value). Table 1 compares Gender-based GA (GGA) with the GA
library GALib from [20]. The genome for the latter is determined by representing each
variable as a four-bit string which tests showed to yield the best results. The cross-over
and mutation probabilities were set to 1 and 0, respectively, which our own parame-
ter tuner confirmed to be the best parameter settings for this optimization system. For
our algorithm, we chose the parameter set (10, 90, 10, 3, 10). That is, only the top 10%
of competitive individuals are allowed to mate in each season; with probability 90% a
child-variable inherits the value from the same parent as its parent-variable in the vari-
able tree; the mutation-rate is 10%; individuals die after 3 mating seasons; and nodes in
the child variable trees will randomly change their assignment from their parent’s with
probability 10%.

150 C. Ansótegui, M. Sellmann, and K. Tierney

Table 1. Numerical Results for generic function minimization. We give the average solution value
and, in parenthesis, the number of function evaluations (both in thousands) for 50 runs.

GGA
Prob-Pop-Gen IND DEP SEM GA
f1-1000-25 1.8(13.7) 29.8(13.7) 1.44(13.8) 7.19(26.0)
f1-500-50 0.59(13.4) 28.9(12.8) 0.4(13.3) 4.56(25.5)
f1-2000-25 1.54(27.1) 29.3(27.7) 1.29(27.6) 6.67(52.0)
f1-1000-50 0.46(26.0) 28.7(26.1) 0.31(26.0) 4.41(51.0)
f1-500-100 0.16(25.1) 28.3(25.0) 0.13(25.5) 2.69(50.5)
f2-1000-25 1442(13.7) 6075(13.8) 1229(13.4) 4962(26.0)
f2-500-50 392(13.3) 5273(13.0) 340(13.0) 3127(25.5)
f2-2000-25 1104(27.4) 5121(25.3) 1119(27.6) 4405(52.0)
f2-1000-50 307(25.6) 5886(27.5) 304(25.8) 3184(51.0)
f2-500-100 141(25.3) 4830(25.4) 124(26.0) 2002(50.5)
f3-1000-25 16.2(13.6) 18.5(13.9) 16.4(13.7) 43.2(26.0)
f3-500-50 5.75(13.2) 8.01(13.5) 6.33(13.7) 31.9(25.5)
f3-2000-25 14.7(27.5) 15.9(27.5) 13.7(27.2) 41.3(52.0)
f3-1000-50 4.86(25.9) 6.40(26.5) 5.27(25.8) 31.8(51.0)
f3-500-100 1.33(26.5) 1.7(27.1) 1.25(25.8) 22.5(50.5)

The results clearly show the benefits of introducing gender to reduce the number of
function evaluations. Only half of the population is evaluated in each season. Moreover,
we see that applying different selection pressure on both genders results in significantly
improved solution quality. For example, when optimizing f3 with a population size
of 500 over 100 generations, the gender-based approach using the semantic genome
structure (SEM) on average gives solution values around 1,250 at the cost of 25,800
fitness evaluations. The standard genetic algorithm performs 50,500 evaluations and
still only achieves average solution values of 22,500.

In regard to the shape of parameter trees, we find that, in doubt, assuming indepen-
dence or parameters appears better than assuming dependence, whereby the semantic
hybridization of both can lead to improved performance.

Fig. 3. Average (dashed) and best (solid) fitness for the competitive (black) and non-competitive
(gray) populations when optimizing f2 (averages over 25 runs)

A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms 151

In Figure 3 we show how the average and the best fitness in both parts of the popu-
lation evolve over the course of several generations. Even though it may not have been
expected, the average and best fitness in the non-competitive part of the population are
not worse than in the competitive part. This is of course caused by the fact that gender
is assigned randomly and the fitness of new individuals (no matter to which gender they
belong) is determined by the fitness of both parents. Consequently, we found that the
overall best solution was equally often found in both genders.

3 Automatic Solver Configuration

By representing the genome as a variable tree which is defined by the user of the con-
figuration system, the outlined genetic algorithm can be applied directly for the task
of tuning solver parameters. Note that our approach allows a separation of setting the
structure of the parameters (which would typically be done by the developer of the
solver) and selecting the training instances (which are best selected by the user of the
solver). While using the same parameter categories as ParamILS, the variable tree rep-
resentation does not require discretization of continuous parameters and offers a richer
way of specifying parameter correlations.

To apply our genetic approach for solver configuration we only need to specify the
function which selects the top X% of the competitive part of the population. We could
of course run all individuals (i.e., parameter sets) on all training instances and then select
the best ones. However, this costs a lot of time, especially when the task is to minimize
the expected average runtime of the target algorithm, which is the most common eval-
uation criterion for solvers. In this case, we run the different parameter sets in parallel,
and as soon as the best X% have finished, we interrupt all remaining runs. This way,
the time spent is largely determined by the quality of the very good parameter sets.

For larger population sizes, creating too many parallel threads or processes is not ap-
pealing. In these instances, we partition the competitive population into smaller groups
(typically between 5 and 10 members per available CPU) and select the best X% of this
subgroup by running them in parallel. This is repeated until all groups have found their
winners. In our experiments, we used groups of 8.

The size of the training set is also an important consideration. Many training in-
stances are desirable so as to avoid an over-tuning effect where we find parameter sets
which work particularly well for the training instance but do not generalize. On the
other hand, evaluating each parameter set on all available instances costs a lot of time.
[9] proposed a focused approach which results in more evaluations of better parame-
ter sets. In our setting, we could employ the racing framework from [2] for selecting
the top competitive individuals. However, we take the practical standpoint that we will
normally not have access to as many training instances as we would like (which is nec-
essary to obtain the theoretical guarantees that the probability of over-tuning converges
to zero). Therefore, in each mating season we select a random subset of all available
training instances and race the competitive individuals on those. In subsequent gener-
ations we linearly increase the relative size of the subset, so that the comparison of
different parameter sets becomes more and more accurate the better the parameter sets
become.

152 C. Ansótegui, M. Sellmann, and K. Tierney

Table 2. Experimental results of a standard GA vs. GGA for configuring SAPS with a cutoff of
10 seconds. We report the average total CPU time over 10 runs of the tuners as well as the average
solution quality. All times are given in seconds.

GA GGA Improvement
Avg. Std. Dev Avg. Std. Dev. [%]

Time 23.5K 4.48K 926 1.12K 96
Quality 1.79 1.57 0.07 0.01 96

4 Numerical Results

4.1 Gender Separation for Solver Configuration

We first compare our configurator with a “standard” genetic algorithm to demonstrate
the advantages of the gender separation for configuration. We use a standard genetic
algorithm along with our variable tree and crossover operations.

We compute 40 generations with a population of 30 individuals for both genetic
algorithms. The standard GA does not perform a gender separation and uses a different
mating scheme: Each individual in the population is evaluated in each generation. The
oldest third of the population is replaced by new offspring. This is formed by mating
two individuals from the population. The probability of an individual being chosen for
mating is proportional to its fitness.

In Table 2 we report the configuration time as well as the runtime of the target SAT
solver SAPS when using the final set of parameters for both configurators. The training
was done on a set of 113 SAT instances, the quality of the configuration was evaluated
on a set of 100 different SAT instances (see [9]). The tests were run on a AMD Athlon 64
3000+ CPU with 2 GB RAM.

We see that GGA works 20 times faster and returns configurations which are much
better. Compared to running SAPS with the parameters found by the GA, SAPS requires
only about 4% of the runtime using the parameter set returned by GGA. The great
reduction in configuration time is mainly due to the fact that it is sufficient for GGA to
find the top 10% of the competitive individuals. This can be done by racing parameter
sets against each other, rather than evaluating them all. Since bad parameter settings can
take a lot of time (the effect is softened by the cutoff of 10 seconds, but still significant),
GA wastes a lot of time evaluating bad solver configurations.

This alone does not explain the greatly improved quality, though. As seen earlier
in our preliminary experiments optimizing a generic function, the gender separation
improves the solution quality by providing a store of genes which diversify the search
and prevent us from getting stuck in local optima even though we aggressively select
only the top 10% of the competitive individuals for mating.

4.2 Effect of Parameter Tree Structure

We evaluate our system on two of the same target algorithms that [9] used to show
that their ParamILS approach outperforms the CALIBRA system from [1]. These are
the previously considered SAPS solver and SAT4J, a systematic solver for SAT. We

A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms 153

distinguish two different versions of SAT4J: SAT4J with a full parameter set some of
which allow the solver to return unsatisfying SAT solutions, and SAT4J* with a limited
parameter set all of which force the solver to return only feasible solutions.

The benchmark set for SAPS consists of 113 SAT instances for training and 100
different instances for testing. Since SAPS is a randomized solver, the instances are
paired with 10 different seeds each. We used the SWGCP benchmark set from [9] for
configuring SAT4J(*). It consists of 1000 SAT instances for training and 1000 different
instances for testing. In addition, we compared our solver with ParamILS on the target
algorithm SPEAR, another systematic SAT solver. SPEAR was tuned by ParamILS
in [8]. Again, we used the SWGCP benchmark for training and testing.

We tuned 20 times for 5 CPU hours on a 64bit Linux Intel Xeon with 2.8GHz and
8GB RAM and then compared the average test performances of GGA when using the
independent (IND), dependent (DEP), and semantic (SEM) parameter tree structures
for tuning solvers SAPS, SAT4J*, and SPEAR. For SAPS, which only has four param-
eters, the semantic and the independent structure are the same, for the other two they
are almost the same deviating only for a few parameters. We found that the test perfor-
mance of IND and SEM were identical, 77ms for SAPS, 4.21s for SAT4J* and 2.03s
for SPEAR. Using the fully dependent structure results in 88ms for SAPS, 4.88s for
SAT4J*, and 5.25s for SPEAR. These results are in line with our finding in Section 2.4
that, in doubt, we will want to assume parameter independence. Tests on solvers with
more complex parameter structures are needed to assess whether exploiting the seman-
tic structure of parameters is beneficial for solver configuration.

4.3 GGA vs. ParamILS

We now compare GGA with ParamILS. We ran GGA for 100 generations with a pop-
ulation size of 200 for SAPS and 50 for SPEAR. For SAT4J(*), we ran GGA for 70
generations with a population of size 60. This resulted in total CPU times for configu-
ration that never exceed the 10h cutoff which was used for ParamILS when configuring
SAPS and SPEAR, and a 20h cutoff for SAT4J. Algorithms SAPS and SPEAR were run
on a 32bit Linux Intel Core2 Quad CPU Q6600 with 2.4GHz and 3GB RAM, SAT4J(*)
was run on a 64bit Linux Intel Xeon with 2.8GHz and 8GB RAM.

In Table 3 we show the results of 20 configuration runs of ParamILS1 and our
Gender-based genetic algorithm (GGA) when configuring solvers SAPS, SAT4J, and
SAT4J*.

The table gives the final average computation time for the instances in the training
as well as the test set. Comparing the training and test performances, we see that GGA
very accurately assesses the expected performance. For SAPS and SAT4J*, ParamILS
also assesses its performance quite accurately. However, for SAT4J, ParamILS returns
parameters which perform quite badly on the training set and perform a lot better on the
test set. For example, in configuration run 1 ParamILS finds a parameter set which actu-
ally works very well on the test set, although the performance on the training set is quite
miserable. In configuration run 7, ParamILS also finds a set of parameters which actu-
ally works better on the test set than on the training set. However, the test performance
is almost 100% worse than the average performance achieved by GGA.

1 Thanks to Frank Hutter for providing support of ParamILS and the various solvers!.

154 C. Ansótegui, M. Sellmann, and K. Tierney

Table 3. Experimental Results for Configuring SAPS (left), SAT4J (middle), and SAT4J* (right)

[ms] ParamILS GGA
Run Train Test Train Test

1 51.55 52.12 37.25 35.44
2 53.91 51.45 46.15 41.69
3 55.31 50 55.85 49.52
4 55.11 51.8 36.07 33.4
5 53.72 50.91 46.15 40.1
6 54.96 52.4 35.68 33.56
7 54.67 52.79 34.69 32.2
8 55.11 49.91 37.54 32.76
9 56.24 51.09 38.24 35.42

10 56.26 51.31 34.7 33.53
11 55.02 52.26 35.99 34.52
12 54.29 51.61 36.1 33.99
13 54.31 51.42 36.35 33.59
14 56.58 52.31 37.42 34.58
15 57.38 54.15 38.79 36.66
16 57 54.09 52.98 52.25
17 56.31 52.6 35.78 32.68
18 58 53.73 38.59 35.06
19 54.52 51.83 35.83 33.9
20 61.47 55.85 36.57 34.56
� 55.6 52.2 39.3 36.5
σ 2.0 1.44 6.0 5.5

[s] ParamILS GGA
Run Train Test Train Test

1 3.65 0.99 1.07 1.07
2 1.06 1.07 1.05 1.06
3 1.07 1.07 1.06 1.06
4 0.99 1.05 1.06 1.07
5 5.11 2.22 1.07 1.14
6 1.04 1.04 3.20 3.90
7 5.29 2.31 1.05 1.05
8 6.27 2.38 1.06 1.06
9 1.05 0.53 1.04 1.05

10 1.06 1.07 1.05 1.05
11 1.17 1.06 1.14 1.06
12 1.04 1.05 1.05 1.13
13 1.05 1.06 1.07 1.07
14 1.05 1.05 1.05 1.06
15 1.04 1.05 1.05 1.06
16 6.34 6.83 1.08 1.08
17 5.17 5.35 1.07 1.07
18 4.70 4.32 1.05 1.06
19 5.57 5.20 1.06 1.06
20 5.03 4.97 1.05 1.06
� 2.94 2.28 1.17 1.21
σ 2.2 1.92 0.48 0.63

[s] ParamILS GGA
Run Train Test Train Test

1 2.20 2.86 3.19 2.92
2 5.06 5.41 3.99 3.66
3 4.70 5.78 3.01 2.92
4 2.44 2.58 2.90 2.99
5 2.56 2.57 3.06 3.14
6 2.48 2.76 2.92 2.93
7 2.52 2.77 3.00 2.95
8 2.55 2.66 2.90 2.92
9 2.80 2.96 3.01 3.00

10 2.57 2.92 2.96 2.93
11 2.45 3.92 2.87 2.93
12 4.90 5.05 2.87 2.79
13 2.49 3.93 3.01 2.81
14 2.41 2.92 2.96 2.81
15 5.25 5.93 3.01 2.70
16 4.21 4.36 3.29 3.12
17 4.89 5.39 4.91 4.88
18 2.54 2.63 3.34 3.24
19 2.48 2.55 2.92 2.92
20 2.45 2.42 3.04 3.06
� 3.2 3.62 3.16 3.08
σ 1.12 1.24 0.48 0.47

In terms of solution quality, GGA achieves significant improvements, outperforming
ParamILS on all three configuration tasks. For SAPS, GGA’s worst parameter set re-
sults in an average performance of 52.25 ms per test instance, which is still better than
the average ParamILS parameter set which requires 52.4 ms. Comparing average test
performances (see Table 4), GGA’s parameters improve those of ParamILS when con-
figuring SAPS by more than 30%. Note that the best parameter set found by ParamILS
is significantly worse than the average performance achieved by GGA. Based on this
observation, we conjecture that the poor performance of ParamILS for this solver is
caused by an unfortunate discretization of continuous parameters for ParamILS – which
GGA does not rely on as it handles continuous parameters directly.

For SAT4J and SAT4J*, ParamILS is able to find highly efficient parameter sets.
However, for SAT4J GGA returns parameters which are on average 45% better than
those provided by ParamILS, and for SAT4J* by over 14%. Considering that configu-
ration is essentially a complex optimization problem, this is a big margin. For compari-
son, [9] reported a 19% improvement over CALIBRA when configuring SAPS so as to
minimize median runtime.

Looking at the standard deviation over the different configuration runs, we see that the
genetic approach performs much more robustly than iterated local search whose stan-
dard deviation is at times as large as its mean. Based on our experiments in Section 4.1,
we attribute the solid performance of GGA mostly to the gender separation. However,

A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms 155

Table 4. Experimental results of ParamILS and GGA for various solvers. We give mean solver
times on the training and test sets and, in brackets, the standard deviation over 20 configuration
runs.

ParamILS GGA Welch’s t-value Improvement
Problem Train Test Train Test t(1-tail) t(2-tail) [%]

SAPS [ms] 55.8 (2.3) 52.4 (1.78) 38.8 (5.5) 36.0 (5.0) < 0.01 < 0.01 31.30
SPEAR [s] 1.58 (0.088) 1.49 (0.087) 1.58 (0.086) 1.50 (0.077) 0.33 0.65 -0.67
SAT4J [s] 2.85 (2.12) 2.38 (1.97) 1.25 (0.67) 1.29 (0.76) 0.01 0.01 45.80
SAT4J∗ [s] 3.32 (1.11) 3.74 (1.28) 3.28 (0.89) 3.20 (0.81) 0.04 0.08 14.4

Fig. 4. Average test performance of 20 runs of GGA (solid) and ParamILS (dashed) after 10
minutes, 30 minutes, and 60 minutes tuning time for SAT solvers SAPS (left, msecs, log-scale),
SAT4J* (middle, secs), and SPEAR (right, secs)

further tests are needed to find out which component of GGA is most important for its
performance. Note that ParamILS was reported to find parameter sets which already
improve on the manually set SAPS defaults by three to four orders of magnitude. The
significant additional improvement by GGA is fairly surprising and shows just how hard
it actually is to find near-optimal parameters.

In Table 4 we also report the results when configuring the SPEAR program. We find
that both ParamILS and GGA perform equally well for this configuration problem. We
have no actual lower bounds on the performance that can be achieved by SPEAR, but
we conjecture that there is not much room for improving this algorithm any further.

In Figure 4, finally, we compare the test performance for very short tuning times,
10 minutes, 30 minutes, and 60 minutes, when tuning with ParamILS and GGA. We
observe that GGA is able to identify good parameter sets early on. While this is an
interesting insight which we added at the request of the reviewers, in practice we can
expect that much more time will be spent for configuration as it is done off-line and
pays off with every invocation of the tuned solver later.

5 Conclusion

We considered the problem of automatically configuring solvers. We proposed a genetic
algorithm for this task and showed that it robustly provides high quality parameter sets
which can significantly improve those of the pioneering system from [9]. To specify
and exploit the dependencies of parameters, we introduced a special “variable tree”
structure which indirectly defines the cross-over operator.

156 C. Ansótegui, M. Sellmann, and K. Tierney

To improve performance, our approach introduced a gender separation which we
believe to be of interest for genetic algorithms in general, especially when population
sizes are small and the optimization costs are largely determined by the number of
fitness evaluations. What makes a genetic approach appealing for solver configuration
is that it offers the possibility to race parameter sets against each other. In combination
with the gender separation, which allows us to focus on high quality parameter sets
very aggressively, the evaluation of parameter sets is determined by the solver time
needed with very good parameter settings. We conjecture that this is the most important
advantage of GGA, but it is a subject of future research to identify the component (or
combination of components) of GGA which is most important for its performance.

A practical advantage of using a population based approach is that it can be paral-
lelized naturally. Our preliminary parallelization already resulted in substantial speed-
ups. We are currently working on an efficient parallelization of our code which will
provide the practical basis for configuring solvers that require more computation time.
As future work, we are considering to locally improve good parameter sets which have
been found, thus transforming our genetic algorithm into a memetic algorithm.

Acknowledgement

We would like to thank Warren Schudy for many helpful comments, especially in regard
to the suggestion to model parameter structures as variable trees.

References

1. Adenso-Diaz, B., Laguna, M.: Fine-tuning of Algorithms using Fractional Experimental De-
sign and Local Search. Operations Research 54(1), 99–114 (2006)

2. Birattari, M., Stuetzle, T., Paquete, L., Varrentrapp, K.: A Racing Algorithm for Configuring
Metaheuristics. In: GECCO, pp. 11–18 (2002)

3. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using Experimental Design to Find Ef-
fective Parameter Settings for Heuristics. Journal of Heuristics 7(1), 77–97 (2001)

4. Fukunaga, A.: Automated discovery of local search heuristics for satisfiability testing. Evo-
lutionary Computation 16(1), 31–61 (2008)

5. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-
Wesley, Reading (1989)

6. Gomes, C., Selman, B.: Algorithm Portfolios. Artificial Intelligence 126(1-2), 43–62 (2001)
7. Huberman, B., Lukose, R., Hogg, T.: An Economics Approach to Hard Computational Prob-

lem. Science 265, 51–54 (2003)
8. Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting Verification by Automatic Tuning of

Decision Procedures. FMCAD, 27–34 (2007)
9. Hutter, F., Hoos, H.H., Stützle, T.: Automatic Algorithm Configuration based on Local

Search. In: AAAI, pp. 1152–1157 (2007)
10. Lis, J., Eiben, A.E.: A Multi-Sexual Genetic Algorithm for Multiobjective Optimization. In:

IEEE International Conference on Evolutionary Computation, pp. 59–64 (1997)
11. Marinescu, R., Dechter, R.: And/Or Branch-and-Bound for Graphical Models. In: IJCAI, pp.

224–229 (2005)
12. Miller, G.F., Todd, P.M.: The Role of Mate Choice in Biocomputation. Evolution and Bio-

computation, 169–204 (1995)

A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms 157

13. Minton, S.: Automatically Configuring Constraint Satisfaction Programs. Constraints 1(1),
1–40 (1996)

14. Oltean, M.: Evolving evolutionary algorithms using linear genetic programming. Evolution-
ary Computation 13(3), 387–410 (2005)

15. Preuss, M., Bartz-Beielstein, T.: Sequential Parameter Optimization Applied to Self-
adaptation for Binary-coded Evolutionary Algorithms. Parameter Setting in Evolutionary
Algorithms: Studies in Computational Intelligence, 91–119 (2007)

16. Rejeb, J., AbuElhaij, M.: New Gender Genetic Algorithm for Solving Graph Partitioning
Problems. Circuits and Systems 1, 444–446 (2000)

17. Rochat, Y., Taillard, R.D.: Probabilistic Diversification and Intensification in Local Search
for Vehicle Routing. Journal of Heuristics 1, 147–167 (1995)

18. Sanchez-Velazco, J., Bullinaria, J.A.: Gendered Selection Strategies in genetic Algorithms
for Optimization. UKCI, 217–223 (2003)

19. Vrajitoru, D.: Simulating Gender Separation with Genetic Algorithms. In: GECCO, pp. 634–
641 (2002)

20. Wall, M.: GAlib: A C++ Library of Genetic Algorithm Components. MIT, Cambridge
(1996), http://lancet.mit.edu/ga

http://lancet.mit.edu/ga

Filtering Numerical CSPs Using
Well-Constrained Subsystems

Ignacio Araya, Gilles Trombettoni, and Bertrand Neveu

INRIA, Université de Nice-Sophia, CERTIS
{Ignacio.Araya,Gilles.Trombettoni,Bertrand.Neveu}@sophia.inria.fr

Abstract. When interval methods handle systems of equations over the
reals, two main types of filtering/contraction algorithms are used to re-
duce the search space. When the system is well-constrained, interval
Newton algorithms behave like a global constraint over the whole n × n
system. Also, filtering algorithms issued from constraint programming
perform an AC3-like propagation loop, where the constraints are iter-
atively handled one by one by a revise procedure. Applying a revise
procedure amounts in contracting a 1 × 1 subsystem.

This paper investigates the possibility of defining contracting well-
constrained subsystems of size k (1 ≤ k ≤ n). We theoretically define
the Box-k-consistency as a generalization of the state-of-the-art Box-
consistency. Well-constrained subsystems act as global constraints that
can bring additional filtering w.r.t. interval Newton and 1 × 1 standard
subsystems. Also, the filtering performed inside a subsystem allows the
solving process to learn interesting multi-dimensional branching points,
i.e., to bisect several variable domains simultaneously. Experiments high-
light gains in CPU time w.r.t. state-of-the-art algorithms on decomposed
and structured systems.

1 Introduction

When interval methods handle systems of equations over the reals, two main
types of filtering/contraction algorithms are used to reduce the search space.
When a system contains n unknowns/variables constrained by n equations, in-
terval Newton algorithms behave like a global constraint over a linearization of
the whole n×n system. Filtering algorithms issued from constraint programming
handle 1×1 subsystems (one variable involved in one constraint) in an AC3-like
propagation loop.

This paper investigates the possibility of filtering k × k subsystems, where
the size 1 ≤ k ≤ n. After introducing in Section 2 the necessary background
about intervals, we define in Section 3 the Box-k-consistency achieved by our
new algorithm. This partial consistency generalizes the well-known Box-consis-
tency [2]. Due to the large amount of subsystems in a constraint system, we
explain in Section 5 the criteria used to compute the Box-k-consistency in only
certain subsystems that are made of equalities, connected and well-constrained.
These subsystems are managed like global constraints [16,10] for enhancing the

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 158–172, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Filtering Numerical CSPs Using Well-Constrained Subsystems 159

filtering power. We detail in Section 4 the filtering (revise) procedure that filters
one subsystem and makes it box-k consistent. The procedure expands a local
search tree whose choice points are limited inside the subsystem, and uses a local
interval Newton. This revise procedure has common points with the algorithm
proposed in [5]. Their algorithm also performs a tree search where every node
is filtered, before returning an outer approximation of the obtained sub-boxes.
But it is applied to the whole system of equations and not to subsystems.

Section 5 details how the local search trees built inside subsystems allow
a solving strategy to learn interesting multi-dimensional choice points in the
global search tree, i.e., to bisect several variable domains simultaneously. These
multi-dimensional branching points are called multisplits. Promising experiments
highlight the benefits of our approach for decomposed and structured NCSPs.

2 Background

The algorithms presented in this paper aim at solving systems of equations or,
more generally, numerical CSPs.

Definition 1. A numerical CSP (NCSP) P = (X, C, B) contains a set of
constraints C and a set X of n variables. Every variable xi ∈ X can take a
real value in the interval [xi] and B is the cartesian product (called a box)
[x1]× ...× [xn]. A solution of P is an assignment of the variables in X satisfying
all the constraints in C.

Since real numbers cannot be represented in computer architectures, note that
the bounds of an interval [xi] should actually be defined as floating-point num-
bers. Most of the set operations can be achieved on boxes, such as inclusion and
intersection. An operator Hull is often used to compute an outer approximation
of the union of several boxes.

Definition 2. Let S = {[b1], ..., [bn]} be a set of boxes corresponding to a same
n-set of variables.

We call hull of S, denoted by Hull(S), the minimal box including [b1], [b2],
..., [bn].

To find all the solutions of an NCSP with interval-based techniques, the solving
process starts from an initial box representing the search space and builds a
search tree. The tree search bisects the current box, that is, splits on one di-
mension (variable) the box into two sub-boxes, thus generating one choice point.
At every node of the search tree, filtering (also called contraction) algorithms
reduce the bounds of the current box. These algorithms comprise interval New-
ton algorithms issued from the numerical analysis community [8,13] along with
contraction algorithms issued from the constraint programming community. The
process terminates with atomic boxes of size at most ε on every dimension.

The new contraction algorithm presented in this paper generalizes the fa-
mous Box algorithm that can enforce the Box-consistency property [2] defined
as follows:

160 I. Araya, G. Trombettoni, and B. Neveu

Definition 3. An NCSP (X, C, B) is box-consistent if every pair (c, x) is
box-consistent (c ∈ C, x ∈ X and x is one of the variables involved in c).

Consider a pair (c, x), where c(x, y1, ..., ya) = 0 is an equation of arity a+1.1

Let c′ be the equation c where the variables yi are replaced by the current interval
in B: c′(x) = c(x, [y1], ..., [ya]) = 0. The pair (c, x) is box-consistent if:

– 0 ∈ c′([[x], +]) = c([[x], +], [y1], ..., [ya]);

– 0 ∈ c′([−, [x]]) = c([−, [x]], [y1], ..., [ya]).

[x], resp. [x], denotes the lower bound, resp. the upper bound, of [x]. [[x], +]
denotes the tiny interval (of one u.l.p. large2) bounded by [x] and the following
float. [−, [x]] denotes the tiny interval bounded by [x] and the float preceding [x].

In practice, the Box algorithm performs an AC3-like propagation loop. For every
pair (c, x), it reduces the bounds of [x] such that the new left (resp. right) bound
is the leftmost (resp. rightmost) solution of the univariate equation c′(x) = 0.
Existing revise procedures use a shaving principle to narrow [x]: Slices [si] inside
[x] with no solution are discarded by checking whether c([si], [y1], ..., [ya]) does
not contain 0 and by using a univariate interval Newton.

Two other contraction algorithms are often used in solvers. HC4 [2] whose re-
vise procedure traverses twice the tree representing the mathematical expression
of the constraint for narrowing all the involved variable intervals. 3B [11] or a
variant 3BCID [17] uses a shaving refutation principle similar to SAC [6].

3 Box-k Partial Consistency

As explained above, the Box-consistency yields an outer approximation/box of
1 × 1 subsystems (c, x). The Box-k-consistency introduced in this paper gener-
alizes Box-consistency by yielding an outer approximation of subsystems.

Definition 4. Let P ′ = (X ′, C′, B′) be a subsystem of a numerical CSP P =
(X, C, B) (|X ′| = k), in which the (output) variables in X ′ are involved in at
least one constraint in C′ and the input variables (i.e., the variables involved
in at least one constraint in C′ which are not in X ′) are replaced by their current
interval in B.

The subsystem P ′ is box-k-consistent if there exists a k-box of size 1 u.l.p.
on every face of the k-box B′ for which all the constraints c in C′ are “satisfied”,
i.e., 0 ∈ c(X ′).

If a box-k-consistent subsystem has an empty set of input variables, note that
this subsystem is also global hull consistent [5]. Thus, like for the standard box-
consistency, the presence of input variables makes the box-k-consistency weaker
than global hull consistency.
1 The definition of box-consistency can be straightforwardly extended to inequalities.
2 One Unit in the Last Place is the gap between two very close floating-point numbers.

Filtering Numerical CSPs Using Well-Constrained Subsystems 161

Fig. 1-left shows an example of a 2 × 2 subsystem. The outer box is box-
consistent since it optimally approximates the solution set of constraints c1 and
c2 individually. The inner box is box-2-consistent since it optimally approximates
the set of six “thick” solutions to both constraints. Constraints are thick because
the input variables (e.g., w1, w2, w3) are replaced by intervals.

Fig. 1. Illustration of Box-2-consistency

Partial consistencies of NCSPs are generally defined modulo a precision ε that
is used in practice by the corresponding algorithm to reach a fixpoint earlier. ε
must then replace 1 u.l.p. in the previous definitions.

3.1 Benefits of Box-k-Consistency

The following example theoretically shows that a contraction obtained by a
k × k subsystem may be stronger than contraction on 1× 1 subsystems and on
the whole n× n system performed by an interval Newton. Consider the NCSP
P = ({x, y, z}, {x − y = 0, x + y + z = 0, (z − 1)(z − 4)(2x + y + 2) =
0}, {[−106, 106], [−106, 106][−10, 10]}).

Running Box and interval Newton on P does not filter the box. Achieving
Box-2-consistency on the 2× 2 subsystem ({x,y}, {x-y=0, x+y+z=0}) narrows

Fig. 2. Illustration of a subsystem of size 2, with z = [−10, 10] as input variable.
{[-5,5],[-5,5]} is box-2-consistent w.r.t. the 2 constraints x− y = 0 and x + y + [z] = 0.

162 I. Araya, G. Trombettoni, and B. Neveu

the intervals of x and y to [−5, 5] as shown in Fig. 2. Also, if branching was
used to find solutions, only two bisections (choice points) would be necessary
to isolate the 3 solutions {(−2

3 , −2
3 , 4

3), (−0.5,−0.5, 1), (−2,−2, 4)}. We should
highlight that Newton on the whole system does not contract the box because it
contains several solutions, whereas Newton on the 2×2 subsystem does because
it contains only one (thick) solution (segment in bold). Of course, this small
example is didactic. Experiments described in Section 6 show larger and non-
linear instances highlighting the benefits of structural partial consistencies over
stronger partial consistencies like 3B-consistency [11].

3.2 Achieving Box-k-Consistency in Well-Constrained Subsystems
of Equations

Enforcing Box-k-consistency in every subsystem of given size k is too time-
consuming and counter-productive in practice. The number of subsets of k vari-
ables in a NCSP with n variables is high and one needs to consider only promising
subsystems.

We have thus used several criteria to reduce the number of subsystems that
are candidate. We first select subsystems with only equations (no inequalities)
because equations bring a great reduction of the search space and have nice
properties. To understand these properties, we have to pay attention to NCSPs
that admit a finite number of solutions. These NCSPs contains n variables but
also the same number n of independent equations (additional inequalities can
reduce the number of solutions). Also, the corresponding bipartite constraint
graph verifies the following structural/graph property [1].

Definition 5. Let P be a system of n independent equations constraining n
variables. The vertices of the bipartite constraint graph G corresponding to
P are the n variables and the n equations, and edges connect one equation to its
involved variables.

The system of equations P is (structurally) well-constrained if its con-
straint graph G has a perfect matching [7].

For instance, Fig. 1-right shows the perfect matching (bold-faced edges) of the
corresponding subgraph. This structural well-constriction can be viewed as a
necessary condition to obtain a finite set of solutions. It appears that inter-
val Newton also requires this condition (while it is of course not sufficient) for
contracting a box. Indeed, if the system is not structurally well-constrained,
the jacobian matrix will necessarily be singular [1]. Our subsystems fulfill this
condition because Interval Newton is used by our new Box-k-Revise procedure
(see Section 4) to achieve faster a box-k-consistent subsystem. (Also, the time
complexity of interval Newton is cubic in the number of variables, so that it is
sometimes intractable to apply it to very large NCSPs. Instead, we could use
interval Newton only inside subsystems.)

We finally require our subsystems be connected for performance consider-
ations. Indeed, if a given subsystem of size k contained several disconnected

Filtering Numerical CSPs Using Well-Constrained Subsystems 163

components of size at most k′ (k′ < k), we could make it box-k-consistent by
achieving box-k’-consistency in every component.

To sum up, restricting the subsystems to well-constrained and connected sub-
graphs of equations has two virtues. First, it allows a strong filtering in spe-
cific subparts of the system, which is useful for sparse NCSPs or for (globally)
under-constrained ones, e.g., systems mixing equalities and inequalities. Second,
it allows the use of an interval Newton to faster contract the subsystem.

4 Contraction Algorithm Using Well-Constrained
Subsystems as Global Constraints

Instead of contracting all the well-constrained subsystems of given size k, we have
designed an AC3-like propagation that manages selected subsystems of different
sizes: subsystems of size 1 but also well-constrained subsystems of larger size.
Well-constrained subsystems are thus similar to global constraints [16,10] that
can be defined by the user or automatically (see Section 6).

All the subsystems are first put into a propagation queue and revised in
sequence. When a variable domain is reduced more than a ratio ρpropag, all
the subsystems involving this variable are pushed into the queue, if they are not
already in it. This propagation process is just specialized by the revise procedure
used for contracting the subsystems of size greater than 1 and detailed below.

4.1 The Box-k Revise Procedure

The revise procedure is based on a branch&prune method limiting the bisection
to the k (output) variables X of the subsystem, and using a breadth-first search.
At the end of this local tree search, the current box is replaced by the hull of the
leaves of the local tree. The algorithm Box-k-Revise is a generic procedure that
achieves a box-k-consistent subsystem. The procedure manages a list L of nodes
that are leaves of the local tree. A leaf l in L has three significant components:
l.box designs the (n-dimensional) search space associated to the node; l.precise is
a boolean stating whether l.box has reached the precision ε in all the dimensions
(ε also yields the precision of the global solution); l.certified is a boolean asserting
whether l.box contains a unique solution. The box parameter is the current global
box (search space) when the revise procedure is called.

A combinatorial process (tree search) is performed by the while loop. At
every iteration, one leaf in L, which is not precise and not certified, is selected,
bisected and the two new sub-boxes are contracted. The search ends if all the
leaves are tagged as certified or precise or if a limit τleaves in the number of leaves
is reached. τleaves limits the memory storage requirement (see Section 4.5) and
allows one to quickly propagate the obtained reductions to the other subsystems.

A leaf is simply selected in breadth-first order. We first tried a more sophisti-
cated heuristic function for selecting a “large” box on the border of the hull of
the different leaves. The idea was to maximize the gain in volume on the current

164 I. Araya, G. Trombettoni, and B. Neveu

Algorithm 1. Boxk-Revise (in-out L, box; in X , C, ε,
subContractor, τleaves, τρio)
UpdateLocalTree(L, box, X, C, ε, subContractor)
L′ ← {l ∈ L s.t. ¬l.certified and ¬l.precise and ProcessLeaf?(l,X,C,τρio)}
while 0 < L′.size and L.size < τleaves do

l ← L′.front() /* Select a leaf in breadth-first order */
(l1, l2) ←bisect(l, X)
contract(l1, subContractor, X, C, ε)
contract(l2, subContractor, X, C, ε)
if l1.box �= ∅ then L.pushBack(l1) end if
if l2.box �= ∅ then L.pushBack(l2) end if
L.remove(l)
L′ ← {l ∈ L s.t. ¬l.certified and ¬l.precise and ProcessLeaf?(l,X,C,τρio)}

end while
box ←hull(L) /* Outer approximation of the union of all the boxes l.box, l ∈ L */

global box in case the selected leaf would be eliminated by filtering. This multi-
dimensional generalization of the BoxNarrow algorithm (that shaves the bounds
of the handled interval in the Box algorithm) has been discarded because it did
not bring a significant gain in performance.

Algorithm 2. contract(in-out l; in subContractor, X , C, ε)
if ¬l.precise then

if ¬l.certified then subContractor(l.box) end if
if l.box �= ∅ and I-Newton(l.box,X) then l.certified ← true end if
if maxDiameter(l.box) < ε then l.precise ← true end if

end if

The procedure contract is mainly parameterized by the contraction procedure
subContractor (HC4 [2] or 3BCID [17] in our experiments). The scope C of
subContractor is the considered k-set of equations. After a call to subContrac-
tor, an interval Newton limited to the k × k subsystem is launched. If Newton
certifies a unique solution in a leaf, I-Newton contracts l.box and returns true so
that this leaf is tagged as certified.

4.2 The S-kB-Revise Variant

S-kB-Revise is the name of a variant of Box-k-Revise for which the entire sys-
tem is used in the contract procedure. That is, the scope C of subContractor
includes the whole n-set of constraints, instead of the k-set of constraints at-
tached to the subsystem. With S-kB-Revise, the k-set of constraints in the
subsystem is just used by interval Newton. This variant brings additional filter-
ing, but at a higher cost.

Filtering Numerical CSPs Using Well-Constrained Subsystems 165

4.3 Reuse of the Local Tree (Procedure UpdateLocalTree)

A simpler version of Algorithm 1 did not call the UpdateLocalTree proce-
dure and simply initialized the list L with the current box. However, instead
of performing an intensive search effort in only one subsystem, we preferred to
quickly propagate the obtained reductions to the other subsystems. Therefore
the UpdateLocalTree procedure reuses the local tree (i.e., its leaves) that has
been saved in a previous call to Algorithm 1. Every leaf in the current list L is just
updated by intersection with the current box and filtered with subContractor.

Algorithm 3. UpdateLocalTree (in-out L; in box, X , C, ε, subContractor)
if L = ∅ then

L ← {Leaf(box)} /* Initialize the root of the local tree with the current box */
else

for all l ∈ L do
/* Update and contract every leaf of the stored local tree */
if l.box �= (l.box ∩ box) then

l.box ← l.box ∩ box

contract(l, subContractor, C, ε))
if l.box = ∅ then L.remove(l) end if

end if
end for

end if

In fact, the leaves of the local trees are also maintained in the global search
tree. To do so, the list L is implemented as a backtrackable data-structure up-
dated in case of backtracking. It avoids redoing the same job in the subsystems
several times, in particular when the multisplit splitting heuristic is chosen (see
Section 5).

4.4 Lazy Handling of a Leaf (Procedure ProcessLeaf?)

Our first experiments have shown us that handling a leaf in a local tree, i.e.,
bisecting it and contracting the two sub-boxes, was often counterproductive. We
have then defined an input/output ratio ρio that decides whether a given leaf of
box B must be handled in the local tree.

ρio(B, I,O, F) =
Maxx∈I(smear(x))
Maxx∈O(smear(x))

The function ProcessLeaf? calculates ρio in a leaf. If this ratio is larger than a
threshold τρio , the leaf will not be handled in the current revise procedure.

ρio is based on the well-known smear function [9] defined by:

smear(x):=Maxf∈F (|∂f
∂x | × Diam(x)). This function is often used for selecting

the next variable to be bisected in NCSPs (the variable with the largest smear
evaluation).

166 I. Araya, G. Trombettoni, and B. Neveu

The denominator of ρio can be directly explained by it: output variables (O)
with a great smear evaluation (implying a small ratio ρio) often lead to a great
contraction when they are bisected inside the local subsystem tree. Desiring a
small impact of the input variables (I) is less intuitive. We understand that large
input domains generally lead to large output domains (i.e., leaf boxes) in the
subsystem and thus yields a poor reduction. The same argument holds in fact
for the derivatives of functions. To illustrate this point, let us take a subsystem
of size 1 like 0.001 y + x2 − 1 = 0 (x is the output variable; [x] = [y] = [−1, 1])
having ρio = 0.002

4 = 0.0005. After one bisection on x, the subsystem contraction
leads to a very small interval for x. A large interval would be obtained for x if
the considered subsystem was y + x2 − 1 = 0 with ρio = 2

4 = 0.5.

4.5 Properties of the Revise Procedure

The following proposition formalizes the correctness, the memory and time com-
plexities of the procedure Box-k-Revise.

Proposition 1. Let P ′ = (X ′, C′, B) be a subsystem of a CSP P = (X, C, B),
with |X | = n, |C| = m, |X ′| = |C′| = k.

The procedure Box-k-Revise, called with τleaves = +∞ and τρio = +∞,
makes P ′ box-k-consistent.

Let Diam be the largest interval diameter in B. Let d be log2(Diam
ε), the

maximum number of times a given interval must be bisected to reach the precision
ε. 3

The memory complexity of Box-k-Revise is O(k τleaves).
The number of calls to subContractor is O(k d τleaves).

Proof. The correction is based on the combinatorial process performed by the
procedure Box-k-Revise. Called with τleaves = +∞ and with the subsystem
made of C′, the procedure computes all the atomic boxes of precision ε in the
subsystem before returning the hull of them, thus achieving roughly (i.e., assum-
ing that the actual values of input variables are unknown) the global consistency
of P ′.

The memory complexity comes from the breadth-first search that must store
the O(τleaves) leaves of the local tree. The revise procedure works with n-
dimensional boxes but, in order to save memory, stores at the end only k intervals
of a k × k subsystem.

The number of calls to subContractor is bounded by the number of nodes in
the local search tree. The number of leaves of this tree is τleaves (corresponding to
living boxes that can contain solutions) plus the number of dead leaves eliminated
by filtering. For any living leaf l, the number of nodes created in the tree to reach
l is at most 2 × d × k since the root must be at most bisected d times in all its
k dimensions. Although numerous such internal nodes are “shared” by several
living leaves, this bounds the number of calls to a sub-filtering operator with
O(k d τleaves). �

3 d generally falls between 20 and 60 in NCSPs occurring in practice.

Filtering Numerical CSPs Using Well-Constrained Subsystems 167

Another property allows us to better understand the gain in contraction obtained
by the S-kB-Revise variant (see Section 4.2).

Proposition 2. Consider a propagation algorithm calling S-kB-Revise on all
the subsystems of size k in a given NCSP P .

This algorithm computes the (k + 2)B-consistency of P .

The kB-consistency, introduced by Lhomme [11], is a strong partial consistency
related to the k-consistency (in finite-domain CSPs) restricted to the bounds
of intervals. 3B-consistency is similar to SAC-consistency [6]. It is known to be
stronger (i.e., to better contract) than box-consistency (i.e., box-1-consistency).
It appears that this result can be generalized to any k > 1.

5 Multidimensional Splitting

It turns out that the Box-k-Revise procedure has not only a contraction effect,
but also provides a new way to make choice points, that is, to build the (global)
search tree. This new splitting strategy is called multidimensional splitting (in
short multisplit).

Definition 6. Consider a k × k subsystem P ′ defined inside an NCSP P =
(X, C, B). Consider a set S of m boxes associated to P ′ such that S contains all
the solutions to P , and the m boxes obtained by projection on P ′ of the boxes in
S are pairwise disjoint.

A multisplit of dimension k consists in splitting the search space B into the
m boxes in S.

In practice, the m boxes correspond to the leaves of a subsystem local tree. At
the end of a Box-k propagation, our solving strategy makes a choice between a
classical bisection and a multisplit. If all the subsystems have a ratio ρm larger
than a user-defined threshold τm, then a standard bisection is performed. Oth-
erwise, we multisplit the subsystem with the smallest ratio ρm, i.e., we replace
the current box by the set L of m leaves associated to the local tree.

ρm =
∑

l∈L V olume(l)
V olume(Hull(L))

Multisplit generalizes a procedure used by IBB (see Section 6.1). IBB performs
a multisplit once it finds the m solutions (i.e., atomic boxes) in a given block.
The difference here is that a multisplit may occur with non atomic boxes whose
size has not reached the required precision.

6 Experiments

The Box-k based propagation algorithm has been implemented in the Ibex open
source interval-based solver in C++ [4,3]. The variant with multisplit (msplit)
performs a multisplit of a subsystem with the minimum ratio ρm, provided that
ρm < τm=0.99. All the competitors are also available in the same library, making
the comparison fair.

168 I. Araya, G. Trombettoni, and B. Neveu

6.1 Experiments on Decomposed Benchmarks

Ten decomposed benchmarks, described in [15,14], appear in Table 1. They
have been previously decomposed by equational algorithms (eq) like maximum-
matching, or by more sophisticated geometrical algorithms (geo). They are chal-
lenging for general-purpose interval methods, but can efficiently be solved by
IBB [15,14].

Brief Description of IBB
IBB is dedicated to decomposed systems, i.e., sparse systems of equations that
have been first decomposed into a sequence of irreducible [1] well-constrained
blocks/subsystems. Inter-Block Backtracking handles every block in the order
provided by the sequence. It interleaves contraction steps (performed by HC4 and
interval Newton) and bisections inside the block until atomic boxes (solutions)
are obtained. Choice points are then made: the variables of the block are replaced
by one of the atomic boxes, i.e., they are considered constant in subsequent
blocks.

We understand that the Box-k-Revise procedure plus multisplit represents
a generalization of IBB in that the input variables domains of a subsystem are
not necessarily atomic and that a multisplit is not necessarily performed after
a subsystem handling. In other terms, the IBB block handling is not a revise
procedure, it is just an ad-hoc procedure embedded in a dedicated algorithm.
Applied to decomposed systems, the only information that our new approach
does not exploit is the order between blocks which provides to IBB a useful
splitting heuristic.

Experimental Protocol
Every Box-k based strategy has been tuned with 6 different sets of parameter
values: τρio is 0.01, 0.2 or 0.8 (0.01 is always the best value on decomposed
systems); the precision ρpropag used in the HC4 propagation is 1% or 10%; All
the other parameters have been empirically fixed: the precision ρpropag in the
Box-k propagation is always 10%; the maximum number τleaves of leaves inside
a subsystem tree is 10; the number of slices of 3BCID in Box-k(3BCID) is 10.
To be fair, the parameters of the competitor algorithms have been tuned so
that 8 trials have been performed for Box and HC4, and 16 trials have been run
for 3BCID. For all the tests, the Newton ceil (size of maximum diameter under
which interval Newton is run) is 10, and the same variable order is used in a
round-robin strategy (except for IBB and for Box-k with multisplit).

The subsystems given to our Box-k propagation are defined automatically.
The irreducible blocks produced by the IBB decomposition simply become the
well-constrained subsystems handled by Box-k-Revise.

Results
Strategies based on HC4, Box and 3BCID followed by interval Newton are not
competitive at all with Box-k and IBB on the tested decomposed systems. The

Filtering Numerical CSPs Using Well-Constrained Subsystems 169

Table 1. Experimental results on IBB benchmarks. The first 3 columns include the
name of the system, its number n of variables and its number of solutions. The
next three columns yield the CPU time (above) and the number of boxes, i.e., choice
points (below), obtained on an Intel 6600 2.4 GHz by existing strategies based on
HC4, Box or 3BCID followed by interval Newton (between two bisections selected in a
round-robin way for the variable selection). The last four columns report the results
obtained by our algorithms on the same computer: Box-k-Revise parameterized by
subContractor=HC4 or subContractor=3BCID, with multisplit (msplit) or without.
To be the closest to IBB, Box-k-Revise, and not the S-kB-Revise variant, is used by
our constraint propagation algorithm.

Benchmark n #sols HC4 Box 3BCID IBB Box-k(HC4) Box-k(3BCID)
msplit msplit

Chair(eq) 178 8 >3600 >3600 >3600 0.27 >3600 16.5 >3600 0.52
1x15,1x13,1x9,5x8,3x6,... 575 15
Latham(eq) 102 96 >3600 >3600 39.9 0.17 0.94 1.35 1.5 1.08
1x13,1x10,1x4,25x2,25x1 587 839 199 991 189
Ponts(eq) 30 128 33.4 33.4 1.89 0.59 6.85 8.19 0.79 0.71
1x14,6x2,4x1 20399 20399 357 783 231 307 231
Ponts(geo) 38 128 44.1 44.1 2.6 0.16 2.01 0.31 1.45 0.39
13x2,12x1 18363 18363 685 6711 767 6711 767
Sierp3(geo) 124 198 >3600 >3600 77.5 0.62 49.0 1.38 52.5 1.77
44x2,36x1 1727 84169 1513 84169 1513
Star(eq) 46 128 >3600 >3600 4.9 0.05 35.6 0.12 44.0 0.26
3x6,3x4,8x2 283 44195 263 44023 263
Tangent(eq) 28 128 77 77 2.1 0.08 1.74 0.08 1.87 0.14
1x4,10x2,4x1 390903 390903 753 12027 255 12235 255
Tangent(geo) 42 128 – – 7.38 0.08 0.80 0.19 0.80 0.19
2x4,11x2,12x1 859 1415 251 1407 251
Tetra(eq) 30 256 1281 1281 12.3 0.63 33.6 1.06 13.57 0.76
1x9,4x3,1x2,7x1 607389 607389 1713 4619 483 2243 483
Sierp3(eq) see Section 6.2 >5000 see Section 6.2

comparison of Box-k against IBB is very positive because the CPU times reported
for IBB are really the best that have never been obtained with any variant of this
dedicated algorithm. Also, no timeout is reached by Box-k+multisplit and IBB
is on average only twice faster than Box-k(3BCID) (at most 6 on Latham). As
expected, the results confirm that multisplit is always relevant for decomposed
benchmarks. For the benchmark Sierp3(eq) (the fractal Sierpinski at level 3
handled by an equational decomposition), an equational decomposition makes
appear a large irreducible 50×50 block of distance constraints. This renders IBB
unefficient on it (timeout).

6.2 Experiments on Structured Systems

Eight structured systems appear in Table 2. They are scalable chains of con-
straints of reasonable arity [12]. They are denoted structured because they are
not sufficiently sparse to be decomposed by an equational decomposition, i.e.,
the system contains only one irreducible block, thus making IBB pointless. A
brief and manual analysis of the constraint graph of every benchmark has led us
to define a few well-constrained subsystems of reasonable size (between 2 and
10). In the same way, we have replaced the 50×50 block in Sierp3(eq) by 6×6
and 2× 2 Box-k subsystems.

170 I. Araya, G. Trombettoni, and B. Neveu

Table 2. Results on structured benchmarks. The same protocol as above has been
followed, except that the solving strategy is more sophisticated. Between two bisections,
the propagation with subsystems follows a 3BCID contraction and an interval Newton.
The four Box-k columns report the results obtained by the S-kB-Revise variant. The
results obtained by Box-k-Revise are generally worse and appear, with multisplit only,
in the last two columns.

Benchmark n #sols HC4 Box 3BCID Box-k(HC4) Box-k(3BCID) Box-k-Revise
msplit msplit HC4 3BCID

Bratu 60 2 58 626 48.7 47.0 33.0 135 126 86.4 96.2
29x3 15653 13707 79 39 17 43 25 125 129
Brent 10 1015 1383 127 17.0 28.5 20.2 44.9 31.0 20.8 34.9
2x5 7285095 42191 9849 2975 4444 4585 1309 5215 4969
BroydenBand 20 1 >3600 0.17 0.11 0.45 0.15 0.91 0.31 0.30 0.28
1x6,3x5 1 21 4 19 17 3 7 3
BroydenTri 30 2 1765 0.16 0.25 0.22 0.24 0.39 0.29 0.19 0.23
6x5 42860473 63 25 11 19 9 3 19 17
Reactors 30 120 >3600 >3600 288 340 315 81.4 67.5 250 194
3x10 39253 14576 10247 1038 788 35867 21465
Reactors2 10 24 >3600 >3600 28.8 9.5 12.3 10.4 12.2 9.93 11.9
2x5 128359 4908 10850 4344 5802 5597 5353
Sierp3Bis(eq) 83 6 >3600 >3600 4917 >3600 >3600 >3600 389 >3600 4503
1x14,6x6,15x2,3x1 44803 218 122409
Trigexp1 30 1 >3600 13 0.08 0.08 0.08 0.08 0.09 0.08 0.08
6x5 27 1 1 1 1 1 1 1
Trigexp2 11 0 1554 >3600 83.7 81.2 85.7 105 83.0 80.6 82.1
2x4,2x3 2116259 16687 15771 16755 3797 2379 15771 11795

Standard strategies based on HC4 or Box followed by interval Newton are gen-
erally not competitive with Bok-k on the tested benchmarks. The solving strat-
egy based on S-kB-Revisewith subContractor=3BCID (column Box-k(3BCID))
appears to be a robust hybrid algorithm that is never far behind 3BCID and is
sometimes clearly better. The gain w.r.t. 3BCID falls indeed between 0.7 and 12.
The small number of boxes highlights the additional filtering power brought by
well-constrained subsystems. Again, multisplit is often the best option.

The success of Box-k on Sierp3Bis(eq) has led us to try a particular version
of IBB in which the inter-block filtering [15] is performed by 3BCID. Although
this variant seldom shows a good performance, it can solve Sierp3(eq) in 330
seconds.

6.3 Benefits of Sophisticated Features

Tables 3 has finally been added to show the individual benefits brought by two
features: the user parameter τρio driving the procedure ProcessLeaf? and the
backtrackable list of leaves used to reuse the job achieved inside the subsystems.

Every cell reports the best result (CPU time in second) among both sub-
contractors. Multisplit is allowed in all the tests. The first line of results cor-
responds to the implemented and sophisticated revise procedure; the next ones
correspond to simpler versions for which at least one of the two advanced features
has been removed.

Three main observations can be drawn. First, when a significant gain is
brought by the features on a given system, then this system is efficiently handled

Filtering Numerical CSPs Using Well-Constrained Subsystems 171

Table 3. Benefits of the backtrackable data structure (BT) and of τρio in the Box-k-
based strategy. Setting τρio = ∞ means that subsystem leaves will be always processed
in the revise procedure.

Chair Latham Ponts(eq) Ponts(geo) Sierp3(geo) Star Tan(eq) Tan(geo) Tetra
BT, τρio

0.52 1.08 0.71 0.31 1.38 0.12 0.08 0.19 0.76
¬ BT, τρio

10.8 4.61 1.51 1.27 23.9 2.34 0.71 1.58 2.13
BT, τρio

= ∞ 23.4 4.71 2.60 1.00 23.8 1.67 1.09 1.81 3.57
¬ BT, τρio

= ∞ 24.2 6.60 2.80 1.11 23.9 2.40 1.15 1.82 3.54

Bratu Brent BroyB. BroyT. Sierp3B(eq) Reac. Reac.2 Trigexp1 Trigexp2

BT, τρio
33.0 20.2 0.15 0.24 389 67 12.2 0.08 83

¬ BT, τρio
33.2 21.0 0.14 0.23 411 97 12.0 0.07 85

BT, τρio
= ∞ 33.9 23.8 0.38 0.28 519 164 13.1 0.10 103

¬ BT, τρio
= ∞ 33.0 28.7 0.40 0.38 533 401 18.7 0.07 148

against competitors in Tables 1 and 2. Second, τρio seems to have a better impact
on performance than the backtrackable list, but the difference is slight. Third,
several systems are only slightly improved by one of both features, whereas the
gain is significant when both are added together. This is true for most of the
IBB benchmarks. On these systems, between 2 bisections in the search tree, it
often occurs that a job inside several subsystems leads to identify atomic boxes
(some others are not fully explored thanks to τρio). Although we multisplit only
one of these subsystems, the job on the others is saved in the backtrackable list.

7 Conclusion

We have proposed a new type of filtering algorithms handling k×k well-constrai-
ned subsystems in an NCSP. k× k interval Newton calls and selected bisections
inside such subsystems are useful to better contract decomposed and structured
NCSPs. In addition, the local trees built inside subsystems allow a solving strat-
egy to learn choice points bisecting several variable domains simultaneously.

Solving strategies based on Box-k propagations and multisplit have mainly
three parameters: the choice between Box-k-Revise and S-kB-Revise (although
Box-k-Revise seems better suited only for decomposed systems), the choice of
sub-contractor (although 3BCID seems to be often a good choice), and τρio. This
last parameter appears to be finally the most important one.

On decomposed and structured systems, our first experiments suggest that our
new solving strategies are more efficient than standard general-purpose strategies
based on HC4, Box or 3BCID (with interval Newton). Box-k+multisplit can be
viewed as a generalization of IBB. It can also solve large decomposed NCSPs with
relatively small blocks in less than one second, but can also handle structured
NCSPs that IBB cannot treat.

Subsystems have been automatically added in the decomposed systems, but
have been manually added in the structured ones, as global constraints. In this
paper, we have validated the fact that handling subsystems could bring addi-
tional contraction and relevant multi-dimensional choice points. The next step
is to automatically select a relevant set of subsystems. We believe that an adap-
tation of maximum-matching machinery or other graph-based algorithms along
with a criterion similar to ρio could lead to efficient heuristics.

172 I. Araya, G. Trombettoni, and B. Neveu

Acknowledgments

We thank the referees for their helpful comments.

References

1. Ait-Aoudia, S., Jegou, R., Michelucci, D.: Reduction of Constraint Systems. In:
Compugraphic (1993)

2. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising Hull and Box
Consistency. In: Proc. ICLP, pp. 230–244 (1999)

3. Chabert, G.: http://www.ibex-lib.org (2009)
4. Chabert, G., Jaulin, L.: Contractor Programming. Artificial Intelligence 173, 1079–

1100 (2009)
5. Cruz, J., Barahona, P.: Global Hull Consistency with Local Search for Continuous

Constraint Solving. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI),
vol. 2258, pp. 349–362. Springer, Heidelberg (2001)

6. Debruyne, R., Bessière, C.: Some Practicable Filtering Techniques for the Con-
straint Satisfaction Problem. In: Proc. IJCAI, pp. 412–417 (1997)

7. Dulmage, A.L., Mendelsohn, N.S.: Covering of Bipartite Graphs. Canadian Journal
of Mathematics 10, 517–534 (1958)

8. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer,
Heidelberg (2001)

9. Kearfott, R.B., Novoa III, M.: INTBIS, a portable interval Newton/Bisection pack-
age. ACM Trans. on Mathematical Software 16(2), 152–157 (1990)

10. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.P.: Efficient and safe
global constraints for handling numerical constraint systems. SIAM Journal on
Numerical Analysis 42(5), 2076–2097 (2005)

11. Lhomme, O.: Consistency Tech. for Numeric CSPs. In: IJCAI, pp. 232–238 (1993)
12. Merlet, J.-P.:

http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html

(2009)
13. Neumaier, A.: Int. Meth. for Systems of Equations. Cambridge Univ. Press, Cam-

bridge (1990)
14. Neveu, B., Chabert, G., Trombettoni, G.: When Interval Analysis helps Interblock

Backtracking. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 390–405.
Springer, Heidelberg (2006)

15. Neveu, B., Jermann, C., Trombettoni, G.: Inter-Block Backtracking: Exploiting
the Structure in Continuous CSPs. In: Jermann, C., Neumaier, A., Sam, D. (eds.)
COCOS 2003. LNCS, vol. 3478, pp. 15–30. Springer, Heidelberg (2005)

16. Régin, J.-C.: A Filtering Algorithm for Constraints of Difference in CSPs. In: Proc.
AAAI 1994, pp. 362–367 (1994)

17. Trombettoni, G., Chabert, G.: Constructive Interval Disjunction. In: Bessière, C.
(ed.) CP 2007. LNCS, vol. 4741, pp. 635–650. Springer, Heidelberg (2007)

http://www.ibex-lib.org
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html

Minimising Decision Tree Size as Combinatorial
Optimisation�

Christian Bessiere1, Emmanuel Hebrard2, and Barry O’Sullivan2

1 LIRMM, Montpelier, France
bessiere@lirmm.fr

2 Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{e.hebrard,b.osullivan}@4c.ucc.ie

Abstract. Decision tree induction techniques attempt to find small trees that fit
a training set of data. This preference for smaller trees, which provides a learning
bias, is often justified as being consistent with the principle of Occam’s Razor. In-
formally, this principle states that one should prefer the simpler hypothesis. In this
paper we take this principle to the extreme. Specifically, we formulate decision
tree induction as a combinatorial optimisation problem in which the objective is
to minimise the number of nodes in the tree. We study alternative formulations
based on satisfiability, constraint programming, and hybrids with integer linear
programming. We empirically compare our approaches against standard induc-
tion algorithms, showing that the decision trees we obtain can sometimes be less
than half the size of those found by other greedy methods. Furthermore, our deci-
sion trees are competitive in terms of accuracy on a variety of well-known bench-
marks, often being the most accurate. Even when post-pruning of greedy trees
is used, our constraint-based approach is never dominated by any of the existing
techniques.

1 Introduction

Decision trees [5] are amongst the most commonly used classifiers in real-world ma-
chine learning applications. Part of the attraction of using a decision tree is that it is easy
to use and interpret. For example, consider the data set for a simple classification task
in Figure 1(a). Each training example is defined by a set of weather features (outlook,
temperature, humidity, windy) and a class: + (−) meaning I am happy (unhappy) to
play outdoors under the given weather conditions. A decision tree for this training set is
presented in Figure 1(b). The decision tree makes classifications by sorting the features
of an instance through the tree from the root to some leaf node. At each internal node a
test on a feature is performed, and each subtree corresponds to a possible outcome for
that test. Classifications are made at the leaf nodes.

Traditional decision tree induction techniques attempt to find small trees that fit a
training set of data. This preference for smaller trees is often justified as being consistent

� Bessiere is supported by the project CANAR (ANR-06-BLAN-0383-02). Hebrard and
O’Sullivan are supported by Science Foundation Ireland (Grant number 05/IN/I886).

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 173–187, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

174 C. Bessiere, E. Hebrard, and B. O’Sullivan

(a) An example data-set.

T

T

T

-

F

+

windy = true

F

+

outlook = rain

F

T

-

F

T

T

-

F

+

windy = true

F

+

outlook = rain

outlook = sunny

humidity = normal

(b) A decision tree.

Fig. 1. An example decision tree learning problem

with the principle of Occam’s Razor. Informally, this principle states that one should
prefer simpler hypotheses. However, the majority of existing decision tree algorithms
are greedy and rely on heuristics to find a small tree without search. While the decision
trees found are usually small, there is no guarantee that much smaller, and possibly more
accurate, decision trees exist. Finding small decision trees is often of great importance.
Consider a medical diagnosis task in which each test required to diagnose a disease
is intrusive or potentially risky to the well-being of the patient. In such an application
minimising the number of such tests is of considerable benefit.

In this paper we study the problem of minimising decision tree size by regarding
the learning task as a combinatorial optimisation problem in which the objective is to
minimise the number of nodes in the tree. We refer to this as the Smallest Decision
Tree Problem. We study formulations based on satisfiability, constraint programming,
and hybrids with integer linear programming. We empirically compare our approaches
against standard induction algorithms, showing that the decision trees we obtain can
sometimes be less than half the size of those found by other greedy methods. Further-
more, our trees are competitive in terms of accuracy on a variety of well-known bench-
marks, often being the most accurate. Even when post-pruning of greedy trees is used,
our constraint-based approach is never dominated by any of the existing techniques.

The remainder of the paper is organised as follows. In Section 2 we present the tech-
nical background and define the problem we solve in this paper. We present a formula-
tion of the problem using satisfiability (Section 3), constraint programming (Section 4),
and a hybrid of constraint programming and linear programming (Section 5). Our ex-
perimental results are presented in Section 6. Finally, we position our approach with
respect to the existing literature in Section 7, and conclude in Section 8 highlighting
some directions for future work.

2 Background

SAT and Constraint Programming. A propositional satisfiability (SAT) formula con-
sists of a set of Boolean variables and a set of clauses, where a clause is a disjunction

Minimising Decision Tree Size as Combinatorial Optimisation 175

of variables or their negation. The SAT problem is to find an assignment 0 (false) or 1
(true) to every variable, such that all clauses are satisfied. SAT is a very simple formal-
ism, but it is extremely expressive, making the SAT problem NP-hard. In addition to
its simplicity, SAT has the advantage that significant research effort has led to several
extremely efficient SAT solvers being developed.

A constraint network is defined by a set of variables, each with a finite domain of
values, and a set of constraints specifying allowed combinations of values for some
subsets of variables. The constraint satisfaction problem is to find an assignment to each
variable with a value from its domain such that all constraints are satisfied. Constraint
programming (CP) involves expressing decision problems with constraint networks,
called models of the problem to be solved.

The Smallest Decision Tree Problem. A standard approach to evaluating the quality
of a machine learning technique is to first learn a hypothesis on a selected training set of
examples, and then evaluate the accuracy of the learned hypothesis on a test set of ex-
amples. Although more sophisticated measurements can also be taken, we consider the
problem of finding the smallest decision tree consistent with a training set of examples,
which is known to be NP-Hard [2].

Let E = {e1, . . . , em} be a set of examples, that is, Boolean valuations of a set F
of features, and let E+, E− be a partition of E . We denote by e[f] the valuation (0 or
1) of the feature f ∈ F in example e ∈ E . Let T = (X, U, r) be a binary tree rooted
by r ∈ X , where L ⊆ X denotes the set of leaves of T . A decision tree based on T is
a labelled tree in which each internal node x ∈ X \ L is labelled with an element of
F , denoted by f(x). Each edge (x, y) ∈ U is labelled with a Boolean g(x, y), where
g(x, y) = 0 if y is the left child of x and g(x, y) = 1 if y is the right child of x. The
size of the decision tree is the number of nodes of T . Given l ∈ L, p(l) denotes the
path in T from the root r to leaf l. To each example e ∈ E , we can associate the unique
leaf l(e) ∈ L such that every edge (x, y) in p(l(e)) is such that e[f(x)] = g(x, y). A
decision tree classifies a set of examples E iff for every pair ei ∈ E+, ej ∈ E− we have
l(ei) �= l(ej). Given a set of examples E , we want to find a decision tree that classifies E
with a minimum number of nodes. Alternatively, we can minimise the longest branch.

In the rest of the paper, we assume that all features admit a Boolean valuation. Cat-
egorical features can be encoded numerically, and a non-binary feature f ∈ [1, . . . , s]
can be represented by a set of binary features f1, . . . , fs. These Boolean features corre-
spond to equality splits, that is where fv = 1 stands for f = v and fv = 0 stands
for f �= v. It is standard in machine learning to split numerical data with a dise-
quality split (f [e] ≤ v or f [e] > v). In order to allow these two types of split, we
add to each example a second set of Boolean features f ′

1, . . . , f
′
s standing for dis-

equality splits. That is, where f ′
v = 1 stands for f ≤ v and f ′

v = 0 stands for
f > v. For instance, let f1 ∈ [1..4], f2 ∈ [1..4], f3 ∈ [1..4] be three features and
e = 〈2, 4, 1〉 be an example. The binary encoding would yield the following example:
0100 0001 1000 0111 0001 1111, on the set of Boolean features: {f1

1 , ..f3
4 , f ′1

1 , ..f ′3
4 }.

3 A SAT-Based Encoding

We first introduce a SAT model to find decision trees. This baseline approach requires
a large number of clauses to represent the problem. Furthermore, guiding search with

176 C. Bessiere, E. Hebrard, and B. O’Sullivan

the generic heuristics of SAT solvers is not efficient (see Section 6). However, this
approach underlines the critical aspects of this problem that need to be addressed in
order to develop an efficient approach.

Given a binary tree T = (X, U, r) and a training set E , we present a SAT formula
that is satisfiable iff there is a decision tree based on T that classifies E .

Intuition. Given a set of features F = {a, b, q, r}, suppose there are two examples ei

in E+ and ej in E− that have a similar value on the set of features eq(ei, ej) = {a, b}
(with ei[a] = ej [a] = 0, ei[b] = ej[b] = 1) and that differ on the set of features
F\eq(ei, ej) = {q, r}. The SAT encoding has to ensure that ei and ej are not associated
with the same leaf. Examples ei and ej are not both associated with a given leaf l ∈ L
iff there exists an edge (x, y) ∈ p(l) such that:

f(x) ∈ F \ eq(ei, ej) ∨ (f(x) ∈ eq(ei, ej) & g(x, y) �= ei[f(x)]).

The first case ensures that if l(ei) and l(ej) have x as a common ancestor, they appear
in one of the two subtrees rooted in x; the second case ensures that none of l(ei), l(ej)
is equal to l since they will both branch on the opposite child of x.

Encoding. For every node x ∈ X \ L, for every feature f ∈ F , we introduce a literal
txf , whose value 1 will mean that node x is labelled with feature f . For each pair
ei ∈ E+ and ej ∈ E−, for each leaf l ∈ L, we build a clause that forbids ei and ej to be
classified at l. On the example above, suppose there is a path p(l) = (x1, x2, l) in the
tree such that x2 is the left child of x1 and l is the right child of x2. We would add the
clause: tx1q ∨ tx1r ∨ tx2q ∨ tx2r ∨ tx1b ∨ tx2a. tx1q means x1 is labelled with a feature
that discriminates between ei and ej because q ∈ F \ eq(ei, ej). tx1b means the feature
labelling x1 will classify both ei and ej in the branch that does not lead to l because
p(l) uses the left child of x1 whereas ei[b] = ej[b] = 1. Formally, we build the clauses:

(
∨

(x,y)∈p(l),f∈eq(ei,ej) | g(x,y) �=ei[f]

txf)

∨ (
∨

(x,y)∈p(l),f∈F\eq(ei,ej)

txf) (1)

∀(ei, ej) ∈ E+ × E−,∀l ∈ L.

The following clauses ensure that each node is labelled with at most one feature:

(¬txf ∨ ¬txf ′), ∀x ∈ X \ L, ∀f, f ′ ∈ F . (2)

By construction, a solution to the SAT formula defined above completely characterises
a decision tree. Let M be such a solution. A node x ∈ X \ L will be labelled with
f ∈ F iff M [txf] = 1.

We add redundant clauses specifying that two nodes on a same path should not take
the same feature as it speeds up the resolution process:∧

(x,y)∈p(l),(x′,y′)∈p(l),x �=x′

(¬txf ∨ ¬tx′f), ∀l ∈ L, ∀f ∈ F . (3)

Minimising Decision Tree Size as Combinatorial Optimisation 177

Complexity. Given n = |X |, k = |F|, m = |E|, the number of literals is in O(nk).
Observe that the number of literals is independent of the size of E . However, the num-
ber of clauses strongly depends on the size of E . We build at most m2 · n/2 clauses of
type (1), each of length in O(kn), and n/2 · k2 clauses of type (2), each of length in
O(1), which gives a space complexity in O(kn2m2 + nk2). There are at most n/2 · k
conjunctions of n2 binary clauses of type (3), which gives an extra space in O(kn3).
Observe that we approximate the depth of T by n. This is a brute force approximation.
If the tree is balanced, the depth will be in O(log(n)).

Observation. Our encoding has an interesting characteristic: it deals with ’useless’
nodes for free. A node x ∈ X \ L is useless if none of the examples in E will go
through x to be classified, that is, ∀e ∈ E , x �∈ p(l(e)). In our encoding a node x is
useless if it is not assigned any feature, that is, ∀f ∈ F , txf = 0 in the solution. We
then can add an extra type of redundant clauses to avoid decision trees going through
useless nodes before reaching a real node:∨

f∈F
(txf) ∨ ¬tyf ′ , ∀(x, y) ∈ U, y ∈ X \ L, ∀f ′ ∈ F . (4)

There are nk such clauses, each of size in O(k), which gives a total size in O(k2n).

4 A CP Model

The SAT encoding introduced in the previous section has several drawbacks. It does not
scale well with the number of examples in the training set, and even less so with the
depth of the decision tree. This latter problem is because the binary tree we encode is
a ‘superset’ of the decision tree we find, and is fixed in advance. Moreover, when the
number of examples m is large it would be too costly to maintain variables or clauses
representing examples. We therefore introduce a special kind of set variable, where
only the lower bound is stored and can be pruned. Usually, a set variable is represented
using two reversible sets, one standing for the elements that must be in the set (lower
bound) and one for the elements that can be in the set (upper bound). We implement
these simplified set variables using a single reversible list of integers, representing the
lower bound. The upper bound is implicit and the only possible operation is to shrink
it to match the lower bound. This type of variable allows us to reason about large sets
(sets of examples here), at a very low computational cost. Another observation from the
SAT encoding is that starting from a complete tree is impractical, even for relatively
small depths. We therefore use the expressivity of CP to get around this problem. We
do not fix the binary tree on which to label. We simply assume an upper bound n on the
number of nodes, and seek the smallest decision tree with n nodes or less. That is, both
the tests to perform and the topology of the tree are decided within the model. We can
therefore find potentially deep trees with a relatively small number of nodes.

4.1 Variables

We label nodes with integers from 1 to n, then for all i ∈ [1..n] we introduce the
following variables:

178 C. Bessiere, E. Hebrard, and B. O’Sullivan

• Pi ∈ [1..n]: the index of the parent of node i.
• Li ∈ [1..n]: the index of the left child of node i.
• Ri ∈ [1..n]: the index of the right child of node i.
• Ni ∈ [0..2]: the number of children of node i.
• Fi ∈ [1..k]: the index of the feature tested at node i.
• Dij ∈ {0, 1}: “node j is a descendant of node i”.
• ∅ ⊆ Ei ⊆ {1, . . . , m}: the subset of E such that the leaves associated with elements

in Ei are all descendants of node i. We shall use the notation E+
i (resp. E−

i) for
(Ei ∩ E+) (resp. (Ei ∩ E−)).
• UB ∈ [0..n]: an upper bound on the size of the decision tree (initialised to n + 1

and set to the size of the smallest decision tree found so far)

4.2 Constraint Program

The graph defined on nodes {1, . . . , n} with an edge (i, j) iff Pj = i must form a
tree. We use the TREE global constraint to enforce this requirement [4]. Notice that this
constraint uses a data structure to store the set of descendants of every node. We make
it explicit by using the Boolean variables D. We use a slightly modified version of the
constraint that ensures the resulting graph is, in fact, composed of a single tree, and
possibly a set of unconnected nodes; a node i is connected iff Pi �= i or ∃j �= i, Pj = i.
We, therefore, can add the constraint TREE(P, D) to the model.

Next, we channel the variables N , L, R and P with the following constraints, thus
making sure that the tree is binary.

∀i �= j ∈ [1..n], Pj = i⇔ ((Li = j) xor (Ri = j)). (5)

∀i, Ni =
∑
j �=i

Pj = i. (6)

The next constraint ensures that no feature is tested twice along a branch.

Dij = 1⇒ Fi �= Fj . (7)

Now we introduce some constraints to ensure that for all i, the variables Ei stand for
the set of examples that shall be tested on node i.

Li = j ⇒ Ej = {k | k ∈ Ei ∧ ek[Fi] = 0}. (8)

Ri = j ⇒ Ej = {k | k ∈ Ei ∧ ek[Fi] = 1}. (9)

For each node i, we ensure that unless all examples are classified, (i.e., there is no pair
of examples with opposite polarity agreeing on the feature tested on this node) it cannot
be a leaf.

∃k ∈ E+
i ∧ ∃k′ ∈ E−

i ∧ ek[Fi] = ek′ [Fi]⇒ Ni > 0. (10)

Minimising Decision Tree Size as Combinatorial Optimisation 179

4.3 Inference

We introduce a number of implied constraints to improve this model. The first constraint
ensures that the feature tested at a given node splits the examples in a non-trivial way.

∃k ∈ E+
i , ∃k′ ∈ E−

i , s.t. ek[Fi] �= ek′ [Fi]. (11)

This constraint does not improve the search, but it does help the subsequent constraint to
work effectively. When, for a given node, every feature splits the examples so that both
positive and negative examples are represented left and right, we know that this node
will need not one, but two children. Let E be a set of examples and f be a feature, we
denote by l(f, E) (resp. r(f, E)) the cardinality of the subset of E that will be routed
left (resp. right) when testing f .

l(Fi, E
+
i) · l(Fi, E

−
i) · r(Fi, E

+
i) · r(Fi, E

−
i) �= 0 ⇒ Ni = 2. (12)

Due to the previous constraint, we can compute a lower bound on the number of past
and future nodes that will be required. A simple sum constraint ensures we do not seek
trees larger than one already found:∑

i∈[1..n]

Ni < UB. (13)

4.4 Symmetry Breaking

A search algorithm over the constraint model might repeatedly explore isomorphic trees
where only node labellings change, significantly degrading performance. To avoid this,
we ensure that the trees are ordered from root to leaves and from left to right by adding
the following constraints:

∀i ∈ [1..n− 1], Pi ≤ min(i, Pi+1). (14)

∀i ∈ [1..n], i ≤ Ri ≤ 2 ∗ i + 2. (15)

∀i ∈ [1..n], i ≤ Li ≤ min(2 ∗ i + 1, Ri). (16)

4.5 Search

Even when adding implied constraints and symmetry breaking constraints, the problem
is often too large for the model above to explore a significant part of the search space
in a reasonable amount of time. Thus, it is critical to use an efficient search heuristic in
order to find good solutions quickly. We used the well known information gain heuristic,
used in standard decision tree learning algorithms, as a search strategy. Therefore, the
first branch explored by our constraint model is similar to that explored by C4.5 [6].

We also observed that diversifying the choices made by the search heuristic (via ran-
domization) and using a restart strategy was beneficial. We used the following method:
instead of branching on the feature offering the best information gain, we randomly
picked among the three best choices. This small amount of randomization allowed us to
restart search after unsuccessful dives. Each successive dive is bounded by the number
of fails, initialised to 100 and then geometrically incremented by a factor of 1.5.

180 C. Bessiere, E. Hebrard, and B. O’Sullivan

5 Hybrid CP and LP Model

Next we discuss a promising inference method to deduce a good lower bound on the
number of nodes required to classify a set of examples. Consider a partial solution of the
CP model, such that when a node i of the decision tree is assigned (that is, the parent of
i and the feature tested on i are both known) then its parent is also assigned. It follows
that the set of examples tested on an assigned node is perfectly known. We can compute
a lower bound on the number of nodes required to classify this set of examples. By
summing all these lower bounds for every assigned node without assigned children, we
obtain a lower bound on the number of extra nodes that will be necessary to classify
all yet unclassified examples. If this lower bound is larger than the number of available
nodes we can backtrack, cutting the current branch in the search tree.

Consider a pair of examples (ei, ej) such that ei ∈ E+ and ej ∈ E−. We de-
fine δ(ei, ej) to be the set of discrepancies between examples ei and ej as follows:
δ(ei, ej) = {f | ei[f] �= ei[f]}. Furthermore, we denote by C the corresponding col-
lection of sets: C(E) = {δ(ei, ej) | ei ∈ E+ ∧ ej ∈ E−}. A hitting set for a collection
S1, . . . , Sn of sets is a set H such that H ∩ Si �= ∅, i ∈ 1..n.

Theorem 1. If a decision tree classifies a set of examples E , the set of features tested
in the tree is a hitting set of C(E).

Proof. Let FT be the set of features tested in the decision tree and let ei ∈ E+ and
ej ∈ E−. Clearly, in order to classify ei and ej , at least one of the features for which
ei and ej disagree must be tested. That is, we have FT ∩ δ(ei, ej) �= ∅. Hence FT is a
hitting set for C(E). ��

Consequently, the size of the minimum hitting set on C(E) is a lower bound on the
number of distinct tests, and hence of nodes of a decision tree for classifying a set of
examples E . At the root node, this hitting set problem might be much too hard to solve,
and moreover, it might not be a tight lower bound since tests can be repeated several
times on different branches. However, during search on the CP model described above,
there shall be numerous subtrees, each corresponding to a subset of E , for which solv-
ing, or approximating the hitting set problem might give us a valuable bound. We can
solve the hitting set problem using the following linear program on the set of Boolean
variables V = {vf | f ∈ F}:

minimise
∑
f∈F

vf subject to : ∀c ∈ C(E),
∑
f∈c

vf ≥ 1.

This linear program can be solved efficiently by any LP solver. At each node of the
search tree explored by the CP optimiser, let OP be the set of nodes of the decision
tree whose parent is known (assigned) but children are unknown (not yet assigned). For
each node i ∈ OP , we know the exact set of examples Ei to be tested on i. Therefore,
a lower bound lb(i), computed with the LP above, of the cardinality of the associated
MINIMUM HITTING SET problem is also a valid lower bound on the number of de-
scendants of i. Let I be the set of nodes (of the decision tree) already assigned, and

Minimising Decision Tree Size as Combinatorial Optimisation 181

UB be the size of the smallest tree found so far. We can replace Constraint 13 with the
following constraint:

|I|+
∑

i∈OP

lb(i) < UB. (17)

In order to avoid computing large linear relaxations too often, we use a threshold on the
cardinality of C(Ei) that is |E+

i | × |E−
i |. Whenever this cardinality is larger than the

threshold, we use Ni + 1 instead of lb(i) in Constraint 17.

6 Experimental Results

We performed a series of experiments comparing our approach against the state-of-
the-art in machine learning, as well as studying the scalability and practicality of our
optimisation-based methods. An important distinction between our approach and stan-
dard greedy decision tree induction algorithms, is that we seek the smallest tree that has
perfect classification accuracy on the training set. In this sense, our approach can be
regarded as a form of knowledge compilation in which we seek the smallest compiled
representation of the training data [3]. Standard decision tree induction algorithms can
be forced to generate a tree that also has perfect classification accuracy on the data, but
these trees tend to be large, since they overfit the training data. To overcome this over-
fitting, greedy methods are often post-pruned by identifying sub-branches of the tree
that can be removed without having too significant an impact on its accuracy.

In our experiments, therefore, we compared the decision trees obtained from our
optimisation approach against the decision trees obtained from standard tree induction
methods, both unpruned and pruned. The results clearly show that the constraint pro-
gramming approach produces very accurate trees, that are smaller than those found
using standard greedy unpruned methods, and in a scalable manner. Even when com-
pared against pruned trees, the accuracy of our decision trees is never the worst, and is
often competitive with, or exceeds that of pruned trees built using standard methods.

All our experiments were run on a 2.6GHz Octal Core Intel Xeon with 12Gb of RAM
running Fedora core 9. In Table 1, we report some characteristics (number of examples
and features) of the benchmarks used in our experiments.

6.1 The Scalability of the SAT Encoding

In Table 1 we give the space complexity, in bytes, of the CNF encoding for each data
set, assuming a maximum depth of 4 for the decision tree. In most cases, however, the
depth of minimal trees is much larger. Recall that the space complexity of the SAT

Table 1. Characteristics of the data-sets, and the sizes of the corresponding SAT formulae

Benchmark Weather Mouse Cancer Car Income Chess Hand w. Magic Shuttle Yeast

#examples 14 70 569 1728 30162 28056 20000 19020 43500 1484
#features 10 45 3318 21 494 40 205 1887 506 175
CNF size (depth 4) 27K 3.5M 92G 842M 354G∗ 180G 248G 967G∗ 118G∗ 13G

182 C. Bessiere, E. Hebrard, and B. O’Sullivan

formula increases exponentially with depth. Therefore, the reformulation is too large in
almost all of our data sets (the results marked with an asterisk (∗) were obtained using
only 10% of the examples in the data set).

In order to study the behaviour of a SAT solver on this problem we ran SAT4J1 on the
SAT encoding of the two smallest data sets (Weather and Mouse). We used the depth
of the smallest tree found by the CP model (see Section 6.2) to build the SAT encoding.
To minimise the size of the decision tree, SAT4J features an ATLEASTK constraint
ensuring that the number of 0’s in a model is at least a given number K . The value of
K is initialised to 0, and on each successful run, we set K to 1 plus the number of 0’s
in the previous model. We stop when either SAT4J returns false, or a time cutoff of 5
minutes has elapsed without improving the current model. We report the runtime for
finding the best solution (sol.) and also the total elapsed time, including the time spent
on proving or attempting to prove optimality (tot.). We also report the size (nodes) of
the smallest tree found.

Benchmark SAT model
time (sol.) time (tot.) tree size

Weather 0.14 0.37 9
Mouse 277.27 577.27 15

It is remarkable how well SAT4J can handle such large CNF files. For instance, the
encoding of Mouse involves 74499 often very large clauses. However, it was clear the
SAT method does not scale since these two tiny data sets produced large formulas. On
the one hand, for the smaller data-set (Weather) SAT4J quickly found an optimal
decision tree, but was slightly slower than the CP method (0.06s). On the other hand,
for the larger data-set (Mouse), the CP model found a decision tree of 15 nodes in
0.05s, whilst the SAT required 277.27s to find a solution of equal quality but failed to
prove its optimality within the 5 minute time limit.

6.2 The CP Model

In this experiment we compared the size of the decision trees produced by our CP
classifier with respect to standard implementations of C4.5. We compare our results in
terms of tree size and accuracy against WEKA [8] and ITI [7], using a number of data-
sets from the UCI Machine Learning Repository2. For each data set, and for a range
of ratios (|training set|

|test set|) we produced 100 random training sets of the given ratio by
randomly sampling the whole data-set, using the remainder of the data for testing. Each
classifier is trained on the same random sample. We report averages over the 100 runs
for each classifier.

We first compare the size of the decision trees when they are complete (100% accu-
rate classification) on the training data. Therefore, we switched off all post-pruning
capabilities of WEKA and ITI. Moreover, WEKA also pre-prunes the tree, that is,
it does not expand subtrees when the information gain measure becomes too small.

1 http://www.sat4j.org
2 http://archive.ics.uci.edu/ml/

http://www.sat4j.org
http://archive.ics.uci.edu/ml/

Minimising Decision Tree Size as Combinatorial Optimisation 183

We, therefore, modified WEKA to avoid this behaviour3. The following command lines
were used for WEKA and ITI, respectively: java weka.classifiers.trees.J48

-t train set -T test set -U -M 0 and iti dir -ltrain set -qtest set

-t. The CP optimiser was stopped after spending five minutes without improving the
current solution. We report the size of the tree found in the first descent of the CP opti-
miser and the size of the smallest tree found. We also report some search information –
number of backtracks and runtime in seconds – to find the smallest tree.

The results for these unpruned decision trees are reported in the columns ‘C4.5, no
pruning’ and ‘cp’ of Table 2. One could imagine that the information gain heuristic
would be sufficient to find near-minimal trees with ITI or WEKA. The results show that
this is not the case. The decision trees computed by ITI or WEKA without pruning are
far from being minimal. Indeed C4.5 does not actively aim at minimising the tree size.
Smaller decision trees can be found, and our CP model is effective in doing so.

It is somewhat surprising that even the first solution of the CP model is often better
(in terms of tree size) than that of WEKA or ITI. This can be explained by the fact
that we turn the data set into a numerical form, and then systematically branch using
either equality or disequality splits. On the other hand, WEKA uses only equality splits
on categorical features, and disequality splits on the numerical features. Our method
allows tests with better information gain in certain cases.

In the rightmost columns of Table 2, we report the size of the pruned decision trees
computed by ITI and WEKA. When compared against the pruned C4.5 trees, the CP
tree is always dominated in terms of size. However, two points should be noted about
this. Firstly, we have made no attempt to post-prune the CP trees. If we did so, we
could expect a reduction in tree size, possibly comparable to that obtained for the trees
generated using C4.5. Secondly, after pruning, the decision tree is no longer guaranteed
to have 100% classification accuracy on the original training set.

Table 3 presents a detailed comparison of classification accuracy between the trees
built using our CP approach and those built using WEKA and ITI, both pruned and
unpruned. For each of the standard approaches we present the average classification
accuracy of its trees based on 100 tests. In addition, we present the complement to 1
of the p-value, obtained from a paired t-test performed using the statistical computing
system R4; this statistic is presented in the column labelled ‘sig’ (for significance).
Suppose that for two methods, their average accuracy x and y over 100 runs are such
that x < y, this value (1 − p) can be interpreted as the probability that x is indeed
less than y. For each reported average accuracy, we compute the significance of its
relation to the CP accuracy. We regard a difference as statistically significant if the
corresponding ‘sig’ value is at least 0.95. For example in the first line of the table the
unpruned WEKA accuracy is 91.54, while the CP accuracy is 91.66. The significance of
this difference is 0.42 which means that this is not a statistically significant difference.

The two right-most columns of Table 3 indicate the relative performance of the CP
model. We assume that method A gives better trees than method B iff the accuracy is
significantly better, and we define a dominance relation with respect to the CP model,

3 This change was made in consultation with the authors of WEKA to ensure the system was not
adversely affected.

4 http://www.r-project.org/

http://www.r-project.org/

184 C. Bessiere, E. Hebrard, and B. O’Sullivan

Table 2. A comparison of the sizes of decision trees obtained from WEKA without pruning
(WEKA), WEKA with pruning (WEKA (p)), ITI without pruning (ITI), ITI with pruning (ITI
(p)), and CP. We also present statistics on the running time of the CP approach.

Benchmark Prop.
C4.5, no pruning cp C4.5, pruning
WEKA ITI first best WEKA (p) ITI (p)

size size size size time (s) backtracks size size

Cancer

0.2 11.66 11.94 10.92 9.22 47.12 17363.04 7.76 5.00
0.3 16.12 16.74 14.30 12.48 27.22 7411.31 10.26 7.28
0.5 23.48 25.98 20.40 18.48 45.05 8448.93 15.08 10.72
0.7 31.10 36.18 26.22 24.26 38.00 6361.05 20.56 12.76
0.9 37.98 41.56 32.40 30.08 57.92 7801.57 23.46 15.08

Car

0.05 30.09 23.38 24.82 18.52 8.48 250851.11 12.30 10.92
0.1 46.67 37.20 40.16 30.12 26.32 1228232.51 18.98 17.04
0.2 70.97 55.26 59.82 47.70 41.60 1840811.13 29.04 27.40
0.3 87.67 68.96 74.16 60.06 29.66 1107230.15 37.14 34.40
0.5 114.51 84.50 93.32 75.60 33.52 1025980.81 52.66 47.56
0.7 139.22 96.12 105.54 86.30 32.05 839389.68 60.70 57.76
0.9 161.73 100.76 115.24 92.02 44.81 1086473.89 66.45 64.62

Income
0.01 185.86 108.82 85.12 76.22 35.99 141668.94 34.08 26.68
0.015 265.23 160.89 123.60 112.87 36.81 108710.27 46.37 38.95
0.05 791.03 534.69 390.65 364.83 63.99 56624.72 124.21 122.39

Chess

0.01 126.84 89.46 81.54 66.58 49.13 1486914.05 1.00 18.46
0.015 172.36 130.52 119.60 98.90 48.86 1376762.87 1.06 29.64
0.05 434.54 372.54 317.20 274.66 41.57 360814.88 1.00 108.92
0.1 735.26 644.22 525.48 458.80 66.11 112665.88 34.08 217.88

Hand writing (A)

0.01 11.54 14.24 10.66 8.78 10.86 22525.52 5.66 5.98
0.015 14.52 17.92 13.66 10.66 21.24 38645.64 5.66 7.56
0.05 33.80 42.24 31.50 24.16 28.60 28678.29 10.36 10.78
0.1 51.84 67.68 48.22 39.58 40.62 51219.42 17.54 18.28
0.2 76.16 109.92 75.40 62.98 41.37 51613.47 29.60 34.94
0.3 94.22 144.36 95.26 80.28 40.93 53276.16 43.36 46.52

Hand writing (B)

0.01 18.28 19.68 16.30 12.82 19.27 84162.49 5.96 5.02
0.015 24.58 27.66 22.04 17.06 20.19 95053.05 9.24 7.00
0.05 64.60 70.30 55.92 47.10 40.20 211587.58 23.42 17.22
0.1 106.56 119.58 95.78 84.76 33.72 171899.21 36.92 33.04
0.2 180.36 199.72 160.20 145.04 42.05 212308.28 72.16 58.04
0.3 240.18 268.92 214.48 196.42 33.64 146700.04 105.56 78.68

Hand writing (C)

0.01 14.12 15.64 13.08 10.34 17.10 58892.16 7.04 4.70
0.015 19.38 21.00 17.80 14.00 20.54 79994.81 8.82 6.10
0.05 48.64 52.62 43.16 35.52 30.89 119385.76 18.40 16.64
0.1 80.86 88.42 73.76 61.96 44.43 150533.20 29.74 30.72
0.2 132.36 146.52 121.50 104.74 39.99 113072.51 49.72 52.52
0.3 175.44 193.56 160.64 139.36 49.49 135286.41 66.56 72.24

Magic
0.01 52.74 57.24 48.44 44.02 39.19 38038.14 32.70 17.10
0.015 76.14 82.42 69.76 64.28 32.59 22821.48 45.54 24.16
0.05 234.70 257.02 204.38 195.94 95.97 20816.56 132.36 70.48

Shuttle
0.05 19.02 25.20 12.96 8.06 48.58 7107.41 10.38 13.14
0.1 24.18 31.54 16.14 10.88 69.49 5639.98 15.22 17.56
0.2 28.46 35.38 20.76 13.62 14.94 3691.08 18.04 24.98

Yeast CYT

0.05 33.26 38.70 30.26 25.30 37.16 353351.68 21.72 9.84
0.1 67.50 76.42 59.08 50.88 39.86 291145.95 36.52 19.14
0.2 130.30 147.70 113.36 103.78 37.57 215424.60 64.64 37.50
0.3 197.26 222.16 172.22 157.12 28.72 136221.02 96.18 53.58
0.5 324.30 364.62 284.10 263.42 41.36 167958.64 147.66 87.82
0.7 450.06 507.30 395.16 371.46 35.35 100452.08 199.52 122.10

Yeast MIT

0.05 22.00 24.46 18.62 15.70 11.55 65659.79 8.68 5.10
0.1 42.60 47.38 37.12 31.62 22.06 118185.26 13.36 9.04
0.2 81.70 92.26 70.80 63.30 21.04 79821.79 22.66 19.40
0.3 121.48 138.72 103.28 94.88 28.96 117579.25 29.86 27.64
0.5 200.92 227.88 169.32 156.60 33.17 128659.70 42.00 42.00
0.7 279.12 310.26 232.72 217.30 36.27 117305.35 59.10 57.76

Minimising Decision Tree Size as Combinatorial Optimisation 185

Table 3. A comparison of the classification accuracies of decision trees obtained from WEKA

without pruning (WEKA), WEKA with pruning (WEKA (p)), ITI without pruning (ITI), ITI with
pruning (ITI (p)), and CP

Benchmark Prop.
WEKA WEKA (p) ITI ITI (p) cp Relation

accur. sig. accur. sig. accur. sig. accur. sig. accur. versus all versus complete

Cancer

0.2 91.54 0.42 91.71 0.17 91.09 0.97 90.86 0.99 91.66 among best among best
0.3 91.74 0.59 91.96 0.09 91.76 0.47 91.96 0.07 91.93 among best among best
0.5 92.57 0.86 92.95 0.23 92.43 0.96 92.90 0.07 92.88 among best among best
0.7 92.85 0.96 93.36 0.07 93.33 0.17 93.90 0.96 93.39 among best among best
0.9 93.22 0.83 93.50 0.51 93.66 0.24 93.78 0.01 93.78 among best among best

Car

0.05 88.34 0.54 87.22 0.99 88.69 0.18 87.26 0.99 88.61 among best among best
0.1 91.07 0.99 89.41 1.00 92.24 0.92 90.58 0.99 91.84 among best among best
0.2 94.13 0.99 92.88 1.00 94.89 0.26 94.23 0.99 94.83 among best among best
0.3 95.45 1.00 94.05 1.00 96.25 0.89 95.47 1.00 96.44 among best among best
0.5 96.87 1.00 96.14 1.00 97.67 0.99 97.13 1.00 97.92 best best
0.7 97.60 1.00 96.97 1.00 98.49 0.99 97.93 1.00 98.72 best best
0.9 97.92 1.00 97.67 1.00 99.18 0.24 98.61 0.99 99.22 among best among best

income
0.01 78.00 0.96 80.46 1.00 76.61 1.00 78.79 0.87 78.47 incomp. best
0.015 78.58 0.99 81.30 1.00 77.11 1.00 79.26 0.47 79.12 incomp. best
0.05 79.76 1.00 82.79 1.00 77.76 1.00 80.41 0.34 80.45 incomp. best

Chess

0.01 84.43 0.99 89.94 1.00 84.15 0.99 87.75 1.00 85.16 incomp. best
0.015 85.43 0.99 89.93 1.00 84.62 1.00 87.50 1.00 86.35 incomp. best
0.05 89.11 1.00 89.94 1.00 87.59 1.00 88.23 1.00 90.40 best best
0.1 91.53 1.00 90.22 1.00 89.84 1.00 89.48 1.00 92.91 best best

Hand writing (A)

0.01 97.48 0.60 98.04 0.99 96.84 0.98 97.14 0.69 97.33 incomp. among best
0.015 97.90 0.97 98.48 1.00 97.39 0.97 97.87 0.91 97.66 incomp. incomp.
0.05 98.48 0.20 98.87 1.00 98.26 0.99 98.63 0.99 98.47 incomp. among best
0.1 98.83 0.81 99.05 1.00 98.60 1.00 98.85 0.89 98.80 incomp. among best
0.2 99.17 0.99 99.23 1.00 98.91 1.00 99.04 0.99 99.10 incomp. incomp.
0.3 99.35 1.00 99.36 1.00 99.06 1.00 99.14 1.00 99.26 incomp. incomp.

Hand writing (B)

0.01 94.65 0.41 95.79 1.00 94.79 0.17 95.98 1.00 94.75 among worst among best
0.015 95.03 0.97 96.01 0.99 95.12 0.87 96.17 1.00 95.33 incomp. among best
0.05 96.29 0.98 97.00 1.00 96.42 0.19 97.15 1.00 96.43 incomp. among best
0.1 96.99 0.22 97.42 1.00 96.95 0.49 97.35 1.00 96.98 among worst among best
0.2 97.62 0.99 97.80 1.00 97.51 0.09 97.74 1.00 97.51 among worst among worst
0.3 97.94 0.99 98.03 1.00 97.79 0.39 97.93 1.00 97.80 among worst among worst

Hand writing (C)

0.01 95.81 0.65 96.14 0.99 95.84 0.72 96.33 0.99 95.67 among worst among best
0.015 96.15 0.89 96.61 0.97 96.27 0.49 96.49 0.77 96.35 among worst among best
0.05 97.38 0.86 97.75 1.00 97.41 0.72 97.57 0.94 97.47 among worst among best
0.1 97.99 0.25 98.22 1.00 97.90 0.97 98.02 0.72 97.98 incomp. among best
0.2 98.43 0.57 98.63 1.00 98.37 0.87 98.42 0.18 98.41 among worst among best
0.3 98.63 0.63 98.76 1.00 98.58 0.99 98.64 0.31 98.65 incomp. among best

Magic
0.01 75.00 0.93 75.84 0.40 75.04 0.96 76.61 0.99 75.65 incomp. among best
0.015 76.32 0.89 77.35 0.99 76.08 0.98 77.84 0.99 76.69 incomp. best
0.05 78.29 1.00 79.66 0.99 78.21 1.00 80.50 1.00 78.98 incomp. best

Shuttle
0.05 99.77 1.00 99.72 1.00 99.76 1.00 99.71 1.00 99.85 best best
0.1 99.85 1.00 99.80 1.00 99.85 1.00 99.79 1.00 99.91 best best
0.2 99.93 1.00 99.90 1.00 99.92 0.99 99.90 1.00 99.95 best best

Yeast CYT

0.05 65.21 0.74 65.34 0.83 63.46 0.99 65.11 0.55 64.79 among best among best
0.1 66.53 0.86 67.19 0.99 64.72 0.99 66.87 0.98 66.14 incomp. among best
0.2 66.93 0.15 68.04 0.99 65.94 0.99 68.04 0.99 66.98 incomp. among best
0.3 67.87 0.98 69.19 1.00 66.42 0.99 68.84 1.00 67.28 incomp. incomp.
0.5 68.53 0.40 70.19 1.00 67.79 0.99 69.73 1.00 68.41 incomp. among best
0.7 69.09 0.94 70.99 1.00 68.75 0.43 70.39 1.00 68.59 among worst among best

Yeast MIT

0.05 80.21 0.52 83.32 1.00 80.27 0.42 83.51 1.00 80.50 among worst among best
0.1 81.14 0.05 85.24 1.00 80.53 0.92 84.46 1.00 81.12 among worst among best
0.2 81.92 0.13 85.83 1.00 81.46 0.95 84.98 1.00 81.89 incomp. among best
0.3 82.30 0.31 86.34 1.00 81.89 0.89 85.76 1.00 82.22 among worst among best
0.5 82.62 0.85 86.77 1.00 82.48 0.98 85.99 1.00 82.90 incomp. among best
0.7 82.50 0.99 86.37 1.00 82.65 0.99 86.11 1.00 83.17 incomp. among best

based on this pairwise relation. We say that the CP model is the best, denoted “best”
(resp. the worst, denoted “worst”) iff it gives trees that are significantly better (resp.
worse) than all other methods. We say that the CP model is among the best, denoted
“among best” (resp. among the worst, denoted “among worst”) if there is no other
method giving better (resp. worse) trees, and if it is not the best (resp. worst). Finally, we

186 C. Bessiere, E. Hebrard, and B. O’Sullivan

Table 4. Runtime, #Backtracks & Tree size (CP vs CP+LP)

Benchmark CP model CP+LP model
time bts tree size time bts size

Cancer

44.37 16206 9.24 31.64 10421 9.20
27.61 7098 12.48 21.48 4569 12.44
42.82 7910 18.50 42.54 4461 18.62

Car

8.75 250449 18.52 12.30 7733 18.52
29.13 1390076 30.10 51.15 33182 29.58
48.21 2206249 47.64 87.05 32979 46.46
29.69 1106445 60.06 48.97 15829 59.18
33.53 1025011 75.60 53.40 17715 75.64

Income
35.03 140917 76.22 59.98 11875 76.68
38.69 114533 112.81 89.08 11074 113.26
63.3 54219.82 364.83 119.14 6802.40 368.87

say that it is incomparable, denoted “incomp.”, iff there exists at least one method giving
better trees and one giving worse trees. We report this comparison for each instance. In
the penultimate column (“versus all”) we compare against all methods. The CP model
is the best in 13% of the cases, among the best in 20% of the cases, incomparable in
45% of the cases, among the worst in 22% of the cases, and is never the worst. In the
last column (“versus complete”), we compare against only complete methods, that is,
WEKA and ITI without post-pruning. The CP model is the best in 25% of the cases,
among the best in 64% of the cases, incomparable in 7% of the cases, among the worst
in 4% of the cases, and is never the worst.

It is clear that the CP generated trees are almost always better than those generated
by standard decision tree methods that do not do pruning. Also, when compared against
methods that use post-pruning, the CP approach is not dominated by either one. This is
an encouraging result since it suggests that while the CP generated trees are competitive
with advanced decision tree induction methods, they can only be improved further if
they were also post-pruned.

6.3 Improving the CP Model Using LP

The aim of this experiment was to assess if the linear relaxation method introduced in
Section 5 can improve the CP model. We run it using the same setting as described in
Section 6.2, and on 3 benchmarks and with an arbitrary threshold5 of 600 that was a
good compromise. In Table 4, we report the runtime and number of backtracks to find
the best solution, as well as the quality (tree size) of this solution.

We observe that the search space explored by the CP+LP model can be orders of
magnitude smaller (see #backtracks), but the runtime can still be slightly worse because
of the overhead of solving the linear relaxation. Thus, even if it is difficult to judge if
overall the method is better than the basic CP model, we can expect it to scale well on
harder problems.

7 Related Work

Decision trees are usually constructed using greedy algorithms [5,6] relying on a search
bias that attempts to find smaller trees. Finding the minimum sized tree is NP-Hard [2].

5 As defined in Section 5.

Minimising Decision Tree Size as Combinatorial Optimisation 187

[1] have proposed a technique for improving the accuracy of a decision tree by selecting
the next attribute to test as the one with the smallest expected consistent sub-tree size
estimated using a sampling technique. The use of combinatorial optimisation to improve
decision trees has also been reported [9], where the focus has been on determining
linear-combination splits for the decision tree. These papers are not concerned with
minimising overall tree-size. Our work contrasts with these approaches since we take an
extreme view of Occam’s Razor and seek to find the minimum sized decision tree using
alternative approaches from the field of combinatorial optimisation. We have found that
size can usually be reduced considerably, without negatively impacting accuracy.

8 Conclusion

We have presented a variety of alternative approaches to minimising the number of
nodes in a decision tree. In particular, we have shown that while this problem can be
formulated as either a satisfiability problem or a constraint program, the latter is more
scalable. Our empirical results show the value of minimising decision tree size. We find
smaller trees that are often more accurate than, but never dominated by, those found
using standard greedy induction algorithms.

References

1. Esmeir, S., Markovitch, S.: Anytime learning of decision trees. Journal of Machine Learning
Research 8, 891–933 (2007)

2. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP-complete. Inf. Pro-
cess. Lett. 5(1), 15–17 (1976)

3. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional constraints. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 379–393. Springer, Heidelberg (2007)

4. Prosser, P., Unsworth, C.: Rooted tree and spanning tree constraints. In: Workshop on Mod-
elling and Solving Problems with Constraints, held at ECAI 2006 (2006)

5. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
6. Quinlan, R.J.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San

Francisco (1993)
7. Utgoff, P.E., Berkman, N.C., Clouse, J.A.: Decision tree induction based on efficient tree

restructuring. Machine Learning 29, 5–44 (1997)
8. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan

Kaufmann, San Francisco (2005)
9. Yüksektepe, F.Ü., Türkay, M.: A mixed-integer programming approach to multi-class data

classification problem. European Journal of OR 173(3), 910–920 (2006)

Hull Consistency under Monotonicity

Gilles Chabert1 and Luc Jaulin2

1 Ecole des Mines de Nantes LINA CNRS UMR 6241,
4, rue Alfred Kastler 44300 Nantes, France

gilles.chabert@emn.fr
2 ENSIETA, 2, rue François Verny 29806 Brest Cedex 9, France

luc.jaulin@ensieta.fr

Abstract. We prove that hull consistency for a system of equations
or inequalities can be achieved in polynomial time providing that the
underlying functions are monotone with respect to each variable. This
result holds including when variables have multiple occurrences in the
expressions of the functions, which is usually a pitfall for interval-based
contractors. For a given constraint, an optimal contractor can thus be
enforced quickly under monotonicity and the practical significance of this
theoretical result is illustrated on a simple example.

1 Introduction

Solving constraint problems with real variables has been the subject of significant
developments since the early 90’s (see [3] for a comprehensive survey).

One of the key contribution is the concept of hull consistency, which is the
counterpart of bound consistency in discrete constraint programming, as Defini-
tion 1 shows below.

Let us briefly trace the history. The underlying concepts of interval propa-
gation appeared first in several pioneering papers [6,11,17,12] while consistency
techniques for numerical CSP were formalized a few years later in [15,5]. A the-
oretical comparative study of consistencies was then conducted in [7,8]. Finally,
hull consistency was made operational in [2,9] where the famous HC4 algorithm
is described.

Since hull consistency is based on the bound consistency of every isolated
constraint, enforcing hull consistency in the general case (i.e., for arbitrary non-
linear equations) is a NP-hard problem [14]. On the practical side, this results
into the inability to give a sharp enclosure when variables occur more than once
in the expression of a constraint. This happens, in particular, with HC4.

We show that hull consistency can be enforced in polynomial time if the
functions involved are all monotone.

Monotonicity follows the very intuitive idea that a function varies either in
the same direction as a variable or in the opposite one (see Definition 2). It
turns out that usual functions, i.e., built with arithmetic operators (+,−,×,/)
and elementary functions (sin, exp, etc.) are analytic and therefore most of the
time strictly monotone. In rigorous terms, most of the time means that, unless

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 188–195, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Hull Consistency under Monotonicity 189

the function is flat (or defined piecewise), the set of points that do not satisfy
local strict monotonicity is of measure zero (in the sense of measure theory).

As a consequence, if a better contraction (or filtering) can be achieved under
monotonicity, branch & prune algorithms should take advantage of it.

Monotonicity has been considered from the beginning of interval analysis [16],
but with a motivation slightly different from ours. One of the most fundamental
issues of interval analysis is the design of inclusion functions [13], i.e., methods
for computing an enclosure of the range of a function on any given box. Of
course, the sharper the better. Now, an optimal inclusion function (i.e., a method
for computing the exact range on any box) can be built straightforwardly for
monotone functions (see §2).

Hence, the main matter since that time has been to devise efficient way to
detect monotonicity of a function f over a box [x]. One simple way to proceed
is by checking that the gradient does not get null in [x] which, in turn, requires
an inclusion function for the gradient. The latter can then be based either on
a direct interval evaluation, Taylor forms or the monotonicity test itself in a
reentrant fashion (leading to the calculation of second derivatives, and so on).

Surprisingly enough, monotonicity has never been used so far in the design
of contractors. Remember that, although related, computing a sharp enclosure
for {f(x), x ∈ [x]} and for {x ∈ [x] | f(x) = 0} are quite different goals. As
we already said, getting an optimal enclosure with a monotone function f is
straightforward in the first case. But it is not so in the second case, especially
when x is a vector of variables. Algorithm 1 below will provide an answer.

In the following, we first define properly the different concepts. The main
result, a monotonicity-based polytime optimal contractor for a constraint, is
then presented. Finally, we highlight the practical benefits of this contractor
with a simple example.

1.1 Notations and Definitions

We consider throughout this paper a constraint satisfaction problem (CSP) with
a vector of n real variables x1, . . . , xn.

Domains of variables are represented by real intervals and a Cartesian product
of intervals is called a box. Intervals and boxes will be surrounded by brackets,
e.g., [x]. If [x] is a box, x− and x+ will stand for the two opposite corners formed
by the lower and upper bound respectively of each components (see Figure 2).
Hence, x−

i and x+
i will stand for the lower and upper bound respectively of the

interval [x]i. The width of an interval [x] (width[x]) is x+ − x−.
Furthermore, given a mapping f on Rn, we shall denote by {f = 0} the

constraint f(x) = 0 viewed as the set of all solution tuples, i.e.,

{f = 0} := {x ∈ Rn | f(x) = 0}.

We can now give a definition of hull consistency.

Definition 1 (Hull consistency). Let P be a constraint satisfaction problem
involving a vector x of n variables and let [x] be the domain of x.

190 G. Chabert and L. Jaulin

P is said to be hull consistent if for every constraint c and for all i (1 ≤ i ≤ n),
there exists two points in [x] which satisfy c and whose ith coordinates are x−

i

and x+
i respectively.

The key property of hull consistency lies in the combination of local reasoning
and interval representation of domains. This concept brought a decisive improve-
ment to the traditional Newton-based numerical solvers that were basically only
able to contract domains globally.

Definition 2 (Monotonicity). A mapping f : R → R is increasing over an
interval [x] if ∀a ∈ [x], ∀b ∈ [x] a ≤ b =⇒ f(a) ≤ f(b).

A mapping f : R → R is decreasing if −f is increasing, and monotone if
it is either decreasing or increasing.

A mapping f : Rn → R is increasing (resp. decreasing, monotone) over
a box [x] if ∀x̃ ∈ [x] and ∀i, 1 ≤ i ≤ n, xi �→ f(x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃n) is
increasing (resp. decreasing, monotone) over [x]i.

Strict monotonicity is satisfied when formulas hold with strict inequalities.

Let f : [y] ⊆ R → R be an increasing function. For any interval [x] ⊆ [y],
the infimum and the supremum of f on [x] are f(x−) and f(x+). Hence, the
following interval function:

[x]→ [f(x−), f(x+)]

is an optimal inclusion function for f . This result easily generalizes to monotone
multivariate functions, by a componentwise repetition of the same argument.

2 Main Result

Enforcing hull consistency on a CSP boils down to enforcing bound consistency
on every isolated constraint (cf. Definition 1). Giving an optimal contractor for
a single constraint is thus the main issue, which we shall address below. We shall
even focus on an equation f(x) = 0 (inequalities will be discussed further).

Consider first the univariate case (f has a single variable) and assume that f
is differentiable. The set {f = 0} can easily be bracketed by an interval Newton
iteration (see, e.g., [16] for details on the operations involved):

[y]←
(
ỹ − f(ỹ)/[f ′]([y])

)
∩ [y]

where [f ′] is a (convergent) inclusion function for f ′ and ỹ any point in [y] such
that f(ỹ) �= 0. Henceforth, we assume that a procedure univ newton(f, [x], ε)
is available. This procedure returns an interval [y] such that both [y−, y−+ε]
and [y+−ε, y+] intersect {f = 0}. It can refer to any implementation of the
univariate interval Newton iteration, such as the one given in [10].

Let us state the complexity. As noticed in the introduction, an analytic func-
tion is locally either strictly monotone or flat. Thus, it makes sense to assume

Hull Consistency under Monotonicity 191

strict monotonicity when dealing with complexity. The interval Newton iteration
has a quadratic rate of convergence [1], i.e., the width of [y] at every step is up to
a constant factor less than the square of the width at the previous step. However,
the quadratic rate is only achieved when the iteration is contracting, i.e., when
ỹ− f(ỹ)/[f ′]([y]) ⊆ [y]. While this condition is not fulfilled, the progression can
be slow, as the following figure illustrates:

min slope

m
ax slope

[x]

l(0)l(1)l(2)l(3)· · ·

Fig. 1. Slow progression of the Newton iteration (with the left bound as point of
expansion). The maximum slope on the interval [x] (on the right side) is repeatedly
encompassed in the interval computation of the derivative, which explains the slow
progression. The successive lower bounds of the interval [x] are l(0), l(1),

When the point of expansion ỹ is the midpoint of [y], the width of the interval
is at least divided by two (this is somehow a way to interleave a dichotomy within
the Newton iteration). Thus, the worst-case complexity of univ newton with the
midpoint heuristic is O(log(w/ε)), where w is the width of the initial domain.
Finally, note that if f is not differentiable (or if no convergent inclusion function
is available for f ′), one can still resort to a simple dichotomy and achieve the
same complexity.

The general algorithm (called OCTUM: optimal contractor under monotonicity)
that works with a multivariate mapping f : Rn → R is given below. Note that
univ newton is called on the restriction of f to (axis-aligned) edges of the input
box [x]. Since (n− 1) coordinates are fixed on an edge, the restriction is indeed
a function from R to R.

To ease the description of the algorithm, we will assume that the multivariate
function f is increasing (according to Definition 2). Once the algorithm is un-
derstood, considering the other possible configurations makes no difficulty and
just require a case-by-case adaptation. Lines 0 to 5 initializes the two vectors
x	 and x⊕ that correspond to the vertices where f is minimized and maximized
respectively. When f is increasing, x	 and x⊕ are just aliases for x− and x+.
Line 6 checks that the box [x] contains a solution (and otherwise, the algorithm
returns the empty set). The main loop relies on the following fact (see Figure
2) that will be proven below. Remember that f is assumed to be increasing and
that [x] contains at least one solution. The minimum of xi when x describes the
solutions inside [x] is then either reached

192 G. Chabert and L. Jaulin

(1) on the edge where all the other variables are instantiated to their upper
bound x+

j or
(2) on the face where xi = x−

i (which means that no contraction can be made).

face

edge

edge

x−

x+

x1

x
3 x2

{f = 0}

x˜1 (x−
1 , ·, ·)

(·, x+
2 , x+

3)

Fig. 2. The first component of the solutions inside the box either reaches its minimum
on the face (x−

1 , ·, ·) or on the edge (·, x+
2 , x+

3)

Furthermore, as soon as the minimum for a component xi is met on an edge,
the solution on this edge makes all x+

j (j �= i) consistent in the domain of the
jth variable. To skip useless filtering operations for the upper bounds of the
remaining variables, we use a flag named sup in the algorithm (see lines 17 and
18). Finally, when univ newton is called, either the lower or upper bound of the
resulting interval is considered, depending on which bound of [x]i is contracted
(see lines 15 and 16 or 21 and 22). This ensures that no solution is lost.

Filtering the upper bound of xi is entirely symmetrical. The complexity of
OCTUM is O(n × log(width[x]

ε)), where width[x] stands for max1≤i≤n width[x]i. It
can be qualified as a pseudo-linear complexity.

The OCTUM algorithm can be very easily extended to an inequality f(x) ≤ 0
or f(x) ≥ 0 by simply skipping narrowing operations on y−

i or y+
i respectively.

The completeness and optimality of OCTUM relies on the following proposition.

Proposition 1. Let f : Rn → R be a continuous increasing mapping and [x] a
box such that {f = 0} ∩ [x] �= ∅. Given i, 1 ≤ i ≤ n put:

x˜i := inf{xi, x ∈ {f = 0} ∩ [x]}.

Then, one of the two options holds:

1. x˜i = x−
i ,

2. there exists x ∈ [x] such that xi = x˜i and for every j �= i, xj = x+
j .

Proof. Let x∗ be a solution point in [x] minimizing xi, i.e., f(x∗) = 0 and
x∗

i = x˜i. If x∗
i = x−

i , the first option holds and we are done. Assume x∗
i > x−

i . If
n = 1, the second option holds trivially. If n > 1, consider the following vector:

x := (x+
1 , . . . , x+

i−1, x
∗
i , x

+
i+1, . . . , x

+
n).

Hull Consistency under Monotonicity 193

Algorithm 1. OCTUM(f, [x], ε)
Input: a monotone function f , a n-dimensional box [x], ε > 0
Output: the smallest box [y] enclosing [x] ∩ {f = 0}, up to the precision ε

for i = 1 to n do1

if (f ↗ xi) then x⊕
i ← x+

i ; // x⊕ is the vertex where f is maximized2

else x⊕
i ← x−

i // (f ↗ xi) means “f is increasing w.r.t. xi”3

if (f ↗ xi) then x�
i ← x−

i ; // x� is the vertex where f is minimized4

else x�
i ← x+

i5

if f(x�) > 0 or f(x⊕) < 0 then return ∅ // check if a solution exists6

[y] ← [x]7

sup ← false // true when x⊕
i is consistent for all remaining i8

inf ← false // true when x�
i is consistent for all remaining i9

for i = 1 to n do10

curr sup ← sup ; // save the current value for the second block11

if inf is false then12

[s] ← univ newton(t �→ f(x⊕
1 , . . . , x⊕

i−1, t, x
⊕
i+1, x

⊕
n), [y]i, ε)13

if [s] �= ∅ then14

if (f ↗ xi) then y−
i ← s− // update lower bound of xi15

else y+
i ← s+ ; // update upper bound of xi16

sup ← true // the edge x⊕
j , j �= i, contains a solution17

if curr sup is false then18

[s] ← univ newton(t �→ f(x�
1 , . . . , x�

i−1, t, x
�
i+1, x

�
n), [y]i, ε)19

if [s] �= ∅ then20

if (f ↗ xi) then y+
i ← s+

21

else y−
i ← s−22

inf ← true23

return [y]24

We will prove that f(x) = 0. By contradiction, assume f(x) > 0 (f being
increasing). Since xi = x∗

i > x−
i , there exists by continuity ε > 0 such that

x∗
i −ε > x−

i and f(x−εei) > 0 (ei being the ith unit vector). Now, x∗ is the point
in [x] where f gets null with the smallest ith coordinate. Hence, f(x∗− εei) < 0.

Since f is continuous, f gets null somewhere on the segment joining x∗ − εei

and x − εei because the sign of f is opposite at the two extremities. Since [x]
is convex, the corresponding point is inside [x] and its ith component is x∗

i − εi,
which contradicts the fact that x∗

i is the infimum among the solutions. �

3 A First Experiment

Consider the problem of characterizing the set of points (x, y) in [−3, 0]× [0, 3]
satisfying f(x, y) = 0 with f(x, y) = x2y2 − 9x2y + 6xy2 − 20xy − 1.

Let us compare OCTUM with three other standard generic contractors (namely
HC4 [2,9], BOX [4,18] and 3B [15]) as pruning steps of a classical branch & prune
system. We have implemented a very naive method for detecting monotonicity,

194 G. Chabert and L. Jaulin

using an interval evaluation of the gradient that is systematically computed for
every box (a better method would be to manage flags w.r.t. each variable in a
backtrackable structure, each flag being set incrementally as soon as f is proven to
be monotone). Even with this naive implementation, OCTUM yields better results,
both in terms of quality (see Figure 3) and quantity (see Table below).

(a) Using HC4. (b) Using BOX.

(c) Using 3B. (d) Using OCTUM.

Fig. 3. Comparing the monotonicity-based contractor OCTUM with other standard oper-
ators. Black surfaces encompass the solutions while grey boxes represent the contracted
parts. The thinnest black surface is obtained with OCTUM. Note however the two little
marks in (d) that correspond to points where one component of the gradient gets null.

Running time Number of backtracks Size of solution set

HC4 0.66s 28240 6928
BOX 1.37s 9632 3595
3B 1.89s 9171 2564

OCTUM 0.40s 6047 1143

4 Conclusion

We have proven that hull consistency can be achieved in polynomial time in
the case of constraints involving monotone functions. Hull consistency amounts
to bound consistency for each isolated constraint. We have given an algorithm

Hull Consistency under Monotonicity 195

called OCTUM that enforces bound consistency for an equation under monotonic-
ity (and explained how to adapt it to inequalities). Hull consistency based on
OCTUM can then be programed by simply embedding OCTUM in a classical AC3
propagation loop. A first experiment has illustrated the two nice properties of
OCTUM: optimality and (pseudo-)linear complexity.

References

1. Alefeld, G., Mayer, G.: Interval Analysis: Theory and Applications. J. Comput.
Appl. Math. 121(1-2), 421–464 (2000)

2. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising Hull and Box
Consistency. In: ICLP, pp. 230–244 (1999)

3. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Handbook
of Constraint Programming, ch. 16, pp. 571–604. Elsevier, Amsterdam (2006)

4. Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP(intervals) revisited. In:
International Symposium on Logic programming, pp. 124–138. MIT Press, Cam-
bridge (1994)

5. Benhamou, F., Older, W.J.: Applying Interval Arithmetic to Real, Integer and
Boolean Constraints. Journal of Logic Programming 32, 1–24 (1997)

6. Cleary, J.G.: Logical Arithmetic. Future Computing Systems 2(2), 125–149 (1987)
7. Collavizza, H.: A Note on Partial Consistencies over Continuous Domains Solving

Techniques. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
147–161. Springer, Heidelberg (1998)

8. Delobel, F., Collavizza, H., Rueher, M.: Comparing Partial Consistencies. Reliable
Computing 5(3), 213–228 (1999)

9. Granvilliers, L., Benhamou, F.: Progress in the Solving of a Circuit Design Problem.
Journal of Global Optimization 20(2), 155–168 (2001)

10. Hansen, E.R.: Global Optimization using Interval Analysis. Marcel Dekker, New
York (1992)

11. Hyvönen, E.: Constraint Reasoning Based on Interval Arithmetic. In: IJCAI, pp.
1193–1198 (1989)

12. Hyvönen, E.: Constraint Reasoning Based on Interval Arithmetic—The Tolerance
Propagation Approach. Artificial Intelligence 58, 71–112 (1992)

13. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer,
Heidelberg (2001)

14. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational complexity and
feasibility of data processing and interval computations. Kluwer, Dordrecht (1997)

15. Lhomme, O.: Consistency Techniques for Numeric CSPs. In: IJCAI, pp. 232–238
(1993)

16. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
17. Older, W.J., Vellino, A.: Extending Prolog with Constraint Arithmetic on Real

Intervals. In: IEEE Canadian Conf. on Elec. and Comp. Engineering (1990)
18. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving Polynomial Systems Using

a Branch and Prune Approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)

A Constraint on the Number of Distinct Vectors
with Application to Localization

Gilles Chabert1, Luc Jaulin2, and Xavier Lorca1

1 Ecole des Mines de Nantes LINA CNRS UMR 6241,
4, rue Alfred Kastler 44300 Nantes, France

gilles.chabert@emn.fr, xavier.lorca@emn.fr
2 ENSIETA, 2, rue François Verny 29806 Brest Cedex 9, France

luc.jaulin@ensieta.fr

Abstract. This paper introduces a generalization of the nvalue con-
straint that bounds the number of distinct values taken by a set of vari-
ables.The generalized constraint (called nvector) bounds the number of
distinct (multi-dimensional) vectors. The first contribution of this paper
is to show that this global constraint has a significant role to play with
continuous domains, by taking the example of simultaneous localization
and map building (SLAM). This type of problem arises in the context
of mobile robotics. The second contribution is to prove that enforcing
bound consistency on this constraint is NP-complete. A simple contrac-
tor (or propagator) is proposed and applied on a real application.

1 Introduction

This paper can be viewed as a follow-up of [7] on the application side and [1] on
the theoretical side. It proposes a generalization of the nvalue global constraint
in the context of a relevant application. The nvalue constraint is satisfied for
a set of variables x(1),. . ., x(k) and an extra variable n if the cardinality of
{x(1), . . . , x(k)} (i.e., the number of distinct values) equals to n. This constraint
appears in problems where the number of resources have to be restricted. The
generalization is called nvector and matches exactly the same definition, except
that the x(i) are vectors of variables instead of single variables. Of course, all the
x(i) must have the same dimension (i.e., the same number of components) and
the constraint is that the cardinality of {x(1), . . . , x(k)} must be equal to n.

We first show that this new global constraint allows a much better modeling
of the SLAM (simultaneous localization and map building) problem in mobile
robotics. In fact, it allows to make automatic and thus robust a process part
of which was performed by hand. Second, we classify the underlying theoretical
complexity of the constraint. Finally, a simple algorithm is given and illustrated
on a real example.

Since the application context involves continuous domains, we shall soon focus
on the continuous case although the definition of nvector does not depend on
the underlying type of domains.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 196–210, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Constraint on the Number of Distinct Vectors 197

The application is described in Section 2. We first give an informal description
of what SLAM is all about. The model is then built step-by-step and its main
limitation is discussed. Next, the constraint itself is studied from Section 3 to Sec-
tion 5. After providing its semantic (Section 3), the complexity issue is analyzed
(Section 4), and a simple contractor is introduced (Section 5). Finally, Section 6
shows how the nvector constraint is used in the SLAM problem modeling, and
the improvements obtained are illustrated graphically.

In the rest of the paper, the reader is assumed to have basic knowledge on
constraint programming over real domains and interval arithmetics [9]. Domains
of real variables are represented by intervals. A Cartesian product of intervals is
called a box. Intervals and boxes are surrounded by brackets, e.g., [x]. Vectors
are in boldface letters. If x is a set of vectors, x(i) stands for the ith vector and
x

(i)
j for the jth component of the ith vector. The same convention for indices

carries over vector of boxes: [x(i)] and [x(i)
j] are respectively the domains of x(i)

and x
(i)
j . Given a mapping f , range(f, [x]) denotes the set-theoretical image of

[x] by f and f([x]) denotes the image of [x] by an interval extension of f .

2 Application Context

The nvector constraint can bring substantial improvements to constraint-based
algorithms for solving the simultaneous localization and map building (SLAM)
problem. This section describes the principles of the SLAM and provides a con-
straint model of this application.

2.1 Outline of the SLAM Problem

The SLAM problem can be described by an autonomous robot moving for a
period of time in an unknown environment where the self-location cannot be
performed accurately with the help of external equipments (typically, the GPS),
and the observation of the environment can only be performed by the robot
itself. Examples of such environments include under the sea and the surface of
other planets (where the GPS is unavailable). Both limitations are also present
indoor where the GPS is often considered unreliable.

In the SLAM problem, we have to compute as precisely as possible a map
of the environment (i.e., the position of the detected objects), as well as the
trajectory of the robot. The input data is the set of all measures recorded by the
robot during the mission from its embedded sensors. These sensors can be divided
into two categories: proprioceptive, those that allow to estimate the position of
the robot itself (e.g.: a gyroscope) and exteroceptive, those that allows to detect
objects of the environment (e.g.: a camera). Note that the positions of the robot
at the beginning and the end of the mission are usually known with a good
precision. Objects are called landmarks (or seamarks under the sea).

Since nothing can be observed from outside (should it be a landmark or the
robot itself), uncertainties of measures get accumulated every time step. The

198 G. Chabert, L. Jaulin, and X. Lorca

(b)

(d)(c)

(a)

Fig. 1. A simple SLAM example. The robot is a mouse and landmarks are trees. Un-
certainties on the robot position (resp. trees) are represented by blank (resp. hatched)
ellipsis. (a) At initial time, the robot knows where it is. (b) The uncertainty on the
robot position increases while it moves. When a second tree is detected, there is a
significant uncertainty on its real position. (c) The first tree is met again and used to
adjust the position of the robot. (d) With a backward computation of the trajectory,
uncertainties on the previous positions and observations are reduced.

more the mission lasts, the more the robot gets lost. Likewise, detection of land-
marks is achieved with less and less accuracy. However, when the robot detects
again a landmark that was already placed with a good accuracy on the map, its
position can be adjusted from that of the landmark and the whole process of
estimation (trajectory and map building) can be refined (see Figure 1). Hence,
localization and map building are two connected goals. This interdependence is
one of the reason that makes traditional probabilistic approaches inadequate.
In contrast, it makes no difficulty in the constraint programming framework, as
shown below.

2.2 Basic Constraint Model

Let us now focus on a basic modeling of the SLAM. Many details on a real
experiment (description of the robot, experimental setup, full constraint model,
etc.) can be found in [7] and [8] that deal with SLAM in a submarine context.

The SLAM problem is cast into a CSP as follows. First, the motion of the
autonomous robot obeys a differential equation: p′(t) = f(u(t)), where p(t) is
the position of the robot in space, u(t) a vector of m inputs (speed, rotation
angles, etc.) and f a mapping from Rm to R3. This equation can be cast into a
CSP using a classical interval variant of the Euler method. Details can be found

A Constraint on the Number of Distinct Vectors 199

in [7] and [8]. The discretization introduces a set of (N + 1) variables p(0),. . .,
p(N) where δt is the time lapse between to measures and Nδt the total duration
of the mission. These variables represent a discretization of the trajectory p, i.e.,

∀i, 0 ≤ i ≤ N, p(i) = p(t0 + iδt) (1)

has to be fulfilled. The discretization also introduces N constraints.
Thus, the CSP provides a rigorous enclosure of the trajectory, i.e., for every

possible input u(t) there exists a feasible tuple (p(0), . . . ,p(N)) such that the
trajectory p corresponding to the inputs satisfies (1).

2.3 Introducing Detections

Now that the motion of the vehicle has been cast into a CSP, let us take into
account detections. In the mission, n landmarks have to be localized. Their
coordinates will be denoted by o(1), . . . ,o(n). Once the mission is over, a human
operator scans the waterfall of images provided by exteroceptive sensors. When
a group of pixels are suspected to correspond to a landmark, a box encompassing
the corresponding area is entered as a potential detection. The position of a pixel
on the image can be directly translated into a distance between the landmark and
the robot. First, the detection time τ(i) (i.e., the number of time steps since t0)
and the distance ri are determined. Then, the landmark number σ(i) is identified
which amount to match detections with each others. Finally, a distance constraint
dist(p(τ(i)),o(σ(i))) = ri between the landmark and the robot is added into the
model. Therefore, in [7], the model was augmented as follows:

(P ′)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

additional variables:
o(1) ∈ [o(1)], . . . , o(n) ∈ [o(n)]

domains:
[o(1)] := (−∞, +∞), . . . , [o(n)] := (−∞, +∞)

additional constraints:
dist(p(τ(i)),o(σ(i))) = ri (i = 1..k)

Humans are subject to three types of mistakes: (1) Omission, a landmark on the
waterfall is missed by the operator; (2) Illusion, the operator adds a detection
where there is no landmark; (3) Mismatching, the operator makes a wrong identi-
fication (do not match detections properly). On the one hand, the two first types
of mistakes have been experimentally proven as irrelevant1. On the other hand, if
identifying the type of a landmark is fairly easy, recognizing one particular land-
mark is very hard. In other words, the main difficulty in the operator’s task is
matching landmarks with each others. The bad news is that mismatching makes
the model inconsistent. Hence, the third type of mistakes is critical and requires a
lot of energy to be avoided. Up to now, in the experiments made in [7,8], matching
was simply performed using a priori knowledge of seamark positions.
1 The overall accuracy may suffer from a lack of detections but the consistency of the

model is always maintained (at any time, many landmarks are anyway out of the scope
of the sensors and somehow “missed”). Besides, perception is based on very specific
visual patterns that rule out any confusion with elements of the environment.

200 G. Chabert, L. Jaulin, and X. Lorca

2.4 Our Contribution

The ambition of our work is simply to skip the operator’s matching phase. The
idea is to use the knowledge on the number of landmarks to make this matching
automatically by propagation. This is a realistic approach. In all the missions
performed with submarine robots, a set of beacons is dropped into the sea to
make the SLAM possible. The positions of the beacons at the bottom is not
known because of currents inside water (consider also that in hostile areas they
may be dropped by plane) but their cardinality is.

3 The Number of Distinct Vectors Constraint

Consider k vectors of variables x(1), . . . ,x(k) of equal dimension (which is 2
or 3 in practice) and an integer-valued variable n. The constraint nvector(n,
{x(1), . . . ,x(k)}) holds if there is n distinct vectors between x(1) and x(k) which
can be written:

nvector(n, {x(1), . . . ,x(k)}) ⇐⇒ |{x(1), . . . ,x(k)}| = n,

where |{x(1), . . . ,x(k)}| stands for the cardinality of the set of “values” taken
by x(1), . . . ,x(k). An equivalent definition that better conform to the intuition
behind is that the number of distinct “values” in {x(1), . . . ,x(k)} equals to n.

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

[x(3)]

[x(5)]

[x(4)]

v(1) v(2)

[x(1)]

[x(2)]

(a) Initial state

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

[x(4)][x(2)]

[x(3)]

[x(5)]

[x(1)]

(b) Final state

Fig. 2. (a) The atmost nvector constraint with n = 2 and k = 5. The domains
of x(i) is the cross product of two intervals [x(i)] = [x(i)

1] × [x(i)
2]. The constraint is

satisfiable because there exists two vectors v(1) and v(2) such that ∀i, 1 ≤ i ≤ n, [x(i)]∩
{v(1),v(2)} �= ∅. The set of all such pairs (v(1), v(2)) is represented by the two little
dashed boxes. (b) Result of the bound consistency with respect to the atmost nvector

constraint. The domain of [x(4)] encloses the two little rectangles.

A family of constraints can be derived from nvector in the same way as for
nvalue [2]. The constraint more specifically considered in this paper is atmost
nvector that bounds the number of distinct vectors:

A Constraint on the Number of Distinct Vectors 201

atmost nvector(n, {x(1), . . . ,x(k)}) ⇐⇒ |{x(1), . . . ,x(k)}| ≤ n.

It must be pointed out that, with continuous domains, the constraints nvector
and atmost nvector are operationally equivalent. Indeed, excepted in very par-
ticular situations where some domains are degenerated intervals (reduced to sin-
gle points), variables can always take an infinity of possible values. This means
that any set of k non-degenerated boxes always share at least n values. In the
nvector constraint, only the upper bound (“at most n”) can actually filters.
This remark generalizes the fact that all diff is always satisfied with non-
degenerated intervals. Figure 2a shows an example with n = 2 (the variable is
ground) and k = 5 in two dimensions. Figure 2b shows the corresponding result
of a bound consistency filtering.

4 Operational Complexity

Enforcing generalized arc consistency (GAC) for the atmost-nvalue constraint
is NP-hard [3]. Worse, simply computing the minimum number of distinct val-
ues in a set of domains is NP-hard [2]. However, when domains are intervals,
these problems are polynomial [1,6]. The question under interest is to know if
atmost-nvector is still a tractable problem when domains are boxes (vector of
intervals), i.e., when the dimension is greater than 1. We will show that it is not.

Focusing on this type of domains is justified because continuous constraints
are always handled with intervals. This also implies that bound consistency is the
only acceptable form of filtering that can be applied with continuous domains.2

We shall restrict ourselves to the calculation of the minimum number of dis-
tinct values (also called the minimum cardinality) and to boxes of dimension 2,
i.e., rectangles. As noticed in [2], the minimum number of distinct values shared
by a set of rectangles is also the cardinality of the minimum hitting set. A hitting
set is a collection of points that intersects each rectangle. In the two following
subsections, we consider the equivalent problem of finding the cardinality of the
minimum clique partition of a rectangle graph.

4.1 Rectangle Graphs and Clique Partitions

A rectangle graph is a n-vertices graph Gr = (Vr, Er) that can be extracted
from n axis-aligned rectangles in the plane by (1) creating a vertex for each
a rectangle, and (2) adding an edge when there is a non-empty intersection
between two rectangles. Figure 3 depicts the two views of a rectangle graph.

A clique partition of a graph is a collection of complete subgraphs that par-
tition all the vertices. A minimal clique partition is a clique partition with the
smallest cardinality (i.e., with the smallest number of subgraphs). Since any set
of pairwise intersecting rectangles intersect all mutually (by Helly’s theorem), a
k-clique in a rectangle graph represents the intersection of k rectangles in the
2 Allowing gaps inside intervals and applying GAC filtering leads to unacceptable

space complexity [4].

202 G. Chabert, L. Jaulin, and X. Lorca

S1

R1

R2

R4

R3

R7 R5
R6

(a) Rectangle graph

R1

R7

R5

R4

R2
R3

R6

S1

(b) Geometrical view

Fig. 3. A rectangle graph and its geometrical representation (axis-aligned rectangles)

geometrical view. For instance, the 3-clique S1 of Gr in Figure 3a represents
the intersection of three rectangles (R4, R5, R6) in Figure 3b, depicted by the
black rectangle S1. As a consequence, looking for the minimum hitting set or the
minimum clique partition are indeed equivalent problems for rectangle graphs.
The final problem under consideration can then be formulated as follows:

Rectangle Clique Partition (RCP)
– Instance: A rectangle graph Gr = (Vr , Er) given in the form of |Vr| axis-

aligned rectangles in the plane and k ≤ |Vr|.
– Question: Can Vr be partition into k disjoint sets V1, . . . , Vk such that
∀i, 1 ≤ i ≤ k the subgraph induced by Vi is a complete graph?

Proposition 1. RCP is NP-complete.

The fact that RCP belongs to NP is easy to prove: the given of a k–partition
is a certificate that can be checked in polynomial time. The rest of the proof,
i.e., the reduction of a NP-complete problem to RCP is given below. Note that
the transformation below is inspired from that in [10] but contains fundamental
differences.

4.2 Building a Rectangle Graph from a Cubic Planar Graph

The problem we will reduce to RCP involves planar graphs which require the
introduction of extra vocabulary. An embedding of a graph G on the plane is a
representation of G (see Figure 4) in which points are associated to vertices and
arcs are associated to edges in such a way:

– the endpoints of the arc associated to an edge e are the points associated to
the end vertices of e,

– no arcs include points associated to other vertices,
– two arcs never intersect at a point which is interior to either of the arcs.

A planar graph (Figure 4a) is a graph which admits an embedding on the plane
(Figure 4b), and a cubic graph is a 3-regular graph, i.e., a graph in which every

A Constraint on the Number of Distinct Vectors 203

v1

v3

v2

v4

(a) Cubic Pla-
nar graph.

p1p4

p2

p3

(b) A possible embedding on
the plane.

p3

p2

p1p4

(c) A rectilinear embedding
on the plane.

Fig. 4. A (cubic) planar graph, one of its embedding on the plane, and one of its
rectilinear embedding

vertex has 3 incident edges. A rectilinear embedding is an embedding where every
arc is a broken line formed by horizontal and vertical segments (Figure 4c).

We are now in position to discuss about the transformation itself. Consider
a planar cubic graph GP . First, Tammassia and al. gave a polytime algorithm
in [11] for computing a 5-rectilinear embedding of a planar graph, i.e., a rectilin-
ear embedding where each broken line is formed by 5 segments. This is illustrated
by Figure 5. Second, this embedding can be transformed into a rectangle graph
using the patterns depicted on Figures 6a and 6b:

– Every segment of the 5-rectilinear embedding of Gp is replaced by a rectangle
such that if two segments do not intersect in the 5-rectilinear embedding,
the corresponding rectangles do not intersect (should they be flat).

– For segments having a vertex at a common endpoint, the corresponding rect-
angles intersect all mutually in the neighborhood of this vertex (Figure 6a).
Remember that the case of a leaf node is irrelevant because Gp is cubic.

– For segments having a bend in common, the rectangles are disjoint.
– An extra rectangle is added in the neighborhood of each bend. This rectangle

intersects the two rectangles associated to the segments (Figure 6b). The
three rectangles cannot intersect all mutually due to the previous point.

p3 p1p4

p2

Fig. 5. A 5-rectilinear embedding of the cubic planar graph given in Figure 4 (segments
are delineated by arrows)

204 G. Chabert, L. Jaulin, and X. Lorca

p S

R3

R2

R1 R1

R2

R3

(a) Transformation of segments at
a common endpoint.

R1 R2

R3

R3 R1 R2

(b) Transformation of segments
having a bend in common.

Fig. 6. Atomic operations to transform the 5-rectilinear embedding of a cubic planar
graph (left) into the geometrical view (middle) of a rectangle graph (right)

4.3 Reduction from Cubic Planar Vertex Cover

Consider the well-known vertex cover problem. This problem remains NP-
Complete even for cubic planar graphs [12]. It is formally stated as follows:

Cubic Planar Vertex Cover (CPVC)
– Instance: A cubic planar graph Gp = (Vp, Ep) and k ≤ |Vp|.
– Question: Is there a subset V ′ ⊆ Vp with |V ′| ≤ k such each edge of Ep has

at least one of its extremity in V ′?

Lemma 1. Let Gp be a n-vertex m-edges cubic planar graph and an integer
value k ≤ n. Let Gr be the rectangle graph obtained by the transformation of §4.2.
The answer to CPVC with (Gp, k) is yes iff the answer to RCP with (Gr , k +
4×m) is yes.

Proof. This proof is illustrated in Figure 7.

Forward Implication: Assume a n-vertex m-edges cubic planar graph Gp has
a vertex cover V ′ of cardinality k. We shall build a partition P of Gr, initially
empty. To each edge e = (vi, vj) of Ep corresponds a 2-degree chain ce in Gr,
with exactly nine vertices, from a vertex of the 3-clique pi(associated to vi) to a
vertex of the 3-clique pj (associated to vj).

First, for every vi ∈ V ′, add the 3-clique pi in P . Since V ′ is a covering set,
every chain has now one of its extreme vertex inside a clique of P . The 8 other
remaining vertices of the chain can then easily be partitioned into 4 additional
cliques. Add these cliques to P .

Once all these additional cliques are added to P , the latter is a partition of
Gr whose size is k + 4×m.

Backward Implication: Assume Gr can be partition into k+4×m cliques and
let P be such a partition. We shall call a free clique a clique that only contain
vertices of the same given chain. Similarly, a shared clique is a clique involving
(extreme) vertices of at least two different chains.

Every chain contains 9 vertices. One can easily see that it requires at least 5
cliques to be partitioned, 4 of which are free. For every chain c, remove 4 free
cliques of c from P . Then there is still (at least) one clique left in P that involves
a vertex of c. When this process is done, the number of remaining cliques in P
is k + 4×m− 4×m = k.

A Constraint on the Number of Distinct Vectors 205

vi vj
e

(a) Edge of Gp.

pjpi

e

(b) Rectilinear em-
bedding view.

R1 R2

R3 R4

R5 R6

R7 R8

R9

pi

pj

ce

(c) Corresponding chain
(subgraph of Gr).

Fig. 7. Transforming an edge of the cubic planar graph GP into, first, its rectilinear
view, second, a rectangle graph Gr

Now, for every clique C of P : if C is shared, put the corresponding vertex of
GP in V ′. If C is free, consider the edge e of GP associated to the chain and
put anyone of the two endpoint vertices of e into V ′. We have |V ′| = k and
since every chain has a vertex in the remaining cliques of P , every edge of GP

is covered by V ′. ��

5 A Very First Polytime Contractor

We shall now propose a simple algorithm for computing bound consistency with
respect to atmost nvector. Let us denote by dim the dimension of the vectors.
The contractor is derived from the following implication:

atmost nvector(n, {x(1), . . . ,x(k)})=⇒
atmost nvalue(n, {x(1)

1 , . . . , x
(k)
1 }) ∧. . . ∧ atmost nvalue(n, {x(1)

dim, . . . , x
(k)
dim}).

Therefore, applying a contractor for atmost nvalue with the projections of the
boxes onto each dimension in turn gives a contractor for atmost nvector. Since
a contractor for atmost nvalue enforcing GAC (hence, bound consistency) when
domains are intervals already exists [1], we are done. This is achieved in O(dim×
k log(k)). Although the purpose of this paper is not to describe an efficient
contractor, we shall introduce right away a first (but significant) improvement
of our naive algorithm.

The reader must simply admit that the contractor of atmost nvalue(n, {x(1)
i ,

. . ., x
(k)
i }) works in two steps (see Figure 8). First, it builds groups of variables.

If the number of groups turns to be n, it is then proven that for all x
(j)
i and

x
(l)
i that belong to the same group, x

(j)
i and x

(l)
i must satisfy x

(j)
i = x

(l)
i . Hence,

the domains of all the variables of the same group G can be shrunk to their
common intersection denoted by [G]. Furthermore, this process results in a set
of n disjoint intervals [G1], . . . , [Gn] that we will call kernels.

In the favorable case of n groups, the last step can be improved. If two variables
x

(j)
i and x

(l)
i belong to the same group G, the whole vector variables x(j) and x(l)

206 G. Chabert, L. Jaulin, and X. Lorca

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

pr
oj

ec
tio

n
on

to

kernels

[x(5)]
[x(6)]

[x(7)]
[x(2)]

[x(1)] [x(3)]

[x
(1)
1]

[x
(5)
1]

[x
(4)
1]

[x
(3)
1]

[x
(7)
1]

[G1] [G2]

x
1

[G3]

[x(4)]

[x
(2)
1]

[x
(6)
1]

Fig. 8. Illustration of what the at most nvalue algorithm yields. Here, k = 7, dim = 2,
n = 3 and the algorithm is run for the first projection (i.e., onto the horizontal axis).
Three groups, represented by gray ellipsis, are identified, namely G1 = {x(1)

1 , x
(2)
1 },

G2 = {x(4)
1 , x

(5)
1 } and G3 = {x(7)

1 }. The variables of the same group are proven to be all
equal (otherwise, the constraint is violated). E.g., x

(1)
1 and x

(2)
1 must satisfy x

(1)
1 = x

(2)
1 .

Domains for the variables of a given group can be replaced by the corresponding kernel
(e.g., [x(1)

1] and [x(2)
1] can be set to [G1]). Notice that the kernels are all disjoint.

In our suggested improvement, the whole boxes are intersected instead of the first
components only. Hence the domains of [x(1)] and [x(2)] are intersected, which gives
one of the hatched rectangles. The other hatched rectangle is [x(4)] ∩ [x(5)].

are actually constrained to be equal. Indeed, assume that x(j) and x(l) could take
two different vectors. The k − 2 other variables necessarily share n− 1 different
vectors because their ith components must “hit” the n− 1 (disjoint) kernels [G′]
with G′ �= G. This means that the overall number of distinct vectors is at least
(n− 1) + 2 > n.

Hence, the algorithm of atmost nvalue can be modified to intersect boxes
(instead of just one component). This multiplies the complexity by dim (which
is small in practice).

6 Experimental Evaluation: The SLAM Problem

This section shows how the atmost nvector constraint allows to improve the
modeling and resolution of the SLAM problem. We propose an extension of the
original model given in Section 2, and provide a graphical validation.

We introduce k 3-dimensional variables d(1), . . . ,d(k) related to all the detec-
tions. A distance constraint involving each of the latters is added into the model,
as well as a nvector constraint capturing the fact that only n landmarks exist.

A Constraint on the Number of Distinct Vectors 207

(P ′′)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

additional variables:
d(1) ∈ [d(1)], . . . , d(k) ∈ [d(k)]

domains:
[d(1)] := (−∞, +∞), . . . , [d(k)] := (−∞, +∞)

additional constraints:
dist(pτ(i),d(i)) = ri (i = 1..k)
atmost− nvector(n, {d(1), . . . ,d(k)})

The introduction of the atmost-nvector constraint has provided the expected
results. Let us first explain how the benefits of this constraint can be quantified.

In the context of differential equations, we are dealing with a very large num-
ber of variables and a sparse system with an identified structure. Moreover, the
system is subject to many uncertainties. Under these conditions, the quality of
the result is more relevant than the computation time, as we justify now.

No Choice Point. In applications, the number of variables can be huge (more
than 1140000 in [7,8] in order to represent the three coordinates of the robot, the
Euler angles, the speed, the altitude and the components of the rotation matrix
at each time step). This prevents us for making choice points. Note that the
situation is even worse since the solution set is not a thin trajectory (formed by
isolated points). The numerous uncertainties make the best solution ever a thick
beam of trajectories (as depicted in Figure 9). Continuums of solutions usually
dissuade one from making choice points, even for much smaller problems.

Handcrafted Propagation. The size of our problem also prevents us for using
a general-purpose AC3-like propagation algorithm, since building an adjacency
matrix for instance would simply require too much memory. Furthermore, we
have a precise knowledge of how the network of constraints is structured. Indeed,
the discretization of the motion yields a single (long) chain of constraints and
cycles in the network only appear with detection constraints. An appropriate
strategy is then to base propagation on the detection constraints, which are much
fewer. Every time a detection reduces significantly the domain of a position p(i),
the motion constraints are propagated forward (from p(i) to p(N)) and backward
(from p(i) downto p(0)). In a nutshell, propagation in this kind of problems is
guided by the physics.

Irrelevance of Computation Time. When the application is run, it takes
a couple of seconds to load data of the sensors (which amount to initialize the
domains of variables representing input vectors) and to precalculate expressions
(e.g., rotation matrices). With or without the nvector constraint, propagation
takes a negligible time (less than 1%) in comparison to this initialization. There-
fore, focusing on computation time is not very informative.

Quality of the Result. Our contribution is to make propagation for the SLAM
problem automatic whereas part of it was performed by a human operator so far.
This is a result in itself. However, one may wonder which between the automatic

208 G. Chabert, L. Jaulin, and X. Lorca

matching and the operator’s is most competitive. This, of course, is hard to
evaluate a priori. In the experiment of [7,8], both have provided the optimal
matching. The question that still remains is to know the extent to which our
matching (the one provided by the algorithm in Section 5) improves the “quality”
of the result, i.e., the accuracy of the trajectory.

(a) Basic SLAM: trajectory and de-
tections (1200 iterations).

(b) Basic SLAM: Detections (4000
iterations).

(c) Basic SLAM: trajectory (4000 it-
erations).

(d) Improved SLAM: trajectory and
detections (4000 iterations).

Fig. 9. Comparing SLAM with the atmost-nvector contractor (Improved SLAM) and
without(Basic SLAM). The trajectory is represented by gray filled boxes, detections by
thick-border rectangles and landmarks by the little black squares. Figure 9(d) depicts
the fixpoint of all the contractors: the four landmarks are very well localized and
the trajectory is much thiner (after 4000 iterations, the largest diameter is 10 times
less than in Figure 9(c)). Our algorithm has contracted many detections to optimal
boxes around landmarks. We can also observe the weakness of our algorithm which
has poorly reduced boxes whose projections on both axis encompass two projections
of landmarks. This however exclude a detection which really encloses two landmarks:
in this case, either there is a real ambiguity or it is the propagation to blame.

A Constraint on the Number of Distinct Vectors 209

The idea was to make the robot looping around the same initial point so that
many detections would intersect.3 For this purpose, we have controlled the robot
with a classical feedback loop which gives the expected cycloidal trajectory.

Four landmarks have been placed in the environment and we have basically
considered that a landmark is detected everytime the distance between the robot
and itself reaches a local minimum (if less than a reasonable threshold). The
estimation of the landmark position is then calculated from this distance (with
an additional noise) and a very rough initial approximation.

Figure 9 illustrates the effect of automatic matching on the estimation of the
trajectory and the positions of the landmarks. All the results have been obtained
in a couple of seconds by the Quimper system [5].

7 Conclusion

A somewhat natural generalization of the nvalue constraint, called nvector has
been proposed. The nvector constraint can help modeling and solving many
localization problems where a bound on the number of landmarks to localized is
known. This has been illustrated on the SLAM problem and applied on a real
experiment. We have also analyzed the complexity of this global constraint and
given a simple contractor.

The benefit of this constraint in terms of modeling has a direct impact on the
way data of the experiments have to be processed. Indeed, the constraint allows
to avoid requiring someone that matches landmarks by hand. Hence, it reduces
considerably the amount of work and the probability of mistake this operation
entails.

The field of application is not restricted to the SLAM problem. Ongoing works
show that the nvector is as crucial for the passive location of vehicles using
TDOA (time difference of arrival) in signal processing. All these problems involve
real variables. Hence, as a side contribution, this paper also offsets the lack of
activity about global continuous constraints.

Future works include the design of more sophisticated contractors with bench-
marking. The nvector constraint also leads up to the study of other global
constraints. As soon as several estimations of the same landmark position are
matched by nvector, this position satisfies indeed a global constraint (namely,
the intersection of several spheres if estimations result from distance equations).

References

1. Beldiceanu, N.: Pruning for the minimum Constraint Family and for the number
of distinct values Constraint Family. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239,
pp. 211–224. Springer, Heidelberg (2001)

3 The experiment of [7,8] was not appropriate for this illustration because matching
seamarks was actually too easy (6 seamarks and a rectangle graph of detections with
6 strongly connected components).

210 G. Chabert, L. Jaulin, and X. Lorca

2. Bessière, C., Hébrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering Algorithms
for the NValue Constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS,
vol. 3524, pp. 79–93. Springer, Heidelberg (2005)

3. Bessière, C., Hébrard, E., Hnich, B., Walsh, T.: The Complexity of Global Con-
straints. In: AAAI 2004, pp. 112–117 (2004)

4. Chabert, G.: Techniques d’Intervalles pour la Résolution de Systèmes d’Équations.
PhD Thesis, Université de Nice-Sophia Antipolis (2007)

5. Chabert, G., Jaulin, L.: Contractor Programming. Artificial Intelligence 173, 1079–
1100 (2009)

6. Gupta, U.I., Lee, D.T., Leung, Y.T.: Efficient Algorithms for Interval Graphs and
Circular-Arc Graphs. Networks 12, 459–467 (1982)

7. Jaulin, L.: Localization of an Underwater Robot using Interval Constraint Propa-
gation. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 244–255. Springer,
Heidelberg (2006)

8. Jaulin, L.: A Nonlinear Set-membership Approach for the Localization and Map
Building of an Underwater Robot using Interval Constraint Propagation. IEEE
Transaction on Robotics 25(1), 88–98 (2009)

9. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
10. Rim, C.S., Nakajima, K.: On Rectangle Intersection and Overlap Graphs. IEEE

Transactions on Circuits and Systems 42(9), 549–553 (1995)
11. Tamassia, R., Tollis, I.G.: Planar Grid Embedding in Linear Time. IEEE Trans.

Circuits Systems 36, 1230–1234 (1989)
12. Uehara, R.: NP-Complete Problems on a 3-connected Cubic Planar Graph and

their Applications. Technical Report Technical Report TWCU-M-0004, Tokyo
Woman’s Christian University (1996)

Approximating Weighted Max-SAT Problems
by Compensating for Relaxations

Arthur Choi, Trevor Standley, and Adnan Darwiche

Computer Science Department,
University of California, Los Angeles

Los Angeles, CA 90095
{aychoi,tstand,darwiche}@cs.ucla.edu

Abstract. We introduce a new approach to approximating weighted
Max-SAT problems that is based on simplifying a given instance, and
then tightening the approximation. First, we relax its structure until it
is tractable for exact algorithms. Second, we compensate for the relax-
ation by introducing auxiliary weights. More specifically, we relax equiv-
alence constraints from a given Max-SAT problem, which we compensate
for by recovering a weaker notion of equivalence. We provide a simple
algorithm for finding these approximations, that is based on iterating
over relaxed constraints, compensating for them one-by-one. We show
that the resulting Max-SAT instances have certain interesting proper-
ties, both theoretical and empirical.

1 Introduction

Relaxations are often used to tackle optimization problems, where a tractable
relaxed problem is used to approximate the solution of an intractable one. In-
deed, they are employed by a few recently proposed solvers for the maximum
satisfiability (Max-SAT) problem [1,2], which have shown to be competitive for
certain classes of benchmarks in recent Max-SAT evaluations. In these solvers,
a given Max-SAT instance is relaxed enough until it is amenable to an exact
solver. Upper bounds computed in the resulting relaxation are then used in a
branch-and-bound search to find the Max-SAT solution of the original instance.

Whether a relaxation is used in a branch-and-bound search, or used as an
approximation in and of itself, a trade-off must be made between the quality
of a relaxation and its computational complexity. The perspective that we take
in this paper, instead, is to take a given relaxation, infer from its weaknesses,
and compensate for them. Since we assume that reasoning about the original
problem is difficult, we can exploit instead what the relaxed problem is able to
tell us, in order to find a tighter approximation.

In this paper, we propose a class of weighted Max-SAT approximations that
are found by performing two steps. First, we relax a given weighted Max-SAT
instance, which results in a simpler instance whose solution is an upper bound
on that of the original. Second, we compensate for the relaxation by correcting
for deficiencies that were introduced, which results in an approximation with

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 211–225, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

212 A. Choi, T. Standley, and A. Darwiche

improved semantics and a tighter upper bound. These new approximations, can
in turn be employed by other algorithms that rely on high quality relaxations.

More specifically, we relax a given weighted Max-SAT problem by removing
from it certain equivalence constraints. To compensate for each equivalence con-
straint that we relax, we introduce a set of unit clauses, whose weights restore a
weaker notion of equivalence, resulting in a tighter approximation. In the case a
single equivalence constraint is relaxed, we can identify compensating weights by
simply performing inferences in the relaxation. In the case multiple equivalence
constraints are relaxed, we propose an algorithm that iterates over equivalence
constraints, compensating for them one-by-one. Empirically, we observe that this
iterative algorithm tends to provide monotonically decreasing upper bounds on
the solution of a given Max-SAT instance.

Proofs are given in the Appendix, or in the full report [3], in the case of
Theorem 4. For an introduction to modern approaches for solving and bounding
Max-SAT problems, see [4].

2 Relaxing Max-SAT Problems

Max-SAT is an optimization variant of the classical Boolean satisfiability prob-
lem (SAT). Given a Boolean formula in clausal form, the goal is to find an
assignment of variables X to truth values x or x̄, that maximizes the number
of satisfied clauses. In the weighted Max-SAT problem, each clause is associated
with a non-negative weight and the goal is to find an assignment that maximizes
the aggregate weight of satisfied clauses. The weighted partial Max-SAT prob-
lem further specifies clauses that are hard constraints, that must be satisfied by
any solution.1 In this paper, we focus on weighted Max-SAT problems, although
we will formulate relaxations in terms of hard constraints, as we shall soon see.

Let f = {(C1, w1), . . . , (Cm, wm)} be an instance of weighted Max-SAT over
variables X , where wj is the weight of a clause Cj . Let X denote the set of all
variables in f , and let x denote an assignment of variables X to truth values x
or x̄ (we also refer to truth values as signs). An optimal Max-SAT assignment
x� is an assignment that maximizes the aggregate weight of satisfied clauses:
x� = argmaxx

∑
x|=Cj

wj . We denote the corresponding value of a Max-SAT
solution by F � = maxx

∑
x|=Cj

wj . Note that a weighted Max-SAT instance f
may have multiple assignments x� that are optimal, so we may refer to just the
optimal value F � when the particular optimal assignment x� is not relevant.

Let Z ⊆ X denote a subset of the variables in instance f . We are also interested
in Max-SAT solutions under partial assignments z. More specifically, let x ∼ z
denote that x and z are compatible instantiations, i.e., they set common variables
to the same values. We then denote the value of a Max-SAT solution under a
partial assignment z by

F (z) = max
x∼z

∑
x|=Cj

wj .

1 In practice, hard constraints can be represented by clauses with large enough weights.

Compensating for Relaxations 213

We will be particularly interested in the value of a Max-SAT solution when a
single variable X is set to different signs, namely F (x) when variable X is set
positively, and F (x̄) when variable X is set negatively. Note, for an optimal
assignment x�, we have F � = F (x�) = max{F (x), F (x̄)}, for any variable X .

Consider now the notion of an equivalence constraint:

(X ≡ Y,∞)
def
= {(x ∨ ȳ,∞), (x̄ ∨ y,∞)}

that is a hard constraint that asserts that X and Y should take the same sign.
We consider in this paper the relaxation of Max-SAT instances that result from
removing equivalence constraints. Clearly, when we remove an equivalence con-
straint from a Max-SAT instance f , more clauses can become satisfied and the
resulting optimal value will be an upper bound on the original value F �.

It is straightforward to augment a Max-SAT instance, weighted or not, to an
equivalent one where equivalence constraints can be relaxed. Consider, e.g.,

{(a ∨ b, w1), (b̄ ∨ c, w2), (c̄ ∨ d, w3)}.

We can replace the variable C appearing as a literal in the third clause with a
clone variable C′, and add an equivalence constraint C ≡ C′, giving us:

{(a ∨ b, w1), (b̄ ∨ c, w2), (c̄′ ∨ d, w3), (c ∨ c̄′,∞), (c̄ ∨ c′,∞)}

which is equivalent to the original in that an assignment x of the original formula
corresponds to an assignment x′ in the augmented formula, and vice-versa, where
the assignment x′ sets the variable and its clone to the same sign. Moreover, the
assignment x satisfies the same clauses in the original instance that assignment
x′ satisfies in the augmented instance (minus the equivalence constraint), and
vice-versa. In this particular example, when we remove the equivalence constraint
C ≡ C′, we have a relaxed formula composed of two independent subproblems:
{(a ∨ b, w1), (b̄ ∨ c, w2)} and {(c̄′ ∨ d, w3)}.

A number of structural relaxations can be reduced to the removal of equiva-
lence constraints, including variable splitting [1,5,6], variable relabeling [2], and
mini-bucket approximations [7,5]. In particular, these relaxations, which ignore
variables shared among different clauses, can be restored by adding equivalence
constraints.

3 Compensating for Relaxations

Suppose that we have simplified a Max-SAT instance f by relaxing equivalence
constraints, resulting in a simpler instance h. Our goal now is to identify a Max-
SAT instance g that is as tractable as the relaxed instance h, but is a tighter
approximation of the original instance f .

We propose that we construct a new instance g by introducing auxiliary
clauses into the relaxation. More specifically, for each equivalence constraint

214 A. Choi, T. Standley, and A. Darwiche

X ≡ Y relaxed from the original instance f , we introduce four unit clauses, with
four auxiliary weights:

{(x, wx), (x̄, wx̄), (y, wy), (ȳ, wȳ)}.

Note that adding unit clauses to an instance does not impact significantly the
complexity of solving it, in that the addition does not increase the treewidth
of an instance. Thus, adding unit clauses does not increase the complexity of
Max-SAT algorithms that are exponential only in treewidth [8]. Our goal now is
to specify the auxiliary weights wx, wx̄, wy, wȳ so that they compensate for the
equivalence constraints relaxed, by restoring a weaker notion of equivalence.

3.1 Intuitions: A Simplified Case

In this section, we describe our proposal in the simpler case where a single
equivalence constraint X ≡ Y is removed. We shall make some claims without
justification, as they follow as corollaries of more general results in later sections.

Say we remove a single equivalence constraint X ≡ Y from f , resulting in a
relaxation h. In any optimal assignment for instance f , variables X and Y are
set to the same sign, because of the equivalence constraint X ≡ Y . If a Max-
SAT assignment x� for the relaxation h happens to set variables X and Y to the
same sign, then we know that x� is also a Max-SAT assignment for instance f .
However, an optimal assignment for the relaxation h may set variables X and
Y to different signs, thus the Max-SAT value H� of the relaxation h is only an
upper bound on the Max-SAT value F � of the original instance f . The goal then
is to set the weights wx, wx̄ on X and wy, wȳ on Y to correct for this effect.

Consider first, in the relaxation, the values of H(x) and H(y), the Max-SAT
values assuming that a variable X is set to a value x, and separately, that variable
Y is set to a value y. If H(x) �= H(y) and H(x̄) �= H(ȳ), then we know that
a Max-SAT assignment for the relaxation h sets X and Y to different signs:
the Max-SAT value assuming X is set to x is not the same as the Max-SAT
value assuming Y is set to y (and similarly for x̄ and ȳ). Thus, we may want
to set the weights wx, wx̄, wy, wȳ so that G(x) = G(y) and G(x̄) = G(ȳ) in the
compensation g, so that if there is a Max-SAT assignment that sets X to x,
there is at least a Max-SAT assignment that also sets Y to y, even if there is no
Max-SAT assignment setting both X and Y to the same sign at the same time.

We thus propose the following weaker notion of equivalence to be satisfied in
a compensation g, to makeup for the loss of an equivalence constraint X ≡ Y :

1
2

[
G(x)
G(x̄)

]
=

1
2

[
G(y)
G(ȳ)

]
=
[
wx + wy

wx̄ + wȳ

]
(1)

Before we discuss this particular choice of weights, consider the following proper-
ties of the resulting compensation g. First, we can identify when a compensation
g satisfying Equation 1 yields exact results, just as we can with a relaxation h.
In particular, if x� is an optimal assignment for g that sets the variables X and
Y to the same sign, then: (1) assignment x� is also optimal for instance f ; and

Compensating for Relaxations 215

(2) 1
2G(x�) = F (x�). Moreover, a compensation g yields an upper bound that

is tighter than the one given by the relaxation h:

F � ≤ 1
2
G� ≤ H�.

See Corollary 1 in the Appendix, for details.
To justify the weights we chose in Equation 1, consider first the following two

properties, which lead to a notion of an ideal compensation. First, say that a
compensation g has valid configurations if:

G(x) = G(y) = G(x, y) and G(x̄) = G(ȳ) = G(x̄, ȳ),

i.e., Max-SAT assignments that set X to a sign x also set Y to the same sign
y, and vice versa; analogously if X is set to x̄ or Y is set to ȳ. Second, say that
a compensation g has scaled values if the optimal value of a valid configuration
is proportional to its value in the original instance f , i.e., G(x, y) = κF (x, y)
and G(x̄, ȳ) = κF (x̄, ȳ) for some κ > 1. We then say that a compensation g is
ideal if it has valid configurations and scaled values. At least for finding Max-
SAT solutions, an ideal compensation g is just as good as actually having the
equivalence constraint X ≡ Y . The following tells us that for any possible choice
of weights, if the compensation is ideal then it must also satisfy Equation 1.

Proposition 1. Let f be a weighted Max-SAT instance and let g be a compen-
sation that results from relaxing a single equivalence constraints X ≡ Y in f . If
g has valid configurations and scaled values, with κ = 2, it also satisfies Eq. 1.

Although a compensation satisfying Equation 1 may not always be ideal, it at
least results in a meaningful approximation that is tighter than a relaxation.
Note that we could have chosen a different value of κ, leading to equations
slightly different from Equation 1, although the resulting approximation would
be effectively the same. Moreover, the choice κ = 2 leads to simplified semantics,
e.g., in the ideal case we can recover the exact values from the weights alone:
wx + wy = F (x, y) and wx̄ + wȳ = F (x̄, ȳ).

3.2 An Example

Consider the following weighted Max-SAT instance f with a single equivalence
constraint X ≡ Y :

f : (x ∨ z̄, 12) (y ∨ z̄, 6) (z, 30) (x ∨ ȳ,∞)
(x̄ ∨ z̄, 3) (ȳ ∨ z̄, 9) (x̄ ∨ y,∞)

which has a unique optimal Max-SAT assignment x� = {X =x, Y =y, Z =z},
with Max-SAT value F (x�) = 12 + 6 + 30 = 48. When we relax the equivalence
constraint X ≡ Y , we arrive at a simpler instance h:

h : (x ∨ z̄, 12) (y ∨ z̄, 6) (z, 30)
(x̄ ∨ z̄, 3) (ȳ ∨ z̄, 9)

216 A. Choi, T. Standley, and A. Darwiche

The relaxation h has a different optimal assignment x� = {X =x, Y = ȳ, Z =z},
where variables X and Y are set to different signs. The optimal value is now
H(x�) = 12 + 9 + 30 = 51 which is greater than the value 48 for the original
instance f . Now consider a compensation g with auxiliary unit clauses:

g : (x ∨ z̄, 12) (y ∨ z̄, 6) (z, 30) (x, 27) (y, 21)
(x̄ ∨ z̄, 3) (ȳ ∨ z̄, 9) (x̄, 20) (ȳ, 26)

This compensation g satisfies Equation 1, as:

1
2

[
G(x)
G(x̄)

]
=

1
2

[
G(y)
G(ȳ)

]
=
[

wx + wy

wx̄ + wȳ

]
=
[
48
46

]
The compensation g has an optimal assignment x� = {X =x, Y =y, Z =z}, the
same as for the original instance f . It also has Max-SAT value G(x�) = 12+6+
30 + 27 + 21 = 96, where 1

2G(x�) = F (x�) = 48.
Note that in this example, the weights happened to be integral, although in

general, the weights of a compensation may be real-valued.

3.3 Compensations and Their Properties

In this section, we define compensations for the general case when multiple equiv-
alence constraints are removed. Moreover, we formalize some of the properties
we highlighted in the previous section.

Say then that we relax k equivalence constraints X ≡ Y . We seek a compen-
sation g whose weights satisfy the condition:

1
1 + k

[
G(x)
G(x̄)

]
=

1
1 + k

[
G(y)
G(ȳ)

]
=
[
wx + wy

wx̄ + wȳ

]
(2)

for each equivalence constraint X ≡ Y relaxed. If a compensation g does indeed
satisfy this condition, then it is possible to determine, in certain cases, when the
optimal solution for a compensation is also optimal for the original instance f .

Theorem 1. Let f be a weighted Max-SAT instance and let g be the compen-
sation that results from relaxing k equivalence constraints X ≡ Y in f . If the
compensation g satisfies Equation 2, and if x� is an optimal assignment for g
that assigns the same sign to variables X and Y , for each equivalence constraint
X ≡ Y relaxed, then:

– assignment x� is also optimal for instance f ; and
– 1

1+kG(x�) = F (x�).

Moreover, the Max-SAT value of a compensation g is an upper bound on the
Max-SAT value of the original instance f .

Theorem 2. Let f be a weighted Max-SAT instance and let g be the compen-
sation that results from relaxing k equivalence constraints X ≡ Y in f . If the
compensation g satisfies Equation 2, then: F � ≤ 1

1+kG�

Compensating for Relaxations 217

We remark now that a relaxation alone has analogous properties. If an assign-
ment x� is optimal for a relaxation h, and it is also a valid assignment for instance
f (i.e., it does not violate the equivalence constraints X ≡ Y), then x� is also
optimal for f , where H(x�) = F (x�) (since they satisfy the same clauses). Oth-
erwise, the Max-SAT value of a relaxation is an upper bound on the Max-SAT
value of the original instance f . On the other hand, compensations are tighter
approximations than the corresponding relaxation, at least in the case when a
single equivalence constraint is relaxed: F � ≤ 1

2G� ≤ H�. Although we leave
this point open in the case where multiple equivalence constraints are relaxed,
we have at least found empirically that compensations are never worse than
relaxations. We discuss this point further in the following section.

The following theorem has implications for weighted Max-SAT solvers, such
as [1,2], that rely on relaxations for upper bounds.

Theorem 3. Let f be a weighted Max-SAT instance and let g be the compensa-
tion that results from relaxing k equivalence constraints X ≡ Y in f . If compen-
sation g satisfies Equation 2, and if z̃ is a partial assignment that sets the same
sign to variables X and Y , for any equivalence constraint X ≡ Y relaxed, then:
F (z̃) ≤ 1

1+kG(z̃)

Solvers, such as those in [1,2], perform a depth-first brand-and-bound search to
find an optimal Max-SAT solution. They rely on upper bounds of a Max-SAT
solution, under partial assignments, in order to prune the search space. Thus, any
method capable of providing upper bounds tighter than those of a relaxation,
can potentially have an impact in the performance of a branch-and-bound solver.

3.4 Searching for Weights

We now address the question: how do we actually find weights so that a com-
pensation will satisfy Equation 2? Consider the simpler situation where we want
weights for one particular equivalence constraint X ≡ Y . Ignoring the presence
of other equivalence constraints that may have been relaxed, we can think of a
compensation g as a compensation where only the single equivalence constraint
X ≡ Y being considered has been removed. The corresponding “relaxation” is
found by simply removing the weights wx, wx̄, wy, wȳ from g, for the single equiv-
alence constraint X ≡ Y . More specifically, let Hx,y = G(x, y)− [wx +wy] denote
the Max-SAT value of the “relaxation,” assuming that X and Y are set to x and
y (and similarly for other configurations of X and Y). Given this “relaxation,”
we have a closed form solution for the weights, for a compensation g to satisfy
Equation 2, at least for the one equivalence constraint X ≡ Y being considered.

Theorem 4. Let f be a weighted Max-SAT instance, let g be the compensation
that results from relaxing k equivalence constraints in f , and let X ≡ Y be one
of k equivalence constraints relaxed. Suppose, w.l.o.g., that Hx,y ≥ Hx̄,ȳ, and let:

G+ =
1 + k

k
max
{

Hx,y,
1
2
[Hx,ȳ + Hx̄,y]

}
(3)

G− =
1 + k

k
max
{

Hx̄,ȳ,
1

1 + 2k
[Hx,y + kHx,ȳ + kHx̄,y],

1
2
[Hx,ȳ + Hx̄,y]

}
(4)

218 A. Choi, T. Standley, and A. Darwiche

Algorithm 1. RelaxEq-and-Compensate (rec)
input: a weighted Max-SAT instance f with k equivalence constraints X ≡ Y
output: a compensation g satisfying Equation 2
main:

1: h ← result of relaxing all X ≡ Y in f
2: g ← result of adding to h weights wx, wx̄, wy, wȳ for each X ≡ Y
3: initialize all weights wx, wx̄, wy , wȳ, say to 1

2H�.
4: while weights have not converged do
5: for each equivalence constraint X ≡ Y removed do
6: update weights wx, wx̄, wy , wȳ according to Equations 5 & 6
7: return g

If we set the weights for equivalence constraints X ≡ Y to:[
wx

wx̄

]
=

1
2

1
1 + k

[
G+

G−

]
+

1
4

[
Hx̄,y −Hx,ȳ

Hx,ȳ −Hx̄,y

]
(5)[

wy

wȳ

]
=

1
2

1
1 + k

[
G+

G−

]
+

1
4

[
Hx,ȳ −Hx̄,y

Hx̄,y −Hx,ȳ

]
(6)

then equivalence constraint X ≡ Y will satisfy Equation 2 in compensation g.

When the original instance f has been sufficiently relaxed, and enough equiva-
lence constraints removed, then we will be able to compute the quantities Hx,y

efficiently (we discuss this point further in the following section). Theorem 4
then suggests an iterative algorithm for finding weights that satisfy Equation 2
for all k equivalence constraints relaxed, which is summarized in Algorithm 1.

This algorithm, which we call RelaxEq-and-Compensate (rec), initializes the
weights of a given compensation g to some value, and iterates over equivalence
constraints one-by-one. When it arrives at a particular equivalence constraint
X ≡ Y , rec sets the weights according to Equations 5 & 6, which results in
a compensation satisfying Equation 2, at least for that particular equivalence
constraint. rec does the same for the next equivalence constraint, which may
cause the previous equivalence constraint to no longer satisfy Equation 2. rec
continues, however, until the weights of all equivalence constraints do not change
with the application of Equations 5 & 6 (to some constant ε), at which point all
equivalence constraints satisfy Equation 2.

We now make a few observations. First, if we set all weights wx, wx̄, wy, wȳ of
an initial compensation g0 to 1

2H�, then the initial approximation to the Max-
SAT value is 1

1+kG�
0 = H�.2 That is, the initial approximation is the same as the

upper bound given by the relaxation h. We have observed empirically, interest-
ingly enough, that when we start with these initial weights, every iteration of the
rec algorithm results in a compensation g where the value of 1

1+kG� is no larger
than that of the previous iteration. Theorem 2 tells us that a compensation g

2 G�
0 = maxx G0(x) = maxx[H(x) +

∑
X≡Y wx + wy]

= maxx[H(x) +
∑

X≡Y
1
2H� + 1

2H�] = maxx[H(x)] + kH� = H� + kH�.

Compensating for Relaxations 219

satisfying Equation 2, which rec is searching for, yields a Max-SAT value 1
1+kG�

that is an upper bound on the Max-SAT value F � of the original instance f .
This would imply that algorithm rec tends to provide monotonically decreasing
upper bounds on F �, when starting with an initial compensation equivalent to
the relaxation h. This would imply that, at least empirically, the value of 1

1+kG�

is convergent in the rec algorithm. We have observed empirically that this is
the case, and we discuss these points further in Section 4.

3.5 Knowledge Compilation

One point that we have yet to address is how to efficiently compute the values
Hx,y that are required by the iterative algorithm rec that we have proposed. In
principle, any off-the-shelf Max-SAT solver could be used, where we repeatedly
solve Max-SAT instances g where the variables X and Y are set to some values.
However, when we remove k equivalence constraints, rec requires us to solve 4k
Max-SAT instances in each iteration.

If, however, we relax enough equivalence constraints so that the treewidth is
small enough, we can efficiently compile a given Max-SAT instance in CNF into
decomposable negation normal form (DNNF) [9,10,11,12] (for details on how to
solve weighted Max-SAT problems by compilation to DNNF, see [1,13]). Once
our simplified instance g is in DNNF, many queries can be performed in time
linear in the compilation, which includes computing at once all of the values
G(x), G(x̄) and G(y), G(ȳ), as well as the Max-SAT value G�. Computing each
value Hx,y can also be performed in time linear in the compilation, although
lazy evaluation can be used to improve efficiency; see [1] for details.

We note that the required values can also be computed by message-passing
algorithms such as belief propagation [14]. However, this would typically involve
converting a weighted Max-SAT instance into an equivalent Bayesian network
or factor graph, where general-purpose algorithms do not make use of the kinds
of techniques that SAT solvers and compilers are able to. In contrast, knowledge
compilation can be applied to solving Bayesian network tasks beyond the reach
of traditional probabilistic inference algorithms [15].

4 Experiments

We evaluate here the rec algorithm on a selection of benchmarks. Our goals are:
(1) to illustrate its empirical properties, (2) to demonstrate that compensations
can improve, to varying extents, relaxations, and (3) that compensations are able
to improve branch-and-bound solvers, such as clone, at least in some cases.

The relaxations that we consider are the same as those employed by the
clone solver [1],3 which in certain categories led, or was otherwise competitive
with, the solvers evaluated in the 3rd Max-SAT evaluation.4 clone relaxes a
given Max-SAT instance by choosing, heuristically, a small set of variables to
3 Available at http://reasoning.cs.ucla.edu/clone/
4 Results of the evaluation are available at http://www.maxsat.udl.cat/08/

220 A. Choi, T. Standley, and A. Darwiche

“split”, where splitting a variable X simplifies a Max-SAT instance by replacing
each occurrence of a variable X with a unique clone variable Y . This relaxation
effectively ignores the dependence that different clauses have on each other due
to the variable X being split. Note that such a relaxation is restored when we
assert equivalence constraints X ≡ Y . For our purposes, we can then assume
that equivalence constraints were instead relaxed.

Like clone, we relax Max-SAT instances until their treewidth is at most 8.
Given this relaxation, we then constructed a compensation which was compiled
into DNNF by the c2d compiler.5 For each instance we selected, we ran the rec
algorithm for at most 2000 iterations, and iterated over equivalence constraints
in some fixed order, which we did not try to optimize. If the change in the weights
from one iteration to the next was within 10−4, we declared convergence, and
stopped.

Our first set of experiments were performed on randomly parametrized grid
models, which are related to the Ising and spin-glass models studied in statistical
physics; see, e.g., [16]. This type of model is also commonly used in fields such
as computer vision [17]. In these models, we typically seek a configuration of
variables x minimizing a cost (energy) function of the form:

F (x) =
∑

i

ψi(xi) +
∑
ij

ψij(xi, xj)

where variables Xi are arranged in an n×n grid, which interact via potentials ψij

over neighboring variables Xi and Xj. In our experiments, we left all ψi(xi) = 0,
and we generated each ψij(xi, xj) = − log p with p drawn uniformly from (0, 1).
These types of models are easily reduced to weighted Max-SAT; see, e.g., [18].
Note, that the resulting weights will be floating-point values, which are not yet
commonly supported by modern Max-SAT solvers. We thus focus our empirical
evaluation with respect to a version of clone that was augmented for us to
accommodate such weights.

We generated 10 randomly parametrized 16 × 16 grid instances and evalu-
ated (1) the dynamics of the rec algorithm, and (2) the quality of the resulting
approximation (although we restrict our attention here to 10 instances, for sim-
plicity, the results we present are typical for this class of problems). Consider
first Figure 1, where we plotted the quality of an approximation (y-axis) versus
iterations of the rec algorithm (x-axis), for each of the 10 instances evaluated.
We define the quality of an approximation as the error of the compensation

1
1+kG� − F �, relative to the error of the relaxation H� − F �. That is, we mea-
sured the error

E =
1

1+kG� − F �

H� − F �

which is zero when the compensation is exact, and one when the compensation
is equivalent to the relaxation. Remember that we proposed to initialize the
rec algorithm with weights that led to an initial compensation with an optimal

5 Available at http://reasoning.cs.ucla.edu/c2d/

Compensating for Relaxations 221

iterations

a
p
p
ro
x
im

a
ti
o
n
e
rr
o
r

grids

Fig. 1. Behavior of the rec algorithm random 16 × 16 grid instances. Note that color
is used here to help differentiate plots, and is otherwise not meaningful.

value 1
1+kG�

0 = H�. Thus, we think of the error E as the degree to which the
compensation is able to tighten the relaxation.

We make some observations about the instances depicted in Figure 1. First,
all of the 10 instances converged before 500 iterations. Next, we see that the rec
algorithm yields from iteration-to-iteration errors, and hence values 1

1+kG�, that
are monotonically decreasing. If this is the case in general, then this implies that
these bounds 1

1+kG� are convergent in the rec algorithm, since a compensation
satisfying Equation 2 is an upper bound on F � (by Theorem 2). This implies,
at least empirically, that the rec algorithm is indeed tightening a relaxation
from iteration-to-iteration. Finally, we find that rec is capable of significantly
improving the quality of an approximation, to exact or near-exact levels.

Given such improvement, we may well expect that a solver that relies on
relaxations for upper bounds, such as clone, may benefit from an improved
approximation that provides tighter bounds. In fact, using the relaxation alone,
clone was unable to solve any of these instances, given a time limit of 10
minutes.6 We thus augmented clone so that it can take advantage of the tighter
rec approximation. In particular, we compensate for the relaxation that clone
would normally use, and have clone use its tighter upper-bounds to prune nodes
during branch-and-bound search.

This augmented clone algorithm now has one additional steps. Before we
perform the branch-and-bound search (the clone step), we must first compen-
sate for the relaxation (the rec step). The following table records the time, in
seconds, to perform each step in the instances we considered:

6 Experiments were performed on an Intel Xeon E5440 CPU, at 2.83GHz.

222 A. Choi, T. Standley, and A. Darwiche

instance 1 2 3 4 5 6 7 8 9 10
rec 303 302 583 390 308 326 318 249 311 511

clone 528 1 45 2 253 121 47 14 12 10
total 831 303 628 392 561 447 365 263 323 521

Although clone was unable to solve any of these instances within 600 seconds
with a relaxation alone, it was able to solve most instances within the same
amount of time when enabled with a compensation. We further remark that there
is ample room for improving the efficiency of our rec implementation, which is
in Java and Jython (Jython is an implementation of the Python language in
Java).

Finally, in Figure 2, we plot the performance of the rec algorithm on a subset
of the AUC PATHS benchmark from the weighted partial Max-SAT instances from
the 2008 evaluation.7 We find here that the rec algorithm is able to reduce
the approximation error of a relaxation by roughly half in many instances, or
otherwise appears to approach this level if allowed further iterations. We also
see again that the rec has relatively stable dynamics. As clone was already
able to efficiently solve all of the instances in the AUC PATHS benchmark, clone
did not benefit much from a compensation in this case.

iterations

a
p
p
ro
x
im

a
ti
o
n
e
rr
o
r

auc_paths-c3

Fig. 2. Behavior of the rec algorithm in weighted partial Max-SAT instances
(AUC PATHS benchmarks)

5 Conclusion

In this paper, we proposed a new perspective on approximations of Max-SAT
problems, that is based on relaxing a given instance, and then compensating for
7 The instances selected were the 40 instances labeled cat paths 60 p *.txt.wcnf for

p ∈ {100, 110, 120, 130, 140}.

Compensating for Relaxations 223

the relaxation. When we relax equivalence constraints in a Max-SAT problem,
we can perform inference on the simplified problem, identify some of its defects,
and then recover a weaker notion of equivalence. We proposed a new algorithm,
rec, that iterates over equivalence constraints, compensating for relaxations
one-by-one. Our empirical results show that rec can tighten relaxations to the
point of recovering exact or near-exact results, in some cases. We have also
observed that, in some cases, these compensations can be used by branch-and-
bound solvers to find optimal Max-SAT solutions, which they were unable to
find with a relaxation alone.

Acknowledgments

This work has been partially supported by NSF grant #IIS-0713166.

References

1. Pipatsrisawat, K., Palyan, A., Chavira, M., Choi, A., Darwiche, A.: Solving
weighted Max-SAT problems in a reduced search space: A performance analysis.
Journal on Satisfiability, Boolean Modeling, and Computation 4, 191–217 (2008)

2. Ramı́rez, M., Geffner, H.: Structural relaxations by variable renaming and their
compilation for solving MinCostSAT. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 605–619. Springer, Heidelberg (2007)

3. Choi, A., Standley, T., Darwiche, A.: Approximating weighted Max-SAT problems
by compensating for relaxations. Technical report, CSD, UCLA (2009)

4. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Biere, A., Heule,
M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 613–631. IOS
Press, Amsterdam (2009)

5. Choi, A., Chavira, M., Darwiche, A.: Node splitting: A scheme for generating upper
bounds in Bayesian networks. In: UAI, pp. 57–66 (2007)

6. Siddiqi, S., Huang, J.: Variable and value ordering for MPE search. In: Proceedings
of the 21st International Joint Conference on Artificial Intelligence (to appear,
2009)

7. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. J.
ACM 50(2), 107–153 (2003)

8. Rish, I., Dechter, R.: Resolution versus search: Two strategies for SAT. J. Autom.
Reasoning 24(1/2), 225–275 (2000)

9. Darwiche, A.: Decomposable negation normal form. Journal of the ACM 48(4),
608–647 (2001)

10. Darwiche, A.: On the tractability of counting theory models and its application
to belief revision and truth maintenance. Journal of Applied Non-Classical Log-
ics 11(1-2), 11–34 (2001)

11. Darwiche, A.: New advances in compiling CNF to decomposable negational normal
form. In: Proceedings of European Conference on Artificial Intelligence, pp. 328–
332 (2004)

12. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17, 229–264 (2002)

13. Darwiche, A., Marquis, P.: Compiling propositional weighted bases. Artificial In-
telligence 157(1-2), 81–113 (2004)

224 A. Choi, T. Standley, and A. Darwiche

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Inc., San Mateo (1988)

15. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure. In:
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1306–1312 (2005)

16. Percus, A., Istrate, G., Moore, C.: Where statistical physics meets computation. In:
Percus, A., Istrate, G., Moore, C. (eds.) Computational Complexity and Statistical
Physics, pp. 3–24. Oxford University Press, Oxford (2006)

17. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M.F., Rother, C.: A comparative study of energy minimization methods
for Markov random fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV
2006. LNCS, vol. 3952, pp. 16–29. Springer, Heidelberg (2006)

18. Park, J.D.: Using weighted max-sat engines to solve MPE. In: AAAI/IAAI, pp.
682–687 (2002)

A Proofs

Proof (of Proposition 1). First, observe that:

G(x, y) = F (x, y) + [wx + wy] =
1
2
G(x, y) + [wx + wy]

since g has scaled values. Thus, 1
2G(x, y) = wx+wy; similarly to show 1

2G(x̄, ȳ) =
wx̄ + wȳ. Since g has valid configurations, then g also satisfies Equation 1. ��

In the remainder of this section, we call a complete assignment x valid iff x sets
the same sign to variables X and Y , for every equivalence constraint X ≡ Y
removed from an instance f ; analogously, for partial assignments z. We will also
use x̃ and z̃ to denote valid assignments, when appropriate.

Lemma 1. Let f be a weighted Max-SAT instance and let g be the compensation
that results from relaxing k equivalence constraints X ≡ Y in f . If compensation
g satisfies Equation 2, and if x̃ is a complete assignment that is also valid, then
F (x̃) ≤ 1

1+kG(x̃), with equality if x̃ is also optimal for g.

Proof. When we decompose G(x̃) into the original weights, i.e., F (x̃), and the
auxiliary weights wx + wy = 1

1+kG(x) (by Equation 2) we have

G(x̃) = F (x̃) +
∑

X≡Y

[wx + wy] = F (x̃) +
∑

X≡Y

1
1 + k

G(x).

Note that x is the value assumed by X in assignment x̃. Since G(x) ≥ G(x̃),

G(x̃) ≥ F (x̃) +
∑

X≡Y

1
1 + k

G(x̃) = F (x̃) +
k

1 + k
G(x̃)

and thus 1
1+kG(x̃) ≥ F (x̃). In the case where G(x̃) = G�, we have G(x) = G(x̃)

for all X ≡ Y , so we have the equality F (x̃) = 1
1+kG(x̃). ��

Compensating for Relaxations 225

Proof (of Theorem 1). Since x� is both optimal and valid, we know that 1
1+kG� =

1
1+kG(x�) = F (x�), by Lemma 1. To show that x� is also optimal for the original
instance f , note first that G� = maxx G(x) = maxx̃ G(x̃). Then:

F (x�) =
1

1 + k
G� = max

x̃

1
1 + k

G(x̃) ≥ max
x̃

F (x̃) = F �

using again Lemma 1. We can thus infer that F (x�) = F �. ��

Proof (of Theorem 2). Let x� be an optimal assignment for f . Since x� must
also be valid, we have by Lemma 1 that

F � = F (x�) ≤ 1
1 + k

G(x�) ≤ 1
1 + k

G�

as desired. ��

Proof (of Theorem 3). We have that

F (z̃) = max
x̃∼z̃

F (x̃) ≤ max
x̃∼z̃

1
1 + k

G(x̃) ≤ max
x∼z̃

1
1 + k

G(x) =
1

1 + k
G(z̃)

where the first inequality follows from Lemma 1. ��

Proof of Theorem 4 appears in the Appendix of the full report [3].

Corollary 1. Let f be a weighted Max-SAT instance and let g be the compen-
sation that results from relaxing a single equivalence constraint X ≡ Y in f . If
compensation g satisfies Equation 1, then

F � ≤ 1
2
G� ≤ H�.

Proof. The first inequality follows from Theorem 2. From the proof of Theorem 4
we know that either 1

2G� = F � ≤ H� or

1
2
G� =

1
2
[H(x, ȳ) + H(x̄, y)] ≤ max{H(x, ȳ), H(x̄, y)} ≤ H�

thus we have the second inequality as well. ��

Confidence-Based Work Stealing in Parallel
Constraint Programming

Geoffrey Chu1, Christian Schulte2, and Peter J. Stuckey1

1 National ICT Australia, Victoria Laboratory,
Department of Computer Science and Software Engineering,

University of Melbourne, Australia
{gchu,pjs}@csse.unimelb.edu.au

2 KTH – Royal Institute of Technology, Sweden
cschulte@kth.se

Abstract. The most popular architecture for parallel search is work
stealing: threads that have run out of work (nodes to be searched) steal
from threads that still have work. Work stealing not only allows for
dynamic load balancing, but also determines which parts of the search
tree are searched next. Thus the place from where work is stolen has a
dramatic effect on the efficiency of a parallel search algorithm.

This paper examines quantitatively how optimal work stealing can be
performed given an estimate of the relative solution densities of the sub-
trees at each search tree node and relates it to the branching heuristic
strength. An adaptive work stealing algorithm is presented that auto-
matically performs different work stealing strategies based on the confi-
dence of the branching heuristic at each node. Many parallel depth-first
search patterns arise naturally from this algorithm. The algorithm pro-
duces near perfect or super linear algorithmic efficiencies on all problems
tested. Real speedups using 8 threads range from 7 times to super linear.

1 Introduction

Architectures for parallel search in constraint programming typically use work
stealing for distributing work (nodes to be searched) from running to idle threads,
see for example [1,2,3,4]. Work stealing has often focused on keeping processors
occupied. Its analysis often assumes that the amount of work to be done is fixed
and independent of the work stealing scheme, for example [5].

While this is true for certain kinds of problems (finding all solutions, proving
unsatisfiability), it is not true for others (finding a first solution, or finding an
optimal solution). Such analyses fail to account for the fact that the place in the
search tree from which work is stolen determines the search strategy and hence
is bound to have a dramatic effect on efficiency.

Many approaches choose to steal from as close to the root of the search tree
as possible, e.g. [3], as this tends to give the greatest granularity of work and
minimizes the overhead of work stealing. However, this is not always the best
strategy in terms of efficiency.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 226–241, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Confidence-Based Work Stealing in Parallel Constraint Programming 227

Effect of work stealing. Let us consider a relatively simple framework for par-
allel search. One thread begins with ownership of the entire search tree. When
a thread finishes searching the subtree it was responsible for, it will steal an
unexplored part of the search tree (a job) from its current owner. This continues
until a solution is found or the entire search tree has been searched.

Example 1. The first problem we will consider is a simple model for small in-
stances of the Traveling Salesman Problem, similar to [6]. In our experiments,
with 8 threads, stealing left and low (as deep in the tree as possible) requires
visiting a number of nodes equal to the sequential algorithm, while stealing high
(near the root) requires visiting ∼ 30% more nodes on average (see Table 1).

The explanation is simple. In one example instance, the sequential algorithm
finds the optimal solution after 47 seconds of CPU time, after which it spends
another ∼ 300 seconds proving that no better solution exists. When the parallel
algorithm is stealing left and low, all threads work towards finding that leftmost
optimal solution, and the optimal solution is found in 47 seconds of CPU time
as before (wall clock time 47/8 ≈ 6 seconds). After this, the search takes another
300 seconds of CPU time to conclude. Thus we have perfect linear speedup both
in finding the optimal solution, and in proving that no better solution exist.

However, when the parallel algorithm is stealing high, only one thread actu-
ally explores the leftmost part of the search tree and works towards that leftmost
optimal solution. The other seven threads explore other parts of the search tree,
unfruitfully in this case. This time, the optimal solution is found in 47 seconds
of wall clock time (376 seconds of CPU time!). The algorithm then spends an-
other 200 seconds of CPU time proving optimality. That is, there is no speedup
whatsoever for finding the optimal solution, but linear speedup for proving op-
timality. Since the optimal solution has been found so much later (376 seconds
CPU time instead of 47 seconds), the threads search without the pruning ben-
efits of the optimal solution. Hence, the number of nodes searched drastically
increases, leading to a great loss of efficiency. Clearly, this effect gets worse as
the number of threads increases. �
It may appear from this example that stealing left and low would be efficient for
all problems. However, such a strategy can produce at best linear speedup.

Example 2. Consider the n-Queens problem. The search tree is very deep and a
top level mistake in the branching will not be recovered from for hours.

Stealing low solves an instance within the time limit iff sequential depth first
search solves it within the time limit. This is the case when a solution is in the
very leftmost part of the search tree (only 4 instances out of 100, see Table 2).

Stealing high, in contrast, allows many areas of the search tree to be explored,
so a poor choice at the root of the search tree is not as important. Stealing high
results in solving 100 out of 100 instances tested. This is clearly far more robust
than stealing low, producing greatly super-linear speedup. �
Veron et al [7] claim that linear and super linear speedups can be expected for
branch and bound problems, but they fail to note that finding the optimal so-
lution does not parallelize trivially as shown by Example 1. Rao and Kumar [8]

228 G. Chu, C. Schulte, and P.J. Stuckey

(and others) show that super linear speedup ought to be consistently attainable
for finding the first or the optimal solution for certain types of problems. Their
analysis is valid if the search tree is random (i.e. the solutions are randomly
distributed), but is not valid in systems where a branching heuristic orders the
branches based on their likelihood of yielding a solution. The presence of such a
branching heuristic makes linear speedup in finding solutions non-trivial. Gen-
dron and Crainic [9] describe the issue and provide a description how the issue is
handled in several systems. In general, the solutions utilise some kind of best-first
criterion to guide how the problem is split up (see e.g. [10,11]).

Contributions. The paper contributes a quantitative analysis of how different
work stealing strategies affect the total amount of work performed and explains
the relationship between branching heuristic strength and optimal search strat-
egy. It introduces confidence-based work stealing as an adaptive algorithm that,
when provided with a user-defined confidence, will steal work in a near opti-
mal manner. The confidence is the estimated ratio of solution densities between
the subtrees at each node. The paper shows that confidence-based work stealing
leads to very good algorithmic efficiencies, that is, not many more, and sometimes
much less, nodes are explored than for sequential DFS (Depth First Search).

Although the analysis is done in the context of parallel search for constraint
programming, the analysis is actually about the relationship between branch-
ing heuristic strength and the optimal search order created by that branching
heuristic. Thus the analysis actually applies to all complete tree search algo-
rithms whether sequential or parallel. The paper shows that when the assump-
tions about branching heuristic strength that lie behind standard sequential
algorithms such as DFS, Interleaved Depth First Search (IDFS) [12], Limited
Discrepancy Search (LDS) [13] or Depth-bounded Discrepancy Search (DDS) [14]
are given to the algorithm as confidence estimates, the algorithm produces the
exact same search patterns used in those algorithms. Thus the analysis and algo-
rithm provides a framework which explains/unifies/produces all those standard
search strategies. In contrast to the standard sequential algorithms which are
based on rather simplistic assumptions about how branching heuristic strength
varies in different parts of the search tree, our algorithm can adapt to branching
heuristic strength on a node by node basis, potentially producing search patterns
that are vastly superior to the standard ones. The algorithm is also fully parallel
and thus the paper also presents parallel DFS, IDFS, LDS and DDS as well.

Confidence-based search shares the idea to explore more promising parts of
the search tree first with other approaches such as impact-based search [15] and
using solution counting [16] and constraint-level advice [17] for guiding search.
However, there are two key differences. First, confidence-based search uses stan-
dard branchings (labelings) that define the shape of the search tree augmented
by confidence. This makes the addition of confidence-based search to an existing
constraint programming solver straightforward and allows us to reuse existing
constraint models with user-defined branchings. Second, confidence-based search
is designed to work in parallel.

Confidence-Based Work Stealing in Parallel Constraint Programming 229

2 Analysis of Work Allocation

In this section we show quantitatively that the strength of the branching heuristic
determines the optimal place to steal work from. We will concentrate on the case
of solving a satisfaction problem. The case for optimization is related since it is
basically a series of satisfaction problems.

Preliminary definitions. A constraint state (C, D) consists of a system of con-
straints C over variables V with initial domain D assigning possible values D(v)
to each variable v ∈ V . The propagation solver, solv, repeatedly removes values
from the domains of variables that cannot take part in the solution of some
constraint c ∈ C, until no more values can be removed. It obtains a new domain
solv(C, D) = D′. If D′ assigns a variable the empty set the resulting state is a
failure state. If D′ assigns each variable a single value (|D(v)| = 1, v ∈ V) the
resulting state is a solution state. Failure and solution states are final states.

Finite domain propagation interleaves propagation solving with search. Given
a current (non-final) state (C, D) where D = solv(C, D) the search process
chooses a search disjunction ∨n

i=1ci of decision constraints ci (1 ≤ i ≤ n) which
is a consequence of the current state C ∧ D. The child states of (C, D) are
calculated as (C ∧ ci, solv(C ∧ ci, D)), 1 ≤ i ≤ n. Given a root state (C, D), this
defines a search tree of states, where each non-final state is an internal node with
children defined by the search disjunction and final states are leaves.

The solution density of a search tree T with k nodes and l solution state nodes
is l/k.

Optimal split for binary nodes. For simplicity, assume that visiting each node in
the search tree has roughly equal cost. Assuming an oracle that provides accurate
information on solution density, work stealing from nodes whose subtrees have
the highest solution densities will be optimal.

In practice however, the solution density estimates will not be perfect:

1. Any estimate of the solution density of a subtree will have a very high error,
with a substantial chance that the solution density is actually zero.

2. The real solution densities, and hence the errors in the estimate, are highly
correlated between nearby subtrees, as they share decision constraints from
higher up in the tree.

3. The solution density estimate of a subtree should decrease as nodes in that
subtree are examined without finding a solution. This is caused by:
(a) As the most fruitful parts of the subtree are searched, the average solu-

tion density of the remaining nodes decrease.
(b) The correlation between solution densities between nearby subtrees mean

that the more nodes have failed in that subtree, the more likely the
remaining nodes are to fail as well.

We have to take these issues into account when utilizing solutions densities to
determine where to steal work. Given the actual solution density probability
distribution for the two branches, we can calculate the expected number of nodes

230 G. Chu, C. Schulte, and P.J. Stuckey

searched to find a solution. We derive the expression for a simple case. Suppose
the solution density probability distribution is uniform, that is, it has equal
probability of being any value between 0 and S where S is the solution density
estimate. Let A and B be the solution density estimates for the left and right
branch respectively, and assume a proportion p and (1 − p) of the processing
power is sent down the left and right branch respectively. Then the expected
number of nodes to be searched is given by the hybrid function:

f(A, B, p) =

{
1

pA (2 + ln(pA
(1−p)B)) for pA > (1− p)B

1
(1−p)B (2 + ln((1−p)B

pA)) otherwise
(1)

The shape of this function does not depend on the absolute values of A and B
(which only serve to scale the function), but on their ratio, thus the shape is
fixed for any fixed value of r = A/(A + B).

The value of p which minimizes the function for given value of r is well ap-
proximated by the straight line p = r. In fact, the value of the f function at
p = r is no more than 2% higher than the true minimum for any r over the range
of 0.1 ≤ r < 0.9. For simplicity, we will make this approximation from now on.
This means that it is near optimal to divide the amount of processing power
according to the ratio of the solution density estimate for the two branches. For
example, if r = 0.9, which means that A is 9 times as high as B, then it is near
optimal to send 0.9 of our processing power down the left branch and 0.1 of our
processing power down the right.

Branching confidence. Define the confidence of a branching heuristic at each
node as the ratio r = A/(A + B). The branching heuristic can be considered
strong when r → 1, that is the solution density estimate of the left branch
is far greater than for the right branch. In other words, the heuristic is really
good at shaping the search tree so that solutions are near the left. In this case,
our analysis shows that since r is close to 1, we should allocate almost all our
processing power to the left branch every time. This is equivalent to stealing
work for search as left and as low as possible. The branching heuristic is weak
when r ≈ 0.5, that is, the solution density estimate of the left branch and right
branch are similar because the branching heuristic has no insight into where the
solutions are. In this case, our analysis shows that since r = 0.5, the processing
power should be distributed evenly between left and right branches at each node.
This is equivalent to stealing work for search as high as possible.

3 Adaptive Work Stealing

Our analysis shows that the optimal work stealing strategy depends on the
strength of the branching heuristic. Since we have a quantitative understanding
of how optimal work stealing is related to branching heuristic strength, we can
design a search algorithm that can automatically adapt and produce “optimal”
search patterns when given some indication of the strength of the branching
heuristic by the problem model. In this section, we flesh out the theory and
discuss the implementation details of the algorithm.

Confidence-Based Work Stealing in Parallel Constraint Programming 231

3.1 Dynamically Updating Solution Density Estimates

Now we examine how solution density estimates should be updated during search
as more information becomes available.

First we need to relate the solution density estimate of a subtree with root
(C, D) with the solution density estimate of its child subtrees (the subtrees
rooted at its child states (C∧ci, solv(C∧ci, D))). Consider an n-ary node. Let the
subtree have solution density estimate S. Let the child subtree at the i-th branch
have solution density estimate Ai and have size (number of nodes) ki. If S and Ai

are estimates of average solution density, then clearly: S =
∑n

i=1 Aiki/
∑n

i=1 ki,
i.e. the average solution density of the subtree is the weighted average of the
solution densities of its child subtrees.

Uncorrelated subtrees. Assuming no correlation between the solution densities of
subtrees, we have that if the first j child subtrees have been searched unsuccess-
fully, then the updated solution density estimate is S =

∑n
i=j+1 Aiki/

∑n
i=j+1 ki.

Assuming that ki are all approximately equal, then the expression simplifies to:

S =
n∑

i=j+1

Ai/(n− j)

For example, suppose A1 = 0.3, A2 = 0.2, A3 = 0.1, then initially, S = (0.3 +
0.2+0.1)/3 = 0.2. After branch 1 is searched, we have S = (0.2+0.1)/2 = 0.15,
and after branch 2 is searched, we have S = (0.1)/1 = 0.1. This has the effect
of reducing S as the branches with the highest values of Ai are searched, as the
average of the remaining branches will decrease.

Correlated subtrees. Now we consider the case where there are correlations be-
tween the solution density estimates of the child subtrees. The correlation is likely
since all of the nodes in a subtree share the constraint C of the parent state.
Since the correlation is difficult to model we pick a simple generic model. Sup-
pose the solution density estimates for each child subtree is given by Ai = ρA′

i,
where ρ represents the effect on the solution density due to the constraint added
at the parent node, and A′

i represents the effect on the solution density due to
constraints added within branch i. Then ρ is a common factor in the solution
density estimates for each branch and represents the correlation between them.
We have that:

S =
∑n

i=1 Aiki∑n
i=1 ki

= ρ

∑n
i=1 A′

iki∑n
i=1 ki

.

Suppose that when j out of n of the branches have been searched without finding
a solution, the value of ρ is updated to ρn−j

n . This models the idea that the
more branches have failed, the more likely it is that the constraint C added at
the parent node has already made solutions unlikely or impossible. Then, after
j branches have been searched, we have: S = ρn−j

n

∑n
i=j+1 A′

iki/
∑n

i=j+1 ki.
Assuming that all ki are approximately equal again, the expression simplifies to:

232 G. Chu, C. Schulte, and P.J. Stuckey

S = ρn−j
n

∑n
i=j+1 A′

i/(n − j) = ρ
n

∑n
i=j+1 A′

i =
∑n

i=j+1 Ai/n. Equivalently, we
can write it as:

S =
1
n

n∑
i=1

Ai and Ai = 0 for 1 ≤ i ≤ j (2)

where we update Ai to 0 when branch i fails. The formula can be recursively
applied to update the solution density estimates of any node in the tree given a
change in solution density estimate in one of its subtrees.

Using confidence. In all of our results, the actual values of the solution densi-
ties are not required. We can formulate everything using confidence, the ratio
between the solution densities of the different branches at each node. In terms
of confidence, when a subtree is searched and fails the confidence values should
be updated as follows:

Let ri be the confidence value of the node i levels above the root of the failed
subtree and r′i be the updated confidence value. Let r̄i = ri, r̄

′
i = r′i if the failed

subtree is in the left branch of the node i levels above the root of the failed subtree
and r̄i = 1− ri, r̄

′
i = 1− r′i otherwise. Then:

r̄′i = (r̄i −
i∏

k=1

r̄i)/(1 −
i∏

k=1

r̄i) (3)

3.2 Confidence Model

Given a confidence at each node, we now know how to steal work “optimally”
and how to update confidence values as search proceeds. But how do we get
an initial confidence at each node. Ideally, the problem modeler, with expert
knowledge about the problem and the branching heuristic can develop a solution
density heuristic that gives a confidence value at each node. However, this may
not always happen, perhaps due to a lack of time or expertise. We can simplify
things by using general confidence models. For example, we could assume that
the confidence takes on an equal value conf for all nodes. This is sufficient to
model general ideas like: the heuristic is strong or the heuristic is weak. Or we
could have a confidence model that assigns r = 0.5 to the top d levels and
r = 0.99 for the rest. This can model ideas like the heuristic is weak for the first
d levels, but very strong after that, much like the assumptions used in DDS [14].

3.3 Algorithm

Given that we have a confidence value at each node, our confidence-based search
algorithm will work as follows. The number of threads down each branch of a
node is updated as the search progresses. When search for a subtree is finished,
the confidence values of all nodes above the finished subtree are updated as
described by Equation (3) above.

When work stealing is required, we start at the root of the tree. At each
node we use the number of threads down each branch, the confidence value, to

Confidence-Based Work Stealing in Parallel Constraint Programming 233

determine which branch to take. Given the number of threads down each branch
is currently a and b respectively then if |(a+1)/(a+b+1)−r| ≤ |a/(a+b+1)−r|
we go left, otherwise right (i.e., which move would split the work closer to the
confidence value). We continue this process until we find an unexplored node, at
which point we steal the subtree with that unexplored node as root.

There is an exception to this. Although we may sometimes want to steal as low
as possible, we cannot steal too low, as then the granularity would become too
small and communication costs will dominate the runtime. Thus we dynamically
determine a granularity bound under which threads are not allowed to steal, e.g.
15 levels above the average fail depth. If the work stealing algorithm guides the
work stealing to the level of the granularity bound, then the last unexplored
node above the granularity bound is stolen instead. The granularity bound is
dynamically adjusted to maintain a minimum average subtree size so that work
stealing does not occur more often than a certain threshold.

Since the confidence values are constantly updated, the optimal places to
search next changes as search progresses. In order for our algorithm to adapt
quickly, we do not require a thread to finish the entire subtree it stole before
stealing again. Instead, after a given restart time has passed, the thread returns
the unexplored parts of its subtree to a master coordinating work stealing and
steals work again from the top. The work frontier is stored at the master and the
work is resumed when work stealing guides a thread to the area again (similar
to the idea used in interleaving DFS [12]).

Example with reasonably high confidence. Suppose we know that the branching
heuristic is reasonably strong, but not perfect. We may use conf = 0.8.

Suppose we have 8 threads. Initially, all confidence values are 0.8. When the
8 threads attempt to steal work at the root, thread 1 will go down the left hand
side. Thread 2 will go down the left hand side as well. Thread 3 will go down the
right hand side. Thread 4 will go down the left hand side, etc, until 6 threads
are down left and 2 threads are down right. At node b, we will have 5 threads
down the left and 1 thread down the right, and so on. The work stealing has
strongly favored sending threads towards the left side of each node because of
the reasonably high confidence values of 0.8. The result is shown in Figure 1(a).

Suppose as search progresses the subtree starting at node d finishes without
producing a solution. Then we need to update the confidence values. Using
Equation (3), the confidence value at node b becomes 0, and at node a 0.44.
Now when the threads steal work from the root, the situation has changed. Since
one of the most fruitful parts of the left branch has been completely searched
without producing a solution, it has become much less likely that there is a
solution down the left branch. The updated confidence value reflects this. Now
the threads will be distributed such that 4 threads are down the left branch and
4 threads are down the right branch, as shown in Figure 1(b).

Next, perhaps the subtree starting at node j finishes. The confidence value
at node e then becomes 0, the confidence value at node b remains 0 and the
confidence value at node a becomes 0.14. The vast majority of the fruitful
places in the left branch has been exhausted without finding a solution, and the

234 G. Chu, C. Schulte, and P.J. Stuckey

6 2

5
1

4
1 1 0

2
0

2
0

0
0

b

a

c

d e f g

h i j k l m n o

0.8

0.80.8

0.80.8 0.80.8

4 4

4

3 1

3
1

2
1

1
0

b

a

c

d e f g

h i j k l m n o

0.44

0.80

0.80.8 0.8

(a) (b)

1 7

1

1

6
1

5
1

1
0

b

a

c

d e f g

h i j k l m n o

0.14

0.80

0.80 0.8

4 4

4

4

4

3
1

b

a

c

d e f g

h i j k l m n o

0.44

00

0 0.8

(c) (d)

Fig. 1. Example with reasonably high confidence

confidence value at the root has been updated to strongly favor the right branch.
The threads will now be distributed such that 7 threads go down the right and
1 thread goes down the left, as shown in Figure 1(c).

Next, suppose the subtree starting at node f finishes. The confidence value at
node c becomes 0 and the confidence value at node a becomes 0.44. Since the
most fruitful part of the right branch has also failed, the confidence value now
swings back to favor the left branch more, as shown in Figure 1(d). This kind of
confidence updating and redistribution of threads will continue, distributing the
threads according to the current best solution density estimates. In our explana-
tion here, for simplicity we only updated the confidence values very infrequently.
In the actual implementation, confidence values are updated after every job is
finished and thus occur much more frequently and in much smaller sized chunks.

Example with low confidence. For the second example, suppose we knew that the
heuristic was very bad and was basically random. We may use conf = 0.5, i.e.
the initial solution density estimates down the left and right branch are equal.

Suppose we have 4 threads. Initially, all the confidence values are 0.5. The
threads will distribute as shown in Figure 2(a). This distributes the threads as
far away from each other as possible which is exactly what we want. However, if
the search tree is deep, and the first few decisions that the each threads makes
are wrong, all threads may still get stuck and never find a solution.

Confidence-Based Work Stealing in Parallel Constraint Programming 235

01 1

11

0

2 2

1

1 1 0

1

0

b

a

c

e f g

h i j k l m n o

0.5

0.5

0.5 0.5 0.5 0.5

0.5

d

1

11

0

2 2

1

1 0 1

1

1 0 0

b

a

c

e f g

h i j k l m n o

0.4995

0.499

0.5 0.498 0.5 0.5

0.5

d

(a) (b)

Fig. 2. Example with low confidence

This is where the restart limit kicks in. After a certain time threshold is
reached, the threads abandon their current search and begin work stealing from
the root again. Since the confidence values are updated when they abandon their
current job, they take a different path when they next steal work. For example,
if the thread down node e abandons after having finished a subtree with root
node at depth 10, then the confidence at node e becomes 0.498, the confidence
at node b becomes 0.499, and the confidence at node a becomes 0.4995. Then
when a thread steals work from the root, it will again go left, then right. When
it gets to node e however, the confidence value is 0.498 and there are no threads
down either branch, thus it will go right at this node instead of left like last
time. The result is shown in Figure 2(b). The updated confidence value has
guided the thread to an unexplored part of the search tree that is as different
from those already searched as possible. This always happens because solution
density estimates are decremented whenever a part of a subtree is found to have
failed, so the confidence will always be updated to favour the unexplored parts
of the search tree.

Emulating standard search patterns. As some other examples, we briefly mention
what confidence models lead to some standard search patterns. DFS: conf = 1,
restart = ∞. IDFS: conf = 1, restart = 1000. LDS: conf = 1-ε, restart = 1
node. DDS: conf = 0.5 if depth < d, 1-ε if depth ≥ d, restart = 1 node.

4 Experimental Evaluation

Confidence-based work stealing is implemented using Gecode 3.0.2 [18] with
an additional patch to avoid memory management contention during parallel
execution. The benchmarks are run on an Mac with 2× 2.8 GHz Xeon Quad Core
E5462 processors with 4Gb of memory. However, due to memory limitations, we
could not run the large instances of n-Queens or Knights on this machine. We
run those two benchmarks on a Dell PowerEdge 6850 with 4× 3.0 GHz Xeon

236 G. Chu, C. Schulte, and P.J. Stuckey

Dual Core Pro 7120 CPUs with 32Gb of memory. 8 threads are used for the
parallel search algorithm. We use a time limit of 20 min CPU time (2.5 min wall
clock time for 8 threads), a restart time of 5 seconds, and a dynamic granularity
bound that adjusts itself to try to steal no more than once every 0.5 seconds. We
collected the following data: wall clock runtime, CPU utilization, communication
overhead, number of steals, total number of nodes searched and number of nodes
explored to find the optimal solution.

Optimization problems. In our first set of experiments we examine the efficiency
of our algorithm for three optimization problems from Gecode’s example prob-
lems. The problems are: Traveling Salesman Problem (TSP), Golomb-Ruler and
Queens-Armies. A description of these problems can be found at [18]. We use
the given search heuristic (in the Gecode example file) for each, except for TSP
where we try both a strong heuristic based on maximising cost reduction and a
weak heuristic that just picks variables and values in order. For TSP, we ran-
domly generated many instances of an appropriate size for benchmarking. Only
the size 12 and size 13 instances of Golomb Ruler, and only the size 9 and size
10 instances of Queen-Armies, are of an appropriate size for benchmarking. We
use the simple confidence model with conf = 1, 0.66 and 0.5. The results are
given in Table 1.

It is clear that in all of our problems, runtime is essentially proportional to
the number of nodes searched, and it is highly correlated to the amount of time
taken to find the optimal solution. The quicker the optimal solution is found, the
fewer the nodes searched and the lower the total runtime. The communication
cost, which includes all work stealing and synchronisation overheads, is less than
1% for all problems.

The strong heuristic in TSP is quite strong. Using conf = 1 achieves near
perfect algorithmic efficiency, where algorithm efficiency is defined as the total
number of nodes searched in the parallel algorithm vs the sequential algorithm.
Other values of conf clearly cause an algorithmic slowdown. The optimal solution
is found on average 3.2 and 3.3 times slower for conf = 0.66 and 0.5 respectively,
resulting in an algorithmic efficiency of 0.81 and 0.80 respectively. The opposite
is true when the weak heuristic is used. Using conf = 1 or 0.66 allows us to
find the leftmost optimal solution in approximately the same number of nodes
as the sequential algorithm, but using conf = 0.5 to reflect that the heuristic is
weak allows the algorithm to find the optimal solution even faster, producing an
algorithmic efficiency of 1.14.

The branching heuristic in Golomb Ruler is a greedy heuristic that selects
the minimum possible value for the variable at each stage. This is a reasonable
heuristic but by no means perfect. It turns out that for Golomb Ruler 12 and 13,
the optimal solution does not lie directly in the left-most branch, and a certain
degree of non-greediness leads to super-linear solution finding efficiencies.

The results for Queens-Armies show little difference depending on confidence.
Clearly the heuristic is better than random at finding an optimal solution, and
solution finding efficiency degrades slightly as we ignore the heuristic. But the
overall nodes searched are almost identical for all confidence values, as the work

Confidence-Based Work Stealing in Parallel Constraint Programming 237

Table 1. Experimental results for optimization problems with simple confidence model.
The results show: wall clock runtime in seconds (Runtime), speedup relative to the
sequential version (Speedup), and runtime efficiency (RunE) which is Speedup/8, CPU
utilization (CPU%), communication overhead (Comm%), number of steals (Steals),
total number of nodes explored (Nodes), the algorithmic efficiency (AlgE) the total
number of nodes explored in the parallel version versus the sequential version, the
number of nodes explored to find the optimal solution (Onodes), and the solution
finding efficiency (SFE) the total number of nodes explored in the parallel version to
find the optimal versus the sequential version. Values for Runtime, CPU%, Comm%,
Steals, Nodes, and Onodes are the geometric mean of the instances solved by all 4
versions.

TSP with strong heuristic, 100 instances (Mac)
conf Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 313.3 — — 100.0% 0.0% — 5422k — 1572k —
1 38.2 7.25 0.91 96.5% 0.4% 708 5357k 1.01 1589k 0.99
0.66 47.2 5.88 0.74 93.7% 0.1% 319 6657k 0.81 5130k 0.31
0.5 48.0 5.77 0.72 92.9% 0.1% 467 6747k 0.80 5275k 0.30

TSP with weak heuristic, 100 instances (Mac)
conf Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 347.8 — — 99.0% 0.0% — 7.22M — 1.15M —
1 46.7 7.45 0.93 99.4% 0.6% 1044 6.96M 1.04 1.09M 1.06
0.66 45.8 7.60 0.95 96.9% 0.1% 379 7.02M 1.03 1.10M 1.05
0.5 41.6 8.36 1.05 97.5% 0.1% 304 6.36M 1.14 0.96M 1.20

Golomb Ruler, 2 instances (n = 12, 13) (Mac)
conf Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 562 — — 100.0% 0.0% — 9.71M — 1.07M —
1 69.0 8.15 1.02 99.3% 0.2% 572 8.96M 1.08 0.81M 1.33
0.66 59.0 9.54 1.19 99.3% 0.1% 346 7.58M 1.28 0.49M 2.21
0.5 65.2 8.63 1.08 99.3% 0.1% 259 8.42M 1.15 0.66M 1.63

Queen Armies, 2 instances (n = 9, 10) (Mac)
conf Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 602 — — 100.0% 0.0% — 13.6M — 845k —
1 87.1 6.91 0.86 99.3% 0.7% 1521 14.5M 0.94 1878k 0.45
0.66 86.3 6.98 0.87 98.8% 0.2% 1143 14.5M 0.96 2687k 0.31
0.5 86.0 7.00 0.87 99.5% 0.2% 983 14.5M 0.95 2816k 0.30

required for the proof of optimality make up the bulk of the run time, and the
proof of optimality parallelises trivially regardless of confidence.

Satisfaction problems. In our second set of experiments we examine the efficiency
of our algorithm for three satisfaction problems from Gecode’s examples [18]. The
problems are: n-Queens, Knights, and Perfect-Square.

The sequential version solved very few instances of n-Queens and Knights.
Furthermore, all those solves are extremely fast (< 3 sec) and are caused by

238 G. Chu, C. Schulte, and P.J. Stuckey

Table 2. Experimental results for satisfaction problems with simple confidence model

n-Queens, 100 instances (n = 1500, 1520, ..., 3480)
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE
Seq 4 2.9 — — 99.9% 0.0% — 1859 —
1 4 10.4 — — 99.0% 86.6% 2 1845 —
0.66 29 18.0 — — 81.6% 0.3% 9 15108 —
0.5 100 2.9 — — 65.5% 1.6% 8 14484 —

Knights, 40 instances (n = 20, 22, ..., 98)
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE
Seq 7 0.22 — — 99.9% 0.0% — 1212 —-
1 7 0.26 — — 68.1% 59.7% 2 1150 —
0.66 13 0.50 — — 48.0% 4.7% 8 8734 —
0.5 21 0.66 — — 35.2% 6.0% 8 8549 —

Perfect-Square, 100 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE
Seq 15 483.1 — — 99.9% 0.0% — 213k —
1 13 72.3 6.68 0.83 98.0% 19.1% 419 216k 0.99
0.66 14 71.2 6.78 0.85 86.4% 2.9% 397 218k 0.98
0.5 82 8.9 54.02 6.75 89.0% 4.8% 21 32k 6.64

the search engine finding a solution at the very leftmost part of the search tree.
Most of the time spent in those runs is from moving down to the leaf of the
search tree rather than actual search and is not parallelisable, thus comparison
of the statistics for the parallel vs sequential algorithms on those instances is not
meaningful as there is very little work to parallelize. The number of instances
solved is the more interesting statistic and is a better means of comparison. The
parallel algorithm beats the sequential algorithm by an extremely large margin
in terms of the number of instances solved.

n-Queens and Knights both have very deep subtrees and thus once the se-
quential algorithm fails to find a solution in the leftmost subtree, it will often
end up stuck effectively forever. Modeling the fact that the branching heuristic is
very weak at the top by using conf = 0.5 clearly produce a super linear speedup.
The parallel algorithm solves 100 out of 100 instances of n-Queens compared to
4 out of 100 instances for the sequential algorithm or the parallel algorithm with
conf = 1. The speedup cannot be measured as the sequential algorithm does not
terminate for days when it fails to find a solution quickly. Similarly the parallel
algorithm with conf = 0.5 solved 21 instances of Knights compared to 7 for the
sequential and the parallel version with conf = 1.

Perfect Square’s heuristic is better than random, but is still terribly weak.
Using conf = 0.5 to model this once again produces super linear speedup, solving
82 instances out of 100 compared to 15 out of 100 for the sequential algorithm.
We can compare run times for this problem as the sequential version solved a
fair number of instances and those solves actually require some work (483 sec
on average). The speedup in this case is 54 using 8 threads.

Confidence-Based Work Stealing in Parallel Constraint Programming 239

Table 3. Experimental results showing Nodes and algorithmic efficiency (AlgE) using
accurate confidence values, where we follow the confidence value to degree α

Seq α = 1 α = 0.5 α = 0 α = −0.5 α = −1
Golomb-Ruler 12 5.31M — 2.24M 2.37 3.48M 1.53 4.27M 1.24 10.8M 0.49 10.6M 0.50
Golomb-Ruler 13 71.0M — 53.2M 1.34 57.6M 1.23 61.9M 1.15 74.8M 0.95 111M 0.64

Using accurate confidence values. So far, we have tested the efficiency of our al-
gorithm using simple confidence models where the confidence value is the same
for all nodes. This does not really illustrate the algorithm’s full power. We ex-
pect that it should perform even better when node-specific confidence values
are provided, so that we can actually encode and utilise information like, the
heuristic is confident at this node but not confident at that node, etc. In our
third set of experiments, we examine the efficiency of our algorithm when node
specific confidence values are provided.

Due to our lack of domain knowledge, we will not attempt to write a highly
accurate confidence heuristic. Rather, we will simulate one by first performing an
initial full search of the search tree to find all solutions, then produce confidence
estimates for the top few levels of the search tree using several strategies like,
follow the measured solution density exactly, follow it approximately, ignore it,
go against it, etc, to see what effect this has on runtime. Let α quantify how
closely we follow the measured confidence value and let conf be the measured
confidence value. Then we use the following formula for our confidence estimate:
conf′ = α×conf+(1−α)×0.5. If α = 1, then we follow it exactly. If α = −1, we go
against it completely, etc. We use the Golomb-Ruler problem for our experiment
as the full search tree is small enough to enumerate completely. The results are
shown in Table 3.

The results show that using confidence values that are even a little biased
towards the real value is sufficient to produce super linear speedup. And not
surprisingly, going against the real value will result in substantial slowdowns.

5 Conclusion

By analysing work stealing schemes using a model based on solution density, we
were able to quantitatively relate the strength of the branching heuristic with
the optimal place to steal work from. This leads to an adaptive work stealing
algorithm that can utilise confidence estimates to automatically produce “op-
timal” work stealing patterns. The algorithm produced near perfect or better
than perfect algorithmic efficiency on all the problems we tested. In particular,
by adapting to a steal high, interleaving search pattern, it is capable of produc-
ing super linear speedup on several problem classes. The real efficiency is lower
than the algorithmic efficiency due to hardware effects, but is still quite good at
a speedup of at least 7 at 8 threads. Communication costs are negligible on all
problems even at 8 threads.

240 G. Chu, C. Schulte, and P.J. Stuckey

Acknowledgments. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.

References

1. Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs trans-
parently. In: [20], pp. 514–528

2. Perron, L.: Search procedures and parallelism in constraint programming. In:
Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 346–361. Springer, Heidelberg
(1999)

3. Schulte, C.: Parallel search made simple. In: Beldiceanu, N., Harvey, W., Henz, M.,
Laburthe, F., Monfroy, E., Müller, T., Perron, L., Schulte, C. (eds.) Proceedings of
TRICS: Techniques foR Implementing Constraint programming Systems, a post-
conference workshop of CP 2000. Number TRA9/00, 55 Science Drive 2, Singapore
117599, pp. 41–57 (2000)

4. Rolf, C.C., Kuchcinski, K.: Load-balancing methods for parallel and distributed
constraint solving. In: IEEE International Conference on Cluster Computing, pp.
304–309 (2008)

5. Kumar, V., Rao, V.N.: Parallel depth first search. Part II. Analysis. International
Journal of Parallel Programming 16, 501–519 (1987)

6. Caseau, Y., Laburthe, F.: Solving small TSPs with constraints. In: Naish, L. (ed.)
Proceedings of the Fourteenth International Conference on Logic Programming,
Leuven, Belgium, pp. 316–330. The MIT Press, Cambridge (1997)

7. Véron, A., Schuerman, K., Reeve, M., Li, L.L.: Why and how in the ElipSys OR-
parallel CLP system. In: Reeve, M., Bode, A., Wolf, G. (eds.) PARLE 1993. LNCS,
vol. 694, pp. 291–303. Springer, Heidelberg (1993)

8. Rao, V.N., Kumar, V.: Superlinear speedup in parallel state-space search. In: Ku-
mar, S., Nori, K.V. (eds.) FSTTCS 1988. LNCS, vol. 338, pp. 161–174. Springer,
Heidelberg (1988)

9. Gendron, B., Crainic, T.G.: Parallel branch-and-bound algorithms: Survey and
synthesis. Operations Research 42, 1042–1066 (1994)

10. Quinn, M.J.: Analysis and implementation of branch-and bound algorithms on a
hypercube multicomputer. IEEE Trans. Computers 39, 384–387 (1990)

11. Mohan, J.: Performance of Parallel Programs: Model and Analyses. PhD thesis,
Carnegie-Mellon University, Pittsburgh, PA, USA (1984)

12. Meseguer, P.: Interleaved depth-first search. In: [19], pp. 1382–1387
13. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Mellish, C.S. (ed.)

Fourteenth International Joint Conference on Artificial Intelligence, Montréal,
Québec, Canada, pp. 607–615. Morgan Kaufmann Publishers, San Francisco
(1995)

14. Walsh, T.: Depth-bounded discrepancy search. In: [19], pp. 1388–1395
15. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,

M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)
16. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered

search heuristics. In: [20], pp. 743–757

Confidence-Based Work Stealing in Parallel Constraint Programming 241

17. Szymanek, R., O’Sullivan, B.: Guiding search using constraint-level advice. In:
Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI, pp. 158–162. IOS
Press, Amsterdam (2006)

18. Gecode Team: Gecode: Generic constraint development environment (2006),
http://www.gecode.org

19. Pollack, M.E. (ed.): Fifteenth International Joint Conference on Artificial Intelli-
gence. Morgan Kaufmann Publishers, Nagoya (1997)

20. Bessière, C. (ed.): CP 2007. LNCS, vol. 4741. Springer, Heidelberg (2007)

http://www.gecode.org

Minimizing the Maximum Number of Open
Stacks by Customer Search

Geoffrey Chu and Peter J. Stuckey

NICTA Victoria Laboratory,
Department of Computer Science and Software Engineering,

University of Melbourne, Australia
{gchu,pjs}@csse.unimelb.edu.au

Abstract. We describe a new exact solver for the minimization of open
stacks problem (MOSP). By combining nogood recording with a branch
and bound strategy based on choosing which customer stack to close
next, our solver is able to solve hard instances of MOSP some 5-6 orders
of magnitude faster than the previous state of the art. We also derive
several pruning schemes based on dominance relations which provide
another 1-2 orders of magnitude improvement. One of these pruning
schemes largely subsumes the effect of the nogood recording. This allows
us to reduce the memory usage from an potentially exponential amount
to a constant ∼2Mb for even the largest solvable instances. We also show
how relaxation techniques can be used to speed up the proof of optimality
by up to another 3-4 orders of magnitude on the hardest instances.

1 Introduction

The Minimization of Open Stacks Problem (MOSP) [10] can be described as
follows. A factory manufactures a number of different products in batches, i.e.,
all copies of a given product need to be finished before a different product is
manufactured, so there are never two batches of the same product. Each cus-
tomer of the factory places an order requiring one or more different products.
Once one product in a customer’s order starts being manufactured, a stack is
opened for that customer to store all products in the order. Once all the prod-
ucts for a particular customer have been manufactured, the order can be sent
and the stack is freed for use by another order. The aim is to determine the
sequence in which products should be manufactured to minimize the maximum
number of open stacks, i.e., the maximum number of customers whose orders are
simultaneously active. The importance of this problem comes from the variety of
real situations in which the problem (or an equivalent version of it) arises, such
as cutting, packing, and manufacturing environments, or VLSI design. Indeed
the problem appears in many different guises in the literature, including: graph
path-width and gate matrix layout (see [3] for a list of 12 equivalent problems).
The problem is known to be NP-hard [3].

We can formalize the problem as follows. Let P be a set of products, C a set
of customers, and c(p) a function that returns the set of customers who have
ordered product p ∈ P . Since the products ordered by each customer c ∈ C are

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 242–257, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Minimizing the Maximum Number of Open Stacks by Customer Search 243

p1 p2 p3 p4 p5 p6 p7

c1 X . . . X . X
c2 X . . X . . .
c3 . X . X . X .
c4 . . X X . X X
c5 . . X . X . .

p7 p6 p5 p4 p3 p2 p1

c1 X – X – – – X
c2 . . . X – – X
c3 . X – X – X .
c4 X X – X X . .
c5 . . X – X . .

(a) (b)

Fig. 1. (a) An example c(p) function: ci ∈ c(pj) if the row for ci in column pj has an
X. (b) An example schedule: ci is active when product pj is scheduled if the row for ci

in column pj has an X or a –.

placed in a stack different from that of any other customer, we use c to denote
both a client and its associated stack. We say that customer c is active (or that
stack c is open) at time k in the manufacturing sequence if there is a product
required by c that is manufactured before or at time k, and also there is a product
manufactured at time k or afterwards. In other words, c is active from the time
the first product ordered by c is manufactured until the last product ordered by
c is manufactured. The MOSP aims at finding a schedule for manufacturing the
products in P (i.e., a permutation of the products) that minimizes the maximum
number of customers active (or of open stacks) at any time. We call a problem
with n customers and m products an n×m problem.

Example 1. Consider a 5×7 MOSP for the set of customers C ={c1, c2, c3, c4, c5},
and set of products P = {p1, p2, p3, p4, p5, p6, p7}, and a c(p) function determined
by the matrix M shown in Figure 1(a), where an X at position Mij indicates
that client ci has ordered product pj.

Consider the manufacturing schedule given by sequence [p7, p6, p5, p4, p3,
p2, p1] and illustrated by the matrix M shown in Figure 1(b), where client ci

is active at position Mij if the position contains either an X (pj is in the stack)
or an – (ci has an open stack waiting for some product scheduled after pj).
Then, the active customers at time 1 are {c1, c4}, at time 2 {c1, c3, c4}, at time
3 {c1, c3, c4, c5}, at time 4 {c1, c2, c3, c4, c5}, at time 5 {c1, c2, c3, c4, c5}, at time
6 {c1, c2, c3}, and at time 7 {c1, c2}. The maximum number of open stacks for
this particular schedule is thus 5. �

The MOSP was chosen as the subject of the first Constraint Modelling Challenge
[6] posed in May 2005. Many different techniques were explored in the 13 entries
to the challenge. The winning entry by Garcia de la Banda and Stuckey [2] con-
centrated on two properties of the MOSP problem. First, the permutative redun-
dancy found in the MOSP problem leads naturally to a dynamic programming
approach [2]. This approach is also largely equivalent to the constraint program-
ming approach described in [5] where permutative redundancies are pruned us-
ing a table of no-goods. Second, by using a branch and bound method, the upper
bound on the number of open stacks can be used to prune branches in variousways.
These two techniques are very powerful and led to a solver that was an order of
magnitude faster than any of the other entries in the 2005 MOSP challenge. The
Limited Open Stacks Problem, LOSP (k), is the decision version of the problem,

244 G. Chu and P.J. Stuckey

where we determine if for some fixed k there is an order of products that requires
at most k stacks at any time. The best approach of [2] solves the MOSP problem
by repeatedly solving LOSP (k) and reducing k until this problem has no solution.

The search strategy used in this winning entry (branching on which product
to produce next), is actually far from optimal. As was first discussed in [8] and
shown in [9], branching on which customer stack to close next is never worse
than branching on which product to produce next, and is usually much better,
even when the number of customers is far greater than the number of products.
This is the result of a simple dominance relation. In this paper we show that
combining this search strategy with nogood recording produces a solver that is
some 5-6 orders of magnitude faster than the winning entry to the Modelling
Challenge on hard instances. We also derive several other dominance rules that
provide a further 1-2 orders of magnitude improvement. One rule in particular
largely subsumes the effect of the nogood recording. This allows us to reduce
the memory usage from an potentially exponential amount to a constant ∼2Mb
for even the largest solvable instances. We also utilise relaxation techniques to
speed up the proof of optimality for the hardest instances by a further 3-4 orders
of magnitude. With all the improvements, our solver is able to solve all the open
instances from the Modelling Challenge within 10 seconds!

2 Searching on Customers

Our solver employs a branch and bound strategy for finding the exact number
of open stacks required for an MOSP instance. The MOSP instance is treated as
a series of satisfaction problems LOSP(k), where at each stage, we ask whether
there is a solution that uses no more than k stacks. If a solution is found, we
decrease k and look for a better solution.

We briefly define what a dominance relation is. A dominance relation � is a
binary relation defined on the set of partial problems generated during a search
algorithm. For a satisfaction problem, if Pi and Pj are partial problems corre-
sponding to two subtrees in the search tree, then Pi � Pj imply that if Pj has a
solution, then Pi must have a solution. This means that if we are only interested
in the satisfiability of the problem, and Pi dominates Pj , then as long as Pi is
searched, Pj can be pruned.

The customer based search strategy is derived from following idea. Given a
product order U = [p1, p2, . . . pn], define a customer close order T =[c1, c2, . . . cm]
as the order in which customer stacks can close given U . Construct U ′ such that
we first schedule all the products needed by c1, then any products required by
c2, then those required by c3, etc. It is easy to show that if U is a solution, then
so is U ′. Clearly this can be converted to a dominance relation. It is sufficient
to search only product orderings where every product is required by the next
stack to close. This can be achieved by branching on which customer stack to
close next, and then scheduling exactly those products which are needed. The
correctness of this search strategy is proved in [8] and [7]. In fact, it can be shown
that the customer based search strategy never examines more nodes than the
search strategy based on choosing which product to produce next (even when
the strongest look ahead pruning of [2] is used).

Minimizing the Maximum Number of Open Stacks by Customer Search 245

p3 p5 p4 p6 p7 p2 p1

c1 . X – – X – X|
c2 . . X – – – X|
c3 . . X X – X| .
c4 X – X X X| . .
c5 X X|

p3 p5 p1 p7 p4 p2 p6

c1 . X X X| . . .
c2 . . X – X| . .
c3 X X X|
c4 X – – X X – X|
c5 X X|

c1

p1

��
��

��
�� p5

��
��

��
��

p7

��
��

��
��

��
��

��

c2

p4
p4

�������������� c5

p3

c3
p4,p6

c4

(a) (b) (c)

Fig. 2. (a) A schedule corresponding to customer order [c5, c4, c3, c2, c1]. (b) A schedule
corresponding to customer order [c5, c1, c2, c3, c4]. (c) The customer graph (ignoring self
edges) with edges labelled by the products that generate them.

Example 2. Consider the schedule U shown in Figure 1(b), the customers are
closed in the order {c4, c5} when p3 is scheduled, then {c3} when p2 is scheduled,
then {c2, c1} when p1 is scheduled. Consider closing the customers in the order
T = [c5, c4, c3, c2, c1] compatible with U . This leads to a product ordering, for
example, of U ′ = [p3, p5, p4, p6, p7, p2, p1]. The resulting scheduling is shown in
Figure 2(a). It only requires 4 stacks (and all other schedules with this closing
order will use the same maximum number of open stacks).

Define the customer graph G = (V, E) for an open-stacks problem as: V = C
and E = {(c1, c2) | ∃p ∈ P, {c1, c2} ⊆ c(p)}, that is, a graph in which nodes
represent customers, and two nodes are adjacent if they order the same product.
Note that, by definition, each node is self-adjacent. Let N(c) be the set of nodes
adjacent to c in G. The customer graph for the problem of Example 1 is shown
in Figure 2(c).

Rather than thinking in terms of products then, it is simpler to think of the
MOSP problem entirely in terms of the customer graph. All functions c(p) that
produce the same customer graph have the same minimum number of stacks.
Thus the products are essentially irrelevant. Their sole purpose is to create edges
in the customer graph. Thus we can think of the MOSP this way. For each
customer c, we have an interval during which their stack is open. If there is an
edge between two nodes in the customer graph, then their intervals must overlap.
If a customer close order that satisfies these constraints are found, an equivalent
product ordering using the same number of stacks can always be found.

We define our terminology. At each node there is a set of customer stacks
S that have been closed. The stacks which have been opened (not necessarily
currently open) are O(S) = ∪c∈SN(c). The set of currently open stacks is given
by O(S) − {c ∈ O(S)|N(c) ⊆ O(S)}. For each c not in S, define o(c, S) =
N(c)−O(S), i.e. the new stacks which will open if c is the next stack to close.

Define open(c, S) = |o(c, S)| and close(c, S) = |{d|o(d, S) ⊆ o(c, S)}|, i.e.
the new stacks that will open and the number of new stacks that will close
respectively if we close c next.

Suppose that customers S are currently closed, then closing c requires opening
o(c, S), so the number of stacks required is |O(S)−S ∪o(c, S)|. If we are solving
LOSP(k) and |O(S) − S ∪ o(c, S)| > k then it is not possible to close customer

246 G. Chu and P.J. Stuckey

c next, and we call the sequence S ++ [c] violating. Note |O(S)− S ∪ o(c, S)| ≥
open(c, S).

We define the playable sequences as follows: the empty sequence ε is playable;
S ++ [c] is playable if S is playable and S ++ [c] is not violating.

A solution S of the LOSP(k) is a playable sequence of all the customers C.
This leads to an algorithm for MOSP by simply solving LOSP(k) for k varying
from |C| − 1 (there is definitely a solution with |C|) to 1, and returning the
smallest k that succeeds.

MOSP(C, N)
for (S ∈ 2C) prob[S] := false

for (k ∈ |C| − 1, . . . , 1)
if (¬ playable(∅,C,k,N) return k + 1

playable(S, R, k, N)
if (prob[S]) return false

if (R = ∅) return true
for (c ∈ R)

if (|O(S) − S ∪ o(c, S)| ≤ k)
if (playable(S ∪ {c}, R− {c}, k, N)) return true

prob[S] := true

return false

This simple algorithm tries to schedule the customers in all possible orders using
at most k stacks. The memoing of calls to playable just records which partial sets
of customers, S, have been examined already by setting prob[S] = true. If a set
has already been considered it either succeeded and we won’t look further, or if
it failed, we record the nogood and return false when we revisit it.

The algorithm can be improved by noting that if o(ci, S) ⊆ o(cj , S) and i < j,
then clearly, we can always play i before j rather than playing j immediately,
since closing j will close i in any case. Hence move j can be removed from the
candidates R considered for the next customer to close.

Example 3. Reexamining the problem of Example 1 using the closing customer
schedule of [c5, c1, c2, c3, c4] results in many possible schedules (all requiring the
same maximum number of open stacks). One is shown in Figure 2(b). This uses
3 open stacks and is optimal since e.g. product p4 always requires 3 open stacks.

3 Improving the Search on Customers

In this section we consider ways to improve the basic search approach by ex-
ploiting several other dominance relations.

3.1 Definite Moves

Suppose S ++ [q] is playable and close(q, S) ≥ open(q, S), then if there is any
solution extending S there is a solution extending S ++ [q]. This means that

Minimizing the Maximum Number of Open Stacks by Customer Search 247

we can prune all branches other than q. Intuitively speaking, q is such a good
move at this node that it is always optimal to play it immediately.

Theorem 1. Suppose S ++ [q] is playable and close(q, S) ≥ open(q, S), then
if U ′ = S ++ R is a solution, there exists a solution U = S ++ [q] ++ R′.

Proof. Suppose there was a solution U ′ = S ++ [c1, c2, . . . , cm, q, cm+1, . . . , cn].
We claim that U = S ++ [q, c1, . . . , cm, cm+1, . . . , cn] is also a solution. The two
sequences differ only in the placement of q. The number of stacks which are open
at any time before, or any time after the set of customers {c1, c2, . . . , cm, q} are
played is identical for U and U ′, since it only depending on the set of customers
closed and not the order. Thus if U ′ is a solution, then U has less than or equal
to k open stacks at those times. Since S ++ [q] is playable, the number of open
stacks when q is played in U is also less than or equal to k. Finally, the number
of open stacks when S ++ [q, c1, c2, . . . , ci] has been played in U is always less
than or equal to the number of open stacks when S ++ [c1, c2, . . . , ci] has been
played in U ′, because we have at most open(q, S) extra stacks open, but at least
close(q, S) extra stacks closed. Thus the number of open stacks at these times
are also less than or equal to k and U is a solution.

3.2 Better Moves

While definite moves are always worth playing we can find similarly that one
move is always better than another. If both S ++ [q] and S ++ [r, q] are
playable and close(q, S ∪ {r}) ≥ open(q, S ∪ {r}) then if there is a solution
extending S ++ [r], there exists a solution extending S ++ [q]. This means that
we do not need to consider move r at this node. Intuitively, q is so much better
than r that rather than playing r now, it is always better to play q first.

Theorem 2. Suppose S ++ [q] and S ++ [r, q] are playable and close(q, S ∪
{r}) ≥ open(q, S ∪ {r}) then if U ′ = S ++ [r] ++ R is a solution there exists
a solution U = S ++ [q] ++ R′.

Proof. Suppose there was a solution U ′ = S ++ [r, c1, c2, .., cm, q, cm+1, . . . , cn].
The conditions imply that if r is played now, q becomes a definite move. By the
same argument as above, U ′′ = S ++ [r, q, c1, . . . , cn] is also a solution. Now
if we swap q with r, the number of new stacks opened before r increases by at
most open(q, S), but the number of new stacks closed before r increases by ex-
actly close(q, S). Also, playing q after S does not break the upperbound by our
condition. Thus U = S ++ [q, r, c1, . . . , cn] is also a solution. �

Although “better move” seems weaker than “definite move” as it prunes only
one branch at a time rather than all branches but one, it is actually a generalisa-
tion, as by definition any “definite move” is “better” than all other moves. Our
implementation of “better move” subsumes “definite move” so we will simply
consider them as one improvement.

248 G. Chu and P.J. Stuckey

3.3 Old Move

Let S = [s1, s2, . . . , sn]. Suppose U = [s1, s2, .., sm, q, sm+1, . . . , sn] is playable
and we have previously examined the subtree corresponding to state [s1, s2, ..,
sm, q]. Then we need not consider sequences starting with U ′ = S ++ [q] because
we will have already considered equivalent sequences earlier when searching from
state [s1, s2, .., sm, q].

Theorem 3. Let S = [s1, s2, . . . , sn]. Suppose that S′ = [s1, s2, .., sm, q, sm+1,
. . . , sn] is playable, then if U ′ = S ++ [q] ++ R is a solution then U = S′ ++ R
is a solution.

Proof. S′ is playable by assumption so the number of open stacks at any time
during S′ is less than or equal to k. At any point after S′, the number of open
stacks are identical for U and U ′ since it only depends on the set of closed
customers and not the order. Hence U is also a solution.

At any node, if it is found that at some ancestor node, the q branch has been
searched and U is playable, then q can immediately be pruned. This pruning
scheme was mentioned in [8], but it was incorrectly stated there. The author of [8]
failed to note that the condition that U is playable is in fact crucial, because if U
was not playable, then the set S ++ [q] would have been pruned via breaking the
upper bound and would not have in fact been previously explored, thus pruning
it now would be incorrect.

Naively, it would appear to take O(|C|3) time to check the “old move” condition
at each node. However, it is possible to do so in O(|C|) time. At each node we
keep a set Q(S) of all the old moves. i.e. the set of moves q such that we can find
S′ = [s1, s2, .., sm, q, sm+1, . . . , sn] which is playable, and such that move q has
already been searched at the node S′′ = [s1, .., sm]. Note that by definition, when
a move r has been searched at the current node, r will be added to Q(S). It is easy
to calculate Q(S ++ [sn+1])) when we first reach that child node. First, Q(S +
+ [sn+1]) ⊆ Q(S), since if S′ = [s1, s2, .., sm, q, sm+1, . . . , sn, sn+1] is playable
then by definition so is S′ = [s1, s2, .., sm, q, sm+1, . . . , sn]. Second, to check if each
q ∈ Q(S) is also in Q(S ++ [sn+1]), we simply have to check whether the last move
in S′ = [s1, s2, .., sm, q, sm+1, . . . , sn, sn+1] is playable, as all the previous moves
are already known to be playable since q ∈ Q(S). Checking the last move takes
constant time so the total complexity is O(|C|). There are some synergies between
the “better move” improvement and the “old move” improvement. If q ∈ Q(S) and
q is better than move r, then we can add r to Q(S) as well. This allows “old move”
to prune sets that we have never even seen before.

3.4 Upperbound Heuristic

In this section, we describe an upperbound heuristic which was found to be very
effective on our instances. A good heuristic for finding an optimal solution is
useful from a practical point of view if no proof of optimality is required. It
is also a crucial component for the relaxation techniques described in the next

Minimizing the Maximum Number of Open Stacks by Customer Search 249

Table 1. Comparison of upperbound heuristic, versus complete search on some difficult
problems. Times in milliseconds.

Instance Orig. time Heur. time Speedup
100-100-2 4136.3 39.8 104.0
100-100-4 4715.5 43.3 108.8
100-100-6 8.2 12.8 0.6
100-100-8 9.2 6.3 1.5
100-100-10 1.6 1.3 1.3
125-125-2 1159397.3 385.1 3010.3
125-125-4 2593105.1 398.9 6500.1
125-125-6 8975.9 424.9 21.1
125-125-8 187.8 146.1 1.3
125-125-10 22.2 8.3 2.7

subsection which can give several orders of magnitude speedup on the proof of
optimality for hard problems.

In [2] the authors tried multiple branching heuristics in order to compute and
upper bound, but only applied them in a greedy fashion, effectively searching
only 1 leaf node for each. We can do much better by performing an incomplete
search where we are willing to explore a larger number of nodes, but still much
fewer than a complete search. Simple ways of doing this using our complete
search engine include, sorting the choices according to some criteria, and only
trying the first m moves for some m. Or trying all the moves which are no worse
than the best by some amount e, etc.

One heuristic that is extremely effective is to only consider the moves where we
close a customer stack that is currently open, the intuition being that if a stack
is not even open yet, there is no point trying to close it now. Although this seems
intuitively reasonable, it is in fact not always optimal. In practice however, an
incomplete search using this criteria is very fast, and finds the optimal solution
almost all the time, and several orders of magnitude faster than the complete
search for some hard instances. The reason for its strength comes from its ability
to exploit a not quite perfect dominance relation. Almost all the time, subtrees
where we close a stack that is not yet open is dominated by one where we close
a currently open stack, and thus we can exploit this to prune branches similarly
to what we did in Section 3. The dominance is not always true however, so using
such a pruning rule makes it an incomplete, heuristic search. The procedure
ub MOSP is identical to that for MOSP except that the line for (c ∈ R) is
replaced by for (c ∈ R ∩O(S)).

See Table 1 for a brief comparison of the times required to find the optimal
solution.

3.5 Relaxation

Relaxation has been used in [4] in the context of a local search method. The
idea there was to try to relax the problem in such a way that solution density

250 G. Chu and P.J. Stuckey

is increased and thus better solutions can be found quicker. However, those
methods are of no help for proving optimality. In this section we show how
relaxation can be used to speed up the proof of optimality.

As was seen in the experimental results in [2], the sparser instances of MOSP
are substantially harder than denser instances of MOSP given the same number
of customers and products. This can be explained by the fact that in sparser
instances, each customer has far fewer neighbours in the customer graph, thus
many more moves would fall under the upper bound limit at each node and both
the depth and the branching factor of the search tree are dramatically increased
compared to a dense instance of the same size.

However, the sparsity of these instances also leads to a potential optimization.
Since the instance is sparse and the optimum is low (e.g. 20-50 for a 125×125
problem) it is possible that not all of the constraints are actually required to
force the lower bound. It is possible that there is some small “unsatisfiable
core” of customers which are producing the lower bound. If such an unsatisfiable
core exists and can be identified, we can potentially remove a large number of
customers from the problem and make the proof of optimality much quicker. It
turns out that this is often possible.

First, we will show how we can relax the MOSP instance. Naively, we can sim-
ply delete an entire node in the customer graph and remove all edges containing
that node. This represents the wholesale deletion of some constraints and of
course is a valid relaxation. However, we can do much better using the following
result from [1] (although only informal arguments are given for correctness)

Lemma 1. If G′ is some contraction of G, where G represents the customer
graph of an MOSP instance, then G′ is a relaxation of G.

So by using this lemma, we can get some compensation by retaining some of the
edges when we remove a node. Next we need to identify the nodes which can be
removed/merged without loosening the lower bound on the problem.

The main idea is that the longer a customer’s stack is open in the optimal
solutions, the more likely it is that that customer is contributing to the lower
bound, since removal of such a customer would mean that there is a high chance
that one of the optimal solutions can reduce to one needing one fewer stack.
Thus we want to avoid removing such customers. Instead we want to remove
or merge customers whose stacks are usually open for a very short time. One
näıve heuristic is to greedily remove nodes in the customer graph with the lowest
degree. Fewer edges coming out of a node presumably means that the stack is
open for a shorter period of time on average.

A much better heuristic comes from the following idea. Suppose there exist a
node c such that any neighbour of c is also connected to most of the neighbours
of c, then when c is forced open by the closure of one of those neighbours, that
neighbour would also have forced most of the neighbours of c to open, and thus c
will be able to close soon afterwards and will only be open for a short time. The
condition that most neighbours of c are connected to most other neighbours of
c is in fact quite common for sparse instances due to the way that the customer
graph is generated from the products (each product produces a clique in the

Minimizing the Maximum Number of Open Stacks by Customer Search 251

graph). To be more precise, in our implementation, the customers are ranked
according to:

F (c) =
∑

c′∈N(c)

|N(c)−N(c′)|/|N(c)| (1)

This is a weighted average of how many neighbours c′ of c are not connected to
each neighbour of c. The weights represents the fact that neighbours with fewer
neighbours are more likely to close early and be the one that forces c to open. We
merge the node c with the highest value of F (c) with the neighbouring node c′

with the highest value of |N(c)−N(c′)|, as that node stands to gain the highest
number of edges.

Although we have a good heuristic for finding nodes to merge, it is quite
possible to relax too much to the point that the relaxed problem has a solution
lower than the true lower bound of the original problem, in which case it will
be impossible to prove the true lower bound using this relaxed problem. Thus
it is important that we have a quick way of finding out when we have relaxed
too much. This is where the very fast and strong upperbound heuristic of the
previous subsection is needed. The overall relaxation algorithm is as follows:

relax MOSP(C, N)
ub := ub MOSP(C, N) % ub is an upper bound
(C′, N ′) := (C, N)
while (|C′| > ub)

(C′, N ′) := merge one pair(C′, N ′) % relax problem
while ((C, N) �= (C′, N ′))

relax ub := ub MOSP(C′, N ′)
if (relax ub < ub) % too relaxed to prove lb

(C′, N ′) := unmerge one pair(C′, N ′) % unrelax problem
else

lb := MOSP(C′, N ′) % compute lowerbound
if (lb < ub) % too relaxed to prove lb

(C′, N ′) := unmerge one pair(C′, N ′) % unrelax problem
else return ub % lb = ub

return MOSP(C, N) % relaxation failed!

As can be seen, the upperbound heuristic is necessary to find a good (optimal)
solution quickly. It is also used to detect when we are too relaxed as quickly as
possible so that we can unrelax. If the upperbound heuristic is sufficiently good,
we will quickly be able to find a relaxation that removes as many customers as
possible without being too relaxed. If the upperbound heuristic is weak however,
we could waste a lot of time searching in a problem that is in fact too relaxed to
ever give us the true lowerbound. In practice, we have found that our upperbound
heuristic is quite sufficient for the instances we tested it on.

There are a few optimisations we can make to this basic algorithm. Firstly,
when an unmerge is performed, we can attempt to extend the last solution found

252 G. Chu and P.J. Stuckey

to a solution of this less relaxed problem. If the solution extends, then it is still
too relaxed and we need to unmerge again. This saves us having to actually look
for a solution to this problem. Secondly, naively, when we perform an unrelax,
we can simply unmerge the last pair of nodes that were merged. However, we
can do better. One of the weaknesses of the current algorithm is that the nodes
to be merged are chosen greedily using equation (1). If this happens to choose a
bad relaxation that lowers the lowerbound early on, then we will not be able to
remove any more customers beyond that point. We can fix this to some extent
by choosing which pair of nodes to unmerge when we unrelax. We do this by
considering each of the problems that we get by unmerging each pair of the
current merges. If the last solution found does not extend to a solution for one
of these, then we choose that unmerge, as this unrelaxation gives us a chance
to prove the true lowerbound. If the last solution extends to a solution for all
of them, we unmerge the last pair as per usual. This helps to get rid of early
mistakes in merging and is useful on several of our instances.

4 Experimental Evaluation

In this section we demonstrate the performance of our algorithm, and the effect
of the improvements. The experiments were performed on a Xeon Pro 2.4GHz
processor with 2Gb of memory. The code implementing the approaches were
compiled using g++ with -O3 optimisation.

4.1 Modelling Challenge Instances

Very stringent correctness tests were performed in view of the large speedups
achieved. All versions of our solver were run on the 5000+ instances used in
the 2005 model challenge [6], as well as another 100,000 randomly generated in-
stances of size 10×10 to 30×30 and various densities. The answers were identical
with the solver of [2].

We compare our solver with the previous state of the art MOSP solver, on
which our solver is based. The results clearly show that our solver is orders of
magnitude faster than the original version. Getting an exact speedup is difficult
as almost all of the instances that the original version can solve are solved triv-
ially by our solver in a few milliseconds, whereas instances that our solver finds
somewhat challenging are completely unsolvable by the original version.

Our solver was able to solve all the open problems from the Modelling Chal-
lenge: SP2, SP3, and SP4. Table 2 compares these problems with the best results

Table 2. Results on the open problems from the Constraint Modelling Challenge 2005,
comparing versus the the winner of the challenge [2]. Times in milliseconds.

[2] This paper
Best Nodes Time Optimal Nodes Time

SP2 19 25785 1650 19 1236 7
SP3 36 949523 ∼3600000 34 84796 410
SP4 56 3447816 ∼14400000 53 1494860 9087

Minimizing the Maximum Number of Open Stacks by Customer Search 253

from the Challenge by [2]. The nodes and times (in milliseconds) for [2] are for
finding the best solution they can. The times for our method are for the full
solve including proof of optimality (using all improvements).

4.2 Harder Random Instances

Of the 5000+ instances used in the 2005 challenge, only SP2, SP3 and SP4 take
longer than a few milliseconds for our solver to solve. Thus we generate some
difficult random instances for this experiment. First we specify the number of
customers, number of products and the average number of customers per prod-
uct. We then calculate a density that will achieve the specified average number
of customers per product. The customer vs product table is then randomly gen-
erated using the calculated density to determine when to put 1’s and 0’s. As a
post condition, we throw away any instance where the customer graph can be
decomposed into separate components. This is done because we want to compare
on instances of a certain size, but if the customer graph decomposes, then the
instance degenerates into a number of smaller and relatively trivial instances.

We generate 5 instances for each of the sizes 30×30, 40×40, 50×50, 75×75,
100×100, 125×125, 100×50, 50×100, and average number of customer per prod-
uct values of 2, 4, 6, 8, 10, for a total of 200 instances.

Ideally, we want to measure speedup by comparing total solve time. However,
as mentioned before, the instances that our solver finds challenging are totally
unsolvable by the original. Table 3 is split into two parts. Above the horizontal
line are the instances where the original managed to prove optimality. Here,
nodes, time (in milliseconds) and speedup are for the total solve. Below the line
the original cannot prove optimality. Here, nodes, time and speedup are for the
finding a solution that is at least as good as the solver of [2] could find. The
column δOpt shows the average distance this solution is from the optimal. Note
that our approach finds and proves the optimal in all cases although the statistics
for this are not shown in the table. Time to find an equally good solution is not
necessarily a good indication of the speedup achievable for the full solve, as other
factors like branching heuristics come into play. However, the trend is quite clear.
The original solver is run with its best options. Our MOSP algorithm is run with
“better move”, “old move” and nogood recording turned on (but no relaxation).
Both solvers have a node limit of 225 iterations.

Note that because a single move can close multiple stacks, it is possible to
completely solve an instance using fewer nodes than there are customers. This
occurs frequently in the high density instances. Thus the extremely low node
counts shown here are not errors. The speedup is around 2-3 orders of magni-
tude for the smallest problems (30×30), and around 5-6 orders of magnitude for
the hardest problems that the original version can solve (40×40). The speedup
appears to grow exponentially with problem size. We cannot get any speedup
numbers for the harder instances since the original cannot solve them. However,
given the trend in the speedup, it would not be surprising if the speedup for a
full solve on the hardest instances solvable by our solver (100×100) was in the
realms of 1010 or more.

254 G. Chu and P.J. Stuckey

Table 3. Comparing customer search versus [2] on harder random instances. Search is
to find the best solution found by [2] with node limit 225.

[2] This paper
Instance δOpt Nodes Time(ms) Nodes Time(ms) Speedup
30-30-2 0 14318 480 408 4.4 109
30-30-4 0 48232 1981 158 2.0 979
30-30-6 0 89084 2750 56 0.9 3136
30-30-8 0 83558 2010 18 0.4 5322
30-30-10 0 18662 506 8 0.2 2335
40-40-2 0 669384 192917 1472 14.9 12942
40-40-4 0 3819542 227087 556 6.1 36959
40-40-6 0 11343235 625892 217 2.9 218062
40-40-8 0 8379706 334392 49 0.8 403272
40-40-10 0 3040040 98194 20 0.4 229305
50-50-2 0 12356205 1300311 6344 65.8 19758
50-50-4 0.2 5612259 446409 219 2.7 164728
50-50-6 0.2 7949026 510831 45 0.8 636409
50-50-8 0.2 525741 28337 15 0.4 75274
50-50-10 0 16809 784 7 0.2 3411
75-75-2 0.8 2485310 420935 7030 76.8 5484
75-75-4 2.6 3507703 666784 63 1.4 486669
75-75-6 1.2 4412286 756032 59 1.4 548132
75-75-8 1.2 4121046 519778 19 0.6 841336
75-75-10 0.6 1198282 120087 15 0.5 244128
100-100-2 2.2 3008009 765131 481 9.4 81653
100-100-4 4.8 6777140 2017286 145 3.3 619257
100-100-6 4 1269071 347970 39 1.4 241145
100-100-8 4.4 1686045 414456 31 1.1 363468
100-100-10 1.6 4195494 789039 15 0.7 1097494
125-125-2 1.8 7418402 3276210 36672 436.8 7500
125-125-4 3.8 3412379 1559691 916 20.4 76286
125-125-6 6 6076996 2643707 57 2.3 1144180
125-125-8 6.2 942290 321050 28 1.5 217007
125-125-10 3.4 170852 45798 24 1.3 35647
50-100-2 0.2 90076 9971 97 1.6 6290
50-100-4 1 1973322 139300 23 0.6 220776
50-100-6 0.6 1784 116 13 0.4 301
50-100-8 0 97 9 5 0.2 47
50-100-10 0 99 8 3 0.2 39
100-50-2 0 2393401 438220 11117 133.7 3279
100-50-4 0.4 14211006 3499389 183260 1592.3 2198
100-50-6 1.2 5326088 1395417 1569 21.4 65163
100-50-8 0.6 1522796 408908 3506 45.8 8932
100-50-10 1 3594743 906559 524 10.6 85710

Next we examine the effect of each of our improvements individually by dis-
abling them one at a time. The three improvements we test here are “better
move”, “old move” and nogood recording. We use only the instances which are

Minimizing the Maximum Number of Open Stacks by Customer Search 255

Table 4. (a) Comparing the effects of each optimisation in turn, and (b) comparing
the effects of relaxation

(a) (b)
Instance Better Old Nogood No relax(ms) Relax(ms) Removed Speedup
100-100-2 25.2 63.7 1.21 603120 370 51.2 1630.6
100-100-4 8.94 5.95 1.01 266205 4798 20.8 55.5
100-100-6 1.90 1.71 0.91 10344 3909 8 2.6
100-100-8 1.54 1.30 0.66 551 712 2.4 0.8
100-100-10 2.96 2.75 1.00 46 94 0.6 0.5
125-125-2 — — — 59642993 3284 62.2 18161.8
125-125-4 — — — 29768563 251634 24.8 118.3
125-125-6 11.9 3.10 0.98 810678 167384 9 4.8
125-125-8 1.65 1.17 0.98 18781 11978 5 1.6
125-125-10 1.27 0.98 0.64 768 1041 3 0.7

solvable without the improvements and non-trivial, i.e. the 100× 100 instances
and the easier 125× 125 instances. For each improvement, we show the relative
slowdown compared to the version with all three optimisations on.

As Table 4(a) shows, both “better move” and “old move” can produce up to
1 to 2 orders of magnitude speedup on the harder instances. The lower speedups
are from instances that are already fairly easy and solvable in seconds. The
results from disabling the nogood recording are very interesting. It is known
from previous work, e.g. the DP approach of [2] and the CP approach of [5]
that nogood recording or equivalent techniques produce several orders of magni-
tude speedup. However, these approaches require (in the worst case) exponential
memory usage for the nogood table. It appears however that once we have the
“old move” improvement, we can actually turn off nogood recording without a
significant loss of performance. In fact, some instances run faster. Thus our “old
move” improvement largely subsumes the effect of the huge nogood tables used
in the DP [2] or CP [5] approaches and reduces the memory usage from an ex-
ponential to a linear amount. The solver of [2] uses up all 2Gb of main memory
in ∼5 min with nogood recording. However, our new solver using “old move”
pruning uses a constant amount of memory < 2Mb even for 125×125 problems.

4.3 Relaxation

In the following set of experiments, we demonstrate the effectiveness of our
relaxation technique. For each of our largest instances, we show in Table 4(b)
the total runtime (in milliseconds) without relaxation, with relaxation, and the
number of customers that was successfully removed without changing the lower
bound, as well as the speedup for relaxation. Both versions are run with the
customer search strategy, “better move” and “old move” improvements.

As can be seen from the results in Table 4(b), relaxation is most effective for
sparse instances where we can get up to 3-4 orders of magnitude improvement.
There is a slight slowdown for several dense instances but that is because they are
trivial to begin with (take < 1s). The sparser the instance, the more customers

256 G. Chu and P.J. Stuckey

can be removed without changing the lower bound and the greater the speedup
from the relaxation technique. For the hardest instances, 125-125-2, it is often
possible to remove some 60-70 of the 125 customers without changing the bound.
This reduces the proof of optimality that normally takes 10+ hours into mere
seconds. The 125-125-4 instances are now comparatively harder, since we are
only able to remove around 25 customers and get a speedup of ∼100. Relaxation
is largely ineffective for the denser instances like 125-125-8,10. However, dense
instances are naturally much easier to solve anyway, so we have speedup where
it is needed the most.

Our relaxation techniques are also useful if we only wish to prove a good
lower bound rather than the true lower bound. For example, if we only insist on
proving a lower bound that is 5 less than the true optimum, then ∼45 customers
can be removed from the 125-125-4 instances and the bound can be proved in
seconds. This is again several orders of magnitude speedup compared to using
a normal complete search to prove such a bound. In comparison, although the
HAC lower bound heuristic of [1] uses virtually no time, it gives extremely weak
lower bounds for the 125-125-4 instances, which are some 30 stacks below the
optimum and are of little use.

5 Conclusion

In this paper we show how combining nogood recording with the customer based
search strategy of [8] yields a solver that is 5-6 orders of magnitude faster than
the previous state of the art MOSP solver. We show how exploiting several dom-
inance relations leads to the the “definite move”, “better move” and “old move”
improvements. These produce a further 1-2 orders of magnitude improvement.
The “old move” improvement in particular is able to subsume the effect of prun-
ing using the extremely large nogood table. This allows us to reduce the memory
usage of our solver from an amount exponential in the size of the problem to
a constant ∼2Mb. Finally we show how relaxation techniques can be used to
speed up the proof of optimality of the hardest instances by another 3-4 orders
of magnitude.

Acknowledgments. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.

References

1. Becceneri, J.C., Yannasse, H.H., Soma, N.Y.: A method for solving the minimiza-
tion of the maximum number of open stacks problem within a cutting process.
Computers & Operations Research 31, 2315–2332 (2004)

2. Garcia de la Banda, M., Stuckey, P.J.: Dynamic programming to minimize the
maximum number of open stacks. INFORMS JOC 19(4), 607–617 (2007)

3. Linhares, A., Yanasse, H.H.: Connections between cutting-pattern sequencing,
VLSI design, and flexible machines. Computers & Operations Research 29, 1759–
1772 (2002)

Minimizing the Maximum Number of Open Stacks by Customer Search 257

4. Prestwich, S.: Increasing solution density by dominated relaxation. In: 4th Int.
Workshop on Modelling and Reformulating Constraint Satisfaction Problems
(2005)

5. Shaw, P., Laborie, P.: A constraint programming approach to the min-stack prob-
lem. Constraint Modelling Challenge 2005 [6]

6. Smith, B., Gent, I.: Constraint modelling challenge report (2005),
http://www.cs.st-andrews.ac.uk/~ipg/challenge/ModelChallenge05.pdf

7. Wilson, N., Petrie, K.: Using customer elimination orderings to minimise the max-
imum number of open stacks. In: Constraint Modelling Challenge 2005 [6]

8. Yannasse, H.H.: On a pattern sequencing problem to minimize the maximum num-
ber of open stacks. EJOR 100, 454–463 (1997)

9. Yannasse, H.H.: A note on generating solutions of a pattern sequencing problem
to minimize the maximum number of open orders. Technical Report LAC-002/98,
INPE, São José dos Campos, SP, Brazil (1998)

10. Yuen, B.J., Richardson, K.V.: Establishing the optimality of sequencing heuristics
for cutting stock problems. EJOR 84, 590–598 (1995)

http://www.cs.st-andrews.ac.uk/~ipg/challenge/ModelChallenge05.pdf

Using Relaxations in Maximum Density Still Life

Geoffrey Chu1, Peter J. Stuckey1, and Maria Garcia de la Banda2

1 NICTA Victoria Laboratory,
Department of Computer Science and Software Engineering,

University of Melbourne, Australia
{gchu,pjs}@csse.unimelb.edu.au

2 Faculty of Information Technology,
Monash University, Australia

mbanda@infotech.monash.edu.au

Abstract. The Maximum Density Sill-Life Problem is to fill an n × n
board of cells with the maximum number of live cells so that the board
is stable under the rules of Conway’s Game of Life. We reformulate the
problem into one of minimising “wastage” rather than maximising the
number of live cells. This reformulation allows us to compute strong up-
per bounds on the number of live cells. By combining this reformulation
with several relaxation techniques, as well as exploiting symmetries via
caching, we are able to find close to optimal solutions up to size n = 100,
and optimal solutions for instances as large as n = 69. The best previous
method could only find optimal solutions up to n = 20.

1 Introduction

The Game of Life was invented by John Horton Conway and is played on an
infinite board. Each cell c in the board is either alive or dead at time t. The
live/dead state at time t + 1 of cell c, denoted as state(c, t +1), can be obtained
from the number l of live neighbours of c at time t and from state(c, t) as follows:

state(c, t + 1) =

⎧⎪⎪⎨⎪⎪⎩
l < 2 dead [Death by isolation]
l = 2 state(c, t) [Stable condition]
l = 3 alive [Birth condition]
l > 3 dead [Death by overcrowding]

The board is said to be a still-life at time t if it is unchanged by these rules,
i.e., it is the same at t + 1. For example, an empty board is a still-life. Given a
finite n×n region where all other cells are dead, the Maximum Density Still-life
Problem aims at computing the highest number of live cells that can appear in a
still life for the region. The density is thus expressed as the number of live cells
over the n× n region.

The raw search space of the Maximum Density Still-life Problem has size 2n2
.

Thus, it is extremely difficult even for “small” values of n. Previous search meth-
ods using IP [1] and CP [2] could only solve up to n = 9, while a CP/IP hybrid
method with symmetry breaking [2] could solve up to n = 15. An attempt using

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 258–273, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Using Relaxations in Maximum Density Still Life 259

bucket elimination [6] reduced the time complexity to O(n223n) but increased
the space complexity to O(n22n). This method could solve up to n = 14 before
it ran out of memory. A subsequent improvement that combined bucket elimi-
nation with search [7], used less memory and was able to solve up to n = 20.
In this paper we combine various techniques to allow us to solve instances up
to n = 50 completely or almost completely, i.e. we prove upper bounds and find
solutions that either achieve that upper bound or only have 1 less live cell. We
also obtain solutions that are no more than 4 live cells away from our proven
upper bound all the way to n = 100. The largest completely solved instance is
n = 69.

The contributions of this paper are as follows:

– We give a new insightful proof that the maximum density of live cells in
an infinite still life is 1

2 . This proof allows us to reformulate the maximum
density still-life problem in terms of minimising “wastage” rather than max-
imising the number of live cells.

– We derive tight lower bounds on wastage (which translate into upper bounds
on the number of live cells) that can be used for pruning.

– We define a static relaxation of the original problem that allows us to cal-
culate closed form equations for an upper bound on live cells for all n. And
we do this in constant time by using CP with caching. We conjecture that
this upper bound is either equal to the optimum, or only 1 higher for all n.

– We identify a subset of cases for which we can improve the upper bound by 1
by performing a complete search on center perfect solutions. This completes
the proof of optimality for the instances where our heuristic search was able
to find a solution with 1 cell less than the initial upper bound.

– We define a heuristic incomplete search using dynamic relaxation as a looka-
head method that can find optimal or near optimal solutions all the way up
to n = 100.

– We find optimal solutions for n as large as 69, more than 3 times larger than
any previous methods, and with a raw search space of 24761.

2 Wastage Reformulation

The maximum density of live cells in an infinite still life is known to be 1
2 [5,4].

However, that proof is quite complex and only applies to the infinite plane. In
this section we provide a much simpler proof that can easily be extended to the
bounded case and gives much better insight into the possible sub-patterns that
can occur in an optimal solution. The proof is as follows.

First we assign an area of 2 to each cell (assume the side length is
√

2). We
will partition the area of each dead cell into two 1 area pieces and distribute
them among its live neighbours according to the local pattern found around the
dead cell. It is clear that if we can prove that all live cells on the board end up
with an area ≥ 4, then it follows that the density of live cells is ≤ 1

2 .
The area of a dead cell is assigned only to orthogonal neighbouring live cells,

i.e., those that share an edge with the dead cell. We describe as “wastage” the

260 G. Chu, P.J. Stuckey, and M. Garcia de la Banda

Table 1. Possible patterns around dead cells, showing where they donate their area
and any wastage of area

Pattern:

Beneficiaries {} { S } {S, W} {E, W} {E, W} {}
Wastage 2 1 0 0 0 2

Table 2. Contributions to the area of a live cell from its South neighbour

Pattern:

Area received 1 1 0

area from a dead cell that does not need to be assigned to any live cell for the
proof to work (i.e., it is not needed to reach our 4 target for live cells). Table 1
shows all possible patterns of orthogonal neighbours (up to symmetries) around
a dead cell. Live cells are marked with a black dot, dead cells are unmarked, and
cells whose state is irrelevant for our purposes are marked with a “?”.

Each pattern indicates the beneficiaries, i.e., the North, East, South or West
neighbours that receive 1 area from the center dead cell, and the resulting amount
of wastage. As it can be seen from the table, a dead cell gives 1 area to each of
its live orthogonal neighbours if it has ≤ 2 live orthogonal neighbours, 1 area to
the two opposing live orthogonal neighbours if it has 3, and no area if it has 4.
Note that, in the table, wastage occurs whenever the dead cell has ≤ 1 or 4 live
orthogonal neighbours. As a result, we only need to examine the 3 bordering
cells on each side of a live cell, to determine how much area is obtained from
the orthogonal neighbour on that side. For example, the area obtained by the
central live cell from its South neighbour is illustrated in Table 2.

The area obtained by a live cell can therefore be computed by simply adding
up the area obtained from its four orthogonal neighbours. Since each live cell
starts off with an area of 2, it must receive at least 2 extra area to end up
with an area that is ≥ 4. Let us then look at all possible patterns around a
live cell and see where the cell will receive area from. Table 3 shows all possible
neighbourhoods of a live cell (up to symmetries). For each pattern, it shows the
benefactors, i.e., the North, East, South or West neighbours that give 1 area to
the live cell, and the resulting amount of wastage, which occurs whenever a live
cell receives more than 2.

Note that the last pattern does not receive sufficient extra area, just 1 from
the South neighbour. However, the last two patterns always occur together in
unique pairs due to the still-life constraints (each of the central live cells has 3
neighbours so the row above the last pattern, and the row below the second last

Using Relaxations in Maximum Density Still Life 261

Table 3. Possible patterns around a live cell showing area benefactors and any wastage

Pattern:

Benefactors: {N,S} {N,E,S} {N,E,S,W} {S,W} {N,S,W}
Wastage: 0 1 2 0 1

Pattern:

Benefactors: {S,W} {N,S} {E,S,W} {E,S} {E,W}
Wastage: 0 0 1 0 0

Pattern:

Benefactors: {S,W} {S,W} {S,W} {N,E,W} {S}
Wastage: 0 0 0 1 −1

pattern must only consist of dead cells). Hence, we can transfer the extra 1 area
from the second last pattern to the last.

Clearly, all live cells end up with an area ≥ 4, and this completes our proof
that the maximum density on an infinite board is 1

2 .
The above proof is not only much simpler than that of [5,4], it also provides

us with good insight into how to compute useful bounds for the case in which the
board is finite. In particular, it allows us to know exactly how much we have lost
from the theoretical maximum density by looking at the amount of “wastage”
produced by the patterns in the currently labeled cells.

To achieve this, we reformulate the objective function in the Bounded Maxi-
mum Density Still Life Problem as follows. For each cell c, let P (c) be the 3× 3
pattern around that cell. Note that if c is on the edge of the n × n region, the
dead cells beyond the edge are also included in this pattern. Let w(P) be the
wastage for each 3× 3 pattern as listed in Tables 1 and 3. Define w(c) for each
cell c as follows. If c is within the n × n region, then w(c) = w(P (c)). If c is in
the row immediately beyond the n× n region and shares an edge with it (there
are 4n such cells), then w(c) = 1 if the cell in the n × n region with which it
shares an edge is dead, and w(c) = 0 otherwise. For all other c, let w(c) = 0. Let
W =

∑
w(c) over all cells.

Theorem 1. Wastage and live cells are related by

live cells =
n2

2
+ n− W

4
(1)

262 G. Chu, P.J. Stuckey, and M. Garcia de la Banda

Proof. We adapt the proof for the infinite board to the n × n region. Let us
assign 2 area to each cell within the n× n region, and 1 area to each of the 4n
cell in the row immediately beyond the edge of the n× n region. Now, for each
dead cell within the n × n region, partition the area among its live orthogonal
neighbours as before. For each dead cell in the row immediately beyond the n×n
region, give its 1 area to the cell in the n × n region with which it shares an
edge. Again, since the last two 3× 3 patterns listed above must occur in pairs,
we transfer an extra 1 area from one to the other. Note also that the second
last pattern of Table 3 cannot appear on the South border (which would mean
that the last pattern appeared outside the shape) since it is not stable in this
position. Clearly, after the transfers, all live cells once again have ≥ 4 area, and
wastage for the 3 × 3 patterns centered around cells within the n × n region
remain the same. However, since we are in the finite case, we also have wastage
for the cells which are in the row immediately beyond the edge of the n × n
region. These dead cells always give 1 area to the neighbouring cell which is in
the n×n region. If that cell is live, the area is received. If that cell is dead, that
1 area is wasted. The reformulation above counts all these wastage as follows.
The total amount of area that was used was 2n2 from the cells within the n× n
region and 4n from the 4n cells in the row immediately beyond the edge, for a
total of 2n2 + 4n. Now, 4 times live cells will be equal to the total area minus
all the area wasted, and hence we end up with Equation (1). �

We can trivially derive some upper bounds on the number of live cells using this
equation. Clearly W ≥ 0 and, thus, we have live cells ≤ �n2

2 + n. Also, by the
still life constraints, there cannot be three consecutive live cells along the edge
of the n×n region. Hence, there is always at least 1 wastage per 3 cells along the
edge and we can improve the bound to live cells ≤ �n2

2 + n− � 13n. While this
bound is very close to the optimal value for a small n, it differs from the true
optimum by O(n) and will diverge from the optimum for a large n. We provide
a better bound in the next section.

3 Closed form Upper Bound

Although in the infinite case there are many patterns that can achieve exactly
1
2 density, it turns out that in the bounded case, the boundary constraints force
significant extra wastage. As explained in the previous section, the still life con-
straints on the edge of the n × n region trivially force at least 1 wastage per 3
edge cells, however, it can be shown by exhaustive search that even this theoret-
ical minimal wastage of 1/3 per edge cell is unattainable for an infinitely long
edge due to the still life constraints on the inside of the n× n region.

There is also no way to label the corner without producing some extra wastage.
For example, for a 6× 6 corner, naively we expect to have (6+6)/3 = 4 wastage
forced by the still life constraints on the boundary. However, due to the still life
constraints within the corner, there is actually no way to label a 6 × 6 corner
without at least 6 wastage.

Using Relaxations in Maximum Density Still Life 263

8x8 8x8

8x88x8

3x

3x

x3 x3

Fig. 1. The relaxed version of the problem, only filling in the 8×8 corners and the 3
rows around the edge

Examination of the optimal solutions found by other authors show that, in
all instances, all or almost all wastage is found either in the corners or within 3
rows from the edge. This leads to the following conjecture:

Conjecture 1. All wastage forced by the boundary constraints of an n×n region
must appear either in the 8× 8 corners, or within 3 rows from the edge.

If this conjecture is true, then it should be possible to find a good lower bound
on the amount of forced wastage simply by examining the corners and the first
few rows from the edge.

We thus perform the following relaxation of the bounded still life problem.
We keep only the variables representing the four 8 × 8 corners of the board, as
well as the variables representing cells within 3 rows of the edge (see Figure 1).
All variables in the middle are removed. The still life constraints for fully sur-
rounded cells, including cells on the edge of the n× n region, remain the same.
The still life constraints for cells neighbouring on removed cells are relaxed as
follows: dead cells are always considered to be consistent with the problem con-
straints, and live cells are considered to be consistent as long as they do not
have more than 3 live neighbours (otherwise any extension to the removed cells
would violate the original constraints). The objective function is modified as fol-
lows: fully surrounded cells have their wastage counted as before, live cells with
neighbouring removed cells have no wastage counted, and dead cells with neigh-
bouring removed cells have 1 wastage counted if and only if it is surrounded by
≥ 3 dead unremoved cells (since any extension to the removed cells will result
in a pattern with ≥ 1 wastage). Clearly, since we have relaxed the constraints,
and also potentially ignored some wastage in our count, any lower bound we get
on wastage in this relaxed problem is a valid lower bound on the wastage in the
original problem.

Since the constraint graph of this relaxed problem has bounded, very low
path-width, it can easily be solved using CP with caching in O(n) time (see [3]
Theorem 13.2). In practice, solving the 8 × 8 corners is the hardest and takes
8s. An example corner solution is shown in Figure 2(a). Solving the width 3

264 G. Chu, P.J. Stuckey, and M. Garcia de la Banda

(a) (b)

Fig. 2. An optimal 8×8 North West corner pattern with 7 wastage highlighted, and (b)
the periodic pattern for an optimal North edge with 4 wastage per period 11 highlighted

Table 4. Upper bound by relaxation for small n, shown in bold if it is equal to the
optimal solution

n optimal upper bound
8 36 36
9 43 44
10 54 55
11 64 65
12 76 77
13 90 91
14 104 104
15 119 120
16 136 136
17 152 152
18 171 172
19 190 190
20 210 210

edge takes milliseconds. The results of calculating the bound from the relaxed
problem for small n is shown in Table 4.

Because of the high symmetry of the edge subproblem (full translational sym-
metry), the edge bounds starts to take on a periodic pattern for n sufficiently
large, at which point we can derive a closed form equation for their values for
all n. The periodicity comes from the fact that it can be shown that the optimal
periodic edge pattern (see Figure 2(b)) has period 11, and any sufficiently long
optimal edge pattern will have a series of these in the middle.

Since the set of optimal solutions for the 8× 8 corners remain the same for
any n > 16, and we can derive a closed form equation for the edge bounds for
large n, we can calculate a closed form equation for the lower bound on wastage
for the whole relaxed problem for any n sufficiently large. For n ≥ 50 it is:

min wastage =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

8 + 16× �n/11, n ≡ 0, 1, 2 mod 11
12 + 16× �n/11, n ≡ 3, 4 mod 11
14 + 16× �n/11, n ≡ 5 mod 11
16 + 16× �n/11, n ≡ 6, 7 mod 11
18 + 16× �n/11, n ≡ 8 mod 11
20 + 16× �n/11, n ≡ 9, 10 mod 11

(2)

Using Relaxations in Maximum Density Still Life 265

A lower bound on wastage can be converted into an upper bound on live cells
using Equation (1):

live cells ≤
⌊

2n2 + 4n−min wastage

4

⌋
(3)

We will call the live cell upper bound calculated from our closed form wastage
lower bounds the “closed form upper bound”. If Conjecture 1 is true and all
forced wastage must appear within a few rows of the edge, then this closed form
upper bound should be extremely close to the real optimal value.

Conjecture 2. The maximum number of live cells in an n× n region is⌊
2n2 + 4n−min wastage

4

⌋
or one less than this, where min wastage is the optimal solution to the relaxed
problem of Figure 1 (given by Equation (2) for n ≥ 50). �

Conjecture 2 is true for previously solved n. As it can be seen from Table 4, for
n ≤ 20, our upper bound is never off the true optimum by more than 1, and is
often equal to it.

As our new results in Table 5 show, our conjecture is also true for at least
up to n = 50. The bound is also achievable exactly for n as high as 69. For
larger n our solver is too weak to guarantee finding the optimal solution and
thus we cannot verify the conjecture. We believe the conjecture is true because
although not all 3×3 patterns are perfect (waste free), there are a large number
of perfect ones and there easily appears to be enough different combinations of
them to label the center of an n × n region perfectly. Indeed, since we already
know that there are many ways to label an infinite board perfectly, the boundary
constraints are the only constraints that can force wastage.

4 Finding Optimal Solutions

In the previous section, we found a relaxation that allows us to find very good
upper bounds in constant time. However, in order to find an optimal solution it is
still necessary to tackle the size 2n2

search space. The previous best search based
methods could only find optimal solutions up to n = 15, with a search space
of 2225. Here, we attempt to find solutions up to n = 100, which has a search
space of 210000, a matter of 3000 orders of magnitude difference. Furthermore,
optimal solutions are extremely rare: 1682 out of 2169 for n = 13, 11 out of 2196

for n = 14, and so on [7]. Clearly, we are going to need some extremely powerful
pruning techniques.

For some values of n, the closed form upper bound calculated in the previ-
ous section is already the true upper bound. For such instances we simply need to

266 G. Chu, P.J. Stuckey, and M. Garcia de la Banda

find a solution that achieves the upper bound and, therefore, we can use an
incomplete search. We take advantage of this by looking only for solutions of a
particular form: those where all wastage lies in the 8×8 corners or within 3 rows
of the edge, and the “center” is labeled perfectly with no wastage whatsoever.
We call such solutions “center perfect”. Our choice is motivated by the fact
that, while there are many ways to label the center perfectly, there are very few
ways to label the edge with the minimum amount of wastage. Since we are only
allowed a very limited number of wastage on the entire board, they should not
be used to deal with the center cells. Searching only for center perfect solutions,
allows us to implement our solver more simply and to considerably reduce the
search space.

4.1 Dynamic Relaxation as Lookahead

The main technique whereby we make solution finding feasible is through the use
of dynamic relaxation as a lookahead technique. We label the board k rows at a
time (call each set of k rows a “super-row”), and column by column within each
super-row. Our implementation can set the width of the super row anywhere
between 4 and 8, although our experimental evaluation has not shown any ob-
vious difference in performance. At each node in our search tree, we perform a
relaxation of the current subproblem, which we solve exactly as a lookahead. If
we cannot find a (good enough) solution to the lookahead problem we fail and
try another labelling.

The relaxation consists of all the unlabeled variables within k rows from the
currently labeled variables, a 16 × 8 “thick edge” chunk of variables on each
side, a width 3 edge down each side, the bottom two 8 × 8 corners, and the
bottom width 3 edge (see Figure 3(a)). It also includes the 2 rows of already
labeled variables immediately bordering on the unlabeled region. The values of
these labeled variables form boundary conditions for the relaxed problem at this
particular node. We will discuss the choice of this shape later on. We relax the
still life constraints and objective function as before.

The relaxed subproblem is an optimisation problem. If by solving the relaxed
subproblem, we find that the minimum amount of wastage among the unlabeled
variables, plus the amount of wastage already found in the labeled variables,
exceeds the wastage upper bound for the original problem, then clearly there
are no solutions in the current branch and the node can be pruned. Since the
constraint graph of the relaxed problem has low path-width, it can be solved in
linear time using CP with caching. In practice though, we exploit symmetries
and caching to solve it incrementally in constant time (see below). Lower bounds
calculated for particular groups of variables (such as corners, edges, and super-
rows) are cached. These can be reused for other subproblems. We also use these
cached results as a table propagator, as they can immediately tell us which
particular value choices will lead to wastage lower bounds that violate the current
upper bound.

The relaxed problem can be solved incrementally in constant time as follows.
When we travel to a child node, the new relaxed problem at that node is not that

Using Relaxations in Maximum Density Still Life 267

16x8

8x88x8

3x

x3

x3

16x8

Previously filled

8x
8x 16x8

8x88x8

3x

x3

x3

16x8

Previously filled

8x
8x

(a) (b)

Fig. 3. Dynamic relaxation lookahead for still-life search: (a) shows darkened the area
of lookahead, (b) shows the change in lookahead on labelling an additional column
when super-row width is 4 and lookahead width is 8

different from the one at the previous node (see Figure 3(a) and (b), respectively).
A column of k variables from the previous relaxation has now been removed from
the relaxation and labeled (new top dark column in Figure 3(b)), and a new
column of k variables is added to the relaxation (new bottom dark column in
Figure 3(b)). By caching previous results appropriately, it is possible to lookup
all the solutions to the common part of the two relaxed problems (cached when
solving the previous relaxation). Now we simply need to extend those solutions
to the new column of k variables, which takes O(2k) time but is constant for a
fixed k. There is sufficient time/memory to choose a k of up to 12. The larger k
is, the greater the pruning achieved but the more expensive the lookahead is. In
practice, k = 8 seems to work well. With k = 8, we are able to search around
1000 nodes per second and obtain a complete depth 400+ lookahead in constant
time.

The choice of the shape of the lookahead is important, and is based on our
conjectures as well as on extensive experimentation. The most important vari-
ables to perform lookahead on are the variables where wastage is most likely
to be forced by the current boundary constraints. Conjecture 1 can be applied
to our relaxed subproblems as well. It is very likely that the wastage forced by
the boundary constraints can be found within a fixed number of rows from the
current boundary. Thus, the variables near the boundary are the ones we should
perform lookahead on. The reason for the 16 × 8 thick edge chunk of variables
comes from our experimentation. It was found that the lookahead is by far the
weakest around the “corners” of the subproblem, where we have boundary con-
straints on two sides. A lookahead using a thinner edge (initially width 3) often
failed to see the forced wastage further in and, thus, allowed the solver to get
permanently stuck around those “corners”. By using a thicker edge, we increase
the ability of the lookahead to predict forced wastage and thus we get stuck

268 G. Chu, P.J. Stuckey, and M. Garcia de la Banda

less often. A 16 × 8 thick edge is still not sufficiently large to catch all forced
wastage, but we are unable to make it any larger due to memory constraints, as
the memory requirement is exponential in the width of the lookahead.

Interestingly, if Conjecture 1 is indeed true for the subproblems, and we can
get around the memory problems and perform a lookahead with a sufficient width
to catch all forced wastage, then the lookahead should approach the strength of
an oracle, and it may be possible to find optimal solutions in roughly polynomial
time! Indeed, from our results (see Table 5), the run time required to find optimal
solutions does not appear to be growing anywhere near exponentially in n2.

4.2 Search Strategy

The search strategy is also very important. A traditional depth first branch
and bound strategy is doomed to failure, as it will tend to greedily use up the
wastage allowance to get around any problem it encounters. If it maxes out on
the wastage bound early on, then it is extremely unlikely that it will be able to
label the rest of the board without breaking the bound. However, we may not
be able to tell this until much later on, since the center can often be labeled
perfectly. Therefore, the search will reach extremely deep parts of the search
tree, even though there is no chance of success and we will essentially be stuck
forever. Instead, we need a smarter search strategy that has more foresight.

Intuitively, although labeling the top parts of the board optimally is difficult,
it is much easier than labeling the final part of the board, since the final part
of the board will have boundary constraints on every side, making it extremely
difficult to get a perfect labeling with minimal wastage. Thus, we would like to
save all our wastage allowance until the end. We accomplish this by splitting the
search into two phases. The first phase consists of labeling all parts of the board
other than the last 8 rows, and the second phase consists of the last 8 rows. In
the first phase, we use a variation of limited discrepancy search (LDS), designed
to preserve our wastage allowance as much as possible. We describe this in the
next paragraph. If we manage to get to the last 8 rows, then we switch to a
normal depth first search where the wastage allowance is used as necessary to
finish off labeling the last few rows.

Our LDS-like algorithm is as follows. We define the discrepancy as the amount
by which a value choice causes our wastage lower bound to increase. Note that
this is totally different from defining it as the amount of wastage caused by a
value choice. For example, if our lookahead tells us that a wastage of 10 is un-
avoidable among the unlabeled variables, and we choose a value with 1 wastage,
after which our lower bound for the rest of the unlabeled variables is 9, then
there is no discrepancy. This is because even though we chose a value that
caused wastage, the wastage was forced. We are thus still labeling optimally
(as far as our lookahead can tell). On the other hand, if the lookahead tells us
that 10 wastage is unavoidable, and we choose a value with 0 wastage, after
which our lower bound becomes 11, then there is a discrepancy. This is because,
even though we did not cause immediate wastage, we have in fact labeled sub-
optimally as this greedy choice causes more wastage later on. Discrepancy based

Using Relaxations in Maximum Density Still Life 269

on increases in wastage lower bounds is far better than one based on immediate
wastage, as greedily avoiding wastage often leads to substantially more wastage
later on! Note that by definition, there can be multiple values at each node with
the same discrepancy, all of which should be searched at that discrepancy level.

Our search also differs from traditional LDS in the way that discrepancies
are searched. Traditional LDS assumes that the branching heuristic is weak
at the top of the tree, and therefore tries discrepancies at the top of the tree
first. This involves a lot of backtracking to the top of the tree and is extremely
inefficient for our case, since the branching heuristic for still life is not weak at
the top of the tree and our trees are very deep. Hence, we order the search to try
discrepancies at the leaves first, which makes the search much closer to depth-first
search. This is substantially more efficient and is in fact crucial for solving our
relaxations incrementally. We also modify LDS by adding local restarts. This is
based on the fact that, for problems with as large a search space as this, complete
search methods are doomed to failure, as mistakes require an exponential time
to fix. Instead, we do incomplete LDS by performing local restarts at random
intervals dependant on problem size, during which we backtrack by a randomised
amount which averages to two super-rows. Value choices with the same number
of discrepancies are randomly reordered each time a node is generated, so when
a node is re-examined, the solver can take another path. Given the size of the
search space, we do not wait until all nodes with the current discrepancy are
searched before we try a higher discrepancy. Instead, after a reasonable amount
of time (around 20 min) we give up and increase the discrepancy. Essentially,
what we are doing is to try to use as little of our wastage at the top as possible
and save more for the end. But if it feels improbable that we can label the top
with so little wastage, then we use more of our allowance for the top.

5 Improving the Upper Bound

The incomplete search described in the previous section does not always find
a solution equal to the closed form upper bound in the allocated time. For
some of the cases in which this happens, we can perform a different kind of
simplified search that also allows us to prove optimality. This simplified search
is based on Equation (3) and, in particular, on the fact that wastage lower
bounds are converted into live cell upper bounds by being rounded down. For
instance, if our wastage lower bound gives us live cells ≤ �100.75, then we
actually have live cells ≤ 100. This means that the live cell upper bound we get
is actually slightly stronger whenever the numerator is not divisible by 4. Since
the upper bound is strengthened, it means that we do not always have to achieve
the minimum amount of forced wastage in order to achieve the live cell upper
bound. Let us define spare = (2n2 + 4n −min wastage) mod 4. The spare
value (0, 1, 2 or 3) tells you how many “unforced” (by the boundary constraints)
wastage we can afford to have and still achieve the closed form upper bound.
In other words, although the boundary constraints force a certain number of
wastage, we can afford to have spare wastage anywhere in the n×n region and
still achieve the closed form upper bound.

270 G. Chu, P.J. Stuckey, and M. Garcia de la Banda

It is interesting to consider the instances of n for which spare = 0. We believe
that these are the instances where our closed form upper bound is most likely
to be off by one. This is because when spare = 0, the closed form upper bound
can only be achieved if there are no “unforced” wastage, and this can make the
problem unsolvable. In other words, when spare = 0, any optimal solution that
achieves the closed form upper bound must also be center perfect, since the edge
and corner variables alone are sufficient to force all the wastage allowed. Thus, a
complete search on center perfect solutions is sufficient to prove unsatisfiability of
this value and improve the upper bound by 1. If we have already found a solution
with 1 less live cell than the closed form upper bound, this will constitute a full
proof of optimality. A complete search on center perfect solutions with minimum
wastage is in fact quite feasible. This is because the corner, edges and center all
have to be labeled absolutely perfectly with no unforced wastage, and there are
very few ways to do this. For spare > 0 however, none of this is possible, as the
spare “unforced” wastage can occur in an arbitrary position in the board, and
proving that no such solution exists requires staggeringly more search.

6 Results

Our solver is written in C++ and compiled in g++ with O3 optimisation. It
is run on a Xeon Pro 2.4GHz processor with 2Gb of memory. We run it for all
n between 20 and 100. Smaller values of n have already been solved and are
trivial for our solver. In Table 5, we list for each instance n, the lower bound
(best solution found), the upper bound (marked with an asterisk if improved by
1 through complete search), the time in seconds taken to find the best solution,
and the time in seconds taken to prove the upper bound. Each instance was run
for at most 12 hours.

There are two precomputed tables which are used for all instances and are read
from disk. These include tables for the 8 × 8 corner which takes 8s to compute
and 16k memory to store, and a “thick edge” table consisting of a width 8 edge
which takes 17 minutes to compute and ∼400Mb of memory. Since these are
calculated only once and used for all instances the time used is not reflected in
the table.

As can be seen, “small” instances like 20 ≤ n ≤ 30 which previously took days
or were unsolvable can now be solved in a matter of seconds (after paying the
above fixed costs). The problem gets substantially harder for larger n. Beyond
n ∼ 40, we can no longer reliably find the optimal solution. However, we are still
able to find solutions which are no more than 3-4 cells off the true optimum all
the way up to n = 100. The run times for the harder instances have extremely
high variance due to the large search space and the scarcity of the solutions. If
the solver gets lucky, it can find a solution in mere seconds. Otherwise, it can
take hours. Thus, the run time numbers are more useful as an indication of what
is feasible, rather than as a precise measure of how long it takes.

Our memory requirements are also quite modest compared to previous meth-
ods. The previous best method used an amount of memory exponential in n

Using Relaxations in Maximum Density Still Life 271

Table 5. Results on large max-density still life problems. Optimal answers are shown in
bold. Upper bounds which are improved by complete search are shown starred. Times
in seconds to one decimal place (in reality 0.1 usually represents a few milliseconds).

n lower upper lb. time ub. time n lower upper lb. time ub. time
20 210 210 0.1 0.1 60 1834 1836 4.3 0.1
21 232 232 0.4 0.1 61 1897 1897 15648 0.1
22 253 253 3.4 0.1 62 1957 1959* 62 0.1
23 276 276 0.1 0.1 63 2021 2023 7594 0.1
24 301 301* 0.5 0.1 64 2085 2087 389 0.1
25 326 326 0.6 0.1 65 2150 2152 137 0.1
26 352 352* 2.1 6.2 66 2217 2218 2296 0.1
27 379 379 51 0.1 67 2284 2285 26137 0.1
28 406 407 1.4 0.1 68 2351 2354 3149 0.1
29 437 437 2.5 0.1 69 2422 2422 14755 0.1
30 466 466* 45 0.3 70 2490 2493 641 0.1
31 497 497 0.6 0.1 71 2562 2564 3077 0.1
32 530 530* 1815 0.1 72 2634 2636 866 0.1
33 563 563 60 0.1 73 2706 2709 433 0.1
34 598 598 207 0.1 74 2781 2783 3575 0.1
35 632 632* 1459 1.9 75 2856 2858 5440 0.1
36 668 668 0.1 0.1 76 2932 2934* 5879 3.4
37 706 706 1.1 0.1 77 3009 3011 5298 0.1
38 743 744 43 0.1 78 3088 3090 20865 0.1
39 782 782* 3.4 3.3 79 3166 3169 2768 0.1
40 823 823* 3.3 10.0 80 3247 3249 8328 0.1
41 864 864* 553 2.1 81 3327 3330 113 0.1
42 906 907 1.6 0.1 82 3410 3412 2 0.1
43 949 950 2176 0.1 83 3492 3495 10849 0.1
44 993 993* 285 3.4 84 3576 3579* 1083 3.6
45 1039 1039 3807 0.1 85 3661 3664* 3666 0.6
46 1084 1085* 101 3.4 86 3748 3751 7628 0.1
47 1131 1132 244 0.1 87 3835 3838 957 0.1
48 1180 1181 265 0.1 88 3923 3926 5047 0.1
49 1229 1229* 563 10 89 4012 4015 1837 0.1
50 1279 1280 9.2 0.1 90 4102 4105* 7047 3.2
51 1330 1331 105 0.1 91 4193 4196 605 0.1
52 1381 1383 354 0.1 92 4286 4289 8843 0.1
53 1436 1436 4326 0.1 93 4379 4382 2254 0.1
54 1489 1490* 25219 3.3 94 4473 4476 3669 0.1
55 1543 1545 296 0.1 95 4568 4571 10871 0.1
56 1601 1602 484 0.1 96 4664 4667 16801 0.1
57 1657 1659 816 0.1 97 4761 4764 36205 0.1
58 1716 1717 1950 0.1 98 4859 4862* 3462 3.4
59 1774 1776 992 0.1 99 4958 4961 7660 0.1

100 5058 5062 15458 0.1

272 G. Chu, P.J. Stuckey, and M. Garcia de la Banda

Fig. 4. An optimal solution to 69×69

and could not be run for n > 22. Our solver, on the other hand, uses a poly-
nomial amount of memory. For n = 100 for example, we use ∼ 400 Mb for the
precomputed tables and ∼ 120 Mb for the actual search.

7 Conclusion

We reformulate the Maximum Density Still Life problem into one of minimising
wastage. This allows us to calculate very tight upper bounds on the number
of live cells and also gives insight into the patterns that can yield optimal so-
lutions. Using a boundary based relaxation, we are able to prove in constant
time an upper bound on the number of live cells for all n which is never off the
true optimum by more than one for all n ≤ 50. We further conjecture that this
holds true for all n and thus we may have found the optimum value for all n
up to a margin of error of 1. By using dynamic relaxation as a lookahead learn-
ing/pruning technique, we are able to produce a complete depth 400+ lookahead
that can be calculated in constant time. This prunes the search so powerfully
that we can find optimal (or near optimal) solutions for a problem where the
search space grows as 2n2

. The largest n for which the problem is completely
solved is n = 69 (shown in Figure 4). Further, we have proved upper and lower
bounds that differ by no more than 4 for all n up to 100. All of our solutions
can be found at www.csse.unimelb.edu.au/~pjs/still-life/

Acknowledgments. We would like to thank Michael Wybrow for helping us gen-
erate the still life pictures used in this paper. NICTA is funded by the Australian

Using Relaxations in Maximum Density Still Life 273

Government as represented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council.

References

1. Bosch, R.: Integer programming and conway’s game of life. SIAM Review 41(3),
596–604 (1999)

2. Bosch, R., Trick, M.: Constraint programming and hybrid formulations for three life
designs. In: Proceedings of the International Workshop on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
CP-AI-OR 2002, pp. 77–91 (2002)

3. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
4. Elkies, N.: The still-life density problem and its generalizations. arXiv:math/

9905194v1
5. Elkies, N.: The still-life density problem and its generalizations. Voronoi’s Impact

on Modern Science: Book I, 228–253 (1998), arXiv:math/9905194v1
6. Larrosa, J., Dechter, R.: Boosting search with variable elimination in constraint

optimization and constraint satisfaction problems. Constraints 8(3), 303–326 (2003)
7. Larrosa, J., Morancho, E., Niso, D.: On the practical use of variable elimination

in constraint optimization problems: ’still-life’ as a case study. Journal of Artificial
Intelligence Research (2005)

Constraint-Based Graph Matching

Vianney le Clément1, Yves Deville1, and Christine Solnon2,3

1 Université catholique de Louvain, Department of Computing Science and Engineering,
Place Sainte-Barbe 2, 1348 Louvain-la-Neuve, Belgium

vianney.leclement@student.uclouvain.be,

Yves.Deville@uclouvain.be
2 Université de Lyon

3 Université Lyon 1, LIRIS, CNRS UMR5205, 69622 Villeurbanne Cedex, France
christine.solnon@liris.cnrs.fr

Abstract. Measuring graph similarity is a key issue in many applications. We
propose a new constraint-based modeling language for defining graph similarity
measures by means of constraints. It covers measures based on univalent match-
ings, such that each node is matched with at most one node, as well as multivalent
matchings, such that a node may be matched with a set of nodes. This language is
designed on top of Comet, a programming language supporting both Constraint
Programming (CP) and Constraint-Based Local Search (CBLS). Starting from the
constraint-based description of the measure, we automatically generate a Comet
program for computing the measure. Depending on the measure characteristics,
this program either uses CP —which is better suited for computing exact mea-
sures such as (sub)graph isomorphism— or CBLS —which is better suited for
computing error-tolerant measures such as graph edit distances. First experimen-
tal results show the feasibility of our approach.

1 Introduction

In many applications graphs are used to model structured objects such as, e.g., images,
design objects, molecules or proteins. In these applications, measuring graph similarity
is a key issue for classification, pattern recognition or information retrieval. Measur-
ing the similarity of two graphs involves finding a best matching between their nodes.
Hence, graph similarity measures are closely related to graph matching problems. There
exist many different kinds of graph matchings, ranging from exact matchings such as
(sub)graph isomorphism to error-tolerant matchings such as (extended) edit distances.

Exact matchings may be solved by complete approaches such as, e.g., Nauty [1] for
graph isomorphism and Vflib [2] for subgraph isomorphism. These approaches exploit
invariant properties such as node degrees to prune the search space and they are rather
efficient on this kind of problems. However, in many real world applications one looks
for (sub)graph isomorphisms which satisfy additional constraints such as, e.g., label
compatibility between the matched nodes. Dedicated approaches such as Vflib can only
handle equality constraints between matched labels; other constraints cannot be used
during the search process to reduce the search space.

Error-tolerant matchings involve finding a best matching, that optimizes some given
objective function which evaluates the similarity induced by the matching. They are
usually solved by numerical methods [3,4,5], or by heuristic approaches which explore

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 274–288, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Constraint-Based Graph Matching 275

the search space of all possible matchings in an incomplete way, using heuristics to
guide the search such as, e.g., genetic algorithms [6], greedy algorithms [7], reactive
tabu search [8], and Ant Colony Optimization [9]. These algorithms do not guarantee to
find optimal solutions; as a counterpart, they usually find rather good solutions within
reasonable CPU times. Algorithms dedicated to error-tolerant matchings may be used
to solve exact matching problems by defining appropriate edit costs. However, they may
be less efficient than dedicated approaches such as Nauty or Vflib.

Contribution. Graph matching problems may be defined by means of constraints on the
cardinality of the matching, and on edges and labels. Hence, we introduce a modeling
language for defining graph matchings by means of constraints. This language allows
one to define new graph matching problems in a declarative way, by a simple enumera-
tion of constraints. It covers both exact and error-tolerant matchings. We show that this
language can be used to define existing matching thus giving a uniform framework to
these different matching problems.

Graph matching problems defined by means of constraints are solved by constraint
solvers that are embedded into the language. We more particularly consider two differ-
ent kinds of solving approaches: a complete approach, which combines a tree search
with filtering techniques, and an incomplete approach, based on local search. Our sys-
tem is designed on top of Comet, a constraint-based modeling language supporting both
tree search and local search. Starting from the constraint-based description of the match-
ing, we automatically generate a Comet program for computing it. Depending on the
constraints, this program either uses tree search or local search, thus choosing the most
efficient approach for solving the considered matching problem. A similar approach is
taken in [10] for solving scheduling problems.

Outline of the Paper. Section 2 gives an overview of existing graph matching prob-
lems. Section 3 briefly describes the constraint programming paradigm on which our
approach is based. Section 4 introduces a set of constraints that may be used to define
graph matching problems. Section 5 shows how to use these constraints to define exist-
ing graph matching problems. Section 6 discusses implementation issues and Section 7
gives some preliminary experimental results.

2 Graph Matching Problems

We consider labeled directed graphs defined by G = (N,E,L) such that N is a set of
nodes, E ⊆ N ×N is a set of directed edges, and L : N ∪ E → N is a function that
associates labels to nodes and edges. Throughout this paper, we assume that the labeled
graphs to be matched are G1 = (N1,E1,L1) and G2 = (N2,E2,L2) such that N1∩N2 = ∅.

Functional Matchings. A (total) functional matching between G1 and G2 is a function
f : N1 → N2 which matches each node of G1 with a node of G2. When the matching
preserves all edges of G1, i.e., ∀(u1,v1) ∈ E1,(f (u1), f (v1)) ∈ E2, it is called a graph
homomorphism [11].

In many cases, f is injective so that each node of G2 is matched to at most one node
of G1, i.e., ∀u1,v1 ∈ N1,u1 �= v1⇒ f (u1) �= f (v1). In this case the matching is said to
be univalent. Particular cases are subgraph isomorphism, when f is a homomorphism,
and graph isomorphism, when f is bijective and f−1 is also a homomorphism. Note

276 V. le Clément, Y. Deville, and C. Solnon

that while subgraph isomorphism is NP-complete, graph isomorphism is not known to
be nor NP-complete nor in P.

These different problems can be extended to the case where f is a partial function
such that some nodes of N1 are not matched to a node of N2. In particular, the maximum
common subgraph corresponds to the partial injective matching which preserves edges
and maximizes the number of matched nodes or edges.

These different problems can also be extended to take into account node and edge
labels, thus leading to the graph edit distance [12] or the graph matching problem of
[13]. For example, the graph edit distance involves finding a partial injective matching
which minimizes the sum of deletion (resp. addition) costs associated with the labels
of the nodes and edges of G1 (resp. G2) that are not matched, and substitution costs
associated with labels of nodes and edges that are matched but that have different labels.

Relational Matchings. Many real-world applications involve comparing objects de-
scribed at different granularity levels and, therefore, require multivalent matchings, such
that each node may be matched with a (possibly empty) set of nodes. In particular, in
the field of image analysis, some images may be over-segmented whereas some others
may be under-segmented so that several regions of one image correspond to a single
region of another image. In this case, the matching is no longer a function, but becomes
a relation M ⊆ N1×N2, and the goal is to find the best matching, i.e., the matching
which maximizes node, edge and label matchings while minimizing the number of split
nodes (that are matched with more than one node). Graph similarity measures based on
multivalent matchings have been proposed, e.g., in [7,14].

All these problems, ranging from maximum common subgraph to similarity mea-
sures based on multivalent matchings, are NP-hard.

3 Constraint-Based Modeling

Constraint Programming (CP) is an attractive alternative to dedicated approaches: it
provides high level languages to declaratively model Constraint Satisfaction Problems
(CSPs); these CSPs are solved in a generic way by embedded constraint solvers [15].

Many embedded constraint solvers are based on a complete tree search combined
with filtering techniques which reduce the search space. We have proposed in [16] and
[17] filtering algorithms that are respectively dedicated to graph and subgraph isomor-
phism problems. These filtering algorithms exploit the global structure of the graphs
to drastically reduce the search space. We have experimentally shown that they allow
CP to be competitive, and in some cases to outperform, dedicated approaches such as
Nauty or Vflib.

Embedded constraint solvers may also be based on local search. In this case, the
search space is explored in an incomplete way by iteratively performing local modifica-
tions, using some metaheuristics such as tabu search or simulated annealing to escape
from locally optimal solutions. We have introduced in [8] a reactive tabu search ap-
proach for solving multivalent graph matching problems.

Comet [18] is a constraint-based modeling language which supports both complete
tree search and local search. A Comet program is composed of two parts: (1) a high-
level model describing the problem by means of constraints, constraint combinators,
and objective functions; (2) a search procedure expressed at a high abstraction level.

Constraint-Based Graph Matching 277

1 include "matching";

2

3 bool[,] adj1 = ...

4 bool[,] adj2 = ...

5 SimpleGraph<Mod> g1(adj1);

6 SimpleGraph<Mod> g2(adj2);

7

8 Matching<Mod> m(g1,g2);

9 m.post(cardMatch(g1.getAllNodes(), 1, 1));

10 m.post(injective(g1.getAllNodes()));

11 m.post(matchedToSomeEdges(g1.getAllEdges()));

12 m.close();

13

14 DefaultGMSynthesizer synth();

15 GMSolution<Mod> sol = synth.solveMatching(m);

16 print(sol);

Fig. 1. Example of SI matching problem solved with our Comet prototype

Our system for modeling and solving graph matching problems is designed on top
of Comet. An example of program for modeling and solving a subgraph isomorphism
problem is given in Fig. 1.

As for every Comet program, this program consists in two parts. In the first part
(lines 9–13), the problem is modeled by means of high-level constraints. The first two
constraints specify the cardinality of the matching to search, which must match each
node of G1 with exactly one node of G2 (line 10), and which must be injective (line 11).
The last constraint specifies that the matching must preserve edges (line 12). Note that
problem-dependent constraints may be very easily added. We introduce in section 4 the
different constraints that may be used to model graph matching problems, and we show
in section 5 how to use these constraints to define existing graph matching problems.

In the second part (lines 15–16), a synthesizer is called to automatically generate a
Comet program for computing the solution. Depending on the constraints, this program
either uses tree search or local search, thus choosing the most appropriate approach.
This synthesizer is described in Section 6.

4 Constraints for Modeling Graph Matching Problems

A graph matching problem between two directed graphs G1 = (N1,E1,L1) and G2 =
(N2,E2,L2) involves finding a matching M ⊆ N1×N2 which satisfies some given con-
straints. These constraints actually specify the considered matching problem. In this
section, we introduce different constraints that may be used to define graph matching
problems. To make the following easier to read, we denote by M(u) the set of nodes
that are matched to a node u by M, i.e., ∀u ∈ N1,M(u) = {v ∈ N2|(u,v) ∈ M} and
∀u ∈ N2,M(u) = {v ∈ N1|(v,u) ∈M}.

Fig. 2 describes the basic constraints for modeling graph matching problems.
The first set of constraints enables to specify the minimum and maximum number of

nodes a node is matched to. For ease of use, these constraints are also defined for a set
U of nodes, to constrain the number of nodes matched to every node in U .

278 V. le Clément, Y. Deville, and C. Solnon

Let M ⊆ N1×N2,u,v ∈ N1∪N2,U ⊆ N1∪N2,ub, lb ∈ N,L = L1∪L2,
D⊆ (N1∪N2)× (N1∪N2).

MinMatch(M,u, lb) ≡ lb≤ #M(u)
MinMatch(M,U, lb) ≡ ∀u ∈U : MinMatch(M,u, lb)
MaxMatch(M,u,ub) ≡ #M(u) ≤ ub
MaxMatch(M,U,ub) ≡ ∀u ∈U : MaxMatch(M,u,ub)

CardMatch(M,u, lb,ub) ≡ MinMatch(M,u, lb)∧MaxMatch(M,u,ub)
CardMatch(M,U, lb,ub) ≡ ∀u ∈U : CardMatch(M,u, lb,ub)

Injective(M,U) ≡ ∀u,v ∈U,u �= v : M(u)∩M(v) = ∅

MatchedToSomeEdges(M,u,v) ≡ ∃u′ ∈M(u),∃v′ ∈M(v) : (u′,v′) ∈ E1∪E2
MatchedToSomeEdges(M,D) ≡ ∀(u,v) ∈D : MatchedToSomeEdges(M,u,v)
MatchedToAllEdges(M,u,v) ≡ ∀u′ ∈M(u),∀v′ ∈M(v) : (u′,v′) ∈ E1∪E2

MatchedToAllEdges(M,D) ≡ ∀(u,v) ∈D : MatchedToAllEdges(M,u,v)
MatchSomeNodeLabels(M,u) ≡ ∃v ∈M(u) : L(u) = L(v)

MatchSomeEdgeLabels(M,u,v) ≡ ∃u′ ∈M(u),∃v′ ∈M(v) : (u′,v′) ∈ E1∪E2
∧L(u,v) = L(u′,v′)

MatchAllNodeLabels(M,u) ≡ ∀v ∈M(u) : L(u) = L(v)
MatchAllEdgeLabels(M,u,v) ≡ ∀u′ ∈M(u),∀v′ ∈M(v) : (u′,v′) ∈ E1∪E2

∧L(u,v) = L(u′,v′)

Fig. 2. Basic constraints for modeling graph matching problems

The second set of constraints enables to state that a set U of nodes is injective, i.e.,
that the nodes of this set are matched to different nodes. There is a simple relationship
between the maximum numbers of matched nodes and injective nodes when U is equal
to N1 (resp. N2): in this case, every node of N2 (resp. N1) must be matched to at most
one node of N1 (resp. N2), i.e.,

Injective(M,N1)⇔ MaxMatch(M,N2,1)
Injective(M,N2)⇔ MaxMatch(M,N1,1) .

The third set of constraints allows one to specify that a couple of nodes must be
matched to a couple of nodes related by an edge. MatchedToSomeEdges ensures
that there exists at least one couple of matched nodes which is related by an edge
whereas MatchedToAllEdges ensures that all couples of matched nodes are related
by edges. Note that, when M(u) = ∅ or M(v) = ∅, the MatchedToSomeEdges(M,
u,v) constraint is violated whereas MatchedToAllEdges(M,u,v) is satisfied. Note also
that when #M(u) = #M(v) = 1, the two constraints MatchedToSomeEdges(M,u,v)
and MatchedToAllEdges(M,u,v) are equivalent. Note finally that these constraints are
meaningful only when u and v belong to the same graph. For ease of use, these con-
straints are also defined for a set D of couples of nodes to constrain every couple of D
to be matched to edges.

The last set of constraints enables to specify that labels of matched nodes or edges
must be equal. On the one hand MatchSomeNodeLabels (resp. MatchSomeEdgeLabels)
ensures that there is at least one matched node (resp. edge) with the same label. On the
other hand MatchAllNodeLabels (resp. MatchAllEdgeLabels) ensures that all matched
nodes (resp. edges) have the same label.

Constraint-Based Graph Matching 279

All these constraints may either be posted as hard ones, so that they cannot be vio-
lated, or as soft ones, so that they may be violated at some given cost. Soft constraints
are posted by using a specific method which has two arguments: the constraint and the
cost associated with its violation.

5 Modeling Graph Matching Problems by Means of Constraints

We now show how to model classical graph matching problems with the constraints
introduced in the previous section. Note that different (equivalent) formulations of these
problems are possible.

Exact matching problems are modeled with hard constraints. For graph homomor-
phism (GH), the matching must be a total function which preserves edges, i.e.,

GH(M,G1,G2)≡ CardMatch(M,N1,1,1)∧MatchedToSomeEdges(M,E1).

For subgraph isomorphism (SI), we add an injective constraint to GH, i.e.,

SI(M,G1,G2)≡ GH(M,G1,G2)∧ Injective(M,N1).

For induced subgraph isomorphism (ISI), we add a MatchedToAllEdges constraint to
SI in order to ensure that when the two nodes of an edge of G2 are matched to nodes
of G1, these matched nodes are related by an edge in G1, i.e.,

ISI(M,G1,G2)≡ SI(M,G1,G2)∧MatchedToAllEdges(M,E2).

For graph isomorphism (GI), we check that the matching is a bijective total function
which preserves edges, i.e.,

GI(M,G1,G2)≡ CardMatch(M,N1∪N2,1,1)∧MatchedToSomeEdges(M,E1∪E2).

Constraints can also be used for modeling approximate matching problems such as the
maximum common subgraph (MCS). In this case, one has to combine hard constraints
(for ensuring that the matching is a partial function) with soft constraints (for maximiz-
ing the number of edges of G1 which are matched), i.e.,

MCS(M,G1,G2)≡ MaxMatch(M,N1∪N2,1)
∧ ∀(u,v) ∈ E1,soft(MatchedToSomeEdges(M,u,v),1) .

By defining the cost of violation of each MatchedToSomeEdges soft constraint to 1, we
ensure that the optimal solution will have a cost equal to the number of edges of G1

which are not in the common subgraph. Hence, the number of edges in the common
subgraph is equal to the number of edges of G1 minus the cost of the optimal solution.

For maximum common induced subgraph (MCIS), one has to replace the soft
MatchedToSomeEdges constraint by a hard MatchedToAllEdges constraint as edges
between matched nodes must be preserved. To maximize the number of nodes that are
matched, we add a soft MinMatch constraint. More precisely,

MCIS(M,G1,G2)≡ MaxMatch(M,N1 ∪N2,1)
∧ MatchedToAllEdges(M,E1∪E2)
∧ ∀u ∈ N1,soft(MinMatch(M,u,1),1) .

280 V. le Clément, Y. Deville, and C. Solnon

By defining the cost of violation of each MinMatch soft constraint to 1, we ensure that
the optimal solution will have a cost equal to the number of nodes of G1 which are not
in the common subgraph. Hence, the number of nodes in the common subgraph is equal
to the number of nodes of G1 minus the cost of the optimal solution.

The graph edit distance (GED) generalizesMCS by taking into account edge and
node labels. This distance is computed with respect to some edit costs which are given
by the user. Let us note cd(l) (resp. ca(l)) the edit cost associated with the deletion
(resp. addition) of the label l, and cs(l1, l2) the edit cost associated with the substitution
of label l1 by label l2. The graph edit distance may be defined by GED(M,G1,G2)≡

MaxMatch(M,N1∪N2,1)
∧ ∀u ∈ N1,soft(MinMatch(M,u,1),cd(L1(u)))
∧ ∀u ∈ N2,soft(MinMatch(M,u,1),ca(L2(u)))
∧ ∀u ∈ N1,soft(MatchAllNodeLabels(M,u),cs(L1(u),L2(M(u))))
∧ ∀(u,v) ∈ E1,soft(MatchedToSomeEdges(M,u,v),cd(L1(u,v)))
∧ ∀(u,v) ∈ E2,soft(MatchedToSomeEdges(M,u,v),ca(L2(u,v)))
∧ ∀(u,v) ∈ E1,soft(MatchAllEdgeLabels(M,u,v),cs(L1(u,v),L2(M(u),M(v)))) .

In this case, violation costs of soft constraints are defined by edit costs. For the nodes of
G1 (resp. G2), the cost of violation of the MinMatch constraint is equal to the edit cost
of the deletion (resp. addition) of node labels as this constraint is violated when a node
of G1 (resp. G2) is not matched to a node of G2 (resp. G1), thus indicating that this node
must be deleted (resp. added). The cost of the soft MatchAllNodeLabels constraint is
equal to the edit cost of substituting the label of u by the label of the node it is matched
to in G2. Similar soft constraints are posted on edges to define deletion, addition and
substitution costs.

Finally, one may also define multivalent graph matching problems, such that one
node may be matched to a set of nodes. Let us consider for example the extended graph
edit distance (EGED) defined in [14]. This distance extends GED by adding two edit
operations for splitting and merging nodes. Let us note cp(u,U) (resp. cm(U,u)) the edit
cost associated with the splitting of the node u ∈ N1 into the set of nodes U ⊆ N2 (resp.
the merging of the set of nodes U ⊆ N1 into the node u ∈ N2). EGED may be defined
by replacing the hard MaxMatch constraint of GED by two soft MaxMatch constraints
which respectively evaluate split and merged nodes, i.e.,

∀u ∈ N1,soft(MaxMatch(M,u,1),cp(u,M(u))
∧ ∀u ∈ N2,soft(MaxMatch(M,u,1),cm(u,M(u))) .

6 Comet Prototype

As illustrated in Fig. 1, constraint-based graph matching in our Comet prototype is done
in two parts. First, high level constraints modeling the problem are posted. Second, a
synthesizer is called to solve the problem by means of CP and/or CBLS techniques.

Canonical form of Modeling Constraints. High-level constraints, called modeling
constraints, implement the GMConstraint<Mod> interface. Such constraints, like those

Constraint-Based Graph Matching 281

described in section 4, are stated on the nodes, edges and labels of the graph and are
posted by the model, implemented by Matching<Mod>, as hard or soft constraints. For
soft constraints, an additional parameter specifies the cost of a violation.

To easily state characteristics of the matching, we introduce canonical constraints
aggregating all the modeling constraints of a type. For example, all MinMatch and
MaxMatch constraints will be aggregated into a single cardinality canonical constraint
knowing the lower and upper bounds of the matchings of each node. The model main-
tains two constraint stores, for hard and soft canonical constraints respectively. When a
hard (resp. soft) modeling constraint is posted to the model, its postCanonical (resp.
postSoftCanonical) method is called with the hard (resp. soft) constraint store. This
method can add or modify canonical constraints within the store. Typically a modeling
constraint will only modify its associated canonical constraint. The key concept is that
there must not exist more than one canonical constraint of each type, identified by a
unique string, in a constraint store. Apart for stating characteristics, this has another
benefit: global constraints can be generated by the synthesizer.

Once the model is closed, i.e. no more constraints may be added, each canonical
constraint gets a chance to modify itself or other constraints, in order to make the
whole model canonical, through the canonify method. In a canonical model, we
cannot add any modeling constraint without altering the described matching problem.
For example, the Injective constraint adjusts the cardinality constraint if every node of
a graph belongs to an injective set. The canonify method should report the canonical
constraints it has modified, so that the model can iterate the procedure, using a static
dependency graph of the canonical constraints, untill it reaches a fix-point. Methods of
the different interfaces are depicted below.

1 class Matching<Mod> { ...

2 void post(GMConstraint<Mod> constraint);

3 void postSoft(GMConstraint<Mod> constraint, int cost);

4 }

5 interface GMConstraint<Mod> {

6 void postCanonical(GMConstraintStore<Mod> store);

7 void postSoftCanonical(GMConstraintStore<Mod> store, int cost);

8 }

9 interface CanonicalGMConstraint<Mod> {

10 string getId();

11 set{string} canonify(GMConstraintStore<Mod> store);

12 void postCP(Solver<CP> cp, GMVarStore<CP> vars);

13 void postLS(SetConstraintSystem<LS> S, GMVarStore<LS> vars);

14 }

Synthesizer. Once the model is closed, a synthesizer is called to effectively solve
the problem. The canonical representation of the model allows to compute various
kinds of characteristics such as whether the matching is functional, univalent or mul-
tivalent, or even the class of the problem (such as those defined in section 4). The
GMCharacteristic<Mod> interface allows to define such characteristics.

282 V. le Clément, Y. Deville, and C. Solnon

This synthesizer has three tasks, i.e., create variables, post the CP and/or CBLS con-
straints, and perform the search.

Creating Variables. To represent the matching, a variable xu is associated to each node
u ∈ N; the value of xu denotes the matching of node u, that is M(u). We assume that
nodes are represented by positive integers. The type and domain of these variables de-
pend on the MinMatch and MaxMatch constraints, as described below:

MinMatch MaxMatch Type Domain
1 1 int N
0 1 int N ∪{⊥}

Otherwise set{int} 2N

The⊥ value denotes that M(u) = ∅. It is implemented as the negative node number,
i.e., −u, ensuring a unique ⊥ value for each node of a graph. Of course, for nodes in
G1, the domain is restricted to N2, and similarly for nodes in G2.

Depending on the constraint solver chosen by the synthesizer (complete incremental
search (CP) or incomplete local search (LS)), the variables are declared as CP variables
or LS variables in the Comet language. As set variables do not yet exist in Comet CP,
we have implemented these with a simple boolean array. A similar limitation led us to
reimplement the constraint interface in Comet LS.

Since a variable is declared for nodes in G1 as well as for nodes in G2, the matching
M is redundantly represented. Depending on the chosen solver, channeling constraints
(CP) or Comet invariants (LS) are added to relate these two sets of variables. This
redundant representation allows the solver to choose the best variables to construct a
solution and to perform the search.

The association between a node and its variable is available to the various constraints
through the GMVarStore<CP> and GMVarStore<LS> interfaces. As the creation of vari-
ables is likely to be the same for every synthesizer, the default implementations of these
interfaces handle the variable creation in their constructor.

Posting the Constraints and Performing the Search. Once the variables are created,
the synthesizer asks the canonical (hard and soft) constraints to post themselves with
the postCP or postLS methods. These methods take two arguments: the solver and
the GMVarStore containing the associations between nodes and variables. In CP, soft
constraints are implemented by an objective function. In LS, hard constraints are either
handled by a neighborhood ensuring that they cannot be violated, or they are posted as
soft constraints with much higher violation costs.

A synthesizer solves a problem either in CP or in LS. The default choice of CP or
LS, as implemented by DefaultGMSynthesizer, depends on the constraints: if the max-
imum number of matched nodes is 1 for every node of one graph and if all constraints
are hard ones, then the synthesizer chooses CP, and the variables associated with these
nodes are used as choice variables in the tree search; otherwise, the synthesizer chooses
LS and the variables associated with the graph with the fewest set variables are used for
defining neighborhoods.

Implementing the Constraints. We now focus on how constraints for modeling
matching problems are implemented in our framework.

Constraint-Based Graph Matching 283

Node Cardinality. For univalent matchings, the cardinality constraints (MinMatch,
MaxMatch, and CardMatch) are already implemented by variable domains. For mul-
tivalent matchings, nodes are associated with set variables and we post inequality con-
straints on the cardinality of these sets.

If the matching is a surjective function from N1 to N2, i.e. MinMatch(M,N2,1) and
MaxMatch(M,N1,1), a redundant constraint is added to the CP solver. This is a partic-
ular case of the global cardinality constraint cardinality(N2,1, [xu|u ∈ N1],#N1) [19]
which here holds when at least 1 variable (and at most #N1) is assigned to each value of
N2. A similar constraint is posted if the matching is surjective from N2 to N1.

Injective Set. For univalent matchings, Injective(M,U) constraints are implemented by
alldifferent([xu|u∈U]) constraints. Note that we associate a different⊥ value to ev-
ery different node u (defined by −u) so that alldifferent is not violated when several
nodes are matched to ⊥.

For multivalent matchings such that some variables in the set U are implemented as
set{int} variables, additional constraints of the form xu1∩ xu2 = ∅ (with xu1 and xu2

set variables) and xv /∈ xu (with xu a set variable and xv an integer variable) are posted.

Edges. If we consider univalent matchings, MatchedToSomeEdges(M,u,v) (resp.
MatchedToAllEdges(M,u,v)) is easily implemented as (xu,xv) ∈ E1 ∪E2 (resp. xu �=
⊥∧xv �=⊥⇒ (xu,xv) ∈ E1∪E2). When the matching is multivalent, LS constraints are
generated.

Additional Constraints. The system is open and modular so that new constraints may
be defined. For instance, we introduced the constraint CommonNeighbor(u,v) which
holds if M(u) and M(v) share at least one neighbor.

Current Limitations of the System. The prototype is about 4,200 lines of Comet
code. In the current implementation, the cost of soft constraints must be a fixed value;
hence GED and EGED are not yet supported. The CP part of the current prototype does
not support soft constraints and MatchedToEdges constraints for multivalent matching.
This is not very limitative as CP is not really adapted for these matching problems.

In the current implementation, a matching problem is solved either with CP or with
LS. In the future, we plan to allow the solver to combine CP with LS.

The analysis of the characteristics of the matching problem is rather limited. It can
however detect the standard matching problems. We plan to add additional global con-
straints in the CP part in order to speed up the search process. In particular, we plan
to integrate the redundant constraints of [20], the filtering algorithm of [17] for the
subgraph isomorphism problem, and the filtering algorithm of [16] for the graph iso-
morphism problem.

The metaheuristics in the LS part are still basic (tabu search); this will be extended
and adapted to matching problems. In particular, we plan to implement the reactive tabu
search algorithm of [8].

7 Experimental Results

We report experiments on the subgraph isomorphism problem and on a pattern recog-
nition problem using CP, and on the maximum common subgraph using LS.

284 V. le Clément, Y. Deville, and C. Solnon

Table 1. Comparison of synthesizer/CP and Vflib on SI

Vflib Synthesizer/CP
class solv.% mean std min max solv.% mean std min max
P200 75 61.8 93.0 0.5 309.2 100 6.1 1.9 2.6 9.5
P600 0 - - - - 100 234.3 70.5 105.8 402.6
P1000 0 - - - - 15 522.8 107.8 370.3 599.1
V200 82 63.2 112.9 0.0 574.7 62 84.3 132.2 0.8 530.9

V200+1 82 63.8 114.2 0.0 583.3 71 69.5 108.4 0.8 524.7
V200+2 82 64.4 115.1 0.0 582.9 77 63.5 117.1 0.7 540.2
V200+3 82 64.9 115.8 0.0 582.7 79 50.9 119.0 0.7 531.9
V200+4 82 65.5 116.8 0.0 584.8 85 40.0 93.8 0.7 510.3
V200+5 81 59.4 102.8 0.0 459.6 87 31.5 84.5 0.7 507.2

7.1 Subgraph Isomorphism Using a CP Solver

We evaluate our system on the subgraph isomorphism problem as modeled in Fig. 1.
Given the characteristics of the problem, the default synthesizer uses CP. Our model is
compared with the state of the art Vflib C++ library [2].

The benchmark contains two families of randomly generated graphs. In the first
family (P*), graphs are randomly generated using a power law distribution of degrees
P(d = k) = k−λ : this distribution corresponds to scale-free networks which model a
wide range of real networks, such as social, Internet, or neural networks [21]. We only
report experiments on graphs generated with the standard value λ = 2.5. Each class
contains 20 different instances. For each instance, we first generate a connected tar-
get graph which node degrees are bounded between 5 and 8. Then, a connected pattern
graph is extracted from the target graph by randomly selecting 90% of nodes and edges.
All instances of classes P200, P600 and P1000 are feasible instances that respectively
have 200, 600, and 1000 nodes.

The second family (V*) is taken from the Vflib benchmarks [22]. Class V200 con-
tains the 100 instances from the class called si2_r001_m200 in Vflib. These instances
were randomly generated using a uniform distribution, the target graph has 200 nodes,
and the source graph has 40 nodes, i.e. 20% of the target (see [22] for details). In or-
der to assess the modularity of our approach, we generated the classes V200+k (with
k∈ {1,2,3,4,5}) by adding k additional CommonNeighbor(u,v) constraints in the Sub-
graph Isomorphism model. In order to ensure the existence of a solution (instances
without solution are all solved by the CP solver in about a second), we have randomly
chosen (u,v) from the pairs of nodes satisfying the additional constraint from the solu-
tions found. Such side constraints cannot be directly handled by Vflib; so we added to
Vflib an algorithm to filter the solutions satisfying these additional constraints.

Table 1 gives for every class the percentage of solved instances within a CPU time
limit of 600s on a Core 2 Quad (only one core used) 2,4 Ghz with 2Go of RAM. It also
gives the execution time of the solved instances (mean, standard deviation, minimum
and maximum times in seconds).

On the P* instances, the synthesized CP algorithm solves much more instances and
is also much more efficient than the standard Vflib. On the V200 class, Vflib solves

Constraint-Based Graph Matching 285

more instances. However, as Vflib is not able to actively exploit additional constraints
to prune the tree during the search, results of Vflib on V200+k classes are almost iden-
tical than for V200; there is a slight overhead for the postprocess filtering the solutions.
On the contrary, the synthesized CP solver can exploit these additional constraints dur-
ing the search, increasing the number of solved instances and reducing the computation
time. The more additional constraints, the more solved instances and the less compu-
tation time. From V200+4, the CP solver outperforms Vflib. This clearly shows the
interest of a constraint-based approach compared to specialized algorithms.

It should be noticed that the CP approach could be made more efficient by a full
implementation of the iterative filtering described in [17].

7.2 Pattern Recognition Using a CP Solver

We now illustrate our solver on a pattern recognition problem which involves finding
patterns in images. Graphs are generated from images by extracting interest points (cor-
responding to salient points) and computing a Delaunay triangulation on them. Find-
ing patterns in images amounts to finding connected sets of faces in graphs modeling
images. This problem lies part-way between subgraph isomorphism and induced sub-
graph isomorphism as some edges in the target graph are mandatory and some oth-
ers are optional. This problem may be solved with subgraph isomorphism, assuming
post-processing is done on the found solutions to check that all mandatory edges are
matched. In a pattern recognition context, it may be meaningful to introduce an addi-
tional constraint stating that the distance between two nodes in the pattern should be
similar to the distance of the corresponding target nodes (up to a small delta value).
We have implemented this constraint as a CP propagator with a forward-checking con-
sistency level. Note that such constraints cannot be handled with Vflib as it can only
handle equality constraints between matched labels.

Table 2 gives the results for target graphs with 100, 500 and 1000 nodes. Five pattern
graphs are extracted from each target graphs by selecting a connected subset of faces
which respectively contains 5%, 10%, 20%, 33%, and 50% of the target faces. Table 2
shows us that Vflib is better on small instances, but is outperformed by our system
on larger ones. Using the additional constraint globally improves the performances,
even though only forward checking has been used. This shows the interest of the more
flexible constraint-based approach in real-world applications.

7.3 Maximum Common Subgraph Using an LS Solver

We now evaluate the feasibility of our approach on the maximum common subgraph
(MCS) problem as described in Section 5, using an LS solver. Existing solvers like
vflib cannot handle the MCS problem. Also, [3,4,5,7] do not handle the MCS. Different
complete approaches have been compared on the MCS in [23] but experimental results
are limited to graphs up to 30 nodes so that we have not compared our approach on
these benchmarks.

The benchmarks are also taken from the Vflib benchmarks [2]. The classes M25,
M50 and M100 contains 20 instances from the classes called mcs50_r02 in Vflib. The
graphs have respectively 25, 50 and 100 nodes and have been randomly generated (see

286 V. le Clément, Y. Deville, and C. Solnon

Table 2. Execution time in seconds of subgraph isomorphism for pattern recognition without
(SI) and with (SI+) additional constraint on distances. Rows represent the number of vertices
of the target graphs, columns show the sizes of the pattern graphs as a percentage of the target.

Synthesizer/CP Vflib
5% 10% 20% 33% 50% 5% 10% 20% 33% 50%

SI

100 0.8 0.5 0.7 0.1 0.2 0.0 0.0 0.0 2.0 0.0
500 19.3 4.7 10.5 15.8 30.7 0.1 0.1 246.7 192.3 –

1000 30.6 595.8 119.0 152.3 – 86.7 – – – –

SI
+ 100 0.3 0.1 0.1 0.1 0.2

500 3.0 4.4 9.5 16.9 28.9
1000 16.1 47.8 82.5 148.0 –

Table 3. Maximum common subgraph with LS. Average (standard deviation) of execution time,
number of iterations, and percentage of edges in the best found solution. The model has been
executed 10 times per instance.

class time iterations edges%
M25 8.5 (2.5) 7768.1 (2301.3) 48.3 (1.1)
M50 33.9 (10.7) 8023.8 (2543.3) 40.2 (0.5)
M100 141.5 (46.4) 8398.4 (2755.0) 34.5 (0.2)

[22] for details). It is known that these graphs have a common induced subgraph with
50% of the nodes, but this lower bound does not provide any information on the size of
maximum common partial subgraph in terms of edges.

A basic tabu search is generated by the synthesizer. The MaxMatch(M,N2) hard
constraint is maintained through the neighborhood, by either swapping the value of two
matched nodes in G1, by matching a node in G1 to an unmatched node of G2, or by
removing a matching in G1. The time limit is fixed at 20,000 iterations, but the search
stops after 5,000 iterations without global improvement. A random new solution is also
generated after 1,000 iterations without global improvement. The results are reported
in Table 3.

It is difficult to compare an LS approach with complete algorithms for maximum
common subgraph as these algorithms cannot handle graphs with 100 nodes [24]. This
also justifies the choice of an LS solver by our default synthesizer. The generated LS
solver could be improved in many ways. These benchmarks are presented to assess the
feasibility of generating an LS solver by the synthesizer.

8 Conclusion

Measuring graph similarity is a key issue in many applications. We proposed a new
constraint-based modeling language for defining graph matching problems by means of
constraints. It covers both univalent and multivalent matchings, and we have shown that
it may be used to define many different existing matching problems in a very declarative
way. Such a constraint-based formulation of the different matching problems actually
stressed out their shared features and differences in a very concise way.

Constraint-Based Graph Matching 287

We have built a synthesizer which is able to automatically generate a Comet
program to solve matching problems modeled with our language. Depending on the
characteristics of the matching, the synthesizer either uses a branch and propagate
approach —which is better suited for computing exact matchings such as (sub)graph
isomorphism— or a local search approach —which is better suited for computing error-
tolerant matching such as graph edit distances. First experimental results showed the
feasibility of our approach on subgraph isomorphism and maximum common subgraph
problems.

As future work, we will extend the prototype to lift the current limitations : handling
soft constraints in CP, integrating new filtering algorithms in CP, improving the analysis
of the matching characteristics, integrating several LS metaheuristics, and combining
CP and LS solvers.

Acknowledgments. The authors want to thank the anonymous reviewers for their help-
ful comments. Christine Solnon acknowledges an ANR grant BLANC 07-1_184534:
this work was done in the context of project SATTIC. This research is also partially
supported by the Interuniversity Attraction Poles Programme (Belgian State, Belgian
Science Policy).

References

1. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)
2. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the vf graph

matching algorithm. In: ICIAP, pp. 1172–1177 (1999)
3. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems.

IEEE Transactions on Pattern Analysis and Machine Intelligence 10(5), 695–703 (1988)
4. Almohamad, H., Duffuaa, S.: A linear programming approach for the weighted graph match-

ing problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(5), 522–
525 (1993)

5. Zaslavskiy, M., Bach, F., Vert, J.: A path following algorithm for the graph matching prob-
lem. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS,
vol. 5099, pp. 329–337. Springer, Heidelberg (2008)

6. Cross, A., Wilson, R., Hancock, E.: Inexact graph matching using genetic search. Pattern
Recognition 30, 953–970 (1997)

7. Champin, P.A., Solnon, C.: Measuring the similarity of labeled graphs. In: Ashley, K.D.,
Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 80–95. Springer, Heidelberg (2003)

8. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In: Brun, L.,
Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer, Heidelberg (2005)

9. Sammoud, O., Solnon, C., Ghedira, K.: Ant Algorithm for the Graph Matching Problem.
In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 213–223. Springer,
Heidelberg (2005)

10. Monette, J.N., Deville, Y., Van Hentenryck, P.: AEON: Synthesizing scheduling algorithms
from high-level models. In: Proceedings of 2009 INFORMS Computing Society Conference
(2009)

11. Vosselman, G.: Relational Matching. LNCS, vol. 628. Springer, Heidelberg (1992)
12. Bunke, H.: On a relation between graph edit distance and maximum common subgraph.

Pattern Recognition Letters 18, 689–694 (1997)

288 V. le Clément, Y. Deville, and C. Solnon

13. Zaslavskiy, M., Bach, F., Vert, J.P.: A path following algorithm for graph matching. In:
Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS,
vol. 5099, pp. 329–337. Springer, Heidelberg (2008)

14. Ambauen, R., Fischer, S., Bunke, H.: Graph Edit Distance with Node Splitting and Merging.
In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer,
Heidelberg (2003)

15. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)
16. Sorlin, S., Solnon, C.: A parametric filtering algorithm for the graph isomorphism problem.

Constraints 13(4), 518–537 (2008)
17. Zampelli, S., Deville, Y., Solnon, C., Sorlin, S., Dupont, P.: Filtering for Subgraph Isomor-

phism. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 728–742. Springer, Heidelberg
(2007)

18. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press, Cambridge
(2005)

19. Quimper, C., Golynski, A., Lopez-Ortiz, A., van Beek, P.: An efficient bounds consistency
algorithm for the global cardinality constraint. Constraints 10(1), 115–135 (2005)

20. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern matching. Math-
ematical. Structures in Comp. Sci. 12(4), 403–422 (2002)

21. Barabasi, A.L.: Linked: How Everything Is Connected to Everything Else and What It
Means. Plume (2003)

22. De Santo, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use
for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8), 1067–1079
(2003)

23. Bunke, H., Foggia, P., Guidobaldi, C., Sansone, C., Vento, M.: A comparison of algorithms
for maximum common subgraph on randomly connected graphs. In: Caelli, T.M., Amin, A.,
Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396,
pp. 123–132. Springer, Heidelberg (2002)

24. Sorlin, S.: Mesurer la similarité de graphes. PhD thesis, Université Claude Bernard, Lyon I,
France (2006)

Constraint Representations and Structural
Tractability

David A. Cohen, Martin J. Green�, and Chris Houghton

Department of Computer Science,
Royal Holloway, University of London, UK

Abstract. The intractability of the general CSP has motivated the
search for restrictions which lead to tractable fragments. One way to
achieve tractability is to restrict the structure of the instances. As much
of the work in this area arises from similar work on databases it has
been a natural assumption that all constraint relations are explicitly
represented. If this is the case then all instances with an acyclic hyper-
graph structure are tractable. Unfortunately this result does not hold if
we are allowed to represent constraint relations implicitly: the class of
SAT instances with acyclic hypergraph structure is NP-hard.

Continuing the work of Chen and Grohe on the succinct GDNF repre-
sentation we develop the theory of structural tractability for an extension
to the table constraint that has a succinct representation of SAT clauses.
This mixed representation is less succinct than the GDNF representation
but more succinct than the table representation.

We prove a strict hierarchy of structural tractability for the GDNF,
the mixed, and the explicit representations of constraint relations. Us-
ing this proof we are able to show that the mixed representation pro-
vides novel tractable structural classes. Since the mixed representation
naturally extends SAT, this provides a useful result, extending known
structural tractability results for SAT.

Under a natural restriction we are able precisely to capture the tractable
structural classes for this mixed representation. This gives us an extension
of Grohe’s dichotomy theorem for the tractability of classes of relational
structures with a fixed signature. In particular it captures the tractabil-
ity of some classes of unbounded arity, specifically the class of CSPs with
precisely one constraint.

1 Introduction

A CSP is a collection of variables, some subsets of which are constrained. The
CSP paradigm has proved to be very useful in a variety of contexts, for example
planning [1] and scheduling [2].

In a CSP each variable has a domain of possible values. Each constraint
enforces that the assignment of values to the variables in its constraint scope
lie in its constraint relation.
� This work was supported by EPSRC Grant EP/C525949/1.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 289–303, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

290 D.A. Cohen, M.J. Green, and C. Houghton

We define a class of CSPs to be tractable if there is a solution algorithm which
solves any member of the class in polynomial time. There has been considerable
success in identifying tractable CSP classes [3,4].

A relational structure permitted by a CSP is a labelled ordered hypergraph of
the constraint scopes: hyperedges with the same label having the same relation.
A class of CSPs is called structural if membership of the class is determined
purely by consideration of the relational structures of the CSPs. This paper is
concerned with tractable structural classes.

Since many structural tractability results are derived from similar results for
relational databases [5] it has been the standard assumption that constraint re-
lations are listed explicitly in the representation of a CSP. The assumption is at
odds with the way that many modern solvers process constraints. During back-
track search propagators are used that, when the search state changes, efficiently
test for membership and propagate consequences. The use of propagators makes
the use of implicit representations natural for some types of constraint.

For example, SAT instances are encoded using clauses, which it would be
senseless to represent explicity. Using clauses allows CSP solvers to efficiently
propagate constraints using so-called watched literals [6]. In fact, there are many
other types of global constraint [7], with natural implicit representations and
effective propagators.

When both the domain size and the constraint arity are bounded tractability
is unaffected by representation of constraint relations. The following example
shows that tractability can critically depend on representation.

Example 1. The hypergraph structure of a CSP is simply a hypergraph whose
vertices are the variables and whose hyperedges are the constraint scopes.

Acyclicity is the natural generalisation to hypergraphs of tree structure for
graphs and has equivalent desirable properties: the class of CSPs with acyclic
hypergraph structure, with extensionally represented constraints, is tractable [5].

Acyclicity of a hypergraph can be determined by repeatedly: removing hyper-
edges contained in other hyperedges and deleting isolated vertices. A hypergraph
is acyclic if this algorithm deletes all vertices [5,8]. For graphs it is easy to see
that the algorithm characterises forests, hence acyclicity.

The standard SAT encoding represents a clause with r variables by listing the
scope and sign of each literal in the single disallowed assignment. The class of
SAT instances is not tractable [9].

We now show that the class of SAT instances with acyclic hypergraph struc-
ture, with standard SAT representation, is not tractable since any SAT instance
can be reduced in polynomial time to a pair of acyclic SAT instances.

Let P be any SAT instance. We construct two SAT instances.

– Obtain PF by adding the clause “not every variable is False” to P .
– Obtain PT by adding the clause “not every variable is True” to P .

Since these instances have scopes containing all variables the acyclicity identifi-
cation algorithm trivially shows them to be acyclic.

Constraint Representations and Structural Tractability 291

If P has a solution, then at least one of the two instances, PT and PF , will
have a solution. Conversely, if at least one of these two acyclic instances has a
solution, then this will be a solution to P .

This has serious implications for the theory of tractability. We have to under-
stand which structures are tractable when we use more compact representations.
Some work has begun which addresses this deficit.

1.1 Our Contribution

In this paper we continue the study of succinct representations in the theory of
CSP tractability.

Recently, Chen and Grohe [10] described the GDNF representation and gave
an exact characterisation of the tractable structural classes. Continuing their
work we develop the theory of structural tractability for an extension to the
table constraint that has a succinct representation for SAT clauses. This mixed
representation is less succinct than the GDNF representation but more succinct
than the table representation.

We show that the set of tractable structural classes for the mixed represen-
tation is distinct both from the set of tractable structural classes for the (more
succinct) GDNF representation and from the set of tractable structural classes
for the (less succinct) table representation. As part of this proof we describe
a class of structures that is not tractable for the GDNF representation yet is
tractable for the mixed representation. This class shows that the mixed repre-
sentation provides novel tractable structural classes. Since the mixed represen-
tation naturally extends SAT this extends known structural tractability results
for SAT [11,12].

We have been unable to find a dichotomy for general structural classes for
the mixed CSP representation. However, under a natural restriction we are able
precisely to capture the tractable structural classes for this mixed representa-
tion. This result extends slightly the dichotomy result for structural classes with
explicitly represented relations proved by Grohe [13].

2 Background and Definitions

In this section we define basic notions and describe some of the key results in
the area.

Definition 1. A CSP is a triple 〈V, D, C〉, where V is a set of variables, D
is a function which maps each variable v ∈ V to a set of values, D(v), called the
domain of v, and C is a set of constraints.

Each element of C is a pair 〈σ, ρ〉 where σ ∈ V ∗ is a list of variables called the
scope. The length r of σ is called the arity of the constraint. The relation, ρ,
of the constraint is a subset of the product D(σ[1])×· · ·×D(σ[r]) of the domains
of the variables in the scope.

A solution to 〈V, D, C〉 is a mapping s from V into
⋃

v∈V D(v) which sat-
isfies each constraint: that is, for each 〈σ, ρ〉 ∈ C we have s(σ) ∈ ρ.

292 D.A. Cohen, M.J. Green, and C. Houghton

In order to discuss the complexity of solving classes of CSPs we need to define
a representation. We will define several such representations that differ only in
the way they represent constraints.

Definition 2. Let c = 〈σ, ρ〉 be a constraint of arity r.
The positive (or extensional or table) representation of c is a list of the

variables in σ followed by the tuples in ρ.
The negative representation of c is a list of the variables in σ followed by

the tuples in D(σ[1])× · · · ×D(σ[r]) that are not in ρ.
The mixed representation of c is a Boolean flag, which if T is followed by

the positive representation of c, and if F by the negative representation.
The GDNF representation [10,14,15,16] of c is a list of the variables in

σ followed by a list of expressions of the form A[1] × · · · × A[r] where ρ is the
union of these set products.

Extensional representation of constraint relations is unnecessarily verbose and so
leads to anomalies in the theory of tractability. The same is the case for explicitly
listed domains and so instead we want implicitly to infer the domain elements
that can occur in solutions from the constraint relations. In the positive and
GDNF representations this is sufficient.

In the negative (and hence the mixed) representations domain values which
do not occur as literals in any forbidden tuple could appear in solutions. All
such (missing) literals in any domain are equivalent in the sense that they are
interchangeable in any solution.

So, as a general method, we represent any domain containing such elements
with the symbol + and the remaining domains, all of whose elements are inferred
by the representations of constraints, using the symbol −.

Definition 3. Let Θ be any representation. A Θ instance is a list of variables,
each followed by the symbol + or − representing its domain, followed by a list
of Θ representations of constraints.

We say that a class T of Θ instances is tractable if there exists a solution
algorithm that runs in time polynomial in the size of the input Θ instance.

Example 2. Consider the SAT instance whose implicit logical clauses are:

v1 ∨ v2, v2 ∨ v3 ∨ v4 and v1 ∨ v4.

A mixed representation of this CSP is the following:

v1,−, v2,−, v3, +, v4,−,

T, (v1, v2), (F, T), (T, F), (TT)
F, (v2, v3, v4), (T, T, F),

T, (v1, v4), (T, F), (F, T), (T, T)

Here only the domain of v3 cannot be completely determined from the constraint
tuples.

Constraint Representations and Structural Tractability 293

When we are comparing different representations a key notion will be the relative
size of the two different representations.

Definition 4. We say that a representation Φ is as succinct as a representa-
tion Θ if there is a polynomial p for which, given any CSP P represented in Θ
with size |P |Θ there exists a representation of P in Φ of size at most p(|P |Θ).

2.1 Key Results

Much of the theoretical work on CSP structure is now couched in terms of
relational structures rather than simple hypergraphs. This is because relational
structures are rich enough to capture tractable classes that are not definable
just using the hypergraph structure. Example 4 in Section 2.2 demonstrates this
using simple structures.

We can motivate relational structures in a less theoretical way by observing
that we sometimes build CSPs from others in specified ways. We may take the
dual, or a hidden variable representation. We may add auxiliary variables or
use channelling constraints. In each such case, certain of the constraints in our
instance may be limited to a different CSP language from others. For example,
some channelling constraints or constraints to auxiliary variables may be func-
tional. Such extra information about the structure of an instance is simply not
available once we have abstracted to a hypergraph.

On the other hand the relational structure of an instance captures precisely
the fact that scopes may be of different types. Instead of just having one hyper-
edge relation we have several: one for each type of constraint. Here theory and
practice meet. A CSP may not get harder when it is reformulated even though
the hypergraph structure may be more complex. Structural tractability using a
relational structure begins to capture this idea.

Definition 5. A relational structure 〈V, R1, . . . , Rm〉 is a set V and a list of
relations over V .

The CSP 〈V, D, C〉 permits structure 〈V, R1, . . . , Rm〉 when there is a parti-
tion of the constraints C = C1 ∪ · · · ∪Cm and, for i = 1, . . . , m, each c ∈ Ci has
the same relation and Ri = {σ | 〈σ, ρ〉 ∈ Ci}.

Example 3. Consider again the SAT instance of Example 2 whose implicit logical
clauses are:

v1 ∨ v2, v2 ∨ v3 ∨ v4 and v1 ∨ v4.
This instance has the same relation on two scopes and so permits the two

distinct structures:

〈V, {〈v1, v2〉 , 〈v1, v4〉}, {〈v2, v3, v4〉}〉 and
〈V, {〈v1, v2〉}, {〈v1, v4〉}, {〈v2, v3, v4〉}〉.

Definition 6. Let H be a class of relational structures and Θ be any represen-
tation. We define Θ(H) to be the class of Θ representations of CSPs permitting
a structure in H.

294 D.A. Cohen, M.J. Green, and C. Houghton

Specifically:
– Positive(H) is the class of Positive representations of CSPs permitting a

structure in H.
– Negative(H) is the class of Negative representations of CSPs permitting a

structure in H.
– Mixed(H) is the class of Mixed representations of CSPs permitting a struc-

ture in H.
– GDNF(H) is the class of GDNF representations of CSPs permitting a struc-

ture in H.
For bounded arity and the positive representation, the structural classes are
precisely determined by Theorem 1. The statement of this theorem refers to
cores and tree width of relational structures so we define these notions here1.

Definition 7. A relational structure 〈V, R1, . . . , Rm〉 is a substructure of a
relational structure 〈V ′, R′

1, . . . , R
′
m〉 if V ⊆ V ′ and, for each i, Ri ⊆ R′

i.
A homomorphism from a relational structure 〈V, R1, . . . , Rm〉 to a relational

structure 〈V ′, R′
1, . . . , R

′
m〉 is a mapping h : V → V ′ such that for all i and all

tuples t ∈ Ri we have h(t) ∈ R′
i.

A relational structure S is a core if there is no homomorphism from S to a
proper substructure of S. A core of a relational structure S is a substructure S′

of S such that there is a homomorphism from S to S′ and S′ is a core. It is well
known that all cores of a relational structure S are isomorphic. Therefore, we
often speak of the core, Core(S), of S. For a class, H, of relational structures,
we denote by Core(H) the class of relational structures {Core(S) | S ∈ H}.
Definition 8. Let S = 〈V, R1, . . . , Rm〉 be any relational structure.

The Gaifman graph, G(S), of S has vertex set V . A pair of vertices {v, w}
is an edge of G(S) when there is a tuple t of some Ri containing both v and w.

Given an ordering v1 < . . . , < vn of V the induced graph I(S, <) is obtained
from the Gaifman graph by adding edges. Process the vertices, in order, from vn

to v1. When vr is processed, and for some i, j < r for which {vi, vr} and {vj, vr}
are both edges of I(S, <), we add the edge {vi, vj} to I(S, <).

After this process, the width of any vr is the number of its earlier neigh-
bours: |{vi | i < r, {vi, vr} ∈ I(S, <)}|. The width of S, for this ordering, is the
maximum width of any v ∈ V .

The tree width, tw(S), of S is its minimal width over all orderings. For a
class, H, of relational structures, we denote by tw(H) the maximum tree width
of any structure in H. We say tw(H) =∞ if the tree width is unbounded.

Theorem 1 (Grohe [13], Corollary 19). Assuming that W[1] is not FPT2,
for every recursively enumerable3 class H of relational structures of bounded
arity, Positive(H) is tractable if and only if tw(Core(H)) <∞.
1 We have simplified quoted theorems slightly for the context of this paper.
2 Many complexity results rely on a standard complexity theoretical assumption, that

the class W[1] is not equal to the class FPT. This is the parameterised complexity
analogue of the assumption that NP is not equal to P.

3 Recursively enumerable just means recognisable by a Turing machine. Non-
recursively enumerable are of no practical interest.

Constraint Representations and Structural Tractability 295

The following straightforward result about how tractability is preserved when a
representation is replaced with a less succinct representation is stated without
proof.

Theorem 2. Let Φ be a representation that is as succinct as a representation
Θ. Any class which is structurally tractable for Φ is also structurally tractable
for Θ.

In other words, as the representation becomes more succinct, the tractable classes
get smaller. This allows us to make a very important observation.

Corollary 1. Assuming that W[1] is not FPT. Let H be a recursively enumer-
able class of relational structures with bounded arity. Negative(H), Mixed(H),
and GDNF(H) are tractable for any bounded domain size if and only if
tw(Core(H)) <∞.

Proof. For bounded arity and domain size the positive representation is as suc-
cinct as each of these three other representations. ��

For any succinct representation, it is thus only classes of structures with un-
bounded arity, or classes of CSPs with unbounded domain size, whose tractabil-
ity must still be characterised.

2.2 Unbounded Arity and Succinct Representations

Unfortunately, as we have shown in Example 1, acyclicity is not a sufficient
condition to guarantee tractability for succinct representations.

Recently, Chen and Grohe [10] described the GDNF representation. They
identified precisely the tractable structural classes. Their characterisation of
tractable classes relies on the so-called incidence graph of a relational structure.

Definition 9. Let S = 〈V, R1, . . . , Rm〉 be any relational structure and let:

L(S) = {〈i, t〉 | i ∈ {1, . . . , m}, t ∈ Ri}.

The incidence graph, IncG(S), of S is the bipartite graph, 〈V ′, E〉, where

– V ′ = V ∪ L(S), and
– E = {〈v, 〈i, t〉〉 | v ∈ V, 〈i, t〉 ∈ L(S), ∃j, t[j] = v}.

The incidence width of relational structure S, denoted iw(S), is the tree width
of its incidence graph, that is, tw(IncG(S)). We say iw(H) =∞ if the incidence
width is unbounded.

Theorem 3 (Theorem 14 of Chen and Grohe [10]). Assuming that W[1]
is not FPT. Let H be a recursively enumerable class of relational structures.
Then GDNF(H) is tractable if and only if iw(Core(H)) <∞.

The following simple example shows that, for structural tractability, it is not
enough to consider just hypergraph structure.

296 D.A. Cohen, M.J. Green, and C. Houghton

Example 4. Consider the class of relational structures H = {A〉 | 〉 =∞,∈, . . .},
where An = 〈{1, . . . , n}, R1, . . . , Rn〉, and each Ri = {〈1, . . . , n〉}. It is clear that
An cannot be be homorphically equivalent to any of its proper substructures:
each relation has only one tuple. So An is a core. Furthermore its incidence graph
is the complete n, n bipartite graph which has tree width n. Choose any infinite
subset H′ of H. By Theorem 3, we know that GDNF(H′) is intractable.

Recall that the hypergraph structure of a CSP is simply a hypergraph whose
vertices are the variables of the instance and whose edges are the constraint
scopes.

Now let M be any class of hypergraphs of unbounded arity. It is no harder
to solve the CSPs whose hypergraph structures are substructures of those in
M than it to solve the CSPs whose hypergraph structures are precisely the
hypergraphs of M. Certainly the hypergraphs in M have substructures of un-
bounded arity, each of which is a hypergraph containing a single hyperedge. For
the hypergraph with a single hyperedge with k vertices there is a CSP with
this hypergraph structure that permits the relational structure Ak. So the set of
CSPs with hypergraph structure in M permit an infinite number of relational
structures of H. So the class of CSPs whose hypergraph structure lies in M is
intractable for the GDNF representation.

On the other hand, consider the class of relational structures H′ = {Bi | i =
1, 2, . . .}, where Bn has universe {1, . . . , n} and just one n-ary relation containing
just one tuple. The incidence width of each such relational structure is one. This
class of relational structures has unbounded arity but GDNF(H′) is tractable.

So, just considering hypergraph structure there are no tractable structural
classes of unbounded arity for the GDNF representation. By considering rela-
tional structure we can find many such tractable structural classes.

3 The Mixed Representation

In this section we prove a dichotomy theorem for structural tractability for the
mixed representation. We first need to define the interaction width of a rela-
tional structure. Intuitively, if variables are in a very strong sense equivalent
then they can be merged before solving a CSP instance. The interaction width
captures the resulting maximum arity after this reduction and allows us to ex-
tend tractability results to classes with unbounded arity. As a simple example,
any tractable bounded arity class of SAT instances remains tractable after arbi-
trary duplication of any subset of the variables. However, without the reduction
using interaction width even this class is not captured by current theory.

Definition 10. For any relational structure S = 〈V, R1, . . . , Rm〉 we define, for
any v ∈ V , τ(v) to be {〈i, t〉 | t ∈ Ri and ∃j, t[j] = v}.

We say that {v′, w′} ⊆ V is S-similar to {v, w} ⊆ V if there exists some Ei

and t, t′ ∈ Ei where for some j, k, t[j, k] = 〈v, w〉 and t′[j, k] = 〈v′, w′〉. The
equivalence relation S-equivalence is the transitive closure of this relation.

Constraint Representations and Structural Tractability 297

We say that v ∈ V and w ∈ V are τ-equivalent if either v = w or, for every
set {v′, w′} ⊆ V which is S-equivalent to {v, w} we have τ(v′) = τ(w′). This is an
equivalence relation for V and we denote by Reg(v) the τ-equivalence class of v.

The interaction width of S is:

intw(S) =
i=1,...,n
max

〈v1,...,vk〉∈Ei

|{Reg(v1), . . . , Reg(vk)}| .

For a class, H, of relational structures, we denote by intw(H) the maximum
interaction width of any structure in H. We say intw(H) =∞ if the interaction
width is unbounded.

The proof of the dichotomy theorem requires the definition of appropriate merged
structures which have trivial τ -equivalence classes. By construction τ -equivalence
induces an equivalence on the columns of the relations of any relational structure.
Hence the following are well-defined.

Definition 11. Let S = 〈V, R1, . . . , Rm〉 be a relational structure. For any Ri

choose mergeCol(Ri) to be any tuple of indices of representatives of the distinct
τ-equivalence classes of the columns of Ri.

For any t ∈ Ri we now define mergeCol(t) to be the tuple of τ-equivalence
classes of the variables in t, which occur at the indices of the tuple mergeCol(Ri).
Then Mrg(Ri) = {mergeCol(t) | t ∈ Ri}.

We can then define the merged structure of S to be

Mrg(S) = 〈{Reg(v) | v ∈ V }, Mrg(R1), . . . , Mrg(Rm)〉 .

For a class, H, of relational structures, we denote by Mrg(H) the set of merged
structures of the structures in H.

Definition 12. Let S = 〈V, R1, . . . , Rm〉 be a relational structure and
Reg(v1), . . . , Reg(vq) be an enumeration of the distinct τ-equivalence classes. For
i = 1, . . . , q define the binary relation Regi = {〈Reg(vi), y〉 | y ∈ Reg(vi)}.

We define the extended merged structure of S to be

ExtMrg(S) =
〈
V ∪ {Reg(x) | x ∈ V }, Mrg(R1), . . . , Mrg(Rm), Reg1, . . . , Regq

〉
.

We can now state the main result of this section.

Theorem 4. Assuming that W[1] is not FPT. Let H be a recursively enumerable
class of relational structures with bounded interaction width. The class Mixed(H)
is tractable if and only if tw(Core(Mrg(H))) <∞.

This result is a natural extension of Grohe’s result stated as Theorem 1 which
characterises some additional tractable classes of unbounded arity and in par-
ticular includes the class of CSPs with precisely one constraint.

The proof of this theorem is quite involved, so in order to save space we will
only sketch it here.

298 D.A. Cohen, M.J. Green, and C. Houghton

Proof. Let H be any class of relational structures with bounded interaction
width.

Suppose tw(Core(Mrg(H))) =∞.
In this case we will show that Mixed(H) is intractable.
Consider the class of relational structures ExtMrg(H).
Since for all S ∈ H we have that Mrg(S) is a substructure of ExtMrg(S) we
have that tw(Core(ExtMrg(H))) ≥ tw(Core(Mrg(H))).
So tw(Core(ExtMrg(H))) =∞.
However, ExtMrg(H) has bounded arity, since the arity of Mrg(H) is equal
to intw(H) and the extended merged structure adds only binary relations.
By Grohe’s result, Theorem 1, Positive(ExtMrg(H)) is intractable.
Given any instance P in Positive(ExtMrg(H)), for each assignment to an
interaction region variable in the extended merged structure, we choose a
representative assignment for each of the variables in that interaction region,
allowed by P . We use these extensions to generate constraint tuples in an
“unmerged” version of P .
This “unmerges” P , in polynomial time, to an instance of Positive(H), which
is thereby shown to be an intractable subset of Mixed(H).

Suppose tw(Core(Mrg(H))) <∞.
In this case we will show that Mixed(H) is tractable.
We solve an instance P ∈Mixed(H) in polynomial time as follows.
Choose an order for the variables of each interaction region. Now merge
assignments to these variables into tuples which will be the domain values
for the interaction region variable in the merged structure. We now build the
tuples for the constraint relations of the merged structure. These are lists of
tuples, one for each interaction region in the scope.
We then build the domain for each interaction region variable. If the variable
is in the scope of any positive constraint then the domain is −. If it is only
in the scope of negative constraints then it may have domain +.
This reduces the class Mixed(H) to a mixed class with bounded arity where
the tree width of the core is bounded.
We now have to convert negative constraints to positive constraints in a way
that preserves solutions.
Suppose that every constraint with some particular region in its scope is
negative. If the domain of this variable is + then remove each such con-
straint and add a new unary constraint on this variable which just allows
the “special” value, which we will denote by ∗.
We can just enumerate all positive acceptable tuples for our remaining neg-
ative constraints in polynomial time, since the domains of each interaction
region are inferred.
We have now reduced our original instances to the tractable class of positive
instances with bounded arity and cores of bounded tree width. We lastly
have to explain how to convert a solution to one of these derived instances
to an original solution. The only difficulty here arises for variables which
have been assigned the value ∗. All other variables have been assigned tuple
values and these convert directly to assignments of the original variables.

Constraint Representations and Structural Tractability 299

However the ∗ value can only be given if each original constraint on that
interaction region was negative. In this case we can enumerate all possible
tuples, for the original region, until we find one not inferred by the negative
constraints. This value can then be assigned. This is polynomial time as
it requires listing each inferred region tuple (at most) once and finally the
chosen acceptable tuple. ��

4 Place in the Hierarchy

In this section we prove that there is a strict structural tractability hierarchy
for the mixed, GDNF and positive representations. In doing so, we describe a
class of structures, H, which is not tractable for the GDNF representation yet is
tractable for the mixed representation. This shows that the mixed representation
provides novel tractable structural classes. Since the mixed representation nat-
urally extends SAT we have extended the known structural tractability results
for SAT [11,12].

Proposition 1. Let H by any class of relational structures. If Mixed(H) is
tractable then so is Positive(H). If GDNF(H) is tractable then so is Mixed(H).

Proof. Since the positive representation is only linearly larger than the mixed
representation it follows immediately that the mixed is as succinct as the positive.

Given a positively represented constraint we can use the straightforward con-
struction of Chen and Grohe [10] which generates a product of unary sets for
each allowed assignment. This may be done in linear time, and the resulting
GDNF representation of the constraint is (approximately) the same size.

Given a negatively represented constraint we can use a result by Katsirelos
and Walsh [16]. They show that any negatively represented constraint may be
converted to an equivalent GDNF representation of the constraint, with a poly-
nomial number of set products in polynomial time using a simple algorithm
which descends a decision tree with a polynomial number of leaves.

Using Theorem 2 we are done. ��

The following theorem then makes the hierarchy strict.

Theorem 5. There is a class H of relational structures for which Positive(H)
is tractable but Mixed(H) is intractable.

There is a class H of relational structures for which Mixed(H) is tractable but
GDNF(H) is intractable.

Proof. Recall Example 1 where we showed that the class of acyclic structures is
not tractable for the standard encoding of SAT. This implies that this class is
not tractable for the mixed representation.

Consider the relational structure Hn = 〈Vn, E1, E2, . . . , En〉 where:

Vn = {v1, v2, . . . vn, w1
1 , w

1
2 , w

2
2 , . . . , w

1
n, . . . , wn

n}

and the relations are:

300 D.A. Cohen, M.J. Green, and C. Houghton

E1 = {e1 =
〈
v1, v2, . . . , vn, w1

1

〉
}

...

En = {en =
〈
v1, v2, . . . , vn, w1

n, . . . , wn
n

〉
}

We depict the structural hypergraph, H(Hn), of Hn in Fig. 1 (left).

wn
n

v1

v2

vn

...
...

w1
2 w2

2

e1

e2

w1
n w2

n · · · wn
n en

w1
1

v1

v2

vn

...

...

e′1
e′2

e′n

...

...

w1
1

w1
2

w2
2

w1
n

Fig. 1. (left) H(Hn) (right) IncG(Hn)

The interaction width of Hn is 2, since for each i, the relational tuple ei has
only two interaction regions, {v1, v2, . . . , vn} and {w1

i , . . . , w
i
i}.

What is more, it is straightforward to show that the merged structure of Hn

is tree-structured, so the tree width of the merged structure of Hn is 1.
By consideration of the arities of the relations we can see that each of these

relational structures is a core. So to determine the tractability of these structures
for the GDNF representation we have only to consider their incidence width.

The incidence graph, IncG(Hn), of Hn is the bipartite graph 〈V ′
n, E′

n〉 such
that V ′

n = Vn ∪ L(Hn), where

L(Hn) = {e′1 = 〈1, e1〉 , e′2 = 〈2, e2〉 , . . . , e′n = 〈n, en〉}, and

E′
n = {〈v1, e

′
1〉 , . . . , 〈vn, e′1〉 ,

〈
w1

1 , e
′
1

〉
}

∪ {〈v1, e
′
2〉 , . . . , 〈vn, e′2〉 ,

〈
w1

2 , e
′
2

〉
,
〈
w2

2 , e
′
2

〉
}

...

∪ {〈v1, e
′
n〉 , . . . , 〈vn, e′n〉 ,

〈
w1

n, e′n
〉
, . . . , 〈wn

n , e′n〉} .

We depict the incidence graph, IncG(Hn), of Hn in Fig. 1 (right). The tree width
of IncG(Hn) is at least n, since the vertices {v1, v2, . . . , vn} and {e′1, e′2, . . . , e′n}
of IncG(Hn) form a complete bipartite subgraph.

Constraint Representations and Structural Tractability 301

Let H be the class of relational structures {Hi | i = 1, 2, . . .}. The infinite
class H has bounded interaction width together with bounded tree width of the
merged structures, but has unbounded tree width of the incidence graphs. It
follows that GDNF(H) is intractable and Mixed(H) is tractable. ��

5 Bounded Interaction Width and Structural Tractability

In this section we describe a class relational structures which is tractable for the
GDNF representation and so for the mixed representation, but has unbounded
interaction width. This demonstrates that bounded interaction width is not a
necessary condition for structural tractability for the mixed representation.

Consider the relational structure Jn = 〈Vn, Fn, G1, . . . , Gn〉 where

Vn = {v1, v2, . . . vn, w1
1 , w

1
2 , w

2
2 , . . . , w

1
n, . . . , wn

n}

and the relations are:

Fn = {fn = 〈v1, v2, . . . , vn〉}
G1 = {g1 =

〈
v1, w

1
1

〉
}

...

Gn = {gn =
〈
vn, w1

n, . . . , wn
n

〉
}

We depict the structural hypergraph, H(Jn), of Jn in Fig. 2 (left).
The interaction width of Jn is n, since the relational tuple fn has a separate

interaction with each of the n hyperedges g1, g2, . . . , gn.
Consideration of the arities of the relations is enough to show that these rela-

tional structures are cores, so to determine if this class of structures is tractable
for the GDNF representation we need only consider their incidence width.

wn
n

v1

v2

vn

...
...

g1

fn

w2
2w1

2

w1
n w2

n wn
n· · ·

w1
1

g2

gn

v1

v2

vn

...

f ′
n

g′
1

g′
2
...

g′
n

...

...

w1
1

w1
2

w2
2

w1
n

Fig. 2. (left) H(Jn) (right) IncG(Jn)

302 D.A. Cohen, M.J. Green, and C. Houghton

Consider the incidence graph, IncG(Jn), of Jn which is the bipartite graph
〈W, F ′

n〉 such that W = Vn ∪ L(Jn), where

L(Jn) = {f ′
n = 〈1, fn〉 , g′1 = 〈2, g1〉 , g′2 = 〈3, g2〉 , . . . , g′n = 〈n + 1, gn〉}, and

F ′
n = {〈v1, f

′
n〉 , . . . , 〈vn, f ′

n〉}
∪ {〈v1, g

′
1〉 ,
〈
w1

1 , g
′
1

〉
}

...

∪ {〈vn, g′n〉 ,
〈
w1

n, g′n
〉
. . . , 〈wn

n, g′n〉} .

We depict the incidence graph, IncG(Jn), of Jn in Fig. 2 (right). It is straight-
forward to show that the tree width of IncG(Jn) is 1. An ordering of the vertices
of IncG(Jn) that witnesses this fact is

[f ′
n, v1, g

′
1, w

1
1 , v2, g

′
2, w

1
2 , w

2
2 , . . . , vn, g′n, w1

n, . . . , wn
n] .

Let J be the class of relational structures {Ji | i = 1, 2, . . .}.
Since iw(Core(J)) <∞ we know, by Theorem 3 that GDNF(J) is tractable.

Then, by Proposition 1 we know that Mixed(J) is also tractable. However,
tw(Core(Mrg(H))) =∞ so Theorem 4 does not characterise all tractable struc-
tural classes for the mixed representation.

6 Conclusion

Acyclicity is not a sufficient condition for tractability when we consider more
succinct representations: in particular, those that allow us succinctly to specify
SAT instances.

However, we have representations GDNF and mixed with simple width based
characterisations of structurally tractable classes. For the GDNF representation
this characterisation is a complete dichotomy: classes which do not have this
bounded width are W[1] hard. We do not yet have a dichotomy for structural
classes of mixed representations of CSPs, except in the special case of bounded
interaction width, and this motivates further research.

We have also shown that the hierarchy of structural tractability is strict for
positive, mixed and GDNF representations. We used this characterisation to
construct a novel structurally tractable class for SAT.

References

1. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the Tenth
European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363 (1992)

2. van Beek, P.: Reasoning about qualitative temporal information. Artificial Intelli-
gence 58, 297–326 (1992)

Constraint Representations and Structural Tractability 303

3. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artif. Intell. 124(2), 243–282 (2000)

4. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints
using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)

5. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. Journal of the ACM 30, 479–513 (1983)

6. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient sat solver. In: DAC 2001: Proceedings of the 38th conference on Design
automation, pp. 530–535. ACM, New York (2001)

7. van Hoeve, W.J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh,
T. (eds.) Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

8. Graham, M.: On the universal relation. Technical report, University of Toronto
(1979)

9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco (1979)

10. Chen, H., Grohe, M.: Constraint satisfaction with succinctly specified relations.
In: Creignou, N., Kolaitis, P., Vollmer, H. (eds.) Complexity of Constraints. Num-
ber 06401 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many (2006)

11. Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202.
Springer, Heidelberg (2004)

12. Houghton, C., Cohen, D., Green, M.J.: The effect of constraint representation on
structural tractability. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 726–
730. Springer, Heidelberg (2006)

13. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM 54(1), 1 (2007)

14. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh,
T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)

15. Katsirelos, G., Bacchus, F.: Generalized NoGoods in CSPs. In: AAAI, pp. 390–396
(2005)

16. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional con-
straints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 379–393. Springer,
Heidelberg (2007)

Asynchronous Inter-Level Forward-Checking for
DisCSPs

Redouane Ezzahir1,2, Christian Bessiere1, Mohamed Wahbi1,2, Imade Benelallam2,
and El Houssine Bouyakhf2

1 LIRMM/CNRS, U. of Montpellier 2, France
bessiere@lirmm.fr, ezzahir@lirmm.fr, wahbi@lirmm.fr

2 LIMIARF/FSR, U. of Mohammed V Agdal, Morroco
imade.benelallam@ieee.org, bouyakhf@fsr.ac.ma

Abstract. We propose two new asynchronous algorithms for solving Distributed
Constraint Satisfaction Problems (DisCSPs). The first algorithm, AFC-ng, is a
nogood-based version of Asynchronous Forward Checking (AFC). The second
algorithm, Asynchronous Inter-Level Forward-Checking (AILFC), is based on
the AFC-ng algorithm and is performed on a pseudo-tree ordering of the con-
straint graph. AFC-ng and AILFC only need polynomial space. We compare the
performance of these algorithms with other DisCSP algorithms on random DisC-
SPs in two kinds of communication environments: Fast communication and slow
communication. Our experiments show that AFC-ng improves on AFC and that
AILFC outperforms all compared algorithms in communication load.

1 Introduction

Distributed Constraint Satisfaction Problems (DisCSPs) is a general framework for
solving distributed problems. DisCSPs have a wide range of applications in multi-agent
coordination, such as distributed resource allocation problems [1], distributed schedul-
ing problems [2], sensor networks [3], and log-based reconciliation [4].

DisCSPs are composed of agents, each holding its local constraint network. Variables
in different agents are connected by constraints. Agents assign values to their variables,
attempting to generate a locally consistent assignment that is also consistent with all
constraints between agents [5,6]. To achieve this goal, agents check the value assign-
ments to their variables for local consistency and exchange messages among them to
check consistency of their proposed assignments against constraints among variables
that belong to different agents.

Several efficient distributed algorithms for solving DisCSPs have been developed in
the last decade. Synchronous Backtrack (SBT) is the simplest DisCSP search algorithm
that performs assignments sequentially and synchronously. Only the agent holding a
Current Partial Assignment (CPA) performs an assignment or backtrack [7]. The first
complete asynchronous search algorithm for DisCSPs is the Asynchronous Backtrack-
ing ABT [8,5,9]. In ABT, agents perform assignments asynchronously and send out
messages to constraining agents, informing them about their assignments. Due to the
asynchronous nature of agents operations, the global assignment state at any particular
time during the run of asynchronous backtracking is in general inconsistent. Nogoods

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 304–318, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Asynchronous Inter-Level Forward-Checking for DisCSPs 305

are used to prevent the construction of globally inconsistent solutions. Another promis-
ing algorithm for DisCSPs is the Asynchronous Forward-Checking (AFC) algorithm
[10,11]. This algorithm is based on the forward checking (FC) algorithm for CSPs, but
performs forward checking asynchronously.

In this paper, we present two new asynchronous algorithms for solving DisCSPs. The
first one is based on Asynchronous Forward Checking (AFC) and uses nogood record-
ing. We call it Nogood-Based AFC (AFC-ng). The second one is based on AFC-ng and
is performed on a pseudo-tree ordering of the constraint graph. We call it Asynchronous
Inter-Level Forward-Checking (AILFC).

This paper is organized as follows. Section 2 gives the necessary background on
DisCSPs. Sections 3 and 4 describe the algorithms AFC-ng and AILFC. Correctness
proofs are given in Section 5. Section 6 presents an experimental evaluation of our
proposed algorithms against three other well-known distributed algorithms. Section 7
summarizes several related works and we conclude the paper in Section 8.

2 Background

2.1 Distributed Constraint Satisfaction Problems

The Distributed Constraint Satisfaction Problem DisCSP has been formalized in [6] as
a tuple (A,X ,D, C), where A is a set of agents {A1, . . . , Ak}, X is a set of variables
{x1, . . . , xn}, where each xi is controlled by one agent inA.D={D(x1), . . . , D(xn)}
is a set of domains, where D(xi) is a finite set of values to which variable xi may be
assigned. Only the agent who is assigned a variable has control on its value and knowl-
edge of its domain. C is a set of binary constraints that specify the combinations of
values allowed for the two variables they involve. A constraint cij ∈ C between two
variables xi and xj is a subset of the Cartesian product D(xi)×D(xj).

For simplicity purposes, we consider a restricted version of DisCSP where each agent
owns exactly one variable. We identify the agent number with its variable index. We
also consider that the total order among agents that is used by a search algorithm is the
lexicographic ordering xi ≺ xj if i < j.

We assume that communication between two agents is not necessarily generalized
FIFO (aka causal order) channels [12]. Thus, all agents maintain their own counter,
called Ctr, and increment it whenever they change their value. The current value of the
counter tags each generated assignment. An assignment for an agent Ai ∈ A is a tuple
(xi, vi, Ctri) where vi is a value from the domain of xi and Ctri is the tag value.

A nogood ng for value c for variable xk is a clause of the form xi = a ∧ xj =
b ∧ . . . ⇒ xk �= c, meaning that the assignment xk = c (i.e., the right hand side
Rhs(ng) of ng) is inconsistent with the assignments xi = a, xj = b, . . . (i.e., the
left hand side Lhs(ng) of ng). When every value of a variable xk is ruled out by a
nogood, these nogoods are resolved computing a new nogood newNg. Let xj be the
lowest variable in the left-hand side of the nogoods, with xj = b. Lhs(newNg) is
the conjunction of the left-hand sides of all nogoods except xj = b. Rhs(newNg) is
xj �= b.

306 R. Ezzahir et al.

Definition 1 (Current Partial Assignment (CPA)). Given an agent Ai ∈ A, a CPA is
an ordered set of assignments {(x1, v1, Ctr1), . . . , (xi−1, vi−1, Ctri−1) | x1 ≺ . . . ≺
xi−1 ≺ xi}.
Definition 2 (AgentView). The agent view of an agent Ai ∈ A stores the newest as-
signments received from agents that precede Ai in the ordering≺. It has a form similar
to a CPA and is initialized to the set of empty assignments {(xj , ∅, 0) | i �= j}.
Definition 3 (Time-stamp). A time-stamp is an ordered list of counters 〈Ctr1, Ctr2,
. . . , Ctrk〉. When comparing (lexicographically) two time-stamps, the most up to date
is one which is lexicographically greater, that is, the one with greatest value on the first
counter on which they differ, if any, otherwise the longest one.

2.2 Asynchronous Forward-Checking (AFC)

AFC is based on the Forward-Checking (FC) algorithm for CSPs but it performs the for-
ward checking phase asynchronously [10,11]. As in synchronous backtracking, agents
assign their variables only when they hold the current partial assignment (CPA). The
CPA is a unique message that is passed from one agent to the next one in the ordering.
The CPA carries the partial assignment that agents attempt to extend into a complete
solution by assigning their variables on it. Forward checking is performed as follows.
Every agent that sends the CPA to its successor also sends copies of the CPA to all
agents whose assignments are not yet on the CPA. Agents that received CPAs update
domains of their variables, removing all values that are in conflict with assignments on
the received CPA.

An agent that generates an empty domain as a result of a forward-checking operation
initiates a backtrack by sending Not OK messages which carry the inconsistent partial
assignment which caused the empty domain. Not OK messages are sent to all agents
with unassigned variables on the (inconsistent) CPA. When an agent holding a Not OK
receives a CPA, it sends this CPA back in a backtrack message. When multiple agents
reject a given assignment by sending Not OK messages, only the first agent that will
receive a CPA and is holding a relevant Not OK message will eventually backtrack.
After receiving a new CPA, the Not OK message becomes obsolete when the CPA it
carries is no longer a subset of the received CPA.

An improved backtrack method for AFC was described in Section 6 of [11]. Instead
of just sending Not OK messages to all agents unassigned in the CPA, the agent who
detects the empty domain can itself initiate a backtrack operation. It sends a backtrack
message to the last agent assigned in the inconsistent CPA in addition to the Not OK
messages to all agents not instantiated in the inconsistent CPA. The agent who receives
a backtrack message generates (if it is possible) a new CPA that will dominate older
ones thanks to the time-stamp mechanism (see Definition 3).

3 Nogood-Based AFC

The nogood-based Asynchronous Forward-Checking (AFC-ng) is based on AFC but
it tries to enhance the asynchronism of the forward phase. The two main features of
AFC-ng are the following. First, an agent finding an empty domain no longer sends

Asynchronous Inter-Level Forward-Checking for DisCSPs 307

procedure Start()
1: InitMyAgentView();
2: end ← false; myAgentV iew.Consistent ← true;
3: if(self = IA) then Assign();
4: while(¬end)
5: msg ← getMsg();
6: switch(msg.type)
7: CPA : ProcessCPA(msg);
8: BackCPA : ProcessBackCPA(msg);
9: Terminate : ProcessTerminate(msg);

procedure InitMyAgentView()
10: myAgentV iew ← {(xj , ∅, 0) | xj ≺ self};

procedure Assign()
11: if(∃v ∈ myInitialDomain, � ∃ng ∈ myNogoodStore | Rhs(ng) = v) then
12: myV alue ← ChooseValue(); /*not eliminated by myNogoodStore*/
13: myCtr ← myCtr+1; CPA ← myAgentV iew ∪ {(self, myV alue, myCtr)};
14: SendCPA(CPA);
15: else Backtrack();

procedure SendCPA(CPA)
16: next ← getNextAgent();
17: if(next=nil) then BroadcastMsg:Terminate(myAgentV iew); end ← true;
18: else for each xj � self do sendMsg:CPA(CPA,next) to xj;

Fig. 1. Nogood-based AFC algorithm running by agent self (Part 1)

Not OK messages. It resolves the nogoods attached to its values and sends the backtrack
message to the lower agent in the resolved nogood. Hence, multiple backtracks may be
performed at the same time coming from different agents having an empty domain.
These backtracks are sent concurrently by these different agents to different destina-
tions. The re-assignments of the destination agents then happen simultaneously and
generate several CPAs. However, the CPA coming from the highest level in the search
tree will eventually dominate all others. Interestingly, the search process with the new
CPA of highest level can use nogoods reported by the (killed) lower level processes,
so that it benefits from their computational effort. Second, each time an agent performs
a forward-check, it revises its initial domain, (including values already removed by a
stored nogood) in order to store the best nogoods for removed values (one nogood per
value). When comparing two nogoods eliminating the same value, the nogood with the
highest possible lowest variable involved is selected (HPLV heuristic) [13]. As a result,
when an empty domain is found, the resolvent nogood contains variables as high as
possible in the ordering, so that the backtrack message is sent as high as possible, thus
saving unnecessary search effort [9].

Description of the Algorithm
We call self the variable that points to the agent itself. An AFC-ng agent self executes
the code shown in Figures 1 and 2. The data structure. myInitialDomain contains
all values of the initial domain of self . self stores a nogood per removed value in

308 R. Ezzahir et al.

ProcessCPA(msg)
19: if(¬myAgentV iew.Consistent ∧ myAgentV iew ⊂ msg.CPA)then return;
20: splitlevel ← CompareTimeStamp(myAgentV iew, msg.CPA);
21: if(splitlevel > 0)then
22: UpdateMyAgentView(msg.CPA, splitlevel);myAgentV iew.Consistent ← true;
23: FC ReviseInitialDomain();
24: if(∀v ∈ myInitialDomain,∃ng ∈ myNogoodStore | Rhs(ng) = v)then Backtrack();
25: else CheckAssign(msg.Next)

procedure CheckAssign(next)
26: if(next = self)then Assign();

procedure Backtrack()
27: newNg ← solve(myNogoodStore);
28: if(newNg = empty)then BroadcastMsg:Terminate(∅); end ← true;return;
29: for each xj 	 Rhs(newNg)do
30: myAgentV iew.V alue[xj]← unknown ;
31: for each ng ∈ myNogoodStore do
32: if(xj ∈ Lhs(ng)) then remove(ng, myNogoodStore);
33: myAgentV iew.Consistent ← false; myV alue ← empty; CPA ← myAgentV iew;
34: SendMsg:BackCPA(CPA, newNg) to Rhs(newNg);

ProcessBackCPA(msg)
35: if(¬myAgentV iew.Consistent ∧ myAgentV iew ⊂ msg.CPA)then return;
36: splitlevel ← CompareTimeStamp(myAgentV iew, msg.CPA);
37: if(splitlevel = 0 ∧ myV alue = RhsValue(msg.Nogood)) then
38: add(msg.Nogood,myNogoodStore); myV alue ← empty; Assign();

ProcessTerminate(msg)
39: end ← true ; myV alue ← empty;
40: if(msg.CPA
= ∅)then myV alue ← msg.CPA.Value[self];

procedure UpdateMyAgentView(CPA, splitlevel)
41: for each j ≥ splitlevel do myAgentV iew[j]← CPA[j]; /* update value and Ctr */
42: for each ng ∈ myNogoodStore do
43: if Lhs(ng) is inconsistent with myAgentV iew then remove(ng,myNogoodStore);

procedure FC ReviseInitialDomain()
44: for each v ∈ myInitialDomain do
45: if(¬Consistent(v, myAgentV iew))then
46: store the best nogood for v; /* according to the HPLV heuristic*/

function CompareTimeStamp(view,CPA)
47: from j ← 1 to size(CPA) do
48: if (Ctr(CPA[j]) > Ctr(view[j])) then return j;
49: else if (Ctr(CPA[j]) < Ctr(view[j])) then return −1;
50: return 0;

Fig. 2. Nogood-based AFC algorithm running by agent self (Part 2)

myNogoodStore. self calls the procedure Start() in which self initiates its agent view
(line 1) by setting counters to zeros (line 10). The agent view contains a consistency
flag that represents whether the partial assignment it holds is consistent. If self is the
initializing agent (IA), it initiates the search by calling procedure assign() (line 3). All

Asynchronous Inter-Level Forward-Checking for DisCSPs 309

agents performing the main loop wait for messages, and process received messages
according to their types (line 4-9).

When calling assign() self tries to find an assignment, which is consistent with its
agent view. If self succeeds, it increments its counter Ctr, generates a CPA from its
agent view augmented by self assignment (line 13), and then sends forward the CPA to
every agent whose assignments are not yet on the CPA, or reports a solution, when the
CPA includes all agents assignments (line 17). Before sending any CPA, self attaches
to every CPA message the ID of his successor (line 18). Only if the receiver ID equals
that attached to the CPA message, the receiver performs an assignment (line 26). When
self fails to find a consistent assignment, it calls procedure Backtrack() (line 15).

Agents use time-stamps to detect and discard obsolete CPAs. Function Compare-
TimeStamp(view, CPA) returns the index splitlevel of the first counter on which
view and CPA differ if CPA is newest (see Definition 3) or contains view (line 48).
If view is newest, it returns −1. When view and CPA are identical or when CPA is
included in view CompareTimeStamp returns 0.

Whenever self receives a CPA, procedure ProcessCPA() is called. self checks its
agent view status. If it is not consistent and the agent view is a subset of the received
CPA, this means that self has already backtracked, then self does nothing (line 19).
Otherwise, self compares the time-stamp of its agent view with the one of the re-
ceived CPA by calling CompareTimeStamp (line 20). If the received CPA is newest,
self updates its agent view and marks it consistent (lines 21-22). Procedure Update-
MyAgentView (lines 41-43) sets the agent view and the nogood store to be consistent
with the received CPA. Each nogood in the nogood store containing a value for a vari-
able different from that received in the CPA will be deleted (line 43). Next, self calls
procedure FC ReviseInitialDomain() (in line 23) to store nogoods for values inconsis-
tent with the new agent view or to try to find a better nogood for values already having
one in the nogood store (line 46). A nogood is better according to the HPLV heuristic if
the lowest variable in the body of the nogood is higher.

When every value of self ’s variable is ruled out by a nogood (line 24), the pro-
cedure Backtrack is called. These nogoods are resolved by computing a new nogood
newNg (line 27). If the new nogood is empty, self terminates execution after sending
a Terminate message to all agents in the system meaning that problem is unsolvable
(line 28). Otherwise, self updates its agent view by removing assignments of every
agent that is strictly greater than the last agent (Rhs(newNg)) in the newNg. self
also updates its nogood store by removing obsolete nogoods. Finally it marks its agent
view as inconsistent and it initiates a backtrack procedure by sending one BackCPA
message to the lower priority agent (Rhs(newNg)) involved in the newNg (line 34).

The BackCPA message carries the newNg and the inconsistent CPA containing
assignments of all agents smaller than or equal to Rhs(newNg) in the agent ordering
(lines 29-30). self remains in an inconsistent state until receiving a new CPA holding
at least one agent assignment with counter higher than that in the agent view of self
(lines 21-22).

When a BackCPA message is received, self checks the validity of received
BackCPA using agent view status and time-stamp (lines 35-36). If BackCPA is ac-
cepted (line 37), self removes its last assignment, adds attached nogood to its nogood
store, and calls the procedure assign() (line 38).

310 R. Ezzahir et al.

asynchronous
executions

time t1

time t2

Level 1

Level 2

Level 3

x1

x2 x3 x4

x5 x6 x7 x8 x9

BackCPA msg

CPA msg

assigned

not assigned

inconsistent

Fig. 3. An example of the AILFC execution

ProcessTerminate procedure is called when an agent receives a Terminate message.
It marks end flag true to stop the main loop (line 39). If attached CPA is empty then
there is no solution. Otherwise, agent solution is retrieved from the CPA (line 40).

4 Asynchronous Inter Level Forward-Checking

A DisCSP can be represented by a constraint graph G = (X, E), whose nodes represent
the variables and edges represent the constraints (that is, X = X and {xi, xj} ∈ E ⇔
cij ∈ C). The graph can be re-arranged to form a pseudo-tree [14]. A pseudo-tree
GPT = (X, r, E, U) for the graph G is defined by a root node r ∈ X and a directed
tree T = (X, U) rooted in r such that for any edge {xi, xj} ∈ E, xi and xj are not
in different branches of T . For any arc (xi, xj) ∈ U , the node xi is the parent of the
node xj . If xi is the parent of xj , then xj is a child of xi. A node xi is an ancestor of
a node xj if xi is the parent of xj or an ancestor of the parent of xj . A node xj is a
descendant of a node xi if xi is an ancestor of xj . A leaf is a node that has no child. In
our implementation, the pseudo-tree is built by a DFS traversal of the graph. Thus, we
have U ⊆ E.

The AILFC algorithm is based on AFC-ng performed on a pseudo-tree ordering of
the constraint graph (built in a preprocessing step). Agents are prioritized according to
the pseudo-tree ordering in which each agent has a single parent and various children.
Using this priority ordering, AILFC performs multiple AFC-ng processes on the paths
from the root to the leaves. The root initiates the search by generating a CPA, assigning
its value on it, and sending CPA messages to its linked descendants (including its chil-
dren) that share a constraint with it. Each child that receives a copy of the CPA performs
AFC-ng on the sub-problem restricted to its ancestors (agents that are assigned in the
CPA) and the set of its descendants. Therefore, instead of giving the privilege of assign-
ing to only one agent, all agents who are in disjoint subtrees may assign their variables
simultaneously. So, the Inter-Level Forward Checking is performed asynchronously on
each path from the root to any leaf. AILFC thus exploits the potential speed-up of a
parallel exploration in the processing of distributed problems.

Asynchronous Inter-Level Forward-Checking for DisCSPs 311

An execution of AILFC on a sample DisCSP problem is shown in Figure 3. At
time t1, the root x1 sends copies of the CPA on messages to its linked descendants
(including its children). Children x2, x3 and x4 assign their values simultaneously in
the received CPAs and then perform concurrently the AILFC algorithm. Agents x7, and
x9 only perform a forward- checking. At time t2, x9 finds an empty domain and sends
a BackCPA message to x1. At the same time, other CPAs propagate down through
the other paths. For instance, a CPA has propagated down from x3 to x7 and x8. x7

detects an empty domain and sends a nogood to x3 attached on a BackCPA message.
For the CPA that propagates on the path (x1, x2, x5) (resp. (x1, x2, x6)), x5 (resp. x6)
successfully assigned its value and initiated a solution detection. However, when x1

receives the BackCPA from x9, it initiates a new search process by sending a new
copy of the CPA which will kill any CPA where x1 is assigned its old value.

In AFC-ng, a solution is reached when the last agent receives the CPA and succeeds
in assigning its variable. In AILFC, the situation is different because a CPA can reach a
leaf without being complete. When all agents are assigned and no constraint is violated,
this state is a global solution and the network has reached quiescence, meaning that no
message is traveling through it. Such a state can be detected using specialized snapshot
algorithms [15], but AILFC uses a different mechanism that allows to detect solutions
before quiescence. AILFC uses an additional type of message called Accepted that
inform parents of the acceptance of their CPA. Termination can be inferred earlier and
the number of messages required for termination detection can be reduced. A similar
technique of solution detection was used in the AAS algorithm [16].

The mechanism of solution detection is as follows: whenever a leaf node succeeds
in assigning its value, it sends an Accepted message to its parent. This message con-
tains the CPA that was received from the parent incremented by the value-assignment
of the leaf node. When a non-leaf agent self receives Accepted messages from all its
children that are all compatible with each other, all compatible with self ’s agent view
and with self ’s value, self builds an Accepted message being the conjunction of all
received Accepted messages plus self ’s value-assignment. If self is the root a solution
is found, and self broadcasts this solution to all agents. Otherwise, self sends the built
Accepted to its parent.

Description of the Algorithm
A preprocessing step before starting the AILFC algorithm is performed to convert
the constraint graph into a pseudo-tree. Children(self) ⊂ A is the set of chil-
dren of agent self in the pseudo-tree, Desc(self) is the set of its descendants and
linkedDesc(self) ⊂ Desc(self) is the set of its descendants (including its children)
that are constrained with self . Parent(self) ∈ A is the parent of agent self and
Ancestors(self) ⊂ A is the set of its ancestors (including its parent).

In Figure 4, we present only the procedures that are new or different from those of
AFC-ng in Figures 1 and 2. In InitMyAgentView(), the agent view of self is initialized
to the set Ancestors(self). Ctr is set to 0 for each agent in Ancestors(self) (line
11). The new data structure storing the received Accepted messages is initialized to
the empty set (line 12). In SendCPA(CPA), instead of sending copies of the CPA to
all agents not yet instantiated on it, self sends copies of the CPA only to its linked

312 R. Ezzahir et al.

procedure Start()
..:
10: Accepted : ProcessAccepted(msg);

procedure InitMyAgentView()
11: myAgentV iew ← {(xj , ∅, 0) | xj ∈ Ancestors(self)};
12: for each child ∈ children(self) accepted[child]← ∅; /*For Solution Detection*/

procedure SendCPA(CPA)
13: if(children(self)= ∅) then
14: SolutionDetection();
15: else for each desc ∈ linkedDesc(self)do sendMsg:CPA(CPA, self) to desc;

procedure CheckAssign(ancestor)
16: if(Parent(self)= ancestor) then Assign();

procedure SolutionDetection()
17: if(children(self) = ∅) then
18: SendAccepted(myAgentV iew ∪ {(self, myV alue, myCtr)}, self) to Parent(self);
19: else PA ← BuildAccepted();
20: if(PA
= ∅)then
21: if(self = root) then Broadcast(Terminate, PA); end ← true;
22: else SendAccepted(PA, self) to Parent(self);

ProcessAccepted(msg)
23: if(accepted[msg.Sender]=∅∨CompareTimeStamp(msg.CPA,accepted[msg.Sender])>0)then
24: accepted[msg.Sender] ← msg.CPA;
25: SolutionDetection();

function BuildAccepted()
26: PA ← myAgentV iew ∪ {(self, myV alue,myCtr)};
27: for each child ∈ children(self) do
28: if(accepted[child]= ∅ ∨ ¬Compatible(PA,accepted[child])) return ∅;
29: else PA ← PA ∪ accepted[child];
30: return PA

Fig. 4. New lines/procedures of AILFC with respect to AFC-ng

descendants (linkedDesc(self)) (line 15). When the set linkedDesc(self) is empty
(i.e., self is a leaf), self calls the procedure SolutionDetection to build and send an
Accepted message. In CheckAssign(ancestor), self assigns its value if the CPA was
received from its parent (line 16) (i.e., if ancestor is the parent of self).

In SolutionDetection(), if self is a leaf (Children(self) is empty), it sends an
Accepted message to its parent. The Accepted message sent by self contains its agent
view incremented by its assignment (lines 17-18). If self is not a leaf, it calls the Buil-
dAccepted() procedure to build an accepted partial solution PA (line 19). If the returned
partial solution PA is not empty and self is the root, PA is a solution of the problem.
Then, self broadcasts it to other agents including the system agent and sets the end
flag to true (line 21). Otherwise, self sends an Accepted message containing PA to
its parent (line 22).

In ProcessAccepted(msg), when self receives an Accepted message from its child
for the first time, or when msg is newer than that received before (lines 23-24), self
stores the content of this message and calls the SolutionDetection procedure (line 25).

In BuildAccepted(), if an accepted partial solution is reached. self generates a partial
solution PA incrementing its agent view with its assignment (line 26). Next, self loops
over the set of Accepted messages received from its children. If at least one child has

Asynchronous Inter-Level Forward-Checking for DisCSPs 313

never sent an Accepted message or the Accepted message is incompatible with PA,
then the partial solution has not yet been reached and the function returns empty (lines
27-28). Otherwise, the partial solution PA is incremented by the Accepted message of
child (line 29). Finally, the accepted partial solution is returned (line 30).

5 Correctness Proofs

Theorem 1. AFC-ng is sound, complete, and terminates.

The argument for soundness is close to the one given in [11,17]. The fact that agents
only forward consistent partial solution on the CPAs messages at only one place in
function assign() (line 14), implies that the agents receive only consistent assignments.
A solution is reported by the last agent only in function SendCPA(CPA) at line 17. At
this point, all agents have assigned their variables, and their assignments are consistent.
Thus the AFC-ng algorithm is sound.

For completeness, we need to show that AFC-ng is able to terminate and does not
report inconsistency if a solution exists.

Lemma 1. AFC-ng is guaranteed to terminate.

For sake of clarity, we assume that the order in which AFC-ng assigns the variables
is the lexicographic ordering X1, X2, . . . , Xn. We define the total order o on CPAs as
follows. Let I1 be an assignment on X1, . . . , Xk1 , I2 be an assignment on X1, . . . , Xk2 ,
and s be the smallest index on which I1 and I2 differ. I1 ≺o I2 if and only if s = k1 +1
or the value I1[s] is chosen before the value I2[s] by the value ordering heuristics on
variable Xs given the CPA I1[1..s− 1].

To prove the lemma we prove that AFC-ng performs a finite number of backtrack
steps. In AFC-ng, several backtracks can be performed simultaneously as they are gen-
erated concurrently by different agents to different destinations. The re-assignments of
destination agents then happen simultaneously, generating several CPAs. However, the
CPA at the highest level in the search hierarchy tree will eventually dominate all others
thanks to its greater time-stamp (see line 21 in Figure 2). Thus, every backtrack step
may be represented by the backtrack at the highest level. The agent Xi who has re-
ceived that backtrack of highest level has to replace its previous assignment vi in the
CPA by a new one v′i because the backtrack message contains a nogood rejecting value
vi. If vi was not the first value chosen by Xi since it has received the current CPA from
Xi−1 then we know that all other values vj preferred to vi were ruled out by a nogood
at the time vi was chosen. Now, the CPA on X1, . . . , Xi−1 has not changed since then,
otherwise this would not be the highest backtrack. As a result, the nogoods rejecting
values vj preferred to vi are still valid and v′i is necessarily the next preferred value in
the heuristic order. By definition of the order o, the new CPA obtained is greater than
the previous one according to o because it has not changed on X1, . . . , Xi−1 and v′i
is less preferred than vi. Since o is a total order and since there are a finite number of
variables and a finite number of values per variable, there will be a finite number of
new CPAs generated. Now, each backtrack of highest level generates a new CPA. Thus,
AFC-ng performs a finite number of backtracks.

314 R. Ezzahir et al.

Lemma 2. AFC-ng cannot infer inconsistency if a solution exists.

Whenever a newer CPA or a BackCPA message is received, AFC-ng agent updates its
nogood store. Hence, for every CPA that may potentially lead to a solution, agents only
store valid nogoods. In addition, every nogood resulting from a CPA is redundant with
regard to the DisCSP to solve. Since all additional nogoods are generated by logical
inference when a domain wipe-out occurs, the empty nogood cannot be inferred if the
network is satisfiable. This mean that AFC-ng is able to produce all solutions.

Theorem 2. AILFC algorithm is sound, complete, and terminates.

AILFC agents only forward consistent partial assignments (CPAs). Hence, leaf agents
receive only consistent CPAs. Thus, leaf agents send Accepted message only holding
consistent assignments to their parent. Since a parent builds an Accepted message only
when the Accepted messages received from all its children are compatible with each
other and all compatible with its own value, the Accepted message it sends contains a
consistent partial solution. The root broadcasts a solution only when it can build itself
such an Accepted message. Therefore, the solution is correct and AILFC is sound.

AILFC performs multiple AFC-ng processes on the paths of the pseudo-tree from
the root to the leaves. Thus, it inherits the completeness property of AFC-ng (empty
nogood cannot be inferred if the network is satisfiable (see Lemma 2). It also appears
that the agent of high priority cannot fall into an infinite loop. By induction on the level
of the pseudo-tree no agent can fall in such a loop, which ensures the termination of
AILFC.

6 Experimental Evaluation

In this section we compare experimentally AFC-ng and AILFC to three other algo-
rithms: AFC, ABT, and ABT-Hyb [18]. Algorithms are tested on the same static agents
ordering using max-degree heuristic and the same nogood selection heuristic (HPLV).
For ABT and ABT-Hyb we implemented an improved version of Silaghi’s solution de-
tection [12] and counters for tagging assignments. This allows to better treat non-causal
order channels [12]. All experiments were performed on the DisChoco platform [19]
in which agents are simulated by Java threads that communicate only through message
passing.

The algorithms are tested on uniform binary random DisCSPs which are characterized
by 〈n, d, p1, p2〉, where n is the number of agents/variables, d the number of values per
variable, p1 the network connectivity defined as the ratio of existing binary constraints,
and p2 the constraint tightness defined as the ratio of forbidden value pairs. We solved
100 instances of two classes of constraints graph: sparse graph 〈20, 10, 0.25, p2〉 and
dense graph 〈20, 10, 0.75, p2〉. We vary the tightness from 0.10 to 0.90 by steps of 0.10.

We evaluate the algorithms performance by the average of total messages sent [20]
(including system messages) and the average of Equivalent Non-Concurrent Constraint
Checks (ENCCCs) [21]. ENCCCs are a weighted sum of processing and communica-
tion time. We simulate two scenarios of communication: fast communication (where
message delay is null and ENCCCs reduce to standard NCCCs), and slow communica-
tion with uniform random message delay (where the cost of the delay is between 500
and 1000 constraint checks.)

Asynchronous Inter-Level Forward-Checking for DisCSPs 315

0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90
P2

0

5 000

10 000

15 000

20 000

25 000

M
SG

s

AILFC
AFCng
AFC
ABTHyb
ABT

(a) 〈n = 20, d = 10, p1 = 0.25〉
0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

P2

0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

NC
CC

s

AILFC
AFCng
AFC
ABTHyb
ABT

(b) 〈n = 20, d = 10, p1 = 0.25〉

0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90
P2

0

100 000

200 000

300 000

400 000

500 000

M
SG

s

AILFC
AFCng
AFC
ABTHyb
ABT

(c) 〈n = 20, d = 10, p1 = 0.75〉
0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

P2

0

100 000

200 000

300 000

400 000

NC
CC

s

AILFC
AFCng
AFC
ABTHyb
ABT

(d) 〈n = 20, d = 10, p1 = 0.75〉

Fig. 5. Total number of messages sent and NCCCs on fast communication

Fast Communication
Figure 5 presents performance of AILFC, AFC-ng, AFC, ABT and ABT-hyb running
on a fast communication environment. The figure shows that in both types of constraint
graphs (sparse and dense), AILFC has the lowest communication load (#MSGs). Con-
cerning NCCCs, AILFC is the fastest algorithm on sparse graphs (Fig. 5(b)). On dense
graphs AILFC behaves like AFC and AFC-ng. Comparing AFC-ng with AFC, Fig. 5
shows that they perform the same number of NCCCs but AFC-ng exchanges less mes-
sages than AFC. Comparing AFC-ng with ABT and ABT-hyb, Fig. 5 shows that in both
types of constraint graphs AFC-ng is faster than ABT-hyb and ABT. However, on sparse
graphs, Fig 5(a) shows that AFC-ng sends more messages than ABT-hyb and ABT.

Slow Communication
In Figure 6 we report experimental results with slow communication. The figure shows
that AILFC is again the best algorithm in terms of number of messages. Concerning ENC-
CCs, as in the fast communication environment, AILFC is faster than or equal to AFC
and AFC-ng depending on whether the graph is sparse or dense. The comparison of AFC
and AFC-ng shows a pattern close to the one observed with fast communication: AFC-ng
is better, or slightly better, both in terms of messages and ENCCCs. The main difference
between fast and slow communication is the performance of ABT and ABT-hyb. Whereas
they remain expensive in terms of messages, they become the best algorithms in terms

316 R. Ezzahir et al.

0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90
P2

0

5 000

10 000

15 000

20 000
M
SG

s

AILFC
AFCng
AFC
ABTHyb
ABT

(a) 〈n = 20, d = 10, p1 = 0.25〉
0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

P2

0

200 000

400 000

600 000

800 000

1 000 000

1 200 000

EN
CC

Cs

AILFC
AFCng
AFC
ABTHyb
ABT

(b) 〈n = 20, d = 10, p1 = 0.25〉

0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90
P2

0

100 000

200 000

300 000

400 000

500 000

M
SG

s

AILFC
AFCng
AFC
ABTHyb
ABT

(c) 〈n = 20, d = 10, p1 = 0.75〉
0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

P2

0

2 000 000

4 000 000

6 000 000

8 000 000

10 000 000

12 000 000

14 000 000

EN
CC

Cs

AILFC
AFCng
AFC
ABTHyb
ABT

(d) 〈n = 20, d = 10, p1 = 0.75〉

Fig. 6. Total number of messages sent and ENCCCs on slow communication

of ENCCCs, with a slight advantage to ABT. This confirms that in slow communication
environment, the more the algorithm is asynchronous, the better it is.

Discussion

A first observation on these experiments is that ABT, ABT-hyb on one side, and AFC,
AFC-ng on the other side, show quite opposite patterns. If message passing is not an
issue, ABT and ABT-hyb are good choices with slow communication whereas AFC and
AFC-ng are good when communication is fast. A second observation is that AILFC is
always better than or equivalent to AFC-ng, which is better than or equivalent to AFC,
both in terms of messages and amount of processing (ENCCCs). If limiting the commu-
nication load is important, AILFC is the best among all both for fast and slow communi-
cation. AILFC benefits both from running separate search processes in disjoint problem
subtrees, which pays off when a graph is sparse, and from using the same mechanism
as AFC-ng, which pays off when agents are highly connected (dense graphs).

7 Other Related Work

In [18,7] the performance of asynchronous (ABT), synchronous (Synchronous Conflict
BackJumping (SCBJ)), and hybrid approaches (ABT-Hyb) was studied. It is shown that
ABT-Hyb improves over ABT and that SCBJ requires less communication effort than

Asynchronous Inter-Level Forward-Checking for DisCSPs 317

ABT-Hyb. In Interleaved Asynchronous Backtracking (IDIBT) [22], agents partici-
pate in multiple processes of asynchronous backtracking. Each agent keeps a separate
AgentView for each search process in IDIBT. The number of search processes is fixed by
the first agent in the ordering. The performance of concurrent asynchronous backtrack-
ing [22] was tested and found to be ineffective for more than two concurrent search
processes [22]. Dynamic Distributed BackJumping (DDBJ) was presented in [17]. It is
an improved version of the basic AFC. It combines the concurrency of an asynchronous
dynamic backjumping algorithm, and the computational efficiency of the AFC algo-
rithm, coupled with the possible conflict heuristics of dynamic value and variable or-
dering. As in DDBJ, AFC-ng performs several backtracks simultaneously. However,
AFC-ng should not be confused with DDBJ. DDBJ is based on dynamic ordering and
requires additional messages to compute ordering heuristics. In AFC-ng, all agents that
received a BackCPA message continue search concurrently. Once a more up to date
CPA is received by an agent, all nogoods already stored can be kept if consistent with
that CPA.

8 Conclusion

Two new complete, asynchronous algorithms are presented. The first algorithm,
Nogood-Based Asynchronous Forward Checking (AFC-ng), is an improvement on
AFC. The second, Asynchronous Inter-Level Forward-Checking (AILFC), is based on
AFC-ng and is performed on a pseudo-tree re-arrangement of the constraint graph. Ex-
periments ran on random DisCSPs show that AFC-ng improves AFC both in fast and
slow communication environments. Experiments show that AILFC is the more robust
algorithm in both communication types. In particular, it is the best in terms of messages
sent. In slow communication environments, the performance of algorithms that perform
variable assignments sequentially deteriorates. This is observed for AFC and AFC-ng,
and, less significantly for ABT-Hyb, when compared to ABT.

References

1. Petcu, A., Faltings, B.: A value ordering heuristic for distributed resource allocation. In:
Faltings, B.V., Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419,
pp. 86–97. Springer, Heidelberg (2005)

2. Wallace, R.J., Freuder, E.: Constraint-based multi-agent meeting scheduling: effects of agent
heterogeneity on performance and privacy loss. In: Proceeding of the 3rd workshop on dis-
tributed constrait reasoning, DCR 2002, Bologna, pp. 176–182 (2002)

3. Fernández, C., Béjar, R., Krishnamachari, B., Gomes, K.: Communication and computation
in distributed CSP algorithms. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp.
664–679. Springer, Heidelberg (2002)

4. Chong, Y.L., Hamadi, Y.: Distributed log-based reconciliation. In: ECAI, pp. 108–112 (2006)
5. Yokoo, M.: Algorithms for distributed constraint satisfaction problems: A review. Au-

tonomous Agents & Multi-Agent Systems 3, 198–212 (2000)
6. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satisfaction prob-

lem: Formalization and algorithms. IEEE Trans. on Data and Kn. Eng. 10, 673–685 (1998)

318 R. Ezzahir et al.

7. Zivan, R., Meisels, A.: Synchronous vs asynchronous search on DisCSPs. In: Proceeding of
1st European Workshop on Multi Agent System, EUMAS, Oxford (2003)

8. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satisfaction for
formalizing distributed problem solving. In: IEEE Intern. Conf. Distrb. Comp. Sys., pp. 614–
621 (1992)

9. Bessiere, C., Maestre, A., Brito, I., Meseguer, P.: Asynchronous backtracking without adding
links: a new member in the ABT family. Artificial Intelligence 161(1-2), 7–24 (2005)

10. Meisels, A., Zivan, R.: Asynchronous forward-checking for distributed CSPs. In: Zhang, W.
(ed.) Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2003)

11. Meisels, A., Zivan, R.: Asynchronous forward-checking for DisCSPs. Constraints 12(1),
131–150 (2007)

12. Silaghi, M.C.: Generalized dynamic ordering for asynchronous backtracking on DisCSPs.
In: DCR workshop, AAMAS 2006, Hakodate, Japan (2006)

13. Maestre, A., Bessiere, C.: Improving asynchronous backtracking for dealing with complex
local problems. In: ECAI, pp. 206–210 (2004)

14. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satis-
faction problems. In: IJCAI 1985, pp. 1076–1078 (1985)

15. Mani, K.C., Lamport, L.: Distributed snapshots: determining global states of distributed sys-
tems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

16. Silaghi, M.C., Faltings, B.: Asynchronous aggregation and consistency in distributed con-
straint satisfaction. Artificial Intelligence 161(1-2), 25–54 (2005)

17. Nguyen, T., Sam-Hroud, D., Faltings, B.: Dynamic distributed backjumping. In: Proceeding
of 5th workshop on DCR 2004, Toronto (2004)

18. Brito, I., Meseguer, P.: Synchronous, asynchronous and hybrid algorithms for DisCSP. In:
Workshop on DCR 2004, CP 2004, Toronto (2004)

19. Ezzahir, R., Bessiere, C., Belaissaoui, M., Bouyakhf, E.H.: Dischoco: a platform for dis-
tributed constraint programming. In: Proceeding of Workshop on Distributed Constraint Rea-
soning of IJCAI 2007, pp. 16–21 (2007)

20. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Series (1997)
21. Chechetka, A., Sycara, K.: No-commitment branch and bound search for distributed con-

straint optimization. In: Proc. of AAMAS 2006, pp. 1427–1429. ACM, New York (2006)
22. Hamadi, Y.: Interleaved backtracking in distributed constraint networks. Int. J. of AI

Tools 11, 167–188 (2002)

From Model-Checking to Temporal Logic
Constraint Solving

François Fages and Aurélien Rizk

EPI Contraintes, INRIA Paris-Rocquencourt,
BP105, 78153 Le Chesnay Cedex, France

Francois.Fages@inria.fr, Aurelien.Rizk@inria.fr

http://contraintes.inria.fr

Abstract. In this paper, we show how model-checking can be general-
ized to temporal logic constraint solving, by considering temporal logic
formulae with free variables over some domain D, and by computing a
validity domain for the variables rather than a truth value for the for-
mula. This allows us to define a continuous degree of satisfaction for
a temporal logic formula in a given structure, opening up the field of
model-checking to optimization. We illustrate this approach with reverse-
engineering problems coming from systems biology, and provide some
performance figures on parameter optimization problems with respect to
temporal logic specifications.

1 Introduction

Temporal logics were introduced for program verification by Pnueli [29] as speci-
fication languages for expressing the behavior of sequential as well as concurrent
programs. Temporal logics essentially extend classical logic, used for describing
states, with temporal operators (X “at next state”, F “finally at some future
state”, G “globally at all future states”, U “until”) and computation path quan-
tifiers (E “on some path”, A “on all paths”). Temporal logics have proven useful
for formalizing and verifying the behavior of a broad variety of systems ranging
from electronic circuits to software programs, physical systems and more re-
cently biological systems, in either boolean [16,10], discrete [7], stochastic [8,22]
or continuous [32,17,9,3,10,5] settings.

There has been a large body of work for generalizing model-checking tech-
niques, initially developed for discrete systems [28,13], to quantitative transition
systems [1,34,35,23,20,26,14,15]. One common approach is to represent infinite
sets of states with finite structures, e.g. by symbolic or numerical constraints,
and develop decision or semi-decision procedures for checking the validity of
closed temporal logic formulae over such structures.

In computational systems biology however, one core problem is of a reverse-
engineering nature: it consists in inferring a mechanistic model of a cell process
from knowledge of the elementary interactions and from the observation of the sys-
tem’s global behavior under various conditions (milieu, stress, mutations etc.) [9].

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 319–334, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

320 F. Fages and A. Rizk

Beyond verifying whether an already built model does reproduce some dynami-
cal properties specified in temporal logic, model-checking techniques need thus be
generalized to model-synthesis techniques, including parameter optimization with
respect to temporal specifications. Indeed,most kinetic parameters cannot bemea-
sured and must be inferred from the global behavior of the biological system. How-
ever, the boolean valuation of temporal logic formulae is not very helpful to guide
the search for kinetic parameter values since it does not quantify how far a system
is from satisfying its specification.

To answer this question, we generalize the model-checking problem, i.e. de-
ciding whether a closed temporal logic formula is true in a given structure, to
a constraint solving problem, i.e. determining the validity domain of the free
variables of a given temporal logic formula that make it true in a given structure
(see example 2). A continuous degree of satisfaction for a closed temporal logic
formula φ can then be defined for a given structure, as the distance between the
validity domain of a pattern formula ψ obtained by replacing the constants in φ
by variables, and the actual constant values in φ.

In this paper, we present a temporal logic constraint solving algorithm, in
a very general first-order setting of Quantifier-Free Computation Tree Logic
(QFCTL) formulae with constraints over some arbitrary computational domain
D. Then we describe our particular implementation in the Biochemical Abstract
Machine BIOCHAM1 [19] using linear constraint solving over the reals and nu-
merical integration of (non-linear) parametric ordinary differential equations
(ODE), and provide some performance figures on a benchmark of kinetic pa-
rameter optimization problems with respect to temporal specifications, coming
from molecular systems biology.

Such ODE models were considered by Janssen, Van Hentenryck and Deville
in [24] for enclosing their solutions and finding their stable states by constraint
consistency methods. Our approach consists in using temporal logic to formalize
the dynamical properties of the solutions, in a much more flexible way than by
specifying their stable states, or than by curve fitting, allowing us to express
concentration or time thresholds or oscillation constraints for instance. In our
previous work in [9], we introduced the idea of searching parameter values by
model-checking with a generate and test algorithm that was limited in practice
to 2-3 parameters. In [17] we introduced a constraint solving algorithm for Linear
Time Logic (LTL) queries with interval constraints over the reals, interpreted
in a single finite trace. In [32] we used it for parameter search in higher dimen-
sions over a single trace and in [33] for robustness analysis using a solver for
linear constraints over the reals. Here we generalize this approach with a new
constraint solving algorithm for branching time logic (QFCTL), presented in an
abstract setting of constraints over some arbitrary domain D. The generaliza-
tion to branching time logic is not trivial since the labeling procedure must be
generalized to a fixpoint algorithm. We believe that this generality is important

1 BIOCHAM, and the examples of this paper, are available at
http://contraintes.inria.fr/BIOCHAM

From Model-Checking to Temporal Logic Constraint Solving 321

for relating model-checking to constraint solving independently of a particular
application.

The idea of allowing free variables in temporal logic formulae to extract infor-
mation from a model is however not new. It was introduced by William Chan in
[11] in the propositional case with the notion of temporal logic queries, where one
free variable stands as a place holder for a propositional formula that makes the
query true. Following Chan’s seminal paper, temporal queries have been investi-
gated by many authors, but to our knowledge, always in a propositional setting
and not in a first-order setting with constraints over some computation domain
allowing to compute validity domains for variables. In [30,14], model-checking
procedures for various infinite-state structures have been presented as constraint-
solving procedures, however the question of generalizing model-checking to con-
straint solving for temporal logic formulae containing free variables was not
mentioned. Furthermore, the procedures inspired from logic programming were
semi-decision procedures, whereas we shall present here decision procedures.

The rest of the paper is organized as follows. Section 2 presents the quantifier
free fragment of first-order computation tree logic with constraints over some do-
mainD, noted QFCTL(D), and transpose the propositional CTL model-checking
algorithm to this setting. Section 3 describes a QFCTL constraint solving algo-
rithm which computes validity domains for variables by fixpoint iteration in
quadratic time in the size of the structure. Section 4 studies the case where
the underlying constraint domain D is a metric space, and defines in this case
a real-valued degree of satisfaction of a QFCTL formula in a given structure.
This continuous valuation in [0, 1] of temporal logic formulae is defined using
the validity domain of a QFCTL formula with free variables. This opens up
the field of model-checking to continuous optimization with respect to temporal
logic specifications over the reals. Section 5 describes our implementation in the
Biochemical Abstract Machine BIOCHAM [19] of a QFCTL constraint solver
over the reals, restricted to non branching traces, and evaluate its performance
on a benchmark of systems biology parameter optimization problems.

2 Quantifier-Free Computation Tree Logic QFCTL

2.1 Syntax

In this paper, we consider a general setting of first-order temporal logic formulae
without quantifiers, interpreted in some fixed structure. Let Σ be a signature of
constant, function and predicate symbols interpreted over some fixed computa-
tion domain D. For the sake of simplicity, we assume that the predicate symbols
are closed under negation, i.e. each predicate p comes with its dual p such that
for all e1, . . . , en ∈ D, |=D ¬p(e1, . . . , en) if and only if |=D p(e1, . . . , en).

Let V be an infinite set of variables, among which a finite set V ⊆ V of
state variables (also called rigid variables) is distinguished. An atomic constraint
is an atomic formula formed over Σ and V and a constraint, noted c, . . ., is a
conjunction of atomic constraints.

322 F. Fages and A. Rizk

Quantifier-free first-order computation tree logic (QFCTL∗) formulae are
formed using the atomic constraints, the logical connectives ¬, ∨, ∧, ⇒, the
path quantifiers: E (exists a path), A (forall paths) and the temporal opera-
tors: X (next), F (finally, at some time point), G (globally, at all time points),
U (until), W (weak until). QFCTL denotes the fragment of QFCTL∗ in which
the temporal operators are immediately preceded by a path quantifier.

The set of variables occurring in a formula φ is denoted by V (φ). We say that
a formula φ is closed if V (φ) ⊆ V , i.e. if it contains only state variables.

Example 1. Let us consider inequality constraints over the reals and the QFCTL∗

formula EF (x = v1 ∧X (x = v2 ∧ v1 < v2 ∧X (x = v3 ∧ v3 < v2))), where x
is a state variable and v1, v2, v3 are free variables. This formula expresses that
on some path (E), at some time point (F), the value of x is v1, and at next
time point (X), x gets a greater value v2, and at next time point (X), x gets
a lesser value, i.e. v2 is local maximum for x.

2.2 Semantics

QFCTL∗ formulae are interpreted in branching structures, called Kripke struc-
tures, over some computation domain D. We assume that the constraint satisfi-
ability problem in D, i.e. whether |=D ∃X c for a constraint c where X = V (c),
is decidable. In the following, the notation ∃(c) stands for the existencial closure
of constraint c, i.e; ∃X c where X = V (c) \ V .

A state, s : V → D, is a snapshot of values of state variables at a given time.
A state is thus represented by a D-valuation of the variables in V . We will write
s(v) for the value of state variable v in state s, and by extension, s(e) for the
value of a closed expression e (made up of state variables, function and constraint
symbols) in state s. The set of states over V and D is denoted by S(V,D), or
simply S when V and D are implicit.

A Kripke structure over a set of variables V and a domain D is a quadruple
K = (S, R, V,D) where

– S ⊂ S(V,D) is a set of states over V and D,
– R ⊂ S×S is a left-total relation over S (i.e. ∀s ∈ S ∃t ∈ S (s, t) ∈ R) called

the state transition relation.

We say that a Kripke structure K = (S, R, V,D) is finite if S is finite, and finite
state if S(V,D) is finite (which implies that K and D are finite),

A path in K is an infinite sequence of states, noted π = (s0, s1, ...), such that
(si, si+1) ∈ R for all i ≥ 0. For such a path π and an integer k, πk denotes the
kth suffix path (sk, sk+1, ...).

Definition 1. A closed QFCTL∗(Σ, V,D) formula φ is true in a state s in a
Kripke structure K(S, R, V,D), if the relation K, s |=D φ holds following the
inductive definition given in Table 1.

It is worth noting that the only difference between the inductive definition of
Table 1 and the usual definition for propositional CTL∗ formulae [13] is in the

From Model-Checking to Temporal Logic Constraint Solving 323

Table 1. Inductive definition of the truth values of closed QFCTL∗ formulae in a
Kripke structure

K, s |=D c if c is an atomic constraint and |=D s(c),
K, s |=D E φ if for some path π starting from s, K, π |=D φ,
K, s |=D A φ if for all paths π starting from s, K, π |=D φ,
K, π |=D φ if K, s |=D φ where s is the first state of π,
K, π |=D X φ if K, π1 |=D φ,
K, π |=D F φ if there exists k ≥ 0 s.t. K, πk |=D φ,
K, π |=D G φ if for all k ≥ 0, K, πk |=D φ,
K, π |=D φU φ′ if there exists k ≥ 0 s.t. K, πk |=D φ′ and K, πj |=D φ for all 0 ≤ j < k.
K, π |=D φW φ′ if either for all k ≥ 0, K, πk |=D φ or there exists k ≥ 0 s.t.

K, πk |=D φ ∧ φ′ and for all 0 ≤ j < k, K, πj |=D φ.
K, π |=D ¬φ if K, π �|=D φ,
K, π |=D φ ∧ φ′ if K, π |=D φ and K, π |=D φ′,
K, π |=D φ ∨ φ′ if K, π |=D φ or K, π |=D φ′,
K, π |=D φ ⇒ φ′ if K, π |=D φ′ or K, π �|=D φ,

base case of an atomic constraint c. Such an atomic constraint is closed and is
evaluated in D by checking its validity: |=D s(c).

Definition 2. A QFCTL∗(Σ,V ,D) formula φ is satisfiable in a Kripke struc-
ture K = (S, R, V,D), noted (by a slight abuse of notation) K |=D ∃Y φ, where
Y = V (φ) \ V , if there exists a state s ∈ S and a valuation ρ : Y → D such that
K, s |=D ρ(φ).

Example 2. Let us consider the following finite Kripke structure over the reals,
composed of five states, where state variable x takes values 1 to 5 respectively:

x=5x=1 x=2 x=3 x=4

The QFCTL formula EG (x ≤ V) has one free variable V . This formula is
satisfiable in all states. It is true for all valuations of V ≥ 5 in the last state, and
for all valuations of V ≥ 4 in the other states. The QFCTL constraint solving
problem consists in computing these validity domains for the free variables of
the formula in each state.

QFCTL∗ formulae enjoy the classical duality properties: ¬E φ = A ¬φ, ¬X φ =
X ¬φ, ¬F φ = G ¬φ, ¬(φ1U φ2) = (¬φ2W ¬φ1) Moreover, F and G can
be defined as abbreviations: F φ = (trueU φ), G φ = (φW false). Similarly,
W can be defined from G and U by φ1W φ2 = G φ1 ∨ (φ1U φ1 ∧ φ2). By
assuming that the constraint language is closed under negation, negations (and
implications) can be eliminated from QFCTL formulae by pushing them down
to the constraints. Without loss of generality, we will thus sometimes restrict
the QFCTL∗ formulae to negation-free normal forms, formed using ∨, ∧, E ,
A , X , U , and G only.

324 F. Fages and A. Rizk

2.3 QFCTL Model-Checking Algorithm

The (global) model-checking problem is the problem of determining the set of
states in which a given temporal logic formula is true in a given finite Kripke
structure. In particular, it solves the (local) decision problem of determining
whether a given formula is true in a given initial state. The QFCTL(Σ, V,D)
model-checking problem is the following:

Input: a finite Kripke structure K = (S, R, V,D), a closed QFCTL(Σ,V,D) for-
mula φ,

Output: the set of states s ∈ S such that K, s |=D φ.
By assuming that closed constraints can be evaluated in D, the usual propo-
sitional CTL model-checking algorithm for finite Kripke structures [13] can be
generalized to QFCTL as follows:

Algorithm 1
1. Construct the graph (S, R) of K
2. for each subformula ψ of φ, taken in increasing order, add ψ to the labels of

(a) the states s s.t. |=D s(ψ) if ψ is an atomic constraint,
(b) the states not labelled by ψ1 if ψ = ¬ψ1,
(c) the states labelled by ψ1 and ψ2 if ψ = ψ1 ∧ ψ2 (similarly for ∨,⇒),
(d) the immediate predecessors of states labeled by ψ1 if ψ = EX ψ1

(e) i. the states labelled by ψ2

ii. and their predecessors labelled by ψ1

if ψ = E (ψ1U ψ2)
(f) i. the states of non trivial strongly connected components labelled by

ψ1,
ii. and their predecessors labelled by ψ1

if ψ = EG ψ1,
3. return the states labeled by φ.

Example 3. On the Kripke structure of example 2, the model-checking algorithm
evaluates the formula EG (x ≤ 4) by labeling the states with the subformulas
as follows:

state x = 1 x = 2 x = 3 x = 4 x = 5
step (a) x ≤ 4 x ≤ 4 x ≤ 4 x ≤ 4
step (f)i. EG (x ≤ 4) EG (x ≤ 4)
step (f)ii. EG (x ≤ 4) EG (x ≤ 4) EG (x ≤ 4) EG (x ≤ 4)

By using Tarjan’s linear time algorithm for computing strongly connected com-
ponents as usual [13], we get

Proposition 3. Algorithm 1 solves the model-checking problem for QFCTL for-
mulae over a finite Kripke structure K and a computation domain D in time
O(|K| ∗ |φ| ∗ f(|φ|)), where φ is the formula to verify, |φ| its size (number of
subformulae) and f(n) is the time complexity for checking the D-validity of a
closed constraint of size n.

From Model-Checking to Temporal Logic Constraint Solving 325

3 QFCTL Constraint Solving Algorithm

Definition 4. The QFCTL(Σ,V ,D) satisfiability problem is the following:

Input: a finite Kripke structure K = (S, R, V,D), a QFCTL(Σ,D) formula φ
where Y = V (φ) \ V ,

Output: set of states s such that K, s |=D ∃Y φ.
The constraint solving problem is distinguished from the satisfiability problem

by asking moreover to compute the validity domains of the variables:

Output: set of pairs (s, ρ) where s is a state and ρ : Y → D is a valuation
s.t. K, s |=D ρ(φ), assuming a finite representation of an infinite set of valua-
tions, e.g. by a finite set of constraints.

3.1 Fixpoint Computation of Validity Domains

It is well known that a propositional CTL formula φ can be identified with
the set of states which satisfy it, i.e. {s ∈ S | K, s |=D φ}, and that for finite
Kripke structures, the basic CTL operators can be characterized as the least or
greatest fixpoints of certain monotonic operators in 2S → 2S , called predicate
transformers [13,2].

Interestingly, this fixpoint characterization extends to the solutions of QFCTL
formulae containing free variables, by associating, to a QFCTL formula φ, a set
of states given with constraints for the free variables of φ describing the solutions
of the satisfiability problem for φ.

Table 2. Fixpoint characterization of the constrained states satisfying a QFCTL
formula

[c] = {(s|c) : s ∈ S and |=D ∃(s(c))} for a constraint c,
[EX φ] = ex([φ]) [AX φ] = ax([φ])
[EF φ] = μZ.[φ] ∪ ex(Z) [AF φ] = μZ.[φ] ∪ ax(Z)
[EG φ] = νZ.[φ] � ex(Z) [AG φ] = νZ.[φ] � ax(Z)
[E (φ1U φ2)] = μZ.[φ2] ∪ ([φ1] � ex(Z)) [A (φ1U φ2)] = μZ.[φ2] ∪ ([φ1] � ax(Z))
[E (φ1W φ2)] = νZ.[φ1] ∪ ([φ2] � ex(Z)) [A (φ1W φ2)] = νZ.[φ1] ∪ ([φ2] � ax(Z))

Let SC be the set of state-constraint pairs, noted s|c, where s is a state and c
is a D-satisfiable constraint. Let us consider the set lattice (2SC , ∅,SC,∪,�) with
the operations of set union ∪ and constrained intersection �, i.e. intersection of
states with a satisfiable constraint conjunction:

A �B = {(s|c ∧ c′) : s|c ∈ A, s|c′ ∈ B, |=D ∃(c ∧ c′)}.

We shall not describe subsumption checks in this presentation, however it is
worth noticing that the lattice top element SC of all constrained states is logically
equivalent to the element of all states given with the constraint true {(s|true) :
s ∈ S}. This element will be used as top element in computations.

326 F. Fages and A. Rizk

Let ex, ax : 2SC → 2SC be the two constrained predicate transformers (asso-
ciated to CTL operators EX and AX) defined by:

ex(Z) = {(s|c) ∈ SC : ∃(s, t) ∈ R s.t. t|c ∈ Z},
ax(Z) = {(s|c1 ∧ . . . ∧ cn) ∈ SC) : {t : (s, t) ∈ R} = {t1, . . . , tn},

∀i, 1 ≤ i ≤ n, ti|ci ∈ Z, |=D ∃(c1 ∧ . . . ∧ cn)}.

Let us consider the fixpoint equations between QFCTL formulae and sets of
state-constraint pairs given in Table 2. These equations can be used to compute
the validity domains of the free variables of a QFCTL formula in each state, by
finite fixpoint iteration.

Example 4. For the formula EG (x ≤ V) and the Kripke structure of Example
2, the fixpoint iteration provides the following result:

state x = 1 x = 2 x = 3 x = 4 x = 5
x ≤ V 1 ≤ V 2 ≤ V 3 ≤ V 4 ≤ V 5 ≤ V
τ0
EG (x≤V) true true true true true

τ1
EG (x≤V) 1 ≤ V 2 ≤ V 3 ≤ V 4 ≤ V 5 ≤ V

τ2
EG (x≤V) 2 ≤ V 3 ≤ V 4 ≤ V 4 ≤ V 5 ≤ V

τ3
EG (x≤V) 3 ≤ V 4 ≤ V 4 ≤ V 4 ≤ V 5 ≤ V

τ4
EG (x≤V) 4 ≤ V 4 ≤ V 4 ≤ V 4 ≤ V 5 ≤ V

τ5
EG (x≤V) = [EG (x ≤ V)] 4 ≤ V 4 ≤ V 4 ≤ V 4 ≤ V 5 ≤ V

While for the formula AG (x ≤ V) involving greatest fixpoint computation,
starting from all states labelled by the constraint true, we get the fixpoint

state x = 1 x = 2 x = 3 x = 4 x = 5
[AG (x ≤ V)] 5 ≤ V 5 ≤ V 5 ≤ V 5 ≤ V 5 ≤ V

Let us say that an operator τ over a set S is bounded if ∀s ∈ S ∃i ∈ N τ i+1(s) =
τ i(s). It is clear from the proof of Knaster-Tarski-Kleene theorem that:

Proposition 1. A bounded monotonic operator τ over a lattice (L,⊥,&,�,�)
admits a least fixpoint equal to τ i(⊥) for some i ≥ 0, and a greatest fixpoint
equal to τ j(&) for some j ≥ 0.

Lemma 1. The constrained predicate transformers ex and ax, and the con-
strained predicate transformers associated to QFCTL operators, are monotonic
and bounded in finite Kripke structures.

Proof. As for monotonicity, it is clear that if Z1 ⊂ Z2 then ex(Z1) ⊆ ex(Z2),
ax(Z1) ⊆ ax(Z2). The same goes for the predicate transformers of QFCTL
operators since they proceed by intersection or union of monotonic operators.

Predicate transformers ex and ax are also bounded since otherwise one could
exhibit an infinite chain of states such that (si, si+1) ∈ R with ∀i, j, 1 ≤ i <
j, si �= sj , a contradiction in a finite Kripke structure. The same goes for the
other predicate transformers since they are built by union or intersection of
bounded operators.

From Model-Checking to Temporal Logic Constraint Solving 327

Proposition 2 (soundness). If s|c ∈ [φ] then K, s |=D ρ(φ) for every valua-
tion ρ such that |=D ρ(c).

Proof. By structural induction on φ.

Proposition 3 (completeness). If K, s |=D ρ(φ) then there exists s|c ∈ [φ]K
such that |=D ρ(c).

Proof. By structural induction on φ.

We thus get:

Theorem 1. The satisfiability problem of QFCTL formulae in a finite Kripke
structure over a domain D with a decidable language of constraints, is decidable.

Proposition 4. The number of fixpoint iteration steps in the QFCTL constraint
solving algorithm 2 is in O(n ∗ k2) where n is the size of the formula and k is
the number of states.

Proof. The algorithm proceeds by iteratively computing constrained states for
the subformulae of the formula, hence in at most n steps. For each subfor-
mula, the algorithm computes a fixpoint of constrained states by iteration on
constrained states, hence in at most k2 steps. Each elementary step involves con-
straint satisfiability checking operations whose time complexity is not counted
here.

This quadratic complexity in the number of states must be contrasted with the
linear complexity of the QFCTL model-checking algorithm (Prop. 3). The lin-
ear complexity of model-checking relies on Tarjan’s algorithm for computing
strongly connected components of the structure for EG formulae. For comput-
ing validity domains however, one would need to consider the different circuits
of the structure in order to label the states with appropriate domains for EG
formulae (see example 2). The fixpoint computation shows that this labeling can
be done in quadratic time, whereas a naive algorithm considering all the circuits
of the finite Kripke structure would require an exponential time.

4 QFCTL Formulae over a Metric Space D
In this section, we consider the case where the computation domain D is a metric
space, i.e. a domain given with a distance function d : D2 → R.

4.1 Continuous Valuation of QFCTL Formulae

In this general setting of metric spaces as computation domain, the QFCTL
constraint solving algorithm provides a mean to evaluate closed QFCTL formula
continuously in the interval [0, 1], instead of by a Boolean value.

For this, given a QFCTL formula φ, a QFCTL pattern formula ψ(x1, ..., xk)
is introduced by replacing some constants in φ by new variables {x1, ..., xk}:

328 F. Fages and A. Rizk

we have φ = ψ(v1, ..., vk) for some instantiation of the variables by domain
values v1, ..., vk. The satisfaction degree of φ is then defined using the distance
between the validity domain of the variables x1, ..., xk in ψ and the objective
values (v1, ..., vk) in Rk.

Definition 5. The violation degree vd(φ, ψ) of a QFCTL formula φ in a Kripke
structure K with respect to a pattern formula ψ(y) such that φ = ψ(v) for some
real values v, is the euclidean distance d between v and the initial state validity
domain Dy

ψ of the free variables of ψ, or +∞ if ψ is not satisfiable:

vd(φ, ψ) = minv′∈Dy
ψ
d(v′, v)

The satisfaction degree, sd(φ, ψ) ∈ [0, 1], of φ with respect to ψ is obtained by
normalization:

sd(φ, ψ) =
1

1 + vd(φ, ψ)

Example 5. For instance, in example 3, the formulae EG (x ≤ 2) and AG (x ≤
2) can now be given a continuous degree of satisfaction with respect to the
pattern formulae EG (x ≤ V) and AG (x ≤ V) respectively. This is obtained
simply by computing the distance between the validity domain of V and the
objective value 2. This gives the following satisfaction degrees:

state x = 1 x = 2 x = 3 x = 4 x = 5
sd(EG (x ≤ 2) 1/3 1/3 1/3 1/3 1/4
sd(AG (x ≤ 2)) 1/4 1/4 1/4 1/4 1/4

Interestingly, this notion of satisfaction degree gives also rise naturally to a
pseudometric between Kripke structures with respect to a temporal specification
φ, by considering the difference in the degrees of satisfaction of φ between both
structures.

4.2 Parameter Optimization with Respect to a QFCTL Formula

Because it quantifies how far a Kripke structure K is from a given specification,
the satisfaction degree can be used to guide the search when one tries to modify
a Kripke structure to make it satisfy a specification. When D = R, this enables
the use of (non-linear) continuous optimization methods, where state valuations
are the variables being optimized and where the satisfaction degree provides a
”black box” fitness function [32].

An optimization problem is thus defined for the satisfaction degree of a
QFCTL formula φ∗ w.r;t. a valuation ρφ of some of its variables. This has an
intuitive interpretation : φ∗ is the kind of property considered while ρφ defines
the objective valuation of the actual property.

In the implementation described below, we use the covariance matrix adaptive
evolution strategy of Hansen and Ostermeier [21], as non-linear optimization
method for maximizing the satisfaction degree of QFCTL specifications.

From Model-Checking to Temporal Logic Constraint Solving 329

4.3 Robustness Estimation with Respect to QFCTL(Rlin)
Specifications

The notion of satisfaction degree can also be used to define a degree of robustness
of a behavior described in temporal logic with respect to a set of perturbations,
and estimate it computationally [33]. This robustness degree is defined as the
mean value of the satisfaction degree of the property of interest over all ad-
missible perturbations, possibly weighted by probabilities. This definition is an
adaptation of the general definition given by Kitano [25] to the temporal logic
setting:

Definition 6. [33] Let P be a set of perturbations, prob(p) be the probability of
perturbation p, s be the initial state of the numerical trace of the system under
perturbation p ∈ P . The robustness degree Rφ,P of a property φ with respect to

P is the real value Rφ,P =
∫

p∈P

sd(φ, s)prob(p)dp

In the case of an infinite perturbation set, this robustness degree can be estimated
by sampling. The robustness degree can be used to compare models and can even
be integrated as a criterion in the parameter optimization procedure [32].

4.4 Implementation

Our current implementation of QFCTL constraint solving is restricted to linear
constraints over the reals and to linear Kripke structures, i.e. numerical traces
without branching. The constraint solving problem of a QFCTL formula on a
numerical trace, the computation of the satisfaction degree of a formula and its
use as a fitness function for parameter optimization are implemented in version
2.8 of the freely available tool BIOCHAM, a modeling environment for the anal-
ysis of biological systems [19]. The computation of validity domains is handled
by a simplified version of the QFCTL constraint solving algorithm dealing only
with a single numerical trace, i.e. a finite linear structure [33]. The atomic con-
straints are linear constraints over the reals. Their satisfiability is checked using
the Parma Polyhedra Library [4].

5 Applications in Systems Biology

5.1 Context of Molecular Systems Biology

The use of temporal logics in systems biology relies on a logical paradigm which
consists in making the following identifications:

biological model = (quantitative) transition system
biological properties = temporal logic formulae

automatic validation = model-checking

330 F. Fages and A. Rizk

In this domain, temporal logics have been used in recent years in many appli-
cations, either as query languages of large interaction maps [10] or gene regula-
tory networks [5], or as specification languages of biological properties known or
inferred [17] from experiments, and used for validating models, discriminating
between models and proposing new biological experiments [7], finding parameter
values [9], or estimating robustness [32,6].

The difficulty inherent in using quantitative, but still incomplete, uncertain
and imprecise biological knowledge makes the modeling problem a challenging
task. Temporal logics help cope with this difficulty by providing a powerful
specification language of the behavior of the system. The advantage of temporal
logics is particularly explicit in comparison with the essentially qualitative prop-
erties considered in dynamical systems theory (e.g. multistability, existence of
oscillations) or with the exact quantitative properties considered in optimization
theory (e.g. curve fitting) as it allows us to express both qualitative (e.g. some
protein is eventually produced) and quantitative (e.g. a concentration exceeds
10) properties.

Numerical traces representing evolution over a given time span of biological
species can be obtained either from measurements in biological experiments, or
from simulations by numerical integration of (non-linear) ODE models. QFCTL
formulae are interpreted on these finite traces by adding a loop on the last state
which only changes the meaning of X [32]. Non-linear continuous optimization
methods can then be used to optimize a biological model with respect to a
QFCTL specification. Note that in this case, the Kripke structure is optimized
indirectly, by optimizing the biological model producing it.

5.2 Parameter Optimization with Respect to QFCTL(Rlin)
Specifications

We examine here the problem of finding parameter values of biological models
such that the numerical trace obtained by simulation satisfies a given specifica-
tion. We consider several examples of parameter optimization problems [32] in
three ordinary differential equation models. We provide the CPU time (in sec-
onds) required for optimization and for a single validity domain computation.

The first model is the budding yeast cell cycle ODE model of Chen et al.
[12] which displays how some proteins interact to form an heterodimer known as
maturation promoting factor (MPF) playing a key role in the control of mitotic
cycles. For given sets of kinetic parameter values, MPF exhibits periodic activity
peaks. We use formulae φ∗

1, φ∗
2 and φ∗

3 to see if it is possible to respectively find
values in order to have higher MPF peaks, greater MPF amplitude, or shorter
oscillation periods.

The second model is a model of the MAPK signal transduction cascade in
the cell [27]. In [31], oscillations have been found in this model of the cascade of
enzymatic reactions is directional and does not contain any negative feedback
reaction. In [18] we analyzed this phenomenon in terms of the negative circuits
of the influence graph associated to a reaction graph. Here, we use φ5 to find
parameter values and initial conditions that exhibit sustained oscillations with

From Model-Checking to Temporal Logic Constraint Solving 331

some amplitude constraint on the protein complex MAPKp1p2. Formula φ4 il-
lustrates a curve fitting problem on two time points and the protein complex
MEKRAFp1.

The last example is a design problem. Given a specification of a synthetic gene
transcriptional cascade system, whose input is EYFP we search for transcription
rate parameter values with well-timed and fast-switching constraints (formula φ6).

The following QFCTL formulae are considered with the objective valuations
given in column ρφ of Table 3:

φ∗
1 = EF ([MPF] > max)

φ∗
2 = EF ([MPF] > x1 ∧ EF ([MPF] < x2

∧EF ([MPF] > x1 ∧ EF ([MPF] < x2))))
∧x1 − x2 > a

φ∗
3 = EF (d([Cdc2])/dt < 0 ∧ EX(d([Cdc2])/dt > 0 ∧ T ime = t1

∧EX(F (d([Cdc2])/dt > 0 ∧ EX(d([Cdc2])/dt < 0 ∧ T ime = t2))
∧ t2 − t1 > p

φ∗
4 = EG(T ime = 30 → [MEKRAFp1] = u

∧T ime = 60 → [MEKRAFp1] = v) ∧ · · ·
φ∗

5 = EF ([MAPKp1p2] > x1 ∧ EF ([MAPKp1p2] < x2))
∧x1 − x2 > a

φ∗
6 = EG(T ime < t1 → [EY FP] < 103)

∧EG(T ime > t2 → [EY FP] > 105)
∧ t1 > b1 ∧ t2 < b2 ∧ t2 − t1 < b3

Table 3 summarizes our performance evaluation on these benchmarks. The di-
mension of the search space (i.e. number of parameters) does not determine alone
the complexity of an optimization problem : problems involving φ∗

4 and φ∗
5 have

Table 3. Parameter optimization benchmark where #parameters is the number of
parameters of the biological model being optimized, |V | the number of species in that
model (i.e the number of variables in the produced numerical trace), last |S| the number
of states in the last produced numerical trace, |Y | the number of formula variables,
CPU time the time in seconds required to complete the optimization on a Core 2
Duo 2GHz, #iterations the number of calls to the fitness function (i.e validity domain
computations and numerical simulations of the model) and CPU time for val. domain
in one iteration the time to compute the validity domain on the last simulated trace.

Model #para- |V | last φ∗ ρφ |Y | CPU #iter- CPU time (s) for
meters |S| time (s) ations val. domain

in one iteration
Cell cycle 2 6 186 φ∗

1 max=0.3 1 27 132 0.02
Cell cycle 2 6 204 φ∗

2 a=0.3 3 131 138 1.2
Cell cycle 8 6 267 φ∗

3 p=20 3 23 40 0.39
MAPK 22 22 35 φ∗

4 u, v.. = 0.03, 0.04.. 6 259 611 0.001
MAPK 37 22 234 φ∗

5 a=0.5 3 453 868 0.17
Cascade 15 3 346 φ∗

6 b1, b2, b3 5 70 96 0.48
Cascade = 150, 150, 450

332 F. Fages and A. Rizk

high dimensions and are the longest to solve but φ∗
3 and φ∗

6 are faster than φ∗
2

despite their much higher dimensions. But even with search space dimensions
as high as 37, by guiding the search with the continuous valuation of QFCTL
formulae, it is possible to find solutions with only less than a thousand calls
to the fitness function. Notice that the time required to compute the validity
domains is in general only a small fraction of the total CPU time. This can be
explained by the optimization method overhead and more importantly by the
time required to generate traces by numerical integration.

6 Conclusion

We have shown that the QFCTL constraint satisfiability problem is decidable in
finite Kripke structures over an arbitrary computation domain with a decidable
language of constraints, i.e. that any constraint solver can be lifted to a temporal
logic constraint solver over finite Kripke structures. We have presented a generic
QFCTL constraint solver which computes validity domains for the free variables
of a formula, in quadratic time in the number of states, and linear time in the
size of the formula, apart from the basic constraint satisfiability checks.

We have shown that the computation of validity domains for QFCTL con-
straints over metric spaces makes it possible to define a continuous measure of
satisfaction of QFCTL formulae, opening up the field of model-checking to opti-
mization. This has been illustrated with central computational issues in systems
biology, from which our present work originates, for inferring kinetic parameter
values in structural models from the observed behaviors of the system formal-
ized in temporal logic with numerical constraints. It should be clear however
that these methods for parameter optimization with respect to temporal logic
specifications and robustness analyses, should be of a wider application spectrum
in dynamical systems, reverse-engineering and synthesis of hybrid systems.

Acknowledgements. We gracefully acknowledge discussions with Sylvain Soli-
man and Grégory Batt on this topic, partial support from the European FP6
Strep project TEMPO, and the reviewer’s comments for improving the presen-
tation.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. Logic in Computer Science, pp. 313–321 (1996)

2. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel pro-
grams using fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980.
LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)

3. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model check-
ing for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)

From Model-Checking to Temporal Logic Constraint Solving 333

5. Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schnei-
der, D.: Validation of qualitative models of genetic regulatory networks by model
checking: Analysis of the nutritional stress response in Escherichia coli. Bioinfor-
matics 21(suppl. 1), 19–28 (2005)

6. Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of
synthetic gene networks. Bioinformatics 23(18), 2415–2422 (2007)

7. Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: A fruitful application of formal
methods to biological regulatory networks: Extending thomas’ asynchronous logi-
cal approach with temporal logic. Journal of Theoretical Biology 229(3), 339–347
(2004)

8. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling path-
ways using the continuous time markow chains. In: Plotkin, G. (ed.) Transac-
tions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67.
Springer, Heidelberg (2006); CMSB 2005 Special Issue

9. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochem-
ical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp.
68–94. Springer, Heidelberg (2006); CMSB 2005 Special Issue

10. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In:
Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg
(2003)

11. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000)

12. Chen, K.C., Csikász-Nagy, A., Györffy, B., Val, J., Novàk, B., Tyson, J.J.: Kinetic
analysis of a molecular model of the budding yeast cell cycle. Molecular Biology of
the Cell 11, 396–391 (2000)

13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

14. Delzanno, G., Podelski, A.: Constraint-based deductive model checking.
STTT 3(3), 250–270 (2001)

15. Egerstedt, M., Mishra, B.: (2008)
16. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Kemal Sönmez,

M.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the
seventh Pacific Symposium on Biocomputing, January 2002, pp. 400–412 (2002)

17. Fages, F., Rizk, A.: On temporal logic constraint solving for the analysis of numer-
ical data time series. Theoretical Computer Science 408(1), 55–65 (2008)

18. Fages, F., Soliman, S.: From reaction models to influence graphs and back: a theo-
rem. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 90–102. Springer,
Heidelberg (2008)

19. Fages, F., Soliman, S., Rizk, A.: BIOCHAM v2.8 user’s manual. In: INRIA (2009),
http://contraintes.inria.fr/BIOCHAM

20. Halbwachs, N., Proy, Y.e., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. In: Formal Methods in System Design, pp. 157–185 (1997)

21. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

22. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Proba-
bilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB
2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)

23. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HYTECH: A model checker for hybrid
systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer,
Heidelberg (1997)

http://contraintes.inria.fr/BIOCHAM

334 F. Fages and A. Rizk

24. Janssen, M., Van Hentenryck, P., Deville, Y.: A constraint satisfaction approach
for enclosing solutions to parametric ordinary differential equations. SIAM Journal
on Numerical Analysis 40(5) (2002)

25. Kitano, H.: Towards a theory of biological robustness. Molecular Systems Biology 3,
137 (2007)

26. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. Journal on Software
Tools for Technology Transfer 1, 134–152 (1997)

27. Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins may biphasically affect
the levels of mitogen-activated protein kinase signaling and reduce its threshold
properties. PNAS 97(11), 5818–5823 (2000)

28. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

29. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
30. Podelski, A.: Model checking as constraint solving. In: Palsberg, J. (ed.) SAS 2000.

LNCS, vol. 1824, pp. 22–37. Springer, Heidelberg (2000)
31. Qiao, L., Nachbar, R.B., Kevrekidis, I.G., Shvartsman, S.Y.: Bistability and oscil-

lations in the huang-ferrell model of mapk signaling. PLoS Computational Biol-
ogy 3(9), 1819–1826 (2007)

32. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfac-
tion of temporal logic formulae with applications to systems biology. In: Heiner,
M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268.
Springer, Heidelberg (2008)

33. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for
robustness analysis with applications to synthetic gene networks. BioInformat-
ics 25(12), 169–178 (2009)

34. Tevfik, B., Richard, G., William, P.: Symbolic model checking of infinite state
systems using presburger arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS,
vol. 1254, pp. 400–411. Springer, Heidelberg (1997)

35. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state space.
In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg
(1998)

Exploiting Problem Structure for Solution Counting

Aurélie Favier1, Simon de Givry1, and Philippe Jégou2

1 INRA MIA Toulouse, France
{afavier,degivry}@toulouse.inra.fr

2 Université Paul Cézanne, Marseille, France
philippe.jegou@univ-cezanne.fr

Abstract. This paper deals with the challenging problem of counting the number
of solutions of a CSP, denoted #CSP. Recent progress have been made using
search methods, such as BTD [15], which exploit the constraint graph structure in
order to solve CSPs. We propose to adapt BTD for solving the #CSP problem. The
resulting exact counting method has a worst-case time complexity exponential in
a specific graph parameter, called tree-width. For problems with sparse constraint
graphs but large tree-width, we propose an iterative method which approximates
the number of solutions by solving a partition of the set of constraints into a
collection of partial chordal subgraphs. Its time complexity is exponential in the
maximum clique size - the clique number - of the original problem, which can
be much smaller than its tree-width. Experiments on CSP and SAT benchmarks
shows the practical efficiency of our proposed approaches.

1 Introduction

The Constraint Satisfaction Problem (CSP) formalism offers a powerful framework for
representing and solving efficiently many problems. Finding a solution is NP-complete.
A more difficult problem consists in counting the number of solutions. This problem,
denoted #CSP, is known to be #P-complete [27]. This problem has numerous appli-
cations in computer science, particularly in AI, e.g. in approximate reasoning [23], in
diagnosis [18], in belief revision [5], etc.

In the literature, two principal classes of approaches have been proposed. The first
class, methods find exactly the number of solutions. The second class, methods propose
approximations. For the first class, a natural approach consists in extending classical
search algorithms such as FC or MAC in order to enumerate all solutions. But the more
solutions there are, the longer it takes to enumerate them.

Here, we are interested in search methods that exploit the problem structure, pro-
viding time and space complexity bounds. This is the case for the d-DNNF compiler
[6] and AND/OR graph search [8,9] for counting. We propose to adapt Backtracking
with Tree-Decomposition (BTD) [15] to #CSP. This method was initially proposed for
solving structured CSPs. Our modifications to BTD are similar to what has been done
in the AND/OR context [8,9], except that BTD is based on a cluster tree-decomposition
instead of a pseudo-tree, which naturally enables BTD to exploit dynamic variable or-
derings inside clusters whereas AND/OR search uses a static ordering.

Most of the recent work on counting has been realized on #SAT, the model counting
problem associated with SAT [27]. Exact methods for #SAT extend systematic SAT

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 335–343, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

336 A. Favier, S. de Givry, and P. Jégou

solvers, adding component analysis [3] and caching [26] for efficiency. Approaches
using approximations estimate the number of solutions.

They propose poly-time or exponential time algorithms which must offer reasonably
good approximations of the number of solutions, with theoretical guarantees about the
quality of the approximation, or not. Again, most of the work has been done on #SAT
by sampling either the original OR search space [28,12,10,17], or the original AND/OR
search space [11]. All these methods except that in [28] provide a lower bound on the
number of solutions with a high-confidence interval obtained by randomly assigning
variables until solutions are found. A possible drawback of these approaches is that they
might find no solution within a given time limit due to inconsistent partial assignments.
For large and complex problems, this results in zero lower bounds or it requires time-
consuming parameter (e.g sample size) tuning in order to avoid this problem. Another
approach involves reducing the search space by adding streamlining XOR constraints
[13,14]. However, it does not guarantee that the resulting problem is easier to solve.

In this paper, we propose to relax the problem, by partitioning the set of constraints
into a collection of structured chordal subproblems. Each subproblem is then solved
using our modified BTD. This task should be relatively easy if the original instance
has a sparse graph1. Finally, an approximate number of solutions on the whole problem
is obtained by combining the results of each subproblem. The resulting approximate
method called ApproxBTD gives also a trivial upper bound on the number of solutions.
Other relaxation-based counting methods have been tried in the literature such as mini-
bucket elimination and iterative join-graph propagation [16], or in the related context of
Bayesian inference, iterative belief propagation and the edge deletion framework [4]2.
These approaches do not exploit the local structure of instances as it is done by search
methods such as BTD, thanks to local consistency and dynamic variable ordering.

In the next section, we introduce notation and tree-decomposition. Section 3 de-
scribes BTD for counting and Section 4 presents ApproxBTD for approximate count-
ing. Experimental results are given in Section 5, then we conclude.

2 Preliminaries

A CSP is a quadruplet P = (X ,D,C,R). X and D are sets of n variables and finite
domains. The domain of variable xi is denoted dxi . The maximum domain size is d. C
is a set of m constraints. Each constraint c ∈ C is a set {xc1 , . . . ,xck} of variables. A
relation rc ∈ R is associated with each constraint c such that rc represents (in intension)
the set of allowed tuples over dxc1

× ·· · × dxck
. An assignment Y = {x1, . . . ,xk} ⊆ X

is a tuple A = (v1, . . . ,vk) from dx1 × ·· ·× dxk . A constraint c is said satisfied by A if
c⊆ Y,A [c] ∈ rc, violated otherwise. A solution is a complete assignment satisfying all
the constraints. The structure of a CSP can be represented by the graph (X ,C), called

1 In fact, it depends on the tree-width of the subproblems, which is bounded by the maximum
clique size of the original instance. In the case of a sparse graph, we expect this size to be
small. This forbids using our approach for solution counting in CSPs with global constraints.

2 It starts by solving an initial polytree-structured subproblem, further augmented by progres-
sively recovering some edges, until the whole problem is solved. ApproxBTD starts directly
with a possibly larger chordal subproblem.

Exploiting Problem Structure for Solution Counting 337

the constraint graph, whose vertices are the variables of X and with an edge between
two vertices if the corresponding variables share a constraint.

A tree-decomposition [22] of a CSP P is a pair (C ,T) with T = (I,F) a tree with
vertices I and edges F and C = {Ci : i ∈ I} a family of subsets of X , such that each
cluster Ci is a node of T and satisfies: (1)∪i∈ICi = X , (2) for each constraint c∈C, there
exists i ∈ I with c⊆ Ci, (3) for all i, j,k ∈ I, if k is on a path from i to j in T , then Ci∩
C j ⊆ Ck. The width of a tree-decomposition (C ,T) is equal to maxi∈I|Ci|−1. The tree-
width of P is the minimum width over all its tree-decompositions. Finding an optimal
tree-decomposition is NP-Hard [2]. In the following, from a tree-decomposition, we
consider a rooted tree (I,F) with root C1 and we note Sons(Ci) the set of son clusters
of Ci and Desc(C j) the set of variables which belong to C j or to any descendant Ck of
C j in the subtree rooted in C j.

3 Exact Solution Counting with BTD

The essential property of tree decomposition is that assigning Ci∩C j (C j is a son of Ci)
separates the initial problem into two subproblems, which can then be solved indepen-
dently. The first subproblem rooted in C j is defined by the variables in Desc(C j) and
by all the constraints involving at least one variable in Desc(C j) \Ci. The remaining
constraints, together with the variables they involve, define the remaining subproblem.

A tree search algorithm can exploit this property by using a suitable variable ordering
: the variables of any cluster Ci must be assigned before the variables that remain in
its son clusters. In this case, for any cluster C j ∈ Sons(Ci), once Ci ∩ C j is assigned,
the subproblem rooted in C j conditioned by the current assignment A of Ci ∩C j can
be solved independently of the rest of the problem. The exact number of solutions nb
of this subproblem may then be recorded, called a #good and represented by a pair
(A [Ci∩C j],nb), which means it will never be computed again for the same assignment
of Ci∩C j. This is why algorithms such as BTD or AND / OR graph search are able to
keep the complexity exponential in the size of the largest cluster only.

BTD is described in Algorithm 1. Given an assignment A and a cluster Ci, BTD
looks for the number of extensions B of A on Desc(Ci) such that A [Ci-VCi] = B [Ci-VCi].
VCi denotes the set of unassigned variables of Ci. The first call is to BTD(/0,C1,C1) and it
returns the number of solutions. Inside a cluster Ci, it proceeds classically by assigning
a value to a variable and by backtracking if any constraint is violated. When every
variable in Ci is assigned, BTD computes the number of solutions of the subproblem
induced by the first son of Ci, if there is one. More generally, let us consider C j, a son of
Ci. Given a current assignment A on Ci, BTD checks whether the assignment A [Ci∩Cj]
corresponds to a #good. If so, BTD multiplies the recorded number of solutions with
the number of solutions of Ci with A as its assignment. Otherwise, it extends A on
Desc(Ci) in order to compute its number of consistent extensions nb. Then, it records
the #good (A [Ci ∩C j],nb). BTD computes the number of solutions of the subproblem
induced by the next son of Ci. Finally, when each son of Ci has been examined, BTD
tries to modify the current assignment of Ci. The number of solutions of Ci is the sum of
solution counts for every assignment of Ci. The time (resp. space) complexity of BTD
for #CSP is the same as for CSP: O(n.m.dw+1) (resp. O(n.s.ds)) with w + 1 the size

338 A. Favier, S. de Givry, and P. Jégou

of the largest Ck and s the size of the largest intersection Ci ∩C j (C j is a son of Ci).
In practice, for problems with large tree-width, BTD runs out of time and memory, as
shown in Section 5. In this case, we are interested in an approximate method.

Algorithm 1. BTD(A , Ci, VCi) : integer

if VCi = /0 then
if Sons(Ci) = /0 then return 1;
else

S← Sons(Ci) ; NbSol ← 1 ;
while S �= /0 and NbSol �= 0 do

choose C j in S ; S← S−{C j};
if (A[Ci∩C j],nb) is a #good in P then NbSol ← NbSol×nb; else

nb← BTD(A,C j ,VC j − (Ci∩C j));

record #good (A[Ci∩C j],nb) of Ci/C j in P ;
NbSol ← NbSol×nb;

return NbSol;

else
choose x ∈VCi ; d ← dx ; NbSol ← 0 ;
while d �= /0 do

choose v in d ; d ← d-{v};
if A ∪{x← v} does not violate any c ∈C then1

NbSol ← NbSol+BTD(A ∪{x← v}, Ci, VCi -{x});

return NbSol;

4 Approximate Solution Counting with ApproxBTD

We consider here CSPs that are not necessarily structured. We can define a collection of
subproblems of a CSP by partitioning the set of constraints, that is the set of edges in the
graph. We remark that each graph (X ,C) can be partitioned into k subgraphs (X1,E1),
. . . , (Xk,Ek), such that ∪Xi = X , ∪Ei = C and ∩Ei = /0, and such that each (Xi,Ei)
is chordal3. So, each (Xi,Ei) can be associated to a structured subproblem Pi (with
corresponding sets of variables Xi and constraints Ei), which can be efficiently solved
using BTD. Assume that SPi is the number of solutions for each subproblem Pi, 1 � i �
k. We will estimate the number of solutions of P exploiting the following property. We

denote PP (A) the probability of “A is a solution of P ” . PP (A) =
SP

∏x∈X dx
.

Property 1. Given a CSP P = (X ,D,C,R) and a partition {P1, ...,Pk} of P induced by
a partition of C in k elements.

SP ≈
⌈(

k

∏
i=1

SPi

∏x∈Xi
dx

)
×∏

x∈X
dx

⌉

Notice that the approximation returns an exact answer if all the subproblems are in-
dependent (∩Xi = /0) or k = 1 (P is already chordal) or if there exists an inconsistent

3 A graph is chordal if every cycle of length at least four has a chord, i.e. an edge joining two
non-consecutive vertices along the cycle.

Exploiting Problem Structure for Solution Counting 339

subproblem Pi. Moreover, we can provide a trivial upper bound on the number of solu-
tions due to the fact that each subproblem Pi is a relaxation of P (the same argument is
used in [21] to construct an upper bound).

SP ≤ min
i∈[1,k]

⌈
SPi

∏x∈Xi
dx
×∏

x∈X
dx

⌉

Algorithm 2. ApproxBTD(P) : integer

Let G′ = (X ′,C′) be the constraint graph associated with P ;
i← 0 ;
while G′ �= /0 do

i← i+1 ;
Compute a partial chordal subgraph (Xi,Ei) of G′ ;
Let P i be the subproblem associated with (Xi,Ei) ;
SPi ←BTD(/0,C ′1,C ′1) with C ′1 the root cluster of the tree-decomposition of P i ;
G′ ← (X ′,C′ −Ei) with X ′ be the set of variables induced by C′-Ei ;

k← i ;

return

⌈
∏k

i=1

SPi

∏x∈Xi
dx
×∏x∈X dx

⌉
;

Our proposed method called ApproxBTD is described in Algorithm 2. Applied to
a problem P with constraint graph (X ,C), the method builds a partition {E1, ...,Ek}
of C such that the constraint graph (Xi,Ei) is chordal for all 1 � i � k. Subproblems
associated to (Xi,Ei) are solved with BTD. The method returns an approximation to the
number of solutions of P using Property 1.

The number of iterations is less than n (at least we have n− 1 edges (a tree) at
each iteration or vertices have been deleted). Each chordal subgraph and its associated
optimal tree-decomposition can be computed in O(nm) [7]4. Moreover, we guarantee
that the tree-width w (plus one) of each computed chordal subgraph is at most equal to
K, the maximum clique size (the clique number) of P . Let w∗ be the tree-width of P ,
we have w+1≤K ≤w∗+1. Finally, the time complexity of ApproxBTD is O(n2mdK).

5 Experimental Results

We implemented BTD and ApproxBTD counting methods on top of toulbar2 C++
solver5. The experimentations were performed on a 2.6 GHz Intel Xeon computer with
4GB running Linux 2.6.27-11-server. Reported times are in seconds. We limit to one
hour the time spent for solving a given instance (’-’ time out, ’mem’ memory out).
In BTD (line 1), we use generalized arc consistency (only for constraints with 2 or 3
unassigned variables) instead of backward checking, for efficiency reasons. The min
domain / max degree dynamic variable ordering, modified by a conflict back-jumping
heuristic [19], is used inside clusters. Our methods exploit a binary branching scheme.
The variable is assigned to its first value or this value is removed from the domain.

4 It returns a maximal subgraph for binary CSP. For non-binary CSP, we do not guarantee sub-
graph maximality and add to the subproblem all constraints totally included in the subgraph.

5 http://mulcyber.toulouse.inra.fr/projects/toulbar2 version 0.8.

340 A. Favier, S. de Givry, and P. Jégou

We performed experiments on SAT and CSP benchmarks6. We selected academic
(random k-SAT wff, All-Interval Series ais, Towers of Hanoi hanoi) and industrial (cir-
cuit fault analysis ssa and bit, logistics planning logistics) satisfiable instances. CSP
benchmarks are graph coloring instances (counting the number of optimal solutions)
and genotype analysis in complex pedigrees [25]. This problem involves counting the
number of consistent genotype configurations satisfying genotyping partial observa-
tions and Mendelian laws of inheritance. The corresponding decision problem is NP-
complete [1]. We selected instances from [25], removing genotyping errors beforehand.

We compared BTD with state-of-the-art #SAT solvers Relsat [3] v2.02 and
Cachet [26] v1.22, and also c2d [6] v2.20 which also exploits the problem struc-
ture. Both methods uses MinFill variable elimination ordering heuristic (except for hanoi
where we used the default file order) to construct a tree-decomposition / d-DNNF. We
also compared ApproxBTD with approximation methodSampleCount [12]. With pa-
rameters (s = 20, t = 7,α = 1), SampleCount-LB provides an estimated lower bound
on the number of solutions with a high-confidence interval (99% confidence), after seven
runs. With parameters (s = 20,t = 1,α = 0), called SampleCount-A in the follow-
ing table, it gives only an approximation without any guarantee, after the first run of
SampleCount-LB. CSP instances are translated into SAT by using the direct encod-
ing (one Boolean variable per domain value, one clause per domain to enforce at least a
domain value is selected, and a set of binary clauses to forbid multiple value selection).

The following table summarizes our results. The columns are : instance name, num-
ber of variables, number of constraints / clauses, width of the tree-decomposition, exact
number of solutions if known, time for c2d, Cachet, Relsat, and BTD; for Ap-
proxBTD : maximum tree-width for all chordal subproblems, approximate number of
solutions, and time; and for SampleCount-A and SampleCount-LB : approxi-
mate number of solutions, corresponding upper bound, and time. We reported total
CPU times as given by c2d, cachet, relsat (precision in seconds). For BTD and Ap-
proxBTD, the total time does not include the task of finding a variable elimination
ordering. For SampleCount, we reported total CPU times with the bash command
”time”. We noticed that BTD can solve instances with relatively small tree-width (ex-
cept for le450 which has few solutions). Exact #SAT solvers generally perform better
than BTD on SAT instances (except for hanoi5) but have difficulties on translated CSP
instances. Here, BTD maintaining arc consistency performed better than #SAT solvers
using unit propagation. Our approximate method ApproxBTD exploits a partition of
the constraint graph in such a way that the resulting subproblems to solve have a small
tree-width (w ≤ 11) on these benchmarks. It has the practical effect that the method
is relatively fast whatever the original tree-width. The quality of the approximation
found by ApproxBTD is relatively good and it is comparable (except for ssa and logis-
tics benchmarks) to SampleCount, which takes more time. For graph coloring, BTD
and ApproxBTD outperform also a dedicated CSP approach (2 Insertion 3 ≥ 2.3e12,
mug100 1 ≥ 1.0e28 and games120≥ 4.5e42 in 1 minute each; myciel5 ≥ 4.1e17 in 12
minutes, times were measured on a 3.8GHz Xeon as reported in [14]).

6 From www.satlib.org, www.satcompetition.org and
mat.gsia.cmu.edu/COLOR02/

www.satlib.org
www.satcompetition.org
mat.gsia.cmu.edu/COLOR02/

Exploiting Problem Structure for Solution Counting 341

In
st

an
ce

s
V

ar
s

w
S

o
lu

ti
o
n
s

c
2
d

ca
ch

et
re

ls
at

B
T

D
A

p
p
ro

x
B

T
D

S
a
m
p
l
e
C
o
u
n
t
-
A
S
a
m
p
l
e
C
o
u
n
t
-
L
B

(B
o
o
l

v
ar

s)
T

im
e

T
im

e
T

im
e

T
im

e
w

S
o
lu

ti
o
n
s

T
im

e
S

o
lu

ti
o
n
s

T
im

e
S

o
lu

ti
o
n
s

T
im

e

S
A

T

w
ff

.3
.1

0
0
.1

5
0

1
0
0

3
9

1
.8

e2
1

-
-

-
m

em
2
≈

2
.2

1
e
2
1
≤

1
.9

5
e2

7
0
.0

2
≈

1
.3

7
e2

1
9
5
9
.8

-
-

w
ff

.3
.1

5
0
.5

2
5

1
5
0

9
2

1
.4

e1
4

-
-

2
5
0
9

m
em

2
≈

9
.9

3
e1

4
≤

7
.8

0
e4

0
0
.2

≈
3
.8

0
e
1
4

0
.6

8
≥

2
.5

3
e1

2
4
.6

5

ss
a7

5
5
2
-0

3
8

1
5
0
1

2
5

2
.8

4
e4

0
0
.1

5
0
.2

2
6
7

0
.7

2
5
≈

2
.4

7
e3

7
≤

1
.5

1
e1

3
8

1
.0

5
≈

1
.1

1
e
4
0

1
3
4
.2
≥

3
.5

4
e3

8
1
1
6
2
.0

6

ss
a7

5
5
2
-1

6
0

1
3
9
1

1
2

7
.4

7
e3

2
0
.1

2
0
.0

8
5

0
.2

9
5
≈

1
.5

6
e3

4
≤

2
.2

3
e1

1
3

0
.8

2
≈

5
.0

8
e
3
2

1
4
4
.6
≥

2
.3

1
e3

1
1
2
9
3

2
b
it

co
m

p
5

1
2
5

3
6

9
.8

4
e1

5
0
.4

7
0
.1

5
1

1
1
.5

3
5
≈

9
.5

0
e1

6
≤

1
.7

5
e3

1
0
.0

3
≈

4
.3

7
e
1
5

0
.1

8
4
≥

3
.2

6
e1

5
1
.2

3

2
b
it

m
ax

6
2
5
2

5
8

2
.1

0
e2

9
1
8
.7

1
1
.5

7
2
0

m
em

5
≈

2
.6

9
e3

0
≤

4
.2

7
e6

5
0
.1

4
≈

1
.6

2
e
2
9

1
.6

7
6
≥

2
.3

6
e2

6
1
0
.3

4

ai
s1

0
1
8
1

1
1
6

2
9
6

1
7
.1

4
2
9
.3

1
6

3
9
0
.3

2
9

≈
1
≤

2
.8

6
e2

2
1
.0

5
≈

1
2
4

4
5
.9

3
≥

2
0

3
1
2
.7

4

ai
s1

2
2
6
5

1
8
1

1
3
2
8

1
1
6
2
.7

5
2
1
6
9

2
2
9

-
1
1

≈
1
≤

1
.6

4
e4

0
3
.7

8
≈

0
9
.1

5
6

≥
0

9
.1

7

lo
g
is

ti
cs

.a
8
2
8

1
1
6

3
.8

e1
4

-
3
.8

2
1
0

m
em

1
0

≈
1
≤

2
.3

3
e1

4
7

1
3
.3

0
≈

7
.2

5
e
1
1

1
7
0
.9

≥
0

6
0
5
.3

3

lo
g
is

ti
cs

.b
8
4
3

1
0
7

2
.3

e2
3

-
1
2
.4

4
3
3

m
em

1
3

≈
1
≤

2
.2

8
e1

4
3

1
3
.7

2
≈

2
.1

3
e
2
3

1
9
8
.7

≥
0

2
2
9
.8

6

h
an

o
i4

7
1
8

4
6

1
3
.4

1
3
2
.6

9
3

1
.7

2
6

≈
1
≤

8
.6

5
e1

0
7

1
.5

7
≈

0
5
.2

4
≥

0
5
.2

5

h
an

o
i5

1
9
3
1

5
8

1
-

-
-

2
5
.4

6
7

≈
1
≤

2
.6

2
e2

9
8

1
5
.6

9
≈

0
6
.1

4
≥

0
6
.1

6

c
o
lo

r
in

g

2
-I

n
se

rt
io

n
s

3
3
7

(1
4
8
)

9
6
.8

4
e1

3
2
3
5

-
-

7
.9

1
≈

1
.9

1
e
1
3
≤

6
.0

0
e1

7
0
.0

1
≈

4
.7

3
e1

2
1
.0

0
≥

4
.7

3
e1

2
7
.4

2

2
-I

n
se

rt
io

n
s

4
1
4
9

(5
9
6
)

3
8

-
-

-
-

-
1
≈

1
.3

0
e2

2
≤

1
.6

4
e7

1
0
.0

7
≈

0
3
.7

6
≥

0
3
.7

8

D
S

JC
1
2
5
.1

1
2
5

(6
2
5
)

6
5

-
-

-
-

-
3
≈

1
.2

3
e1

3
≤

2
.2

7
e7

0
0
.1

3
≈

0
7
3
.1

4
≥

0
7
3
.1

7

g
am

es
1
2
0

1
2
0

(1
0
8
0
)

4
1

-
-

-
-

-
8
≈

1
.1

2
e7

8
≤

1
.9

2
e9

9
9
.8

3
≈

0
1
3
.7

6
≥

1
.3

5
e6

1
9
1
.0

7

G
E

O
M

3
0
a

3
0

(1
8
0
)

6
4
.9

8
e1

4
0
.8

6
-

-
0
.0

8
5
≈

7
.2

9
e
1
4
≤

1
.8

1
e1

5
0
.0

3
≈

1
.2

3
e1

3
0
.4

3
2
≥

3
.2

8
e1

2
3
.7

0

G
E

O
M

4
0

4
0

(2
4
0
)

5
4
.1

e2
3

1
-

-
0
.0

9
5
≈

4
.4

2
e
2
3
≤

1
.1

0
e2

4
0
.0

2
≈

2
.1

4
e2

0
1
.5

5
2
≥

6
.5

0
e1

9
9
.3

1

le
4
5
0

5
a

4
5
0

(2
2
5
0
)

3
1
5

3
8
4
0

-
3
4
3
.6

8
3
2
6

9
5
3
.2

4
4

≈
1
≤

2
.4

1
e2

1
6

2
.8

7
≈

0
8
.5

6
≥

0
8
.5

8

le
4
5
0

5
b

4
5
0

(2
2
5
0
)

3
1
8

1
2
0

-
2
4
2
.3

0
1
8
7

1
1
6
7
.7

8
4

≈
1
≤

5
.7

1
e2

1
6

2
.9

0
≈

0
8
.5

9
≥

0
8
.6

1

le
4
5
0

5
c

4
5
0

(2
2
5
0
)

3
1
5

1
2
0

-
2
0
.7

9
5
7

4
3
.6

6
4

≈
1
≤

1
.4

9
e2

0
1

6
.6

5
≈

0
1
1
0
.5

≥
0

1
1
0
.5

6

le
4
5
0

5
d

4
5
0

(2
2
5
0
)

2
9
9

9
6
0

-
1
6
.0

7
3
6

8
5
.0

3
4

≈
1
≤

8
.5

8
e2

0
0

6
.6

4
≈

0
5
4
.5

7
≥

0
5
4
.5

8

m
u
g
1
0
0

1
1
0
0

(4
0
0
)

3
1
.3

e3
7

0
.1

9
-

-
0
.0

2
2
≈

5
.3

3
e
3
7
≤

7
.0

8
e4

1
0
.0

1
≈

4
.2

e3
4

2
.0

8
≥

4
.2

0
e3

4
1
5
.5

9

m
y
ci

el
5

4
7

(2
8
2
)

2
1

-
-

-
-

m
em

1
≈

7
.7

0
e1

7
≤

8
.5

3
e3

2
0
.0

2
≈

7
.2

9
e1

7
0
.8

6
≥

7
.2

9
e1

7
6
.3

7

p
e
d

ig
re

e

p
ar

k
in

so
n

3
4

(3
4
0
)

4
3
.5

6
e1

0
3
1
.3

4
5
.3

3
3
4
4

0
.1

2
2
≈

2
.3

3
e1

0
≤

6
.3

e1
1

0
.0

2
≈

4
.0

8
e
1
0

3
.5

8
≥

9
.1

7
e8

2
5
.6

2

m
o
is

sa
c3

7
2

(1
3
5
0
)

2
4
.8

9
e3

5
0
.9

8
0
.0

9
<

1
0
.0

2
2
≈

3
.4

0
e
3
5
≤

6
.1

1
e3

5
0
.0

2
≈

1
.1

8
e3

4
1
6
.9

3
≥

6
.7

5
e3

1
1
1
8
.4

1

la
n
g
la

d
eM

7
4
2
7

(8
8
1
8
)

8
6
.7

3
e1

9
6

-
-

-
3
1
.7

9
2
≈

3
.8

1
e
1
9
3
≤

8
.0

7
e2

0
3

0
.1

4
≈

3
.0

3
e1

7
9

8
1
6
.9

-
-

342 A. Favier, S. de Givry, and P. Jégou

6 Conclusion

In this paper, we have proposed two methods for counting solutions of CSPs. These
methods are based on a structural decomposition of CSPs. We have presented an exact
method, which is adapted to problems with small tree-width. For problems with large
tree-width and sparse constraint graph, we have presented a new approximate method
whose quality is comparable with existing methods and which is much faster than other
approaches and which requires no parameter tuning (except the choice of a tree decom-
position heuristic). Other structural parameters [20,24] should deserve future work.

References

1. Aceto, L., Hansen, J.A., Ingólfsdóttir, A., Johnsen, J., Knudsen, J.: The complexity of check-
ing consistency of pedigree information and related problems. Journal of Computer Science
Technology 19(1), 42–59 (2004)

2. Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in a k-tree.
SIAM Journal of Discrete Mathematics 8, 277–284 (1987)

3. Bayardo, R., Pehoushek, J.: Counting models using connected components. In: AAAI 2000,
pp. 157–162 (2000)

4. Choi, A., Darwiche, A.: An edge deletion semantics for belief propagation and its practical
impact on approximation quality. In: Proc. of AAAI, pp. 1107–1114 (2006)

5. Darwiche, A.: On the tractable counting of theory models and its applications to truth main-
tenance and belief revision. Journal of Applied Non-classical Logic 11, 11–34 (2001)

6. Darwiche, A.: New advances in compiling cnf to decomposable negation normal form. In:
Proc. of ECAI, pp. 328–332 (2004)

7. Dearing, P.M., Shier, D.R., Warner, D.D.: Maximal chordal subgraphs. Discrete Applied
Mathematics 20(3), 181–190 (1988)

8. Dechter, R., Mateescu, R.: The impact of and/or search spaces on constraint satisfaction and
counting. In: Proc. of CP, Toronto, CA, pp. 731–736 (2004)

9. Dechter, R., Mateescu, R.: And/or search spaces for graphical models. Artif. Intell. 171(2-3),
73–106 (2007)

10. Gogate, V., Dechter, R.: Approximate counting by sampling the backtrack-free search space.
In: Proc. of AAAI 2007, Vancouver, CA, pp. 198–203 (2007)

11. Gogate, V., Dechter, R.: Approximate solution sampling (and counting) on and/or search
spaces. In: Proc. of CP 2008, Sydney, AU, pp. 534–538 (2008)

12. Gomes, C.P., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model counting.
In: Proc. of IJCAI, pp. 2293–2299 (2007)

13. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: A new strategy for obtaining good
bounds. In: Proc. of AAAI-06, Boston, MA (2006)

14. Gomes, C.P., van Hoeve, W.-J., Sabharwal, A., Selman, B.: Counting CSP solutions using
generalized XOR constraints. In: Proc. of AAAI 2007, Vancouver, BC, pp. 204–209 (2007)

15. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint
networks. Artificial Intelligence 146, 43–75 (2003)

16. Kask, K., Dechter, R., Gogate, V.: New look-ahead schemes for constraint satisfaction. In:
Proc. of AI&M (2004)

17. Kroc, L., Sabharwal, A., Selman, B.: Leveraging belief propagation, backtrack search, and
statistics for model counting. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS,
vol. 5015, pp. 127–141. Springer, Heidelberg (2008)

Exploiting Problem Structure for Solution Counting 343

18. Satish Kumar, T.K.: A model counting characterization of diagnoses. In: Proc. of the 13th
International Workshop on Principles of Diagnosis (2002)

19. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Last conflict based reasoning. In: Proc. of ECAI
2006, Trento, Italy, pp. 133–137 (2006)

20. Nishimura, N., Ragde, P., Szeider, S.: Solving #sat using vertex covers. Acta Inf. 44(7), 509–
523 (2007)

21. Pesant, G.: Counting solutions of CSPs: A structural approach. In: Proc. of IJCAI, pp. 260–
265 (2005)

22. Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of tree-width. Algo-
rithms 7, 309–322 (1986)

23. Roth, D.: On the hardness of approximate reasonning. Artificial Intelligence 82(1-2), 273–
302 (1996)

24. Samer, M., Szeider, S.: A fixed-parameter algorithm for #sat with parameter incidence
treewidth (2006)

25. Sanchez, M., de Givry, S., Schiex, T.: Mendelian error detection in complex pedigrees using
weighted constraint satisfaction techniques. Constraints 13(1), 130–154 (2008)

26. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component caching and
clause learning for effective model counting. In: SAT 2004, Vancouver, Canada (2004)

27. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Sci-
ences 8, 189–201 (1979)

28. Wei, W., Selman, B.: A new approach to model counting. In: Bacchus, F., Walsh, T. (eds.)
SAT 2005. LNCS, vol. 3569, pp. 324–339. Springer, Heidelberg (2005)

Solving a Location-Allocation Problem with
Logic-Based Benders’ Decomposition

Mohammad M. Fazel-Zarandi and J. Christopher Beck

Department of Mechanical and Industrial Engineering
University of Toronto

Toronto, Ontario M5S 3G8, Canada
{fazel,jcb}@mie.utoronto.ca

Abstract. We address a location-allocation problem that requires de-
ciding the location of a set of facilities, the allocation of customers to
those facilities under facility capacity constraints, and the allocation
of the customers to trucks at those facilities under per truck travel-
distance constraints. We present a hybrid approach that combines integer
programming and constraint programming using logic-based Benders’
decomposition. Computational performance against an existing integer
programming model and a tabu search approach demonstrates that the
Benders’ model is able to find and prove optimal solutions an order of
magnitude faster than an integer programming model while also finding
better feasible solutions in less time for the majority of problem instances
when compared to the tabu search.

1 Introduction

Location-routing problems are well-studied, challenging problems in the area of
logistics and fleet management [1]. The goal is to find the minimum cost solutions
that decides on a set of facilities to open, the allocation of clients and vehicles
to each facility, and finally the creation of a set of routes for each vehicle. Given
the difficulty of this problem, Albareda-Sambola et al. [2] recently introduced
a location-allocation problem which simplifies the routing aspect by assuming a
full truckload per client. Multiple clients can be served by the same vehicle if the
sum of the return trips is less than the maximum travel distance of the truck.

In this paper, we develop a logic-based Benders’ decomposition [3] for the
location-allocation problem. We compare our approach empirically to an integer
programming (IP) model and to a sophisticated tabu search [2]. Our experimen-
tal results demonstrate an order of magnitude improvement over the IP model
in terms of time required to find and prove optimality and significant improve-
ment over the tabu search approach in terms of finding high-quality feasible
solutions with small CPU time. To our knowledge, this is a first attempt to
solve a location-allocation problem using logic-based Benders’ decomposition.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 344–351, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Solving a Location-Allocation Problem 345

2 Problem Definition and Existing Approaches

The capacity and distance constrained plant location problem (CDCPLP) [2]
considers a set of capacitated facilities, each housing a number of identical ve-
hicles for serving clients. Clients are served by full return trips from the facility.
The same vehicle can be used to serve several clients as long as its daily work-
load does not exceed a given total driving distance. The goal is to select the set
of facilities to open, determine the number of vehicles required at each opened
site, and assign clients to facilities and vehicles in the most cost-efficient manner.
The assignments must be feasible with respect to the facilities’ capacities and
the maximum distance a vehicle can travel.

Formally, let J be the set of potential facilities (or sites) and I be the set of
clients. Each facility, j ∈ J , is associated with a fixed opening cost, fj, and a
capacity, bj (e.g., a measure of the volume of material that a facility can process).
Clients are served by open facilities with a homogeneous set of vehicles. Each
vehicle has a corresponding fixed utilization cost, u, and a maximum total daily
driving distance, l. Serving client i from site j generates a driving distance, tij , for
the vehicle performing the service, consumes a quantity, di, of the capacity of the
site, and has an associated cost, cij . The available vehicles at a site are indexed
in set K with parameter k ≥ |K| being the maximum number of vehicles at any
site. Albareda-Sambola et al. formulate an integer programming (IP) model of
the problem as shown in Figure 1, where the decision variables are:

pj =
{

1, if facility j is open
0, otherwise

zjk =
{

1, if a kth vehicle is assigned to site j
0, otherwise

xijk =
{

1, if client i is served by the kth vehicle of site j
0, otherwise

The objective function minimizes the sum of the costs of opening the facilities,
using the vehicles, and the travel. Constraint (1) ensures that each client is served
by exactly one facility. The driving distance limits are defined by constraint (2).
Constraint (3) limits the demand allocated to facility j. Constraints (4) and (5)
ensure that a client cannot be served from a site that has not been opened nor
by a vehicle that has not been allocated. Constraint (6) states that at a site,
vehicle k will not be used before vehicle k − 1.

Albareda-Sambola et al. compare the IP performance to that of a three-level
nested tabu search. The outermost level decides the open facilities, the middle
level, the assignment of clients to facilities, and the innermost level, the assign-
ment of clients to trucks. Tabu search is done on each level in a nested fashion:
first neighborhoods that open, close, and exchange facilities are used to find a
feasible facility configuration, then, using that configuration, the client assign-
ment neighborhoods are explored, and finally the truck assignment is searched

346 M.M. Fazel-Zarandi and J.C. Beck

min
∑
j∈J

fjpj + u
∑
j∈J

∑
k∈K

zjk +
∑
i∈I

∑
j∈J

cij

∑
k∈k

xijk

s.t.
∑
j∈J

∑
k∈K

xijk = 1 i ∈ I (1)∑
i∈I

tijxijk ≤ l · zjk j ∈ J, k ∈ K (2)∑
i∈I

∑
k∈K

dixijk ≤ bjpj j ∈ J (3)

zjk ≤ pj j ∈ J, k ∈ K (4)
xijk ≤ zjk i ∈ I, j ∈ J, k ∈ K (5)
zjk ≤ zjk−1 j ∈ J, k ∈ K\{1} (6)
xijk, pj , zjk ∈ {0, 1} i ∈ I, j ∈ J, k ∈ K (7)

Fig. 1. An IP model of the CDCPLP [2]

over. Search then returns (i.e., as in a nested-loop) to the client assignments and
eventually back to the facility openings. Computational results showed strong
performance for the tabu search: it was able to find close-to-optimal solutions
within a few minutes of CPU time.

3 A Logic-Based Benders’ Decomposition Approach

In Benders’ decomposition [3], a problem is partitioned into a master problem
and a subproblem, which are solved iteratively until the optimal solution is
found. When the subproblem is infeasible subject to current master solution, a
cut that eliminates at least the current master solution is added to the master
problem. The cut ensures that all future solutions are closer to being feasible.

The CDCPLP can be decomposed into a location-allocation master problem
(LAMP) and a set of truck assignment subproblems (TASPs). The LAMP is
concerned with choosing the open facilities, allocating clients to these sites, and
deciding on the number of trucks at each site. The TASP assigns clients to specific
vehicles and can be modeled as a set of independent bin-packing problems: clients
are allocated to the trucks so that the total-distance constraint on each truck is
satisfied. We use IP for the master problem and CP for the subproblems.

The Location-Allocation Master Problem. An IP formulation of LAMP is shown
in Figure 2 where pj is as defined above and:

xij =
{

1, if client i is served by site j
0, otherwise

numV ehj : number of vehicles assigned to facility j

Solving a Location-Allocation Problem 347

min
∑
j∈J

fjpj +
∑
i∈I

∑
j∈J

cijxij + u
∑
j∈J

numV ehj

s.t.
∑
j∈J

xij = 1 i ∈ I (8)∑
i∈I

tijxij ≤ l · k j ∈ J (9)

tijxij ≤ l i ∈ I, j ∈ J (10)∑
i∈I

dixij ≤ bjpj j ∈ J (11)

numV ehj ≥
⌈∑

i∈I tijxij

l

⌉
j ∈ J (12)

cuts (13)
xij ≤ pj i ∈ I, j ∈ J (14)
xij , pj ∈ {0, 1} i ∈ I, j ∈ J (15)

Fig. 2. An IP model of the LAMP

Constraint (8) ensures that all clients are served by exactly one facility. The
distance limitations are defined by constraints (9) and (10). Constraint (11)
limits the demand assigned to facility j. Constraint (12) defines the minimum
number of vehicles assigned to each site. cuts are constraints that are added
to the master problem each time one of the subproblems is not able to find a
feasible solution. Initially, cuts is empty.

The cut for a given TASP j after iteration h is:

numV ehj ≥ numV eh∗
jh −

∑
i∈Ijh

(1− xij), j ∈ Jh

where, Ijh = {i | xh
ij = 1} is the set of clients assigned to facility j in iteration

h, Jh is the set of sites for which the subproblem is infeasible in iteration h,
and numV eh∗

jh is the minimum number of vehicles needed at site j to serve the
clients that were assigned. Informally, the summation is the maximal decrease
in the minimal number of trucks needed given the clients reassigned to other
facilities: the largest possible reduction in reassigning one client is one truck.
The form of this cut is directly inspired by the Benders’ cut for scheduling with
makespan minimization formulated by Hooker [4].

The Truck Assignment Subproblem. Given the set of clients allocated (Ij) and
the number of vehicles assigned to an open facility (numV ehj), the goal of the
TASP is to assign clients to the vehicles of each site such that the vehicle travel-
distance constraints are satisfied. The TASP for each facility can be modeled as
a bin-packing problem. A CP formulation of TASP is shown in Figure 3 where:
load is an array of variables such that load[k] ∈ {0, ..., l} is the total distance
assigned to vehicle k ∈ {1, ..., numV ehBinPackingj}, truck is an array of deci-
sion variables, one for each client i ∈ Ij , such that truck[i] ∈ {1, ..., numV ehj}
is the index of the truck assigned to client i, and dist is the vector of distances

348 M.M. Fazel-Zarandi and J.C. Beck

min numV ehBinPackingj

s.t. pack(load, truck, dist) (16)
numV ehj ≤ numV ehBinPackingj < numV ehFFDj (17)

Fig. 3. A CP model of the TASP

between site j and client i ∈ Ij . The pack global constraint (16) maintains the
load of the vehicles given the distances and assignments of clients to vehicles
[5]. The upper and lower bounds on the number of vehicles is represented by
constraint (17).

Algorithm 1 shows how we solve the sub-problems in practice. We first use the
first-fit decreasing (FFD) heuristic (line 3) to find numV ehFFDj, a heuristic
solution to the sub-problem. If this value is equal to the value assigned by the
LAMP solution, numV ehj, then the sub-problem has been solved. Otherwise, in
line 5 we solve a series of satisfaction problems using the CP formulation, setting
numV ehBinPackingj to each value in the interval [numV ehj ..numV ehFFDj−
1] in increasing order.

4 Computational Results

We compare our Benders’ approach to the IP and tabu search models in turn.
Unless otherwise noted, the tests were performed on a Duo Core AMD 270 CPU
with 1 MB cache, 4 GB of main memory, running Red Hat Enterprise Linux
4. The IP model was implemented in ILOG CPLEX 11.0. The Benders’ IP/CP
approach was implemented in ILOG CPLEX 11.0 and ILOG Solver 6.5.

IP vs. Benders’. We generated problems following exactly the same method as
Albareda-Sambola et al [2]. We start with the 25 instances of Barceló et al. [6] in
three sizes: 6 instances of size 20×10 (i.e., 20 clients, 10 possible facility sites), 11

Algorithm 1: Algorithm for solving the TASP
SolveTASP():

1 cuts = ∅
2 for each facility do

3 numV ehFFD = runFFD()
4 if numV ehFFD > numV ehj then

5 numV ehBinPacking = runCPBinPacking()
6 if numV ehBinPacking > numV ehj then

7 cuts ← cuts + new cut

8 return cuts

Solving a Location-Allocation Problem 349

Table 1. The mean CPU time (seconds) and percentage of unsolved problem instances
(% Uns.) for the IP and Benders’ approaches and for the Benders’ approach, the mean
number of iterations. Overall indicates the mean results over all problem instances–
recall that each subset has a different number of instances.

Uncorrelated Correlated
Problem IP Benders’ Time IP Benders’ Time

Set Time % Uns. Time % Uns. Iter Ratio Time % Uns. Time % Uns. Iter Ratio
20 × 10 252 0 33 0 3.8 9.6 65 0 24 0 4.1 6.3
30 × 15 55303 23 17593 6 16 13.6 29514 12 8065 2 13.1 20.5
40 × 20 144247 75 72598 35 26.2 2.4 79517 38 28221 10 22.8 6.5
Overall 70553 34 30980 14 16.3 9.1 38447 17 12585 4 14.0 12.6

instances of size 30×15, and 8 instances of size 40×20. The fixed facility opening
cost, fj, demands for each client, di, assignment costs, cij , and facility capacities,
bj, are extracted from Barceló et al. with the exception that the facility capacities
are multiplied by 1.5 as they are very tight. Six different pairs of truck distance
limit, l, and truck usage cost, u, values are then used to create different prob-
lem sets: (40, 50), (40, 100), (50, 80), (50, 150), (100, 150), (100, 300). Finally, the
travel distances, tij , are randomly generated based on the costs, cij in two differ-
ent conditions. In the correlated condition: tij = scale(cij, [15, 45])+rand[−5, 5].
The first term is a uniform scaling of cij to the integer interval [15, 45] while the
second term is a random integer uniformly generated on the interval [−5, 5].
In the uncorrelated condition, tij = rand[10, 50]. Overall, therefore, there are
300 problem instances: 25 original instances times 6 (l, u) conditions times 2
correlated/uncorrelated conditions.

Table 1 compares the mean CPU time in seconds required to solve each prob-
lem instance for each set. In all cases, 48 hours was used as a maximum time. The
“Time Ratio” for a given instance is calculated as the IP run-time divided by
the Benders’ run-time. The mean over each instance in each subset was then cal-
culated. For unsolved instances, the 48-hour time limit was used. As can be seen
Benders’ is able to solve substantially more problems than IP and, on average,
has a run-time about an order-of-magnitude faster.

Figure 4 shows a scatter-plot of the run-times of each problem instances for
both IP and the Benders’ approach. Both axes are log-scale and the points below
the x = y line indicate lower run-time for the Benders’ approach. On all but 26
of the 300 instances, the Benders’ achieves equivalent or better run-time.

Tabu search vs. Benders’. One of the weaknesses of a Benders’ decomposition
approach is that usually the first globally feasible solution found is the opti-
mal solution. This means that cutting off runs due to a time-limit will result
in no feasible solutions. For problems too large for a Benders’ approach to find
optimality, another algorithm is needed to find a good but not necessarily opti-
mal solution. Metaheuristic techniques, such as tabu search, are widely used for
location and routing problems for this purpose [7].

With our Benders’ formulation, however, we have a globally feasible, sub-
optimal solution at each iteration. In generating a cut, we find the minimum
number of trucks needed at each facility. This number of trucks constitutes a

350 M.M. Fazel-Zarandi and J.C. Beck

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000 10000 100000

B
en

de
rs

’ C
P

U
 ti

m
e

IP CPU time

Uncorrelated
Correlated

Fig. 4. Run-time of IP model (x-axis, log-scale) vs. Benders’ IP/CP model (y-axis,
log-scale) of the 300 problem instances. Points below the x = y line indicate lower
run-time for the Benders’ model.

feasible solution even though fewer trucks were assigned in the master solution.1

Thus, at the end of each iteration, we have a globally feasible solution.
Albareda-Sambola et al. used 19 medium and large problem instances to eval-

uate their tabu search approach, reporting run-times and bounds on the optimal-
ity gap. All instances are correlated and have (l, u) values of (50, 80). We received
these exact instances form the authors.2 We believe that the run-time for our
Benders’ model to find the first feasible solution and the gap from optimality
provide some basis for comparison.

Table 2 presents the mean and median time for the first iteration and mean
percentage gap from optimal for the Benders’ approach. This is compared to
the run-time on a 2.4GHz Pentium IV and mean percentage gap from optimal
reported by Albareda-Sambola et al.3 The columns labeled “# Dom.” indicate
the number of problems in each set for which one approach was clearly dominant
with respect to both lower CPU time and lower % gap. As can be seen, on average
the Benders’ approach is 13.6% worse than Tabu search with respect to the mean
CPU time to find a feasible solution but finds solutions with substantially smaller
optimality gaps. However, Benders’ exhibits three run-time outliers that obscure
1 This is not true when the minimal number of trucks required at a facility is greater

than k. This did not occur in any of our experiments.
2 We would like to thank Maria Albareda-Sambola for providing these instances.
3 Albareda-Sambola et al. presented the cost of their best solution and bounds on the

percentage gap. As we found the optimal solutions we were able to calculated the
exact gap from optimality for the tabu search.

Solving a Location-Allocation Problem 351

Table 2. The mean and median CPU time (seconds), the mean percentage gap from
optimal and the bounds of that gap for Tabu, and the number of instances for which
each approach dominated the other

Problem Benders’ Tabu
Set Time % Gap # Dom. Time % Gap # Dom.

Mean Median Mean Mean Median Mean
30 × 15 60.4 13.5 2.07 4 60.5 66.1 4.12 0
40 × 20 185.4 86.2 1.82 6 148.7 163.0 10.41 0
Overall 113.0 39.5 1.96 10 97.6 78.8 6.77 0

the results. Out of 19 problem instances, Benders’ finds a better solution faster
than tabu on 10 instances while tabu search was not able to find a better solution
faster than Benders’ for any instance.

5 Conclusion

In this paper, we presented a novel logic-based Benders’ decomposition approach
to a location-allocation problem. Our approach was able to substantially out-
perform an existing IP model by finding and proving optimality, on average, more
than ten times faster. Our approach also performed better than an existing tabu
search in finding good, feasible solutions in a short time.

Acknowledgments. This research was supported in part by the Natural Sciences
and Engineering Research Council, Canadian Foundation for Innovation, Ontario
Ministry for Research and Innovation, Alcatel-Lucent, and ILOG, S.A.

References

1. Drezner, Z.: Facility Location. A Survey of Applications and Methods. Springer
Series in Operations Research. Springer, New York (1995)

2. Albareda-Sambola, M., Fernández, E., Laporte, G.: The capacity and distance con-
strained plant location problem. Computers & Operation Research 36(2), 597–611
(2009)

3. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Mathematical Pro-
gramming 96 (2003)

4. Hooker, J.N.: A hybrid method for planning and scheduling. Constraints 10, 385–401
(2005)

5. Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS,
vol. 3258, pp. 648–662. Springer, Heidelberg (2004)

6. Barceló, J., Fernández, E., Jornsten, K.: Computational results from a new la-
grangean relaxation algorithm for the capacitated plant locating problem. European
Journal of Operational Research 53, 38–45 (1991)

7. Laporte, G.: Location-routing problems. In: Golden, B.L., Assad, A.A. (eds.) Vehicle
routing: methods and studies, pp. 163–197. North-Holland, Amsterdam (1988)

Lazy Clause Generation Reengineered

Thibaut Feydy and Peter J. Stuckey

National ICT Australia, Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{tfeydy,pjs}@csse.unimelb.edu.au

Abstract. Lazy clause generation is a powerful hybrid approach to com-
binatorial optimization that combines features from SAT solving and fi-
nite domain (FD) propagation. In lazy clause generation finite domain
propagators are considered as clause generators that create a SAT de-
scription of their behaviour for a SAT solver. The ability of the SAT
solver to explain and record failure and perform conflict directed back-
jumping are then applicable to FD problems. The original implemen-
tation of lazy clause generation was constructed as a cut down finite
domain propagation engine inside a SAT solver. In this paper we show
how to engineer a lazy clause generation solver by embedding a SAT
solver inside an FD solver. The resulting solver is flexible, efficient and
easy to use. We give experiments illustrating the effect of different design
choices in engineering the solver.

1 Introduction

Lazy clause generation [1] is a hybrid of finite domain (FD) propagation solving
and SAT solving that combines some of the strengths of both. Essentially in lazy
clause generation, a FD propagator is treated as a clause generator, that feeds a
SAT solver with a growing clausal description of the problem. The advantages of
the hybrid are: it retains the concise modelling of the problem of an FD system,
but it gains the SAT abilities to record nogoods and backjump, as well as use
activities to drive search. The result is a powerful hybrid that is able to solve
some problems much faster than either SAT or FD solvers.

The original lazy clause generation solver was implemented as a summer stu-
dent project, where a limited finite domain propagation engine was constructed
inside a SAT solver.

In this paper we discuss how we built a robust generic lazy clause generation
solver in the G12 system. The crucial difference of the reengineered solver is that
the SAT solver is treated as a propagator in an FD solver (hence reversing the
treatment of which solver is master). This approach is far more flexible than the
original design, more efficient, and available as a backend to the Zinc compiler.

We discuss the design decisions that go into building a robust lazy clause
generation solver, and present experiments showing the effect of these decisions.
The new lazy clause generation solver is a powerful solver with the following
features:

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 352–366, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Lazy Clause Generation Reengineered 353

– Powerful modelling: any Zinc (or MiniZinc) model executable by the G12
FD solver can be run using the lazy clause generation solver.

– Excellent default search: if no search strategy is specified then the default
VSIDS search is usually very good.

– Programmed search with nogoods: on examples with substantial search the
solver usually requires orders of magnitude less search than the FD solver
using the same search strategy.

– Flexible global constraints: since decomposed globals are highly effective we
can easily experiment with different decompositions.

The resulting system is a powerful combination of easy modelling and highly
efficient search. It competes against the best FD solutions, often on much simpler
models, and against translation to SAT. In many cases using the lazy clause
generation solver with default settings to solve a simple FD statement of the
problem gives very good results

2 Background

2.1 Propagation-Based Constraint Solvers

Propagation-based constraint solving models constraints c as propagators, that
map the set of possible values of variables (a domain) to a smaller domain by
removing values that cannot take part in any solution. The key advantage of this
approach is that propagation is “composable”, propagators for each constraint
can be constructed independently, and used in conjunction.

More formally. A domain D is a mapping from a fixed (finite) set of variables
V to finite sets of integers. A false domain D is a domain with D(x) = ∅ for
some x ∈ V . A domain D1 is stronger than a domain D2, written D1 � D2, if
D1(x) ⊆ D2(x) for all x ∈ V . A range is a contiguous set of integers, we use
range notation [l .. u] to denote the range {d ∈ Z | l � d � u} when l and u
are integers. We shall be interested in the notion of a starting domain, which
we denote Dinit . The starting domain gives the initial values possible for each
variable. It allows us to restrict attention to domains D such that D � Dinit .

An integer valuation θ is a mapping of variables to integer values, written
{x1 �→ d1, . . . , xn �→ dn}. We extend the valuation θ to map expressions and
constraints involving the variables in the natural way.

Let vars be the function that returns the set of variables appearing in a
valuation. We define a valuation θ to be an element of a domain D, written
θ ∈ D, if θ(xi) ∈ D(xi) for all xi ∈ vars(θ).

A constraint c over variables x1, . . . , xn is a set of valuations θ such that
vars(θ) = {x1, . . . , xn}. We also define vars(c) = {x1, . . . , xn}. We will imple-
ment a constraint c by a set of propagators that map domains to domains. A
propagator f is a monotonically decreasing function from domains to domains:
f(D) � D, and f(D1) � f(D2) whenever D1 � D2. A propagator f is correct
for a constraint c iff for all domains D

{θ | θ ∈ D} ∩ c = {θ | θ ∈ f(D)} ∩ c

354 T. Feydy and P.J. Stuckey

This is a very weak restriction, for example the identity propagator is correct
for all constraints c.

Example 1. For the constraint c ≡ x0 ⇔ x1 � x2 the function f defined by

f(D)(x0) = D(x0) ∩ ({0 | max D(x1) > min D(x2)} ∪ {1 | min D(x1) � max D(x2)})

f(D)(x1) =

⎧⎨⎩D(x1), {0, 1} ⊆ D(x0)
{d ∈ D(x1) | d � max D(x2)}, D(x0) = {1}
{d ∈ D(x1) | d > minD(x2)}, D(x0) = {0}

f(D)(x2) =

⎧⎨⎩D(x2), {0, 1} ⊆ D(x0)
{d ∈ D(x2) | d � minD(x1)}, D(x0) = {1}
{d ∈ D(x1) | d < max D(x2)}, D(x0) = {0}

is a correct propagator for c. Let D(x0) = [0 .. 1], D(x1) = [7 .. 9], D(x2) =
[−3 .. 5] then f(D)(x0) = {0}.

A propagation solver solv(F, D) for a set of propagators F and a domain D finds
the greatest mutual fixpoint of all the propagators f ∈ F .

In practice the propagation solver solv (F, D) is carefully engineered to take
into account which propagators must be at fixed point and do not need to be
reconsidered. It also will include priorities on propagators so that cheap propa-
gators are executed before expensive ones. See [2] for more details.

2.2 SAT Solvers

Propagation based SAT solvers [3] are specialized propagation solvers with only
Booleans variables, a built-in conflict based search and clausal constraints of the
form l1 ∨ l2 ∨ · · · ∨ ln where li is a literal (a Boolean variable or its negation).

Unit propagation consists of detecting a conflict or fixing a literal once all
other literals in a clause have been fixed to false. SAT solvers can perform unit
propagation very efficiently using watch literals.

Conflict analysis is triggered each time a conflict is detected. By traversing
a reverse implication graph (ie. remembering which clause fixed a literal), SAT
solvers build a nogood, or conflict clause, which is added to the constraint store.

Conflict analysis allows SAT solvers to find the last satisfiable decision level,
to which they can backjump, i.e. backtrack to a point before the last choicepoint.

SAT solvers maintain activities of the variables seen during conflict analysis.
The heuristic used prioritizes variables that are the most involved in recent
conflicts. This allow them to use a conflict driven or activity based search [3].

2.3 Original Lazy Clause Generation

The original lazy clause generation hybrid solver [1] works as follows. Propaga-
tors are considered as clause generators for the SAT solver. Instead of applying
propagator f to domain D to obtain f(D), whenever f(D) �= D we build a
clause that encodes the change in domains. In order to do so we must link the
integer variables of the finite domain problem to a Boolean representation.

Lazy Clause Generation Reengineered 355

We represent an integer variable x with domain Dinit(x) = [l .. u] using the
Boolean variables [[x = l]], . . . , [[x = u]] and [[x � l]], . . . , [[x � u− 1]]. The variable
[[x = d]] is true if x takes the value d, and false if x takes a value different from d.
Similarly the variable [[x � d]] is true if x takes a value less than or equal to d and
false if x takes a value greater than d. For integer variables with Dinit(x) = [0 .. 1]
we simply treat x as a Boolean variable.

Not every assignment of Boolean variables is consistent with the integer vari-
able x, for example {[[x = 5]], [[x � 1]]} requires that x is both 5 and � 1. In
order to ensure that assignments represent a consistent set of possibilities for
the integer variable x we add to the SAT solver clauses DOM (x) that en-
code [[x � d]] → [[x � d + 1]] and [[x = d]] ↔ ([[x � d]] ∧ ¬[[x � d− 1]]). We let
DOM = ∪{DOM (v) | v ∈ V}.

Any set of literals A on these Boolean variables can be converted to a domain:
domain(A)(x) = {d ∈ Dinit(x) | ∀[[c]] ∈ A.vars(l) = {x} ⇒ x = d |= c}, that is
the domain of all values for x that are consistent with all the Boolean variables
related to x. Note that it may be a false domain.

Example 2. For example the assignment A = {[[x1 � 8]], ¬[[x1 � 2]], ¬[[x1 = 4]],
¬[[x1 = 5]], ¬[[x1 = 7]], [[x2 � 6]], ¬[[x2 � −1]], [[x3 � 4]], ¬[[x3 � −2]]} is consistent
with x1 = 3, x1 = 6 and x1 = 8. hence domain(A)(x1) = {3, 6, 8}. For the
remaining variables domain(A)(x2) = [0 .. 6] and domain(A)(x3) = [−1 .. 4]. �

In the lazy clause generation solver, search is controlled by the SAT engine. After
making a decision, unit propagation is performed to reach a unit propagation
fixpoint with assignment A. Every fixed literal is then translated into a domain
change, creating a new domain D = domain(A), and the appropriate propaga-
tors are woken up. When we find a propagator f where f(D) �= D the propagator
does not directly modify the domain D but instead generates a set of clauses
C which explain the domain changes. Each clause is added to the SAT solver,
starting a new round of unit propagation. This continues until fixpoint when the
next SAT decision is made. See Figure 1(a). Adding an explanation of failure
will force the SAT solver to fail and begin its process of nogood construction. It
then backjumps to where the nogood would first propagate, and on untrailing
the domain D must be reset back to its previous state.

Example 3. Suppose the SAT solver decides to set [[y � 1]] and unit propaga-
tion determines that ¬[[x1 � 6]]. Assuming the current domain D(x0) = [0 .. 1],
D(x1) = [1 .. 9], D(x2) = [−3 .. 5] then the domain changes to D′(x1) = [7 .. 9]
and propagators dependent on the lower bound of x1 are scheduled, including
for example the propagator f for x0 ⇔ x1 � x2 from Example 1. When ap-
plied to domain D′ it obtains f(D′)(x0) = {0}. The clausal explanation of the
change in domain of x1 is ¬[[x1 � 6]]∧ [[x2 � 5]]→ ¬x0. This becomes the clause
[[x1 � 6]] ∨ ¬[[x2 � 5]] ∨ ¬x0. This is added to the SAT solver. Unit propaga-
tion sets the literal ¬x0. This creates domain D′′(x0) = {0} which causes the
propagator f to be re-examined but no further propagation occurs.

Assuming domain(A) � D, then when clauses C that explain the propagation
of f are added to the SAT database containing DOM and unit propagation is

356 T. Feydy and P.J. Stuckey

SAT Engine

Clause Database

FD engine

Propagators

DomainsTrail

Search

FD engine

Propagators

Domains

Search

SAT Engine

Clause Database

Trail

(a) (b)

Fig. 1. (a) The original architecture for lazy clause generation, and (b) the new
architecture

performed, then the resulting assignment A′ will be such that domain(A′) �
f(D). Using lazy clause generation we can show that the SAT solver maintains
an assignment which is at least as strong the domains of an FD solver [1].

The advantages over a normal FD solver are that we automatically have the
nogood recording and backjumping ability of the SAT solver applied to our FD
problem, as well as its activity based search.

3 Lazy Clause Generation as a Finite Domain Solver

The original lazy clause generation solver used a SAT solver as a master solver
and had a cut down finite domain propagation engine inside. This approach
meant that the search was not programmable, but built into the SAT solver and
minimization was available only as dichotomic search, on top of SAT search.

3.1 The New Solver Architecture

The new lazy clause generation solver is designed as an extension of the existing
G12 finite domain solver. It is a backend for the Zinc compiler which can be
used wherever the finite domain solver is used. The new solver architecture is
illustrated in Figure 1(b).

Search is controlled by the finite domain solver. When a variables domain
changes propagators are woken as usual, and placed in priority queue. The SAT
solver unit propagation engine, acts as a global propagator. Whenever a literal
is set or clauses are posted to the SAT solver, then this propagator is scheduled
for execution at the highest priority.

When a propagator f is executed that updates a variable domain (f(D) �= D)
or causes failure (f(D) is a false domain) it posts an explanation clause to the
SAT solver that explains the domain reduction or failure. This will schedule the
SAT propagator for execution.

Lazy Clause Generation Reengineered 357

The SAT propagator when executed computes a unit fixpoint. Then each of
the literals fixed by unit propagation causes the corresponding domain changes
to be made in the domain, which may wake up other propagators. The cycle of
propagation continues until a fixpoint is reached. Note that other work (e.g. [4])
has suggested using a SAT solver to implement a global propagator inside a CP
solver.

3.2 Encoding of Finite Domain Variables

In the new architecture integer variables are implemented as usual with a rep-
resentation of bounds, and domains with holes, and queues of events for bounds
changes, fixing a variable and removing an interior value. Concrete variables are
restricted to be zero based, that is have initial domains that range over values
[0 .. n], views [5] are used to encode non-zero based integer variables.

The lazy clause generation solver associates each integer variable with a set
of Boolean variables. Changes in these Boolean variables will be reflected in the
domains of the integer variables. There are two possible ways of doing this:

The Array Encoding. The array encoding of integer variables is an encoding
with two arrays :

– An array of inequality literals [[x � d]], d ∈ [0 .. n− 1]
– An array of equality literals [[x = d]], d ∈ [0 .. n]

inequality literals are generated eagerly whereas equality literals are generated
lazily. When a literal [[x = d]] has to be generated we post the domain clauses:
[[x = d]] → [[x � d]], [[x = d]] → ¬[[x � d− 1]], and ¬[[x � d− 1]] ∧ [[x � d]] →
[[x = d]]. The array encoding is linear in the size of the initial integer domain,
while bound updates are linear in the size of the domain reduction.

The List Encoding. The list encoding generates inequality and equality lit-
erals lazily when they are required for propagation or explanation. As such the
size of the encoding is linear in the number of generated literals, and a bound
update is linear in the number of generated literals that will be fixed by the
update.

When a literal [[x � d]] has to be generated :

– we determine the closest existing bounds: l=max{d′ | [[x � d′]] exists, d′< d},
u = min{d′ | [[x � d′]] exists, d < d′}

– we post the new domain clauses : [[x � l]]→ [[x � d]], [[x � d]]→ [[x � u]]

When a literal [[x = d]] has to be generated we first generate the literals [[x � d]]
and [[x � d− 1]] if required, then proceed as for the array encoding.

Caching the positions of the largest [[x � d]] which is false (lower bound d+1)
and smallest [[x � d]] which is true (upper bound d) allows access performances
similar to the array encoding for the following reasons. An inequality literal is
required either to explain another variable update or to reduce the domain of
the current variable. In the first case, the inequality literal is most likely the
one corresponding to the current bound, in which case it is cached. In the latter

358 T. Feydy and P.J. Stuckey

case, where we reduce a variable bound by an amount δ, a sequence of δ clauses
will have to be propagated in the array encoding.

When a new literal is generated, previous sequence literals becomes redundant.
When a literal [[x � d]] is inserted where l < d < u then the binary clause
[[x � l]] → [[x � u]] becomes redundant. At most n redundant constraints exists
after n literals have been generated. However these redundant constraints alter
the propagation order and can have a negative impact on the nogoods generated
during conflict analysis.

By default the solver uses array encoding for variables with “small” (< 10000)
initial domains and list encoding for larger domains.

Use of Views. We use views [5] to avoid creating additional variables. A view
is a monotonic, injective function from a variable to a domain. In practice, we
use affine views, and each variable is an affine view over a zero-based variable.

Given a variable x where Dinit(x) = [l .. u] where l �= 0 we represent x as
a view x = xc + l where Dinit(xc) = [0 .. u− l]. Given a variable x and a new
variable y defined as y = ax + b, let xc be the concrete variable of x, ie. ∃a′, ∃b′
such that x = a′xc + b′ then y is defined as y = a′axc + (a′b + b′).

Using views rather than creating fresh variables has the following advantages
over creating new concrete variables :

– space savings. This is especially true with the array encoding which is always
linear in the domain size.

– literal reuse. Reusing literals means stronger and shorter nogoods.

3.3 Propagator Implementation

For use in a lazy clause generation each propagator should be extended to explain
its propagations and failures. Note that the new lazy clause generation system
can handle propagators that do not explain themselves by treating their prop-
agations as decisions, but this significantly weakens the benefits of lazy clause
generation.

When a propagator is run, then all its propagations are reflected by changing
the domains of integer variables, as well as adding explanation clauses to the
SAT solver that explains the propagation made. Note that it must also explain
failure.

Once we are using lazy clause generation we need to reassess the best possible
way to implement each constraint.

Linear Constraints. Linear constraints
∑

i∈1...n aixi � a0 and
∑

i∈1...n aixi =
a0 are among the most common constraints. But long linear constraints do not
generate very reusable explanations, since they may involve many variables. It
is worth considering breaking up a long linear constraint into smaller units. So
e.g.
∑

i∈1...n aixi = a0 becomes s1 = a1x1 + a2x2, ... si+1 = si + ai+1xi+1, ...,
sn = sn−1 + anxn, a0 = sn. Note that for finite domain propagation alone this
is guaranteed to result in the same domains (on the original variables) [6]. The
decomposition adds many new variables and slows propagation considerably, but

Lazy Clause Generation Reengineered 359

means explanations are more likely to be reused. We shall see that the size of the
intermediate sums si will be crucial in determining the worth of this translation.

Reified Constraints. The lazy clause generation solver does not have regular
reified constraints but only implications constraints of the form l ⇒ c where l
is a literal and c is a constraint. This has the advantage that the events of this
implication constraint are the events of the non reified version plus an event on
l being asserted. Similarly the explanations for l ⇒ c are the same as for c with
¬l disjoined. The main advantage is that often we do not need both directions.

Example 4. Consider the constraint x1 + 2 � x2 ∨ x2 + 5 � x1. The usual
decomposition is b1 ⇔ x1 + 2 � x2, b2 ⇔ x2 + 5 � x1, (b1 ∨ b2). A better
decomposition is b1 ⇒ x1 + 2 � x2, b2 ⇒ x2 + 5 � x1, (b1 ∨ b2) since the only
propagation possible if the falsity of one of the inequalities forcing a Boolean to be
false, which forces the other Boolean to be true and the other inequality to hold.
Note that e.g. x0 ⇔ x1 � x2 is implemented as x0 ⇒ x1 � x2, ¬x0 ⇒ x1 > x2

illustrating the need for the lhs to be a literal rather than a variable.

3.4 Global Propagators

Rather than create complex explanations for global constraints it is usually easier
to build decompositions. Learning for decomposed globals is stronger, and can
regain the benefits of the global view that are lost by decomposition. If we are
using decomposition to define global propagators then we can easily experiment
with different definitions. It is certainly worth reconsidering which decomposition
to use in particular for lazy clause generation.

Element Constraints. An element constraint element(x, a, y) which en-
forces that y = a[x] where a is a fixed array of integers indexed on the range
[0 .. n] can be implemented simply as the binary clauses ∧n

k=0[[x = k]]→ [[y = a[k]]]
which enforces domain consistency.

GCC. We propose a new decomposition of the global cardinality constraint
(and by specialisation also the alldifferent constraint) which exploits the property
of our solver that maintaining the state of the literals [[x = k]] and [[x � k]] is
cheap as it is part of the integer variable encoding. gcc([x1, . . . , xn], [c1, . . . , cm])
enforces that the value i occurs ci times in x1, . . . , xn. We introduce m + 1 sum
variables s0, . . . , sm defined by si =

∑
j∈1...n [[xj � i]] and post the following

constraints sm − s0 =
∑

i∈1..m ci and ∀i ∈ 1 . . .m, si − si−1 = ci. To generate
holes in the domains we add the constraints ∀i ∈ 1 . . .m, ci =

∑
j∈1...n [[xj = i]].

3.5 Extending the SAT Solver

SAT solvers need to be slightly extended to be usable with lazy clause gener-
ation.1 The first extension is to communicate domain information back to the
1 Although we manage this by building code outside the SAT solver code, leaving it

untouched, but accessing its data structures.

360 T. Feydy and P.J. Stuckey

propagation solver, e.g. when [[x � d]] is set true we remove from D(x) the val-
ues greater than d, when is set false we remove values less than or equal to d,
similarly for [[x = d]].

Lazy clause generation adds new clauses as search progresses of three kinds:
domain clauses, explanation clauses, and nogood clauses. Usually a SAT solver
only posts nogood clauses. On posting a nogood it immediately backjumps to
the first place the nogood clause could unit propagate. We don’t have such a
luxury in lazy clause generation, since the SAT solver is not in charge of search,
and indeed it may be unaware of choices that did not affect any of its variables.

When the SAT solver can backjump a great distance because a failure is
found to not depend on the last choice, we have to mimic this. This is managed
by checking the SAT solver first in each propagation loop, before applying any
search decision. If unit propagation in SAT still detects failure, then we can im-
mediately fail, and continue backtracking upward to the first satisfiable ancestor
state.

A feature of the dual modelling inherent in lazy clause generation is that
explanation clauses are redundant information, since they can be regenerated
by the propagators whenever they could unit propagate.2 Hence we can choose
to delete these clauses from the SAT solver on backtracking. This reduces the
number of clauses in the database, but means that more expensive propagators
need to be called more often. We can select whether to delete explanations or
not, by default they are deleted.

3.6 Search

Search is controlled by the FD solver, but we can make use of information from
the SAT solver. We can perform:

VSIDS search. The SAT solver search heuristic VSIDS [3], based on activity,
can be used to drive the search. At each choice point we retrieve the highest
activity literal from the SAT solver and try setting it true or false. This is
the default search for the lazy solver. Because of lazy encodings, it may be
necessary to interleave search with the generation of new literals for unfixed
variables, as not all literals encoding the variable domain exist initially, and
in the end we need to fix all the finite domain variables. As in SAT solvers,
we restart the search from time to time.

Finite Domain Search. One of the main advantages of the solver presented
here compared to the solver presented in [1] is the ability to use programmed
specialized finite domain searches if they are specified in the model.

Branch and bound Search. We use incremental branch and bound rather
than dichotomic branch and bounds with restart due to the incrementality
of our SAT solver. This differs with other SAT solver based approach such
as [7] and [1].

2 Except in cases where that the clause is stronger than the propagator. (See [1]).

Lazy Clause Generation Reengineered 361

Hybrid Search. We can of course build new hybrids of finite domain pro-
grammed search that make use of the activity values from the SAT solver as
part of the search. We give an example in Section 4.3

4 Experiments

The experiments were run on Core 2 T8300 (2.40 GHz), except the experiments
from 4.4 and 4.6 which were run respectively on a Pentium D 3.0 GHz and a
Xeon 3.0 GHz for comparison with cited experiments. All experiments were run
on one core. We use the following scheme for expressing variants of our approach:
l = G12 lazy clause generation solver, f = G12 normal finite domain solver; v =
VSIDS search, s = problem specific programmed search, h = hybrid search (see
Section 4.3). When we turn off optimizations we place them after a minus: d =
no deletion, a = list encoding (no arrays), r = normal reified constraints rather
than single implication ones from Section 3.3, and w = no views.

4.1 Arithmetic Puzzles

The Grocery Puzzle [8] is a tiny problem but its intermediate variables have bounds
up to 238. It cannot be solved using the array encoding. SEND-MORE-MONEY
is another trivial problem, but here if we break the linear constraint (which has
coefficients up to 9000) into ternary constraints the array encoding requires a sec-
ond to solve because of the size of intermediate sum variables. Applying the list
encoding on the decomposed problem, and either encoding on the original form
require only a few milliseconds. These simple examples illustrate why the lazy list
encoding is necessary for a lazy clause generation solver.

4.2 Constrained Path Covering Problem

The constrained path covering problem is a problem which arises in transporta-
tion planning and consists of finding a covering of minimum cardinality of a
directed network. Each node n ∈ Nodes except the start and end nodes have a
positive cost cost[n], and the total cost of a path cannot exceed a fixed bound. A
CP model for this problem associates predecessor (prev[n])/successor(next[n])
variables to each node, as well as a cumulative cost cumul[n], related by the
following constraints :

∀n ∈ Nodes.cumul[n]− cost[n] = cumul[prev[n]]
∀n ∈ Nodes.∀p ∈ Nodes.prev[n] = p ⇔ next[p] = n

In Table 1, we compare the lazy clause generation solver with default search
(lv) and a specialized finite domain search (ls), as well as the G12 FD solver
(fs) with the same search. We also compare creating fresh variables (lv-w,ls-w)
for the result of the element constraints generated above (cumul[prev[n]]), as
opposed to using views. The benchmark CPCP-n-m has n nodes and m edges.

The specialized finite domain search clearly outperforms VSIDS on these prob-
lems. Avoiding creating variables by using views improves search as well. This

362 T. Feydy and P.J. Stuckey

Table 1. Constrained Path Covering Problem

Times(sec) Choicepoints
lv ls lv-w lv-w fs lv ls lv-w lv-w fs

CPCP-17-89 0.40 0.17 0.76 0.27 0.08 572 63 563 63 1905
CPCP-23-181 9.02 0.25 36.74 0.38 0.28 31521 449 44423 1198 9149
CPCP-30-321 >600 0.53 >600 0.80 0.64 ? 804 ? 1595 9666
CPCP-37-261 >600 1.59 >600 2.70 >600 ? 1689 ? 2067 ?
CPCP-37-495 >600 0.99 >600 1.44 >600 ? 1745 ? 3348 ?
Average >361.89 0.71 367.5 1.12 >240.2 ? 950 1654 1231 ?

is especially true with VSIDS which can be explained by the addition of useless
literals, which just confuse its discovery of the “hard parts” of the problem.

The lazy clause generation solver, while slower than the finite domain solver,
scales a lot better due to huge search reductions and wins for all but the easiest
instance.

4.3 Radiation

Radiation scheduling [9] builds a plan for delivering a specific pattern of ra-
diation by multiple exposures. The best search for this problem first fixes the
variables shared by subproblems then fixes the subproblem variables, for each
subproblem independently. Then if any subproblem is unsatisfiable we can use
cuts to backtrack directly to search again the shared variables. For these exper-
iments since we are restricted to Zinc search which does not support cuts, we
simply search first on the shared variables and then on the subproblem variables
in turn.

We use square matrices of size 6 to 8 with maximum intensity ranging from
8 to 10 constructed as in [9]. We ran these instances using VSIDS (lv), as well
as the specialized finite domain search (without cuts) (ls), as well as a hybrid
search (lh) where we use the specialized search on the shared variables, and
then VSIDS on the remaining variables. We also run the FD solver (fs) with
specialized search.

Each instance was run with the original linear inequalities, as well as with a
decomposition into ternary inequalities, introducing intermediate sums. These
linear sums are short (6−8 Boolean variables) and have small coefficients (1−10).

In this case, introducing intermediate sums definitely improved nogood gen-
eration as the choice point count is systematically reduced. On average, the
specialized search outperforms VSIDS search, although the difference is reduced
by the constraint decomposition, which strengthens the reusability of the expla-
nations and nogoods generated. The hybrid search outperforms both the finite
domain search and VSIDS on most instances. The FD solver is not competitive
on any but the smallest instances because of the lack of explanation.

4.4 Open Shop Scheduling Problem

An open shop scheduling problem n-m-k is defined by n jobs and m machines,
where each job consist of m tasks each requiring a different machine. The

Lazy Clause Generation Reengineered 363

Time(sec) Choicepoints(x1000)
Long linear Ternary Long linear Ternary

fs lv ls lh lv ls lh fs lv ls lh lv ls lh
6-08-1 2.25 0.40 0.61 0.40 0.60 0.78 0.58 72.8 1.46 1.40 1.27 1.29 1.33 1.31
6-08-2 0.16 0.37 0.53 0.41 0.54 0.72 0.53 0.90 1.40 1.07 2.00 1.35 1.06 1.03
6-08-3 1.12 0.36 0.80 0.48 0.61 1.06 0.65 48.9 1.60 2.25 1.59 1.44 2.09 1.56
6-09-1 2.11 0.35 0.39 0.26 0.52 0.46 0.36 39.2 1.19 0.61 0.46 1.43 0.52 0.45
6-09-2 6.68 0.70 1.46 0.74 0.86 1.66 1.00 271.7 3.02 4.56 2.99 2.32 3.98 2.78
6-09-3 432.4 0.84 1.62 0.77 0.96 1.86 1.06 10497 2.96 5.01 2.98 2.66 4.68 2.79
7-08-1 >1800 0.69 1.18 0.56 0.82 1.42 0.88 ? 2.19 2.47 1.11 1.32 2.48 1.12
7-08-2 1378 0.42 0.89 0.54 0.76 1.09 0.78 60310 0.78 1.49 0.90 1.31 1.46 0.89
7-08-3 299.2 1.00 1.67 0.82 1.44 1.89 1.18 13767 4.49 3.95 2.26 3.49 3.57 2.19
7-09-1 >1800 1.17 1.63 0.79 1.49 2.05 1.20 ? 3.48 3.59 1.71 3.02 3.53 1.79
7-09-2 >1800 4.05 8.62 3.10 3.82 9.14 4.08 ? 12.4 27.9 10.7 7.88 23.5 9.30
7-09-3 5.60 1.11 2.04 1.00 1.44 2.30 1.40 199.2 4.27 4.69 2.90 3.47 4.22 2.58
8-09-1 950.3 3.42 4.36 1.99 2.94 5.11 3.14 27814 8.29 7.52 3.99 4.39 7.31 3.92
8-09-2 14.8 2.01 2.58 1.50 1.86 3.21 2.26 424.4 5.24 3.72 3.10 2.72 3.49 3.21
8-09-3 31.70 5.94 7.39 3.02 7.02 7.56 4.30 1345 14.9 18.3 10.9 10.7 15.3 8.23
8-10-1 1033 45.72 34.50 18.76 35.28 30.07 24.78 39494 51.7 64.0 41.5 36.1 40.1 38.1
8-10-2 >1800 26.16 21.47 8.49 11.41 20.74 12.47 ? 39.4 47.1 18.9 15.7 33.0 18.6
8-10-3 >1800 93.68 37.11 17.80 54.41 31.11 20.62 ? 88.1 96.8 52.8 55.8 63.5 41.3
Av. >706 10.47 7.16 3.41 7.04 6.79 4.51 ? 13.7 16.5 9.0 8.7 12.0 7.8

Fig. 2. Radiation problem : time and choice points

objective is to find a minimal schedule such that each pair of tasks (i, j) from the
same job or machine are not overlapping, which is represented by the constraint
si + di � sj ∨ sj + dj � si, where si and sj are the start time of the tasks and
di and dj are the (fixed) durations of the tasks. An open-shop problem of size
n×m has nm variables and (nm)(nm + 1)/2 non-overlapping constraints.

The benchmarks used are from [7]. In Table 2(a) we compare: our default lazy
clause generation solver (lv) and without deletion (lv-d); the solver presented in [1]
(cutsat); and the static translation approach of [7] (csp2sat) using MiniSAT ver-
sion 2.0. All solvers use VSIDS search. We do not compare against f for this and
subsequent problems since they all use VSIDS search. The table shows that our ap-
proach, using branch and bound rather than dichotomic search and with a slightly
different propagation, vastly outperforms cutsat which beats cps2sat. Deleting pre-
viously generated explanations also substantially improves the results.

In Table 2(b) we compare results on smaller instances for different variations
of lv. We can see that the overhead of the list representation is substantial, while
the use of one directional reification also has significant benefits, although this
is lessened by deletion.

4.5 Hoist Scheduling

We tested our lazy clause generation solver on the hoist scheduling problem
presented in [10]. Example j-h-p has j jobs, h hoists and parallel tracks if p = y.
We compare a simple Zinc model, run with default settings (lv) and without
deletion (lv-d) as well as by static translation to SAT using [11] (fzntini), all of
these using VSIDS search, against the carefully crafted Eclipse model [10] using
its specialized finite domain search, run either with the Eclipse finite domain
solver ic or with a finite domain and linear programing hybrid iclin using COIN-
OR [12] as the linear solver. The results in Table 3 shows that our approach using

364 T. Feydy and P.J. Stuckey

Table 2. Open shop scheduling: (a) comparing with previous approaches on hard
instances, and (b) comparing the two variable representations on easier instances

(a) (b)

tai lv-d lv cutsat csp2sat
20-20-1 55.27 31.69 283.1 1380.3
20-20-2 341.6 47.54 497.8 1520.1
20-20-3 56.63 37.80 270.7 1367.6
20-20-4 93.47 38.14 269.9 1361.3
20-20-5 50.74 47.94 278.8 1397.0
20-20-6 57.62 35.26 324.2 1405.6
20-20-7 79.20 38.44 455.3 1439.9
20-20-8 130.40 41.42 424.8 1420.8
20-20-9 44.54 32.41 246.1 1377.8
20-20-10 49.27 38.84 242.2 1346.8
Average 95.88 39.96 329.8 1401.7

tai lv-d lv lv-ad lfd-a lv-dr lv-r
15-15-1 18.63 11.73 37.47 45.28 22.94 11.24
15-15-2 12.68 11.68 70.77 76.50 24.80 14.11
15-15-3 18.87 13.44 49.78 96.58 15.27 15.10
15-15-4 17.61 8.47 55.06 54.12 14.83 9.21
15-15-5 21.02 12.34 77.30 74.45 35.36 12.16
15-15-6 32.44 12.75 26.12 39.85 20.67 16.97
15-15-7 22.66 15.80 33.25 45.25 23.27 16.54
15-15-8 17.12 13.55 29.84 21.54 12.97 13.87
15-15-9 29.68 23.23 99.44 71.24 24.51 17.11
15-15-10 15.1 10.85 124.21 41.79 47.61 17.32
Average 20.58 13.38 60.32 56.66 24.22 14.36

Table 3. Hoist scheduling results

Example fzntini lv-d lv ic iclin
4-1-n 1153.3 3.46 2.81 2.18 8.57
4-2-n 458.4 0.72 0.66 0.3 0.1
4-2-y 358.5 0.35 0.34 0.3 2.04
4-3-n 493.5 0.55 0.55 0.39 0.09
4-3-y 272.6 0.32 0.33 0.4 1.0
5-1-n >1800 3.98 3.68 10.8 52.9
5-2-n 1090.2 0.40 0.77 0.5 0.1
5-2-y 594.0 0.53 0.57 8.55 50.2
5-3-n 983.9 0.40 0.42 0.5 0.12
5-3-y 484.3 0.44 0.72 0.7 0.12

Example fzntini lv-d lv ic iclin

6-1-n >1800 1.23 1.18 4.09 13.9
6-2-n >1800 1.80 1.78 0.7 0.15
6-2-y 827.7 1.01 2.31 4.81 28.8
6-3-n 1524.8 0.63 0.68 0.6 0.14
6-3-y 780.0 0.86 0.72 0.56 4.43
7-1-n >1800 1.39 1.46 3.65 9.59
7-2-n >1800 6.02 4.82 0.70 0.18
7-2-y 927.9 19.5 18.0 17.2 100.1
7-3-n >1800 0.53 0.78 0.80 0.17
7-3-y 912.8 0.66 0.92 0.80 4.71

Average >1083 2.26 2.17 2.93 13.95

a simple model is competitive with the specialized models with hand-written
search, especially on the hardest instances. We see that lazy clause generation is
competitive whereas static translation (fzntini) struggles because of the size of
the resulting SAT model (in results not shown). Clause deletion does not seem
as advantageous as in the open-shop benchmarks.

4.6 Quasi-Group Completion

A n × n latin square is a square of values xij , 1 � i, j � n where each num-
ber [1 .. n] appears exactly once in each row and column. It is represented by
constraints

alldifferent([xi1, . . . , xin]), 1 � i � n
alldifferent([x1j , . . . , xnj]), 1 � j � n

Lazy Clause Generation Reengineered 365

Table 4. Comparison of all different decomposition on quasi group completion
problems

Time (seconds) Choicepoints
gcc bnd bnd+ diseq gcc bnd bnd+ diseq

qcp-25-264-0-ext 6.44 1164.34 166.19 31.48 1759 15171 1635 77110
qcp-25-264-1-ext 44.80 >1800 1577.96 >1800 13773 ? 17099 ?
qcp-25-264-2-ext 2.53 730.13 116.25 68.74 421 10016 971 153128
qcp-25-264-3-ext 157.58 >1800 >1800 1473.21 46063 ? ? 702897
qcp-25-264-4-ext 22.30 1334.34 712.71 >1800 6697 17322 7648 ?
qcp-25-264-5-ext 12.58 1449.90 459.54 537.30 3785 18254 4679 380392
qcp-25-264-6-ext 341.62 >1800 >1800 170.99 83871 ? ? 216433
qcp-25-264-7-ext 6.08 1265.34 159.93 178.15 1423 14289 1342 200123
qcp-25-264-8-ext 3.01 546.69 75.73 23.08 553 6051 586 76995
qcp-25-264-9-ext 12.66 >1800 638.59 36.18 3303 ? 5484 94814
qcp-25-264-10-ext 5.30 914.16 121.65 123.26 981 11128 979 200110
qcp-25-264-11-ext 0.81 15.76 14.46 0.35 0 0 0 399
qcp-25-264-12-ext 0.80 37.53 14.65 0.55 0 590 0 3960
qcp-25-264-13-ext 0.80 337.77 14.62 1.03 0 4259 0 11408
qcp-25-264-14-ext 4.77 1106.12 146.86 347.84 1183 13412 1251 323175
Average 41.47 >1047.35 >522.13 >439.48 10920.8 ? ? ?

The quasigroup completion problem (QCP) is a latin square problem where some
of the xij are given. These are challenging problems which exhibit phase transi-
tion behaviour. We use instances from the 2008 CSP Solver Competition [13].

We compare several decompositions of the alldifferent constraint all using
our default solver lv. The diseq decomposition is the usual decomposition into
disequalities �=. The gcc decomposition explained in Section 3.4, strengthens
propagation by doing some additional bounds propagation. The bnd decompo-
sition is a decomposition that maintains bounds-consistency [14], while bnd+ is
a modification of bnd where we replace each expression [[xi � d]]∧¬[[xi � d− 1]]
with [[xi = d]] to obtain a decomposition which combines the propagation of
bnd and diseq. The different variations only require changing the definition of
alldifferent included in the Zinc model.

The results are shown in Table 4. While the bnd+ decomposition is the
strongest its size is prohibitive. The gcc decomposition is comprehensively best
hitting the right tradeoff of strength of propagation versus size of decomposition.
Comparing with results from the CSP Solver competition 2008, only two solvers
could solve more than 2 of these problems (using the diseq model) in 1800s (on
a 3GHz Xeon): choco2 dwdeg, requiring an average > 608.8s (2 timeouts), and
choco2 impwdeg, requiring > 776.8s (3 timeouts)

5 Conclusion

The reengineered lazy clause generation solver is highly flexible hybrid constraint
programming solver that combines the modelling and search flexibility of finite

366 T. Feydy and P.J. Stuckey

domain solving with the learning and adaptive search capabilities of SAT solvers.
It forces us to reconsider many design choices for finite domain propagation. The
resulting solver is highly competitive and able to tackle problems that are beyond
the scope of either finite domain or SAT solvers alone. It also illustrates that the
combination of specialized finite domain search with nogoods can be extremely
powerful.

Acknowledgments. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.

References
1. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation.

In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg
(2007)

2. Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. ACM Trans.
Program. Lang. Syst. 31 (2008)

3. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient sat solver. In: Procs. DAC 2001, pp. 530–535 (2001)

4. Bacchus, F.: GAC via unit propagation. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 133–147. Springer, Heidelberg (2007)

5. Schulte, C., Tack, G.: Views and iterators for generic constraint implementations.
In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 817–821. Springer, Heidelberg
(2005)

6. Harvey, W., Stuckey, P.: Improving linear constraint propagation by changing con-
straint representation. Constraints 8(2), 173–207 (2003)

7. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 590–603. Springer,
Heidelberg (2006)

8. Schulte, C., Smolka, G.: Finite Domain Constraint Programming in Oz. A Tutorial,
http://www.mozart-oz.org/documentation/fdt/

9. Baatar, D., Boland, N., Brand, S., Stuckey, P.J.: Minimum cardinality matrix de-
composition into consecutive-ones matrices: CP and IP approaches. In: Van Hen-
tenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 1–15. Springer,
Heidelberg (2007)

10. Rodosek, R., Wallace, M.: A generic model and hybrid algorithm for hoist schedul-
ing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
385–399. Springer, Heidelberg (1998)

11. Huang, J.: Universal booleanization of constraint models. In: Stuckey, P.J. (ed.)
CP 2008. LNCS, vol. 5202, pp. 144–158. Springer, Heidelberg (2008)

12. Lougee-Heimer, R.: The Common Optimization INterface for operations research:
Promoting open-source software in the operations research community. IBM Jour-
nal of Research and Development 47, 57–66 (2003)

13. International CSP Solver Competition,
http://www.cril.univ-artois.fr/CPAI08/

14. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Decompo-
sitions of all different, global cardianlity and related constraints. In: IJCAI (2009)

http://www.mozart-oz.org/documentation/fdt/
http://www.cril.univ-artois.fr/CPAI08/

The Proper Treatment of
Undefinedness in Constraint Languages

Alan M. Frisch1 and Peter J. Stuckey2,�

1 Artificial Intelligence Group, Dept. of Computer Science, Univ. of York, UK
frisch@cs.york.ac.uk

2 National ICT Australia. Dept. of Computer Science and Software Engineering,
Univ. of Melbourne, Australia
pjs@csse.unimelb.edu.au

Abstract. Any sufficiently complex finite-domain constraint modelling
language has the ability to express undefined values, for example division
by zero, or array index out of bounds. This paper gives the first system-
atic treatment of undefinedness for finite-domain constraint languages.
We present three alternative semantics for undefinedness, and for each
of the semantics show how to map models that contain undefined ex-
pressions into equivalent models that do not. The resulting models can
be implemented using existing constraint solving technology.

1 Introduction

Finite-domain constraint modelling languages enable us to express complicated
satisfaction and optimization problems succinctly in a data independent way. Un-
definedness arises in any reasonable constraint modelling language because, for
convenience, modellers wish to use functional syntax to express their problems
and in particular they want to be able to use partial functions. The two most com-
mon partial functions used in constraint models are division, which is undefined
if the denominator is zero, and array lookup, a[i], which is undefined if the value
of i is outside the range of index values of a. Other partial functions available in
some constraint modelling systems are square root, which is undefined on negative
values, and exponentiation, which is undefined if the exponent is negative.

A survey of some existing constraint languages and solvers shows a bewildering
pattern of behaviour in response to undefined expressions. Fig. 1 shows the
results of solving five problems in which undefinedness arises with five finite-
domain solvers: ECLiPSe 6.0 #42 [1], SWI Prolog 5.6.64 [2], SICStus Prolog
4.0.2 [3], OPL 6.2 [4] and MiniZinc 1.0 [5,6]. The three rightmost columns, which
are explained later in the paper, show the correct answers according to the three

� Much of this research was conducted while Alan Frisch was a visitor at the Univ. of
Melbourne. His visit was supported by the Royal Society and the Univ. Melbourne.
For many useful discussions we thank the members of the Essence and Zinc research
teams, especially Chris Jefferson and Kim Marriott. We thank David Mitchell for
advise about complexity. NICTA is funded by the Australian Government as repre-
sented by the Dept. of Broadband, Communications and the Digital Economy and
the Australian Research Council.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 367–382, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

368 A.M. Frisch and P.J. Stuckey

Problem ECLiPSe SWI SICStus OPL MiniZinc Relational Kleene Strict
(1) y ∈ {0, 1} y �→ 0 y �→ 0 none none y �→ 0 y �→ 0 y �→ 0 none

1/y = 2 ∨ y < 1
(2) y ∈ {−1, 0} none y �→ −1 y �→ −1 none

1 =
√

y ∨ y < 0
(3) y ∈ {3, 4}

a[y] = 1 ∨ y > 3 y �→ 4 y �→ 4 y �→ 4 y �→ 4 none
where a is [1, 4, 9]
and indexed 1..3

(4) y ∈ {0, 1, 2} y �→ 0 y �→ 0 y �→ 0 y �→ 0 y �→ 0
T ∨ 1/y = 1 y �→ 1 y �→ 1 y �→ 1 y �→ 1 y �→ 1 y �→ 1 y �→ 1 y �→ 1

y �→ 2 y �→ 2 y �→ 2 y �→ 2 y �→ 2 y �→ 2 y �→ 2
(5) y ∈ {0, 1} y �→ 0 y �→ 0 none none y �→ 0 y �→ 0 none none

¬(1/y = 1)

Fig. 1. Examples of how undefinedness is handled

semantics we introduce. Note that T is notation for true, and empty cells indicate
that either the solver does not provide a square root function or that it does not
allow an array to be accessed with a decision variable using functional notation.
All five example problems involve Boolean operators (¬ or ∨) because it is on
such constraints that differences arise between and among implementations, our
intuitions, and the three semantics introduced in this paper.

The first thing to notice is the disagreement among the solvers. The only com-
patible pairs of solvers are SICStus and OPL, and MiniZinc and SWI. The second
observation is that some of the solvers behave irregularly. Problems (1), (2) and
(3) are analogous—they just involve different partial functions—yet ECLiPSe
finds a solution to (1) but not (2) and OPL finds a solution to (3) but not (1).

The issue of undefinedness in constraint languages and solvers has been the at-
tention of almost no systematic thought. Consequently, as these examples show,
implementations treat undefinedness in a rather haphazard manner and users
do not know what behaviour to expect when undefinedness arises.

This paper directly confronts the two fundamental questions about unde-
finedness in constraint languages: What is the intended meaning of a model
containing partial functions and how can those models be implemented? We ad-
dress these questions by considering a simple modelling language, E , that has
two partial functions: division and array lookup. We first present three alterna-
tive truth-conditional semantics for the language: the relational semantics, the
Kleene semantics, and the strict semantics. Each is obtained by starting with a
simple intuition and pushing it systematically through the language. Following
the standard convention that “f(a) = ⊥” means that f is a partial function that
is undefined on a, all three semantics use the value ⊥ to represent the result of
division by zero and out-of-bounds array lookups. The semantics differ in how
other operators, including logical connectives and quantifiers, behave when ap-
plied to expressions that denote ⊥. On models in which undefinedness does not
arise, the semantics agree with each other, with existing implementations, and
with our intuitions.

After presenting the three semantics for E we show how each can be imple-
mented. Existing constraint modelling languages are implemented by mapping

The Proper Treatment of Undefinedness in Constraint Languages 369

a constraint with nested operations into an existentially quantified conjunction
of un-nested, or flat, constraints. For example, b ∨ (x/y ≥ z) gets mapped to

∃ b′, t. (t = x/y) ∧ (b′ = t ≥ z) ∧ (T = b ∨ b′).

Solvers then use libraries that provide procedures for propagating each of the
flat constraints. Two difficulties confront attempts to use this approach when
expressions can denote ⊥. Firstly, existing propagation procedures do not han-
dle ⊥. For example, the propagator that handles t = x/y can bind an integer
value to t when the values of x and y are known and y is non-zero, but cannot
bind ⊥ to t if y is known to be zero. Secondly, the transformations that flatten
nested constraints are equivalence preserving in classical logic, but some are not
equivalence preserving in a non-classical semantics that uses ⊥. For example,
rewriting T ∨ exp to T in not equivalence preserving for the strict semantics.

This paper employs a novel approach for implementing the three semantics for
E . Rather than transform constraints in E to flattened constraints, we transform
the E-model to another one that has the same solutions but in which undefinedness
cannot arise. A different transformation is used for each of the semantics. Since
undefinedness cannot arise in the resulting E models, they can be implemented
using the well-understood techniques that are standardly used in the field.

2 A Simple Constraint Language

We use a simplified form of Essence [7], called E , as our language for modelling
decision problems, not just problem instances. Every model in E has exactly
three statements, signalled by the keywords given, find and such that. As an
example consider the following model of the graph colouring problem.

given k:int, n:int, Edge : array[1..n,1..n] of bool
find Colour : array[1..n] of int(1..k)
such that ∀v:1..n − 1. ∀v′:v..n. Edge[v, v′] → Colour[v]
= Colour[v′]

The given statement specifies three parameters: k, the number of colours; n, the
number of vertices in the graph to be coloured; and Edge, an incidence matrix
specifying the graph to be coloured. The integers 1..n represent the vertices of
the graph. The find statement says that the goal of the problem is to find
Colour, an array that has an integer 1..k for each vertex. Finally the such that
statement requires that a solution must satisfy the constraint that for any two
nodes, if there is an edge between them then they must have different colours.

The language has three main syntactic categories: statements, expressions
and domains. Each expression of the language has a unique type that can be
determined independently of where the expression appears. Where τ is a type we
write exp:τ to denote an arbitrary expression of type τ . The types of the language
are int, bool, and array [IR] of τ , where τ is any type and IR is an integer
range specifying the index values of the array. Throughout the language, an
integer range, always denoted IR, is of the form exp1:int..exp2:int and never
contains a decision variable. Notice that the array constructor can be nested;
for example array[1..10] of array [0..5] of int is a type. We often abbreviate
“array [l1..u1] of · · · of array [ln..un]” as “array [l1..ln, . . . , ln..un].”

370 A.M. Frisch and P.J. Stuckey

Domains are used to associate a set of values with a parameter or decision
variable. A domain is either (1) bool, (2) int, (3) of the form int (IR) or (4)
of the form array [IR] of Dom, where Dom is a domain. A domain is finite if it
is constructed without using case (2) of the definition. The non-terminal FDom
is used for finite domains.

The syntax of the three statements is as follows (where n ≥ 0):

given NewId1:Dom1, . . . , NewIdn:Domn

where Domi can contain an occurrence of NewIdj only if i ≤ j.
find NewId1:FDom1, . . . , NewIdn:FDomn

such that exp1:bool, . . . , expn:bool

Finally, let’s consider the syntax of expressions, starting with the atomic expres-
sions. The integer constants are written in the usual way and the constants of
type bool are T and F. Each identifier that has been declared as a parameter
or decision variable is an expression whose type is determined by the domain
given in the declaration. A quantified variables can appear within the scope of
its quantifier. As will be seen, quantified variables are always of type int.

The following are non-atomic expressions of type int:

– exp1:int intop exp2:int, where intop is one of +, −, ∗, or /,
– −exp1:int,
– boolToInt(exp:bool), and
–
∑

NewId :IR. exp:int

The symbol “/” is for integer division. An example of an integer expression using
these constructs is

∑
i:0..n−1. boolToInt(a[i] = 0), which counts up the number

of 0 entries in a .
The following are non-atomic expressions of type bool:

– exp1:bool boolop exp2:bool, where boolop is one of ∧, ∨, → or ↔.
– ¬exp:bool.
– exp1:int compop exp2:int, where compop is one of =, �=, ≤ or <.
– QNewId :IR. exp:bool, where Q is a logical quantifier, ∃ or ∀.

Finally, the following expression is of type τ :

– AR[exp:int], where AR is of type “array [IR] of τ”, for some τ . Notice
that exp:int may contain free variables.

We often abbreviate “AR[i1] · · · [in]” as “AR[i1, . . . , in]”.
For simplicity we assume that each identifier NewId occurring in

∀NewId:IR. exp, ∃NewId:IR. exp or
∑

NewId:IR. exp is a new identifier that
appears nowhere else in the model except in exp.

3 The Semantics of E
This section presents three alternative semantic accounts of E . In each undefined-
ness arises in only two ways: dividing by zero and indexing into an array with a
value that is out of bounds. The three accounts differ only in how they determine

The Proper Treatment of Undefinedness in Constraint Languages 371

whether an expression is undefined if it contains an undefined subexpression. For
models that are safe—those in which division by zero and out-of-bounds indices
do not arise—the three semantics agree with each other and, we believe, with
the intuitions of constraint modellers and the behaviour of constraint solvers.
For safe models, solvers do not exhibit a haphazard pattern of behaviour.

This section first presents the part of the semantics that the three have in com-
mon. Then three subsections describe the distinctive parts of the three semantics.

The purpose of these semantics is to identify the solutions of an instance of an
E model—that is, what assignments to decision variables satisfy what instances.
To be clear, our focus is defining the truth conditions of the language, not on
defining the behaviour of a decision procedure for satisfiability or any other
program.

As the semantics defines solutions of instances, we start by defining the in-
stances of a model: a pair 〈M, I〉 is a problem instance if M is an E model and I
is an instantiation for M . An instantiation for M maps each parameter of M to
a value that is appropriate as determined by the given statement of the model.
If the given statement of M is “given NewId1:Dom1, . . . , NewIdn:Domn”,
then an instantiation I of M maps each parameter NewIdi to a member of
the set denoted by Domi. The denotation of Domi, written [[Domi]]

I , must be
taken relative to I since Domi may itself contain parameters; for example in
“array[a ∗ b..c ∗ b] of int” the symbols a, b and c may be parameters. The
following rules define the semantics of domains.

• [[expl..expu]]I= ⊥ if [[expl]]
I = ⊥ or [[expu]]I = ⊥

= {i ∈ Z | [[expl]]
I ≤ i ≤ [[expu]]I} otherwise

(1)

• [[int(IR)]]I= ∅ if [[IR]]I = ⊥
= [[IR]]I otherwise

• [[bool]]I = {T, F}
• [[int]]I = Z (That is, the set of all integers.)

• [[array [IR] of DOM]]I= ∅ if [[IR]]I = ⊥ or [[IR]]I = ∅
= [[IR]]I −→ [[DOM]]I otherwise.

Notice that an array denotes a total function over the set of index values that
are within bounds. This set may be empty. Also notice that some models have no
instantiations because a parameter may have a domain denoting the empty set.

The semantics must dictate whether an instance 〈M, I〉 of a model is satisfied
by an assignment A to the decision variables of M . An assignment must map
each decision variable to an appropriate value. If the find statement of M is
“find NewId1:FDom1, . . . , NewIdn:FDomn”, then an assignment A for 〈M, I〉
maps each decision variable NewIdi to a member of [[FDomi]]

I . Notice that
[[FDomi]]

I may be the empty set, in which case the instance has no assignments
and hence no solutions.

Finally, quantified variables are handled in the same way as in first-order
logic—that is, denotations are taken relative to an assignment g that maps each
quantified variable to an appropriate value.

372 A.M. Frisch and P.J. Stuckey

We write [[M]]I,A,g to mean the denotation of instance 〈M, I〉 with respect to
A and g. As the denotation function is defined compositionally, we extend the
notation and write [[exp]]I,A,g where exp is any expression of E .

Our primary intuition regarding undefinedness is that an assignment A is a
solution to an instance if the constraints of the instance all denote T with respect
to the assignment, and this is the case even if the same constraints denote unde-
fined with respect to other assignments. Thus we say that an instance I of model
M is satisfied by assignment A if [[c]]I,A = T for every constraint c in M . This
intuition would be violated by a solver that aborts if one assignment generates
an error condition such as division by zero even though other assignments are
solutions.

It remains to define the semantics of the expressions of E . This section defines
the semantics for expressions where they agree for all three semantics.

Let us start with the atomic expressions. In all assignments, “T ”, “F”, “1”,
“2”, “3”, etc. denote T, F , 1, 2, 3, etc. For other atomic expressions we have:

• [[α]]I,A,g= I(α) if α is a parameter
= A(α) if α is a decision variable
= g(α) if α is a quantified variable.

Now consider the operators that are used to build up integer expressions. For
every binary integer operator intop we have

• [[exp1 intop exp2]]I,A,g= ⊥ if [[exp1]]I,A,g = ⊥ or [[exp2]]I,A,g = ⊥
= [[exp1]]I,A,g [[intop]]I,A,g [[exp2]]I,A,g otherwise

where [[intop]]I,A,g is the obvious operation. For division [[exp1/exp2]]
I,A,g =⊥ if

[[exp2]]
I,A,g =0. Unary operators are handled in a similar manner.

Now consider summation expressions. If g is a variable assignment, then
σ[x �→ d] is the assignment that is identical to σ with the possible exception
that it maps x to d.

• [[
∑

x:IR. exp]]I,A,g = if [[IR]]I,A,g = ∅ then 0
else if [[IR]]I,A,g = ⊥ then ⊥
else if [[exp]]I,A,g[x 	→d] = ⊥ for some d∈ [[IR]]I,A,g then ⊥
else the sum of [[exp]]I,A,g[x 	→d] for all d∈ [[IR]]I,A,g

Notice that
∑

x:1.. − 1. x/0 denotes 0 with respect to any assignments since
1..− 1 denotes the empty set.

The integer range associated with the summation quantifier and, in-
deed, all quantifiers, may contain free occurrences of quantified variables. So
semantic rule (1) must be generalised to take assignments to quantified variables.

• [[expl..expu]]I,A,g= ⊥ if [[expl]]
I,A,g = ⊥ or [[expu]]I,A,g = ⊥

= {i ∈ Z | [[expl]]
I,A,g ≤ i ≤ [[expu]]I,A,g} otherwise

3.1 Semantics 1: A Three-Valued Kleene Semantics

This semantics follows the approach used by Frisch et. al. [8] in giving a semantics
to Essence. Three truth values are used — T, F and ⊥ — where the intuition is
that ⊥ indicates a lack of information. Thus, T∨⊥ is T because it is T regardless

The Proper Treatment of Undefinedness in Constraint Languages 373

of whether the “unknown” value ⊥ is T or F. Similarly, T ∧ ⊥ is ⊥ because it
could be T or F depending on the “unknown” value of the second argument.
This results in the Boolean connectives of the three-valued propositional logic
of Kleene [9, §64].

∧ T F ⊥
T T F ⊥
F F F F

⊥ ⊥ F ⊥

∨ T F ⊥
T T T T

F T F ⊥
⊥ T ⊥ ⊥

→ T F ⊥
T T F ⊥
F T T T

⊥ T ⊥ ⊥

↔ T F ⊥
T T F ⊥
F F T ⊥
⊥ ⊥ ⊥ ⊥

¬
T F

F T

⊥ ⊥

boolToInt

T 1
F 0
⊥ ⊥

Existential quantification should behave like disjunction, which yields:

• [[∃x:IR. exp:bool]]I,A,g

= T if [[IR]]I,A,g
= ⊥ and [[exp:bool]]I,A,g[x 	→d] = T for some d∈ [[IR]]I,A,g

= F if [[IR]]I,A,g
= ⊥ and [[exp:bool]]I,A,g[x 	→d] = F for all d∈ [[IR]]I,A,g

= ⊥ otherwise

The rule for universal quantification is obtained from this by interchanging “T”
and “F.” Notice that ∃x:1..−1. 1/0 = 7 denotes F with respect to any assignments
since 1..− 1 denotes the empty set.

For integer comparison and array lookup we have:

• [[exp1:int compop exp2:int]]I,A,g= ⊥ if [[exp1]]I,A,g = ⊥ or [[exp2]]I,A,g = ⊥
= [[exp1]]I,A,g [[compop]]I,A,g [[exp2]]I,A,g otherwise

• [[AR[exp:int]]]I,A,g = if [[AR]]I,A,g = ⊥ or [[exp:int]]I,A,g = ⊥ then ⊥
else if the function [[AR]]I,A,g is not defined on[[exp:int]]I,A,g then ⊥
else [[AR]]I,A,g([[exp:int]]I,A,g)

Again [[compop]]I,A,g is the obvious operation.

3.2 Semantics 2: A Three-Valued Strict Semantics

The second semantic account of E is strict in that any compound expression is
undefined whenever one of its sub-expressions is undefined. It is straightforward
to specify the semantics based on this principle.

Here is the rule for the existential quantification, the remainder are similar:

• [[∃x:IR. exp]]I,A,g = if [[IR]]I,A,g = ⊥ or [[exp]]I,A,g[x 	→d] = ⊥ for some d∈ [[IR]]I,A,g then ⊥
else if [[exp]]I,A,g[x 	→d] = T for some d∈ [[IR]]I,A,g then T
else F

As in the Kleene semantics, a consequence of the rule for existential quantifica-
tion is that ∃x:1..− 1. 1/0 = 7 denotes F with respect to any assignment. Finally,
the semantic rules for the comparison operators, the boolToInt operator and
for indexing into arrays are the same as for the Kleene semantics.

3.3 Semantics 3: A Two-Valued Relational Semantics

The third semantic account for E is based on the observation that undefinedness
results from the application of partial functions and the view that functional
notation is a shorthand for relational notation. So, instead of thinking of division
as a function, one could think of it as a relation, div(x, y, z), which holds if and
only if the result of dividing x by y is z (equivalently y × z = x∧ y �= 0). Hence
div(5, 0, 3) denotes F not ⊥.

374 A.M. Frisch and P.J. Stuckey

In this semantics there can be undefined integer expressions, but all Boolean
expressions are either T or F. Thus the Boolean operators ¬, ∧, ∨, → and ↔
as well as boolToInt have their usual classical interpretation. The rules for the
logical quantifiers are:

• [[∃x:IR. exp:bool]]I,A,g

= T if [[IR]]I,A,g
= ⊥ and [[exp:bool]]I,A,g[x 	→d] = T for some d∈ [[IR]]I,A,g

= F otherwise

The rule for indexing into an array AR of type “array[IR] of bool” is:

• [[AR[exp:int]]]I,A,g = if [[AR]]I,A,g = ⊥ or [[exp:int]]I,A,g = ⊥ then F

else if the function [[AR]]I,A,g is not defined on[[exp:int]]I,A,g then F

else [[AR]]I,A,g([[exp:int]]I,A,g)

If AR is an array of any other type, then the rule is the same as for the other
two semantics.

3.4 Comparison of the Semantics

Here we briefly state some of the properties of and relationships among the three
semantics. Space limitations preclude the presentation of examples or proofs. We
invite the reader to revisit Fig. 1 and confirm that the three semantics produce
the results shown in the last three columns.

Theorem 1. Let e be any expression, I be any instantiation, A be any assign-
ment and g be any variable assignment. Let s, k and r be the value of [[e]]I,A,g

in the strict, Kleene and relational semantics, respectively. If s �= ⊥ then s = k.
If k �= ⊥ then k = r. ��

Theorem 2. Let M be any E model. If in the strict semantics I is an instance
of M and A is a solution to 〈M, I〉 then in the Kleene semantics I is an instance
of M and A is a solution to 〈M, I〉. If in the Kleene semantics I is an instance of
M and A is a solution to 〈M, I〉 then in the relational semantics I is an instance
of M and A is a solution to 〈M, I〉. ��

In both the Kleene and relational semantics, a decision variable is the same as
a prenexed existential quantifier. This is not the case in the strict semantics.

If e1 and e2 are integer expressions, then in both the Kleene and strict se-
mantics e1 �= e2 and ¬(e1 = e2) are logically equivalent. Similarly, e1 < e2 and
¬(e2 ≤ e1) are logically equivalent in these two semantics. However, neither
logical equivalence holds in general in the relational semantics.

In the Kleene and relational semantics, for every Boolean expression e, F and
F ∧ e are logically equivalent and T and T∨ e are logically equivalent. Neither of
these equivalences holds in general in the strict semantics.

In the Kleene and strict semantics, for every integer range IR and every
Boolean expression φ, ¬∀x:IR. φ and ∃x:IR. ¬φ are logically equivalent and
∀x:IR. ¬φ and ¬∃x:IR. φ are logically equivalent. Neither equivalence generally
holds in the relational semantics. For example, ∀x:1/0..1/0. ¬(1 = 1) denotes F
in all assignments but ¬∃x:1/0..1/0. 1 = 1 denotes T in all assignments.

The Proper Treatment of Undefinedness in Constraint Languages 375

4 Transforming Constraints in E
This section shows how, for each of the three semantics, a model can be trans-
formed into one that has the same instances and solutions but whose constraints
are safe. Space limitations require us to make the simplifying assumption that
all expressions in given and find statements and in integer ranges associated
with quantifiers are safe. More rigorously we say that an occurrence of an expres-
sion e is unsafe if [[e]]I,A,g =⊥ for some I, A and g. Furthermore an occurrence
of an expression is unsafe if it contains any unsafe occurrence. Otherwise, an
occurrence is said to be safe.

Let us first introduce the idea behind the transformations. Here we write φ[e]
to denote an expression containing an occurrence of e. A subsequent reference
to φ[e′] denotes the same expression but with e replaced by e′. As an example
to illustrate the transformations, consider transforming an atomic Boolean ex-
pression A[e′/e] that is unsafe because e could denote 0. The expression A[e′/e]
may occur within a complex constraint.

In the relational semantics the basic idea is to transform A[e′/e] to ∃a′:nz. a′ =
e ∧ A[e′/a′]. Here nz is the domain of all non-zero integers, so the resulting
expression is safe. Notice that the resulting expression is false if e denotes 0.

In the strict semantics the basic idea is to transform A[e′/e] in the same
way as the relational semantics but also to add to the such that statement the
constraint e �= 0. This is a simplification because e may contain free variables.

The transformation for the Kleene semantics depends on the polarity of the
occurrence of A[e′/e]. If it occurs in a positive context, then it is transformed
in the same way as the relational semantics. However, if A[e′/e] occurs in a
negative context then it is transformed to (∃a′:nz. a′ = e ∧ A[e′/a′]) ∨ e = 0.
This expression is true if e denotes 0, which has the same effect as making the
expression false in a positive context.

These basic transformations are logically correct except for the case
boolToInt in the Kleene semantics, which is difficult to handle and requires
special treatment. Unfortunately, these basic transformations add existential
variables to the interior of a constraint and do not propagate efficiently. The
actual transformations avoid these problems but, consequently, are much more
complicated.

Now let’s proceed to consider the actual transformations. In performing trans-
formations to render a model safe, we need to pass through a language called
E+, which is the same as E but with four additional features, each of which has
the same denotation in each of the three semantics.

– A new kind of IR, called nz, which denotes the set of all non-zero integers.
– An additional boolop, ⇔, where x ⇔ y denotes T if x and y take the same

value (including ⊥) and F otherwise.
– The operator boolToInt0, which denotes the function that maps T to 1, F

to 0, and ⊥ to 0.
– A domain can contain “array [l..u]” where l and u can contain integer

expressions of the form MINx:IR.exp and Qmaxx:IR.exp, respectively. If
the IR associated with either form of expression denotes ∅ then the “array

376 A.M. Frisch and P.J. Stuckey

[l..u]” in which it occurs denotes an array with an empty set of indices.
Otherwise, [[MIN x:IR.exp]]I,A,g and [[MIN x:IR.exp]]I,A,g) are the minimum
and maximum values of {[[exp]]I,A,g[x �→d]|d∈ [[IR]]I,A,g}.

Theorem 3. The set of safe E+ models are the same in all three semantics. If
M is a safe model, then its instantiations are the same in all three semantics
and every instance of M has the same solutions in all three semantics. ��

By reductions from Diophantine problems it is straightforward to show that nei-
ther the safe nor the unsafe expressions of E are recursively enumerable. There-
fore, for the transformations we assume the existence of a procedure that can
determine that some expressions are safe, though it can not detect all safe ex-
pressions. We place three requirements on such a procedure: (1) if the procedure
says that an expression is safe, then it is safe; (2) the procedure identifies as safe
every expression of the form exp/i, where i is an integer variable with domain nz;
and (3) the procedure identifies as safe every expression of the form and AR[i],
where i is an integer variable and the domain of i and the index range of AR
are defined with syntactically identical expressions. If this procedure identifies
an expression as safe, then we say that the expression is provably safe, otherwise
we say that it is possibly unsafe.

Our transforms work by eliminating all possibly unsafe expressions and are
correct even when the eliminated expression happens to be safe. However, a
more accurate estimate of safeness results in the transformations making fewer
changes to the model, thus producing a simpler model.

Example 1. Consider the model in E of the form:

given m : array[1..10] of int(1..5)
find x:int(1..20), y:int(−3..3)
such that (∀j:1..4.

∑
i:j..9. boolToInt(m[i] ≥ m[x]) ≤ j/(y2 − 5))

then the expression m[i] is provably safe, and we may assume expressions m[x]
and j/(y2− 5) are possibly unsafe, although a more sophisticated analysis could
determine that y2 − 5 cannot take the value 0. ��

The transforms for all three semantics use the common sub-procedure Trans-
formExtract, given in Fig. 2, to transform a model M .

Example 2. Consider applying TransformExtract to the following model:

find x:int−1..10
such that 1 ≤ 1/boolToInt(7/x ≤ 1)

First A must be chosen to be 7/x ≤ 1. (The transform cannot choose A to be the
entire constraint as this contains a possibly unsafe Boolean expression.) Steps
(a), (b) and (c) are executed, resulting in

find x:int−1..10, b1:bool
such that 1 ≤ 1/boolToInt(b1),

b1 ⇔ 7/x ≤ 1

The Proper Treatment of Undefinedness in Constraint Languages 377

TransformExtract(M)

While there is an occurrence A of a possibly unsafe Boolean expression in a constraint of
M such that every occurrence of a Boolean expression within A is provably safe and the
constraint does not contain an occurrence of “⇔” do:

Let b be an identifier that does not occur in M .
If no free quantified variables occur in A then
(a) Replace occurrence A in M with b.
(b) Add b:bool to the decision variables of M .
(c) Add to M the constraint b ⇔ A.
Otherwise
(d) Let y1, . . . , ym be, in order, the variables attached to the quantifiers whose scope

includes A.
Let yi1 , . . . , yin be, in order, those variables in y1, . . . , ym that occur in A.
Let li..ui be the integer range expression over which each yi is quantified.
Let MINj be the expression MIN y1:l1..u1. · · · MIN yj−1:lj−1..uj−1. lj .
Let MAXj be the expression MAX y1:l1..u1. · · · MAX yj−1:lj−1..uj−1. uj .

(e) Replace occurrence A in M with b[yi1 , . . . , yin].
(f) Add “b:array[MINi1 ..MAXi1 , . . . , MINin ..MAXin]of bool” to the decision

variables of M .
(g) Add to M the constraint ∀ y1:l1..u1. · · · ∀yn:ln..un. b[yi1 , . . . , yin] ⇔ A

Fig. 2. TransformExtract

Next A is chosen to be 1 ≤ 1/boolToInt(b1) and steps (a), (b) and (c) are
executed, resulting in

find x:int−1..10, b1:bool, b2:bool
such that b2,

b2 ⇔ 1 ≤ 1/boolToInt(b1),
b1 ⇔ 7/x ≤ 1 ��

Let us consider the relationship between a model M and the model M ′ that
results from applying TransformExtract to M . We say that an assignment α′ is
an extension of an assignment α if every variable assigned by α is also assigned
by α′ and the two assign the same values to the variables of α.

Theorem 4. Let M be a model and M ′ be the result of applying TransformEx-
tract to M . Let I be any instantiation for M (and hence for M ′). Then in any
of the three semantics, assignment α is a solution to 〈M, I〉 if and only if some
extension of α is a solution to 〈M ′, I〉. ��

After performing TransformExtract a model consists of two disjoint sets of con-
straints: M ′, the original constraintsmodified by steps (a) and (e) ofTransformEx-
tract, and B, the set of constraints added by steps (c) and (g) of TransformExtract.
Notice that every constraint in M ′ is provably safe and every constraint in B is pos-
sibly unsafe. The transformation needed to make B provably safe is different for
each of the three semantics. We consider each in turn.

4.1 Transformations for the Relational Semantics

To obtain a safe model for the relational semantics, Transform2Rel, as shown
in Fig. 3 is performed. The transformations introduce a new variable a′ to take

378 A.M. Frisch and P.J. Stuckey

Transform2Rel(M)

(a) Perform TransformExtract(M).
(b) While M contains a possibly unsafe occurrence of b ⇔ C perform

Transform2Pos(M, b ⇔ C).

Transform2Pos(M, b ⇔ C)

(c) If C contains an possibly unsafe expression of the form exp′/exp where exp is a
provably safe expression then replace b ⇔ C with

∃ a′:nz. ∃ b′:bool. b′ ⇔ (a′ = exp) ∧
b ⇔ (b′ ∧ C{exp �→ a′}) ∧
exp
= 0 → b′

(d) If C contains a possibly unsafe expression of the form AR[exp], where AR is an
expression of type array [l..u] of τ , and exp is a provably safe expression then replace
b ⇔ C with ∃ a′:l..u. ∃ b′:bool. b′ ⇔ (a′ = exp) ∧

b ⇔ (b′ ∧ C{exp �→ a′}) ∧
(l ≤ exp ∧ exp ≤ u) → b′

Fig. 3. Transform2Rel

the place of exp, and a new Boolean b′ to capture whether a′ = exp. a′ has a
domain that forces the resulting expression to be provably safe. The complexity
arises in capturing the cases where a′ and exp differ in value. If a′ �= exp then
the Boolean b is forced to be F. The third conjunct is required since otherwise
we could choose a′ �= exp and make b F when indeed the expression will not
lead to undefined. The third conjunct forces a′ = exp if this will not result in an
undefined expression.

Theorem 5. Let M be a model resulting from the application of TransformEx-
tract and let M ′ be the result of applying Transform2Rel to M . Let I be any
instantiation for M (and hence for M ′). Then M ′ is safe and in the relational
semantics 〈M ′, I〉 and 〈M, I〉 have the same solutions. ��

4.2 Transformations for the Strict Semantics

The strict semantics is the simplest to implement. The full transformation is
given in Fig. 4.

Transform2Strict(M)

(a) Perform TransformExtract(M).
(b) While M contains a possibly unsafe occurrence of b ⇔ C do:

(c) If C contains a possibly unsafe expression of the form exp′/exp, where exp is
provably safe then replace b ⇔ C with

∃ a′:nz. a′ = exp ∧ (b ⇔ C{exp �→ a′})
(d) If C contains a possibly unsafe expression of the form AR[exp], where AR is an

expression of type array [l..u] of τ , then replace b ⇔ C with

∃ a′:l..u . a′ =exp ∧ (b ⇔ C{exp �→ a′})

Fig. 4. Transform2Strict

The Proper Treatment of Undefinedness in Constraint Languages 379

Theorem 6. Let M be a model resulting from the application of TransformEx-
tract and let M ′ be the result of applying Transform2Strict to M . Let I be any
instantiation for M (and hence for M ′). Then M ′ is safe and in the strict se-
mantics 〈M ′, I〉 and 〈M, I〉 have the same solutions. ��

4.3 Transformations for the Kleene Semantics

The Kleene semantics is the most difficult to make safe. This is the only se-
mantics where Boolean expressions can really take the value ⊥ (in the strict
semantics if this occurs then there can be no solution). In order to transform
this correctly to an effectively two valued semantics that is supported by the
underlying constraint solvers we need to take into account whether a Boolean
expression occurs in a positive context, where undefined will be equivalent to F
for satisfiability, or a negative context where undefined will be equivalent to T
for satisfiability.

The Transform2Kleene transformation, shown in Fig. 5, converts an E model
into a safe E+ model. Step (a) replaces each occurrence of↔with two implications.
The effect, as will be seen, is that every expression appears in either a positive or
negative context, but not both. Step (b) replaces each occurrence of boolToInt
with an equivalent expression containing two occurrences of boolToInt0. This is
done because the remainder of the transformation correctly deals with boolToInto

without any special provisions. Though each of these first two steps can make the
model exponentially larger, a more sophisticated version of these steps could avoid
this by introducing new Boolean variables. Step (c) performs TransformExtract,
just as in the other two transforms. Finally Step (d) replaces all possibly unsafe
expressionswith ones that are provably safe. Positive occurrences are handled as in
the relational transformation; negative occurrences employ a new transformation,
Transform2Neg, also shown in Fig. 5.

Given an E+ expression which does not include or boolToInt or ↔ we can
define the context of each Boolean expression appearing in a model as follows.

– For such that exp1, . . . , expn each of expi, 1 ≤ i ≤ n appear positively.
– For boolToInt0(exp) then exp appears positively.
– If ¬exp appears positively then exp appears negatively, and if ¬exp appears

negatively then exp appears positively.
– If exp ∨ exp′ or exp ∧ exp′ appear in manner H (positively or negatively)

then exp and exp′ appear in manner H .
– If b appears in manner H (positively or negatively) and b ⇔ exp occurs in

M then exp appears in manner H .

Note that since the model results from TransformExtract the rules for expres-
sions of the form b⇔ C are unambiguous since there is exactly one such expres-
sion for each introduced b.

Theorem 7. Let M be a model resulting from the application of TransformEx-
tract. Let M ′ be the result of applying Transform2Kleene to M . Then Let I be
any instantiation for M (and hence for M ′). Then M ′ is safe and in the Kleene
semantics 〈M ′, I〉 and 〈M, I〉 have the same solutions. ��

380 A.M. Frisch and P.J. Stuckey

Transform2Kleene(M)

(a) Replace every occurrence in M of an expression of the form exp1 ↔ exp2 with
(exp1 → exp2) ∧ (exp2 → exp1).

(b) Replace every occurrence in M of an expression of the form boolToInt(exp) with
boolToInt0(exp)/(boolToInt0(exp) + boolToInt0(¬exp)).

(c) Perform TransformExtract(M)
(d) While M contains a possibly unsafe occurrence of b ⇔ C do:

(e) if b occurs positively in M then perform Transform2Pos(M, b ⇔ C)
(f) otherwise perform Transform2Neg(M, b ⇔ C).

Transform2Neg(M, b ⇔ C)

(g) If C contains a possibly unsafe expression of the form exp′/exp where exp is provably
safe then replace b ⇔ C with

∃a′:nz. ∃ b′:bool. ∃ b′′:bool. b′ ⇔ (a′ = exp) ∧
b′′ ⇔ (exp
= 0) ∧
b ⇔ (¬b′′ ∨ (b′ ∧ C{exp �→ a′})) ∧
b′′ → b′

(h) If C contains a possibly unsafe expression of the form AR[exp], where AR is an
expression of type array [l..u] of τ and exp is provably safe, then replace b ⇔ C with

∃ a′:l..u. ∃ b′:bool. ∃ b′′:bool. b′ ⇔ (a′ = exp) ∧
b′′ ⇔ (l ≤ exp ∧ exp ≤ u)
b ⇔ (¬b′′ ∨ (b′ ∧ C{exp �→ a′})) ∧
b′′ → b′

Fig. 5. Transform2Kleene

5 Solving the Transformed Models

The transformations defined in the previous section create models that are safe;
undefinedness cannot occur. we can now replace ⇔ by ↔ and boolToInt0 by
boolToInt since these operators are identical in two-valued logic. The models
are still not directly executable in a constraint solver which takes a set of finite-
domain variables and conjunction of constraints on these variables. In order
to create such a final form we need to map the resulting model in E further,
principally unrolling loops and flattening. Since the models are safe the existing
mappings should respect the semantics of the model.

The reader may be concerned that the transforms introduce new variables
with the infinite domain nz. This is unproblematic since it can be shown that if
a search assigns values to all the finite-domain variables, then the value of each
infinite-domain variable either becomes irrelevant to determining satisfiability or
is fixed by propagation (even using simple propagators). As an example, consider
the variable a′ introduced by line (c) of Transform2Pos. If search fixes the value of
exp to 0 and then propagation on b′ ⇔ a′ = exp fixes b′ to F and propagation on
b′ ⇔ a′ = exp can fix b to F without knowing the value of a′. On the other hand,
if search fixes exp to a value other than 0, then propagation on exp �= 0 → b′

fixes b′ to T and propagation on b⇔ (a′ = exp) forces a′ to be fixed to the same
value as exp.

It can be shown that with only weak assumptions about propagators, none of
the transformations weaken propagation. As an example, consider the model:

The Proper Treatment of Undefinedness in Constraint Languages 381

find x:int(1..6)
such that ¬(12/x ≥ 4)

Assuming this model is implemented by the constraint div(12, x, t) ∧ (b ↔ t ≥
4)∧¬b, then enforcing domain consistency results in the domains: t : 2..3, x : 4..6.

The model is safe so there is no need to transform it. However if we did trans-
form it for the relational semantics then the result, after converting existential
variables to decision variables, would be

find x:int(1..6), a′:nz, b:bool, b′:bool
such that b′ ⇔ (a′ = x) ∧ b ⇔ (b′ ∧ (12/a′ ≥ 4)) ∧ (x
= 0 → b′) ∧ ¬b

Assuming this model is implemented by the constraint (b ↔ b′∧ b2)∧ (b′ ↔ a′ =
x) ∧ (b2 ↔ t ≥ 4) ∧ div(12, a′, t) ∧ (b3 → b′) ∧ (b3 ↔ x �= 0) ∧ ¬b then enforcing
domain consistency results in the domains: b = F, b3 = T, b′ = T, b2 = F, t : 2..3,
a′ : 4..6, and x : 4..6.

6 Conclusion

As modelling languages become more expressive, it becomes more likely that a
modeller creates models where undefinedness occurs. A clear understanding of
how undefinedness is treated by a modelling language is vital to both the mod-
eller and the system’s implementer. For the modeller misunderstanding may
result in modelling errors giving the wrong results (including incorrect opti-
mal values) when undefinedness is silently translated to failure. For the systems
builder a great deal of care must be taken to ensure that transformations and
optimizations of the systems do not change the meaning of the model.

Fig. 1 shows that without a clear understanding of undefinedness imple-
menters have struggled to implement a proper treatment of undefinedness. Our
work shows how undefinedness can be properly treated in a simple constraint
language and we believe that this approach can be extended easily to handle
richer languages. Already our work has informed the development of MiniZinc
and generated a bug report for ECLiPSe. We expect our work to result in bug
reports in additional languages and to alter and inform the development of other
languages such as Essence′. Finally, other subtle issues are likely to arise in the
development of highly-expressive modelling languages; our work suggests that
the use of semantics could be valuable in resolving those issues.

References

1. Apt, K.R., Wallace, M.: Constraint Logic Programming Using ECLiPSe. Cambridge
University Press, Cambridge (2006)

2. SWI Prolog (2009), http://www.swi-prolog.org/
3. Intelligent Systems Laboratory: SICStus Prolog. Swedish Institute of Computer Sci-

ence (2009), http://www.sics.se/isl/sicstuswww/site/index.html
4. Van Hentenrcyk, P.: The OPL Optimization Programming Language. MIT Press,

Cambridge (1999)

http://www.swi-prolog.org/
http://www.sics.se/isl/sicstuswww/site/index.html

382 A.M. Frisch and P.J. Stuckey

5. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

6. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., Garcia de la Banda, M.,
Wallace, M.: The design of the Zinc modelling language. Constraints 13, 229–267
(2008)

7. Frisch, A.M., Harvey, W., Jefferson, C., Hernández, B.M., Miguel, I.: Essence: A
constraint language for specifying combinatorial problems. Constraints 13, 268–306
(2008)

8. Frisch, A.M., Grum, M., Jefferson, C., Mart́ınez Hernández, B., Miguel, I.: The
essence of Essence: A language for specifying combinatorial problems. In: Proc.
of the 4th Int. Workshop on Modelling and Reformulating Constraint Satisfaction
Problems, pp. 73–88 (2005)

9. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)

Search Spaces for Min-Perturbation Repair

Alex S. Fukunaga�

Global Edge Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan
fukunaga@is.titech.ac.jp

Abstract. Many problems require minimally perturbing an initial state
in order to repair some violated constraints. We consider two search
spaces for exactly solving this minimal perturbation repair problem: a
standard, difference-based search space, and a new, commitment-based
search space. Empirical results with exact search algorithms for a min-
cost virtual machine reassignment problem, a minimal perturbation re-
pair problem related to server consolidation in data centers, show that
the commitment-based search space can be significantly more efficient.

1 Introduction

Most research on constraint satisfaction and optimization focus on generating
solutions from scratch – given a set of variables and constraints, generate an (op-
timal) assignment that satisfies the constraints. In practice, there are many situ-
ations where it is necessary to find solutions to constraint satisfaction problems
that are as close as possible to a given, initial state. One example is related to
server consolidation, the use of virtual machines to consolidate multiple servers
onto fewer servers [1]. There is currently great interest in server consolidation
due to opportunities for improved energy efficiency and cost reduction. Server
consolidation can be modeled as a bin packing problem [2]. Consider a set of
n virtual machines (VMs), where each VM has a weight (representing resource
demand). Given m physical servers, each with a some capacity (representing ag-
gregate CPU/RAM resources) the server consolidation problem is the problem
of assigning the n VMs to the m physical servers, such that each VM is assigned
to exactly one physical server, and for every physical server, the sum of the
assigned VM demands is within the capacity of the physical server.

Suppose that after the initial server assignments are made, the resource re-
quirements of the VMs deviate from the original forecasts, resulting in some
servers being overloaded. VMs can be reassigned among the servers in order to
rebalance the loads. However, migration of a VM between servers incurs costs
(e.g., system administration costs, possible downtime for a service). The Min-
Cost Virtual Machine Reassignment Problem (VMRP) seeks a new assignment
of VMs to servers such that no server is overloaded, and the number of jobs that
are moved from their initial assignment is minimized. Heuristics for this problem
were investigated in [3]. An approximation for a similar problem was considered
in [4]. Similar problems arise for process migration in distributed systems.
� This research was supported by JSPS, JST, and the Okawa Foundation.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 383–390, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

384 A.S. Fukunaga

Another scenario where a solution similar to a given initial state is desired
occurs in staff scheduling. Employees express preferences regarding when they
want to work, but their preferences must be balanced against the staffing de-
mands and constraints of the business, requiring a schedule that satisfies staffing
requirements while deviating minimally from employee preferences.

This general class of Min-Perturbation Repair Problems (MPRP) seeks to re-
pair an initial assignment of values to variables (i.e., find a conflict-free solution),
with minimal cost, where cost is the number of differences between a candidate
solution and the initial assignment. While a standard CSP seeks a solution which
does not violate any constraints, the MPRP imposes the additional goal of min-
imizing the distance from an initial assignment of values to variables.

This paper considers search algorithms for the MPRP, focusing on alterna-
tive search spaces. In Sect. 2, we consider a standard, difference based search
space which has been used in previous work on the MPRP, as well as a new,
commitment-based search space. Using the VMRP as a case study, we exper-
imentally evaluate these search spaces (Sect. 3). We discuss related work in
Sect. 4, and conclude in Sect. 5

2 Search Spaces for Minimal Perturbation Repair

Given an initial variable assignment I = {x1 = v1, ..., xn = vn}, let Di be the set
of states which have exactly i variables whose value are different from that of the
initial state I. We call the set D = D1 ∪ ...Dn the difference space, or D-space.
The root node of this search space is I. Nodes at depth d of the search tree
contain variable assignments which differ by d assignments from I. Each edge
in the tree changes the value of one variable which has not yet been changed
by any ancestor. A standard depth-first branch-and-bound (DFBNB) can be
applied to explore this search space. Problem-specific pruning techniques, such
as those described in Sec 3, are applied at each node.

Instead of a depth-first search strategy, we can also use a best-first search
strategy, such as Iterative-Deepening A* (IDA*) [5], which expands nodes in a
best-first order using linear space (at the cost of reopening some nodes). The
admissible heuristic function, h, used by IDA* is the same as the lower bounding
function used for DFBNB, and the d-th iteration of IDA* explores the subset of
the DFBNB D-space search tree where at each node, the sum f = g + h ≤ d,
where g is the number of differences from the initial state in the current solution,
and h is the lower bound on the additional number of differences required to find
a conflict-free solution. Ran et al [6] applied iterative-deepening in D-space to
solve a minimal perturbation problem for binary CSPs.

We now introduce commitment, a useful concept for MPRP search algorithms.
A variable x is committed to value v at node N if x is assigned to v at N and every
descendant of N , and uncommitted otherwise. For variables x1, ..., xn, we denote
a search state as S = {x1 = v1, ..., xn = vn}, or more concisely, {v1, ..., vn}.
Furthermore, the values are underlined if the variable is committed to that value.
In a 2-variable MPRP where the current assignments are x1 = 1, x2 = 2, and
we have committed x1 = 1, we can denote this state as {x1 = 1, x2 = 2}, or

Search Spaces for Min-Perturbation Repair 385

more concisely, {1, 2}. At the root node of this search space, the variables are
assigned the values of the initial assignment I, and all variables are uncommitted.
Furthermore, we annotate a value to be different from the initial state I with
an asterisk (*). Thus, {1, 3∗, 2} denotes a state where x1 is committed to value
1, x2 to 3, and x3 is uncommitted (but assigned to 2), and where the value of
x2 differs from the value of x2 in the initial state. Fig. 1 shows a search tree
for the VMRP. The sibling nodes are ordered according to a variable ordering
implemented in the search algorithm (lex order in Fig. 1).

One issue with the D-space search tree is symmetry, e.g., given two variables
x1 and x2, assigning x1 = 2 first, followed by x2 = 1, is symmetric to assigning
x2 = 1, then x1 = 2. One approach to eliminating such symmetries is a stan-
dard nogood-based approach [6]. We use a different approach, which eliminates
symmetries by asserting commitments on the siblings of a node. For example,
in Fig. 1, node B is the result of starting with the initial state A and moving
the VM with weight 20 from Sc=10, the server with capacity 10, to Sc=25, the
server with capacity 25. For all of the siblings of node B, we commit this VM to
Sc=10 (i.e., forbid moving it to Sc=25). This is equivalent to saying that assign-
ing the VM with weight 20 to Sc=10 is nogood for all siblings and descendants
of B. Thus, a separate representation for nogoods is unnecessary. This method
generalizes straightforwardly when there are more than 2 possible values.1

An explicit notion of commitment (as opposed to just assignment) in a MPRP
is very useful for purposes other than symmetry elimination. For example, in a
VMRP, if we have committed a VM with weight 8 to a server S with capacity
10, then all nodes which assign more than 2 additional units of demand to S can
be pruned. Note that merely assigning a VM with weight 8 (for example, in the
initial assignment I) does not allow the same pruning, because it is possible to
move that VM out of S, allowing another VM with demand greater than 2 to be
assigned to S. It is the commitment which allows us to prune. Similarly, note that
this type of pruning is not captured by the nogoods used in [6]. Commitments
also constrain the feasible domains for a variable, which has a significant impact
on the effectiveness of variable ordering (we use most-constrained ordering).

A new, alternative search space for searching the space of commitments, rather
than differences, is a commitment-based search space (C-space), where each node
in the search tree represents a partially committed assignment of variables to
values, and edges represent a commitment of a variable to some value. For each
variable, we represent its current value, as well as whether a commitment has
been made to the value. The root node of this search space is I. Nodes at depth d
of the search tree contain variable assignments with d commitments.2 A sample
C-space search tree is shown in Fig. 1. Each edge represents a single commitment.
While all edges in D-space have cost 1, some edges in C-space have cost 0 (e.g,.
the edges a → b, c → d, d → f, f → h in Fig. 1). As with D-space, C-space can
be searched using either the DFBNB or IDA*.

1 Another class of symmetries, not handled by nogoods or commitments, arises with
low-precision instances, e.g., multiple VMs with the same weight; this is future work.

2 In D-space, nodes at depth d can contain more than d commitments because of the
commitments asserted for symmetry elimination.

386 A.S. Fukunaga

Difference Space Search Tree
(D-space)

Commitment-Space Search Tree
(C-space)

Fig. 1. Difference-Space and Commitment-Space search trees for VMRP with 2 servers
(c1 = 10, c2 = 25), and 4 VMs (w1 = 20, w2 = 6, w3 = 5, wr = 4). The initial
assignment is I = {1, 1, 2, 2}. For each node, d = # of perturbations from the initial
assignment I , and c = # of commitments. Underlined values are committed, and an
asterisk (*) indicates that the committed value is different from I . For example, node
H in D-space has 4 committed variables, where 2 have values different from the initial
assignment. Infeasible nodes are pruned (slash through node).

D-space can be seen as the subset of C-space where all committed decision
variables are assigned a value different from the initial assignment. For example,
given variables x1, x2 and initial assignment I = {1, 2}, the assignment {3, 2} is
in D-space because v1 is committed to a value that is different than in I, but
{1, 2} is not in D-space because x1 is committed to the same value as in I. Each
node in D-space corresponds to a unique assignment of variables to values. In
contrast, C-space has multiple nodes representing the same assignment of values
to variables, except that the nodes have different commitments. For example, the
search state {1, 2} and {1, 2} represent the same variable assignments, but in the
latter, a commitment has been made to assign x1 to 1 for all of its descendants,
whereas the former has not made any commitments.

In a problem with n variables with a domain of m possible values, the search
tree for D-space contains TD = mn nodes, because there is a 1-to-1 correspon-
dence between the unique assignments of variables to values and the nodes in
the D-space search tree (after elimination of symmetric nodes), and there are
mn unique assignments. This tree does not have a regular branching factor; the

Search Spaces for Min-Perturbation Repair 387

first level below the root node consists of the n(m− 1) assignments which differ
from the initial assignment by exactly 1.

The root node of the C-space search tree is the initial assignment, and at each
tree depth, we commit a variable to one of m values (one of the m values is the
initial value in I). Thus, the C-space search tree has size TC = 1+m+m2+...mn,
and by straightforward manipulations, TC = (mn+1 − 1)/(m − 1). Comparing
TD and TC , TC/TD approaches 2 in the worst case (when m = 2).

Despite the redundancy in C-space compared to D-space, C-space has a lower
branching factor (m) compared to D-space (depends on node; n(m− 1) at first
level of the search tree). Given a comparable number of nodes, and the same set
of pruning techniques, a narrower, deeper tree is easier to search than a wider
tree, because a successful pruning in the narrower tree tends to prune more
nodes than a successful pruning at the same depth in the wider tree. Thus, the
main, potential advantage of C-space is in reorganizing the search tree structure
from the relatively “top-heavy” D-space tree to a relatively narrow tree with
branching factor m, at the cost of some redundancy.

3 Experimental Comparison of MPRP Algorithms for
the VMRP

We evaluated search algorithms for the VMRP based on the search strategies
described above, enhanced with the following VMRP-specific bounds.

A server is oversubscribed if the sum of the VM weights assigned to it exceeds
its capacity. A lower bound LBO (for pruning in DFBNB and for the admissible
heuristic h in IDA*) is computed as follows: For each oversubscribed server S,
sort the uncommitted VMs assigned to S in non-decreasing order, and count the
number of VMs that must be removed from S in this order such that usage no
longer exceeds capacity. For example, for the VMRP state {(5, 6)(4, 3)(10, 1, 2)}
where server capacity is 10, LBO = 3. This is because either the VM with weight
5 or 6 must move from the first server, and the 1 and 2 must move from the
third server (the VM with weight 10 is excluded from consideration because it
is uncommitted). In addition, there are some bounds based on the wasted space
in the servers, which we detailed in a workshop paper [7]. However, since those
other VMRP-specific techniques affect all search strategies equally, and have less
than a factor of 2 impact on runtime, we omit the details here due to space.

A common scenario for server consolidation in practice involves consolidating
tens of services into fewer servers, where the target ratio of VMs to physical
servers is commonly around 3-5 [8]. We generated solvable, random benchmarks
based on this scenario as follows. For each server sj , 1 ≤ j ≤ m (all servers with a
capacity of 1000), VMs were uniformly generated in the range [200, 400] and as-
signed to sj until the remaining capacity was under 100. At that point, one ’filler’
VM was generated, whose weight was constrained such that the slack (remaining
capacity) in sj was between 0 and 20. Minimizing the slack in this way increases
the instance difficulty. Then all the VMs were removed from the servers, shuffled
and reassigned to the servers in a round-robin manner, resulting in a solvable
VMRP instance where each server has a balanced number of VMs, but some

388 A.S. Fukunaga

Table 1. Virtual Machine Reassignment Problem results with varying # of servers
(m) The fail column indicates # of instances (out of 30) not solved within the time
limit (600 seconds/instance). The time and nodes columns show average runtime and
nodes generated on the successful runs, excluding failed runs.

Commitment Space (C-space) D-space
DFBNB IDA* IDA*/B IDA* IDA*/NG

m fail time nodes fail time nodes fail time nodes fail time nodes fail time nodes
5 0 0.1 34481 0 0.05 10379 0 0.23 81431 0 0.17 42783 0 0.18 25770
6 0 1.9 5.0e5 0 0.4 7.2e4 0 3.3 1.1e6 0 3.0 7.6e5 0 4.54 5.6e5
8 4 119.9 2.0e7 0 32.4 5.3e6 8 157.0 5.4e7 8 104.7 2.9e7 6 52.6 6.6e6

10 28 112.5 1.5e7 14 150.6 2.1e7 29 251.3 1.1e8 29 156.3 5.2e7 23 145.8 13.5e7
12 30 - - 26 267 2.8e7 30 - - 30 - - 30 - -

servers are overloaded. We tested each of the search algorithm configurations
on 30 instances with m varying from 5 to 12, with a time limit of 600 seconds
per instance on a 3.0GHz Intel Core2 processor. We used a most-constrained
variable ordering and a lexicographic value ordering for all algorithms (results
using different variable and value ordering strategies were similar). In addition
to combinations of C-space and D-space with DFBNB and IDA*, we also ran
two additional configurations: (1) The C-space+IDA*/B configuration is simi-
lar to C-space+IDA*, except that all pruning is disabled for nodes which have
the same variable assignment as their parents (i.e., the “extra” nodes resulting
from cost 0 edges in C-space which are not present in D-space, such as nodes b,
d, f, h in Fig. 1). At all other nodes, pruning is enabled as in C-space+IDA*.
This tests how pruning at these “extra” nodes impacts C-Space+IDA*. (2) The
D-space+IDA*/NG configuration is similar to D-space+IDA*, except that this
algorithm is based on the iterative deepening algorithm in [6], which, on the d-th
iteration, enumerates variable assignments with at most d differences compared
to the initial assignment. However, it does not assert commitments, and nogoods
are used for symmetry pruning. While this searches the same space of variable
assignments as D-space, the lack of commitments means that variable ordering
and bound-based pruning techniques are less effective.

Table 1 shows the results. The fail column indicates the number of instances
(out of 30) that were not solved within the time limit. The time and nodes
columns show average time spent and nodes generated on the successful runs,
excluding the failed runs.

As shown in Table 1, C-space+IDA* significantly outperformed the other
algorithms. D-space+DFBNB is not shown due to space, but performed sig-
nificantly worse than D-space+IDA* and C-space+DFBNB. C-space+IDA*/B
performs significantly worse than C-space+IDA*, and is comparable with D-
space+IDA*, indicating that in fact, pruning at the “extra”, inner nodes in C-
space plays a significant role in enhancing the performance relative to D-space.
The poor performance of D-space+IDA*/NG, which does not assert any commit-
ments, shows the importance of exploiting commitments for pruning and variable
ordering. Similar results were obtained with VM sizes in the range [100, 300].

Search Spaces for Min-Perturbation Repair 389

4 Related Work

Several techniques for solving CSPs and combinatorial optimization problems
which apply some backtracking strategy to a nonempty variable assignment
(similar to our algorithms) have been previously proposed, including [9,10]. Al-
though these techniques use a partial or complete variable assignment to guide
the search for a solution, they do not have an explicit goal or mechanism for
ensuring a minimal count of perturbations from a particular initial assignment.

Previous work has explicitly addressed minimal perturbation. Ran, et al. pro-
posed iterative-deepening in D-space for binary CSPs [6], with symmetry prun-
ing based on nogoods. El Sakkout and Wallace [11] considered a minimal cost
repair problem for scheduling. They consider difference functions that can be ex-
pressed linearly - the MPRP objective of minimizing difference count is excluded
([11],p.368). Their probe backtracking algorithm does not explicitly consider the
initial schedule, and reschedules from scratch. Barták et al. investigated over-
constrained CSPs for which there is likely to be no feasible solution without
violated constraints [12], and studied methods to seek a maximal assignment
of consistent variables which also differs minimally from an initial state. They
also studied an iterative repair (local search) algorithm biased to seek minimal
perturbation solutions for course timetabling [13].

IDA* in C-space is related to Limited Discrepancy search (LDS) [14] and
its variants, as both algorithms search a space which is characterized by some
notion of “discrepancy”. LDS can be viewed as a best-first search, where the
cost of a node is the number of discrepancies (from the first value returned by a
value ordering heuristic) [15]. Let δ be the class of all value ordering heuristics
where the first value returned by the ordering is the value in the initial state.
Using some value ordering from δ, we can implement LDS in C-space which is
similar to IDA* in C-space. The differences are: (1) On the d-th iteration, LDS
explores nodes with up to d discrepancies, while IDA* searches nodes with cost
estimate (Sect. 2) f ≤ d. The reason for this difference is that the goal of LDS
to find a solution for a standard CSP – it is not explicitly trying to find a min-
perturbation solution. The lack of a nontrivial bound/heuristic means that LDS
performs even less pruning than C-space+IDA*/B (which at least prunes at all
non-redundant nodes) (2) LDS specifies a specific value ordering strategy, i.e.,
a policy from the class δ, whereas IDA* (as well as DFBNB) does not specify
a particular value ordering among sibling nodes (our VMRP experiments used
lexical ordering). Thus, LDS, when applied directly to the MPRP, is a special
case of C-space IDA* with a trivial lower bound (h = 0) and a value ordering
heuristic from δ. On the VMRP, we found that all the C-space algorithms in
Table 1 significantly outperforms LDS (more than an order of magnitude).

5 Conclusions

We investigated exact search algorithms for repairing constraint violations with a
minimal number of perturbations from an initial state. Starting with a straight-
forward difference-based search space which enumerates differences from the

390 A.S. Fukunaga

initial assignment, we showed that introducing an explicit notion of commit-
ments to values allows elimination of symmetries (subsuming nogoods), as well
as domain-specific pruning. We then propose a commitment space, which re-
organizes the search tree into a regular, narrow structure at the cost of some
redundancy. Experimental results for the Virtual Machine Reassignment Prob-
lem, a min-perturbation variant of bin packing, show that search in C-space is
significantly more efficient than search in D-space, and that the combination of
C-space with IDA* result in the best performance for the VMRP. Although we
used the VMRP as an example, C-space and D-space are general notions for
MPRP problems, and future work will investigate additional MPRP domains.
Some preliminary results for an antenna-scheduling related domain are in [7].

References

1. Vogels, W.: Beyond server consolidation. ACM Queue 6(1) (2008)
2. Gupta, R., Bose, S., Sundarrajan, S., Chebiyam, M., Chakrabarti, A.: A two-stage

heuristic algorithm for solving the server consolidation problem. In: IEEE Int. Conf.
on Services Computing (2008)

3. Ajiro, Y.: Recombining virtual machines to autonomically adapt to load changes.
In: Proc. 22nd Conf. of the Japanese Society for Artificial Intelligence (2008)

4. Aggarwal, G., Motwani, R., Zhu, A.: The load rebalancing problem. In: Proc. 15th
ACM Symp. on parallel algorithms and architectures, pp. 258–265 (2003)

5. Korf, R.: Depth-first iterative-deepening: an optimal admissible tree search. Arti-
ficial Intelligence 27(1), 97–109 (1985)

6. Ran, Y., Roos, N., van den Herik, H.: Approaches to find a near-minimal change
solution for dynamic CSPs. In: Proc. CPAIOR, pp. 378–387 (2002)

7. Fukunaga, A.: Search algorithms for minimal cost repair problems. In: Proc.
CP/ICAPS 2008 Workshop on Constraint Satisfaction Techniques for Planning
and Scheduling Problems (2008)

8. Ajiro, Y.: NEC System Platform Research Labs. Personal Communication (2009)
9. Beck, C.: Solution-guided multi-point constructive search for job shop scheduling.

Journal of Artificial Intelligence Research 29, 49–77 (2007)
10. Verfaillie, G., Schiex, T.: Solution reuse in dynamic constraint satisfaction prob-

lems. In: Proc. AAAI, Seattle, Washington, pp. 307–312 (1994)
11. El-Sakkout, H., Wallace, M.: Probe backtrack search for minimal perturbation in

dynamic scheduling. Constraints 5, 359–388 (2000)
12. Barták, R., Müller, T., Rudová, H.: A new approach to modeling and solving

minimal perturbation problems. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P.,
Váncza, J. (eds.) CSCLP 2003. LNCS (LNAI), vol. 3010, pp. 233–249. Springer,
Heidelberg (2004)

13. Müller, T., Rudová, H., Barták, R.: Minimal perturbation in course timetabling.
In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 126–146.
Springer, Heidelberg (2005)

14. Harvey, W., Ginsberg, M.: Limited discrepancy search. In: Proc. IJCAI, pp. 607–
615 (1995)

15. Korf, R.: Improved limited discrepancy search. In: Proc. AAAI, pp. 286–291 (1996)

Snake Lex: An Alternative to Double Lex

Andrew Grayland1, Ian Miguel1, and Colva M. Roney-Dougal2

1 School of Comp. Sci., St Andrews, UK
{andyg,ianm}@cs.st-and.ac.uk

2 School of Maths and Stats, St Andrews, UK
colva@mcs.st-and.ac.uk

Abstract. Complete row and column symmetry breaking in constraint models
using the lex leader method is generally prohibitively costly. Double lex, which is
derived from lex leader, is commonly used in practice as an incomplete symmetry-
breaking method for row and column symmetries. Double lex is based on a row-
wise canonical variable ordering. However, this choice is arbitrary. We investigate
other canonical orderings and focus on one in particular: snake ordering. From
this we derive a corresponding incomplete set of symmetry breaking constraints,
snake lex. Experimental data comparing double lex and snake lex shows that snake
lex is substantially better than double lex in many cases.

1 Introduction

A variable symmetry in a constraint model is a bijective mapping from the set of vari-
ables to itself that maps (non-)solutions to (non-)solutions. The set of (non-)solutions
reachable by applying all symmetry mappings to one (non-)solution forms an equiva-
lence class. Restricting search to one member (or a reduced set of members) of each
equivalence class can dramatically reduce systematic search: symmetry breaking. The
lex leader method for breaking variable symmetries adds a constraint per symmetry
so as to allow only one member of each equivalence class [3]. The lex leader method
can produce a huge number of constraints and sometimes adding them to a model can
prove counterproductive. One commonly-occurring case is when trying to break sym-
metries in a matrix, where any row (or column) can be permuted with any other row (or
column): row and column symmetries [4].

It is often possible to achieve good results by breaking a smaller set of symme-
tries: incomplete symmetry breaking. One method to do this for row and column sym-
metries is double lex [4], which constrains adjacent pairs of rows and adjacent pairs of
columns. Although this method is incomplete, it can reduce search dramatically. Double
lex is derived from a reduction of a complete set of lex constraints created with a row-
wise ordering as the canonical member of each equivalence class. The use of row-wise
ordering is, however, arbitrary. The possible benefits of varying canonical orderings of
lex constraints in graceful graph models was investigated in [11]. This paper investi-
gates other canonical orderings and selects one (snake ordering) that looks promising
to investigate further. From it, we create a new set of incomplete symmetry breaking
constraints (snake lex). An empirical analysis demonstrates that snake lex can often
deliver substantially better results than double lex.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 391–399, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

392 A. Grayland, I. Miguel, and C.M. Roney-Dougal

2 Background

A constraint satisfaction problem is a triple (X , D, C), where X is a finite set of vari-
ables. Each x ∈ X has a finite set of values D(x) (its domain). The finite set C consists
of constraints on the variables. Each c ∈ C is defined over a sequence, X ′, of variables
in X . A subset of the Cartesian product of the domains of the members of X ′ gives
the set of allowed value combinations. A complete assignment maps every variable to
a member of its domain. A complete assignment satisfying all constraints is a solution.
A variable symmetry of a CSP is a bijection f : X → X such that {〈xi, ai〉 : xi ∈
X , ai ∈ D(xi)} is a solution if and only if {〈f(xi), ai〉 : xi ∈ X , ai ∈ D(f(xi))} is
a solution. The set of all variable symmetries of a CSP is closed under composition of
functions and inversion, and so forms a group, the variable symmetry group of the CSP.

Row and column symmetries appear commonly in CSP models that contain matrices
[2,7,8,9]. When it is possible to map any ordered list of distinct rows to any other such
list of the same length, with the same being true for columns, then there is complete row
and column symmetry. For an n by m matrix there are n!×m! symmetries.

For a symmetry group of size s the lex leader method produces a set of s − 1 lex
constraints to provide complete symmetry breaking. We first decide on a canonical order
for the variables in X , then post constraints such that this ordering is less than or equal
to the permutation of the ordering by each of the symmetries. Consider the following
2× 2 matrix with complete row and column symmetry, where xi ∈ X :

x11 x12

x21 x22

If we choose a row-wise canonical variable ordering, in this case x11x12x21x22, then
we can generate the following 3 lex constraints to break all the symmetries.

row swap: x11x12x21x22 ≤lex x21x22x11x12

column swap: x11x12x21x22 ≤lex x12x11x22x21

both swapped: x11x12x21x22 ≤lex x22x21x12x11

Although this example is trivial, breaking all row and column symmetries by adding lex
constraints is generally counter-productive since we have to add (n!×m!)− 1 symme-
try breaking constraints to the model. Double lex [4] is a commonly used incomplete
symmetry breaking method for row and column symmetries. This method involves or-
dering the rows of a matrix and (independently) ordering the columns. This produces
only n + m− 2 symmetry breaking constraints, shown below for the 2× 2 example:

x11x12 ≤lex x21x22

x11x21 ≤lex x12x22

The double lex constraints can be derived from the lex leader generated based upon a
row-wise canonical variable ordering. One method of doing so is to use reduction rules
1, 2 and 3′ as given in [5] and [6]. Let α, β, γ, and δ be strings of variables, and x and
y be individual variables. The reduction rules are:

1 If α = γ entails x = y then a constraint c of the form αxβ ≤lex γyδ may be
replaced with αβ ≤lex γδ.

2 Let C = C′ ∪{αx ≤lex γy} be a set of constraints. If C′ ∪{α = γ} entails x ≤ y,
then C can be replaced with C′ ∪ {α ≤lex γ}.

Snake Lex: An Alternative to Double Lex 393

3′ Let C = C′ ∪ {αxβ ≤lex γyδ} be a set of constraints. If C′ ∪ {α = γ} entails
x = y, then C can be replaced with C′ ∪ {αβ ≤lex γδ}.

Rule 1 is subsumed by Rule 3′, but is often useful as a preprocess, as it reasons over an
individual constraint. Algorithms to implement these rules are described in [6,10].

3 In Search of an Alternative Canonical Ordering

Double lex performs well [4], but we are not aware of work exploring similar-sized
sets of incomplete symmetry-breaking constraints derived from other canonical vari-
able orderings. In order to identify other useful canonical orderings we examine a large
number of small cases and test interesting candidates on benchmark problems. A lex
constraint of the form x1x2 . . . xm ≤lex y1y2 . . . ym consists of m pairs of variables.
We compare canonical orderings by counting the pairs remaining after reducing the en-
tire set of corresponding lex leader constraints by Rules 1, 2 and 3’. We hypothesize that
fewer remaining pairs will promote reduced search through more effective propagation.

We began by examining all 6! = 720 canonical variable orderings of a 2 × 3 matrix.
The algorithms described in [10] and [6] were used to reduce the lex constraints, and
the distribution of pairs remaining is shown in Fig. 1. The smallest number of pairs re-
maining after reduction was 15, which was obtained for 108 of the canonical orderings.
The ordering x11x21x22x12x13x23 reduces to 15 pairs and is interesting because it has
a regular form, and might therefore be expected to produce a regular set of incomplete
symmetry-breaking constraints equivalent to double lex. Standard row-wise ordering,
x11x12x13x21x22x23, resulted in 23 pairs, so by this measure is a poor ordering.

Fig. 1 also shows the results of a similar experiment for all 8! canonical orderings
of the 2× 4 matrix. The ordering x11x21x22x12x13x23x24x14, the natural extension to
that identified in the 2 × 3 results, reduces to just 30 pairs (row-wise reduces to 109).

Fig. 1. Distribution of pairs remaining after reduction over all orderings for matrices with dimen-
sions 2 × 3 (left) , 2 × 4 (centre). Distribution (right) of pairs remaining after reductions for a
2 × 5 matrix on 100 random, columnwise snake and row-wise orderings.

394 A. Grayland, I. Miguel, and C.M. Roney-Dougal

In general this ordering is simple to describe: columnwise the ordering starts at the top-
left corner then moves down the column. It then moves to the neighbouring element in
the next column and then upwards. This pattern continues until all variables have been
listed. The row-wise snake variant is described similarly. We call this snake ordering.

We sampled 100 orderings of the 2 × 5 matrix, and also tested columnwise snake
and row-wise orderings. Figure 1 summarises the results, in which snake ordering again
proves to be one of the best measured by remaining pairs (reducing to 54 vs. 655 for
row-wise). To gain an indication of the importance of matrix dimension we compared
row-wise against snake ordering on a 3 × 3 matrix. In this case, the two orderings
produced much more similar results (reduction to 88 pairs for snake, 92 for row-wise),
suggesting that matrix dimension is significant. Nonetheless, our results suggest that
snake ordering is worth investigating further.

4 Snake Lex

Recall that double lex is derived by reducing a complete set of lex constraints with a
row-wise ordering. In this section, we derive a corresponding small, easily-described set
of constraints for the snake ordering, called snake lex. First we give a formal definition
of columnwise snake ordering. Row-wise snake ordering is defined similarly.

Definition 1. Let X = (xij)n×m be a matrix of variables. The columnwise snake or-
dering on variables is x11, x21, . . . , xn1, xn2, . . . , x12, . . . , x1m, . . . xnm, if m is odd,
and x11, x21, . . . , xn1, xn2, . . . , x12, . . . , xnm, . . . x1m if m is even. That is, snake or-
der on variables starts at row 1, column 1. It goes down the first column to the bottom,
then back up along the second column to the first row. It continues, alternating along
the columns until all variables have been ordered.

From the columnwise snake ordering, columnwise snake lex can be derived:

Definition 2. Let X (xij)n×m be a matrix of variables. The columnwise snake lex set
of constraints, C, is defined as follows. C contains 2m−1 column constraints, beginning

c1 x11x21 . . . xn1 ≤lex x12x22 . . . xn2

c2 x11x21 . . . xn1 ≤lex x13x23 . . . xn3

c3 xn2x(n−1)2 . . . x12 ≤lex xn3x(n−1)3 . . . x13

c4 xn2x(n−1)2 . . . x12 ≤lex xn4x(n−1)4 . . . x14

...

and finishing with

c2m−1 x1(m−1) . . . xn(m−1) ≤lex x1m . . . xnm

if m is odd and

c2m−1 xn(m−1) . . . x1(m−1) ≤lex xnm . . . xnm

Snake Lex: An Alternative to Double Lex 395

if m is even. C contains n− 1 row constraints. If m is odd then these are

r1 x11x22x13 . . . x1m ≤lex x21x12x23 . . . x2m

r2 x21x32x23 . . . x2m ≤lex x31x22x33 . . . x3m

...
rn−1 x(n−1)1 . . . x(n−1)m ≤lex xn1 . . . xnm.

If m is even then these are:

r1 x11x22x13 . . . x2m ≤lex x21x12x23 . . . x1m

r2 x21x32x23 . . . x3m ≤lex x31x22x33 . . . x2m

...
rn−1 x(n−1)1 . . . xnm ≤lex xn1 . . . x(n−1)m.

The following theorem shows that columnwise snake lex is derived from the column-
wise snake lex leader, and is therefore sound.

Theorem 1. The columnwise snake lex constraints are sound.

PROOF. We show that each constraint can be derived from a constraint in the full set of
lex leader constraints by applying Rule 1 and then using only a prefix.

In each case the left hand side of the unreduced lex leader constraint is
x11x21 . . . xn1xn2x(n−1)2 . . . x12x13 . . . xn3xn4 . . .

We first consider the column constraints, ck. First let k ≡ 1 mod 4 and a = (k + 1)/2.
The symmetry which swaps columns a and a + 1 and fixes everything else gives

Ax1ax2a . . . xnaB ≤lex Cx1(a+1)x2(a+1) . . . xn(a+1)D,

where A, B, C and D are strings of variables and A = C. Rule 1 removes A and C,
and then considering only the first n pairs gives constraint ck. If k ≡ 2 mod 4 then let
a = k/2, replace a + 1 by a + 2 on the right hand side, and apply the same argument.

Next let k ≡ 3 mod 4 and a = (k + 1)/2. The symmetry which swaps columns a
and a + 1 and fixes everything else gives a constraint of the form

Axnax(n−1)a . . . x1aB ≤
Cxn(a+1)x(n−1)(a+1) . . . x1(a+1)D,

where A, B, C and D are strings of variables and A = C. Again, using Rule 1 on
A and C, and then taking only a prefix gives constraint ck. If k ≡ 0 mod 4 then let
a = k/2, replace a + 1 by a + 2 on the right hand side, and apply the same argument.
Consider now the rows. There is a symmetry that interchanges rows a and a + 1 and
fixes everything else. The unreduced lex leader constraint for this symmetry is:

x11 . . . xa1x(a+1)1 . . . xn1xn2 . . . x(a+1)2xa2 . . . ≤lex

x11 . . . x(a+1)1xa1 . . . xn1xn2 . . . xa2x(a+1)2 . . .

Rule 1 deletes all pairs of the form (xij , xij) to obtain:

xa1x(a+1)1x(a+1)2xa2xa3x(a+1)3x(a+1)4xa4 . . . ≤lex

x(a+1)1xa1xa2x(a+1)2x(a+1)3xa3xa4x(a+1)4 . . .

396 A. Grayland, I. Miguel, and C.M. Roney-Dougal

Rule 1 simplifies xaix(a+1)i ≤lex x(a+1)ixai to xai ≤ x(a+1)i, and similarly for
x(a+1)ixai ≤ xaix(a+1)i, resulting in constraint rk:

xa1x(a+1)2xa3x(a+1)4 . . . ≤lex x(a+1)1xa2x(a+1)3xa4 . . .

Since each of the snake lex constraints is derived by first applying Rule 1 to a lex leader
constraint and then taking only a prefix, the snake lex constraints are sound. ��
There are similarities between the columnwise snake lex and double lex constraints on
columns. Columnwise snake lex constrains the first column to be less than or equal
to both the second and the third columns. It also constrains the reverse of the second
column to be less than or equal to the reverse of the third and fourth columns. This pat-
tern continues until the penultimate column is compared with the last. As an example,
consider a 4× 3 matrix. Double lex constrains adjacent columns (left), while snake lex
produces the set of constraints on the columns on the right:

x11x21x31 ≤lex x12x22x32,
x12x22x32 ≤lex x13x23x33,
x13x23x33 ≤lex x14x24x34.

x11x21x31 ≤lex x12x22x32,
x11x21x31 ≤lex x13x23x33,
x32x22x12 ≤lex x33x23x13,
x32x22x12 ≤lex x34x24x14,
x13x23x33 ≤lex x14x24x34.

Generally, given m columns and n rows, double lex adds m−1 constraints on columns,
each with n pairs. Snake lex adds 2m−1 constraints on columns, each with n pairs. We
could increase the number of double lex constraints to the same number as snake lex by
allowing each column to be less than or equal to the column two to its right, however
lex-chain, which considers an entire set of rows or columns globally, has been shown to
perform no better than double lex in practice[1].

We next consider the rows. Double lex gives the following for our sample matrix:

x11x12x13x14 ≤lex x21x22x23x24,
x21x22x23x24 ≤lex x31x32x33x34.

The snake lex method is slightly more complicated, but gives the same number of con-
straints. We take the first two rows and zig zag between them to produce a string of
variables starting at row 1, column 1, and a second string starting at row 2, column 1.
We then constrain the first of these strings to be lexicographically less than or equal to
the second one. Next we produce a similar constraint between rows i and i +1 for all i.
The set of constraints for our 3× 4 matrix are:

x11x22x13x24 ≤lex x21x12x23x14,
x21x32x23x34 ≤lex x31x22x33x24.

Generally, double lex and snake lex both add n− 1 row constraints, each with m pairs.
Thus far, we have considered columnwise snake ordering. We can also consider row-

wise snake ordering, which may be useful if, for example, the rows are more heavily
constrained (by the problem constraints) than the columns. To do so we simply trans-
pose the matrix and then order as before. The transpose of our example 3× 4 matrix is
shown below (left), along with the corresponding constraints (right):

Snake Lex: An Alternative to Double Lex 397

x11 x21 x31

x12 x22 x32

x13 x23 x33

x14 x24 x34

x11x12x13x14 ≤lex x21x22x23x24,
x11x12x13x14 ≤lex x31x32x33x34,
x24x23x22x21 ≤lex x34x33x32x31,

x11x22x31 ≤lex x12x21x32,
x12x23x32 ≤lex x13x22x33,
x13x24x33 ≤lex x14x23x34.

Note that the double lex constraints do not change for this transposition, hence double
lex is insensitive to switching between a row-wise and columnwise search ordering.

5 Experimental Results

We used four benchmark problem classes to compare snake and double lex empirically.
All models used exhibit row and column symmetry. Preliminary experimentation re-
vealed the superiority of row-wise snake lex on the tested instances, which we therefore
used throughout. This is correlated with the rows being significantly longer than the
columns in 3 of 4 classes. For each class we carried out four experiments per instance.
We tested double lex and snake lex, each with row-wise and then snake static variable
heuristics, separating the effects of the search order from those of symmetry breaking.
Each time given is the mean of five trials and all results are presented in Fig. 2. The
solver used was MINION.

The first problem class studied is balanced incomplete block design (BIBD) [9], in
which b blocks and v objects must be related such that: each block contains k objects,
each object appears in r blocks, and each pair of objects must appear together in a block
λ times. We use the standard model, a v × b 0/1 matrix, with columns summing to k,
rows summing to r, and the scalar product of every pair of rows equal to λ. Note that the
parameters v, k and λ of the BIBD fix the values of b and r. Results show that snake lex
outperforms double lex in every tested case. Where it was possible to find all solutions,
snake lex both reduces search and breaks more symmetry (finds fewer symmetrically-
equivalent solutions). The single solution cases show a speed up over double lex of
several orders of magnitude, possibly due to interaction with the λ constraint.

The second problem class is the equidistant frequency permutation array problem
(EFPD) [8], which is to find a set of c codewords drawn from q symbols such that each
symbol occurs λ times in each codeword and the hamming distance between every pair
of codewords is d. Our model [8] is a c× qλ matrix of variables with domain {1, ..., d}.
In order to give a fair comparison between the four combinations of search order and
lex constraints, we picked six instances with no solutions. This means that we are not
examining the case where we did best in the previous experiment, that of finding the first
solution, but instead exhausting the search space. Solve time decreases by around 30%
when the lex method is changed from double to snake lex, and then by a further 30%
when the search order is changed to snake. Notice also that the search time increases
when double lex is used in conjunction with the snake order, suggesting both that it
is important for the search order to mirror the constraints, and that it is the snake lex
constraints that are causing the improved solve times.

The third problem class is the fixed length error correcting codes (FLECC) [7] prob-
lem, which is to find d length-q codewords drawn from 4 symbols such that the Lee

398 A. Grayland, I. Miguel, and C.M. Roney-Dougal

BIBD:

Lex: Double Snake
Search: Row Snake Row Snake
(v, k, λ)
(7, 3, 5) 8.02,600557 8.38,606002 6.79,490784 6.78,455984
(7, 3, 6) 70.47,4979664 75.86,4321932 55.87,3984264 50.47,3448478

(7, 3, 20) 0.52,17235 0.47,15010 0.04,577 0.02,321
(7, 3, 30) 2.80,67040 2.53,60600 0.05,754 0.02,481
(7, 3, 40) 9.14,182970 8.58,168915 0.05,1063 0.03,641
(7, 3, 45) 16.09,278310 14.94,258860 0.06,1526 0.03,721
(7, 3, 50) 25.11,406525 23.70,380455 0.08,1671 0.05,801

EFPD:

Lex: Double Snake
Search: Row Snake Row Snake

(q, λ, d, c)
(3, 3, 5, 9) 4.1,164755 4.3,174677 3.6,120106 2.9,110666
(3, 4, 5, 9) 26.1,941061 27.1,1127011 15.9,537270 11.5,448329

(3, 5, 5, 10) 45.9,1556198 53.5,1841688 29.6,855950 20.0,678540
(3, 6, 5, 10) 68.9,2064850 76.8,2439205 39.7,1046091 27.4,811734
(3, 7, 5, 11) 94.5,2496190 103.0,2890581 54.5,1194583 35.0,910269
(3, 8, 5, 12) 124.6,2756291 123.4,3187617 71.0,1337286 43.1,1003119

FLECC:

Lex: Double Snake
Search: Row Snake Row Snake
(q, d, c)
(9, 5, 5) 23.34,662995 8.23,199720 13.09,293735 0.83,19817

(8, 6, 4) 0.73,5607 0.74,6122 0.53,6850 0.52,6359
(15, 5, 22) 0.77,15100 0.72,15136 0.41,8235 0.39,8205
(20, 5, 30) 3.28,51216 3.28,51223 1.31,19601 1.30,19603
(25, 5, 40) 3.88,49030 4.00,49002 1.44,17558 1.42,17600
(30, 5, 50) 4.56,49175 4.83,49112 1.86,17668 1.70,17750

Howell:

Lex: Double Snake Nodes
Search: Row Snake Row Snake All
(s, n)
(4, 9) 0.98 0.97 1.19 1.23 60,799
(5, 11) 28.18 27.22 29.65 30.27 3,557,740
(6, 13) 1148.3 1153.8 1179.6 1196.2 231,731,046

Fig. 2. Double vs. row-wise snake lex, with both row and snake search ordering. BIBD & FLECC:
searches above double line are for all solutions, remainder for one solution. Format: (time(s),
nodes), except Howell, where nodes uniform throughout.

distance (see cited paper for definition, or CSPLib 36) between every pair of codewords
is c. Our model [7] uses a d× q matrix, with each of q symbols appearing once in each
row, and Lee distance c between each pair of rows. As with the BIBD test case both all
solution and single solution problems were tested. Results show a speedup of almost
two orders of magnitude in the all solution case. In the all solutions case, snake lex
(with either order) requires on average less than half the time that the double lex with
row-wise order uses, and the speedup seems to be increasing with instance size.

The final experiment involved solving the Howell design [2] problem. A Howell
design is an s by s matrix M , whose coefficients are unordered pairs of symbols from a
set S of size n. Each of the n(n− 1)/2 pairs occurs at most once. Every row and every
column of M contain at least one copy of every symbol from S. There exists an empty
symbol which can be used as many times as necessary, provided all other constraints
are met. Three unsolvable instances were tested. Results show that, in this case, snake
lex is slightly slower than double lex. One reason for this could be that Howell Designs
are square (cf. Section 3). Note, however, that the nodes taken is the same throughout.

Snake Lex: An Alternative to Double Lex 399

The extra time taken could therefore simply be due to the overhead incurred by snake
lex adding a slightly larger number of constraints than double lex.

6 Discussion

This paper highlights the need for further investigation into incomplete row and column
symmetry breaking. We have demonstrated that double lex can be outperformed by
snake lex in many instances and indeed, there may be another variable ordering that can
create a small set of constraints capable of beating both. Future research will investigate
the production on the fly of tailored sets of lex constraints, depending on a variable
ordering specified by a modeler. The initial direction of future work will be to examine
the other lex leaders found to have a small number of pairs upon reduction comparing
them to both double lex and the snake lex and to investigate whether the shape of the
matrix affects solve times, particularly with square matrices.

Acknowledgements. A. Grayland is supported by a Microsoft Research EPSRC CASE
studentship. I. Miguel is supported by a Royal Academy of Engineering/EPSRC Re-
search Fellowship. C. M. Roney-Dougal is partially supported by EPSRC grant number
EP/C523229/1.

References

1. Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering con-
straints. Technical Report T2002-18, SICS (2002)

2. Colbourn, C.J., Dinitz, J.H.: The CRC Handbook of Combinatorial Designs. CRC Press, Inc.,
Florida (1996)

3. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for search
problems. In: Proc. KR, pp. 148–159 (1996)

4. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking
row and column symmetries in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 462–476. Springer, Heidelberg (2002)

5. Frisch, A.M., Harvey, W.: Constraints for breaking all row and column symmetries in a three-
by-two-matrix. In: Proc. Symcon (2003)

6. Grayland, A., Jefferson, C., Miguel, I., Roney-Dougal, C.: Minimal ordering constraints for
some families of variable symmetries. Annals Math. A. I. (to appear, 2009)

7. Hammons, A.R., Vijay Kumar, P., Calderbank, A.R., Sloane, N.J.A., Sol, P.: The z 4 -linearity
of kerdock, preparata, goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–
319 (1994)

8. Huczynska, S.: Equidistant frequency permutation arrays and related constant composition
codes. Circa Preprint 2009/2 (2009)

9. Meseguer, P., Torras, C.: Solving strategies for highly symmetric csps. In: IJCAI, pp. 400–
405 (1999)

10. Öhrman, H.: Breaking symmetries in matrix models. MSc Thesis, Dept. Information Tech-
nology, Uppsala University (2005)

11. Smith, B.M.: Sets of Symmetry Breaking Constraints. In: Proceedings of SymCon 2005, the
5th International Workshop on Symmetry in Constraints (2005)

Closing the Open Shop: Contradicting Conventional
Wisdom

Diarmuid Grimes1, Emmanuel Hebrard1, and Arnaud Malapert2

1 Cork Constraint Computation Centre & University College Cork, Ireland
{d.grimes,e.hebrard}@4c.ucc.ie

2 EMN/LINA UMR CNRS 6241, Cirrelt
arnaud.malapert@emn.fr

Abstract. This paper describes a new approach for solving disjunctive temporal
problems such as the open shop and job shop scheduling domains. Much previous
research in systematic search approaches for these problems has focused on de-
veloping problem specific constraint propagators and ordering heuristics. Indeed,
the common belief is that many of these problems are too difficult to solve without
such domain specific models. We introduce a simple constraint model that com-
bines a generic adaptive heuristic with naive propagation, and show that it often
outperforms state-of-the-art solvers for both open shop and job shop problems.

1 Introduction

It is usually accepted that the most efficient methods for solving Open shop and Job
shop scheduling problems are local search algorithms, such as tabu search for job shop
[16,17] and particle swarm optimization for open shop [20]. However, constraint pro-
gramming often remains the solution of choice. It is indeed relatively competitive [4,23]
whilst providing a more flexible approach. For instance, one can add domain-specific
constraints without entailing major design revisions. Moreover, it is commonly believed
that the most efficient CP models are those based on strong inference methods, such as
Edge Finding [7,18], and specific search strategies, such as Texture [9].

In this paper we build on the results of [1] which showed that for open shop problems
a constraint programming approach with strong inference and domain specific search
strategies outperforms the best local search algorithms. Here, we introduce a constraint
model combining simple propagation methods with the generic weighted degree heuris-
tic [5] and empirically show that the complex inference methods and search strategies
can, surprisingly, be advantageously replaced by this naive model.

An n × m open shop problem (OSP) involves n jobs and m machines. A job is
composed of m tasks, each associated with a duration and a machine. Each machine
maps to exactly one task in each job, and can only run a single task at a time. The
objective is to minimise the makespan M , that is, the total duration to run all tasks. A
job shop problem (JSP) is identical except the order of the tasks within each job is fixed.

Our approach relies on a standard model and generic variable ordering and restart
policy. First, each pair of conflicting tasks, whether because they belong to the same
job, or share a machine, are associated through a disjunctive constraint, with a Boolean

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 400–408, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Closing the Open Shop: Contradicting Conventional Wisdom 401

variable standing for their relative ordering. Following the standard search procedure
for this class of problems, the search space can thus be restricted to the partial orders on
tasks. Second, the choice of the next (Boolean) variable to branch on is made by com-
bining the current domain sizes of the associated two tasks with the weighted degree of
the corresponding ternary disjunctive constraint. Third, we use restarts, together with a
certain amount of randomization and nogood recording from restarts [13].

We demonstrate that this simple approach outperforms more sophisticated constraint
models using state of the art heuristics and filtering algorithms implemented in Choco [8]
and Ilog Solver, both on OSPs and JSPs. We believe that the weighted degree heuristic,
within this model, is extremely effective at identifying the contentious pairs of tasks.
In Section 2 we first describe state of the art constraint models and strategies for open
shop and job shop scheduling problems. Next, we describe a lighter model as well as the
search strategies that we use to empirically support our claims. In Section 3, we present
an experimental comparison of our model with state-of-the-art solvers for open shop
and job shop scheduling problems.

2 Constraint Models

Here, we describe the two models that we compared in our experiments on the open
shop and job shop benchmarks. The first model is the accepted state of the art, using
strong inference (global unary resource constraints with the Edge Finding filtering al-
gorithm) as well as specific search heuristics. The second is our lighter and simpler ap-
proach, relying on ternary reified disjunctive constraints, and a variable heuristic largely
based on the generic weighted degree heuristic [5]. We shall refer to the former as the
“heavy” model, and to the latter as the “light” model throughout.

Edge Finding + Profile, “Heavy” Model: In this model, a global filtering algorithm is
used for each unary resource. Let T denote a set of tasks sharing an unary resource and
Ω denote a subset of T . We consider the three following propagation rules:

Not First/Not Last: This rule determines if the task ti cannot be scheduled after or
before a set of tasks Ω. In that case, at least one task from the set must be scheduled
after (resp. before). The domain of task ti can be updated accordingly.

Detectable Precedence: If a precedence ti ≺ tj can be discovered by comparing ti
and tj’s time bounds, then their domains can be updated with respect to all the prede-
cessors or successors.

Edge Finding: This filtering technique determines that some tasks must be executed
first or last in a set Ω ⊆ T . It is the counterpart of the first rule.

Search Strategy: The branching scheme is that proposed in [3] and denoted Profile.
We select a critical pair of tasks sharing the same unary resource and impose an order-
ing. This heuristic, based on the probabilistic profile of the tasks, determines the most
constrained resources and tasks. At each node, the resource and the time point with
the maximum contention are identified, then a pair of tasks that rely most on this re-
source at this time point are selected (it is also ensured that the two tasks are not already
connected by a path of temporal constraints).

402 D. Grimes, E. Hebrard, and A. Malapert

Once the pair of tasks has been chosen, the order of the precedence has to be de-
cided. For that purpose, we retain one of the three randomized value ordering heuristics
from the same paper: centroid. The centroid is a real deterministic function of the do-
main and is computed for the two critical tasks. The centroid of a task is the point that
divides its probabilistic profile equally. We commit the sequence which preserves the
ordering of the centroids of the two tasks. If the centroids are at the same position, a
random ordering is chosen. (For a more detailed discussion on filtering techniques for
disjunctive scheduling problems we would point the reader to [2].)

Simple Disjunction + Weighted Degree, “Light” Model: The starting time of each task
ti is represented by a variable ti ∈ [0..M − di]. Next, for every pair of unordered tasks
ti, tj sharing a job or a machine we introduce a Boolean variable bij standing for the
ordering between ti and tj . A value of 0 for bij means that task ti should precede task
tj , whilst a value of 1 stands for the opposite ordering. The variables ti, tj and bij are
linked by the following constraint, on which Bounds Consistency (BC) is maintained:

bij =
{

0 ⇔ ti + di ≤ tj
1⇔ tj + dj ≤ ti

For n jobs and m machines, this model therefore involves nm(m + n− 2)/2 Boolean
variables for OSPs, nm(m + n− 2)/4 for JSPs, and as many disjunctive constraints.

Search Strategy: Instead of searching by assigning a starting time to a single value
on the left branches, and forbidding this value on the right branches, it is common to
branch on precedences. In the heavy model, an unresolved pair of tasks ti, tj is selected
and the constraint ti + di ≤ tj is posted on the left branch whilst tj + dj ≤ ti is
posted on the right branch. In our model, branching on the Boolean variables precisely
simulates this strategy and thus significantly reduces the search space. Indeed, it has
been observed (for instance in [15]) that the existence of a partial ordering of the tasks
(compatible with start times and durations, and such that its projection on any job or
machine is a total order) is equivalent to the existence of a solution. In other words, if
we successfully assign all Boolean variables, the existence of a solution is guaranteed.

We use the weighted degree heuristic [5], which chooses the variable maximising the
total weight of neighbouring constraints, initialised to its degree. A constraint’s weight
is incremented by one each time the constraint causes a failure during search. We show
in Section 3, that the weighted degree heuristic is very efficient in this context. It is
important to stress that the behaviour of this heuristic is dependent on the modelling
choices. Indeed, two different, yet logically equivalent, sets of constraints may distribute
the weights differently. In this model, every constraint involves one and only one search
variable. Moreover, the relative light weight of the model allows the search engine to
explore much more nodes, thus learning weights quicker.

However, at the start of the search, this heuristic is completely uninformed since
every Boolean variable has the same degree (i.e. 1). We use the domain size of the
two tasks ti, tj associated to every disjunct bij to inform the variable selection method
until the weighted degrees effectively kick in. We denote w(ij) the number of times
the search failed while propagating the constraint on ti, tj and bij . We pick the vari-
able minimising the sum of the residual time windows of the two tasks’ starting times,
divided by the weighted degree: (max(ti)+max(tj)−min(ti)−min(tj)+2)/w(ij)

Closing the Open Shop: Contradicting Conventional Wisdom 403

3 Experimental Section

All experiments reported in this paper were run on an Intel Xeon 2.66GHz machine
with 12GB of ram on Fedora 9. Each algorithm run on a problem had an overall time
limit of 3600s. Unless otherwise stated, values were chosen lexically, ties were broken
randomly and nogoods were recorded from restarts.

We first provide evidence that, contrary to popular belief, the domain-specific model
and heuristics are unnecessary for solving these problems. For OSPs, we compare our
model with the heavy model which was recently shown to be the state-of-the-art on
these benchmarks, matching the best metaheuristics on the Taillard benchmarks, and
outperforming both exact and approximate methods on the other two benchmarks [1].
We implemented our algorithm in Mistral [11] and, for better comparison on the OSPs,
in Choco. The code and parameters used for the heavy model are those used in [1].

Next, on JSPs, we compare the same light model implemented in Mistral, with the
heavy model implemented in Ilog Scheduler (algorithm denoted “randomized restart”
in [4]). Once again, we got the code for our comparison from the author and used the
same parameters as were used in that paper.

3.1 Open Shop Scheduling

We used three widely studied sets of instances: Brucker [6], Gueret & Prins [10], and
Taillard [21]. The problems range from size 3x3 to 20x20, with 192 instances overall.
For all experiments, a sample of 20 runs with different seeds was performed.

The Choco models use a simple randomised constructive heuristic detailed in [1], and
referred to as “CROSH”, to calculate a good initial upper bound, followed by branch
and bound search. The restarting strategy used for the light model (both Choco and
Mistral) was geometric [22], with a base of 256 failures, and a multiplicative factor of
1.3. The heavy model uses the Luby restarting sequence [14] order 3 with a scale factor
tuned to the problem dimensions. We also ran the most effective Mistral model which
only differs from the Choco light model in that a dichotomic search was used instead of
CROSH to get an initial upper bound. The lower bound lb is set to the duration of the
longest job/machine, whilst the upper bound ub in the dichotomic search is initialised
by a greedy algorithm. We repeatedly solve the decision problem with a makespan fixed
to ub+lb

2 , updating lb and ub accordingly, until they have collapsed.
Figure 1 is a log-log plot of the average (a) time and (b) number of nodes taken by the

two models to solve each of the 192 open shop instances. Next, in Table 1, we selected
a subset of 11 of the hardest problems based on overall results, choosing problems for
which at least one of the light and heavy models took over 20 seconds to solve. This
subset consisted of one Gueret-Prins, 4 Taillard and 6 Brucker instances, respectively
of order 10, 20 and 7-8. The results are presented in terms of average time and average
nodes (where a model failed to prove optimality on a problem its time is taken as 3600s,
so in these cases the average time is a lower bound).

Both Choco models proved optimality on all 11 instances. However, the light model
is generally much faster (only slower on 1 of the 11 instances), even though it explores
many more nodes. The Mistral light model was fastest on all problems (nodes for Mis-
tral include those explored in dichotomic search, hence the difference). It is also of

404 D. Grimes, E. Hebrard, and A. Malapert

0.1 1 10 100 1000

Heavy Model

0.1

1

10

100

1000

L
ig

h
t

M
o
d
e
l

(a) Time Comparison

0.01 0.1 1 10 100 1000 10000 100000 1x106 1x107

Heavy Model

0.01

0.1

1

10

100

1000

10000

100000

1x106

1x107

Li
gh

t M
od

el

(b) Node Comparison

Fig. 1. Log-log plots of Choco Light vs Heavy models on open shop problems

interest to note that on the hardest problems (6 Brucker instances), the heavy model
was slightly quicker on average than the (Choco) light model at finding the optimal
solution (310s vs 360s), but was 3 times slower at proving optimality once the solu-
tion had been found (385s vs 125s). This reinforces our belief that the weighted degree
heuristic is adept at identifying the most contentious variables.

In order to better understand the importance of the heuristics to the two models we
ran the same experiments but with the heuristics swapped, “Light-profile” and “Heavy-
domwdeg”. As can be seen in the table, swapping heuristics resulted in worse perfor-
mance in both cases (failing to prove optimality on some problems for both), albeit
more noticeably for combining profile with the light model.

Table 1. Results (Time) For Hard Open Shop Scheduling Problems

Instances Light Heavy Light-profile Heavy-domwdeg Mistral
Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes

GP10-01 6.1 4K 118.4 53K 2523.2 6131K 9.6 3K 0.3 3K
j7-per0-0 854.5 5.1M 1310.9 1.4M 979.1 4.3M 3326.7 2.6M 327.0 8.7M
j7-per10-2 57.6 0.4M 102.7 0.1M 89.5 0.4M 109.6 0.1M 33.5 1.2M
j8-per0-1 1397.1 6.4M 1973.8 1.5M 1729.3. 6.0M 3600.0 2.4M 427.1 10M
j8-per10-0 24.6 0.10M 30.9 0.02M 19.7 0.05M 68.0 0.06M 17.6 0.47M
j8-per10-1 275.2 1.3M 154.8 0.1M 92.8 0.3M 796.7 0.7M 89.3 2.3M
j8-per10-2 335.3 1.6M 651.4 0.6M 754.0 2.7M 697.1 0.6M 93.1 2.3M
tai-20-1 25.4 2K 27.5 3K 2524.7 1458K 34.4 3K 3.9 21K
tai-20-2 56.5 11K 178 42K 3600.0 2261K 81.9 10K 14.1 61K
tai-20-7 47.8 9K 60.9 11K 3600.0 2083K 63.7 8K 9.5 47K
tai-20-8 66.8 14K 108.3 25K 3600.0 2127K 84.8 11K 8.2 39K

Total Avg 286.1 1.3M 428.9 0.4M 1774.3 2.5M 806.6 0.6M 93.0 2.3M

Finally, we investigated whether the difference in restarting strategies might account
for the improvement with the light model. We ran the Luby strategy on the light model
and the geometric strategy on the heavy model. Again, in both cases, the change lead to
a degradation in performance.

Search Heuristics. We next assess the impact of the two aspects of the domwdeg
heuristic, task size (dom) and weighted degree (wdeg), on the light model.

Closing the Open Shop: Contradicting Conventional Wisdom 405

The following experiments were run using the Mistral light model with the same
settings as before. However, due to the nature of wdeg and dom, all variable heuristics
were further randomized by randomly choosing from their top three choices when no
tie existed. Furthermore the cutoff for dichotomic search was 30 seconds for each (lb
ub) to allow all heuristics to achieve a good initial upper bound. We present our results
in terms of average makespan found (mks), average percent proven optimal and the
average time over the sample of 20 runs for each problem.

Table 2. Variable Heuristic Comparison: Open Shop Scheduling Problems

Instances dom wdeg domwdeg
Mks Opt(%) Time(s) Mks Opt(%) Time (s) Mks Opt(%) Time (s)

Brucker 1019.7 89.2 1529.2 1019.5 100.0 381.4 1019.5 100.0 249.7
Taillard 1253.7 0.0 3600.0 1215.2 93.7 1423.9 1214.7 100.0 8.8

Total Avg 1113.4 53.0 2358.5 1097.7 97.0 798.4 1097.6 100.0 153.3

Table 2 presents our findings on the Brucker and Taillard instances of Table 1. The
results clearly show the effectiveness of wdeg on these problems. It proved optimality
on average 97% of the time, and in the cases where it failed to prove optimality the
average makespan found was within one of the optimal value. However, as previously
mentioned, it suffers from a lack of discrimination at the start of search. For example,
in the tai-20-* problems there are 7600 variables all with an initial weighted degree
of 1. Discrimination will only occur after the first failure which, given the size of the
problems and the looseness of constraints, can occur deep in search, especially with a
heuristic that is random up until at least one failure occurs.

The domain heuristic is relatively poor on these problems (only proving optimality
53% of the time and finding poor makespans for the tai-20-* problems). However, the
addition of this information to the wdeg heuristic (domwdeg) results in 100% optimality.
The domain factor has two benefits, it provides discrimination at the start of search, and
it improves the quality of the initial weights learnt due to its fail firstness.

3.2 Job Shop Scheduling

We now compare the light model, implemented in Mistral, with a randomized restart al-
gorithm used in [4], which is implemented in Ilog scheduler. It should be noted that we
are not comparing with Beck’s SGMPCS algorithm, but with the randomized restarts
approach that was used as an experimental comparison by Beck. This algorithm is
nearly identical to the heavy model introduced in Section 2.

All parameters for the algorithm are taken from [4], so the restart strategy is Luby
with an initial failure limit of 1 (i.e there is no scale factor). The variable ordering
heuristic is the profile heuristic described earlier. Randomization is added by randomly
selecting with uniform probability from the top 10% most critical pairs of (machine,
time point). Finally, the standard constraint propagation techniques for scheduling are
used, such as time-table [19], edge-finding [18], and balance constraints [12]. However
nogood recording from restarts isn’t part of the algorithm. We ran experiments on the
same cluster described earlier, using Ilog scheduler 6.2.

406 D. Grimes, E. Hebrard, and A. Malapert

The Mistral parameters are the same as for the open shop problems, with the excep-
tion that we used a 300 second cutoff for the dichotomic search in order to achieve a
good initial upper bound. Furthermore, we used a static value ordering heuristic, where
each pair of operations on a machine were ordered based on their relative position in
their job (i.e. if precedences on two jobs state that ti is second and tj is fourth on their
respective jobs, then bij will first branch on 0 during search, i.e. ti precedes tj). (We
experimented with several value heuristics and this proved to be the best.)

Table 3 describes our results on 4 sets of 10 JSP instances proposed by Taillard [21].
The different sets have problems of different sizes (#jobs x #machines). The four sets
are of size 20x15, 20x20, 30x15, 30x20, respectively. For each instance of each set,
10 randomized runs were performed, since problems were rarely solved to optimality
within the cutoff. (This set of experiments took roughly 33 days of CPU time.)

We present our results in terms of averages over each set of problems. In particular,
the average of the mean makespan found per problem in each set, the average of the
best makespan found for each problem in each set, and average standard deviation.

Table 3. Job Shop Scheduling Problems

Instances
Scheduler Mistral

Mean Best Std Dev Mean Best Std Dev

tai11-20 1411.1 1409.9 11.12 1407.3 1392.9 24.35
tai21-30 1666.0 1659.0 13.51 1666.8 1655.1 22.91
tai31-40 1936.1 1927.1 18.67 1921.6 1899.2 37.79
tai41-50 2163.1 2153.1 17.85 2143.3 2119.5 42.71

As expected, since we used faster hardware, the results we obtained with Ilog Sched-
uler match, or improve slightly on the values reported in [4]. Both approaches perform
similarly on the first two sets, although best solutions found by Mistral are consistently
better than Ilog scheduler. Mistral scales up better on the next two (larger) sets, in-
deed its average mean makespan for each set is better than Scheduler’s average best
makespan in both sets. It is interesting to note that the standard deviation is much larger
for the lighter model. The down side is that it means our approach is less robust. How-
ever, it also means that using parallel computing should improve the lighter model more
than it would improve Scheduler’s results.

4 Conclusion

In this paper we have shown that, contrary to popular belief, disjunctive temporal prob-
lems (such as in the scheduling domain) can be efficiently solved by combining naive
propagation with the generic weighted degree heuristic. Important additional factors
in such an approach are restarting, nogood recording from restarts, a good method for
finding an initial upper bound, and an element of randomization. We have shown that
such an approach can often outperform the state of the art solvers for open shop and job
shop scheduling problems.

However, our approach was not able to match the results of solution guided multi
point constructive search (SGMPCS) for job shop scheduling problems [4]. It is our

Closing the Open Shop: Contradicting Conventional Wisdom 407

belief that a similar solution guided approach can be incorporated into our model to
improve its performance, and this is the direction we intend to take our future work.

Acknowledgements

The authors would like to thank Hadrien Cambazard for his valuable comments, and
Chris Beck for supplying the code for the job shop scheduling comparison. This work
was supported by Science Foundation Ireland under Grant 05/IN/I886.

References

1. Malapert, A., Cambazard, H., Guéret, C., Jussien, N., Langevin, A., Rousseau, L.-M.: An
Optimal Constraint Programming Approach to the Open-Shop problem. Submitted to IN-
FORMS, Journal of Computing (2008)

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint
Programming Techniques to Scheduling Problems. Kluwer Academic Publishers, Dordrecht
(2001)

3. Beck, J.C., Davenport, A.J., Sitarski, E.M., Fox, M.S.: Texture-Based Heuristics for Schedul-
ing Revisited. In: AAAI/IAAI, pp. 241–248 (1997)

4. Christopher Beck, J.: Solution-Guided Multi-Point Constructive Search for Job Shop
Scheduling. Journal of Artificial Intelligence Research 29, 49–77 (2007)

5. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting Systematic Search by Weight-
ing Constraints. In: Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI 2004), Valencia, Spain, August 2004, pp. 482–486 (2004)

6. Brucker, P., Hurink, J., Jurisch, B., Wöstmann, B.: A Branch & Bound Algorithm for the
Open-shop Problem. In: GO-II Meeting: Proceedings of the Second International Collo-
quium on Graphs and Optimization, pp. 43–59. Elsevier Science Publishers B. V., Ams-
terdam (1997)

7. Carlier, J., Pinson, E.: An Algorithm for Solving the Job-shop Problem. Management Sci-
ence 35(2), 164–176 (1989)

8. The choco team. choco: an Open Source Java Constraint Programming Library. In: The Third
International CSP Solver Competition, pp. 31–40 (2008)

9. Fox, M.S., Sadeh, N.M., Baykan, C.A.: Constrained heuristic search. In: IJCAI, pp. 309–315
(1989)

10. Guéret, C., Prins, C.: A new Lower Bound for the Open Shop Problem. Annals of Operations
Research 92, 165–183 (1999)

11. Hebrard, E.: Mistral, a Constraint Satisfaction Library. In: The Third International CSP
Solver Competition, pp. 31–40 (2008)

12. Laborie, P.: Algorithms for Propagating Resource Constraints in AI Planning and Schedul-
ing: Existing Approaches and new Results. Artificial Intelligence 143(2), 151–188 (2003)

13. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood Recording from Restarts. In: IJCAI, pp.
131–136 (2007)

14. Luby, M., Sinclair, A., Zuckerman, D.: Optimal Speedup of Las Vegas Algorithms. In:
ISTCS, pp. 128–133 (1993)

15. Meiri, I.: Combining Qualitative and Quantitative Constraints in Temporal Reasoning. In:
AAAI, pp. 260–267 (1991)

16. Nowicki, E., Smutnicki, C.: A Fast Taboo Search Algorithm for the Job Shop Problem. Man-
age. Sci. 42(6), 797–813 (1996)

408 D. Grimes, E. Hebrard, and A. Malapert

17. Nowicki, E., Smutnicki, C.: An Advanced Tabu Search Algorithm for the Job Shop Problem.
Journal of Scheduling 8(2), 145–159 (2005)

18. Nuijten, W.: Time and Resource Constraint Scheduling: A Constraint Satisfaction Approach.
PhD thesis, Eindhoven University of Technology (1994)

19. Le Pape, C.: Implementation of Resource Constraints in ILOG SCHEDULE: A Library for
the Development of Constraint-Based Scheduling Systems. Intelligent Systems Engineer-
ing 3, 55–66 (1994)

20. Sha, D.Y., Hsu, C.-Y.: A new Particle Swarm Optimization for the Open Shop Scheduling
Problem. Computers & Operation Research 35(10), 3243–3261 (2008)

21. Taillard, E.: Benchmarks for Basic Scheduling Problems. European Journal of Operations
Research 64, 278–285 (1993)

22. Walsh, T.: Search in a Small World. In: IJCAI, pp. 1172–1177 (1999)
23. Watson, J.-P., Beck, J.C.: A Hybrid Constraint Programming / Local Search Approach to

the Job-Shop Scheduling Problem. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS,
vol. 5015, pp. 263–277. Springer, Heidelberg (2008)

Reasoning about Optimal Collections of Solutions

Tarik Hadžić, Alan Holland, and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{t.hadzic,a.holland,b.osullivan}@4c.ucc.ie

Abstract. The problem of finding a collection of solutions to a combinatorial
problem that is optimal in terms of an inter-solution objective function exists in
many application settings. For example, maximizing diversity amongst a set of
solutions in a product configuration setting is desirable so that a wide range of
different options is offered to a customer. Given the computationally challeng-
ing nature of these multi-solution queries, existing algorithmic approaches either
apply heuristics or combinatorial search, which does not scale to large solution
spaces. However, in many domains compiling the original problem into a com-
pact representation can support computationally efficient query answering. In this
paper we present a new approach to find optimal collections of solutions when the
problem is compiled into a multi-valued decision diagram. We demonstrate em-
pirically that for real-world configuration problems, both exact and approximate
versions of our methods are effective and are capable of significantly outperform-
ing state-of-the-art search-based techniques.

1 Introduction

Knowledge compilation provides a basis for efficiently processing queries that would
otherwise be intractable. Compact representations, such as automata, decision diagrams,
and negation normal forms, are of critical importance to solve combinatorial problems
in a number of application settings such as product configuration, diagnosis and plan-
ning. In a product configuration domain, for instance, one needs to find solutions in an
interactive manner, so fast response times are required. Since this is typically an NP-
complete task, configuration problems have been compiled into automata [1] and binary
decision diagrams [2,3] to guarantee fast response times. In other domains, such as di-
agnosis and planning, a much harder class of probabilistic inference tasks needs to be
solved. They usually rely on counting the number of solutions, which is #P-complete
in most non-trivial settings. Therefore, compiled representations such as decompos-
able negation normal forms (DNNFs) [4] have been proven to be critical for enhancing
inference. In each of these domains, compilation effort is traded in favour of faster
online inference but at the cost of a potentially exponential increase in memory require-
ments. Fortunately, in practice, many compiled representations of real world problems
are compact.

In this paper we investigate whether we can exploit knowledge compilation to en-
hance inference for another class of challenging queries that require computing optimal
collections of solutions. In many settings we not only want to find a solution that satis-
fies a set of constraints, but we also want to find solutions that ensure that other solutions

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 409–423, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

410 T. Hadžić, A. Holland, and B. O’Sullivan

exist that satisfy particular constraints, or optimize a particular objective function. For
example, in a configuration setting we may wish to find a set of solutions that are as
diverse as possible, given a specific measure of diversity such as Hamming distance.
For inexact database query answering, we might wish to find a set of tuples from a
database that are as close as possible to a user-specified query but as mutually diverse
as possible.

This paper offers the following contributions. Firstly, we present a novel approach
to answering multi-solution queries over a multi-valued decision diagram (MDD) when
we wish to find a collection of solutions that are optimal with respect to an arbitrary ad-
ditive objective function. Secondly, we show how to exploit the compactness of MDDs
by transforming the problem of multi-solution optimization into a problem of single-
solution optimization over a product MDD. Thirdly, we reduce the memory requirement
of the method by using an implicit optimization scheme that avoids explicitly generat-
ing the expanded MDD, along with an approximate optimization scheme that limits the
number of nodes that can be processed during optimization. Fourthly, we show how our
approach can be instantiated to exactly solve various important inter-solution distance
queries. Finally, we empirically evaluate the practicability of our approach on real-
world product configuration problems and demonstrate its effectiveness in comparison
to current state-of-the-art search-based approaches. We conclude with a discussion of
the significance of our results and possible future work.

2 Preliminaries

Constraint Satisfaction. We assume that the original problem is given in the form of
a constraint satisfaction problem.

Definition 1 (Constraint Satisfaction Problem). A constraint satisfaction problem
(CSP), P(X, D, F), is defined by a set of variables X = {x1, . . . , xn}, a set of do-
mains D1, . . . , Dn such that variable xi takes a value from Di, and a set of constraints
F =def {f1, . . . , fm} that restrict the set of consistent assignments to the variables in
X .

The set of solutions Sol of a CSP P is a subset of D1 × . . . × Dn such that every
element s ∈ Sol satisfies all constraints in F . The CSP is a versatile modeling frame-
work, capable of expressing problems from various application domains. Consider the
following pedagogical example from a product configuration domain.

Example 1 (T-Shirt CSP). We are interested in selecting a T-shirt which is defined by
three attributes: the color (black, white, red, or blue), the size (small, medium, or large)
and the print (“Men In Black” - MIB or “Save The Whales” - STW). There are two rules
that define what are valid combinations: if we choose the MIB print then the color black
has to be chosen as well, and if we choose the small size then the STW print (including
a big picture of a whale) cannot be selected as the picture of a whale does not fit on
the small shirt. The implicit representation (X, D, F) of the T-shirt example consists
of variables X = {x1, x2, x3} representing color, size and print. Variable domains are
D1 = {0, 1, 2, 3} (black ,white , red , blue), D2 = {0, 1, 2} (small ,medium , large),

Reasoning about Optimal Collections of Solutions 411

and D3 = {0, 1} (MIB ,STW). The two rules translate to F = {f1, f2}, where f1

is x3 = 0 ⇒ x1 = 0 (MIB ⇒ black) and f2 is (x2 = 0 ⇒ x3 �= 1) (small ⇒
not STW). ♦

The CSP model is summarized in Fig. 1(a). There are |D1| · |D2| · |D3| = 24 possible
assignments. Eleven of these assignments are valid configurations and they form the
solution space shown in Fig. 1(b).

Variables:
x1 ∈ {0, 1, 2, 3}
x2 ∈ {0, 1, 2}
x3 ∈ {0, 1}

Constraints:
f1 :x3 = 0 ⇒ x1 = 0
f2 :x2 = 0 ⇒ x3 �= 1

(a) T-Shirt Constraint
Satisfaction Problem

color size print

black small MIB
black medium MIB
black medium STW
black large MIB
black large STW
white medium STW
white large STW
red medium STW
red large STW
blue medium STW
blue large STW

(b) Solution space of the
T-Shirt CSP

u1

u2

0

u3

1 2 3

u4

0

u5

1 2

1

0

u6

1 2

10 1

(c) MDD representation of
the T-Shirt CSP

Fig. 1. T-Shirt example. The CSP formulation is presented in Fig. 1(a), the solution space in
Fig. 1(b) and the corresponding MDD in Fig. 1(c). Every row in a solution space table corre-
sponds to a unique path in the MDD.

Multivalued Decision Diagrams. Multivalued Decision diagrams (MDDs) are com-
pressed representations of solution sets Sol ⊆ D1× . . .×Dn. They are rooted directed
acyclic graphs (DAGs) where each node u corresponds to a variable xi and each of
its outgoing edges e corresponds to a value a ∈ Di. Paths in the MDD correspond to
solutions in Sol.

Definition 2 (Multi-valued Decision Diagram). An MDD M is a rooted directed
acyclic graph (V, E), where V is a set of vertices containing the special terminal vertex
1 and a root r ∈ V . Furthermore, var : V → {1, . . . , n + 1} is a labeling of all nodes
with a variable index such that var(1) = n + 1. Each edge e ∈ E is defined by a triple
(u, u′, a) of its start node u, its end node u′ and an associated value a.

We work only with ordered MDDs. A total ordering < of the variables is assumed
such that for all edges (u, u′, a) var(u) < var(u′). For convenience we assume that
the variables in X are ordered according to their indices. On each path from the root to
the terminal, every variable labels exactly one node. An MDD encodes a CSP solution
set Sol ⊆ D1 × . . . × Dn, defined over variables {x1, . . . , xn}. To check whether an
assignment a = (a1, . . . , an) ∈ D1 × . . .×Dn is in Sol we traverse M from the root,
and at every node u labeled with variable xi, we follow an edge labeled with ai. If there

412 T. Hadžić, A. Holland, and B. O’Sullivan

is no such edge then a is not a solution. Otherwise, if the traversal eventually ends in
terminal 1 then a ∈ Sol. In Fig. 1(c) we show an MDD that encodes the solution set
from Fig. 1(b). For every node we show its unique identifier. The variable ordering used
is x1 < x2 < x3, i.e. var(u1) = 1, var(u2) = var(u3) = 2, var(u4) = var(u5) =
var(u6) = 3.

Ordered MDDs can be considered as being arranged in layers of vertices, each layer
being labeled with the same variable index. We will denote by Vi the set of all nodes
labeled with xi, Vi = {u ∈ V | var(u) = i}. Similarly, we will denote by Ei the
set of all edges originating in Vi, i.e. Ei = {e(u, u′, a) ∈ E | var(u) = i}. In our T-
Shirt MDD for example, V2 = {u2, u3} and E2 = {(u2, u4, 0), (u2, u5, 1), (u2, u5, 2),
(u3, u6, 1), (u3, u6, 2)}. We will denote by p : u1 � u2 any path in an MDD from
u1 to u2. Also, edges between u and u′ will be sometimes denoted as e : u → u′.
A value a of an edge e(u, u′, a) will sometimes be denoted as v(e), while a partial
assignment associated with path p will be denoted as v(p). Every path corresponds
to a unique assignment. Hence, the set of all solutions represented by the MDD is
Sol = {v(p) | p : r � 1}. In fact, every node u ∈ Vi can be associated with a
subset of solutions Sol(u) = {v(p) | p : u � 1} ⊆ Di × . . . ×Dn. For example, in
the T-Shirt MDD, Sol(u2) = {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1)}.

A distinct advantage of decision diagrams is that they can represent the size of the
solution set they encode in an exponentially smaller data structure by merging isomor-
phic subgraphs. Two nodes u1, u2 are isomorphic if they encode the same solution set
Sol(u1) = Sol(u2). The T-Shirt MDD from Fig. 1(c) is merged. In addition to merging
isomorphic nodes, one can remove redundant nodes which reduces the size by at most
a linear factor. This complicates MDD-based algorithms since the removal of nodes
introduces long edges. Therefore, throughout the paper we always assume an ordered
merged MDD. Given a variable ordering there is a unique merged MDD for a given
CSP P(X, D, F) and its solution set Sol. The size of an MDD depends critically on
the ordering, and could vary exponentially. It can grow exponentially with the number
of variables, but in practice, for many interesting constraints the size is surprisingly
small. An MDD for a given CSP P(X, D, F) is typically constructed by first creating
an MDD Mi for each constraint fi, and then using pairwise conjunctions to construct
M1 ∧ . . . ∧Mm. A conjunction of two MDDs Mi ∧Mj can be performed in worst-
case quadratic time and space O(|Mi| · |Mj |), where |M | denotes the size of the MDD
|V |+ |E|. Hence the final MDD can be exponentially large O(|M1| · . . . · |Mn|).

3 Optimal Collections of Solutions

In many settings we do not want to find just a single solution satisfying a set of con-
straintsP(X, D, F), but we want to retrieve collections of such solutions that should be
optimal with respect to some cost function. Particularly challenging are those notions
of optimality that require evaluating inter-solution relationships within a collection in
order to evaluate the cost of entire collection. We will refer to such notions of optimal-
ity as multi-solution costs. For example, computing a collection of k most expensive
solutions with respect to some cost function c(x1, . . . , xn) : D → R is not a multi-cost
query since the cost of an entire collection depends only on the costs of individual mem-
bers, without considering their inter-relationships. However, retrieving k solutions that

Reasoning about Optimal Collections of Solutions 413

are as diverse as possible is a multi-solution query since the diversity of a collection can
be evaluated only by looking at distances between all the members in the collection.

Another example of a multi-solution query can be found in risk management and
reasoning about robust solutions. We may wish to find a high-quality solution for which
a contingency solution exists that is robust to specific types of failure. While the quality
of both original and contingent solution depends on each solution individually, there
is a penalty associated with switching from one solution to another. Hence, for a given
failure probability, the expected cost of such a pair can be estimated only by considering
both solutions simultaneously.

Formally, we are given a CSP P(X, D, F) representing its solution set Sol. We wish
to retrieve a combination of k solutions s1, . . . , sk where sj = (sj

1, . . . , s
j
n) ∈ Sol and

j = 1, . . . , k that is optimal with respect to a cost function C:

C :

k︷ ︸︸ ︷
(D1 × · · · ×Dn)× · · · × (D1 × · · · ×Dn)→ R.

In this paper we restrict our attention to a subclass of additive cost functions C, i.e.
the cost functions which can be represented as a sum of variable-level cost functions
Ci : (Di)k → R:

C(s1
1, . . . , s

1
n, . . . , sk

1 , . . . , sk
n) =

n∑
i=1

Ci(s1
i , . . . , s

k
i).

Many interesting real-world notions of optimality can be expressed as additive costs,
such as notions of diversity, and similarity based on Hamming distance and other forms
of distances between categorical and numerical variables in recommender systems re-
search. When retrieving only single solutions (for k = 1) restriction to additive cost
function still leads to a very general class of cost functions that subsume objective
functions of entire areas of research such as integer linear programming.

Recall that, without loss of generality, we focus on retrieving k solutions that maxi-
mize the value of the cost function C; finding minimal tuples is a symmetric problem.
Formally, the problem we are addressing in this paper is as follows.

Problem 1 (Optimal k-ary Collection of Solutions). Find k solutions (s1, . . . , sk) from
Sol that are optimal with respect to the following objective:

maximize
n∑

i=1

Ci(s1
i , . . . , s

k
i), sj ∈ Sol, j = 1, . . . , k.

The state-of-the-art approach in the constraint programming community to reasoning
about multiple solutions of constraint satisfaction problems is presented in [5,6] where
the authors investigated reasoning about diversity and similarity of solutions. The core
of their approach is based on introducing k-copies of variables, Xj = {xj

1, . . . , x
j
n},

xj
i ∈ Di, where j = 1, . . . , k and i = 1, . . . , n. Corresponding copies of the original

constraints F j = {f j
1 , . . . , f j

m} where j = 1, . . . , k, are posted over the new sets of
the variables. The resulting CSP has n · k variables and m · k constraints. By setting an
objective function

414 T. Hadžić, A. Holland, and B. O’Sullivan

C(x1
1, . . . , x

1
n, . . . , xk

1 , . . . , xk
n) =

n∑
i=1

Ci(x1
i , . . . , x

k
i)

the problem of finding an optimal collection of solutions becomes a problem of finding
a single optimal solution in such an expanded CSP model. The work in [5,6] focused
not just on additive cost functions, but considered non-additive definitions of distances
as well, for which a number of complexity results were demonstrated and practical
solution approaches were suggested.

4 An MDD-Based Approach to Computing Optimal Collections

In many application domains, such as product configuration, the set of solutions Sol can
be compactly represented as a multi-valued decision diagram (MDD). In cases when
MDDs are compact, they can be effectively exploited to enhance answering a number of
tasks related to feasibility and optimality of individual solutions. A number of otherwise
NP-hard tasks become linear in the size of the MDD. In particular, for an additive
cost function, finding optimal solutions reduces to efficient shortest and longest path
computations over an acyclic graph (see e.g. [1,7]). We investigate here whether we can,
in an analogous manner, exploit the compressed MDD representation of the original
solution set Sol and the additive nature of a multi-solution cost function to enhance
search for optimal collections of solutions.

4.1 An MDD-Friendly CSP Encoding

The CSP encoding from the previous section is particularly well suited in a search
setting using a standard CSP solver, as additional variables and constraints can be easily
posted based on the original problem formulation. However, it is not clear how this
encoding would help us to exploit an existing MDD representation of the solution space
Sol. Even if we are able to choose a variable ordering that leads to a compact MDD
representation, we would still have to optimize the sum of non-unary cost functions
Ci(x1

i , . . . , x
k
i) over an MDD which cannot be reduced to efficient shortest-path-based

computations.
We therefore suggest an alternative encoding of the original CSP. A core aspect of

our construction is to introduce k-dimensional variables xi ∈ Di, i = 1, . . . , n where

Di =def

k︷ ︸︸ ︷
Di × · · · ×Di = (Di)k i = 1, . . . , n.

An assignment to variables x1, . . . ,xn represents k solutions. Every value vi in the
domain of xi corresponds to a vector of values (v1

i , . . . , vk
i) ∈ (Di)k from domain Di

in the original CSP. An assignment to the variables {x1 = v1, . . . ,xn = vn}, is a
solution if for each coordinate j = 1, . . . , k, vectors (vj

1, . . . , v
j
n) are solutions in the

original CSP. We will use Sol to denote the set of all such solutions.

Reasoning about Optimal Collections of Solutions 415

4.2 Constructing a k-MDD

We will now show that a corresponding MDD representation of the solution set Sol,
which we call a k-MDD or a product MDD and denote as Mk, with respect to a vari-
able ordering x1 ≺ . . . ≺ xn, can be generated directly from M . We will denote such
an MDD as Mk(V k, Ek) where V k and Ek denote vertices and edges. Let V k

i and Ek
i

denote the vertices and edges in the i-th layer, respectively. To construct the MDD it
suffices to notice that for every product of vertices from the i-th layer Vi of the original
MDD there is a unique vertex in V k

i , i.e. V k
i ≡ (Vi)k . Analogously, for every combi-

nation of edges from Ei there is a unique edge in Ek
i , i.e. Ek

i ≡ (Ei)k . In other words,
we introduce a vertex u ∈ V k

i for every k-tuple of vertices (u1, . . . , uk) ∈ (Vi)k.
We will denote this relationship as u ≡ (u1, . . . , uk) or write simply u(u1, . . . , uk).
We introduce an edge e(e1, . . . , ek) ∈ Ek

i between the nodes u(u1, . . . , uk) ∈ V k
i ,

u′(u′
1, . . . , u

′
k) ∈ V k

i+1 whenever each pair of nodes (uj , u
′
j), j = 1, . . . , k, is con-

nected with an edge ej in M , i.e. if ej : uj → u′
j , ∀j = 1, . . . , k.

An example of such a construction is provided in Figure 2. An MDD M for the
initial CSP is presented in Figure 2(a), encoding solutions {(1, 1, 1),(1, 2, 2),(2, 3, 2)}.
Each node is labeled with a unique identifier rather than a variable label. Root node r
corresponds to variable x1, nodes a, b to variable x2, and nodes c, d to variable x3. The
k-MDD M2 (for k = 2), is shown in Figure 2(b). For the sake of clarity, we label every
node (except root r and terminal 1) with combinations of the corresponding nodes in
M , to illustrate the construction process. For the same reason, we label every edge in
M2 with a combination of values of the corresponding edges in M . For example, by
combining a node a with a node b we get a product node (a, b). Furthermore, since an
edge r → a has a label 1, and an edge r → b has a label 2 in M , an edge r → (a, b)
has a label (1, 2) in M2.

From the definition of the product MDD Mk, its size can be computed exactly:
|V k| =

∑n
i=1 |Vi|k, and |Ek| =

∑n
i=1 |Ei|k. The time to construct Mk is linear in the

number of operations Θ(|V k|+ |Ek|).
Furthermore, the label of each edge e(e1, . . . , ek) can be identified with a k-tuple

of values, v(e) = (v(e1), . . . , v(ek)). This can then, in a natural way, be extended to
the valuation of paths, v(p), so that every solution in Sol corresponds to a tuple of
solutions in Sol × · · · × Sol. From the definition of Mk, it then easily follows that for
every product node u ≡ (u1, . . . , uk), it holds that Sol(u) = Sol(u1)× · · ·×Sol(uk).
Based on these observations, we can now prove the following property.

Lemma 1. If an MDD M is merged then the k-MDD Mk is also merged.

Proof (Proof by contradiction). Assume that an MDD M is merged. Since for every
u ∈ V k

i such that u ≡ (u1, . . . , uk), it holds that Sol(u) = Sol(u1)×· · ·×Sol(uk), if
two different nodes u1(u1

1, . . . , u
k
1),u2(u1

2, . . . , u
k
2) ∈ V k

i are isomorphic, then it must
also hold that Sol(u1) = Sol(u2). This would imply that Sol(uj

1) = Sol(uj
2), j =

1, . . . , k. Since u1 �= u2, for at least one j, uj
1 �= uj

2. This indicates that the original
MDD M was not merged, which is a contradiction. ��

416 T. Hadžić, A. Holland, and B. O’Sullivan

r

a

1

b

2

c

1

d

2 3

1

1 2

(a) An MDD for
the initial prob-
lem.

r

(a,a)

(1,1)

(a,b)

(1,2)

(b,a)

(2,1)

(b,b)

(2,2)

(c,c)

(1,1)

(c,d)

(1,2)

(d,c)

(2,1)

(d,d)

(2,2)(1,3) (2,3) (3,1) (3,2) (3,3)

1

(1,1) (1,2) (2,1) (2,2)

(b) A corresponding product MDD.

Fig. 2. An example of the construction of a product MDD M2 from the original MDD M . In
order to illustrate the construction process, nodes in M2 are labeled with the corresponding com-
binations of nodes from M . Analogously, labels on edges in M2 are combinations of labels of
the corresponding edges in M .

4.3 Optimization over k-MDDs

A critical advantage of a k-MDD Mk in comparison to MDDs obtained by the orig-
inal CSP encoding, is that it allows optimization of a cost function C in linear time
in its size. Namely, every edge e(e1, . . . , ek) ∈ Ek

i corresponds to an assignment to
variables (x1

i , . . . , x
k
i) = (v(e1), . . . , v(ek)) and can be therefore labeled with a cost

Ci(e) =def Ci(v(e1), . . . , v(ek)). In an analogous manner we define the cost of a path
p in a k-MDD as C(p) =def

∑
ei∈p Ci(ei). A k-MDD from Figure 2(b) labeled with

respect to costs induced by Hamming distance is shown in Figure 3(a). Recall that a
Hamming distance δi(v, v′) for two assignments to a single variable xi is 0 if v = v′,
and 1 otherwise. A Hamming distance between two assignments to all n variables,
v1(v1

1 , . . . , v1
n), v2(v2

1 , . . . , v2
n) is δ(v1,v2) =

∑n
i=1 δi(v1

i , v2
i).

The cost of the longest path in Mk with respect to a labeling with respect to C as
described above corresponds to the maximum value of a k-collection of solutions from
Sol, i.e. to a solution to our Problem 1. In our example the longest path has length 3,
i.e. there is a pair of solutions that differs on all three variable assignments. One such
path is r → (a, b)→ (c, d) → 1, leading to a pair of solutions ((1, 1, 1), (2, 3, 2)). The
longest path is computed in a standard fashion, using Algorithm 1, computing for each
node u, in a bottom-to-top breadth-first search traversal, MAX [u] := max{C(p) | p :
u � 1}.

The space requirements of our scheme are dominated by representing the MDD Mk,
which requires Θ(

∑n
i=1 |Vi|k +

∑n
i=1 |Ei|k) space. The time complexity is determined

by updates to MAX [u] on line 1 of Algorithm 1. Assuming that each update takes
constant time, the time complexity is Θ(

∑n
i=1 |Ei|k), since there is an update for each

edge in Mk.

Reasoning about Optimal Collections of Solutions 417

Algorithm 1. Longest-Path(Mk, C)

Data: MDD Mk(V k, Ek), cost function C
MAX[1] = 0;
foreach i = n, . . . , 1 do

foreach u ∈ V k
i do

MAX[u] = −∞;
foreach e : u → u′ do

MAX[u] = max{MAX[u], Ci(e) + MAX[u′]};1

return MAX[r];

r

(a,a)

0

(a,b)

1

(b,a)

1

(b,b)

0

(c,c)

0

(c,d)

1

(d,c)

1

(d,d)

01 1 1 1 0

1

0 1 1 0

(a) Cost labeling of a k-MDD.

r

(a,b)

1

(a,a)

0

(c,d)

1 1

(d,c)

1

(b,a)

1

1

1 1

(c,c)

0

(d,d)

0

(b) Approximate optimization for T = 2.

Fig. 3. Exact and approximate optimization over the k-MDD from Figure 2(b). Edges are labeled
with respect to Hamming distance costs instead of values. In approximate optimization we pro-
cess at most T of the most expensive nodes in each layer. Nodes that are processed are indicated
as shaded in the figure.

5 Improvements over k-MDD Optimization

In the previous section we developed an approach to multi-solution queries that exploits
the compactness of the initial MDD M , and the additivity of the cost function C. The
complexity of our approach grows exponentially with k. It is guaranteed to succeed
whenever the size of the MDD is small and whenever k is small. We now consider situ-
ations when this is not the case and present several extensions of the basic optimization
scheme to reduce time and space requirements.

5.1 Implicit Optimization

Due to a one-to-one correspondence between the vertices and edges of Mk to k-tuples
of the vertices and edges in M , we can execute Algorithm 1 without constructing Mk.
The statement of the algorithm is identical – with the only difference being that instead
of iterating over nodes u ∈ V k

i we iterate over tuples (u1, . . . , uk) ∈ (Vi)k. Instead of
updating MAX [u] with respect to e ∈ Ek

i we update MAX [u1, . . . , uk] with respect

418 T. Hadžić, A. Holland, and B. O’Sullivan

to tuples (e1, . . . , ek) ∈ (Ei)k. The space complexity depends only on maintaining and
updating cost labels MAX [u1, . . . , uk]. Since we have to store such labels for every k-
tuple of nodes in each layer, and since we have to perform an update for every k-tuple
of edges in each layer, the space complexity is Θ(

∑n
i=1 |Vi|k) while time complexity

is still Θ(
∑n

i=1 |Ei|k). A significant reduction in space requirements can be further
achieved by maintaining MAX labels only for tuples of nodes in two neighboring
layers at a time. The space complexity then reduces to Θ(maxn

i=2{|Vi|k + |Vi−1|k}).

5.2 Approximate Node-Limited Optimization
The implicit optimization scheme helps us meet memory restrictions but only in cases
when there are no layers that are excessively large. However, in some domains this is
not true and certain layers may be very large compared to others. Furthermore, even
if we do satisfy memory restrictions, we still perform the same number of operations
Θ(
∑n

i=1 |Ei|k) as the original scheme. In settings where response times are important,
this might be unacceptable.

We suggest an approximate version of the implicit optimization scheme. The main
idea is to limit the number of nodes that can be processed at each layer, to a predefined
threshold T . In each layer we traverse and process tuples (u1, . . . , uk) in decreasing
order with respect to the maximal cost MAX [u1, . . . , uk]. For each tuple, we update
all the parent tuples. An approximate version of the Hamming distance optimization
for T = 2 is illustrated in Figure 3(b). Algorithm 2 illustrates this approach. For each
layer i we maintain the set of nodes Si that have been updated in previous iterations.
Furthermore, we maintain a sorted set with respect to the MAX labels, so that efficient
access to the most expensive tuples u is possible.

Algorithm 2. Approximate-Longest-Path(M, C)

Data: MDD M(V, E), cost function C, node threshold T
Si ← ∅, i = 1, . . . , n;
Sn+1 ← {1};
MAX[1] ← 0;
foreach i = n + 1, . . . , 2 do

nodeCount = 0;
while nodeCount ≤ T do

u′ = next most expensive tuple from Si;
nodeCount + +;
foreach e : u → u′ do

if u �∈ Si−1 then
MAX[u] = −∞;
Si−1 ← Si−1 ∪ {u};

MAX[u] = max{MAX[u], Ci(e) + MAX[u′]};

return MAX[r];

Complexity analysis. At the i-th layer we traverse and expand at most T nodes. If di

is the largest number of incoming edges to any node in Vi, then the largest number of

Reasoning about Optimal Collections of Solutions 419

updated nodes from (Vi−1)k is T ·(di)k, i.e. |Si−1| ≤ T ·(di)k. Hence, assuming that we
maintain two neighboring layers during the traversal, the maximum space requirements
are maxn

i=2{|Si|+ |Si−1|} ∈ O(maxn
i=2T · ((di+1)k + (di)k)).

Since we perform at most (di)k updates for T nodes in each layer, we execute at most∑n+1
i=2 T · (di)k updates. However, in each update with respect to edge e : u→ u′, we

have to check whether parent node u ∈ Si−1. For typical implementations of the set
structure (binary search tree) each membership check takes a logarithmic number of
operations, i.e. log2(|Si−1|) ≤ log2(T · (di)k). Hence, the time requirements of our
scheme are O(

∑n+1
i=2 T · di · log2(T · (di)k)).

6 Applications and Extensions

In general, we are interested in applications where it is desirable to return a collection
of solutions in which there is a relationship between those solutions in terms of a dis-
tance [8,5]. Ensuring solution diversity is the most natural setting where such queries
are desirable, but diversity can be defined in a number of interesting ways that depend
on the application domain. We present some examples of useful distance measures and
the associated settings that can benefit from our approach.

Maximum Hamming Distances. In this case the distance between two solutions is
measured in terms of the number of variables with different assignments. We can use
Algorithm 1 to solve theNP-hard Maximum Hamming Distance problem [8,9,5] using
quadratic space O(maxn

i=2{|Vi|2 + |Vi−1|2}) and quadratic time O(
∑n

i=1 |Ei|2) with
respect to the input MDD M (which can be exponentially large in the input problem
specification). The problem of finding solutions that maximize the Hamming Distance
has applications in error correcting codes and electronics.

Optimally Diverse Collections. Given a solution set Sol and a desired size of subset k,
we wish to compute a subset S ⊆ Sol with maximum diversity among all k-subsets of
Sol. For example, we might want to determine the most diverse collection of products
that are initially shown to a new user before his preferences are elicited. For a tuple
of paths p(p1, . . . , pk), we define its cost C(p) as the sum of all pairwise distances:
C(p) = sum(δ, (p1, . . . , pk)) =

∑k
i,j=1 δ(pi, pj). This is an additive objective func-

tion since

C(p) =
n∑

i=1

sum(δ, (e1
i , . . . , e

k
i)) =

n∑
i=1

Ci(ei)

and, therefore, the problem can be solved by instantiating Algorithm 1. Note, however,
that evaluating the cost of an edge, Ci(e) = sum(δ, (e1, . . . , ek)), no longer takes
constant time, but requires in worst case k · (k− 1)/2 summations. Therefore, the time
complexity of the algorithm is Θ(

∑n
i=1 |Ei|k ·k2), while the space complexity remains

Θ(maxn
i=2{|Vi|k + |Vi−1|k}).

Subset Diversity. Several web search engines offer the user an option to view “Similar
Pages”. The concept of finding a set of diverse solutions with some common attributes
is powerful because it assists a user in an interactive setting to search a possibly large set
of solutions more efficiently. We can support such solution discovery in a combinatorial

420 T. Hadžić, A. Holland, and B. O’Sullivan

problem setting using our approach. A trivial extension to Algorithm 1 involves fixing
certain assignments in Mk and then finding a diverse set of solutions with this common
assignment. One could envisage many potential settings, such as product configuration,
where this concept may be valuable. For example, the user may wish to receive a diverse
set of options for a product with certain attributes fixed.

Risk Management and Contingency Planning. When a solution faces a risk of fail-
ure, e.g. because a particular assignment becomes inconsistent in a dynamic setting, it
is important that an alternative solution can be formed without making alterations to
the initial solution that are too costly [10]. For queries seeking a solution that mini-
mizes expected losses, it is necessary to determine the cost of a repair for all possible
failures in a tractable manner. In such a setting, the robustness of any solution is inextri-
cably linked to its neighboring solutions thereby presenting an application domain for
distance queries. For example, in queries related to finding robust solutions, for every
possible solution x there is a probability of its failure P (x) ∈ [0, 1], in which case a
contingent solution x′ should be provided instead of x. Such a contingent solution x′

should be of high value c(x′) but also as close as possible to the original solution x.

7 Empirical Evaluation

Given an MDD M(V, E), let Vmax = maxn
i=1|Vi| denote the largest node-width, and

let Emax = maxn
i=1|Ei| denote the largest edge-width in the MDD M . The space and

time complexities of our approach are determined by (Vmax)k and (Emax)k , respec-
tively. While this is exponential in k, in many practical applications k is often small. It
is argued, for example, that for recommender systems the optimal number of solutions
to present to a user is k = 3 [11].

7.1 Scalability for Real-World Configuration Problems

We generated MDDs for a number of real-world configuration instances from CLib.1

We present their relevant properties in Table 1. The first five columns indicate instance
name, number of variables, number of solutions, size of compiled representation on
disk, number of MDD nodes |V |, number of MDD edges |E|, maximal node-width
Vmax and edge-width Emax.

Table 1 indicates that even small MDDs can successfully represent huge solution
spaces, thus highlighting the computational advantage of our methodology. We use
node-widths Vmax and edge-widths Emax as indicators of the worst-case values of dy-
namic programming data entries that must be stored simultaneously in our scheme, and
the number of operations that have to be performed. The first five instances are quite
manageable even for the exact optimization when k is small. However, the Big-PC in-
stance and widely investigated Renault instance [1] might be out of reach, particularly
with respect to space requirements.

1 http://www.itu.dk/research/cla/externals/clib

http://www.itu.dk/research/cla/externals/clib

Reasoning about Optimal Collections of Solutions 421

Table 1. MDD properties for some real-world problems. (∗) The original version of the Re-
nault instance has 101 variables, two of which are unconstrained and therefore removed from the
problem.

Instance
MDD MDD

Variables Solutions Size (KB) Nodes Edges Vmax Emax

ESVS 26 231 5 96 220 24 66
FS 23 224 41 767 2017 348 648
Bike2 34 226 56 933 1886 194 457
PC2 41 220 237 3907 6136 534 1211
PC 45 220 298 4875 7989 640 2240

Big-PC 124 283 7,945 100272 132889 11537 11961
Renault 99∗ 241 9,891 329135 426212 8609 17043

7.2 Comparison between Exact and Approximate Optimization

We evaluated the performance of the implicit optimization version of Algorithm 1 and
the approximate node-limited Algorithm 2 using Hamming distance as a cost function
when looking for two most distant solutions. The results are presented in Table 2. For
the approximate scheme we indicate the smallest node threshold for the first five in-
stances that is sufficient to reach optimality. For the largest two instances we indicate
the smallest multiple of 1000 for which the threshold is sufficiently large to allow the
discovery of the optimal solution. We can see that we can easily handle the first five
instances. Furthermore, our exact scheme is able to handle both the largest instances
Big-PC and Renault. The heuristic scheme that was used for instance Renault in [5]
leads to an estimate of maximum Hamming distance 60. We computed the exact value,
which is 71. Furthermore, for a threshold T = 30000 our approximate scheme is able
to compute the maximum Hamming distance using an order-of-magnitude less time.
It requires processing only a tiny fraction of all tuples that an exact scheme would
process.

Table 2. Empirical results for exact and approximate version of our algorithmic scheme

Instance Exact Approximate
Longest Path Time (s) Longest Path Time (s) Threshold

ESVS 26 0.09 26 0.09 3
FS 22 0.1 22 0.09 1
Bike2 32 0.11 32 0.1 2
PC2 34 0.19 34 0.09 2
PC 37 0.29 37 0.1 39
Big-PC 118 27.81 118 1.92 30000
Renault 71 98.4 71 11.79 30000

422 T. Hadžić, A. Holland, and B. O’Sullivan

7.3 Comparison against CSP Search Approach

Hebrard et al. evaluated their approach using a Renault instance [5]. We re-implemented
a variant of that approach in Mistral,2 based on the original paper and consultations with
the authors. We used the model and objective function as described in Section 3 (based
on introducing k copies of variables and constraints). We tried several search schemes,
but the most effective one was to first branch on all X i variables before branching on
X i+1 variables, and to use restarts with a random value selection heuristic. The results
for Hamming distance significantly outperformed the scheme from [5] in terms of both
time and the Hamming distance found: in that paper a distance of 60 was achieved in
10 seconds. The variant we implemented found a pair of solutions at distance 69 within
0.39 seconds. However, finding a pair of solutions with distance 70 took 16min 1.55s,
while finding a pair with distance 71 took 3h, 32min, 8s. The algorithm was unable to
prove optimality even after more than 24 hours of computation.

Hence, while the search-based approach is very competitive for solution-rich in-
stances with large number of distant pairs, finding the exact optimal solution seems to be
very challenging if the optimal collection is tightly constrained, i.e. if there are not many
collections satisfying the optimality criteria. In comparison, the exact MDD-based ap-
proach is able to find the optimal solution within 98 seconds. The results clearly demon-
strate that MDD representations of the solution set Sol can be exploited to significantly
enhance finding optimal collections of solutions. This result provides compelling ev-
idence that the k-MDD approach significantly improves upon the state-of-the-art for
finding optimal collections of solutions with an inter-solution cost function.

8 Related Work

A number of researchers have studied the problem of finding sets of solutions to com-
binatorial problems. For example, work in constraint satisfaction ensures that the Ham-
ming distance between the two solutions is maximized [8,9] or that the solutions are
within some distance of each other [12]. Dahllof [13] studied the problem of finding
two XSAT models at maximum Hamming distance. Diversity and similarity are also im-
portant concepts in case-based reasoning and recommender systems [11,14]. Typically,
we want chose a diverse set of cases from the case-base, but retrieve cases based on
similarity. Hebrard et al. propose a number of practical solution methods in constraint
programming for enforcing diversity (or similarity) between solutions [5], as well as the
problem of satisfying complex distance queries in a constraint-based setting [6]. How-
ever, all of these approaches use search-based methods and are incapable of exploiting
compiled representations. Our approach is the first one that utilizes compiled represen-
tation in this setting and is able to retrieve tightly-constrained optimal collections of
solutions even in cases when it is prohibitively expensive for search-based methods.

9 Conclusion

We presented the first approach to retrieving optimal collections of solutions when the
solution space has been compiled into a multi-valued decision diagram. We exploited

2 http://4c.ucc.ie/˜ehebrard/Software.html

http://4c.ucc.ie/~ehebrard/Software.html

Reasoning about Optimal Collections of Solutions 423

the compactness of a compiled representation using our k-MDD approach, and then
reduced the memory requirements and introduced an approximation scheme for larger
problems. We discussed some important real-world queries that can now be handled us-
ing our approach. We empirically demonstrated the practical usability of our schemes
on real-world configuration benchmarks, and demonstrated its superiority over a state-
of-the-art search-based approach when the computation of exact optimal collections is
required. In conclusion, we affirmed the veracity of our hypothesis; namely that knowl-
edge compilation can be successfully exploited for reasoning about optimal collections
of solutions.

In future work we plan to extend the algorithmic schemes presented in this paper and
to evaluate their applicability in domains that include risk management and network
reliability.

Acknowledgments. Tarik Hadzic is supported by an IRCSET/Embark Initiative Post-
doctoral Fellowship Scheme. Barry O’Sullivan is supported by Science Foundation Ire-
land (Grant Number 05/IN/I886). We would like to thank Emmanuel Hebrard for the
help with adopting the algorithms from [5].

References

1. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in dynamic
CSPs-application to configuration. Artificial Intelligence (2002)

2. Hadzic, T., Subbarayan, S., Jensen, R.M., Andersen, H.R., Møller, J., Hulgaard, H.: Fast
backtrack-free product configuration using a precompiled solution space representation. In:
PETO Conference, DTU-tryk, June 2004, pp. 131–138 (2004)

3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers (1986)

4. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence
Research 17, 229–264 (2002)

5. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar solutions in
constraint programming. In: Proceedings of AAAI 2005(July 2005)

6. Hebrard, E., O’Sullivan, B., Walsh, T.: Distance constraints in constraint satisfaction. In:
IJCAI, pp. 106–111 (2007)

7. Hadzic, T., Hooker, J.N.: Cost-bounded binary decision diagrams for 0-1 programming.
In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 84–98.
Springer, Heidelberg (2007)

8. Angelsmark, O., Thapper, J.: Algorithms for the maximum hamming distance problem. In:
Faltings, B.V., Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419,
pp. 128–141. Springer, Heidelberg (2005)

9. Crescenzi, P., Rossi, G.: On the hamming distance of constraint satisfaction problems. Theor.
Comput. Sci. 288(1), 85–100 (2002)

10. Holland, A., O’Sullivan, B.: Weighted super solutions for constraint programs. In: Proceed-
ings of AAAI 2005, Pittsburgh, Pennsylvania (July 2005)

11. Shimazu, H.: Expertclerk: Navigating shoppers buying process with the combination of ask-
ing and proposing. In: IJCAI, pp. 1443–1450 (2001)

12. Bailleux, O., Marquis, P.: Some computational aspects of distance-sat. Journal of Automated
Reasoning 37(4), 231–260 (2006)

13. Dahllöf, V.: Algorithms for max hamming exact satisfiability. In: Deng, X., Du, D.-Z. (eds.)
ISAAC 2005. LNCS, vol. 3827, pp. 829–838. Springer, Heidelberg (2005)

14. Smyth, B., McClave, P.: Similarity vs. diversity. In: Aha, D.W., Watson, I. (eds.) ICCBR
2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001)

Constraints of Difference and Equality:
A Complete Taxonomic Characterisation�

Emmanuel Hebrard1, Dániel Marx2, Barry O’Sullivan1, and Igor Razgon1

1 Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{e.hebrard,b.osullivan,i.razgon}@4c.ucc.ie
2 Budapest University of Technology and Economics

Budapest, Hungary
dmarx@cs.bme.hu

Abstract. Many combinatorial problems encountered in practice in-
volve constraints that require that a set of variables take distinct or
equal values. The AllDifferent constraint, in particular, ensures that
all variables take distinct values. Two soft variants of this constraint
were proposed in [4], defined either with respect to a so-called variable
or graph-based cost function. When requiring similarity, as opposed to
diversity, one can consider the dual definition either for the cost or for
the basic constraint itself, that is, AllEqual in our case. Six cost func-
tions can be defined by exploring every combination of these definitions.
It is therefore natural to study the complexity of achieving arc consis-
tency and bounds consistency on them. From our earlier work on this
topic an open problem remained, namely achieving bounds consistency
on the maximisation of the SoftAllDiff constraint when considering
the graph-based cost. In this paper we resolve this problem. Therefore,
we give a complete taxonomy of constraints of equality and difference,
based on the alternative objective functions used for the soft variants.

1 Introduction

Constraints for reasoning about the diversity or similarity of a set of variables are
ubiquitous in constraint programming. For example, in a university timetabling
problem we will want to ensure that all courses taken by a particular student are
held at different times. Similarly, in meeting scheduling we will want to ensure
that the participants of a meeting are scheduled to meet at the same time and in
the same place. Sometimes, when the problem is over-constrained, we may wish
to maximise the extent to which these constraints are satisfied. Consider again
our timetabling example: we might wish to maximise the number of courses that
are scheduled at different times when a student’s preferences cannot all be met.

� Hebrard, O’Sullivan and Razgon are supported by Science Foundation Ireland (Grant
Number 05/IN/I886). Marx is supported by the Magyary Zoltán Felsőoktatási
Közalaṕıtvány and the Hungarian National Research Fund (OTKA grant 67651).

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 424–438, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Constraints of Difference and Equality 425

In a constraint programming setting, these requirements are normally speci-
fied using global constraints. One of the most commonly used global constraints
is the AllDifferent [6], which enforces that all variables take pair-wise differ-
ent values. A soft version of the AllDifferent constraint, the SoftAllDiff,
has been proposed by the authors of [4]. They proposed two cost metrics for
measuring the degree of satisfaction of the constraint, which are to be min-
imised or maximised: graph- and variable-based cost. The former counts the num-
ber of equalities, whilst the latter counts the number of variables, violating an
AllDifferent constraint. When we wish to enforce that a set of variables take
equal values, we can use the AllEqual, or its soft variant, the SoftAllEqual
constraint, which we recently introduced [3].

When considering these two constraints (AllDifferent and AllEqual),
these two costs (graph-based and variable-based) and objectives (minimisation
and maximisation) we can define eight algorithmic problems related to con-
straints of difference and equality. In fact, because the graph-based costs of
AllDifferent and AllEqual are dual, only six distinct problems are defined.

When we introduced the SoftAllEqual constraint one open problem re-
mained: namely, the design of an algorithm for achieving bounds consistency
on the SoftAllEqual constraint when the objective is to maximise the num-
ber of equalities achieved in the decomposition graph of the constraint, i.e. the
SoftAllEqual constraint defined by the graph-based cost. In this paper we
resolve this open question, and propose an efficient bounds consistency algorithm
for this case. This result enables us to fully characterise the complexity of achiev-
ing arc consistency and bounds consistency on each of the eight constraints in
this class. This paper, therefore, provides a complete taxonomy of constraints of
difference and equality.

The remainder of this paper is organised as follows. In Section 2 we intro-
duce the necessary technical background. A complete taxonomy of constraints
of equality and difference is presented in Section 3. In Section 4 we present the
main technical contribution of the paper, namely the complexity of achieving
bounds consistency on the SoftAllEqual when the objective is to optimise
the graph-based cost. A filtering algorithm is proposed in Section 5. Concluding
remarks are made in Section 6.

2 Background

Constraint Satisfaction. A constraint satisfaction problem (CSP) is a triplet
P = (X ,D, C) where X is a set of variables, D a mapping of variables to sets of
values (without loss of generality, we assume D(X) ⊂ Z for all X ∈ X , and we
denote by min(X) and max(X) the minimum and maximum values in D(X),
respectively) and C a set of constraints that specify allowed combinations of
values for subsets of variables. An assignment of a set of variables X is a set
of pairs S such that |X | = |S| and for each (X, v) ∈ S, we have X ∈ X and
v ∈ D(X). A constraint C ∈ C is arc consistent (ac) iff, when a variable in
the scope of C is assigned any value, there exists an assignment of the other

426 E. Hebrard et al.

variables in C such that C is satisfied. This satisfying assignment is called a
domain support for the value. Similarly, we call a range support an assignment
satisfying C, but where values, instead of being taken from the domain of each
variable (v ∈ D(X)), can be any integer between the minimum and maximum of
this domain following the natural order on Z, that is, v ∈ [min(X), . . . , max(X)].
A constraint C ∈ C is range consistent (rc) iff, every value of every variable in
the scope of C has a range support. A constraint C ∈ C is bounds consistent
(bc) iff, for every variable X in the scope of C, min(X) and max(X) have a
range support. Given a CSP P = (X ,D, C), we shall use the following notation
throughout the paper: n shall denote the number of variables, i.e., n = |X |; m
shall denote the number of distinct unary assignments, i.e., m =

∑
X∈X |D(X)|;

Λ shall denote the total set of values, i.e., Λ =
⋃

X∈X D(X); finally, λ shall
denote the total number of distinct values, i.e., λ = |Λ|;
Soft Global Constraints. Adding a cost variable to a constraint to represent
its degree of violation is now common practice in constraint programming. This
model was introduced in [7]. It offers the advantage of unifying hard and soft
constraints since arc consistency, along with other types of consistencies, can be
applied to such constraints with no extra effort. As a consequence, classical con-
straint solvers can solve over-constrained problems modelled in this way without
modification. This approach was applied to a number of other constraints, for
instance in [9].

Two natural cost measures have been explored for the AllDifferent and for
a number of other constraints. The variable-based cost counts how many variables
need to change in order to obtain a valid assignment for the hard constraint. The
graph-based cost counts how many times a component of a decomposition of
the constraint is violated. Typically these components correspond to edges of a
decomposition graph, e.g. for an AllDifferent constraint, the decomposition
graph is a clique and an edge is violated if and only if both variables connected
by this edge share the same value. For instance, still for the AllDifferent
constraint, the following example shows two solutions involving four variables
X1, . . . , X4 each with domain {a, b}:

S1 = {(X1, a), (X2, b), (X3, a), (X4, b)}

S2 = {(X1, a), (X2, b), (X3, b), (X4, b)}
In both solutions, at least two variables must change (e.g., X3 and X4) to obtain
a valid solution. Therefore, the variable-based cost is 2 for S1 and S2. However,
in S1 only two edges are violated, (X1, X3) and (X2, X4), whilst in S2, three
edges are violated, (X2, X3), (X2, X4) and (X3, X4). Thus, the graph-based cost
of S1 is 2 whereas it is 3 for S2.

3 Taxonomy

In this section we introduce the taxonomy of the soft constraints related to
AllDifferent and AllEqual. We consider the eight algorithmic problems

Constraints of Difference and Equality 427

AllEqualAllDifferent

SoftAllEqualmin
V

SoftAllEqualmax
VSoftAllDiffmax

VSoftAllDiffmin
V SoftAllEqualmax

G

SoftAllDiffmin
G SoftAllEqualmin

G

SoftAllDiffmax
G SoftAllEqualV

SoftAllEqualVSoftAllDiffVSoftAllDiffV SoftAllEqualG SoftAllDiffG

variable-based cost graph-based costgraph-based cost variable-based cost

ac O(n
√

m) NP-hard O(nm) NP-hard O(m) O(
√

nm)
bc O(n

√
m) O(nlog(n)) O(nm) O(min(λ2, n2)nm) O(m) O(nlog(n))

Fig. 1. Complexity of optimising difference and equality

related to constraints of difference and equality defined by combining these
two constraints, two costs (graph-based and variable-based), and two objec-
tives (minimisation and maximisation). In fact, because the graph-based costs
of AllDifferent and AllEqual are dual, only six different problems are
thus defined. We close the last remaining cases: the complexity of achieving
ac and bc SoftAllEqualmin

V in this section, and that of achieving bc on
SoftAllDiffmax

G in Sections 4 and 5. Based on these results, Figure 1 can now
be completed.

The next six paragraphs correspond to the six columns of Figure 1, i.e., to the
twelve elements of the taxonomy. For each of them, we briefly outline the current
state of the art, using the following assignment as a running example to illustrate
the various costs: S3 ={(X1, a), (X2, a), (X3, a), (X4, a), (X5, b), (X6, b), (X7, c)}.

SoftAllDiff: Variable-based cost, Minimisation.

Definition 1 (SoftAllDiffmin
V)

SoftAllDiffmin
V ({X1, ..Xn}, N)⇔ N ≥ n− |{v | Xi = v}|.

Here the cost to minimise is the number of variables that need to be changed in
order to obtain a solution satisfying an AllDifferent constraint. For instance,
the cost of S3 is 4 since three of the four variables assigned to a as well as one
of the variables assigned to b must change. This objective function was first
studied in [4] where the authors give an algorithm for achieving ac in O(n

√
m).

To our knowledge, no algorithm with better time complexity for the special case
of bounds consistency has been proposed for this constraint.

SoftAllDiff: Variable-based cost, Maximisation.

Definition 2 (SoftAllDiffmax
V)

SoftAllDiffmax
V ({X1, ..Xn}, N)⇔ N ≤ n− |{v | Xi = v}|.

Here the same cost is to be maximised. In other words, we want to minimise the
number of distinct values assigned to the given set of variables, since the comple-
ment of this number to n is exactly the number of variables to modify in order

428 E. Hebrard et al.

to obtain a solution satisfying an AllDifferent constraint. For instance, the
cost of S3 is 4 and the number of distinct values is 7−4 = 3. This constraint was
studied under the name AtMostNValues in [1] where the authors introduce an
algorithm in O(nlog(n)) to achieve bc, and in [2] where the authors show that
achieving ac is NP-hard since the problem is isomorphic to Min Hitting Set.

SoftAllDiff: Graph-based cost, Minimisation & SoftAllEqual: Graph-
based cost, Maximisation.

Definition 3 (SoftAllDiffmin
G " SoftAllEqualmax

G)

SoftAllDiffmin
G ({X1, ..Xn}, N)⇔ N ≥ |{{i, j} | Xi = Xj & i �= j}|.

Here the cost to minimise is the number of violated constraints when decompos-
ing AllDifferent into a clique of binary NotEqual constraints. For instance,
the cost of S3 is 7 since four variables share the value a (six violations) and two
share the value b (one violation). Clearly, it is equivalent to maximising the
number of violated binary Equal constraints in a decomposition of a global
AllEqual. Indeed, these two costs are complementary to

(
n
2

)
of each other (on

S3: 7 + 14 = 21). An algorithm in O(nm) for achieving ac on this constraint
was introduced in [8]. Again, to our knowledge there is no algorithm improving
this complexity for the special case of bc.

SoftAllEqual: Graph-based cost, Minimisation & SoftAllDiff: Graph-
based cost Maximisation.

Definition 4 (SoftAllEqualmin
G " SoftAllDiffmax

G)

SoftAllEqualmin
G ({X1, ..Xn}, N)⇔ N ≥ |{{i, j} | Xi �= Xj & i �= j}|.

Here we consider the same two complementary costs, however we aim at opti-
mising in the opposite way. In [3] the authors show that achieving ac on this
constraint is NP-hard, however the complexity of achieving bc is left as an open
question. In this paper we show that computing the optimal cost can be done
in O(min(nλ2, n3)) thus demonstrating that bc can be achieved in polynomial
time.

SoftAllEqual: Variable-based cost, Minimisation.

Definition 5 (SoftAllEqualmin
V)

SoftAllEqualmin
V ({X1, ..Xn}, N)⇔ N ≥ n−maxv∈Λ(|{i | Xi = v}|)

Here the cost to minimise is the number of variables that need to be changed in
order to obtain a solution satisfying an AllEqual constraint. For instance, the
cost of S3 is 3 since four variables already share the same value. This is equivalent
to maximising the number of variables sharing a given value. Therefore this
bound can be computed trivially by counting the occurrences of every value in
the domains, that is, inO(m). On the other hand, pruning the domains according
to this bound without degrading the time complexity is not as trivial, so we show
how it can be done.

Constraints of Difference and Equality 429

Theorem 1. ac on SoftAllEqualmin
V can be achieved in O(m) steps.

Proof. We suppose, without loss of generality, that the current upper bound on
the cost is k. We first compute the number of occurrences occ(v) for each value
v ∈ Λ, which can be done in O(m). There are three cases to consider:

1. First, consider the case where no value appears in n − k domains or more
(∀v ∈ Λ, occ(v) < n− k). In this case the constraint is violated, hence every
value is inconsistent.

2. Second, consider the case where at least one value v appears in the domains
of at least n − k + 1 variables (∃v ∈ Λ, occ(v) > n − k). In this case we
can build a support for every value w ∈ D(X) by assigning all variables in
X \ X with v if possible. The resulting assignment has a cost of k, hence
every value is consistent.

3. Otherwise, if neither of the two cases above hold, we know that no value
appears in more than n − k domains, and that at least one appears n − k
times, let W denote the set of such values. In this case, the pair (X, v) is
inconsistent iff v �∈W & W ⊂ D(X).

We first suppose that this condition does not hold and show that we can
build a support. If v ∈W then clearly we can assign every possible variable
to v and achieve a cost of k. If W �⊂ D(X), then we consider w such that
w ∈ W and w �∈ D(X). By assigning every variable with w when possible
we achieve a cost of k.

Now we suppose that this condition holds and show that (X, v) does not
have an ac support. Indeed once X is assigned to v the domains are such
that no value appear in n− k domains or more, since every value in W has
now one less occurrence, hence we are back to Case 1.

Computing values satisfying the condition above can be done easily once the
number of occurrences have been computed. In Case 3, the domain can be pruned
down to the set W of values whose number of occurrences is n− k. ��

SoftAllEqual: Variable-based cost, Maximisation.

Definition 6 (SoftAllEqualmax
V)

SoftAllEqualmax
V ({X1, ..Xn}, N)⇔ N ≤ n−maxv∈Λ(|{i | Xi = v}|)

Here the same cost has to be maximised. In other words we want to minimise
the maximum cardinality of a value. For instance, the cost of S3 is 3, that is
the complement to n of the maximum cardinality of a value (3 = 7− 4). This is
exactly equivalent to applying a Global Cardinality constraint (considering
only the upper bounds on the cardinalities). In [5] the authors introduce an
algorithm in O(

√
nm) and in O(nlog(n)) for achieving ac and bc, respectively,

on this constraint.

430 E. Hebrard et al.

4 The Complexity of Bounds Consistency on
SoftAllEqualmin

G

In this section we introduce an efficient algorithm that, assuming the domains
are discrete intervals, computes the maximum possible number of pairs of equal
values in an assignment. This algorithm allows us to close the last remaining open
complexity question in Figure 1: bc on the SoftAllEqualmin

G constraint. We
then improve this algorithm, first by reducing the time complexity thanks to a
preprocessing step, before turning it into a filtering method in Section 5.

We start by introducing additional terminology. Given two integers a and b,
a ≤ b, we say that the set of all integers x, a ≤ x ≤ b is an interval and denote it
by [a, b]. Let X be the set of variables of the considered CSP and assume that the
domains of all the variables of X are sub-intervals of [1, λ]. We denote by ME(X)
the set of all assignments P to the variables of X such that the number of pairs
of equal values of P is the maximum possible. The subset of X containing all
the variables whose domains are subsets of [a, b] is denoted by Xa,b. The subset
of Xa,b including all the variables containing the given value c in their domains
is denoted by Xa,b,c. Finally the number of pairs of equal values in an element
of ME(Xa,b) is denoted by Ca,b(X) or just Ca,b if the considered set of variables
is clear from context. For notational convenience, if b < a, then we set Xa,b = ∅
and Ca,b = 0. The value C1,λ(X) is the number of equal pairs of values in an
element of ME(X).

Theorem 2. C1,λ(X) can be computed in O((n + λ)λ2) steps.

Proof. The problem is solved by a dynamic programming approach: for every a, b
such that 1 ≤ a ≤ b ≤ λ, we compute Ca,b. The main observation that makes it
possible to use dynamic programming is the following: in every P ∈ME(Xa,b),
there is a value c (a ≤ c ≤ b) such that every variable X ∈ Xa,b,c is assigned
value c. To see this, let value c be a value that is assigned by P to a maximum
number of variables. Suppose that there is a variable X with c ∈ D(X) that is
assigned by P to a different value, say c′. Suppose that c and c′ appear on x and
y variables, respectively. By changing the value of X from c′ to c, we increase
the number of equalities by x − (y − 1) ≥ 1 (since x ≥ y), contradicting the
optimality of P .

Notice that Xa,b\Xa,b,c is the disjoint union of Xa,c−1 and Xc+1,b (if c−1 < a or
c + 1 > b, then the corresponding set is empty). These two sets are independent
in the sense that there is no value that can appear on variables from both
sets. Thus it can be assumed that P ∈ ME(Xa,b) restricted to Xa,c−1 and
Xc+1,b are elements of ME(Xa,c−1) and ME(X c + 1, b), respectively. Taking
into consideration all possible values c, we get

Ca,b = max
c,a≤c≤b

((
|Xa,b,c|

2

)
+ Ca,c−1 + Cc+1,b

)
. (1)

In the first step of the algorithm, we compute |Xa,b,c| for all values of a, b, c. For
each triple a, b, c, it is easy to compute |Xa,b,c| in time O(n), hence all these values

Constraints of Difference and Equality 431

Algorithm 1. Computing C1,λ(X)
∀ 1 ≤ a, b, c ≤ λ, δa,b,c ← |Xa,b,c| ← Ca,b ← 0;
foreach k ∈ [0, λ − 1] do

foreach a ∈ [1, λ] do
b ← a + k;
foreach X ∈ Xa,b do

δa,b,min(X) ← δa,b,min(X) + 1;1

δa,b,max(X)+1 ← δa,b,max(X)+1 − 1;2

foreach c ∈ [a, b] do
|Xa,b,c| ← |Xa,b,c−1| + δa,b,c;3

Ca,b ← max(Ca,b, (
(|Xa,b,c|

2

)
+ Ca,c−1 + Cc+1,b));4

return C1,λ;

can be computed in time O(nλ3). However, the running time can be reduced to
O((n + λ)λ2) as follows. For each pair a, b, we determine all the values |Xa,b,c|,
a ≤ c ≤ b in time O(n+λ). More precisely, we define δa,b,c = |Xa,b,c|− |Xa,b,c−1|
and compute δa,b,c for every a < c ≤ b (Alg. 1, Line 1-2). Observe that if
D(X) = [a′, b′] for some X ∈ Xa,b, then X contributes only to two of the δa,b,c

values: it increases δa,b,a′ by 1 and decreases δa,b,b′+1 by 1. Thus by going through
all variables, we can compute the δa,b,c values for a fixed a, b and for all a ≤ c ≤ b
in time O(n) and we can also compute |Xa,b,a| in the same time bound. Now we
can compute the values |Xa,b,c|, a < c ≤ b in time O(λ) by using the equality
|Xa,b,c| = |Xa,b,c−1|+ δa,b,c iteratively (Alg. 1, Line 3).

In the second step of the algorithm, we compute all the values Ca,b. We
compute these values in increasing order of b− a. If a = b, then Ca,b =

(|Xa,a,a|
2

)
.

Otherwise, values Ca,c−1 and Cc+1,b are already available for every a ≤ c ≤ b,
hence Ca,b can be determined in time O(λ) using Eq. (1) (Alg. 1, Line 4). Thus
all the values Ca,b can be computed in time O(λ3), including C1,λ, which is
the value of the optimum solution of the problem. Using standard techniques
(storing for each Ca,b a value c that minimises (1)), a third step of the algorithm
can actually produce a variable assignment that obtains the maximum value. ��

Algorithm 1 computes the largest number of equalities one can achieve by as-
signing a set of variables with interval domains. It can therefore be used to find
an optimal solution to either SoftAllDiffmax

G or SoftAllEqualmin
G . Notice

that for the latter one needs to take the complement to
(
n
2

)
in order to get the

value of the violation cost. Clearly, it follows that achieving range or bounds
consistency on these two constraints can be done in polynomial time, since Al-
gorithm 1 can be used as an oracle for testing the existence of a range support.
We give an example of the execution of Algorithm 1 in Figure 2. A set of ten
variables, from X1 to X10 are represented. Then we give the table Ca,b for all
pairs a, b ∈ [1, λ].

The complexity can be further reduced if λ >> n. Let X be a set of variables
with interval domains on [1, λ]. Consider the function occ : Q �→ [0..n], where

432 E. Hebrard et al.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

 1 2 3 4

va
ria

bl
es

values
Ca,b a = 1 a = 2 a = 3 a = 4
b = 1 1
b = 2 X1,2,1 + C2,2 = 3 0
b = 3 X1,3,1 + C2,3 = 6 0 0
b = 4 X1,4,1 + C2,4 = 16 X2,4,4 + C2,3 = 6 X3,4,4 + C3,3 = 3 1

Fig. 2. A set of intervals, and the corresponding dynamic programming table (Ca,b)

Q ⊂ Q is a set of values of the form a/2 for some a ∈ Z, such that min(Q) = 1
and max(Q) = λ. Intuitively, the value of occ(a) is the number of variables
whose domain interval encloses the value a, more formally:

∀a ∈ Q, occ(a) = |{X | X ∈ X , min(X) ≤ a ≤ max(X)}|.

Such an occurrence function, along with the corresponding set of intervals, is de-
picted in Figure 3. The crest of the function occ is an interval [a, b] ∈ Q such that
for some c ∈ [a, b], occ is monotonically increasing on [a, c] and monotonically
decreasing on [c, b]. For instance, on the set intervals represented in Figure 3,
[1, 15] is a crest since it is monotonically increasing on [1, 12] and monotonically
decreasing on [12, 15].

Let I be a partition of [1, λ] into a set of intervals such that every element of I
is a crest. For instance, I = {[1, 15], [16, 20], [21, 29], [30, 42]} is such a partition
for the set of intervals shown in Figure 3. We denote by RI(X) the reduction
of X by the partition I. The reduction has as many variables as X (2) but
the domains are replaced with the set of intervals in I that overlap with the
corresponding variable in X (3).

RI(X) = {X ′ | X ∈ X} (2)
∀X ∈ X , D(X ′) = {I | I ∈ I & D(X) ∩ I �= ∅} (3)

For instance, the set of intervals depicted in Figure 3 can be reduced to the set
shown in Figure 2, where each element in I is mapped to an integer in [1, 4].

Constraints of Difference and Equality 433

X1 in [30,40]

X2 in [21,26]

X3 in [1,13]

X4 in [32,38]

X5 in [9,19]

X6 in [16,40]

X7 in [18,32]

X8 in [7,15]

X9 in [10,26]

X10 in [26,42]

[1 15] [16 20] [21 29] [30 42]

values

Fig. 3. Some intervals and the corresponding occ function

Theorem 3. If I is a partition of [1, λ] such that every element of I is a crest
of occ, then ME(X) = ME(RI(X)).

Proof. First, we show that for any optimal solution s ∈ME(X), we can produce
a solution s′ ∈ME(RI(X)) that has the same number of equalities as s. Indeed,
for any value a, consider every variable X assigned to this value, that is, such that
s[X] = a. Let I ∈ I be the crest containing a; by definition we have I ∈ D(X ′).
Therefore we can assign all these variables to the same value I.

Now we show the opposite, that is, given a solution to the reduced problem,
one can build a solution to the original problem with the same cost. The key
observation is that, for a given crest [a, b], all intervals overlapping with [a, b]
have a common value. Indeed, suppose that this is not the case, that is, there
exists [c1, d1] and [c2, d2] both overlapping with [a, b] such that d1 < c2. Then
occ(d1) > occ(d1 + 1

2) and similarly occ(c2 − 1
2) < occ(c2). However, since a ≤

d1 < c2 ≤ b, [a, b] would not satisfy the conditions for being a crest, hence a
contradiction. Therefore, for a given crest I, and for every variable X ′ such that
s′[X ′] = I, we can assign X to this common value. ��

We show that this transformation can be achieved in O(nlog(n)) steps. Observe
that δ1,a,λ, if it was defined on Q rather than [1, λ], would in fact be the derivative
of occ. Moreover, we can compute it inO(nlog(n)) steps as shown in Algorithm 2.
We first compute the non-null values of δ1,a,λ by looping through each variable
X ∈ X (Line 1). Then we sort them, and finally we create the partition into

434 E. Hebrard et al.

Algorithm 2. Computing a partition into crests I
δ ← ∅;
foreach X ∈ X do1

if ∃(min(X), k) ∈ δ then
replace (min(X), k) with (min(X), k + 1) in δ;

else
add (min(X), 1) to δ;

if ∃(max(X) + 1, k) ∈ δ then
replace (max(X) + 1

2 , k) with (max(X) + 1
2 , k − 1) in δ;

else
add (max(X) + 1

2 ,−1) to δ;

sort δ by increasing first element;
I ← ∅;
min ← max ← 1;
while δ �= ∅ do2

polarity ← pos;
k = 1;
repeat

pick and remove the first element (a, k) of δ;
max ← round(a) − 1;
if polarity = pos & k < 0 then polarity ← neg;

until polarity = pos or k < 0 ;
add [min, max] to I;
min ← max + 1;

crests by going through the derivative once and identifying the inflection points.
Clearly, the number of elements in δ is bounded by 2n. Therefore, the complexity
of Algorithm 2 is dominated by the sorting of its elements, hence the O(nlog(n))
worst-case time complexity.

Therefore, we can replace every crest by a single value as a preprocessing step
and then run Algorithm 1. Moreover, since the number of crests is bounded by
n, we obtain the following theorem, where n stands for the number of variables,
λ for the number of distinct values, and m for the sum of all domain sizes.

Theorem 4. rc on SoftAllEqualmin
G can be achieved in O(min(λ2, n2)nm)

steps.

Proof. If λ ≤ n then one can achieve range consistency by iteratively calling
Algorithm 1 after assigning each of the O(m) unit assignments ((X, v) ∀X ∈
X , v ∈ D(X)). The resulting complexity is O(nλ2)m (the term λ3 is absorbed
by nλ2 due to λ ≤ n). Otherwise, we apply the above O(nlog(n)) procedure
and similarly achieve range consistency after that. Since after the reformulation
λ = O(n), the resulting complexity is O(n3m). ��

5 A Filtering Method for SoftAllEqualmin
G

In this section, we show that in the particular case where the cost variable N
to minimise is such that max(N) = (

(
n
2

)
− C1,λ), rc can be achieved in the

Constraints of Difference and Equality 435

same time complexity as that for computing C1,λ. In other words, once the
current lower bound, computed by Algorithm 1, exactly matches the required
value max(N), we can compute and prune range inconsistent values at no extra
computational cost. This is an important particular case. Indeed, on the one
hand, if max(N) is not as high as this lower bound, the constraint should fail
hence no pruning is required. On the other hand, if max(N) is strictly larger than
this lower bound, it is less likely that pruning should occur since the constraint
is less tight.

We show how one can compute all the values participating in an optimal
solution in O(min(nλ2, λ3)) steps. When the cost (

(
n
2

)
− C1,λ) of an optimal

solution matches max(N) all values either participate in an optimal solution or
in no solution at all.

In the first step we run Algorithm 1, hence in the rest of the section we assume
that all values Ca,b(X) and |Xa,b,c| are known (i.e. can be computed in a constant
time). Moreover, we introduce the following additinal notation:

– Let Va,b(X) be the set of all values c such that Ca,b(X) =
(|Xa,b,c|

2

)
+

Ca,c−1(X) + Cc+1,b(X). In other words c ∈ Va,b(X) if there is an optimal
assignment to the set of variables whose domains are subintervals of [a, b],
where each variable containing c in its domain is assigned with c. By the
above assumption, given an interval [a, b] and c ∈ [a, b], it is possible to
check in O(1) whether c ∈ Va,b(X).

– Let H(X) be the descendance graph naturally defined by V , that is, whose set
of vertices are all sub-intervals [a, b] of [1, n] and there is an arc ([a, b], [c, d])
if and only if a = c & (d+1) ∈ Va,b(X) or d = b & (c−1) ∈ Va,b(X). In other
words, given an interval [a, b], any value c ∈ Va,b(X) such that a < c < b
defines two ‘children’ of [a, b]: one is [a, c−1], the other is [c+1, d]. If c = a or
c = d then there is only one child, namely [c+1, d] and [a, c−1], respectively
(of course, if a = b then no other interval is a child of [a, b]).

– We say that [c, d] is a descendant of [a, b] if [c, d] = [a, b] or H(X) has a path
from [a, b] to [c, d]. Since computing whether c ∈ Va,b(X) can be done inO(1),
it is possible to compute in O(λ) the set of arcs leaving [a, b]. Therefore, by
applying a DFS- or BFS-like method, it is possible to compute in O(λ3) the
set of all descendants of [1, λ].

– We say that the interval [a, b] is a witness of (X, c) if and only if a ≤
min(X) ≤ c ≤ max(X) ≤ b, [a, b] is a descendant of [1, λ] and c ∈ Va,b(X).

The intuition behind the following proof is that for an assignment (X, c) to
belong to an optimal solution P ∈ ME(X), two conditions need to hold. First,
the value c must be involved in an optimal solution, that is, it must belong to
some set Va,b(X) such that [a, b] is a descendant of [1, λ]. Second, there must
exist at least one variable X ∈ X whose domain is included in [a, b] and such
that c ∈ D(X). The notion of witness defined above encapsulates these two
conditions, we therefore look for a witness [a, b] for (X, c).

We shall proceed by induction: if c belongs to V1,λ(X), then [1, λ] is a witness.
Otherwise, there is some value d ∈ V1,λ(X) such that either c ∈ [a, d − 1] or in
c ∈ [d+1, b]. Moreover, (X, c) belongs to the optimal assignment of the variables

436 E. Hebrard et al.

whose domains are subsets of one of these intervals. We show in the proof that,
by proceeding with such an inductive descent, we will eventually encounter a
descendant [a′, b′] of [1, λ] such that c ∈ Va′,b′(X) and this interval [a′, b′] will be
the desired witness of (X, c).

The proof of the opposite direction will require a more careful consideration
of the descendance relation defined in the list above. In particular, we will notice
that if [a′, b′] is a descendant of [1, λ] then any optimal assignment P to the
variables whose domains are subsets of [a′, b′] is a subset of an optimal assignment
of X . It will follow that if (X, c) participates in such an assignment P then it
participates in a globally optimal assignment as well.

Lemma 1. (X, c) belongs to an assignment P ∈ ME(X) if and only if (X, c)
has a witness.

Proof. Let [a, b] be the domain of X and let [a′, b′] be a witness of [a, b]. Observe
first that since [a′, b′] is a descendant of [1, λ], any element P ′ ∈ ME(Xa,b) is
a subset of an element of ME(X). This is clear if [a′, b′] = [1, λ]. Assume that
([1, λ], [a′, b′]) is an arc of H(X) and assume without loss of generality that a′ = 1
and (b′ + 1) ∈ V1,λ(X). That is, C1,λ(X) =

(|X1,λ,b′+1|
2

)
+ Ca′,b′(X) +Cb′+2,λ(X).

That is, any assignment to Xa′,b′ that results in Ca′,b′(X) of equal pairs of values
(in other words, any assignment of ME(Xa′,b′)) can be extended to an assignment
of ME(X). If the distance in H(X) between [1, λ] and [a′, b′] is greater than 1
the observation can be proved by induction applying the argument for distance
1 along the shortest path from [1,X] to [a, b].

Since c ∈ Va′,b′(X) there is P ′ ∈ME(Xa′,b′) where all the variables having c in
their domains are assigned with c. Since [a, b] ⊆ [a′, b′], (X, c) ∈ P ′. According to
the previous paragraph P ′ is a subset of assignment P ∈ME(X). Consequently,
(X, c) ∈ P as required.

Conversely, assume that (X, c) ∈ P ∈ ME(X). Observe that in this case
either c ∈ V1,λ(X) or there is an interval [a∗, b∗] such that ([1, λ], [a∗, b∗]) is
an arc in H(X) and [a, b] ⊆ [a∗, b∗]. Indeed assume that c /∈ V1,λ(X) and let
P ∈ ME(X) such that (X, c) ∈ P . As has been observed in Theorem 2, there
is a value d such that for any variable X ′ having d in its domain, (X ′, d) ∈ P .
It follows that d ∈ V1,λ(X) and hence c �= d. Then either [a, b] ⊆ [1, d − 1]
(i.e. [a∗, b∗] = [1, d − 1]) or [a, b] ⊆ [d + 1, λ] (i.e. [a∗, b∗ = [d + 1, λ]) because
otherwise X contains d in its domain and hence (X, d) ∈ P in contradiction to
our assumption that (X, c) ∈ P .

We proceed by induction on the difference between λ − 1 and b − a. If the
difference is 0 then, since [a, b] ⊆ [1, λ], it follows that [a, b] = [1, λ]. Thus [a, b]
cannot be a proper sub-interval of [1, λ] and hence, according to the previous
paragraph, c ∈ V1,λ(X). Clearly, [1, λ] is a witness of [a, b]. Assume now that
(λ − 1)− (b− a) > 0. If c ∈ V1,λ(X) then [1, λ] is a witness of [a, b]. Otherwise,
let [a∗, b∗] be as in the previous paragraph. By the induction assumption, (X, c)
has a witness [a′, b′] with respect to Xa∗,b∗ . In other words, [a, b] ⊆ [a′, b′], c ∈
Va′,b′(Xa∗,b∗) and [a′, b′] is a descendant of [a∗, b∗] in H(Xa∗,b∗). Since Xa′,b′ ⊆
Xa∗,b∗ ,c ∈ Va′,b′(X). It is also not hard to observe that H(Xa∗,b∗) is a sub-graph
of H(X). It follows that [a′, b′] is a witness of (X, c) with respect to X . ��

Constraints of Difference and Equality 437

Lemma 1 allows us to achieve rc in the following way. For each value (X, c) such
that D(X) = [a, b], check for all super-intervals [a′, b′] whether [a′, b′] is a wit-
ness of [a, b]. Since there are O(nλ) possible values, O(λ2) super-intervals of the
given interval and the witness relation can be checked in O(1), bounds consis-
tency can be achieved in O(nλ3). This runtime can be further reduced if before
exploring the values we compute an auxiliary Boolean three-dimensional array
MarkedV alues using the following procedure. Order the sub-intervals [a, b] of
[1, λ] by decreasing difference b−a and explore them according to this order. For
the given interval [a, b], explore all values c ∈ [a, b] and set MarkedV alues[a][b][c]
to 1 if and only if the one of the following conditions is true:
1. [a, b] is a descendant of [1, λ] in H(X) and c ∈ Va,b(X);
2. MarkedV alues[a− 1][b][c] = 1 (only if a > 1);
3. MarkedV alues[a][b + 1][c] = 1 (only if b < λ).

If none of the above conditions are satisfied then MarkedV alues[a][b][c] is set to
0. Clearly, computing the MarkedV alues array takes O(λ3). Having completed
the above procedure, the following lemma holds.

Lemma 2. Let X ∈ X be a variable with domain [a, b]. Then for any c ∈ [a, b],
(X, c) belongs to an assignment P ∈ME(X) iff MarkedV alues[a][b][c] = 1.

Proof. Assume that MarkedV alues[a][b][c] = 1. If the first condition among the
above three is satisfied then [a, b] is a witness of (X, c). Otherwise, let [a′, b′] be
the super-interval of [a, b] that caused MarkedV alues[a][b][c] to be set to 1. If the
first condition is satisfied with respect to [a′, b′] then [a, b] is a witness of (X, c).
Otherwise there is a super-interval [a′′, b′′] that caused MarkedV alues[a′][b′][c]
to be set to 1. Proceeding to argue in this way we explore a sequence of intervals
such that every next element in this sequence is a strict super-interval of its
predecessor. Clearly this sequence is of finite length and MarkedV alues[a∗][b∗][c]
for the last element [a∗, b∗] of this sequence is set according to Condition 1.
Hence, [a∗, b∗] is a witness of (X, c). Thus if MarkedV alues[a][b][c] = 1 then
(X, c) has a witness and (X, c) belongs to an assignment P ∈ME(X) according
to Lemma 1.

Conversely assume that (X, c) belongs to an assignment P ∈ ME(X).
Let [a′, b′] be a witness of (X, c) existing according to Lemma 1. Then,
by Condition 1, MarkedV alues[a′][b′][c] = 1. It is not hard to show that
MarkedV alues[a][b][c] is set to 1 by the inductive application of Conditions
2 and 3. ��
Theorem 5. If the minimum number of allowed equal pairs of values is Ca,b(X),
rc on SoftAllEqualmin

G can be achieved in O((n + λ)λ2) steps.

Proof. Achieving bc in this case can be done by filtering all values that
do not belong to an assignment P ∈ ME(X). By Lemma 2, this can be
done by exploring all values (X, c) and for each of them checking in O(1)
whether MarkedV alues[a][b][c] = 1 where [a, b] is the domain of X . Since the
MarkedV alues array can be computed in O((n + λ)λ2) (the computation in-
cludes all the previously discussed computational steps) and there are O(nλ)
values, the theorem follows. ��

438 E. Hebrard et al.

6 Conclusion

Constraints for reasoning about the number of different assignments to a set of
variables are ubiquitous in constraint programming and artificial intelligence. In
this paper we considered the global constraints AllDifferent and AllEqual,
and their optimisation variants, SoftAllDiff and SoftAllEqual, respec-
tively. A major technical contribution of the paper is an efficient algorithm for
optimising the cost of the SoftAllEqual constraint when the objective is to
maximise the number of equalities achieved in the decomposition graph of the
constraint. Therefore, we give a complete characterisation of these constraints.
This paper can be regarded as providing a complete taxonomy of constraints of
difference and equality.

References

1. Beldiceanu, N.: Pruning for the minimum constraint family and for the number of
distinct values constraint family. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp.
211–224. Springer, Heidelberg (2001)

2. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering algorithms
for the nvalueconstraint. Constraints 11(4), 271–293 (2006)

3. Hebrard, E., O’Sullivan, B., Razgon, I.: A soft constraint of equality: Complexity
and approximability. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 358–371.
Springer, Heidelberg (2008)

4. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-constrained
problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463. Springer,
Heidelberg (2001)

5. Quimper, C.-G., López-Ortiz, A., van Beek, P., Golynski, A.: Improved algorithms
for the global cardinality constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258,
pp. 542–556. Springer, Heidelberg (2004)

6. Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: AAAI,
pp. 362–367 (1994)

7. Régin, J.-C., Petit, T., Bessière, C., Puget, J.-F.: An original constraint based ap-
proach for solving over constrained problems. In: Dechter, R. (ed.) CP 2000. LNCS,
vol. 1894, pp. 543–548. Springer, Heidelberg (2000)

8. van Hoeve, W.J.: A hyper-arc consistency algorithm for the soft alldifferent con-
straint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 679–689. Springer,
Heidelberg (2004)

9. van Hoeve, W.J., Pesant, G., Rousseau, L.-M.: On global warming: Flow-based soft
global constraints. J. Heuristics 12(4-5), 347–373 (2006)

Synthesizing Filtering Algorithms for Global
Chance-Constraints�

Brahim Hnich1, Roberto Rossi2, S. Armagan Tarim3, and Steven Prestwich4

1 Faculty of Computer Science, Izmir University of Economics, Turkey
brahim.hnich@ieu.edu.tr

2 Logistics, Decision and Information Sciences, Wageningen UR, The Netherlands
roberto.rossi@wur.nl

3 Operations Management Division, Nottingham University Business School, UK
armtar@yahoo.com

4 Cork Constraint Computation Centre, University College Cork, Ireland
s.prestwich@4c.ucc.ie

Abstract. Stochastic Constraint Satisfaction Problems (SCSPs) are a
powerful modeling framework for problems under uncertainty. To solve
them is a P-Space task. The only solution approach to date compiles down
SCSPs into classical CSPs. This allows the reuse of classical constraint
solvers to solve SCSPs, but at the cost of increased space requirements and
weak constraint propagation. This paper tries to overcome some of these
drawbacks by automatically synthesizing filtering algorithms for global
chance-constraints. These filtering algorithms are parameterized by prop-
agators for the deterministic version of the chance-constraints. This ap-
proach allows the reuse of existingpropagators in current constraint solvers
and it enhances constraint propagation. Experiments show the benefits of
this novel approach.

1 Introduction

Stochastic Constraint Satisfaction Problems (SCSPs) are a powerful modeling
framework for problems under uncertainty. SCSPs were first introduced in [10]
and further extended in [9] to permit multiple chance-constraints and a range
of different objectives in order to model combinatorial problems under uncer-
tainty. SCSP is a PSPACE-complete problem [10]. The approach in [9] compiles
down SCSPs into deterministic equivalent CSPs. This makes it possible to reuse
existing solvers, but at the cost of increased space requirements and of hinder-
ing constraint propagation. In this paper we overcome some of these drawbacks
by automatically synthesizing filtering algorithms for global chance-constraints.
These filtering algorithms are built around propagators for the deterministic ver-
sion of the chance-constraints. Like the approach in [9], our approach reuses the
propagators already available for classical CSPs. But, unlike [9], our approach
uses fewer decision variables and strengthens constraint propagation. Our results

� Brahim Hnich is supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) under Grant No. SOBAG-108K027.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 439–453, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

440 B. Hnich et al.

show that our approach is superior to the one in [9], since it achieves stronger
pruning and therefore it proves to be more efficient in terms of run time and
explored nodes.

The paper is structured as follows: in Section 2 we provide the relevant formal
background; in Section 3 we discuss the structure of a SCSP solution; in Section
4 we describe the state-of-the-art approach to SCSPs; in Section 5 we discuss our
novel approach; in Section 6 we present our computational experience; in Section 7
we provide a brief literature review; finally, in Section 8 we draw conclusions.

2 Formal Background

A Constraint Satisfaction Problem (CSP) consists of a set of variables, each
with a finite domain of values, and a set of constraints specifying allowed com-
binations of values for some variables. A solution to a CSP is an assignment of
variables to values in their respective domains such that all of the constraints
are satisfied. Constraint solvers typically explore partial assignments enforcing
a local consistency property. A constraint c is generalized arc consistent (GAC)
iff when a variable is assigned any of the values in its domain, there exist com-
patible values in the domains of all the other variables of c. In order to enforce
a local consistency property on a constraint c during search, we employ filtering
algorithms that remove inconsistent values from the domains of the variables
of c. These filtering algorithms are repeatedly called until no more values are
pruned. This process is called constraint propagation.

An m-stage SCSP is defined as a 7-tuple 〈V, S, D, P, C, θ, L〉, where V is a
set of decision variables and S is a set of stochastic variables, D is a function
mapping each element of V and each element of S to a domain of potential
values. In what follows, we assume that both decision and stochastic variable
domains are finite. P is a function mapping each element of S to a probability
distribution for its associated domain. C is a set of chance-constraints over a
non-empty subset of decision variables and a subset of stochastic variables. θ
is a function mapping each chance-constraint h ∈ C to θh which is a threshold
value in the interval (0, 1]. L = [〈V1, S1〉, . . . , 〈Vi, Si〉, . . . , 〈Vm, Sm〉] is a list of
decision stages such that each Vi ⊆ V , each Si ⊆ S, the Vi form a partition of
V , and the Si form a partition of S.

The solution of an m-stage SCSP is, in general, represented by means of
a policy tree [9]. The arcs in such a policy tree represent values observed for
stochastic variables whereas nodes at each level represent the decisions associated
with the different stages. We call the policy tree of an m-stage SCSP that is a
solution a satisfying policy tree.

3 Satisfying Policy Trees

In order to simplify the presentation, we assume without loss of generality, that
each Vi = {xi} and each Si = {si} are singleton sets. All the results can be easily
extended in order to consider |Vi| > 1 and |Si| > 1. In fact, if Si comprises more

Synthesizing Filtering Algorithms for Global Chance-Constraints 441

than one random variable, it is always possible to aggregate these variables into a
single multivariate random variable [5] by convoluting them. If Vi comprises more
than one decision variable, the following discussion still holds, provided that the
term DecV ar, which we will introduce in the next paragraph, is interpreted as
a set of decision variables.

Let S = {s1, s2, . . . , sm} be the set of all stochastic variables and V =
{x1, x2, . . . , xm} be the set of all decision variables. In an m-stage SCSP, the
policy tree has

N = 1 + |s1| + |s1| · |s2| + . . . + |s1| · |s2| · . . . · |sm−1|
nodes, where |sj | denotes the cardinality of D(sj). We adopt the following
node and arc labeling schemes for the policy tree of an m-stage SCSP. The
depth of a node can be uniquely associated with its respective decision stage,
more specifically Vi is associated with nodes at depth i − 1. We label each
node with 〈DecV ar, DecV al, Index〉 where DecV ar is a decision variable that
must be assigned at the decision stage associated with the node, DecV al ∈
D(DecV ar) is the value that this decision variable takes at this node, and
Index ∈ {0, . . . , N − 1} is a unique index for this node. Each arc will be labeled
with 〈StochV ar, StochV al〉 where StochV ar ∈ S and StochV al ∈ D(StochV ar).
According to our labeling scheme, the root node has label 〈x1, x̄1, 0〉 where x̄1 is
the value assigned to the variable x1 associated with the root node and the index
of the root node is 0. The root node is at depth 0. For each value s̄1 ∈ D(s1), we
have an arc leaving the root node labeled with 〈s1, s̄1〉. The |s1| nodes connected
to the root node are labeled from 1 to |s1|. For each node at depth 1, we label
each of |s2| arcs with 〈s2, s̄2〉 for each s̄2 ∈ D(s2). For the nodes at depth 2, we
label them from 〈x2, x̄2, |s1| + 1〉 to 〈x2, x̄2, |s1| + |s1|.|s2|〉, and so on until we
label all arcs and all nodes of the policy tree. A path p from the root node to
the last arc can be represented by the sequence of the node and arc labelings,
i.e. p = [〈x1, x̄1, 0〉, 〈s1, s̄1〉, . . . , 〈xm, x̄m, k〉, 〈sm, s̄m〉]. Let Ψ denote the set of
all distinct paths of a policy tree. For each p ∈ Ψ , we denote by arcs(p) the
sequence of all the arc labelings in p whereas nodes(p) denotes the sequence
of all node labelings in p. That is arcs(p) = [〈s1, s̄1〉, . . . , 〈sm, s̄m〉] whereas
nodes(p) = [〈x1, x̄1, 0〉, . . . , 〈xm, x̄m, j〉]. We denote by Ω = {arcs(p)|p ∈ Ψ}
the set of all scenarios of the policy tree. The probability of ω ∈ Ω is given by
Pr{ω} =

∏m
i=1 Pr{si = s̄i}, where Pr{si = s̄i} is the probability that stochastic

variable si takes value s̄i.
Now consider a chance-constraint h ∈ C with a specified threshold level θh.

Consider a policy tree T for the SCSP and a path p ∈ T . Let h↓p be the deter-
ministic constraint obtained by substituting the stochastic variables in h with
the corresponding values (s̄i) assigned to these stochastic variables in arcs(p).
Let h̄↓p be the resulting tuple obtained by substituting the decision variables
in h↓p by the values (x̄i) assigned to the corresponding decision variables in
nodes(p). We say that h is satisfied wrt to a given policy tree T iff∑

p∈Ψ :h̄↓p∈h↓p

Pr{arcs(p)} ≥ θh.

442 B. Hnich et al.

������

������

������

������

������

������

������

	
��

	
��

	
��

	
��

������

������

�

�

�� ��
�����	
�
�	��
�
�� ��� ��

�����������������	
�����������

����������������	
�����������

�������������<��	
�����������

����������������	
�����������

Fig. 1. Policy tree for the SCSP in Example 1

Definition 1. Given an m-stage SCSP P and a policy tree T , T is a satisfying
policy tree to P iff every chance-constraint of P is satisfied wrt T .

Example 1. Let us consider a two-stage SCSP in which V1 = {x1} and S1 =
{s1}, V2 = {x2} and S2 = {s2}. Stochastic variable s1 may take two possible
values, 5 and 4, each with probability 0.5; stochastic variable s2 may also take
two possible values, 3 and 4, each with probability 0.5. The domain of x1 is
{1, . . . , 4}, the domain of x2 is {3, . . . , 6}. There are two chance-constraints1

in C, c1 : Pr{s1x1 + s2x2 ≥ 30} ≥ 0.75 and c2 : Pr{s2x1 = 12} ≥ 0.5. In
this case, the decision variable x1 must be set to a unique value before random
variables are observed, while decision variable x2 takes a value that depends on
the observed value of the random variable s1. A possible solution to this SCSP
is the satisfying policy tree shown in Fig. 1 in which x1 = 3, x1

2 = 4 and x2
2 = 6,

where x1
2 is the value assigned to decision variable x2, if random variable s1 takes

value 5, and x2
2 is the value assigned to decision variable x2, if random variable

s1 takes value 4. The four labeled paths of the above policy tree are as follows:

p1 =[〈x1, 3, 0〉, 〈s1, 5〉, 〈x2, 4, 1〉, 〈s2, 4〉], p2 = [〈x1, 3, 0〉, 〈s1, 5〉, 〈x2, 4, 1〉, 〈s2, 3〉],
p3 =[〈x1, 3, 0〉, 〈s1, 4〉, 〈x2, 6, 2〉, 〈s2, 4〉], p4 = [〈x1, 3, 0〉, 〈s1, 4〉, 〈x2, 6, 2〉, 〈s2, 3〉].

As the example shows, a solution to a SCSP is not simply an assignment of
the decision variables in V to values, but it is instead a satisfying policy tree.

4 Scenario-Based Approach to Solve SCSPs

In [9], the authors discuss an equivalent scenario-based reformulation for SCSPs.
This reformulation makes it possible to compile SCSPs down into conventional
1 In what follows, for convenience, we will denote a chance-constraint by using the

notation “Pr{〈cons〉} ≥ θ”, meaning that constraint 〈cons〉, constraining decision
and random variables, should be satisfied with probability greater or equal to θ.

Synthesizing Filtering Algorithms for Global Chance-Constraints 443

Constraints:
(1) (5x1

1 + 4x1
2 ≥ 30) ↔ (Z1

c1 = 1) (6) (4x1
1 = 12) ↔ (Z1

c2 = 1)
(2) (5x1

1 + 3x1
2 ≥ 30) ↔ (Z2

c1 = 1) (7) (3x1
1 = 12) ↔ (Z2

c2 = 1)
(3) (4x1

1 + 4x2
2 ≥ 30) ↔ (Z3

c1 = 1) (8) (4x1
1 = 12) ↔ (Z3

c2 = 1)
(4) (4x1

1 + 3x2
2 ≥ 30) ↔ (Z4

c1 = 1) (9) (3x1
1 = 12) ↔ (Z4

c2 = 1)
(5)

∑4
ω=1 0.25Zω

c1 ≥ θc1 (10)
∑4

ω=1 0.25Zω
c2 ≥ θc2

Decision variables:
x1 ∈ {1, 2, 3, 4}, x1

2 ∈ {3, 4, 5, 6},
x2

2 ∈ {3, 4, 5, 6}, Zω
h ∈ {0, 1} ∀ω = 1, . . . , 4; ∀h ∈ {c1, c2}.

Fig. 2. Deterministic equivalent CSP for Example 1

(non-stochastic) CSPs. For example, the multi-stage SCSP described in Exam-
ple 1 is compiled down to its deterministic equivalent CSP shown in Fig. 2.
The decision variables x1

1, x
1
2, and x2

2 represent the nodes of the policy tree.
The variable x1 is decided at stage 1 so we have one copy of it (x1

1) whereas
since x2 is to be decided at stage 2 and since s1 has two values, we need two
copies for x2, namely x1

2 and x2
2. Chance-constraint c1 is compiled down into

constraints (1), . . . ,(5), whilst chance-constraint c2 is compiled down into con-
straints (6), . . . ,(10). Constraints (1), . . . ,(4) are reification constraints in which
every binary decision variable Zω

c1
is 1 iff in scenario ω ∈ {1, . . . , 4} constraint

s̄1x
1
1 + s̄2x

i
2 ≥ 30 — where i ∈ {1, 2} identifies the copy of decision variable x2

associated with scenario ω — is satisfied. Finally, constraint (5) enforces that
the satisfaction probability achieved must be greater or equal to the required
threshold θc1 = 0.75. A similar reasoning applies to constraints (6), . . . ,(10).

The scenario-based reformulation approach allows us to exploit the full power
of existing constraint solvers. However, it has a number of serious drawbacks
that might prevent it from being applied in practice. These drawbacks are:

Increased Space Requirements: For each chance-constraint, |Ω| extra
Boolean variables and |Ω|+1 extra constraints are introduced. This requires
more space and might increase the solution time;

Hindering Constraint Propagation: the holistic CSP heavily depends on
reification constraints for constraint propagation, which is a very weak form
of propagation. Also, if the chance-constraint involves a global constraint
(e.g., Pr{alldiff(x1, s1, x2)} ≥ θ), then the corresponding reification con-
straints (e.g., alldiff(x1

1, s̄1, x
1
2) ↔ Zw) cannot simply be supported in an

effective way in terms of propagation by any of the current constraint solvers.

5 Generic Filtering Algorithms

In this section we show how to overcome the drawbacks discussed above.

444 B. Hnich et al.

5.1 Theoretical Properties

Like the approach in [10], in order to solve an m-stage SCSP, we introduce a deci-
sion variable for each node of the policy tree. Given an SCSP 〈V, S, D, P, C, θ, L〉,
we let PT be an array of decision variables indexed from 0 to N −1 representing
the space of all possible policy trees. The domains of these variables are defined
as follows:

– D(PT [i]) = D(x1), i ∈ M1 = {0},
– D(PT [i]) = D(x2), i ∈ M2 = {1, . . . , |s1|},
– D(PT [i]) = D(x3), i ∈ M3 = {(1 + |s1|), . . . , (|s1| · |s2|)},
– ...
– D(PT [i]) = D(xm), i ∈ Mm = {(1 + |s1| · |s2| · . . . · |sm−2|), . . . , (|s1| · |s2| ·

. . . · |sm−1|)}.

This array of decision variables is shared among the constraints in the model sim-
ilarly to what happens with decision variables in classic CSPs. In what follows,
we will discuss how to propagate chance-constraints on the policy tree decision
variable array.

Definition 2. Given a chance-constraint h ∈ C and a policy tree decision vari-
able array PT , a value v in the domain of PT [i] is consistent wrt h iff there
exists an assignment of values to variables in PT that is a satisfying policy wrt
h, in which PT [i] = v.

Definition 3. A chance-constraint h ∈ C is generalized arc-consistent iff
every value in the domain of every variable in PT is consistent wrt h.

Definition 4. A SCSP is generalized arc-consistent iff every chance-
constraint is generalized arc-consistent.

For convenience, given a chance-constraint h ∈ C, we now redefine h↓p as the
resulting deterministic constraint in which we substitute every decision vari-
able xi in h with decision variable PT [k], where 〈xi, −, k〉 is an element in
nodes(p), and — according to our former definition — in which we substitute
every stochastic variable si with the corresponding values (s̄i) assigned to si

in arcs(p). Note that the deterministic constraint h↓p is a classical constraint,
so a value v in the domain of any decision variable is consistent iff there exist
compatible values for all other variables such that h↓p is satisfied, otherwise v

is inconsistent. We denote by hi,v
↓p the constraint h↓p in which decision variable

PT [i] is set to v. hi,v
↓p is consistent if value v in D(PT [i]) is consistent w.r.t. h↓p.

Let Ψi = {p ∈ Ψ |h↓p constrains PT [i]}. We introduce f(i, v) as follows:

f(i, v) =
∑

p∈Ψi:h
i,v
↓p is consistent

Pr{arcs(p)},

where f(i, v) is the sum of the probabilities of the scenarios in which value v
in the domain of PT [i] is consistent. As the next proposition shows, one can
exploit this to identify a subset of the inconsistent values.

Synthesizing Filtering Algorithms for Global Chance-Constraints 445

Proposition 1. For any i ∈ Mk and value v ∈ D(PT [i]), if

f(i, v) +
∑

j∈Mk,j
=i

max(j) < θh,

then v is inconsistent wrt h; where max(j) = max{f(j, v)|v ∈ D(PT [j])}.

Proof (Sketch). The assignment PT [i] = v is consistent w.r.t. h iff the satisfac-
tion probability of h is greater or equal to θh. From the definition of f(i, v) and
of max(j) it follows that, if f(i, v) +

∑
j∈Mk,j
=i max(j) < θh, when PT [i] = v,

the satisfaction probability of h is less than θh even if we choose the best possible
value for all the other variables. �

5.2 Filtering Algorithms

We now describe our generic filtering strategy for chance-constraints. We
distinguish between two cases: the case when θh < 1 and the case where
θh = 1. In the first case, we design a specialized filtering algorithm whereas
for the second case we provide a reformulation approach that is more efficient.
Both methods, however, are parameterized with a filtering algorithm A for
the deterministic constraints h↓p for all p ∈ Ψ that maintains GAC (or any
other level of consistency). This allows us to reuse existing filtering algorithms
in current constraint solvers and makes our filtering algorithms generic and
suitable for any global chance-constraint.

Case 1: Algorithm 1 takes as input chance-constraint h, PT , and a
propagator A. It filters from PT inconsistent values wrt h. For each decision
variable and each value in its domain, we initialize f [i, v] to 0 in line 2. In line
5, we iterate through the scenarios in Ψ . For each scenario, we create a copy c
of constraint h↓p and of the decision variables it constrains. Then we enforce
GAC on c using A. We iterate through the domain of each copy of the decision
variable at index i and, if a given value v has support, we add the probability
associated with the current scenario to the respective f [i, v] (line 10). It should
be noted that, for each scenario, constraint c is dynamically generated every
time the filtering algorithm runs, and also that these constraints are never
posted into the model. They are only used to reduce the domains of the copies of
the associated decision variables. In line 12, for each variable i ∈ {0, . . . , N − 1}
we compute the maximum support probability f [i, v] provided by a value v
in the domain of PT [i], and we store it at max[i]. In line 16, for each stage
k ∈ {1, . . . , m}, we store in g[k] the sum of the max[i] of all variables i ∈ Mk.
Finally, (line 20) at stage k we prune from D(PT [i]) any value v that makes
g[k] strictly smaller than θh when we replace max[i] in g[k] with f [i, v].

Theorem 1. Algorithm 1 is a sound filtering algorithm.

Proof (Sketch) Soundness. When a value v is pruned by Algorithm 1, Propo-
sition 1 is true. Thus, any pruned value v is inconsistent. �

Algorithm 1 fails to prune some inconsistent values because such values are sup-
ported by values that may become inconsistent at a later stage of the algorithm.

446 B. Hnich et al.

Algorithm 1. Filtering Algorithm

input : h; PT ; A.
output: Filtered PT wrt h.

begin1

for each i ∈ {0, . . . ,N − 1} do2

for each v ∈ D(PT [i]) do3

f [i, v] ← 0;4

for each p ∈ Ψ do5

Create a copy c of h↓p and of the decision variables it constrains;6

Enforce GAC on c using A;7

for each index i of the variables in c do8

for each v in domain of the copy of PT [i] do9

f [i, v] ← f [i, v] + Pr{arcs(p)};10

delete c and the respective copies of the decision variables;11

for each i ∈ {0, . . . ,N − 1} do12

max[i] ← 0;13

for each v ∈ D(PT [i]) do14

max[i] ← max(max[i], f [i, v]);15

for each k ∈ {1, . . . , m} do16

g[k] ← 0;17

for each i ∈ Mk do18

g[k] ← g[k] + max[i]19

for each k ∈ {1, . . . , m} do20

for each i ∈ Mk do21

for each v ∈ PT [i] do22

if g[k] − max[i] + f [i, v] < θh then23

prune value v from D(PT [i]);24

end25

We illustrate these situations with an example. Consider a 2-stage SCSP in which
V1 = {x1}, where x1 ∈ {1, 2}, S1 = {s1}, where s1 ∈ {a, b}, V2 = {x2}, where
x2 ∈ {1, 2, 3}, and S2 = {s2}, where s2 ∈ {a, b}. Let Pr{si = j} = 0.5 for all
i ∈ {1, 2} and j ∈ {a, b}. Let h be the chance-constraint with θh = 0.75. In
this constraint, for the first scenario (s1 = a and s2 = a) the only consistent
values for PT [0] and PT [1] are 1 and 2 respectively. For the second scenario
(s1 = a and s2 = b) the only consistent values for PT [0] and PT [1] are 2 and
1 respectively. For the third scenario (s1 = b and s2 = a) the only consistent
values for PT [0] and PT [2] are 1 and 3 respectively. For the fourth scenario
(s1 = b and s2 = b) the only consistent values for PT [0] and PT [2] are 1
and 3 respectively. Our algorithm originally introduces three decision variables
PT [0] ∈ {1, 2}, PT [1] ∈ {1, 2, 3}, and PT [2] ∈ {1, 2, 3}. Assume that at some

Synthesizing Filtering Algorithms for Global Chance-Constraints 447

Table 1. Example of inconsistent values gone undetected

PT [0] f [0, v] PT [1] f [1, v] PT [2] f [2, v]
1 0.75 1 0.25 3 0.5
2 0.25 2 0.25

stage during search, the domains become PT [0] ∈ {1, 2}, PT [1] ∈ {1, 2}, and
PT [2] ∈ {3}. In Table 1, the values that are not pruned by Algorithm 1 when
θ = 0.75 are underlined. Only value 2 in the domain of PT [0] is pruned. But,
value 2 was providing support to value 1 in the domain of PT [1]. This goes un-
detected by the algorithm and value 1 for PT [1] no longer provides f [1, v] = 0.25
satisfaction, but 0. Thus, there exists no satisfying policy in which PT [1] = 1!
We can easily remedy this problem by repeatedly calling Algorithm 1 until we
reach a fixed-point and no further pruning is done. We denote as H this modified
algorithm.

Theorem 2. Algorithm H runs in O(|Ω| · a · N 2 · d2) time and in O(N · d + p)
space where a is the time complexity of A, p is its space complexity, and d is the
maximum domain size.

Proof (Sketch): Time complexity. In the worst case, Algorithm 1 needs to be
called N · d times in order to prune at each iteration just one inconsistent value.
At each of these iterations, the time complexity is dominated by complexity of
line 7 assuming that |Ω| � |V |. Enforcing GAC on each of the |Ω| constraints
runs in a time using algorithm A. In the worst case, we need to repeat this whole
process N ·d times in order to prune at each iteration just one inconsistent value.
Thus the time complexity of this step is in |Ω|·a·N ·d. The overall time complexity
is therefore in O(|Ω| · a · N 2 · d2) time.

(Sketch) Space complexity. The space complexity is dominated by the size
of PT and by the space complexity of A. PT requires N · d space whereas
A requires p space. Therefore, the modified algorithm runs in O(N · d + p)
space. �

In Table 2 we report the pruned values for Example 1 achieved by H. The values
that are not pruned when θ = 0.75 are underlined. Note that if we propagate
the constraints in the model generated according to the approach described in
[9] and shown in Fig. 2, no value is pruned.

Even though algorithm H is a sound filtering algorithm, it is unfortunately
still incomplete.

Theorem 3. The level of consistency achieved by algorithm H on global chance-
constraint h is weaker than GAC on h.

Proof. Consider a 2-stage SCSP where V1 = {x1} where x1 ∈ {1, 2}, S1 = {s1}
where s1 ∈ {a, b}, V2 = {x2} where x2 ∈ {1, 2}, and S2 = {s2} where s2 ∈
{a, b}. Let Pr{si = j} = 0.5 for all i ∈ {1, 2} and j ∈ {a, b}. Let h be the

448 B. Hnich et al.

Table 2. Pruning for Example 2 after calling Algorithm H

PT [0] f [0, v] PT [1] f [1, v] PT [2] f [2, v]
1 0.0 3 0.25 3 0.0
2 0.5 4 0.5 4 0.25
3 1.0 5 0.5 5 0.5
4 1.0 6 0.5 6 0.5

Table 3. Filtered domains

PT [0] f [0, v] PT [1] f [1, v] PT [2] f [2, v]
1 1 1 0.5 1 0.5
2 1 2 0.5 2 0.5

chance-constraint with θh = 0.75. Furthermore, for the first scenario (s1 = a
and s2 = a) the consistent tuples for x1 and x2 are in {〈1, 1〉 〈2, 1〉 〈2, 2〉}. For
the second scenario (s1 = a and s2 = b) the consistent tuples for x1 and x2 are
in {〈1, 2〉 〈2, 1〉 〈2, 2〉}. For the third scenario (s1 = b and s2 = a) the consistent
tuples for x1 and x2 are in {〈1, 1〉 〈2, 1〉 〈2, 2〉}. For the fourth scenario (s1 = b and
s2 = b) the consistent tuples for x1 and x2 are in {〈1, 2〉 〈2, 1〉 〈2, 2〉}. Algorithm
H introduces three decision variables PT [i] ∈ {1, 2} for all i ∈ {0, 1, 2}. Table 3
shows the result of algorithm H. None of the values is pruned, but there exists
no satisfying policy in which PT [0] = 1. �

Indeed, we conjecture that maintaining GAC on a global chance-constraint is
intractable in general even if maintaining GAC on its deterministic version is
polynomial.

Case 2: When θh = 1 the global chance-constraint h can be reformu-
lated as h↓p, ∀p ∈ Ψ . If all deterministic constraints are simultaneously GAC,
then this reformulation is equivalent to algorithm H. Nevertheless, even in this
special case, we still lose in terms of pruning.

Theorem 4. GAC on h is stronger than GAC on the reformulation.

Proof. We consider the same example as in the previous proof but with θh = 1
instead. All deterministic constraints are simultaneously GAC, but PT [i] = 1
cannot be extended to any satisfying policy. �

6 Computational Experience

In this section, we present our computational experience, which shows that our
approach outperforms the state-of-the-art approach in [9] both in terms of run
time and explored nodes, and that it is also able to achieve stronger pruning.

In our experiments we considered a number of randomly generated SCSPs.
The SCSPs considered feature five chance-constraints over 4 integer decision

Synthesizing Filtering Algorithms for Global Chance-Constraints 449

variables, x1, . . . , x4 and 8 stochastic variables, s1, . . . , s8. The decision variable
domains are: D(x1) = {5, . . . , 10}, D(x2) = {4, . . . , 10}, D(x3) = {3, . . . , 10},
and D(x4) = {6, . . . , 10}. The domains of stochastic variables s1, s3, s5, s7 com-
prise 2 integer values each. The domains of stochastic variables s2, s4, s6, s8 com-
prise 3 integer values each. The values in these domains have been randomly
generated as uniformly distributed in {1, . . . , 5}. Each value appearing in the do-
mains of random variables s1, s3, s5, s7 is assigned a realization probability of 1

2 .
Each value appearing in the domains of random variables s2, s4, s6, s8 is assigned
a realization probability of 1

3 . There are five chance-constraints in the model, the
first embeds an equality, c1 : Pr{x1s1 +x2s2 +x3s3 +x4s4 = 80} ≥ α, the second
and the third embed inequalities, c2 : Pr{x1s5 + x2s6 + x3s7 + x4s8 ≤ 100} ≥ β
and c3 : Pr{x1s5 + x2s6 + x3s7 + x4s8 ≥ 60} ≥ β. Parameters α and β take
values in {0.005, 0.01, 0.03, 0.05, 0.07, 0.1} and {0.6, 0.7, 0.8}, respectively. The
fourth chance-constraint embeds again an inequality, but in this case the con-
straint is defined over a subset of all the decision and random variables in the
model: c4 : Pr{x1s2 + x3s6 ≥ 30} ≥ 0.7. Finally, the fifth chance-constraint
embeds an equality also defined over a subset of all the decision and random
variables in the model: c5 : Pr{x2s4 + x4s8 = 20} ≥ 0.05.

We considered 3 possible stage structures. In the first stage structure we
have only one stage, 〈V1, S1〉, where V1 = {x1, . . . , x4} and S1 = {s1, . . . , s8}.
In the second stage structure we have two stages, 〈V1, S1〉 and 〈V2, S2〉, where
V1 = {x1, x2}, S1 = {s1, s2, s5, s6}, V2 = {x3, x4}, and S1 = {s3, s4, s7, s8}. In
the third stage structure we have four stages, 〈V1, S1〉, 〈V2, S2〉, 〈V3, S3〉, and
〈V4, S4〉, where V1 = {x1}, S1 = {s1, s5}, V2 = {x2}, S1 = {s2, s6}, V3 = {x3},
S3 = {s3, s7}, and V4 = {x4}, S4 = {s4, s8}.

The propagation strategy discussed in Section 5 requires an existing propa-
gator A for the deterministic constraints. Since the only constraints appearing
in the SCSPs described above are linear (in)equalities, we borrowed a simple
bound-propagation procedure for linear (in)equalities implemented in Choco 1.2
[6], a JAVA open source CP solver. The variable selection heuristic used during
the search is the domain over dynamic degree strategy, while the value selection
heuristic selects values from decision variable domains in increasing order.

In order to assess efficiency and effectiveness, we compared our approach
(GCC) — which models the discussed SCSPs using five global chance-
constraints, one for each chance-constraint in the model — against the de-
terministic equivalent CSPs generated using the state-of-the-art scenario-based
approach in [9] (SBA).

Firstly, we wish to underline that SBA, the approach discussed in [9], requires
a much larger number of constraints and decision variables to model the prob-
lems above. Specifically, the single-stage problem is modeled, in [9], using 6484
decision variables and 6485 constraints, while GCC — our approach — requires
only 4 decision variables and 5 constraints; this is mainly due to the fact that,
in addition to the 4 decision variables required to build the policy tree, SBA
introduces 1296 binary decision variables for each of the 5 chance-constraints in
the model; furthermore, SBA also introduces 1297 reification constraints for each

450 B. Hnich et al.

chance-constraint in the model, similarly to what shown in Example 1 (Fig. 2).
The two-stage problem is modeled by SBA using 6554 decision variables (74 for
the policy tree and 6480 binary decision variables) and 6485 constraints, while
GCC requires only 74 decision variables and 5 constraints; finally, the four-stage
problem is modeled by SBA using 6739 decision variables and 6485 constraints,
while GCC requires only 259 decision variables and 5 constraints.

As discussed above, in our comparative study we considered 18 different pos-
sible configurations for the parameters α and β. For each of these configurations,
we generated 15 different probability distributions — i.e. sets of values in the do-
mains — for the random variables in our model. These probability distributions
were divided in three groups and employed to generate 5 single-stage problems,
5 two-stage problems and 5 four-stage problems. Therefore the test bed com-
prised, in total, 270 instances. To each instance we assigned a time limit of 240
seconds for running the search. The computational performances of GCC and
SBA are compared in Fig. 3. All the experiments were performed on an Intel(R)
Centrino(TM) CPU 1.50GHz with 2Gb RAM. The solver used for our test is
Choco 1.2 [6].

In the test bed considered, GCC solved, in the given time limit of 240 seconds,
all the instances that SBA could solve within this time limit. In contrast, SBA
was often not able to solve — within the given time limit of 240 secs — instances
that GCC could solve in a few seconds. More specifically, both GCC and SBA
could solve 90 over 90 1-stage instances; on average GCC explored roughly 5
times less nodes and was about 2.5 times faster than SBA for these instances.
GCC could solve 45 over 90 2-stage instances, while SBA could only solve 18
of them; on average GCC explored roughly 400 times less nodes and was about
13 times faster than SBA for these instances. Finally, GCC could solve 31 over
90 4-stage instances, while SBA could only solve 10 of them; on average GCC
explored roughly 300 times less nodes and was about 15 times faster than SBA
for these instances.

In our computational experience, we also compared the effectiveness of the fil-
tering performed by SBA and GCC. In order to do so, we considered 90 two-stage
feasible instances randomly generated according to the strategy discussed above
(5 different probability distributions for the random variables and 18 different
configurations for the parameters α and β). We considered a solution for each
of these instances, we randomly picked subsets of the decision variables in the
problem, we assigned them to the value they take in this solution, we propagated
according to SBA and GCC, respectively, and we compared the percentage of
values pruned by each of these two approaches. In Fig. 4 we show the results of
this comparison, which is performed for a number of decision variables assigned
that ranges from 0% — this corresponds to a root node propagation — to 90%
of the decision variables that appear in the policy tree. In the graph, for each
percentage of decision variables assigned, we report — in percentage on the total
amount of values in the initial decision variable domains — the minimum, the
maximum, and the average number of values pruned from the domains. As it
appears from the graph, if we consider the minimum percentage of values pruned

Synthesizing Filtering Algorithms for Global Chance-Constraints 451

100

101

102

103

104

105

100 101 102 103 104 105

SB
A

GCC

Explored Nodes

•••••••••••••••••• •••
•••

•••

•••

•••

••••••

•••

•••

•••

•••

••••

•• •••

•

•• •••

•

•• •••

•••

•••

•••

•••

•••

•••

••••••
• •••••••

•
•••

•

•

• •••••• •••••••••

••••••••••••

•••

•••

•• ••
••

• •

•• •

•

••• •••

•

••••••
•••• •
•

•• •••
•••
••
•
•

••
•••

•

• ••• •

• •••••
• ••

•• •
••••••

•••

•• •

•••

•• •

•••

•• •

•• • •••
• ••

•••
•
•• •••

••

• •
• •

•

•••••• •••••

10−3

10−2

10−1

100

101

102

10−3 10−2 10−1 100 101 102

SB
A

GCC

Run Times

•••• ••• •
•
• • ••
•••
•• •• •

• ••

••
•
••

•

•
•
•

• •••••

••
•

•••

•
•

•

••
•

•
•
• •
•• •

•
•

•

••
•
••

•

•
• •

• •
• ••

•••

•••

•

••

• •
•

•••

•••••• • ••••••• ••••

•

•

• •••••••••••••••

•••
•••
•••
•••

•••

•
•
•

•• ••••• •••••••• •••

•

•••••• •••••••••••••••••• ••••••• ••••• •••••• •••••••••••

•••

•••

•••

•••

•••

••••• • •••• •••••• • • •••••• •••

•

•••••• •••••

Fig. 3. Scatter graphs for our computational experience. The top graph compares the
run time performance of SBA and GCC for the 270 instances in our test bed. The
bottom graph shows, instead, a comparison in terms of explored nodes.

by the two approaches, GCC always achieves a stronger pruning than SBA in the
worst case. Furthermore, as the maximum percentage of values pruned reported
in the graph witnesses, GCC is able to achieve a much stronger pruning than
SBA in the best case. On average, GCC always outperforms SBA, by filtering

452 B. Hnich et al.

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

P
er

ce
nt

ag
e

of
va

lu
es

pr
un

ed

Percentage of decision variables assigned

Domain Reduction
SBA

+

+

+

+

+

+

+

+

+

+

+
GCC

•

•

•

•

•

•

•

•

•

•

•

Fig. 4. Effectiveness of the filtering performed by SBA and GCC

up to 8.64% more values when 60% of the decision variables are assigned and at
least 3.11% more values at the root node.

7 Related Works

Closely related to our approach are [7,8]. In these works ad-hoc filtering strate-
gies for handling specific chance-constraints are proposed. However, the filtering
algorithms presented in both these works are special purpose, incomplete, and
do not reuse classical propagators for conventional constraints. Other search and
consistency strategies, namely a backtracking algorithm, a forward checking pro-
cedure [10] and an arc-consistency [1] algorithm have been proposed for SCSPs.
But these present several limitations and cannot be directly employed to solve
multi-stage SCSPs as they do not explicitly feature a policy tree representation
for the solution of a SCSP. Finally, efforts that try to extend classical CSP frame-
work to incorporate uncertainty have been influenced by works that originated in
different fields, namely chance-constrained programming [4] and stochastic pro-
gramming [3]. To the best of our knowledge the first work that tries to create
a bridge between Stochastic Programming and Constraint Programming is by
Benoist et al. [2]. The idea of employing a scenario-based approach for building
up constraint programming models of SCSPs is not novel, since Tarim et al. [9]
have already used this technique to develop a fully featured language — Stochas-
tic OPL — for modeling SCSPs. Our work proposes an orthogonal approach to
solving SCSPs that could easily be integrated with the compilation approach of
[9] to make it more efficient.

Synthesizing Filtering Algorithms for Global Chance-Constraints 453

8 Conclusions

We proposed generic filtering algorithms for global chance-constraints. Our fil-
tering algorithms are parameterized with conventional propagators for the corre-
sponding deterministic version of the global chance-constraint. Our experimental
results show that our approach outperforms the approach in [9], both in terms
of run time and explored nodes. We also showed, experimentally, that our ap-
proach produces stronger pruning than the approach in [9]. An interesting open
question is to determine if it is tractable to maintain GAC on global chance-
constraints for which GAC on the corresponding deterministic constraints is
tractable. Future works may investigate the tractability of GAC for classes of
global chance-constraints and ways of making algorithm H incremental.

References

1. Balafoutis, T., Stergiou, K.: Algorithms for stochastic csps. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 44–58. Springer, Heidelberg (2006)

2. Benoist, T., Bourreau, E., Caseau, Y., Rottembourg, B.: Towards stochastic con-
straint programming: A study of online multi-choice knapsack with deadlines. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 61–76. Springer, Heidelberg (2001)

3. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New
York (1997)

4. Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisfic-
ing under chance constraints. Operations Research 11(1), 18–39 (1963)

5. Jeffreys, H.: Theory of Probability. Clarendon Press, Oxford (1961)
6. Laburthe, F., The OCRE project team: Choco: Implementing a cp kernel. Technical

report, Bouygues e-Lab, France (1994)
7. Rossi, R., Tarim, S.A., Hnich, B., Prestwich, S.: A global chance-constraint for

stochastic inventory systems under service level constraints. Constraints 13(4),
490–517 (2008)

8. Rossi, R., Tarim, S.A., Hnich, B., Prestwich, S.D.: Cost-based domain filtering
for stochastic constraint programming. In: Stuckey, P.J. (ed.) CP 2008. LNCS,
vol. 5202, pp. 235–250. Springer, Heidelberg (2008)

9. Tarim, S.A., Manandhar, S., Walsh, T.: Stochastic constraint programming: A
scenario-based approach. Constraints 11(1), 53–80 (2006)

10. Walsh, T.: Stochastic constraint programming. In: van Harmelen, F. (ed.) Euro-
pean Conference on Artificial Intelligence, ECAI 2002, Proceedings, pp. 111–115.
IOS Press, Amsterdam (2002)

An Interpolation Method for CLP Traversal

Joxan Jaffar, Andrew E. Santosa, and Răzvan Voicu

School of Computing, National University of Singapore
{joxan,andrews,razvan}comp.nus.edu.sg

Abstract. We consider the problem of exploring the search tree of a CLP goal in
pursuit of a target property. Essential to such a process is a method of tabling to
prevent duplicate exploration. Typically, only actually traversed goals are mem-
oed in the table. In this paper we present a method where, upon the successful
traversal of a subgoal, a generalization of the subgoal is memoed. This enlarges
the record of already traversed goals, thus providing more pruning in the subse-
quent search process. The key feature is that the abstraction computed is guaran-
teed not to give rise to a spurious path that might violate the target property.

A driving application area is the use of CLP to model the behavior of other
programs. We demonstrate the performance of our method on a benchmark of
program verfication problems.

1 Introduction

In this paper we present a general method for optimizing the traversal of general search
trees. The gist of the method is backward-learning: proceeding in a depth-first manner,
it discovers an interpolant from the completed exploration of a subtree. The interpolant
describes properties of a more general subtree which, importantly, preserves the essence
of the original subtree with respect to a target property. We show via experiments that
often, the generalized tree is considerably more general than the original, and therefore
its representation is considerably smaller.

Our method was originally crafted as a means to optimize the exploration of states in
computation trees, which are used as a representation of program behaviour in program
analysis and verification. Such a representation can be symbolic in that a single node
represents not one but a possibly infinite set of concrete program states or traces. The
importance of a computation tree stems from the fact that it can represent a proof of
some property of the program. Building such a tree in fact is an instance of a search
problem in the sense of Constraint Programming, see eg. [1], and viewed as such,
the problem of state-space exploration essentially becomes the problem of traversing
a search tree. In this circumstance, the target property can simply be a predicate, corre-
sponding to a safety property. Or it can be something more general, like the projection
onto a set of distinguished variables; in this example, preserving the target property
would mean that the values of these variables remain unchanged.

More concretely, consider a CLP derivation tree as a decision tree where a node has
a conjunction of formulas symbolically representing a set of states. Its successor node
has an incrementally larger conjunction representing a new decision. Suppose the target
nodes are the terminal nodes. During a depth-first traversal, whenever a path in the tree

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 454–469, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Interpolation Method for CLP Traversal 455

is traversed completely, we compute an interpolant at the target node. Where F denotes
the formula in this node and T denotes the target property, this interpolant is a formula
F ′ such that F |= F ′ and F ′ |= T . (Failure is reported if no such F ′ can be found, ie: that
F |= T .) Any such F ′ not only establishes that this node satisfies the target property, but
also establishes that a generalization of F will also suffice. This interpolant can now
be propagated back along the same path to ancestor states resulting in their possible
generalizations. The final generalization of a state is then the conjunction of the possible
generalizations of derivation paths that emanate from this state.

One view of the general method is that it provides an enhancement to the general
method of tabling which is used in order to avoid duplicate or redundant search. In our
case, what is tabled is not the encountered state itself, but a generalization of it.

The second part of the paper presents a specific algorithm for both computing and
propagating interpolants throughout the search tree. The essential idea here is to con-
sider the formulas describing subgoals as syntactic entities, and then to use serial con-
straint replacement successively on the individual formulas, starting in chronological
order of the introduction of the formulas. In this way, we achieve efficiency and can
still obtaining good interpolants.

1.1 Related Work

Tabling for logic programming is well known, with notable manifestation in the SLG
resolution [2,3] which is implemented in the XSB logic programming system [4]. As
mentioned, we differ by tabling a generalization of an encountered call.

Though we focus on examples of CLP representing other programs, we mentioned
that we have employed an early version of the present ideas for different problems. In
[5], we enhanced the dynamic programming solving of resource-constrained shortest
path (RCSP) problems. This kind of example is similar to a large class of combinatorial
problems.

Our interpolation method is related to various no-good learning techniques in CSP
[6] and conflict-driven and clause learning techniques in SAT solving [7,8,9,10]. These
techniques identify subsets of the minimal conflict set or unsatisfiable core of the prob-
lem at hand w.r.t. a subtree. This is similar to our use of interpolation, where we gener-
alize a precondition “just enough” to continue to maintain the verified property.

An important alternative method for proving safety of programs is translating the
verification problem into a Boolean formula that can then be subjected to SAT or
SMT solvers [11,12,13,14,15,16]. In particular, [8] introduces bounded model check-
ing, which translates k-bounded reachability into a SAT problem. While practically
efficient in case when the property of interest is violated, this approach is in fact incom-
plete, in the sense that the state space may never be fully explored. An improvement
is presented in [17], which achieves unbounded model checking by using interpolation
to successively refine an abstract transition relation that is then subjected to an external
bounded model checking procedure. Techniques for generating interpolants, for use in
state-of-the-art SMT solvers, are presented in [18]. The use of interpolants can also be
seen in the area of theorem-proving [19].

In the area of program analysis, our work is related to various techniques of abstract
interpretation, most notably counterexample-guided abstraction refinement (CEGAR)

456 J. Jaffar, A.E. Santosa, and R. Voicu

〈0〉 if (∗) then x := x +1
〈1〉 if (y ≥ 1) then x := x +2
〈2〉 if (y < 1) then x := x +4〈3〉

p0(X,Y) :- p1(X,Y).
p0(X,Y) :- p1(X ′,Y),X ′ = X +1.

p1(X,Y) :- p2(X,Y),Y < 1.

p1(X,Y) :- p2(X ′,Y),X ′ = X +2,Y ≥ 1.

p2(X,Y) :- p3(X,Y),Y ≥ 1.

p2(X,Y) :- p3(X ′,Y),X ′ = X +4,Y < 1.

p3(X,Y,X,Y).
(a) (b)

Fig. 1. A Program and Its CLP Model

p0(X) :- p1(X ′),X ′ = X +1.

p0(X) :- p1(X).
p1(X) :- p2(X ′),X ′ = X +2.

p1(X) :- p2(X).
p2(X) :- p3(X ′),X ′ = X +4.

p2(X) :- p3(X).
p3(X).

p0(I,N,X,Y) :- p1(I,N,X,Y),ϕ(X).
p0(I,N,X,Y) :- p1(I,N,X,Y),¬ϕ(X).
p1(I,N,X,Y) :- p2(I,N,X,Y), I ≤ N.

p1(I,N,X,Y) :- p4(I,N,X,Y), I > N.

p2(I,N,X,Y) :- p3(I,N,X,Y ′),Y ′ = Y × (−Y).
p3(I,N,X,Y) :- p1(I′,N,X,Y), I′ = I +1.

p4(I,N,X,Y).
(a) (b)

Fig. 2. CLP Programs

[20,21,22], which perform successive refinements of the abstract domain to discover
the right abstraction to establish a safety property of a program. An approach that uses
interpolation to improve the refinement mechanism of CEGAR is presented in [22,23].
Here, interpolation is used to improve over the method given in [21], by achieving better
locality of abstraction refinement. Ours differ from CEGAR formulations in some im-
portant ways: first, instead of refining, we abstract a set of (concrete) states. In fact, our
algorithm abstracts a state after the computation subtree emanating from the state has
been completely traversed, and the abstraction is constructed from the interpolations of
the constraints along the paths in the subtree. Thus a second difference: our algorithm
interpolates a tree as opposed to a path. More importantly, our algorithm does not tra-
verse spurious paths, unlike abstract interpretation. We shall exemplify this difference
in a comparison with BLAST [24] in Section 6.

2 The Basic Idea

Our main application area is the state-space traversal of imperative programs. For this,
we model imperative programs in CLP. Such modeling has been presented in various
works [25,26,27] and is informally exemplified here. Consider the imperative program
of Fig. 1 (a). Here the ∗ denotes a condition of nondeterministic truth value. We also
augment the program with program points enclosed in angle brackets. The CLP model
of the same program is shown in Fig. 1 (b).

To exemplify our idea, let us first consider a simpler CLP program of Fig. 2 (a),
which is a model of an imperative program. The execution of the CLP program results

An Interpolation Method for CLP Traversal 457

in the derivation tree shown in Fig. 3 (top). The derivation tree is obtained by reduction
using pi predicates in the CLP model. In Fig. 3 (top), we write a CLP goal pk(X̃),ϕ as
〈k〉,ϕ′ where ϕ′ is a simplification of ϕ by projecting on the variables X̃ , and an arrow
denotes a derivation step.

(F) (G)

(E) 〈2〉X = 2

〈3〉X = 0 〈3〉X = 4 〈3〉X = 2 〈3〉X = 6 〈3〉X = 1 〈3〉X = 5 〈3〉X = 3 〈3〉X = 7

(D) 〈2〉X = 0 〈2〉X = 1 〈2〉X = 3

(C) 〈1〉X = 1(B) 〈1〉X = 0

(A) 〈0〉X = 0

(G)(F)

(D) 〈2〉X ≤ 3

(B) 〈1〉X ≤ 1

(E) 〈2〉X ≤ 3

〈3〉X ≤ 7
subsumed

subsumed

subsumed

(A) 〈0〉X ≤ 0

(C) 〈1〉X ≤ 1

〈3〉X ≤ 7

Fig. 3. Interpolation

Starting in a goal
satisfying X = 0, all
derivation sequences
are depicted in Fig. 3
(top). Suppose the
target property is that
X ≤ 7 at program point
〈3〉. The algorithm
starts reducing from
(A) to (F). (F) is
labelled with X = 0
which satisfies X ≤ 7.
However, a more
general formula, say
X ≤ 5, would also
satisfy X ≤ 7. The

constraint X ≤ 5 is therefore an interpolant, since X = 0 implies X ≤ 5, and X ≤ 5 in
turn implies X ≤ 7. We could use such an interpolant to generalize the label of node
(F). However, we would like to use as general an interpolant as possible, and clearly in
this case, it is X ≤ 7 itself. Hence, in Fig. 3 (bottom) we replace the label of (F) with
〈3〉 X ≤ 7. In this way, node (G) with label 〈3〉 X = 4 (which has not yet been traversed)
is now subsumed by node (F) with the new label (since X = 4 satisfies X ≤ 7) and so
(G) need not be traversed anymore. Here we can again generate an interpolant for (G)
such that it remains subsumed by (F). The most general of these is X ≤ 7 itself, which
we use to label (G) in Fig. 3 (bottom).

We next use the interpolants of (F) and (G) to produce a generalization of (D). Our
technique is to first compute candidate interpolants from the interpolants of (F) and (G),
w.r.t. the reductions from (D) to (F) and from (D) to (G). The final interpolant of (D)
is the conjunction of these candidate interpolants. In this process, we first rename the
variables of (F) and (G) with their primed versions, such that (F) and (G) both have the
label X ′ ≤ 7. First consider the reduction from (D) to (F), which is in fact equivalent
to a skip statement, and hence it can be represented as the constraint X ′ = X . It can
be easily seen that the label X = 0 of (D) entails X ′ = X |= X ′ ≤ 7. Here again we
compute an interpolant. The interpolant here would be entailed by X = 0 and entails
X ′ = X |= X ′ ≤ 7. As interpolant, we choose X ≤ 71.

Similarly, considering the goal reduction (D) to (G) as the augmentation of the con-
straint X ′ = X +4, we obtain a candidate interpolant X ≤ 3 for (D). The final interpolant
for (D) is the conjunction of all candidates, which is X ≤ 7 ∧X ≤ 3 ≡ X ≤ 3. We label

1 This interpolant corresponds to the weakest precondition [28] w.r.t. the statement X := X and
the target property X ≤ 7, however, in general the obtained precondition need not be the weak-
est, as long as it is an interpolant.

458 J. Jaffar, A.E. Santosa, and R. Voicu

(D) with this interpolant in Fig. 3 (bottom). In this way, (E) is now subsumed by (D),
and its traversal for the verification of target property is not necessary.

We then generate an interpolant for (E) in the same way we did for (G). By repeat-
ing the process described above for other nodes in the tree, we obtain the smaller tree
of Fig. 3 (bottom), which is linear in the size of the program. This tree represents the
part of the symbolic computation tree that would actually be traversed by the algo-
rithm. Hence, while the tree’s size is exponential in the number of if statements, our
algorithm prunes significant parts of the tree, speeding up the process.

2.1 With Infeasible Sequences

Now consider Fig. 1 (a) where there are infeasible sequences ending in goals with un-
satisfiable constraint, which are depicted in Fig. 4 (top). Let the target property be X ≤ 5
at point 〈3〉. A key principle of our re-labeling process is that it preserves the infeasibil-
ity of every derivation sequence. Thus, we must avoid re-labeling a node too generally,
since that may turn infeasible paths into feasible ones. To understand why this is neces-
sary, let us assume, for instance, re-labelling (E), whose original label is X = 2,Y ≥ 1,
into X = 2. This would yield X = 6 at point 〈3〉 (a previously unreachable goal), which
no longer entails the target property X ≤ 5.

infeasibleinfeasible infeasible infeasible

(F) (G)

(C) 〈1〉X = 1

〈2〉X = 3,Y ≥ 1〈2〉X = 1,Y < 1

〈3〉 〈3〉X = 5,Y < 1〈3〉X = 3,Y ≥ 1 〈3〉〈3〉 〈3〉X = 4,Y < 1〈3〉X = 2,Y ≥ 1 〈3〉

(D) 〈2〉X = 0,Y < 1 (E) 〈2〉X = 2,Y ≥ 1

(A) 〈0〉X = 0

(B) 〈1〉X = 0

(F)

infeasible

subsumed

infeasible

(C)

(G)
〈3〉 〈3〉X ≤ 5 〈3〉〈3〉X ≤ 5

(A) 〈0〉X ≤ 0

〈1〉X ≤ 1(B) 〈1〉X ≤ 1

(D) 〈2〉X ≤ 1,Y < 1 (E) 〈2〉X ≤ 5,Y ≥ 1

Fig. 4. Interpolation of Infeasible Sequences

Next note that the
path ending at (F)
is also infeasible.
Applying our infea-
sibility preservation
principle, we keep
(F) labeled with false,
and therefore the only
possible interpolant
for (F) is false itself.
This would produce
the interpolant Y < 1
at (D) since this is
the most general con-
dition that preserves
the infeasibility of
(F). Note that here,
Y < 1 is implied by

the original label X = 0,Y < 1 of (D) and implies Y ≥ 1 |= false, which is the weakest
precondition of false w.r.t. the negation of the if condition on the transition from (D)
to (F).

Now consider (G) with X = 4,Y < 1 and note that it satisfies X ≤ 5. (G) can be
interpolated to X ≤ 5. As before, this would produce the precondition X ≤ 1 at (D).
The final interpolant for (D) is the conjunction of X ≤ 1 (produced from (G)) and Y < 1
(produced from (F)). In this way, (E) cannot be subsumed by (D) since its label does
not satisfy both the old and the new labels of (D). Fortunately, however, after producing
the interpolant for (B), the node (C) can still be subsumed.

An Interpolation Method for CLP Traversal 459

In Section 5 we detail an efficient technique to generate interpolants called serial
constraint replacement, which is based on constraint deletion and slackening. This tech-
nique is briefly explained next.

2.2 Loops

Our method assumes that the derivation tree is finite in the sense that there is no infinite
sequence of distinct goals in a single path, although the tree may contain cyclic deriva-
tions. Here we discuss how we may compute an interpolant from cyclic derivations.

(E)

(B) (C)

(D)

y := y× (−y)

〈4〉ϕ,Y ≥ 0,Y ≤ 0 |= Y ≥ 0〈1〉ϕ,Y ≥ 0,Y ≤ 0

(A) 〈0〉 Y ≥ 0,Y ≤ 0

〈1〉ϕ,Y ≥ 0,Y ≤ 0 〈1〉¬ϕ,Y ≥ 0,Y ≤ 0

Fig. 5. Loop Interpolation

Consider Fig. 2 (b) which is a
program with cyclic derivation. The
program contains some constraint ϕ.
The derivation tree, where the ini-
tial goal is Y ≥ 0,Y ≤ 0, is shown in
Fig. 5. The tree is finite because in
(D), the second occurrence of point
〈1〉, is subsumed by the ancestor
(B). This subsumption is enabled by
a loop invariant made available by
some external means at node (B), and
which renders unnecessary the ex-
pansion of node (D) (the computa-
tion tree is“closed” at (D)).

In the spirit of the example, we now attempt to generalize node (B) in order to avoid
having to traverse node (C) (which must be traversed if (B) were not generalized).

Let us first examine the path (A), (B), (D). The constraint ϕ can be removed from
(B) so that the resulting goal remains a loop invariant. This is because ϕ is not related
to the other variables. More importantly, ϕ is itself a loop invariant, and we come back
to this later.

Next we attempt to remove the constraint Y ≤ 0. The resulting goal at (B) now has
the constraint Y ≥ 0. But this goal is no longer invariant. That is, the computation tree
at this new node (B) is such that the corresponding node (D) is not subsumed by (B). A
similar situation would arise if we kept Y ≤ 0 and deleted Y ≥ 0.

The only possibility we have left is to check if we can remove both of Y ≤ 0 and Y ≥
0. Indeed, that is possible, since the sequence (A), (B), (D), from which all constraints
ϕ,Y ≤ 0,Y ≥ 0 are removed, is such that (B) subsumes (D). Indeed, in this case, the
generalized (B) subsumes all the goals at point 〈1〉.

So far, we have shown that for the sequence (A), (B), (D), at node (B), we could
perform the following kinds of deletions: (1) delete nothing, (2) delete ϕ alone, (3)
delete both of Y ≤ 0 and Y ≥ 0, and (4) delete all of ϕ,Y ≤ 0 and Y ≥ 0. (That is, we
exclude the case where we delete just one of Y ≤ 0 and Y ≥ 0.) We would then have a
new sequence where (B) continues to subsume (D).

Let us now examine the sequence (A), (B), (E), which is the second derivation se-
quence emanating from (B). Note that (E) is a target goal, and we require that Y ≥ 0
here. Thus the choices (3) or (4) above made for the sequence (A), (B), (D) would not
be suitable for this path, because these deletions would remove all constraints on Y .

460 J. Jaffar, A.E. Santosa, and R. Voicu

It thus becomes clear that the best choice is (2). That is, we end up generalizing
(B) by deleting only the constraint ϕ. With this as an interpolant, it is now no longer
necessary to traverse the subtree of goal (C).

In summary, a final goal that is subsumed by one of its ancestors is already labelled
with a path invariant, that is, a invariant that holds only for the particular derivation
sequence. However, it is still possible to generalize the final goal by deleting any indi-
vidual constraint that also appears at the ancestor goal, and it is itself invariant. Note
that in this example, ϕ was invariant through the cycle, unlike Y ≤ 0 or Y ≥ 0. A rather
straightforward idea then is to consider only invariant constraints as candidates for dele-
tion within a sequence. We detail this in sections 4 and 5.2.

3 CLP Preliminaries

We first briefly overview CLP [29]. The universe of discourse is a set of terms, inte-
gers, and arrays of integers. A constraint is written using a language of functions and
relations. In this paper, we will not define the constraint language explicitly, but invent
them on demand in accordance with our examples. Thus the terms of our CLP programs
include the function symbols of the constraint language.

An atom, is as usual, of the form p(t̃) where p is a user-defined predicate symbol
and the t̃ a tuple of terms. A rule is of the form A:-B̃,φ where the atom A is the head
of the rule, and the sequence of atoms B̃ and the constraint φ constitute the body of the
rule. A goal G has exactly the same format as the body of a rule. We say that a rule is
a (constrained) fact if B̃ is the empty sequence. A ground instance of a constraint, atom
and rule is defined in the obvious way.

A substitution simultaneously replaces each variable in a term or constraint into some
expression. We specify a substitution by the notation [Ẽ/X̃], where X̃ is a sequence
X1, . . . ,Xn of variables and Ẽ a list E1, . . . ,En of expressions, such that Xi is replaced by
Ei for all 1 ≤ i ≤ n. Given a substitution θ, we write as Eθ the application of the substi-
tution to an expression E. A renaming is a substitution which maps variables variables.
A grounding is a substitution which maps each variable into a value in its domain.

In this paper we deal with goals of the form pk(X̃),Ψ(X̃), where pk is the predicate
defined in a CLP model of an imperative program and Ψ(X̃) is a constraint on X̃ . Given a
goal G ≡ pkX̃),Ψ(X̃), [[G]] is the set of the groundings θ of the primary variables X̃ such
that ∃̃Ψ(X̃)θ holds. We say that a goal G ≡ pk(X̃),Ψ(X̃) subsumes another goal G ≡
pk′(X̃ ′),Ψ(X̃ ′) if k = k′ and [[G]] ⊇ [[G]]. Equivalently, we say that G is a generalization
of G . We write G1 ≡ G2 if G1 and G2 are generalizations of each other. We say that a
sequence is subsumed if its last goal is subsumed by another goal in the sequence.

Given two goals G1 ≡ pk(X̃1),Ψ1 and G2 ≡ pk(X̃2),Ψ2 sharing a common program
point k, and having disjoint sets of variables, we write G1 ∧ G2 to denote the goal
pk(X̃1),(X̃1 = X̃2,Ψ1,Ψ2).

Let G ≡ (B1, · · · ,Bn,φ) and P denote a goal and program respectively. Let R ≡
A:-C1, · · · ,Cm,φ1 denote a rule in P, written so that none of its variables appear in
G. Let A = B, where A and B are atoms, be shorthand for equations between their cor-
responding arguments. A reduct of G using R is of the form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,Bi = A ∧φ∧φ1)
provided Bi = A ∧φ∧φ1 is satisfiable.

An Interpolation Method for CLP Traversal 461

A derivation sequence is a possibly infinite sequence of goals G0,G1, · · · where
Gi, i > 0 is a reduct of Gi−1. If there is a last goal Gn with no atoms called terminal
goal, we say that the derivation is successful. In order to prove safety, we test that the
goal implies the safety condition. A derivation is ground if every reduction therein is
ground. Given a sequence τ defined to be G0,G 1, . . . ,G n, then cons(τ) is all the con-
straints of the goal Gn. We say that a sequence is feasible if cons(τ) is satisfiable, and
infeasible otherwise. Moreover, we say that a derivation sequence τ is successful, when
it is feasible and k is the final point.

The derivation tree of a CLP has as branches its derivation sequences. In this tree, the
ancestor-descendant relation between nodes is defined in the usual way. A leaf of this
tree is cyclic if its program point appears at one of its ancestors, which will be called
the cyclic ancestor of the leaf in question. A derivation tree is closed if all its branches
are either successful, infeasible, or subsumed. Given a CLP with a derivation tree T ,
whose root is a goal G , we denote by T [G ′/G] the tree obtained by replacing the root
G by a new goal G ′, and relabeling the nodes of T to reflect the rules represented by
the edges of T . In other words, T [G ′/G] represents the symbolic computation tree of
the same program, started at a different goal.

Informally, we say that two closed trees T and T ′ have the same shape if their se-
quences can be uniquely paired up such that, for every pair of sequences (τ,τ′), we have:
(a) τ is a sequence in T , and τ′ is a sequence in T ′; (b) τ and τ′ have the same sequence
of predicates; and (c) τ and τ′ are both simultaneously either successful, infeasible, or
subsumed.

Given a target property represented as a condition Ψ(X̃) on system variables, we say
that a final goal G is safe if [[G]] ⊆ [[pk(X̃),Ψ(X̃)]].

We end this section with a definition of the notion of interpolant.

Definition 1 (Interpolant). A goal GI is an interpolant for closed tree T with root G if:

• all its successful sequences end in safe goals;
• GI subsumes G ,
• T and T [GI/G] have the same shape.

4 The Algorithm

In this section, we describe an idealized algorithm to traverse a computation tree of a
given goal G . The recursive procedure computes for each such G a possibly infinite
set of interpolants. These interpolants are then propagated to the parent goal Gp of G .
The eventual completion of the traversal of Gp is likewise augmented by a computation
of its interpolant. Clearly this process is most naturally implemented recursively by a
depth-first traversal. Our main technical result is that all interpolants are safe, that is, all
computation trees resulting from a goal subsumed by an interpolant are safe.

The algorithm is presented in Fig. 6. Its input is a goal G . We assume that there is a
target property that Ψ f (X̃ f) must hold at a target point k f . Without loss of generality, we
also assume that G and Ψ f do not share variables, and before the execution, the memo
table containing computed interpolants is empty. The idea is to compute interpolants
that are as general as possible. The function solve is initially called with the initial
goal. We first explain several subprocedures that are used in Fig. 6:

462 J. Jaffar, A.E. Santosa, and R. Voicu

• memoed(G) tests if G ′ is in the memo table such that G ′ subsumes G . If this is the
case, it returns the set of all such G ′.

• memo(I) records the set I of interpolants in the memo table.
• WP(G ,ρ) is a shorthand for the condition ρ |= Ψ′ where ρ is the constraint in the

rule used to produce the reduct G ≡ pk(X̃ ′),Ψ′; X̃ and X̃ ′ are the variables appearing
in this rule.

In what follows, we discuss each of the five cases of our algorithm. Each case is charac-
terized by a proposition that contributes to the proof of the correctness theorem stated
at the end of this section.

First, the algorithm tests whether the input goal G is already memoed, in which case,
the return value of memoed(G) is returned. The following proposition holds:

Proposition 1. If G ′ ∈ memoed(G) then G ′ is an interpolant of G .

Next consider the case where current goal G is false. Here the algorithm simply returns
a singleton set containing the goal pk(X̃), false. The following proposition is relevant to
the correctness of this action.

Proposition 2. The goal pk(X̃), false is an interpolant of a false goal.

Next consider the case where current goal G is terminal. If G is unsafe, that is [[G]] ⊆
[[pk(X̃ f),Ψ f (X̃ f)]], the entire function aborts, and we are done. Otherwise, the algorithm
returns all generalizations G of G such that [[G]] ⊆ [[pk(X̃ f),Ψ f (X̃ f)]]. The following
proposition is relevant to the correctness of this action.

Proposition 3. When the target property is specified by pkf (X̃ f),Ψ f where k f is a final

program point, and the goal G is safe, then its generalization G is an interpolant of G ,
where [[G]] ⊆ [[pkf (X̃ f),Ψ f]].

Next consider the case where current goal G is a looping goal, that is, G is subsumed
by an ancestor goal. Here we compute a set of generalizations of the ancestor goal such
that the same execution from the ancestor goal to the current input goal still results in
a cycle. In other words, we return the set of all possible generalizations of the ancestor
goal such that when the same reduction sequence (with constraint Φ along the sequence)
is traversed to the current goal, the goal remains subsumed by the ancestor goal. The
following proposition is relevant to the correctness of this action.

Proposition 4. If G ≡ pk(X̃),Ψ is a goal with ancestor pk(X̃ ′),Ψ′ such that Ψ ≡ Ψ′ ∧
Φ, then pk(X̃),Ψ[X̃/X̃ ′] is an interpolant of G where Ψ∧Φ |= Ψ[X̃/X̃ ′] if all successful
goals in the tree are safe.

Finally we consider the recursive case. The algorithm represented by the recursive pro-
cedure solve, given in Figure 6, applies all applicable CLP rules to create new goals
from G . It does this by reducing G . It then performs recursive calls using the reducts.
Given the return values of the recursive calls, the algorithm computes the interpolants
of the goal G by an operation akin to weakest precondition propagation. The final set
of interpolants for G is then simply the intersection of the sets of interpolants returned
by recursive calls.

An Interpolation Method for CLP Traversal 463

solve(G ≡ pk(X̃),Ψ) returns a set of interpolants
case (I = memoed(G)): return I
case G is false (Ψ ≡ false): return {pk(X̃), false}
case G is target (k = k f):

if (Ψ[X̃ f /X̃] |= Ψ f) abort else return {G : [[G]] ⊆ [[pkf
(X̃ f),Ψ f]]}

case G is cyclic:
let cyclic ancestor of G be pk(X̃ ′),Ψ′ and Ψ ≡ Ψ′ ∧Φ
return {pk(X̃),Ψ[X̃/X̃ ′] : Ψ∧Φ |= Ψ[X̃/X̃ ′]}

case otherwise:
foreach rule pk(X̃) :- pk′(X̃ ′),ρ(X̃ , X̃ ′):

I := I ∩ {pk(X̃), WP(G ′
,ρ) : G ′ ∈ solve(pk′(X̃ ′),Ψ∧ρ)}

endfor
memo(I) and return I

Fig. 6. The Interpolation Algorithm

Proposition 5. Let G have the reducts G i where 1 ≤ i ≤ n. Let G i ∈ solve(G i), 1 ≤
i ≤ n. Then G is an interpolant of G if for all 1 ≤ i ≤ n, G ≡ ∩n

i=1{pk(X̃),WP(G i,ρi)}.

The following theorem follows from Propositions 1 through 5:

Theorem 1 (Safety). The algorithm in Fig. 6 correctly returns interpolants.

We note that the generation of interpolants here employs a notion of weakest precon-
dition in the literature [28,30]. Given a goal transition induced by a statement s and
represented as input-output constraint ρ(X̃ , X̃ ′), the weakest precondition of a condition
Ψ′ is ρ(X̃ , X̃ ′) |= Ψ′. By our use of interpolation, we do not directly use the weakest pre-
condition to generalize a goal, a technique which is notoriously inefficient [31], but we
instead use interpolants, which approximate the weakest precondition, are efficient to
compute, and yet still generalize the input goal. That is, instead of WP, we use another
function INTP(G ,ρ) such that when G is pk′(X̃ ′),Ψ′, then INTP(G ,ρ) is a constraint
Ψ such that Ψ entails (ρ |= Ψ′). In the next section, we demonstrate an algorithm that
implements INTP based upon an efficient implementation of constraint deletions and
“slackening.”

5 Serial Constraint Replacement

We now present a general practical approach for computing an interpolant. Recall the
major challenges arising from the idealized algorithm in Fig. 6:

• not one but a set of interpolants is computed for each goal traversed;
• even for a single interpolant, there needs to be efficient way to compute it;
• interpolants for the descendants of a goal need to be combined by a process akin to

weakest-precondition propagation, and then these results need to be conjoined.

Given a set of constraints, we would like to generalize the maximal number of con-
straints that would preserve some “interpolation condition”. Recall that this condition

464 J. Jaffar, A.E. Santosa, and R. Voicu

is (a) being unsatisfiable in the case we are dealing with a terminal (false) goal, (b)
implying a target property in case we are dealing with a target goal, or (c) implying that
the subsumed terminal node remains subsumed.

Choosing a subset of constraints is clearly an inefficient process because there are an
exponential number of subsets to consider. Instead, we order the constraints according
to the execution order, and process the constraints serially. While not guaranteed to find
the smallest subset, this process is efficient and more importantly, attempts to generalize
the constraints in the right order because the earliest constraints, those that appear in
the most goals along a path, are generalized first.

The computation of interpolants is different across the three kinds of paths con-
sidered. Case (a) and (b) are similar and will be discussed together, and we discuss
separately case (c).

5.1 Sequences Ending in a False or Target Goal

Consider each constraint Ψ along the path to the terminal goal in turn. If the terminal
goal were false, we replace Ψ with a more general constraint if the goal remains false,
In case the terminal goal were a target, we replace Ψ with a more general constraint
if the goal remains safe. We end up concretely with a subset of the constraints in the
terminal goal, and this defines that the interpolant is the goal with the replacements
realized. We next exemplify.

Note that a program statement gives rise to a constraint relating the states before and
after execution of the statement Consider the following imperative program and its CLP
model:

〈0〉 x := x + 1
〈1〉 if (z ≥ 0) then
〈2〉 y := x
〈3〉

p0(X ,Y,Z) :- p1(X ′,Y,Z),X ′ = X + 1.
p1(X ,Y,Z) :- p2(X ,Y,Z),Z ≥ 0.
p1(X ,Y,Z) :- p3(X ,Y,Z),Z < 0.
p2(X ,Y,Z) :- p3(X ,Y ′,Z),Y ′ = X .
p3(X ,Y,Z).

The sequence of constraints obtained from the derivation sequence which starts from
the goal p0(X0,Y0,Z0),X0 = 0,Y0 = 2 and goes along 〈0〉, 〈1〉, 〈2〉, to 〈3〉 is X0 = 0,Y0 =
2,X1 = X0 +1,Z0 ≥ 0,Y1 = X1 for some indices 0 and 1 denoting versions of variables.
At this point, we need to project the constraints onto the current variables, those that
represent the current values of the original program variables. At 〈3〉, the projection of
interest is X = 1,Y = 1,Z ≥ 0.

If the target property were Y ≥ 0 at point 〈3〉, then it holds because the projection
implies it. In the case of an infeasible sequence (not the case here), our objective would
be to preserve the infeasibility, which means that we test that the constraints imply the
target condition false.

In general, then, we seek to generalize a projection of a list of constraints in order to
obtain an interpolant. Here, we simply replace a constraint with a more general one as
long as the result satisfies the target property. For the example above, we could delete
(replace with true) the constraints Y0 = 2 and Z0 ≥ 0 and still prove the target property
Y ≥ 0 at 〈3〉.

In Table 1 we exemplify both the deletion and the slackening techniques using our
running example. The first column of Table 1 is the executed statements column (we

An Interpolation Method for CLP Traversal 465

Table 1. Interpolation Techniques

Statement No Interpolation Deletion Deletion and
Slackening (1)

Constraint Projection Constraint Projection Constraint Projection

{x = 0,y = 2} 〈0〉 X0 = 0,Y0 = 2 X = 0,Y = 2 X0 = 0 X = 0 X0 ≥ 0 X ≥ 0
x := x+1 〈1〉 X1 = X0 +1 X = 1,Y = 2 X1 = X0 +1 X = 1 X1 = X0 +1 X ≥ 1
if (z ≥ 0) 〈2〉 Z0 ≥ 0 X = 1,Y = 2,Z ≥ 0 (none) X = 1 (none) X ≥ 1
y := x 〈3〉 Y1 = X1 X = 1,Y = 1,Z ≥ 0 Y1 = X1 X = 1,Y = 1 Y1 = X1 X ≥ 1,Y = X

represent the initial goal in curly braces). During the first traversal without abstraction,
the constraints in the second column is accumulated. The projection of the accumulated
constraints into the primary variables is shown in the third column. As mentioned, this
execution path satisfies the target property Y1 ≥ 0. We generalize the goals along the
path using one of two techniques:

• Constraint deletion. Here we replace a constraint with true, effectively deleting it.
This is demonstrated in the fourth column of Table 1. Since the constraint Z0 ≥ 0
and Y0 = 2 do not affect the satisfaction of the target property, they can be deleted.
The resulting projections onto the original variables is shown in the fifth column,
effectively leaving Y unconstrained up to 〈2〉, while removing all constraints on Z.

• Slackening. Another replacement techniqe is by replacing equalities with non-strict
inequalities, which we call slackening. For example, replacing the constraint X0 = 0
with X0 ≥ 0 in the fifth column of Table 1 would not alter the unsatisfiability of the
constraint system. (We would repeat this exercise with X0 ≤ 0.) The actual replace-
ment in the sixth column results in the more general interpolants in the seventh
column. Recall the demonstration of slackening in Section 2.

5.2 Sequences Ending in a Subsumed Goal

Consider now the case of a sequence τ ending in a goal which is subsumed by an
ancestor goal. Say τ is τ1τ2 where τ1 depicts the prefix sequence up to the subsuming
ancestor goal. The subsumption property can be expressed as

cons(τ) |= cons(τ1)[X̃i/X̃]

Following the spirit of the previous subsection, we now seek to replace any individual
constraint in τ1 as long as this subsumption holds. (Note that replacing a constraint in
τ1 automatically replaces a constraint in τ, because τ1 is a prefix of τ.)

However, there is one crucial difference with the previous subsection. Here we shall
only be replacing an individual constraint Ψ that is itself invariant (for point k) in the se-
quence. The reason for this is based on the fact that in order to propagate an interpolant
(now represented as a single goal, and not a family), the interpolants for descendant
nodes need to be simply conjoined in order to form the interpolant for the parent goal
(explained in the next section). This may result in re-introduction of a replaced con-
straint Ψ in τ1. The condition that Ψ is itself invariant guarantees that even if Ψ is
re-introduced, we still have an interpolant that is invariant for the cycle.

466 J. Jaffar, A.E. Santosa, and R. Voicu

5.3 Propagating Interpolants

One key property of serial constraint replacement is the ease with which interpolants are
generated from various derivation paths that share some prefix. Recall in the previous
sections that we need to produce a common interpolant for the intermediate nodes in
the tree from the interpolants of their children. Here, we compute candidate interpolants
of a parent node from the interpolants of the children. Note that each interpolant is now
simply a conjunction of constraints. Then, the interpolant of the parent is simply the
conjunction of the candidate interpolants (cf. the intersection of interpolants for the
recursive case of the algorithm in Section 4).

Table 2. Propagating Interpolants

Statement Deletion and Combination
Slackening (2) (1), (2)

Constraint Projection Constraint Projection

{x = 0,y = 2} 〈0〉 Y0 ≥ 1 Y ≥ 1 X0 ≥ 0,Y0 ≥ 1 X ≥ 0,Y ≥ 1
x := x +1 〈1〉 (none) Y ≥ 1 X1 = X0 +1 X ≥ 1,Y ≥ 1
if (z ≥ 0) 〈3〉 (none) Y ≥ 1

Let us now consider an-
other path through the sam-
ple program, one that visits
〈0〉, 〈1〉, and 〈3〉 without vis-
iting 〈2〉. The statements and
the interpolation along this
path by deletion and slack-
ening are shown in the first
to third columns of Table 2.
Note that this path, and the

path 〈0〉, 〈1〉, 〈2〉, and 〈3〉 considered before, share the initial goal p0(X0,Y0,Z0),X0 =
0,Y0 = 2 and the first statement of the program. Now to compute the actual interpolant
for 〈0〉 and 〈1〉, we need to consider the interpolants generated from both paths. Using
our technique, we can simply conjoin the constraints at each level to obtain the common
interpolants. This is exemplified in the fourth column of Table 2. As can be seen, the
resulting interpolants are simple because they do not contain disjunction. The resulting
projection is shown in the fifth column. The execution of the program, starting from the
goal represented by the projection, along either of the possible paths, is guaranteed to
satisfy the target property.

6 Experimental Evaluation

We implemented a prototype verifier using CLP(R) constraint logic programming sys-
tem [32]. This allows us to take advantage of built-in Fourier-Motzkin algorithm [33]
and meta-level facilities for the manipulation of constraints. We performed the experi-
ments on a 1.83GHz Macbook Pro system.

6.1 Array Bounds Verification by Constraint Deletion

We verify that at each array access point, the possible index values are legal. The pro-
grams “FFT” and “LU” are from the Scimark benchmark suite, and “linpack” from
Toy [34]. Here we manually provide an invariant for each loop to finitize the traversal.
The specific interpolation method used is the constraint deletion.

In Table 3, “Goals” indicates the cost of traversal, and the time is in seconds. The
fairly large “linpack” program (907 LOC) is run in four cases.

An Interpolation Method for CLP Traversal 467

Table 3. Array Bounds Verification

No Interpolation Interpolation
Problem LOC States Time States Time

FFT 165 2755 10.62 120 0.10
LU 102 298 0.39 138 0.17

linpack200 907 6385 19.70 332 0.53
linpack400 907 8995 151.65 867 2.47
linpack600 907 16126 773.63 867 2.47

linpack 907 ∞ ∞ 867 2.47

For the first three, we apply a depth bound
for the search tree, progressively at 200, 400,
and 600 (denoted in the table as linpackb,
where b is the depth bound) to demonstrate
the change in the size of the search tree,
which is practically infinite when there is
no depth bound. Using interpolation, on the
other hand, we can completely explore the
computation tree. In all cases, the number of
goals visited is significantly reduced as a re-
sult of interpolation.

6.2 Resource Bound Verification by Constraint Deletion and Slackening

Here we seek to verify an upper bound for a certain variable, representing resource
usage. In our examples, the resource of interest is the execution time of a program,
modeled as a monotonically increasing instrumented variable.

Table 4. Resource Bound Verification

No Interpolation Interpolation
Problem LOC States Time States Time

decoder 27 344 1.42 160 0.49
sqrt 16 923 27.13 253 7.46
qurt 40 1104 38.65 290 11.39

janne complex 15 1410 48.64 439 7.87
statemate20 1298 21 0.05 21 0.08
statemate30 “ 1581 2.93 48 0.16
statemate40 “ ∞ ∞ 71 0.24
statemate “ ∞ ∞ 1240 17.09

We consider the “decoder”, “sqrt”,
“qurt”, “janne complex” and “statemate”
programs from the Mälardalen bench-
mark [35] used for testing WCET
(worst-case execution time) analysis. One
challenge to accurate WCET is that pro-
gram fragments can behave significantly
different when invoked in different con-
texts. For the “statemate” problem, we
limit the depth bound of the goal-space
search without interpolation into cases 20,
30, and 40, and we also store the summa-
rization of the maximum resource usage

of a computation subtree in the memo table. In Table 4, “statematen” denotes verifica-
tion runs of “statemate” with n as the the depth bound. For “statemate,” we limit the
number of iteration of a loop in the program to two (actual number of iterations when
all variables are initialized to 0). The “statemate” program displays a significant amount
of dependencies between Boolean conditions in a path. The more dependency between
statements there is, the less the reduction that can be obtained by interpolation. For ex-
ample, in the experiment “statemate30” the reduction in goal space from 1581 to 48.
More notably, the interpolation based goal exploration can in fact completely explore
the goal space for the “statemate” experiment, traversing just 1240 goals.

Finally, we compare with the CEGAR tool BLAST, on a fragment2, of “statemate.”
As in BLAST, we combine statements in a block into single transition to facilitate proper
comparison of the number of search tree nodes. Our prototype completed the verifica-
tion in traversing 142 search tree nodes. With default options (breadth-first, no heuris-
tics), BLAST traverses 1410 nodes. The difference is essentially due to spurious paths
and constraint slackening.

2 BLAST ran out of memory when run with the full program.

468 J. Jaffar, A.E. Santosa, and R. Voicu

Acknowledgement

We thank Dirk Beyer for his help on BLAST.

References

1. Marriott, K., Stuckey, P.J.: Programming with Constraints. MIT Press, Cambridge (1998)
2. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic programs. J.

ACM 43(1), 20–74 (1996)
3. Swift, T.: A new formulation of tabled resolution with delay. In: Barahona, P., Alferes, J.J.

(eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 163–177. Springer, Heidelberg (1999)
4. Sagonas, K., Swift, T., Warren, D.S., Freire, J., Rao, P., Cui, B., Johnson, E., de Castro, L.,

Dawson, S., Kifer, M.: The XSB System Version 2.5 Volume 1: Programmer’s Manual (June
2003)

5. Jaffar, J., Santosa, A.E., Voicu, R.: Efficient memoization for dynamic programming with
ad-hoc constraints. In: 23rd AAAI, pp. 297–303. AAAI Press, Menlo Park (2008)

6. Frost, D., Dechter, R.: Dead-end driven learning. In: 12th AAAI, pp. 294–300. AAAI Press,
Menlo Park (1994)

7. Bayardo Jr., R.J., Schrag, R.: Using csp look-back techniques to solve real-world sat in-
stances. In: 14th AAAI/9th IAAI, pp. 203–208. AAAI Press, Menlo Park (1997)

8. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

9. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: 38th DAC, pp. 530–535. ACM Press, New York (2001)

10. Silva, J.P.M., Sakallah, K.A.: GRASP—a new search algorithm for satisfiability. In: ICCAD
1996, pp. 220–227. ACM and IEEE Computer Society (1996)

11. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 250. Springer, Heidel-
berg (2002)

12. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT techniques for fast predicate abstraction.
In: [36], pp. 424–437

13. Jones, R.B., Dill, D.L., Burch, J.R.: Efficient validity checking for processor verification.
In: Rudell, R.L. (ed.) ICCAD 1995, pp. 2–6. IEEE Computer Society Press, Los Alamitos
(1995)

14. Barrett, C., Dill, D.L., Levitt, J.R.: Validity checking for combinations of theories with
equality. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 187–201.
Springer, Heidelberg (1996)

15. Stump, A., Barrett, C., Dill, D.L.: CVC: A cooperating validity checker. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 500–504. Springer, Heidelberg (2002)

16. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating validity checker.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518. Springer, Heidel-
berg (2004)

17. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

18. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satisfiability mod-
ulo theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
397–412. Springer, Heidelberg (2008)

19. McMillan, K.L.: An interpolating theorem prover. TCS 345(1), 101–121 (2005)

An Interpolation Method for CLP Traversal 469

20. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

21. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: 29th POPL, pp.
58–70. ACM Press, New York (2002); SIGPLAN Notices 37(1)

22. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: 31st
POPL, pp. 232–244. ACM Press, New York (2004)

23. McMillan, K.L.: Lazy abstraction with interpolants. In: [36], pp. 123–136
24. Beyer, D., Henzinger, T., Jhala, R., Majumdar, R.: The software model checker Blast. Int. J.

STTT 9, 505–525 (2007)
25. Flanagan, C.: Automatic software model checking using CLP. In: Degano, P. (ed.) ESOP

2003. LNCS, vol. 2618, pp. 189–203. Springer, Heidelberg (2003)
26. Jaffar, J., Santosa, A.E., Voicu, R.: Modeling systems in CLP. In: Gabbrielli, M., Gupta, G.

(eds.) ICLP 2005. LNCS, vol. 3668, pp. 412–413. Springer, Heidelberg (2005)
27. Delzanno, G., Podelski, A.: Constraint-based deductive model checking. Int. J. STTT 3(3),

250–270 (2001)
28. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall Series in Automatic Computa-

tion. Prentice-Hall, Englewood Cliffs (1976)
29. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. LP 19/20, 503–581 (1994)
30. Bjørner, N., Browne, A., Manna, Z.: Automatic generation of invariants and intermediate

assertions. TCS 173(1), 49–87 (1997)
31. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: Generating compact verificatio n

conditions. In: 28th POPL, pp. 193–205. ACM Press, New York (2001)
32. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(R) language and system. ACM

TOPLAS 14(3), 339–395 (1992)
33. Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.: Output in CLP(R). In: Proc. Int. Conf. on

Fifth Generation Computer Systems, Tokyo, Japan, vol. 2, pp. 987–995 (1992)
34. Toy, B.: Linpack.c (1988), http://www.netlib.org/benchmark/linpackc
35. Mälardalen WCET research group benchmarks (2006),

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
36. Ball, T., Jones, R.B. (eds.): CAV 2006. LNCS, vol. 4144, pp. 532–546. Springer, Heidelberg

(2006)

http://www.netlib.org/benchmark/linpackc
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

Same-Relation Constraints

Christopher Jefferson1, Serdar Kadioglu2,�, Karen E. Petrie3,
Meinolf Sellmann2,�, and Stanislav Živný3

1 University of St Andrews, School of Computer Science, St Andrews, UK
2 Brown University, Department of Computer Science, Providence, USA

3 Oxford University, Computing Laboratory, Oxford, UK

Abstract. The ALLDIFFERENT constraint was one of the first global constraints
[17] and it enforces the conjunction of one binary constraint, the not-equal con-
straint, for every pair of variables. By looking at the set of all pairwise not-equal
relations at the same time, AllDifferent offers greater filtering power. The nat-
ural question arises whether we can generally leverage the knowledge that sets
of pairs of variables all share the same relation. This paper studies exactly this
question. We study in particular special constraint graphs like cliques, complete
bipartite graphs, and directed acyclic graphs, whereby we always assume that
the same constraint is enforced on all edges in the graph. In particular, we study
whether there exists a tractable GAC propagator for these global Same-Relation
constraints and show that AllDifferent is a huge exception: most Same-Relation
Constraints pose NP-hard filtering problems. We present algorithms, based on
AC-4 and AC-6, for one family of Same-Relation Constraints, which do not
achieve GAC propagation but outperform propagating each constraint individ-
ually in both theory and practice.

1 Motivation

The ALLDIFFERENT constraint was one of the first global constraints [17] and it en-
forces the conjunction of one binary constraint, the not-equal constraint, for every pair
of variables. By looking at the set of all pairwise not-equal relations at the same time,
AllDifferent offers greater filtering power while incurring the same worst-case com-
plexity as filtering and propagating the effects of not-equal constraints for each pair of
variables individually. The natural question arises whether we can leverage the knowl-
edge that sets of pairs of variables all share the same relation in other cases as well. We
investigate in particular binary constraint satisfaction problems (BCSPs) with special
associated constraint graphs like cliques (as in AllDifferent), complete bipartite graphs
(important when a relation holds between all variables X in a subset of I and Y in J),
and directed acyclic graphs (apart from bounded tree width graphs the simplest gener-
alization of trees), whereby we always assume that the same constraint is enforced on
all edges in the graph. We refer to the conjunction of the same binary relation over any
set of pairs in a BCSP as a Same-Relation Constraint.

� This work was supported by the National Science Foundation through the Career: Cornflower
Project (award number 0644113).

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 470–485, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Same-Relation Constraints 471

2 Theory Background

We study the complexity of achieving GAC on binary CSPs with one same-relation
constraint. The classes of structures considered are all constraint graphs as defined
in [12]. The ultimate goal is to classify, for a given constraint graph, which same-
relation constraints admit a polynomial-time GAC, and which do not. It is well known
that the CSP is equivalent to the HOMOMORPHISM problem between relation struc-
tures [8]. Most theoretical research has been done on the case where either the domain
size or the arities of the constraints are bounded.

We deal with the problem where both the domain size and the arities of the con-
straints are unbounded (so-called global constraints). Since we are interested in the
complexity of achieving GAC, we allow all unary constraints. In mathematical terms,
we study the LIST HOMOMORPHISM problem. For a CSP instance P , achieving GAC
on P is equivalent to checking solvability of P with additional unary constraints [3].
Note that showing that a problem does not have a polynomial-time decision algorithm
implies that this problem also does not have a polynomial-time algorithm for achieving
GAC, which is a more general problem.

Generalizing the result of Freuder [10], Dalmau et al. showed that CSPs with
bounded tree-width modulo homomorphic equivalence are solvable in polynomial
time [5]. Grohe showed1 that this is the only tractable class of bounded arity, defined by
structure [13]. In other words, a class of structures with unbounded tree-width modulo
homomorphic equivalence is not solvable in polynomial time.

In the case of binary CSPs, we are interested in classes of constraint graphs with a
same-relation constraint. The first observation is that classes of graphs with bounded
tree-width are not only tractable, but also permit achieving GAC in polynomial time
(even with separate domains, and even with different constraints: different domains
are just unary constraints which do not increase the tree-width). The idea is that such
graphs have bounded-size separating sets, and the domains on these separating sets can
be explicitly recorded in polynomial space (dynamic programming approach) [9,6,13].
Therefore, we are interested in classes of graphs with unbounded tree-width.

3 Clique Same-Relation

First we look at cliques. The famous ALLDIFFERENT constraint is an example of a
same-relation constraint which, if put on a clique, is tractable – in case of AllDifferent,
because the microstructure is perfect [18] and also has a polynomial-time GAC [17].

Definition 1. Given a set of values D and a set of variables {X1, . . . , Xn}, each asso-
ciated with its own domain Di ⊆ D, and a binary relation R ⊆ D×D, an assignment
σ : {X1, . . . , Xn} → D satisfies the Clique Same-Relation Constraint CSR on the
relation R if and only if for all i and j such that 1 ≤ i, j ≤ n, i �= j, it holds that
(σ(Xi), σ(Xj)) ∈ R.

1 Assuming a standard assumption from parameterized complexity theory FPT �= W[1], see [7]
for more details.

472 C. Jefferson et al.

3.1 Complexity of Achieving GAC

Despite the tractability of AllDifferent, in general enforcing the same binary relation
over all pairs of variables of a CSP yields a hard filtering problem.

Theorem 1. Deciding whether CSR is satisfiable for an arbitrary binary relation is
NP-hard.

Proof. We reduce from the CLIQUE problem. Assume we are given an undirected graph
G = (V, E) and a value k ∈ N and need to decide whether G contains a clique of size
k. We construct a CSP with just one CSR constraint in the following way. We introduce
k variables X1, . . . , Xk, each associated with domain V . The relation R is defined
as R ← {(a, b) ∈ V 2 | a �= b, {a, b} ∈ E}. We claim that CSR on the relation
(X1, . . . , Xk, R) is satisfiable if and only if G contains a clique of size k.

“⇒” Assume there is an assignment σ : {X1, . . . , Xk} → V that satisfies CSR. Then,
C ← {σ(X1), . . . , σ(Xk)} ⊆ V is a clique because CSR enforces R for each
pair of variables, and thus that there exists an edge between all pairs of nodes in
C. Furthermore, |C| = k since R forbids that the same node is assigned to two
different variables.

“⇐” Now assume there exists a clique C = {v1, . . . , vk} ⊆ V with |C| = k. Setting
σ(Xi) ← vi gives a satisfying assignment to CSR because for all i �= j we have
that (σ(Xi), σ(Xj)) = (vi, vj) ∈ E with vi �= vj , and thus (σ(Xi), σ(Xj))
∈ R.
�

Corollary 1. Achieving GAC for the CSR is NP-hard.

In fact, we can show more: Even when we limit ourselves to binary symmetric relations
which, for each value, forbid only one other value, deciding the satisfiability of the CSR
is already intractable. This shows what a great exception AllDifferent really is. Even the
slightest generalization already leads to intractable filtering problems.

Theorem 2. Deciding CSR is NP-hard even for relations where each value appears in
at most one forbidden tuple.

Proof. We reduce from SAT. Given a SAT instance with k clauses over n variables,
we consider an instance of CSR with k variables, each corresponding to one clause.
Let D be {〈1, T 〉 , 〈1, F 〉 , . . . , 〈n, T 〉 , 〈n, F 〉}. We define R ⊆ D × D to be the
binary symmetric relation which forbids, for every 1 ≤ i ≤ n, the set of tuples
{〈〈i, T 〉 , 〈i, F 〉〉 , 〈〈i, F 〉 , 〈i, T 〉〉}. Note that R is independent of the clauses in the SAT
instance.

Each clause in the SAT instance is encoded into the domain restriction on the cor-
responding variable. For instance, the clause (x1 ∨ ¬x2 ∨ x3) encodes as the domain
{〈1, T 〉 , 〈2, F 〉 , 〈3, T 〉}.

Any solution to this CSR instance, which can contain at most one of 〈i, T 〉 and 〈i, F 〉
for any 1 ≤ i ≤ n, gives a solution to the SAT instance (as each variable must be as-
signed a literal in its clause). SAT variables which are not assigned a value can be given
any value without compromising satisfiability. Analogously, a feasible assignment to
the SAT formula maps back to a satisfying assignment to CSR in the same way: in any
clause, take any of the literals in the solution which satisfy that clause and assign the
variable that value.
�

Same-Relation Constraints 473

3.2 Restriction on the Size of Domain

Our proof that CSR is intractable required both an increasing number of variables and
increasing domain size. The question arises whether the problem becomes tractable
when the domain size is limited. The following shows that the CSR is indeed tractable
when the domain size is bounded.

Lemma 1. For a constraint CSR for a symmetric relation R, it is possible to check if an
assignment satisfies the constraint given only:

– a promise that any domain value d such that 〈d, d〉 �∈ R, is used at most once, and
– the set S of domain values assigned.

By ensuring that there are no two distinct values s1, s2 ∈ S such that 〈s1, s2〉 �∈ R.

Proof. If CSR is violated, there must be two variables which do not satisfy R. This
could occur either because two variables are assigned the same domain value d such
that the assignment 〈d, d〉 is forbidden by R, or two variables are assigned different
values d1, d2 such that the tuple 〈d1, d2〉 which do not satisfy R.

Lemma 1 provides a useful tool for characterizing the satisfying assignments to CSR,
which we will use to devise a general filtering algorithm.

Theorem 3. Achieving GAC for the CSR is tractable for bounded domains.

Proof. Since the definition of CSR requires that the relation holds in both directions, it
is sufficient to consider symmetric relations only. Then, Lemma 1 shows that satisfying
assignments can be expressed by the set of allowed values and only using values d such
that 〈d, d〉 is forbidden by R at most once. We shall show how given a CSR constraint,
given a set of values S which satisfies Lemma 1 and a list of sub-domains for the
variables in the scope of the constraint, we can find if an assignment with values only
in S exists in polynomial time.

Given such a set of domain values S, we call values d such that 〈d, d〉 ∈ R sink
values. Note that in any assignment which satisfies the CSR constraint and contains
assignments only in S, changing the assignment of any variable to a sink value will
produce another satisfying assignment. Therefore, without loss of generality, we can
assume every variable which could be assigned any sink value in S is assigned such a
value.

This leaves only variables whose domains contain only values which can occur at
most once. This is exactly equivalent to an ALLDIFFERENT constraint, and can be
solved as such.

Finally, note that for a domain of size d, there are 2d subsets of the domain, and this
places a very weak bound on the subsets of the domain which will satisfy the conditions
of Lemma 1. Therefore, for any domain size there is a fixed bound on how many subsets
have to be checked.

Theorem 3 shows that achieving GAC for the CSR is tractable for bounded domains,
although the algorithm presented here is not practical. There are a number of simple

474 C. Jefferson et al.

ways its performance could be improved which we will not consider here as we are
merely interested in theoretical tractability.

An interesting implication of our result is the following. Consider a symmetric rela-
tion with at most k allowed tuples for each domain value; that is, given R ⊆ D × D,
we require that for each d ∈ D, |{〈d, .〉 ∈ R}| ≤ k for some k.

Corollary 2. Let k be a bound on the number of allowed tuples involving each do-
main value in R. If k is bounded, then achieving GAC for the CSR is tractable. If k is
unbounded, then solving CSR is NP-hard.

Proof. If k is bounded, then after assigning a value to an arbitrary variable achieving
GAC for the CSR reduces to the bounded domain case (see Theorem 3) . The un-
bounded case follows from Theorem 1.
�

4 Bipartite Same-Relation

After studying complete constraint graphs in the previous section, let us now consider
the complete bipartite case. This is relevant for CSPs where a set of variables is par-
titioned into two sets A and B and the same binary constraint is enforced between all
pairs of variables possible between A and B.

Definition 2. Given a set of values D and two sets of variables A = {X1, . . . , Xn} and
B = {Xn+1 . . . , Xm}, each associated with its own domain Di ⊆ D, and a binary
relation R ⊆ D × D, an assignment σ : {X1, . . . , Xn} → D satisfies the Bipartite
Same-Relation Constraint BSR on relation R if and only if ∀ Xi ∈ A, Xi ∈ B it holds
that (σ(Xi), σ(Xj)) ∈ R.

4.1 Complexity of Achieving GAC

At first, the BSR appears trivially tractable because once an allowed assignment is found
between any pair of variables in both parts of the bipartite graph, these values can be
assigned to all variables. Indeed, as any bipartite graph (with at least one edge) is ho-
momorphically equivalent to a single edge, such CSPs instance are easy to solve [5,13]
(using the fact that CSPs are equivalent to the HOMOMORPHISM problem).

However, we have to take into account that the domains of the variables may be
different; in other words, unary constraints are present. This fact causes the problem of
achieving GAC for the BSR to become intractable. In mathematical terms, instead of
facing a HOMOMORPHISM problem (which is trivial on bipartite graphs), we must deal
with the LIST-HOMOMORPHISM problem.

Theorem 4. Deciding whether BSR is satisfiable is NP-hard.

Proof. We reduce from the CSR satisfaction problem which we showed previously
is NP-hard. Assume we are given the CSR constraint on relation R over vari-
ables {X1, . . . , Xn} with associated domains D1, . . . , Dn. We introduce variables
Y1, . . . , Yn, Z1, . . . , Zn and set A ← {Y1, . . . , Yn}, B ← {Z1, . . . , Zn}. The domain
of variables Yi and Zi is {(i, k) | k ∈ Di}. Finally we define the relation P over the
tuples ((i, k), (j, l)) where 1 ≤ i, j ≤ n and either i = j ∧ k = l or i �= j ∧ (k, l) ∈ R.
We claim that BSR on A, B and P is satisfiable if and only if CSR on R and the Xi is.

Same-Relation Constraints 475

“⇒” Let σ denote a solution to BSR on A,B and P . For all i the initial domains
and the definition of P imply that σ(Yi) = σ(Zi) = (i, ki) for some ki ∈ Di.
Define τ : {X1, . . . , Xn} → D by setting τ(Xi) ← ki. Let 1 ≤ i, j ≤ n with
i �= j. Then, since ((i, ki), (j, kj)) ∈ P , (τ(Xi), τ(Xj)) = (ki, kj) ∈ R. And
therefore, τ satisfies CSR for the relation R.

“⇐” Let τ denote a solution to CSR on R and the Xi. Then, σ with σ(Yi)← σ(Zi) ←
(i, τ(Xi)) satisfies BSR on A, B and P .
�

Corollary 3. Achieving GAC for the BSR is NP-hard.

5 DAG Same-Relation

In the previous sections we showed that achieving GAC for cliques and complete bi-
partite graphs is hard. Now we go on to show that a simple generalization of trees to
directed graphs is intractable. When the binary relation that we consider is not symmet-
ric, each edge in the constraint graph is directed. The generalization of trees (which we
know are tractable) to the directed case then results in directed acyclic graphs (DAGs).

Definition 3. Let D be a set of values, X be a set of variables X = {X1, . . . , Xn}
and G be a directed acyclic graph (DAG) G = 〈X, A〉. Each variable is associated
with its own domain Di ⊆ D. Given a binary relation R ⊆ D × D, an assignment
σ : {X1, . . . , Xn} → D satisfies the DAG Same-Relation Constraint DSR on relation
R if and only if ∀ 1 ≤ i, j ≤ n such that (i, j) ∈ A, it holds that (σ(Xi), σ(Xj)) ∈ R.

5.1 Complexity of Achieving GAC

Somewhat surprisingly, we find that even the simple graph structure of DAGs yields
intractable filtering problems: bipartite graphs, with the orientation of all edges from
one partition to the other, form a DAG. Therefore, Theorem 4 proves that solving DSR
is NP-hard.

The question arises whether DAGs become tractable when we know that the direc-
tion on every arc is truly enforced by the constraints. Let us consider anti-symmetric
relations. A relation R is anti-symmetric if for all a and b, (a, b) ∈ R and (b, a) ∈ R
implies a = b. First we show that irreflexive antisymmetric relations can be NP-hard on
DAGs.

Lemma 2. Deciding satisfiability if DSR is NP-hard even for irreflexive antisymmetric
relations.

Proof. We use the equivalence between the CSP and the HOMOMORPHISM prob-
lem [8]. Solving an instance of DSR on relation R is equivalent to the question of
whether there is a homomorphism2 between the digraph A and digraph R. This prob-
lem is known as ORIENTED GRAPH COLORING [19]. The complexity of this problem

2 A homomorphism between two directed graphs (digraphs) G = 〈V (G), A(G)〉 and H =
〈V (H),A(H)〉 is a mapping f : V (G) → V (H) which preserves arcs, that is, (u, v) ∈ A(G)
implies (f(u), f(v)) ∈ A(H).

476 C. Jefferson et al.

was studied in [15], and Swart showed that the ORIENTED GRAPH COLORING problem
is polynomial-time solvable for R on at most 3 vertices, and NP-complete otherwise,
even when restricted to DAGs [20]. Note this proves more that almost all asymmetric
relations are NP-hard on DAGs.
�

Note that it follows3 from a recent result of Hell et al. that solving DSR is NP-hard also
for reflexive antisymmetric relations [14].

6 Grid Same-Relation

Another interesting class of graphs are grids. For m, n ≥ 1, the (m × n)-grid is the
graph with vertex set {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n} and an edge between two
different vertices (i, j) and (i′, j′) if |i− i′|+ |j − j′| = 1.

Definition 4. Given a set of values D and a set of variables

{X1,1, . . . , X1,m, . . . , Xm,1, . . . , Xm,n},

each associated with its own domain Di ⊆ D, and a binary relation R ⊆ D ×D, an
assignment σ : {X1,1, . . . , Xm,n} → D satisfies the Grid Same-Relation Constraint
GSR on relation R if and only if for all distinct pairs of points (i, j) and (i′, j′) such
that |i− i′|+ |j − j′| = 1, it holds that σ(Xi,j , Xi′,j′) ∈ R.

Once more, we find:

Lemma 3. Deciding satisfiability of GSR is NP-hard.

Proof. We reduce from the CLIQUE problem. Let 〈G, k〉 be an instance of CLIQUE,
where G = 〈V, E〉 is an undirected graph without loops and V = {1, . . . , n}. The
goal is to determine whether there is a clique of size k in G. We define an instance
of GSR with variables X1,1, . . . , Xk,k and a relation R. For every 1 ≤ i ≤ k, the
domain of Xi,i is {〈i, i, u, u〉 | 1 ≤ u ≤ n}. For every 1 ≤ i �= j ≤ k, the
domain of Xi,j is {〈i, j, u, v〉 | {u, v} ∈ E}. We define the relation R as follows:
{〈i, j, u, v〉 , 〈i′, j′, u′, v′〉} belongs to R if and only if the following two conditions are
satisfied:

1. i = i′ ⇒ [(u = u′) & (v �= v′)]
2. j = j′ ⇒ [(v = v′) & (u �= u′)]

We claim that G contains a clique of size k if and only if GSR on the Xi,j and R is
satisfiable.

“⇒” Assume there exists a clique C = {v1, . . . , vk} ⊆ V in G with |C| = k. We
claim that setting σ(Xi,i) ← 〈i, i, vi, vi〉 for all 1 ≤ i ≤ k, and σ(Xi,j) ←
〈i, j, vi, vj〉 for all 1 ≤ i �= j ≤ k gives a satisfying assignment to GSR. Let
Xi,j and Xi′,j′ be two variables such that |i− i′|+ |j − j′| = 1. Let σ(Xi,j) =
〈i, j, u, v〉 and σ(Xi′,j′) = 〈i′, j′, u′, v′〉. If i = i′, then u = u′ and v �= v′ from
the definition of σ. If j = j′, then v = v′ and u �= u′ from the definition of σ.
Hence in both cases, {〈i, j, u, v〉 , 〈i′, j′, u′, v′〉} ∈ R.

3 Private communication with A. Rafiey.

Same-Relation Constraints 477

“⇐” Assume there is a solution σ to GSR on relation (X1,1, . . . , Xk,k, R). From the
definition of R, observe that for every fixed i there exists ui such that σ(Xi,j) =
〈i, j, ui, .〉 for every j. (In other words, the third argument of every row is the
same.) Similarly, for every fixed j there exists vj such that σ(Xi,j) = 〈i, j, ., vj〉
for every i. (In other words, the fourth argument of every column is the same.)
By these two simple observations, for every 1 ≤ i ≤ k, there is no v and
j �= j′ such that σ(Xi,j) = 〈i, j, ui, v〉 and σ(Xi,j′) = 〈i, j′, ui, v〉. (In other
words, the fourth arguments of every row are all different.) Assume, for con-
tradiction, that σ(Xi,j) = 〈i, j, ui, v〉 and σ(Xi,j′) = 〈i, j′, ui, v〉 for some
v �= ui and j′ �= j; that is, the value v occurs more than once in the i-th
row. But then σ(Xj′,j′) = 〈j′, j′, v, v〉 as Xi,j′ and Xj′,j′ are in the same col-
umn, and σ(Xj′,j) = 〈j′, j, v, x〉 as Xj′,j and Xj′,j′ are in the same row.. But
as Xi,j and Xj′,j are in the same column, and σ(Xi,j) = 〈i, j, ui, v〉, we get
x = v. In other words, σ(Xj′,j) = 〈j′, j, v, v〉. But this is a contradiction as σ
would not be a solution to GSR. Similarly, we can prove the same results for
columns. Moreover, the same argument shows that if σ(Xi,j) = 〈i, j, u, v〉, then
σ(Xj,i) = 〈j, i, v, u〉. Using this kind of reasoning repeatedly shows that there
is a set of k different values C = {u1, . . . , uk} such that δ(Xi,j) = 〈i, j, ui, uj〉.
From the definition of R, C forms a clique in G.
�

Corollary 4. Achieving GAC for the GSR is intractable.

7 Decomposing Same Relation Constraints

We proved a series of negative results for Same Relation Constraints (SRCs). Even for
simple constraint graphs like DAGs and grids, SRCs pose intractable filtering problems.
In this section, we investigate whether we can exploit the fact that the same relation is
enforced on all edges of a constraint graph to achieve GAC on the corresponding binary
CSP, where we consider the collection of individual binary constraints. This will achieve
the same propagation as propagating each constraint in isolation, unlike for example the
AllDifferent constraint [17], which propagates the conjunction constraint. However, by
making use of the added structure of SRC, we will show how both theoretical and
practical performance gains can be achieved. We begin with the clique same-relation
constraint.

7.1 Decomposing CSR

Using AC-4 [16] or any of its successors to achieve GAC, we require time O(n2d2)
for a network of n2 binary constraints over n variables with domain size |D| = d. By
exploiting the fact that the same relation holds for all pairs of variables, we can speed
up this computation.

AC-4 Approach. We follow in principle the approach from AC-4 to count the number
of supports for each value. The core observation is that a value l has the same number of
supports k ∈ Di no matter to which Dj l belongs. Therefore, it is sufficient to introduce
counters supCount[i, l] in which we store the number of values in Di which support

478 C. Jefferson et al.

1: Init-CSR (X1, . . . , Xn, R)
2: for all l ∈ D do
3: Sl ← {k ∈ D | (k, l) ∈ R}
4: end for
5: for all l ∈ D do
6: for all 1 ≤ i ≤ n do
7: supCount[i, l] ← |Di ∩ Sl|
8: end for
9: end for

Algorithm 1. Root-Node Initialization for the CSR Constraint

l ∈ Dj for any j �= i. In Algorithm 1 we show how these counters are initialized at the
root by counting the number of values in the domain of each variable that supports any
given value l.

In Algorithm 2, we show how to filter the collection of binary constraints represented
by the CSR so that we achieve GAC on the collection. The algorithm proceeds in two
phases. In the first phase, lines 2-12, we update the counters based on the values that
have been removed from variable domains since the last call to this routine. We assume
that this incremental data is given in Δ1, . . . , Δn. For each value l that has lost all its
support in some domain Di as indicated by the corresponding counter supCount[i, l]
becoming 0, we add the tuple (i, l) to the set Q. The tuple means that l has to be
removed from all Dj where j �= i. In the second phase, lines 13-26, we iterate through
Q to perform these removals and to update the counters accordingly. If new values must
be removed as a consequence, they are added to Q.

Lemma 4. Algorithm 2 achieves GAC on the collection of binary constraints repre-
sented by the CSR constraint in time O(nd2) and space O(nd) where n is the number
of variables and d is the size of the value universe D.

Proof.
– GAC: The method is sound and complete as it initially counts all supports for a

value and then and only then removes this value when all support for it is lost.
– Complexity: The space needed to store the counters is obviously in Θ(nd), which

is linear in the input when the initial domains for all variables are stored explicitly.
Regarding time complexity, the dominating steps are step 6 and step 19. Step 6
is carried out O(nd2) times. The number of times Step 19 is carried out is O(nd)
times the number of times that step 13 is carried out. However, step 13 can be called
no more than 2d times as the same tuple (i, l) cannot enter Q more than twice: after
a value l ∈ D has appeared in two tuples in Q it is removed from all variable
domains.
�

AC-6 Approach. As it is based on the same idea as AC-4, the previous algorithm is
practically inefficient in that it always computes all supports for all values. We can
improve the algorithm by basing it on AC-6 [1,2] rather than AC-4. Algorithms 3-5
realize this idea. In Algorithm 3 we show how to modify the initialization part. First,

Same-Relation Constraints 479

1: Filter-CSR (X1, . . . , Xn, R,Δ1, . . . , Δn)
2: Q ← ∅
3: for all i = 1 . . . n do
4: for all k ∈ Δi do
5: for all l ∈ Sk do
6: supCount[i, l] ← supCount[i, l] − 1
7: if supCount[i, l] == 0 then
8: Q ← Q ∪ {(i, l)}
9: end if

10: end for
11: end for
12: end for
13: while Q �= ∅ do
14: (i, l) ∈ Q, Q ← Q \ {(i, l)}
15: for all j �= i do
16: if l ∈ Dj then
17: Dj ← Dj \ {l}
18: for all k ∈ Sl do
19: supCount[j, k] ← supCount[j, k] − 1
20: if supCount[j, k] == 0 then
21: Q ← Q ∪ {(j, k)}
22: end if
23: end for
24: end if
25: end for
26: end while

Algorithm 2. AC-4-based Filtering Algorithm for the CSR Constraint

the set of potential supports Sl for a value l ∈ D is now an ordered tuple rather than
a set. Second, support counters are replaced with support indices. The new variable
supIndex[i, l] tells us the index of the support in Sl which is currently supporting l in
Di. Algorithm 4 shows how to find a new support for a given value l from the domain
of the variable i. The algorithm iterates through the ordered support list until it reaches
to the end of it, line 6, in which case it returns a failure or until it finds a new support
value k. Set-variable Tv,k is used to store the set of values that are currently being
supported by value k that is in the domain of variable v. In case a new support value l
is found, Tv,k is extended by the value l, line 10. These three new data structures, Sl,
supIndex[i, l] and Tv,k, allow us to quickly find values for which a new support needs
to be computed, which can be done incrementally as a replacement support may only
be found after the current support in the chosen ordering. This way, the algorithm never
needs to traverse more than all potential supports for all values.

Finally, Algorithm 5 provides a general outline to our AC-6 based propagator which
again works in two phases, similar to its AC-4 based counter-part. In the first phase,
lines 2-12, we scan the values that have been removed from variable domains since the
last call to this routine. We assume that this incremental data is given in Δ1, . . . , Δn.
In line 6, we look for a new support for each value l that was previously supported by a

480 C. Jefferson et al.

1: initSup (X1, . . . , Xn, R)
2: for all l ∈ D do
3: Sl ← (k ∈ D | (k, l) ∈ R)
4: end for
5: T ← ∅
6: for all l ∈ D do
7: for all 1 ≤ i ≤ n do
8: supIndex[i, l] ← 0
9: newSup(X1, . . . , Xn, R, i, l)

10: end for
11: end for

Algorithm 3. Support Initialization for the CSR Constraint

value k from the domain of variable i, which is now lost. If the value l is not supported
anymore, it is removed from the set Ti,k and the tuple (i,l) is added to the queue which
means that l has to be removed from all Dj where j �= i. In the second phase, lines
13-26, we iterate through Q to perform these removals and to update the set variables
Tj,l accordingly. If new values must be removed as a consequence, they are added to Q.

7.2 Decomposing BSR

Analogously to our results on the CSR Constraint, we can exploit again the knowledge
that there is the same relation on all edges in the complete bipartite constraint graph.
Again, the time that AC-4 or AC-6 would need to achieve GAC on the collection of
binary constraints that is represented by the BSR is in O(n2d2). Following the same
idea as for CSR, we can reduce this time to O(nd2).

We can devise an AC-6 based propagator for BSR in line with Algorithms 3-5. We
can still use the set of potential supports Sl for a value which stores ordered tuples and
the support indices supIndex[i, l] which tell us the index of the support in Sl which is
currently supporting l in Di. The only required modification is that the set variable Tv,k

now has to be replaced with T A
v,k and T B

v,k to distinguish between the partitions of the
constraint graph.

1: bool newSup (X1, . . . , Xn, R, i, l)
2: supIndex[i, l] ← supIndex[i, l] + 1
3: while supIndex[i, l] ≤ |Sl| and Sl[supIndex[i, l]] /∈ Di do
4: supIndex[i, l] ← supIndex[i, l] + 1
5: end while
6: if supIndex[i, l] > |Sl| then
7: return false
8: else
9: k ← Sl[supIndex[i, l]]

10: Tv,k ← Tv,k ∪ {l}
11: return true
12: end if

Algorithm 4. Support Replacement for the CSR Constraint

Same-Relation Constraints 481

1: Filter-CSR (X1, . . . , Xn, R,Δ1, . . . , Δn)
2: Q ← ∅
3: for all i = 1 . . . n do
4: for all k ∈ Δi do
5: for all l ∈ Ti,k do
6: if !newSup(X1, . . . , Xn, R, i, l) then
7: Q ← Q ∪ {(i, l)}
8: Ti,k ← Ti,k \ {l}
9: end if

10: end for
11: end for
12: end for
13: while Q �= ∅ do
14: (i, l) ∈ Q, Q ← Q \ {(i, l)}
15: for all j �= i do
16: if l ∈ Dj then
17: Dj ← Dj \ {l}
18: for all k ∈ Tj,l do
19: if !newSup(X1, . . . , Xn, R, j, k) then
20: Q ← Q ∪ {(j, k)}
21: Tj,l ← Tj,l \ {k}
22: end if
23: end for
24: end if
25: end for
26: end while

Algorithm 5. AC-6-based Filtering Algorithm for the CSR Constraint

Lemma 5. Achieving GAC on the collection of binary constraints represented by the
CSR constraint in time O(nd2) and space O(nd) where n is the number of variables
and d is the size of the value universe D.

8 Experiments

The purpose of our experiments is to demonstrate the hypothesis that our CSR prop-
agator brings substantial practical benefits, and that therefore this area of research has
both theoretical as well as practical merit. To this end, we study two problems that can
be modeled by the CSR. We show that filtering can be sped up significantly by exploit-
ing the knowledge that all pairs of variables are constrained in the same way. Note that
the traditional AC6 and the improved version for CSR achieve the exact same consis-
tency, thus causing identical search trees to be explored. We therefore compare the time
needed per choice point, without comparing how the overall model compares with the
state-of-the-art for each problem as this is beyond the scope of this paper.

We performed a number of comparisons between our AC-4 and AC-6 based algo-
rithms, and found that the AC-6 algorithm always outperformed the AC-4 algorithm.

482 C. Jefferson et al.

Table 1. Average Speed-up for the Stable Marriage Problem

Couples
10 15 20 25 30 35 40 45 50

Probability 0.6 2.3 4.8 6.3 9.1 11.0 11.4 12.4 12.2 12.3
of attraction 0.9 3.8 4.9 6.5 6.9 8.6 9.2 10.1 11.4 12.9

This is not surprising, based both on our theoretical analysis, and previous work show-
ing AC-6 outperforms AC-4 [1]. Because of this and space limitations we only present
experiments using our AC-6 based algorithm.

All experiments are implemented using the Minion constraint solver on a Macbook
with 4GB RAM and a 2.4GHz processor. These experiments show that CSR is a very
robust and efficient propagator, never resulting in a slow-down in any of our experi-
ments and producing over a hundred times speedup for larger instances.

Stable Marriage. The first problem we consider is the Stable Marriage Problem. It
consists in pairing n men and n women into couples, so that no husband and wife
in different couples prefer each other to their partner. We refer the reader to [11] for a
complete definition and discussion of previous work on this problem. We use the hardest
variant of this problem, where the men and women are allowed ties in their preference
lists, and to give a list of partners they refuse to be married to under any circumstances.
These two extensions make the problem NP-hard.

The standard model used in the CP literature keeps a decision variable for each man
and woman where each domain consists of the indices of the corresponding preference
list. The model then posts a constraint for each man-woman pair consisting of a set
of no good pairs of values. We use the following, alternative model. Our model has
one decision variable for each couple, whose domain is all possible pairings. We post
between every pair of variables that the couples are ’stable’, and also do not include any
person more than once.

This model is inferior to using a specialized n-ary constraint for the stable marriage
problem [21], the intention is not to provide a new efficient model for the stable mar-
riage problem. The reason we consider this model here is to show the benefits of using
a CSR constraint in place of a clique of binary constraints.

The instances we consider are generated at random, with a fixed probability that
any person will refuse to be married to another. This allows us to vary the number of
tuples in the constraints. As the search space is the same size regardless of if we use our
specialized CSR propagator or a clique of constraints (they achieve the same level of
consistency after all), we show only the speed-up that our algorithm provides per search
node. So, 2.0 means that our algorithm solved the problem twice as fast, or searched
twice as many search nodes per second. The CSR propagator was never slower in any
experiment we ran. For each instance we generated and solved 20 problems and took
the average speed-up per choice point.

Table 1 shows the results. We note that CSR always provides a sizable improvement
in performance, that only increases as problem instances get larger and harder, increas-
ing up to over 10 times faster for larger instances.

Same-Relation Constraints 483

Table 2. Average Speed-up for the Table Planning Problem

People Per Table
30 40 50 60 70 80 90 100

0.4 15 37 58 76 90 105 117 136
Probability 0.5 11 33 51 66 80 81 83 91
of edge 0.6 13 31 49 63 77 76 77 78

0.8 7 18 21 27 33 34 36 38
0.9 5 6 8 14 15 19 20 22

The reason that the gain begins to reach a limit is that the size of the domains of
the variable increases as the square of the number of people, meaning the cliques of
size 50 have variables of domain 2500. Book-keeping work in the solver and algorithm
for such large domains begins to dominate. Nevertheless, our algorithm is still over 10
times faster for these large problems.

Table Planning. The second problem we consider is the Table Planning Problem. The
Table Planning Problem is the problem of sitting a group of people at tables, so that
constraints about who will sit with each other are satisfied. Problems like this one often
occur in the planning of events.

In this paper, an instance of the Table Planning Problem (TPP) is a triple 〈T, S, R〉
where T is the number of tables and S is the size of each table. This implies there are
S × T people to sit. R is a symmetric relation on the set {1, . . . , S × T }, which i is
related to j if people i and j are willing to sit on the same table. A solution to the TPP
therefore is a partition of people, denoted by the set {1, . . . , S×T }, where each part of
the partition represents a table. Therefore in any solution each member of this partition
must be of size S and all pairs of numbers within it must satisfy R.

We consider instances of TPP with three tables and where R is generated randomly,
with some fixed probability of each edge, and its symmetric image, being added. The
model we use is an S × T matrix, with each variable having domain {1, . . . , S × T }.
The constraints are that each row (representing a table) has a clique of the constraint R
and a single AllDifferent constraint on all the variables. We consider representing the
cliques of the constraint R either as separate constraints, or using our propagator.

As we know that the size of search will be identical, regardless of how the cliques
of R are implemented, we show only the speed-up achieved by our improved propa-
gator. We run each of the following experiments for ten different randomly generated
relations, and take an average of the speed-ups achieved. We measure speed-up based
on the number of nodes per second searched in ten minutes, or how long it takes to find
the first solution or prove no solution exists, whichever is fastest.

Our results are presented in Table 2. We observe large, scalable gains for larger prob-
lems, with over 20 times speed-up for the densest problems. For sparser constraints, we
even achieve over 100 times speed-up using our CSR propagator instead of a clique of
constraints. This shows again how well the CSR propagator scales for larger problems,
achieving immense practical improvements.

484 C. Jefferson et al.

9 Conclusions and Future Work

We have looked at generalizing the famous AllDifferent to cliques of other constraints,
and also other standard patterns such as bipartite, directed acyclic, and grid graphs.
Unlike with the AllDifferent case, these constraints pose intractable filtering problems.
By making use of the structure however, we can still provide substantial improvements
in both theoretical and practical performance using new, generic algorithms. We have
performed benchmarking across two problems using an AC-6 based decomposition al-
gorithm on the CSR constraint. The experimental results show substantial gains in per-
formance, proving that is worth exploiting the structure of same-relation constraints.

In the future, now we have laid down a theoretical framework, we will consider fur-
ther benchmarks. In particular, we are interested to study how same-relation constraints
interact with other global constraints.

References

1. Bessière, C., Cordier, M.O.: Arc-consistency and arc-consistency again. In: AAAI, pp. 108–
113 (1993)

2. Bessière, C., Freuder, E., Régin, J.C.: Using Constraint Metaknowledge to Reduce Arc Con-
sistency Computation. Artificial Intelligence 107(1), 125–148 (1999)

3. Bessière, C., Hebrard, E., Hnich, B., Walsh, T.: The Complexity of Reasoning with Global
Constraints. Constraints 12(2), 239–259 (2007)

4. Bulatov, A.: Tractable Conservative Constraint Satisfaction Problems. LICS, 321–330 (2003)
5. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint Satisfaction, Bounded Treewidth, and

Finite-Variable Logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 310–
326. Springer, Heidelberg (2002)

6. Dechter, R., Pearl, J.: Tree Clustering for Constraint Networks. Artificial Intelligence 38(3),
353–366 (1989)

7. Downey, R., Fellows, M.: Parametrized Complexity. Springer, Heidelberg (1999)
8. Feder, T., Vardi, M.: The Computational Structure of Monotone Monadic SNP and Constraint

Satisfaction. SIAM Journal on Computing 28(1), 57–104 (1998)
9. Freuder, E.: A Sufficient Condition for Backtrack-bounded Search. Journal of the

ACM 32(4), 755–761 (1985)
10. Freuder, E.: Complexity of K-Tree Structured Constraint Satisfaction Problems. In: AAAI,

pp. 4–9 (1990)
11. Gent, I.P., Irving, R.W., Manlove, D.F., Prosser, P., Smith, B.M.: A Constraint Programming

Approach to the Stable Marriage Problem. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp.
225–239. Springer, Heidelberg (2001)

12. Gottlob, G., Scarcello, F.: A comparison of structural CSP decomposition methods. Artificial
Intelligence 124(2), 243–282 (1999)

13. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM 54(1) (2007)

14. Hell, P., Huang, J., Rafiey, A.: List Homomorphism to Reflexive Digraphs: Dichotomy Clas-
sification (submitted, 2009)

15. Klostermeyer, W., MacGillivray, G.: Homomorphisms and oriented colorings of equivalence
classes of oriented graphs. Discrete Mathematics 274(1-3), 161–172 (2004)

16. Mohr, R., Henderson, T.: Arc and path consistency revisited. Artificial Intelligence 28(2),
225–233 (1986)

Same-Relation Constraints 485

17. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. AAAI 1, 362–367
(1994)

18. Salamon, A.Z., Jeavons, P.G.: Perfect Constraints Are Tractable. In: Stuckey, P.J. (ed.) CP
2008. LNCS, vol. 5202, pp. 524–528. Springer, Heidelberg (2008)

19. Sopena, E.: Oriented graph coloring. Discrete Mathematics 229(1-3), 359–369 (2001)
20. Swarts, J.S.: The Complexity of Digraph Homomorphisms: Local Tournaments, Injective

Homomorphisms and Polymorphisms. PhD thesis, University of Victoria (2008)
21. Unsworth, C., Prosser, P.: An n-ary constraint for the stable marriage problem. In: IJCAI, pp.

32–38 (2005)

Dialectic Search�

Serdar Kadioglu and Meinolf Sellmann

Brown University, Department of Computer Science,
P.O. Box 1910, Providence, RI 02912, U.S.A.
{serdark,sello}@cs.brown.edu

Abstract. We introduce Hegel and Fichte’s dialectic as a search meta-heuristic
for constraint satisfaction and optimization. Dialectic is an appealing mental con-
cept for local search as it tightly integrates and yet clearly marks off of one an-
other the two most important aspects of local search algorithms, search space
exploration and exploitation. We believe that this makes dialectic search easy to
use for general computer scientists and non-experts in optimization. We illustrate
dialectic search, its simplicity and great efficiency on four problems from three
different problem domains: constraint satisfaction, continuous optimization, and
combinatorial optimization.

1 Introduction

Local search (LS) is a powerful algorithmic concept which is frequently used to tackle
combinatorial problems. While originally developed for constrained optimization, be-
ginning with the seminal work of Selman et al. [23] in the early 90ies local search
algorithms have become extremely popular to solve also constraint satisfaction prob-
lems. Today, many highly efficient SAT solvers are based on local search. Recently
there have also been developed general purpose constraint solvers that are based on
local search [33].

The general idea of local search is easy to understand and often used by non-experts
in optimization to tackle their combinatorial problems. There exists a wealth of modern
hybrid LS paradigms like iterated local search (ILS) [29], very large scale neighbor-
hood search [1,31], or variable neighborhood search [17]. By far the most prevalent LS
methods used by non-experts are simulated annealing [22,6,26] and tabu search [11,12].

Simulated annealing (SA) is inspired by the physical annealing process in metal-
lurgy. The method starts out by performing a random walk as almost all randomly gen-
erated neighbors are accepted in the beginning. It then smoothly transitions more and
more into a hill-climbing heuristic when neighbors are more and more unlikely to be
accepted the more they degrade the solution quality. In tabu search (TS) we move to the
best solution in the neighborhood of the current solution, no matter whether that neigh-
bor improves the current solution or not. To avoid cycling, a tabu list is maintained
that dynamically excludes neighbors which we may have visited already in the near
past. Typically, the latter is achieved by excluding neighbors that have certain problem-
specific properties which were observed recently in the search.

� This work was supported by the National Science Foundation through the Career: Cornflower
Project (award number 0644113).

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 486–500, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dialectic Search 487

Both concepts are very popular with non-experts because they are easy to under-
stand and to implement. However, to achieve a good heuristic performance for a given
problem, the vanilla methods rarely work well without significant tuning and experi-
mentation. In particular, it has often been observed that SA is able to find high-quality
solutions only when the temperature is lowered very slowly or more sophisticated neigh-
borhoods and techniques like reheats are used. TS, on the other hand, often finds good
solutions much earlier in the search than SA. However, the vague definition of the tabu-
concept is difficult to handle for non-experts. If the criteria that define which neighbors
are currently tabu are too broad, then many neighbors which have actually not been
visited earlier are tabu. Then, so-called aspiration criteria need to be introduced to over-
ride the tabu list. Moreover, the tabu tenure is of great practical importance and difficult
to tune. There exist sophisticated methods to handle this problem like reactive TS [3]
which dynamically adapts the length of the tabu list and other techniques such as strate-
gic oscillation or ejection chaining.

We argue that these techniques outside the core methods are too involved for non-
experts and that there is a need for a simple method that is easy to handle for anyone
with a general background in constraints. The objective of this work is to provide such
a meta-heuristic which, by design, draws the user’s attention to the most important
aspects of any efficient local search procedure. To this end, in the next section we in-
troduce dialectic search. In the sections thereafter, we provide empirical evidence that
demonstrates the effectiveness of the general approach on four different problems from
highly different problem domains: constraint satisfaction, continuous optimization, and
discrete optimization.

2 Dialectic Search

Without being able to make any assumptions about the search landscape, there is no way
to extrapolate search experience and any unexplored search point is as good as any other.
Only when we observe statistical features of the landscape which are common to many
problem instances we may be able to use our search experience as leverage to predict
where we may find improving solutions. The most commonly observed and exploited
statistical feature is the correlation of fitness and distance [21]. It gives us a justification
for intensifying the search around previously observed high quality solutions.

While the introduction of a search bias based on predictions where improving solu-
tions may be found is the basis of any improvement over random search, it raises the
problem that we need to introduce a second force which prevents us from investigat-
ing only a very small portion of the search space. This is an inherent problem of local
search as the method does not allow us to memorize, in a compact way, all previously
visited parts of the search space. In artificial intelligence, the dilemma of having to bal-
ance the wish for improving solutions with the need to diversify the search is known as
the exploitation-exploration trade-off (EET). It has been the subject of many practical
experiments as well as theoretical studies, for example on bandit problems [24].

SA and TS address the EET in very different ways. SA explores a lot in the beginning
and then shifts more and more towards exploitation by lowering the acceptance rate
of worsening neighbors. TS, on the other hand, mixes exploitation and exploration in
every step by moving to the best neighbor which is not tabu. The often extremely good

488 S. Kadioglu and M. Sellmann

performance of TS indicates that binding exploration and exploitation steps more tightly
together is beneficial. However, the idea to mix exploration and exploitation in the same
local search step is arguably what makes TS so opaque to the non-expert and what
causes the practical problems with defining the tabu criteria, tabu tenure, aspiration
criteria, etc.

2.1 A Meta-heuristic Inspired by Philosophy

We find an LS paradigm where exploration and exploitation are tightly connected yet
clearly separated from each other in philosophy: Hegel and Fichte’s Dialectic [18,9].
Their concept of intellectual discovery works as follows: The current model is called
the thesis. Based on it, we formulate an antithesis which negates (parts of) the thesis.
Finally, we merge thesis and antithesis to achieve the synthesis. The merge is guided
by the principle of Aufhebung. The latter is German and has a threefold meaning: First,
that parts of the thesis and the antithesis are preserved (“aufheben” in the sense of “be-
wahren”). Second, that certain parts of thesis and antithesis are annihilated (“aufheben”
in the sense of “ausloeschen”). And third, that the synthesis is better than thesis and an-
tithesis (“aufheben” in the sense of “aufwerten”). The synthesis then becomes the new
thesis and the process is iterated.

Analyzing Hegel and Fichte’s dialectic, we find that it strikes an appealing balance be-
tween exploration and exploitation. In essence, the formulation of an antithesis enforces
search space exploration, while the optimization of thesis and antithesis allows us to ex-
ploit and improve. Furthermore, while in each step both exploration and exploitation
play their part, they are clearly marked off of one another and can be addressed sepa-
rately. We argue that this last aspect is what makes dialectic search very easy to handle.

2.2 Dialectic Search

We outline the dialectic search meta-heuristic in Algorithm 1. After initializing the
search with a first solution, we first improve it by running a greedy improvement heuris-
tic. We initialize a global counter which we use to terminate the search after a fixed
number (GLOBALLIMIT) of global iterations.

In each global iteration, we perform local dialectic steps, whereby the quality of the
resulting solution of each such local step is guaranteed not to degrade. Again, a counter
(local) is initialized which counts the number of steps in which we did not improve the
objective.

In each dialectic step, we first derive an antithesis from the thesis, which is imme-
diately improved greedily. We assume that the way how the antithesis is generated is
randomized. The synthesis is then generated by merging thesis and antithesis in a prof-
itable way, very much like a cross-over operator in genetic algorithms. Here we assume
that ’Merge’ returns a solution which is different from the thesis, but may coincide with
the antithesis. In case that the greedily improved synthesis is actually worse than the
thesis, we return to the beginning of the loop and try improving the (old) thesis again
by trying a new antithesis. In case that the synthesis improves the best solution (bestSo-
lution) ever seen, we update the latter. If the synthesis at least improves the thesis, the
no-improvement counter ’local’ is reset to zero. Then, the synthesis becomes the new
thesis.

Dialectic Search 489

1: Dialectic Search
2: thesis ← InitSolution()
3: thesis ← GreedyImprovement(thesis)
4: global ← 0
5: bestSolution ← thesis
6: bestValue ← Objective(bestSolution)
7: while global++<GLOBALLIMIT do
8: local ← 0
9: while local++<LOCALLIMIT do

10: antithesis ← GreedyImprovement(Modify(thesis))
11: synthesis ← Merge(thesis,antithesis)
12: synthesis ← GreedyImprovement(synthesis)
13: thesisValue ← Objective(thesis)
14: synthesisValue ← Objective(synthesis)
15: if thesisValue<synthesisValue then
16: goto Line 9
17: end if
18: if synthesisValue<bestValue then
19: bestSolution ← synthesis
20: bestValue ← synthesisValue
21: end if
22: if synthesisValue<thesisValue then
23: local ← 0
24: end if
25: thesis ← synthesis
26: end while
27: thesis ← antithesis
28: end while
29: return bestSolution

Algorithm 1. Dialectic Search

Finally, when the number of non-improving local improvement steps is exceeded,
we make the last antithesis the new thesis and start over with the next global step.

So what dialectic search does is this: For a given assignment (the thesis), it greed-
ily improves it. Then it tries to improve the solution further by generating randomized
modifications (an antithesis) of the current assignment, greedily improving it, and then
combining the two assignments to form a new assignment, which is also greedily im-
proved (the synthesis). If this new assignment is at least as good, it is considered the
new current assignment. If this process does not result in improvements for a while,
then the search moves to the modified assignment and continues searching from there.

As any meta-heuristic, the general outline of dialectic search that we gave above
leaves certain steps open. In genetic algorithms, for example, we need to define muta-
tion and cross-over operators. In dialectic search, we need to specify how the thesis is
transformed into an antithesis, how an assignment is greedily improved, and how the-
sis and antithesis are combined to form the synthesis. These functions must be defined
for each problem individually. The contribution of dialectic search is that it manages

490 S. Kadioglu and M. Sellmann

1: Merge (thesis, antithesis)
2: bestValue ← INFINITY
3: S ← {i | thesis[i] �= antithesis[i]}
4: while S �= ∅ do
5: bestMoveValue ← INFINITY
6: for all i ∈ S do
7: margin ← SwitchMargin(thesis,antithesis,i)
8: if margin < bestMoveValue then
9: bestMoveValue ← margin, bestMove ← i

10: end if
11: end for
12: S ← S \ {bestMove}
13: thesis[bestMove] ← antithesis[bestMove]
14: thesisValue ← thesisValue−bestMoveValue
15: if thesisValue ≤ bestValue then
16: synthesis ← thesis
17: bestValue ← thesisValue
18: end if
19: end while
20: return synthesis

Algorithm 2. A Procedure to Compute the Synthesis

the balance between exploitation and exploration, which is arguably the hardest part
when devising a new local search procedure. With dialectic search, the user can focus
on both tasks separately. When defining how antitheses are formed (function ’Modify’),
the task is pure search space exploration. When improving a solution greedily (function
’GreedyImprovement’), the task is pure exploitation. The rule of thumb is that the an-
tithesis is a randomized perturbation of parts of the thesis and the greedy improvement
consists in moving to the best neighbor until a local minimum is reached.

Only when the synthesis is computed (’Merge’), both exploration and exploitation
play a role as we would obviously like to find a very good combination of thesis and an-
tithesis. In Algorithm 2 we give a function for computing the synthesis from two given
assignments, the thesis and the antithesis. The procedure works iteratively. In each step
we consider the variables on which thesis and antithesis differ and by what margin the
objective changes when a variable in the thesis is re-assigned to the corresponding value
in the antithesis. We perform the best change and iterate until we reach the antithesis.
Like this, we generate a path from thesis to antithesis, and we return as synthesis the
best solution on the path.

The idea to merge thesis and antithesis is well-founded by the empirical finding that
optimization problems often exhibit a correlation between the fitness of local optima
and their average distance to each other, i.e., a “big valley” structure [2]. The particular
Algorithm 2 is inspired by the path relinking technique [13] and represents of course
only one possible way of merging thesis and antithesis. Depending on the background
of the reader, the function presented may also be viewed as a kind of tabu search as
variables which have already been assigned their target value are no longer allowed

Dialectic Search 491

to change their value. Another way to look at the problem of generating the synthesis
is to view it as an optimization problem itself, where the task is to find the best com-
bination of thesis and antithesis. Thus, dialectic search is implicitly related to iterated
local search [29], variable neighborhood search [17], and very large scale neighborhood
search [1,31].

3 Constraint Satisfaction

We first test dialectic search on problems from the constraint satisfaction domain, the
costas arrays problem (CAP) and the magic squares problem (MSP).

3.1 Costas Arrays

A costas array [16] is a pattern of n marks on an n × n grid, one mark per row and
one per column, in which the n(n − 1)/2 vectors between the marks are all different.
Such patterns are important as they provide a template for generating radar and sonar
signals with ideal ambiguity functions [8,10]. A model for CAP is to define an array of
variables X1, . . . , Xn which form a permutation. For each length l ∈ {1, . . . , n − 1},
we add n− l more variables X l

1, . . . , X
l
n−l, whereby each of these variables is assigned

the difference of Xi − Xi+l for i ∈ {1, . . . , n − l}. These additional variables form
a difference triangle as shown in Figure 1. Each line of this difference triangle must
not contain any value twice. That is, the CAP is simply a collection of AllDifferent
constraints on X1, . . . , Xn and X l

1 . . . , X l
n−l for all l ∈ {1, . . . , n− 1}.

Fig. 1. 6x6 Costas Array 316254

Costas arrays can be constructed using the generation methods based on the theory
of finite fields for infinitely many n. However, there is no construction method for all
n and it is, e.g., unknown whether there exists a costas array of order 32. We devise a
simple dialectic search for the problem and compare with tabu search.

Objective, Initialization and Greedy Improvement. As objective, we use the sum
of the square of the violations of all AllDifferent constraints in the difference triangle.
Our initial costas array is a random permutation of the numbers from 1 to n. As greedy
improvement heuristic, we consider pairs of variables Xi and Xj and compute the cost-
delta that would result from flipping the values of the two cells. We commit the pair that
would decrease the violations the most and iterate until no possible flip results in a cost
improvement anymore, i.e, when we are stuck in a local minimum.

492 S. Kadioglu and M. Sellmann

Table 1. Numerical Results for the Costas Array Problem. We compare tabu search and dialectic
search in terms of minimum, maximum, standard deviation and average solution time in seconds
over 100 runs.

Minimum Maximum Std. Deviation Average
Order TS Dialectic TS Dialectic TS Dialectic TS Dialectic

13 0.03 0.00 1.24 0.27 0.24 0.05 0.25 0.05
14 0.03 0.00 4.9 2.07 0.82 0.31 0.96 0.26
15 0.04 0.04 22.9 6.84 3.45 1.33 3.59 1.31
16 0.13 0.1 95.8 32.6 19.5 7.11 21.83 7.74
17 1.03 0.65 741 250 126 49.4 114 53.4
18 5.49 4.43 2568 1936 613 370 696 370

Antithesis and Synthesis. Hegel defined the antithesis as the negation of the thesis.
For non-binary variables it is not uniquely defined what the negation of a variable as-
signment is. We interpret the negation of an assignment to mean that the variable is
assigned a different value. For the CAP, we define an antithesis as follows. First, we
determine randomly the fraction of variables that must change their value. Then, we
compute an antithesis by iteratively switching the values of two cells, whereby in each
step we choose the pair of cells which yields the best solution. Note that this proce-
dure is closely related to the greedy improvement heuristic. The difference is that, in
the antithesis computation, cells which have already switched values are not allowed
to change their values anymore. As synthesis, we return the best solution found while
moving from thesis to antithesis in this iterative way.

Numerical Results. In Table 1 we compare this simple approach with the tabu search
algorithm using the quadratic neighborhood which is implemented in COMET. This
algorithm was shown to be highly competitive compared to specialized procedures for
constraint satisfaction in [34]. Unless otherwise stated, all tests in this paper were run
on a Pentium III 733MHz machine with 512Mb RAM. Our algorithms are implemented
in C++ and compiled using GCC 4.3, with the -O3 flag. COMET models are run using
the just-in-time (-j2) compiler flag.

Even though the tabu search approach incorporates sophisticated techniques like an
adaptive tabu tenure procedure, we see that the simple dialectic search algorithm is
superior and outperforms TS in terms of average solution time and the minimal and
maximal time needed in 100 trials. Moreover, the standard deviation shows that dialectic
search performs far more robustly and predictably than TS.

3.2 Magic Squares

Our next problem from constraint satisfaction domain is the magic squares problem
[27]. A magic square of order n is an n × n square that contains all numbers from 1
to n2 such that the sum of each row, each column, and both main diagonals equals the
“magic sum” n(n2−1)/2). Although the problem of constructing a magic square is easy
(there exist polynomial-time construction methods), magic squares are notoriously hard
for systematic constraint programming approaches. The best systematic approach was

Dialectic Search 493

Table 2. Numerical Results for the Magic Square Problem. We present minimum, maximum and
average solution time in seconds for tabu, adaptive search, and dialectic search. Tabu search and
dialectic search results are averaged over 100 runs. The adaptive search results are taken from [7]
who ran their algorithms 10 times on each problem.

Minimum Maximum Average
Order Vars TS Adaptive Dialectic TS Adaptive Dialectic TS Adaptive Dialectic

20 400 13 0.1 0.12 56.8 7.35 14.6 18 3.41 2.95
30 900 98.8 0.67 0.38 800 52.5 54.2 135 18.1 15.2
40 1600 458 10.1 1.1 1.31K 166 360 541 58.1 53.3
50 2500 1.45K 44.5 3.23 36K 648 584 2.51K 203 150
60 3600 4.04K - 5.94 5.23K - 1.45K 4.48K - 361
70 4900 9.56K - 11.8 12.5K - 3.01K 10.5K - 711
80 6400 18.6K - 17.8 23.8K - 6.28K 20.3K - 1.80K
90 8100 33.7K - 30.4 45.7K - 13.2K 37.3K - 3.46K

100 10000 60.4K - 46.3 67.1K - 22.7K 64K - 5.02K

presented in [15] and can only construct magic squares of orders up to 18 efficiently.
[7] have proposed an adaptive local search for the problem which is able to construct
magic squares of order 50 within 200 seconds on a Pentium III 733MHz machine.

Objective, Initialization and Greedy Improvement. We propose a simple dialectic
search algorithm for the problem. As objective, we sum the squares of the deviations
from the magic sum for all rows, columns, and the two main diagonals. We start with
a random permutation of the numbers from 1 to n2 and assign them to the cells in the
square row by row. As greedy improvement heuristic, we consider pairs of variables
and compute the cost-delta that would result from flipping the values of the two cells.
We commit the best such flip and iterate until no more cost improvement is possible
anymore.

Antithesis and Synthesis. For the magic squares problem we interpret antithesis as
permuting the values of a fraction of the variables. The fraction of variables that must
change their value is determined randomly. We compute an antithesis by iteratively
switching the values of two cells, whereby in each step we choose the pair of cells
that would yield the most improvement in the objective value. Again, cells that have
already been altered are not allowed to change anymore. As synthesis we return the
best solution observed while moving from thesis to antithesis.

Numerical Results. In Table 2 we compare this simple approach with tabu search
algorithm using the quadratic neighborhood which is implemented in COMET and the
adaptive local search algorithm from [7]. The adaptive search results presented in [7]
were carried out on a Pentium III 733MHz, the same specs as our own machine. We see
that the dialectic search algorithm, despite its great simplicity, clearly outperforms the
existing approaches. Adaptive search appears more robust than dialectic search in the
comparison. Note, however, that dialectic search was run 100 times while the results
reported in [7] are based on a very small set of 10 runs only.

494 S. Kadioglu and M. Sellmann

We attribute the superior performance of dialectic search on this problem to its ability
to be greedy without running into the problem of being stuck in local optima. In fact,
we found that magic squares is actually a very easy problem and reacts very well to
aggressive exploitation strategies, allowing us to efficiently search very large spaces of
(n2)! potential solutions (for magic squares of order 100, that’s 10, 000! > 1035,000).
Using greedy improvements and a couple of synthesis moves alone, it is extremely easy
to find solutions with objectives 1 or 2, meaning that only one or two rows, columns,
or main diagonals have a deviation from the magic sum of 1. To get from here to a real
magic square is then result of a search where we consider a sequence of solutions of
the same quality (note the < instead of ≤ in line 15 of Algorithm 1 which ensures that
we move to the synthesis even if it has the same cost as the thesis) and usually very few
(mostly zero and occasionally one or two) global steps where the search actually moves
to the antithesis instead of the synthesis and continues from there.

4 Continuous Optimization

We next apply our dialectic search algorithm to continuous optimization, the problem
of finding the minimum of an n-dimensional, real-valued function over a box poly-
tope (i.e., the only constraints are lower and upper bounds on the continuous variables).
Continuous optimization problems arise in many practical application areas, like VLSI
design, chemical engineering, and trajectory planning. The problem is relatively simple
for functions that are differentiable and for which zero points of the derivatives can be
computed. However, for higher-dimensional functions with many local minima, contin-
uous optimization can become a challenging task. We present a simple dialectic search
algorithm for the problem and compare it with simulated annealing.

Initial Solution. An initial solution is obtained by assigning to each variable a value
chosen uniformly at random from the variable’s domain interval.

Antithesis and Synthesis. The antithesis is determined by selecting a random variable
with value x0 from the current solution and changing it to a new random value x1. To
compute the synthesis, we conduct an equi-distant walk from thesis to antithesis. At
each step of the walk, we move |x0 − x1|/K towards the antithesis. The best solution
encountered during this walk is returned as the synthesis.

Numerical Results. The performance of dialectic search is examined on three well-
known functions; Rastrigin, De Jong’s noiseless function #4, and Alpine, with dimen-
sions 20 and 50. DeJong’s function is convex and unimodal whereas Rastrigin and
Alpine functions are highly multimodal and exhibit many local minima. In Figure 2 we
give the definition, boundary values and visualization of each function. The minimum
objective value in all cases is zero. We compare our results with the SA implementation
from [30] which is known to be robust, easy to use and applicable to complex continu-
ous problems. Table 3 shows that dialectic search robustly provides very good solutions
at little cost also on this problem domain.

Dialectic Search 495

(a) Rastrigin (b) DeJong (c) Alpine

Fig. 2. Rastrigin(x) = 10n +
∑n

i=1(x
2
i −10cos(2πxi)) where −5.12 ≤ xi ≤ 5.12,

DeJong(x) =
∑n

i=1 ix4
i where −1.28 ≤ xi ≤ 1.28 and Alpine(x) =

∑n
i=1 |xisin(xi) +

0.1xi| where −10 ≤ xi ≤ 10

Table 3. Continuous Optimization. We give average minimum value and average number of func-
tion evaluations over 250 runs for continuous function minimization with dimensions 20 and 50.
SA cooling factors are set to 0.98 and 0.99.

Dialectic SA-0.98 SA-0.99
Function Value Eval. Value Eval. Value Eval.
Rastr.-20 < 10−3 208K 24.4 3.4M 22.4 6.8M
Rastr.-50 < 10−3 818K 87.3 8.3M 86.8 9.9M

DeJong-20 < 10−3 848 < 10−3 946 < 10−3 946
DeJong-50 < 10−3 3.7K < 10−3 2.5K < 10−3 2.5K
Alpine-20 < 10−3 86K < 10−3 1M < 10−3 2M
Alpine-50 < 10−3 458K < 10−3 2.9M < 10−3 5.8M

5 Constrained Optimization – Set Covering

Our final evaluation of the dialectic search paradigm is on one of the most studied NP-
hard combinatorial optimization problems, the set cover problem (SCP): Given a finite
set S := {1, . . . , m} of items, and a family F := {S1, . . . , Sn ⊆ S} of subsets of S,
and a cost function c : F → R+, the objective is to find a subset C ⊆ F such that
S ⊆

⋃
Si∈C Si and

∑
Si∈C c(Si) is minimized. The SCP has numerous practical appli-

cations such as crew scheduling for airlines or railway companies [19,20,5], location of
emergency facilities [32], and production planning in various industries [36].

Initial Solution and Greedy Improvement. A simple greedy construction for SCP
is to pick sets one by one until a cover is found. [35] compare 7 different criteria how
the next set is chosen (like the set which covers the most uncovered items, the set with
least costs, the set with best cost over newly covered items ratio, and several variations
of the latter). It was suggested to choose one of the criteria at random in each step of
the greedy construction. Run around 30 times, this randomized approach was reported
to yield good solutions, and we use this method to initialize our search. As greedy
improvement heuristic, we simply remove redundant sets, if any. If there are several,
we first pick a set which leaves the fewest items uncovered.

Antithesis and Synthesis. As antithesis, we pick a randomized subset T of the current
selection C, whereby we choose the size of this subset randomly between one half,

496 S. Kadioglu and M. Sellmann

Fig. 3. Function ’Merge’ for the SCP. The decision to select a bag or not is represented as a
binary variable. The bold variables in the thesis correspond to a randomized subset T of the
current selection C. Dashed boxes are used to indicate solutions that do not form a cover. The
synthesis is the lowest-cost cover found on the walk from thesis to antithesis.

one third, and one quarter of the cardinality of C. T is empty first and then augmented
iteratively by selecting two sets whose removal would leave the fewest items uncovered
which are still covered by C \T . One of the two sets is chosen uniformly at random and
added to T . We repeat this until T has the desired size. If A ← F \T does not cover all
items, we greedily add sets in T to A until it is a cover. A becomes our antithesis.

To obtain a synthesis, we conduct a greedy walk from the thesis to the antithesis.
This walk consists of two phases. In the first phase, we remove all sets in C that are not
part of A. In the second phase, we greedily select a set in A which minimizes the cost
over newly covered items and repeat until we obtain a cover which is returned as the
synthesis. Figure 3 illustrates such a greedy walk from thesis to antithesis.

Numerical Results. We compare this simple dialectic search with the iterative greedy
algorithm, ITEG, from [25] and the tabu search, TS, from [28]. We consider 70 well-
known benchmark instances that are available from the OR library [4]. These instances
involve up to 400 items and 4000 sets. In order to compare with ITEG and TS which
were developed for the uni-cost SCP, the costs of all sets are set to one. ITEG was
run on a multi-user Silicon Graphics IRIX Release 6.2 IP25, 194MHz MIPS R10000
processor and TS was run on a Pentium 4 with 2.4GHz. When comparing with ITEG,
we use again our Pentium III 733MHz machine and we divide the cutoff times reported
for ITEG by a factor of 4 which corresponds to the SPECint95 ratio of the two machines
used. For the comparison with TS, we use an AMD Athlon 64 X2 Dual Core Processor
3800 2.0 GHz machine which is slightly slower than the machine used in [28].

Tables 4 and 5 summarize the results. Due to space restrictions we cannot show
all results on individual instances.We therefore report aggregate results for each of the
different benchmark classes. It should be noted that the developers of the TS approach
tuned the tabu tenure on and for each of these sets individually. Similarly, the developers
of ITEG set the algorithm parameters to a suitable value for each benchmark class. In
contrast, Hegel was run with one set of parameters on all instances in all classes. As
we can see, Hegel provides high quality solutions very quickly. With the exception of
classes ’4’ and ’5’ where it performs slightly worse on average, Hegel produces equally
good or better results than ITEG in sometimes substantially less time. In terms of the

Dialectic Search 497

Table 4. Numerical Results for the Set Cover Problem. We present the average solution (standard
deviation), best solution (standard deviation), average time to find the best solution, and the time
limit used. The results are averaged for each benchmark class in the OR library. Hegel was run
50 times on each instance, ITEG data were taken from [25] who ran their algorithms 10 times on
each instance.

AvgSol BestSol AvgTime TimeLimit
Class ITEG Dialectic ITEG Dialectic ITEG Dialectic ITEG Dialectic Speedup

a 38.78 38.77 (0.16) 38.6 38.6 - 1.59 (1.38) 7.5 7.5 1
b 22.04 22.00 (0.04) 22.0 22 - 0.47 (0.23) 15 2.5 6
c 43.44 43.44 (0.42) 43.0 43 - 3.00 (2.48) 10 10 1
d 25.00 24.86 (0.15) 25.0 24.4 - 0.74 (0.49) 27.5 5 5.5
e 5.00 5.00 (0.00) 5.0 5.0 - 0.00 (0.00) 2.5 0.1 25
4 38.07 38.43 (0.28) 37.8 37.8 - 0.56 (0.49) 2.5 2.5 1
5 34.47 34.51 (0.35) 34.1 34.1 - 0.76 (0.56) 2.5 2.5 1
6 20.86 20.76 (0.11) 20.8 20.6 - 0.24 (0.24) 15 2.5 6

nre 17.04 17.00 (0.00) 17.0 17.0 - 0.42 (0.09) 8.5 1 8.5
nrf 10.50 10.44 (0.49) 10.0 10 - 0.58 (0.21) 16.5 1 16.5
nrg 62.82 62.56 (0.47) 62.0 61.6 - 2.85 (0.98) 6.5 5 1.3
nrh 34.78 34.49 (0.5) 34.0 34.0 - 1.62 (0.54) 15 2.5 6

Table 5. Numerical Results for the Set Cover Problem. We present the average runtime (standard
deviation) in seconds for finding the best solution in each run, as well as the average solution
quality and the best solution quality. Results are averaged for all instances in each benchmark
class in the OR library. Hegel was run 50 times on each instance and TS data were taken from
[28] who ran their algorithms 10 times on each instance.

AvgSol BestSol AvgTime
Class TS Dialectic TS Dialectic TS Dialectic Speedup

a 38.66 (0.24) 38.74 (0.16) 38.4 38.6 4.3 (3.78) 1.78 (1.63) 2.4
b 22.02 (0.06) 22.00 (0) 22 22 7.02 (6.98) 0.49 (0.25) 14
c 43.5 (0.44) 43.45 (0.41) 43 43 7.86 (7.16) 2.97 (2.45) 2.6
d 25 (5.04) 24.81 (0.12) 24.8 24.4 14.4 (14.4) 1.07 (0.77) 13.4
e 5 (0) 5 (0) 5 5 0 (0) 0 (0) 0
4 37.92 0.27) 38.20 (0.30) 37.7 37.8 0.67 (0.83) 1.63 (1.80) 0.4
5 34.36 (0.35) 34.28 (0.15) 34.1 34.1 1.87 (2.35) 1.85 (1.77) 1
6 20.78 (0.06) 20.66 (0.09) 20.6 20.6 0.26 (0.54) 0.72 (0.69) 0.3

nre 17.14 (0.3) 16.98 (0.06) 17 16.6 5.94 (11.3) 0.50 (0.46) 11.7
nrf 10.62 (0.5) 10 (0) 10 10 31.4 (61.96) 1.31 (0.90) 23.8
nrg 62.7 (0.6) 62.25 (0.47) 61.8 61.2 32.0 (32.3) 4.33 (2.28) 7.3
nrh 34.88 (0.44) 34.03 (0.19) 34 33.8 22.4 (57.5) 3.49 (2.20) 6.4

best solutions found over the different runs, when computing the average for each class,
Hegel always performs as good or better than ITEG.

Comparing with TS, Hegel is performing slightly worse on classes ’4’ and ’a’ and
outperforms TS in terms of solution quality otherwise, at times quite substantially (see
classes ’nrf’ and ’nrh’). Moreover, Hegel always finds the best solution earlier, leading
to speed-ups of up to a factor of 23.

498 S. Kadioglu and M. Sellmann

Finally, in terms of individual instances, Hegel found formerly unknown improving
solutions on four instances (d4(24), nre1(16), nrg3(61), nrg5(61)), that is over 5% of all
instances in one of the best studied benchmark sets in OR.

It took about 20 man-days to develop and test this algorithm which was by far the
most time we spent on any algorithm presented in this paper. Despite this short develop-
ment time, our algorithm outperforms the state-of-the-art approaches on set covering.
This shows that the dialectic search meta-heuristic effectively leads to simple and highly
efficient local search approaches.

6 Conclusion

We proposed to use Hegel and Fichte’s dialectic as a meta-heuristic search paradigm and
demonstrated its power and effectiveness by solving four problems from three greatly
different problem domains: constraint satisfaction, continuous optimization, and com-
binatorial optimization.

With very little effort the dialectic search paradigm allowed us to devise a local
search algorithm for the costas arrays problem and the magic squares problem. More-
over, with very little effort we devised a local search algorithm for the set covering
problem, one of the most intensively studied problems in the operations research liter-
ature which has been the subject of many research projects and on which entire Ph.D.
theses have been written. Even though we spent only about 20 man-days on this al-
gorithm, it outperforms the fastest algorithms from the very rich literature which were
individually tuned on and for each class of benchmark problems. In contrast, our algo-
rithm is the same for all problems from all classes, it did not undergo any sophisticated
tuning, and it still provides solutions of the same or better quality in less time.

We conclude that Hegel and Fichte’s dialectic provides an appealing framework for
devising highly efficient local search algorithms for anyone working on constraints.
We believe that the reason for the simplicity of use is primarily caused by the fact
that dialectic search allows us to develop functions for exploitation and exploration
in separation. We outlined a close relation with existing techniques, especially tabu
search, iterated local search, variable neighborhood search, and very large scale neigh-
borhood search. We welcome the view that dialectic search represents a special case
of all of these methods as it may help the research community to further improve di-
alectic search. Our own objective was to devise a meta-heuristic which is, on one hand,
general enough to be applied to a great variety of problems and which, on the other
hand, is specific enough to guide the user to develop effective problem-specific methods
for search space exploration and exploitation. We believe we found a search paradigm
which strikes a good balance between being specific and being general in Hegel and
Fichte’s philosophy of dialectic.

References

1. Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P.: A survey of Very Large Scale Neighbor-
hood Search Techniques. Discrete Applied Mathematics 123, 75–102 (2002)

2. Boese, K.D.: Cost versus distance in the traveling salesman problem. TR, CSD-950018,
UCLA (1995)

Dialectic Search 499

3. Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA Journal on Computing 6(2), 126–
140 (1994)

4. Beasley, J.E.: OR-Library: Distributing test problems by electronic mail. Operations Re-
search Society 41, 1069–1072 (1990)

5. Caprara, A., Fischetti, M., Toth, P., Vigo, D., Guida, P.L.: Algorithms for Railway Crew
Management. Mathematical Programming 79, 125–141 (1997)

6. C̃erny, V.: Thermodynamics Approach to the Travelling Salesman Problem: An Efficient
Simulation Algorithm. Optimization Theory Appl. 45, 41–51 (1985)

7. Codognet, P., Diaz, D.: Yet Another Local Search Method for Constraint Solving. In: AAAI
(2001)

8. Costas, J.P.: A study of a class of detection waveforms having nearly ideal range-Doppler
ambiguity properties. Proceedings of the IEEE 72(8), 996–1009 (1984)

9. Fichte, J.G.: Wissenschaftslehre, The Science of Knowledge. Cambridge University Press,
Cambridge (1982); translated by P. Heath and J. Lachs (1794)

10. Freedman, A., Levanon, N.: Staggered Costas signals. IEEE Trans. Aerosp. Electron
Syst. AES-22(6), 695–701 (1986)

11. Glover, F.: Tabu Search, Part I. ORSA Journal on Computing 1(3), 190–206 (1989)
12. Glover, F.: Tabu Search, Part II. ORSA Journal on Computing 2(1), 4–32 (1990)
13. Glover, F., Laguna, M., Marti, R.: Fundamentals of scatter search and path relinking. TR,

80309-0419, University of Colorado (2000)
14. Goffe, W.L., Ferrier, G.D., Rogers, J.: Global Optimization and Statistical Functions with

Simulated Annealing. Journal of Econometrics 60(1-2), 65–99 (1994)
15. Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Wallace, M. (ed.) CP 2004.

LNCS, vol. 3258, pp. 274–289. Springer, Heidelberg (2004)
16. Golomb, S.W., Taylor, H.: Two Dimensional Synchronization Patterns for Minimum Ambi-

guity. IEEE Trans. Informat. Theory IT-28(4), 600–604 (1982)
17. Hansen, P., Mladenovic, N.: Variable Neighbourhood Search: Principles and Applications.

European Journal of Operational Research 130, 449–467 (2001)
18. Hegel, G.W.F.: Phänomenologie des Geistes, Phenomenology of Spirit, translated by Miller,

A.V. Oxford University Press, Oxford (1807) (1977)
19. Hoffmann, K.L., Padberg, M.W.: Solving Airline Crew Scheduling Problems by Branch-and-

Cut. Management Science 39(6), 657–682 (1993)
20. Housos, E., Elmoth, T.: Automatic Optimization of Subproblems in Scheduling Airline

Crews. Interfaces 27(5), 68–77 (1997)
21. Jones, T., Forrest, S.: Fitness Distance Correlation as a Measure of Problem Difficulty for

Genetic Algorithms. In: Genetic Algorithms, pp. 184–192 (1995)
22. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Sci-

ence 220(4598), 671–680 (1983)
23. Selman, B., Levesque, H.J., Mitchell, D.G.: A New Method for Solving Hard Satisfiability

Problems. In: AAAI, pp. 440–446 (1992)
24. Macready, W.G., Wolpert, D.H.: Bandit Problems and the Exploration/Exploitation Tradeoff.

IEEE Transactions on Evolutionary Computation 2(2), 2–22 (1998)
25. Marchiori, E., Steenbeek, A.: An Iterated Heuristic Algorithm for the Set Covering Problem.

In: WEA (1998)
26. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of

State Calculations by Fast Computing Machines. Chemical Physics 21(6), 1087–1092 (1953)
27. Moran, J.: The Wonders of Magic Squares. Vintage, New York (1982)
28. Musliu, N.: Local Search Algorithm for Unicost Set Covering Problem. In: Ali, M.,

Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 302–311. Springer, Hei-
delberg (2006)

500 S. Kadioglu and M. Sellmann

29. Stuetzle, T.: Iterated local search for the quadratic assignment problem. TR, AIDA-99-03,
Darmstadt University of Technology (1999)

30. SIMANN. Fortran Simulated Annealing code (2004),
http://wueconb.wustl.edu/˜goffe

31. Thompson, P.M., Orlin, J.B.: The theory of cyclic transfers Working Paper No. OR, 200-89,
Operations Research Center. MIT, Cambridge (1989)

32. Toregas, C., Swain, R., ReVelle, C., Bergman, L.: The Location of Emergency Service Facil-
ities. Operational Research 19(6), 1363–1373 (1971)

33. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press, Cambridge
(2005)

34. Van Hentenryck, P., Michel, L.: Synthesis of constraint-based local search algorithms from
high-level models. In: AAAI (2007)

35. Vasko, F.J., Wilson, G.R.: An Efficient Heuristic for Large Set Covering Problems. Naval
Research Logistics Quarterly 31, 163–171 (1984)

36. Vasko, F.J., Wolf, F.E.: Optimal Selection of Ingot Sizes via Set Covering. Operations Re-
search 35, 115–121 (1987)

http://wueconb.wustl.edu/~goffe

Restricted Global Grammar Constraints�

George Katsirelos1, Sebastian Maneth2, Nina Narodytska2, and Toby Walsh2

1 NICTA, Sydney, Australia
george.katsirelos@nicta.com.au

2 NICTA and University of NSW, Sydney, Australia
sebastian.maneth@nicta.com.au, ninan@cse.unsw.edu.au,

toby.walsh@nicta.com.au

Abstract. We investigate the global GRAMMAR constraint over restricted classes
of context free grammars like deterministic and unambiguous context-free gram-
mars. We show that detecting disentailment for the GRAMMAR constraint in these
cases is as hard as parsing an unrestricted context free grammar. We also consider
the class of linear grammars and give a propagator that runs in quadratic time. Fi-
nally, to demonstrate the use of linear grammars, we show that a weighted linear
GRAMMAR constraint can efficiently encode the EDITDISTANCE constraint, and
a conjunction of the EDITDISTANCE constraint and the REGULAR constraint.

1 Introduction

In domains like staff scheduling, regulations can often be naturally expressed using
formal grammars. Pesant [9] introduced the global REGULAR constraint to express
problems using finite automaton. Sellmann [14] and Quimper and Walsh [11] then in-
troduced the global GRAMMAR constraint for context-free grammars. Unlike parsing
which only finds a single solution, propagating such a constraint essentially consid-
ers all solutions. Nevertheless, a propagator for the REGULAR constraint runs in linear
time and a propagator for the GRAMMAR constraint runs in cubic time just like the
corresponding parsers. Subsequently, there has been research on more efficient propa-
gators for these global constraints [12,10,4,7,6]. Whilst research has focused on regular
and unrestricted context-free languages, a large body of work in formal language the-
ory considers grammars between regular and context-free. Several restricted forms of
context-free grammars have been proposed that permit linear parsing algorithms whilst
being more expressive than regular grammars. Examples of such grammars are LL(k),
LR(1), and LALR. Such grammars play an important role in compiler theory. For in-
stance, yacc generates parsers that accept LALR languages.

In this paper we explore the gap between the second and third levels of the Chom-
sky hierarchy for classes of grammars which can be propagated more efficiently than
context-free grammars. These classes of grammar are attractive because either they
have a linear or quadratic time membership test (e.g., LR(k) and linear grammars, re-
spectively) or they permit counting of strings of given length in polynomial time (e.g.,

� NICTA is funded by the Australian Government’s Department of Broadband, Communica-
tions, and the Digital Economy and the Australian Research Council.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 501–508, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

502 G. Katsirelos et al.

unambiguous grammars). The latter may be useful in branching heuristics. One of our
main contributions is a lower bound on the time complexity for propagating grammar
constraints using deterministic or unambiguous grammars. We prove that detecting dis-
entailment for such constraints has the same time complexity as the best parsing algo-
rithm for an arbitrary context-free grammar. Using LL(k) languages or unambiguous
grammars does not therefore improve the efficiency of propagation. Another contri-
bution is to show that linearity of the grammar permits quadratic time propagation.
We show that we can encode an EDITDISTANCE constraint and a combination of an
EDITDISTANCE constraint and a REGULAR constraint using such a linear grammar.
Experimental results show that this encoding is very efficient in practice.

2 Background

A context-free grammar is a tuple G = 〈N, T, P, S〉, where N is a finite set of non-
terminal symbols, T is a finite set of terminal symbols, P is a set of productions, and
S ∈ N is the start symbol. A production is of the form A → α where A ∈ N and
α ∈ (N ∪T)+. The derivation relation⇒G induced by G is defined as follows: for any
u, v ∈ (N∪T)∗, uAv ⇒G uαv if there exists a production A → α in P . Sometimes we
additionally index⇒G by the production that is applied. The transitive, reflexive closure
of ⇒G is denoted by ⇒∗

G. A string in s ∈ T ∗ is generated by G if S ⇒∗
G s. The set

of all strings generated by G is denoted L(G). Note that this does not allow the empty
string ε as right-hand side of a production. Hence, ε �∈ L(G). This is not a restriction:
we can add a new start symbol Z with productions Z → ε | S to our grammars. Our
results can easily be generalized to such ε-enriched grammars. We denote the length of
a string s by |s|. The size of G, denoted by |G|, is

∑
A→α∈P |Aα|.

A context-free grammar is in Chomsky form if all productions are of the form A →
BC where B and C are non-terminals or A → a where a is a terminal. Any ε-free
context-free grammar G can be converted to an equivalent grammar G′ in Chomsky
form with at most a linear increase in its size; in fact, |G′| ≤ 3|G|, see Section 4.5
in [3]. A context-free grammar is in Greibach form if all productions are of the form
A → aα where a is a terminal and α is a (possibly empty) sequence of non-terminals.
Any context-free grammar G can be converted to an equivalent grammar G′ in Greibach
form with at most a polynomial increase in its size; in fact, the size of G′ is in O(|G|4)
in general, and is in O(|G|3) if G has no chain productions of the form A → B for
nonterminals A, B, see [1]. A context-free grammar is regular if all productions are of
the forms A→ w or A → wB for non-terminals A, B and w ∈ T +.

3 Simple Context-Free Grammars

In this section we show that propagating a simple context-free grammar constraint is at
least as hard as parsing an (unrestricted) context-free grammar. A grammar G is simple
if it is in Greibach form, and for every non-terminal A and terminal a there is at most
one production of the form A → aα. Hence, restricting ourselves to languages recog-
nized by simple context-free grammars does not improve the complexity of propagating

Restricted Global Grammar Constraints 503

a global grammar constraint. Simple context-free languages are included in the deter-
ministic context-free languages (characterized by deterministic push-down automata),
and also in the LL(1) languages [13], so this result also holds for propagating these
classes of languages. Given finite sets D1, . . . , Dn, their Cartesian product language
L(RD1,...,Dn) is the cross product of the domains {a1a2 · · · an | a1 ∈ D1, . . . , an ∈
Dn}. Following [14], we define the global GRAMMAR constraint:

Definition 1. The GRAMMAR([X1, . . . , Xn], G) constraint is true for an assignment
variables X iff a string formed by this assignment belongs to L(G).

From Definition 1, we observe that finding a support for the grammar constraint is
equivalent to intersecting the context-free language with the Cartesian product language
of the domains.

Proposition 1. Let G be a context-free grammar, X1, . . . , Xn be a sequence of vari-
ables with domains D(X1), . . . , D(Xn). Then L(G) ∩ L(RD(X1),...,D(Xn)) �= 0 iff
GRAMMAR([X1, . . . , Xn], G) has a support.

Context-free grammars are effectively closed under intersection with regular grammars.
To see this, consider a context-free grammar G in Chomsky form and a regular grammar
R. Following the “triple construction”, the intersection grammar has non-terminals of
the form 〈F, A, F ′〉 where F, F ′ are non-terminals of R and A is a non-terminal of
G. Intuitively, 〈F, A, F ′〉 generates strings w that are generated by A and also by F ,
through a derivation from F to wF ′. If A → BC is a production of G, then we add, for
all non-terminals F, F ′, F ′′ of R, the production 〈F, A, F ′′〉 → 〈F, B, F ′〉〈F ′, C, F ′′〉.
The resulting grammar is O(|G|n3) in size where n is the number of non-terminals
of R. This is similar to the construction of Theorem 6.5 in [3] which uses push-down
automata instead of grammars. Since emptiness of context-free grammars takes linear
time (cf. [3]) we obtain through Proposition 1 a cubic time algorithm to check whether
a global constraint GRAMMAR([X1, . . . , Xn], G) has support. In fact, this shows that
we can efficiently propagate more complex constraints, such as the conjunction of a
context-free with a regular constraint. Note that if R is a Cartesian product language
then the triple construction generates the same result as the CYK based propagator for
the GRAMMAR constraint [14,11].

We now show that for simple context-free grammars G, detecting disentailment of
the constraint GRAMMAR([X1, . . . , Xn], G), i.e. testing whether it has a solution, is at
least as hard as parsing an arbitrary context-free grammar.

Theorem 1. Let G be a context-free grammar in Greibach form and s a string
of length n. One can construct in O(|G|) time a simple context-free grammar G′

and in O(|G|n) time a Cartesian product language L(RD(X1),...,D(Xn)) such that
L(G′) ∩ L(RD(X1),...,D(Xn)) �= ∅ iff s ∈ L(G).

Proof. The idea behind the proof is to determinize an unrestricted context free gram-
mar G by mapping each terminal in G to a set of pairs – the terminal and a pro-
duction that can consume this terminal. This allows us to carry information about
the derivation inside a string in G′. Then, we construct a Cartesian product language
L(RD(X1),...,D(Xn)) over these pairs so that all strings from this language map only to

504 G. Katsirelos et al.

the string s. Let G = 〈N, T, P, S〉 and fix an arbitrary order of the productions in P .
We now construct the grammar G′ = 〈N, T ′, P ′, S〉. For every 1 ≤ j ≤ |P |, if the j-th
production of P is A→ aα then let (a, j) be a new symbol in T ′ and let the production
A → (a, j)α be in P ′. Next, we construct the Cartesian product language. We define
D(Xi) = {(a, j)|(si = a) ∧ (a, j) ∈ T ′}, i = 1, . . . , n and si is the i-th letter of s.
Clearly, G′ is constructed in O(|G|) time and L(RD(X1),...,D(Xn)) in O(|P |n) time.

(⇒) Let L(G′) ∩ L(RD(X1),...,D(Xn)) be non empty. Then there exits a string s′

that belongs to the intersection. Let s′ = (a1, i1) · · · (an, in). By the definition of
L(RD(X1),...,D(Xn)), the string a1a2 · · · an must equal s. Since s′ ∈ L(G′), there must
be a derivation by G of the form

S ⇒G,p1 a1α ⇒G,p2 a1a2α
′ · · · ⇒G,pn a1 · · ·an

where pj is the j-th production in P . Hence, s ∈ L(G).

(⇐) Let s ∈ L(G). Consider a derivation sequence of the string s. We replace every
symbol a in s that was derived by the i-th production of G by (a, i). By the construction
of G′, the string s′ is in L(G′). Moreover, s′ is also in L(RD(X1),...,D(Xn)).
�

Note that context-free parsing has a quadratic time lower bound, due to its connection
to matrix multiplication [8]. Given this lower bound and the fact that the construction
of Theorem 1 requires only linear time, we can deduce the following.

Corollary 1. Let G be a context-free grammar. If G is simple (or deterministic or
LL(1)) then detecting disentailment of GRAMMAR([X1, . . . , Xn], G) is at least as hard
as context-free parsing of a string of length n.

We now show the converse to Theorem 1 which reduces intersection emptiness of
a context-free with a regular grammar, to the membership problem of context-free
languages. This shows that the time complexity of detecting disentailment for the
GRAMMAR constraint is the same as the time complexity of the best parsing algorithm
for an arbitrary context free grammar. Therefore, our result shows that detecting dis-
entailment takes O(n2.4) time [2], as in the best known algorithm for Boolean matrix
multiplication. It does not, however, improve the asymptotic complexity of a domain
consistency propagator for the GRAMMAR constraint [14,11].

Theorem 2. Let G = 〈N, T, P, S〉 be a context-free grammar and L(RD(X1),...,D(Xn))
be Cartesian product language. One can construct in time O(|G| + |T |2) a context-
free grammar G′ and in time O(n|T |) a string s such that s ∈ L(G′) iff L(G) ∩
L(RD(X1),...,D(Xn)) �= ∅.

Proof (Sketch). We assign an index to each terminal in T . For each position i of the
strings of R, we create a bitmap of the alphabet that describes the terminals that may
appear in that position. The j-th bit of the bitmap is 1 iff the symbol with index j may
appear at position i. The string s is the concatenation of the bitmaps for each position
and has size n|T |. First, we add B → 0 and B → 1 to G′. For each terminal in T with
index j, we introduce Tj → Bj−11B|T |−j into G′ to accept any bitmap with 1 at the
j-th position. Then, for each production in G of the form A → aα such that the index

Restricted Global Grammar Constraints 505

of a is j, we add A → Tjα to G′. In this construction, every production in G′ except
for those with Ti on the left hand side can be uniquely mapped to a production in G. It
can be shown that s ∈ L(G′) iff L(G) ∩ L(RD(X1),...,D(Xn)) �= ∅.
�

4 Linear Context-Free Grammars

A context-free grammar is linear if every production contains at most one non-terminal
in its right-hand side. The linear languages are a proper superset of the regular lan-
guages and are a strict subset of the context-free languages. Linear context-free gram-
mars possess two important properties: (1) membership of a given string of length n
can be checked in time O(n2) (see Theorem 12.3 in [15]), and (2) the class is closed
under intersection with regular grammars (to see this, apply the “triple construction” as
explained after Proposition 1). The second property opens the possibility of construct-
ing a polynomial time propagator for a conjunction of the the linear GRAMMAR and the
REGULAR constraints. Interestingly, we can show that a CYK-based propagator for this
type of grammars runs in quadratic time. This is then the third example of a grammar,
besides regular and context-free grammars, where the asymptotic time complexity of
the parsing algorithm and that of the corresponding propagator are equal.

Theorem 3. Let G be a linear grammar and GRAMMAR([X1, . . . , Xn], G) be the cor-
responding global constraint. There exists a domain consistency propagator for this
constraint that runs in O(n2|G|) time.

Proof. We convert G = 〈N, T, P, S〉 into CNF. Every linear grammar can be converted
into the form A → aB, A → Ba and A → a, where a, b ∈ T and A, B ∈ N (see
Theorem 12.3 of [15]) in O(|G|) time. To obtain CNF we replace every terminal a ∈ T
that occurs in a production on the right hand side with a new non-terminal Ya and
introduce a production Ya → a.

Consider the CYK-based domain consistency propagator for an arbitrary context-
free grammar constraint [11,14]. The algorithm runs in two stages. In the first stage, it
constructs in a bottom-up fashion a dynamic programing table Vn×n, where an element
A of Vi,j is a potential non-terminal that generates a substring from the domains of
variables [Xi, . . . , Xi+j]. In the second stage, it performs a top-down traversal of V and
marks an element A of Vi,j iff it is reachable from the starting non-terminal S using
productions of the grammar and elements of V . It then removes unmarked elements,
including terminals. If it removes a terminal at column i of the table, it prunes the
corresponding value of variable Xi.

The complexity of this algorithm is bounded by the number of possible 1-step
derivations from each non-terminal in the table. Let G′ = 〈N ′, T ′, P ′, S′〉 be an
arbitrary context free grammar. There are O(|N ′|n2) non-terminals in the table and
each non-terminal can be expanded in O(F ′(A)n) possible ways, where F ′(A) is the
number of productions in G′ with non-terminal A on the left-hand side. Therefore,
the total time complexity of the propagator for unrestricted context-free grammars is
n2
∑

A∈N ′ nF ′(A) = O(n3|G′|). In contrast, the number of possible 1-step deriva-
tions from each non-terminal in linear grammars is bounded by O(F (A)). Therefore,
the propagator runs in O(n2|G|) for a linear grammar G.
�

506 G. Katsirelos et al.

Theorem 3 can be extended to the weighted form of the linear GRAMMAR constraint,
WEIGHTEDCFG [5]. A weighted grammar is annotated with a weight for each pro-
duction and the weight of a derivation is the sum of all weights used in it. The linear
WEIGHTEDCFG(G, Z, [X1, . . . , Xn]) constraint holds iff an assignment X forms a
string belonging to the weighted linear grammar G and the minimal weight deriva-
tion of X is less than or equal to Z . The domain consistency propagator for the
WEIGHTEDCFG constraint is an extension of the propagator for GRAMMAR that com-
putes additional information for each non-terminal A ∈ Vi,j—the minimum and the
maximum weight derivations from A. Therefore, this algorithm has the same time and
space asymptotic complexity as the propagator for GRAMMAR, so the complexity anal-
ysis for the linear WEIGHTEDCFG constraint is identical to the non-weighted case.

It is possible to restrict linear grammars further, so that the resulting global constraint
problem is solvable in linear time. As an example, consider “fixed-growth” grammars
in which there exists l and r with l + r ≥ 1 such that every production is of the form
either A → w ∈ T + or A → uBw where the length of u ∈ T ∗ equals l and the
length of w ∈ T ∗ equals r. In this case, the triple construction (explained below Propo-
sition 1) generates O(|G|n) new non-terminals implying linear time propagation (sim-
ilarly, CYK runs in linear time as it only generates non-terminals on the diagonal of
the dynamic program). A special case of fixed-growth grammars are regular grammars
which have l = 1 and r = 0 (or vice versa).

5 The EDITDISTANCE Constraint

To illustrate linear context-free grammars, we show how to encode an edit distance
constraint into such a grammar. EDITDISTANCE([X1, . . . , Xn, Y1, . . . , Ym], N) holds
iff the edit distance between assignments of two sequences of variables X and Y is less
than or equal to N . The edit distance is the minimum number of deletion, insertion
and substitution operations required to convert one string into another. Each of these
operations can change one symbol in a string. W.L.O.G. we assume that n = m. We will
show that the EDITDISTANCE constraint can be encoded as a linear WEIGHTEDCFG
constraint. The idea of the encoding is to parse matching substrings using productions
of weight 0 and to parse edits using productions of weight 1.

We convert EDITDISTANCE([X, Y], N) into a linear WEIGHTEDCFG([Z2n+1, N,
Ged) constraint. The first n variables in the sequence Z are equal to the sequence X, the
variable Zn+1 is ground to the sentinel symbol # so that the grammar can distinguish
the sequences X and Y, and the last n variables of the sequence Z are equal to the reverse
of the sequence Y. We define the linear weighted grammar Ged as follows. Rules S →
dSd with weight w = 0, ∀d ∈ D(X) ∪D(Y), capture matching terminals, rules S →
d1Sd2 with w = 1, ∀d1 ∈ D(X), d2 ∈ D(Y), d1 �= d2, capture replacement, rules
S → dS|Sd with w = 1, ∀d ∈ D(X), capture insertions and deletions. Finally, the rule
S → # with weight w = 0 generates the sentinel symbol. As discussed in the previous
section, the propagator for the linear WEIGHTEDCFG constraint takes O(n2|G|) time.
Down a branch of the search tree, the time complexity is O(n2|G|ub(N)).

We can use this encoding of the EDITDISTANCE constraint into a linear
WEIGHTEDCFG constraint to construct propagators for more complex constraints. For
instance, we can exploit the fact that linear grammars are closed under intersection

Restricted Global Grammar Constraints 507

Table 1. Performance of the encoding into WEIGHTEDCFG constraints shown in: number of
instances solved in 60 sec / average number of choice points / average time to solve

n N EDDec ED∧
#solved #choice points time #solved #choice points time

15 2 100 29 0.025 100 6 0.048
20 2 100 661 0.337 100 6 0.104
25 3 93 2892 2.013 100 10 0.226
30 3 71 6001 4.987 100 12 0.377
35 4 58 5654 6.300 100 17 0.667
40 4 40 3140 4.690 100 17 0.985
45 5 36 1040 2.313 100 19 1.460
50 5 26 1180 4.848 100 24 1.989

TOTALS
solved/total 524 /800 800 /800

avg time for solved 2.557 0.732
avg choice points for solved 2454 14

with regular grammars to propagate efficiently the conjunction of an EDITDISTANCE

constraint and REGULAR constraints on each of the sequences X,Y. More formally,
let X and Y be two sequences of variables of length n subject to the constraints
REGULAR(X, R1), REGULAR(Y, R2) and EDITDISTANCE(X, Y, N). We construct a
domain consistency propagator for the conjunction of these three constraints, by com-
puting a grammar that generates strings of length 2n + 1 which satisfy the conjunc-
tion. First, we construct an automaton that accepts L(R1)#L(R2)R. This language
is regular and requires an automaton of size O(|R1| + |R2|). Second, we intersect this
with the linear weighted grammar that encodes the EDITDISTANCE constraint using the
“triple construction”. The size of the obtained grammar is G∧ = |Ged|(|R1| + |R2|)2
and this grammar is a weighted linear grammar. Therefore, we can use the linear
WEIGHTEDCFG(Z, N, G∧) constraint to encode the conjunction. Note that the size of
G∧ is only quadratic in |R1|+|R2|, because Ged is a linear grammar. The time complex-
ity to enforce domain consistency on this conjunction of constraints is O(n2|G∧|) =
O(n2d2(|R1|+ |R2|)2) for each invocation and O(n2d2(|R1|+ |R2|)2ub(N)) down a
branch of the search tree.

To evaluate the performance of the WEIGHTEDCFG(Z, N, G∧) constraint we carried
out a series of experiments on random problems. In out first model the conjunction of
the EDITDISTANCE constraint and two REGULAR constraints was encoded with a sin-
gle WEIGHTEDCFG(Z, N, G∧) constraint. We call this model ED∧. The second model
contains the EDITDISTANCE constraint, encoded as WEIGHTEDCFG(Z, N, Ged),
and two REGULAR constraints. The REGULAR constraint for the model EDDec

is implemented using a decomposition into ternary table constraints [11]. The
WEIGHTEDCFG constraint is implemented with an incremental monolithic propa-
gator [5]. The first REGULAR constraint ensures that there are at most two con-
secutive values one in the sequence. The second encodes a randomly generated
string of 0s and 1s. To make problems harder, we enforced the EDITDISTANCE

constraint and the REGULAR constraints on two sequences X#(Y)R and X′#(Y′)R of
the same length 2n+1. The EDITDISTANCE constraint and the first REGULAR constraint

508 G. Katsirelos et al.

are identical for these two sequences, while Y and Y′ correspond to different randomly
generated strings of 0s and 1s. Moreover, X and X′ overlap on 15% of randomly chosen
variables. For each possible value of n ∈ {15, 20, 25, 30, 35, 40, 45, 50}, we generated
100 instances. Note that n is the length of each sequence X, Y, X′ and Y′. N is the maxi-
mum edit distance between X and Y and between X′ and Y′. We used a random value and
variable ordering and a time out of 60 sec. Results for different values of n are presented
in Table 1. As can be seen from the table, the model ED∧ significantly outperforms the
model EDDec for larger problems, but it is slightly slower for smaller problems. Note
that the model ED∧ solves many more instances compared to EDDec.

6 Conclusions

Unlike parsing, restrictions on context free grammars such as determinism do not im-
prove the efficiency of propagation of the corresponding global GRAMMAR constraint.
On the other hand, one specific syntactic restriction, that of linearity, allows propaga-
tion in quadratic time. We demonstrated an application of such a restricted grammar in
encoding the EDITDISTANCE constraint and more complex constraints.

References

1. Blum, N., Koch, R.: Greibach normal form transformation revisited. Inf. Comput. 150, 112–
118 (1999)

2. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Sym-
bolic Comput. 9, 251–280 (1990)

3. Hopcroft, J.W., Ullman, J.D.: Introduction to automata theory, languages, and computation.
Addison-Wesley, Reading (1979)

4. Kadioglu, S., Sellmann, M.: Efficient context-free grammar constraints. In: AAAI, pp. 310–
316 (2008)

5. Katsirelos, G., Narodytska, N., Walsh, T.: The weighted CFG constraint. In: Perron, L., Trick,
M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 323–327. Springer, Heidelberg (2008)

6. Katsirelos, G., Narodytska, N., Walsh, T.: Reformulating global grammar constraints. In: van
Hoeve, W.J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 132–147. Springer,
Heidelberg (2009)

7. Lagerkvist, M.: Techniques for Efficient Constraint Propagation. PhD thesis, KTH, Sweden
(2008)

8. Lee, L.: Fast context-free grammar parsing requires fast boolean matrix multiplication. J.
ACM 49, 1–15 (2002)

9. Pesant, G.: A regular language membership constraint for finite sequences of variables. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

10. Quimper, C., Walsh, T.: Decompositions of grammar constraints. In: AAAI, pp. 1567–1570
(2008)

11. Quimper, C.G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.) CP 2006.
LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

12. Quimper, C.G., Walsh, T.: Decomposing global grammar constraints. In: Bessière, C. (ed.)
CP 2007. LNCS, vol. 4741, pp. 590–604. Springer, Heidelberg (2007)

13. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1. Springer, Heidelberg
(2004)

14. Sellmann, M.: The theory of grammar constraints. In: Benhamou, F. (ed.) CP 2006. LNCS,
vol. 4204, pp. 530–544. Springer, Heidelberg (2006)

15. Wagner, K., Wechsung, G.: Computational Complexity. Springer, Heidelberg (1986)

Conflict Resolution

Konstantin Korovin, Nestan Tsiskaridze, and Andrei Voronkov

The University of Manchester
{korovin,tsiskarn,voronkov}@cs.man.ac.uk

Abstract. We introduce a new method for solving systems of linear in-
equalities over the rationals—the conflict resolution method. The method
successively refines an initial assignment with the help of newly de-
rived constraints until either the assignment becomes a solution of the
system or a trivially unsatisfiable constraint is derived. We show that
this method is correct and terminating. Our experimental results show
that conflict resolution outperforms the Fourier-Motzkin method and the
Chernikov algorithm, in some cases by orders of magnitude.

1 Introduction

In this paper we introduce a new algorithm for checking solvability of systems
of linear inequalities, called conflict resolution. The method works with such
a system S and an assignment to variables σ (initially arbitrary) and refines
the assignment trying to make it into a solution of S. If such a refinement is
impossible, it is due to a pair of inequalities in S of the forms x + p ≥ 0 and
−x + q ≥ 0 with some properties. In this case we resolve the conflict by adding
a new equation p + q ≥ 0. The use of this rule makes the method similar to the
Fourier-Motzkin variable elimination.

The first (rather naive) implementation of the method shows that in practice
it normally behaves better, and sometimes orders of magnitude better than the
Fourier-Motzkin method and the Chernikov algorithm. These experiments are
confirmed by some properties of our method proved in this paper, namely, that
it never derives redundant (in some natural sense) inequalities. The conflict
resolution algorithm is well-suited both for proving inconsistency of systems of
linear constraints and for finding satisfying assignments.

It is a bit too early to extensively compare this method to the existing im-
plementations of the simplex or interior point methods since not much is known
about the best strategies, optimisations and modifications of the method but we
hope it can eventually become competitive also with the best previously known
methods. In this paper we only present some initial experimental results.

This paper is structured as follows. Section 2 defines main notions. Section 3
overviews the Fourier-Motzkin variable elimination method. In Section 4 we

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 509–523, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

510 K. Korovin, N. Tsiskaridze, and A. Voronkov

introduce the conflict resolution and the assignment refinement rules used in our
method and prove some of their properties. Section 5 presents the conflict reso-
lution algorithm CRA. We prove that the algorithm is correct and terminating.
In Section 6 we compare our method with the Fourier-Motzkin variable elimina-
tion: we show that our method does not derive redundant inequalities and give
an example of a sequence of systems on which the Fourier-Motzkin method is
exponential while our method is linear independently of the strategy used and
the order of rule applications. In Section 7 we briefly discuss how the method can
be modified to handle strict inequalities and linear programming. Section 8 is
dedicated to the implementation and Section 9 to experiments with our method.
Finally, in Section 10 we mention related work on avoiding redundancy in the
Fourier-Motzkin method.

2 Preliminaries

Let Q denote the set of rationals. Throughout the paper we denote by n a positive
integer and by X a finite set of variables {x1, . . . , xn}. We call a rational linear
constraint over X either a formula anxn+. . .+a1x1+b�0, where � ∈ {≥, >, =, �=}
and ai ∈ Q for 1 ≤ i ≤ n, or one of the formulas ⊥,�. The formula ⊥ is always
false and � is always true. The constraints ⊥ and � are called trivial. For
brevity, in the sequel we will call such rational linear constraints over X simply
linear constraints. We call a system of linear constraints any finite set of linear
constraints.

In this paper we will describe several algorithms for solving finite sets of ra-
tional linear constraints. Let � be a total order on X . Without loss of generality
we assume xn � xn−1 � . . . � x1. A constraint is called normalised if it is of the
form ⊥, �, xk + q � 0 or −xk + q � 0, where � is as defined above, xk is the max-
imal variable in the respective constraint, and q does not contain xk. Evidently,
every constraint can be effectively transformed into an equivalent normalised
constraint. In the sequel, we assume that all constraints are normalised.

We define an assignment σ over the set of variables X as a mapping from X to
Q, i.e. σ : X → Q. Given an assignment σ, a variable x ∈ X and a value v ∈ Q,
we call the update of σ at x by v, denoted by σv

x, the assignment obtained from
σ by changing the value of x by v and leaving the values of the other variables
unchanged.

For a linear polynomial q over X , denote by qσ the value of q after replacing
all variables x ∈ X by the corresponding values σ(x). An assignment σ is called
a solution of a linear constraint q � 0 if qσ � 0 is true; it is a solution of a system
of linear constraints if it is a solution of every constraint in the system. If σ is
a solution of a linear constraint c (or a system S of such constraints), we also
say that σ satisfies c (respectively, S), denoted by σ |= c (respectively, σ |= S),
otherwise we say that σ violates c (respectively, S). A system of linear constraints
is said to be satisfiable if it has a solution.

Conflict Resolution 511

For simplicity, we consider only algorithms for solving systems of linear con-
straints of the form q ≥ 0, ⊥ and � and discuss the general case later.

3 Fourier-Motzkin Elimination

In this section we briefly describe the Fourier-Motzkin elimination method. Con-
sider a system S of linear constraints. The method either determines that S has
no solution, or finds at least one. The method is based on an iterative algorithm
changing S by eliminating a variable at each step. We assume that the variables
are eliminated according to the order �, that is, xn is eliminated first. At each
step, if the maximal variable in the current system of linear constraints is xk, we
denote the current system by Sk, thus Sn = S. When the algorithm terminates,
we obtain a system containing only trivial constraints, we denote this system
by S0.

Let k > 0. The system Sk−1 is obtained from Sk by (i) adding new linear
constraints as follows: for every pair of linear constraints xk+p ≥ 0 and−xk+q ≥
0 in Sk we add to Sk−1 a new constraint p + q ≥ 0 and (ii) removing all linear
constraints containing xk.

One can show that the original system S is unsatisfiable if and only if S0

contains ⊥. If S0 does not contain ⊥, we can build a solution σ of S using the
following observation. An assignment σ satisfies Sk if and only if σ satisfies Sk−1

and

xkσ ∈ [max{−pσ | (xk + p ≥ 0) ∈ Sk}, min{qσ | (−xk + q ≥ 0) ∈ Sk}] . (1)

As usual, we assume that the minimum of the empty set is +∞ and the maximum
of it is −∞. Condition (1) essentially says that the value of xk lies in a certain
interval determined by the values of variables x1, . . . , xk−1. One can prove that
this interval is non-empty whenever σ satisfies Sk−1. Thus, we can change any
solution σ of Sk−1 into a solution of Sk by updating σ at xk by an arbitrary value
in this interval. In this way we can build a solution to S = Sn as follows. We
start with an arbitrary assignment σ (which obviously satisfies S0) and update
it at x1, . . . , xn as described above. In fact, all solutions of the initial system can
be derived this way.

Note that the Fourier-Motzkin algorithm applied to a set of linear constraints
always terminates and generates only a finite number of linear constraints. How-
ever, the algorithm is in general exponential.1 In general, the number of linear
constraints in Sk−1 is in the worst case quadratic in the number of constraints
in Sk.

Unlike the Fourier-Motzkin method, our conflict resolution method does not
eliminate variables. It uses the rule deriving p + q ≥ 0 from xk + p ≥ 0 and
−xk + q ≥ 0 but derives new constraints in a more restrictive way.
1 Some papers claim it is double-exponential but we could not find any paper proving

this. Schrijver [11] defines a sequence of systems of the size O(n3) on which the
method generates O(2n) constraints. Some papers refer to [3] as giving an example
of double-exponential behaviour but [3] only repeats the example from [11] verbatim.

512 K. Korovin, N. Tsiskaridze, and A. Voronkov

4 Conflict Resolution

In this section we introduce our conflict resolution method for solving systems
of linear rational constraints.

Let c be a linear constraint. If the maximal variable in c is xk, then we say
that k is the level of c. If c contains no variables, then we define the level of c to
be 0. Note that, since all constraints are assumed to be normalised, a constraint
written in the form xk + p ≥ 0 or −xk + q ≥ 0 is of the level k. The notion of
level induces a partial order on linear constraints, which we will denote also by
�, as follows. For two linear constraints c1 and c2, we have c1 � c2 if and only
if the level of c1 is strictly greater than the level of c2.

We call a state a pair (S, σ), where S is a system of linear constraints and
σ an assignment. Let S = (S, σ) be a state and k a positive integer. We say
that S contains a k-conflict (xk + p ≥ 0,−xk + q ≥ 0) if (i) both xk + p ≥ 0
and −xk + q ≥ 0 are linear constraints in S and (ii) pσ + qσ < 0. Instead of
“k-conflict” we will sometimes simple say “conflict”. Note that if σ is a solution
of S, then S contains no conflicts.

We will now formulate our method. Given a system S of linear constraints,
it starts with an initial state (S, σ), where σ is an arbitrary assignment and
repeatedly transforms the current state either by either adding a new linear
constraint to S or updating the assignment. We will formulate these rules below
as transformation rules on states S ⇒ S′, meaning that S can be transformed
into S′. Let k be an integer such that 1 ≤ k ≤ n.

The conflict resolution rule (CR) (at the level k) is the following rule:

(S, σ) ⇒ (S ∪ {p + q ≥ 0}, σ),

where (S, σ) contains a k-conflict (xk + p ≥ 0,−xk + q ≥ 0).

The assignment refinement rule (AR) (at the level k) is the following rule:

(S, σ) ⇒ (S, σv
xk

),

where

1. σ satisfies all constraints in S of the levels 0, . . . , k − 1.
2. σ violates at least one constraint in S of the level k.
3. σv

xk
satisfies all constraints in S of the level k.

We will call any instance of an inference rule an inference. Thus, our algorithm
will perform CR-inferences and AR-inferences.

Note that the conflict resolution rule derives a linear constraint violated by
σ:

Lemma 1. Let (S, σ) contain a k-conflict (xk + p ≥ 0,−xk + q ≥ 0). Then
σ �|= p + q ≥ 0. ❏

Conflict Resolution 513

Let us introduce a new notation. For any system S of linear constraints, a non-
negative integer k and an assignment σ denote

L(S, σ, k) def= max{−pσ | (xk + p ≥ 0) ∈ S};
U(S, σ, k) def= min{qσ | (−xk + q ≥ 0) ∈ S};
I(S, σ, k) def= [L(S, σ, k), U(S, σ, k)].

For every set S of linear constraints and a positive integer k, denote by S=k

(respectively, S<k) the subset of S consisting of all constraints of the level k
(respectively, of all levels strictly less than k).

Lemma 2. (i) Condition (2) of the assignment refinement rule implies xkσ �∈
I(S, σ, k). (ii) Condition (3) of the assignment refinement rule is equivalent to
v ∈ I(S, σ, k). (iii) The interval I(S, σ, k) is non-empty if and only if S contains
no k-conflicts.

Proof. (i) We assume that xkσ ∈ I(S, σ, k) and prove that σ satisfies S=k. Take
any constraint in S=k. Without loss of generality assume that it has the form
xk + p ≥ 0. Since xkσ ∈ I(S, σ, k), we have xkσ ≥ L(S, σ, k), that is, xkσ ≥
max{−pσ | (xk + p ≥ 0) ∈ S}. This implies xkσ ≥ −pσ, hence σ is a solution of
xk + p ≥ 0.

(ii) In one direction, assume v ∈ I(S, σ, k). Note that xkσv
xk

= v, so xkσv
xk
∈

I(S, σ, k) Using the same arguments as in (i) but with σ replaced by σv
xk

we
can prove σv

xk
|= S=k. In the other direction, assume σv

xk
|= S=k. We have

to prove v ∈ I(S, σ, k), that is, v ≥ L(S, σ, k) and v ≤ U(S, σ, k). We will only
prove the former condition, the latter one is similar. The former condition means
v ≥ max{−pσ | (xk + p ≥ 0) ∈ S}. To prove it, we have to show that for all
constraints of the form xk + p ≥ 0 in S (and hence in S=k) we have v ≥ −pσ.
Since p may only contain variables in {x1, . . . , xk−1} and σ agrees with σv

xk
on

all such variables, we have −pσ = −pσv
xk

, so v ≥ −pσv
xk

. Using xkσv
xk

= v, we
obtain xkσv

xk
≥ −pσv

xk
, hence σv

xk
is a solution of xk + p ≥ 0, and we are done.

(iii) We will prove that I(S, σ, k) is empty if and only if S contains a k-conflict.
In one direction, assume I(S, σ, k) is empty. Then L(S, σ, k) > U(S, σ, k). Note
that this implies that both L(S, σ, k) and U(S, σ, k) are finite. Since they are
finite, S=k contains two constraints of the form xk + p ≥ 0 and −xk + q ≥ 0
such that −pσ = L(S, σ, k) and qσ = U(S, σ, k). This and L(S, σ, k) > U(S, σ, k)
implies −pσ > qσ, and so 0 > pσ + qσ. Therefore, (xk + p ≥ 0,−xk + q ≥ 0) is
a k-conflict. The proof in other direction is similar. ❏

The following is a key lemma for our method.

Lemma 3. Let (S, σ) be a state and 1 ≤ k ≤ n. Let σ satisfy all constraints in
S of the levels 0, . . . , k − 1 and violate at least one constraint of the level k. If
I(S, σ, k) is empty, then the conflict resolution rule at the level k is applicable
and the assignment refinement rule at this level is not applicable. If I(S, σ, k) is
non-empty, then the assignment refinement rule at the level k is applicable and
the conflict resolution rule at this level is not applicable.

514 K. Korovin, N. Tsiskaridze, and A. Voronkov

Proof. Suppose I(S, σ, k) is empty. By Lemma 2 (iii) S contains a k-conflict, so
the conflict resolution rule is applicable at the level k. Since I(S, σ, k) is empty,
by Lemma 2 (ii) condition (3) of the assignment refinement rule is violated, so
the assignment refinement rule at this level is not applicable.

Suppose that I(S, σ, k) is non-empty. Then by Lemma 2 (iii) S contains no
conflict, so the conflict resolution rule at the level k is not applicable. Take an
arbitrary value v ∈ I(S, σ, k). By Lemma 2 (ii) condition (3) of the assignment
refinement holds. Conditions (1) and (2) of this rule hold by the assumptions of
this lemma, so the assignment refinement rule is applicable. ❏

5 The Conflict Resolution Algorithm

The Conflict Resolution Algorithm CRA is given as Algorithm 1.
Let us note that the algorithm is well-defined, that is, the interval I(S, σ, k)

at line 11 is non-empty. Indeed, the algorithm reaches this line if (S, σ) contains
no conflict at the level k (by line 6). Then I(S, σ, k) is non-empty by Lemma 2
(iii).

Example 1. This example illustrates the algorithm. Let S0 be the following set
of constraints.

x4 − 2x3 + x1 + 5 ≥ 0 (1)
−x4 − x3 − 3x2 − 3x1 + 1 ≥ 0 (2)
−x4 + 2x3 + 2x2 + x1 + 6 ≥ 0 (3)

−x3 + x2 − 2x1 + 5 ≥ 0 (4)
x3 + 3x1 − 1 ≥ 0 (5)

Algorithm 1. The Conflict Resolution Algorithm CRA
Input: A set S of linear constraints.
Output: A solution of S or “unsatisfiable”.
1: if ⊥ ∈ S then return “unsatisfiable”
2: σ := arbitrary assignment;
3: k := 1
4: while k ≤ n do
5: if σ �|= S=k then
6: while (S, σ) contains a k-conflict (xk + p ≥ 0,−xk + q ≥ 0) do
7: S := S ∪ {p + q ≥ 0}; application of CR
8: k := the level of (p + q ≥ 0);
9: if k = 0 then return “unsatisfiable”

10: end while
11: σ := σv

xk
, where v is an arbitrary value in I(S,σ, k) application of AR

12: end if
13: k := k + 1
14: end while
15: return σ

Conflict Resolution 515

Assume that the initial assignment σ maps all variables to 0. The algorithm
starts at the level 0. The sets S=0, S=1, S=2 are empty, so the assignment σ
trivially satisfies them. However, it violates constraint (5) and so violates S=3.
The interval I(S, σ, 3) is [1, 5]. It is non-empty, so by Lemma 3 we can apply
the assignment refinement rule at level 3 by updating σ at x3 by any value in
[1, 5]. Let us choose, for example, the value 4. Let σ1 denote the newly obtained
assignment {x4 �→ 0, x3 �→ 4, x2 �→ 0, x1 �→ 0}. Now we move to the next level
4. There is a 4-conflict between constraints (1) and (2) (line 6). We make a
CR-inference between these two clauses deriving a new constraint

− x3 − x2 − 2
3x1 + 2 ≥ 0 (6)

added to the set S at line 7. According to line 8 of the algorithm we set the level
k to the level of the new constraint, that is, to 3. Now there are no more conflicts
on level 3 and we have I(S, σ, 3) = [1, 2]. We should update the assignment at x3

by an arbitrary value in this interval. Suppose, for example, that we have chosen
1 as the value for x3 obtaining {x4 �→ 0, x3 �→ 1, x2 �→ 0, x1 �→ 0} and increase k
by 1 proceeding to level 4. At this moment all constraints at level 4 are satisfied
and the algorithm terminates returning σ. ❏

Our aim is to prove that the algorithm is correct and terminating.

Theorem 1. The conflict resolution algorithm CRA always terminates. Given
an input set of constraints S0, if CRA outputs “unsatisfiable”, then S0 is unsat-
isfiable. If CRA outputs an assignment σ, then σ is a solution of S0.

This theorem will be proved after a series of lemmas establishing properties of
the algorithm. In these lemmas we always denote the input set of constraints by
S0.

Lemma 4. At any step of the algorithm the set S is equivalent to S0, that is,
S and S0 have the same set of solutions.

Proof. Observe that line 7 is the only line that changes S. It is easy to see that
the application of this line does not change the set of solutions of S since the
constraint p + q ≥ 0 added to S is implied by S. ❏

The following lemma is obvious.

Lemma 5. Every constraint occurring in S at any step of the CRA algorithm
belongs to the set of constraints derived by the Fourier-Motzkin algorithm applied
to S0. ❏

Lemma 6. The assignment σ at lines 4 and 6 satisfies S<k.

Proof. By induction on the number of iterations of the outermost while-loop.
Before the first iteration the property is obvious since k = 1 and ⊥ �∈ S. So we
assume that the property holds before an iteration of the loop and show it holds
after this iteration. If σ |= S=k at line 5, then by σ |= S<k we have σ |= S<k+1. It

516 K. Korovin, N. Tsiskaridze, and A. Voronkov

remains to consider the case when σ �|= S=k at line 5. In this case the algorithm
may enter the internal while-loop starting at line 6. It is easy to see that at the
exit of this loop the property is satisfied as well, since k only decreases in the
loop and the new constraint p + q ≥ 0 is at the level k. So it remains to show
that after line 11 we have σ |= S=k. But this is guaranteed by Lemma 2 (ii), so
we are done. ❏

Lemma 7. Let (S, σ) contain a conflict (xk + p ≥ 0,−xk + q ≥ 0) at line 6.
Then we have (p + q ≥ 0) �∈ S.

Proof. By Lemma 6 at line 6 we have σ |= S<k. But we have σ �|= (p + q ≥ 0),
hence (p + q ≥ 0) �∈ S<k. Since the level of (p + q ≥ 0) is strictly less than k this
implies (p + q ≥ 0) �∈ S. ❏

This lemma means that the same constraint will never be added again to S. In
fact, the algorithm has a much stronger property formulated below in Lemma 8.

Let us now give the proof of Theorem 1.

Proof. We start with proving termination. By Lemma 7 the algorithm never
adds the same constraint twice. By Lemma 5 we can add only a finite number
of different constraints. Therefore, condition on line 6 can hold only a finite
number of times. From the moment this condition becomes permanently false,
k will always increase by 1, so the outermost while-loop will terminate.

Suppose now that the algorithm returns “unsatisfiable”. If this happens at
line 1, then ⊥ ∈ S0, so S0 is unsatisfiable. Otherwise, this happens at line 9.
Then σ �|= p + q ≥ 0 by Lemma 1. Since k = 0, then the constraint p + q ≥ 0
contains no variables, so this constraint is trivial and unsatisfiable. By Lemma 4,
this constraint is implied by S0, hence S0 is unsatisfiable too.

It remains to consider the case when the algorithm return an assignment σ.
This only can happen at the last line of the algorithm. At this line, k = n + 1.
By Lemma 6, σ satisfies S<n+1. Note that S<n+1 = S, so σ also satisfies S. By
Lemma 4, S is equivalent to S0, hence σ also satisfies S0. ❏

6 Conflict Resolution and the Fourier-Motzkin Method

We say, that a CR-inference at a level k is redundant w.r.t. a state (S, σ) if the
conclusion of this inference is a consequence of constraints in S<k. Let us prove a
key property that distinguishes our algorithm from the Fourier-Motzkin method.

Lemma 8. Every CR-inference performed by the CRA algorithm is non-
redundant.

Proof. Suppose that the algorithm performs a redundant inference adding p+q ≥
0 at line 7. Then by the definition of redundancy p+q ≥ 0 is implied by S<k. By
Lemma 6 we have σ |= S<k, then σ must also satisfy p + q ≥ 0. This contradicts
to the definition of a conflict. ❏

Conflict Resolution 517

To illustrate this lemma, let us come back to Example 1. Note that in this
example we have not applied the conflict resolution inference between constraints
(1) and (3). It is easy to see that the conclusion of this inference is implied by
constraints (4) and (5) at smaller levels, therefore this inference would not be
applied independently of the choices of assignments made by the algorithm.

Let us now show that the Fourier-Motzkin algorithm cannot polynomially
simulate our algorithm in a very strong sense. This example is taken from [11]. It
contains all inequalities of the form ±xk±xl±xm ≥ 0, where n ≥ k > l > m ≥ 1.
Evidently, the size of the system is O(n3) and there exists only a single solution
assigning 0 to all variables. It is shown in [11] that the Fourier-Motzkin method
generates exponentially many (in n) inequalities for this example. Let σ be an
arbitrary assignment. Our method will start generating conflicts from level 3
containing 8 inequalities until it updates σ so that x1σ = x2σ = x3σ = 0. After
that it will proceed to level 4, where the interval I(S, σ, 4) will consist of a single
point 0. The assignment refinement will set x4σ to 0 and no conflicts will be
generated. The same will happen with all levels greater than 4, so the algorithm
will terminate in a linear number of steps. Essentially, apart from the initial work
on level 3, the conflict resolution algorithm will only evaluate every inequality
once and so work in time linear in the size of the system, that is O(n3). Note that
this running time does not depend on either the choice of the initial assignment
or the choice of values in the assignment refinement inferences.

7 Extensions

In this section we briefly mention two extensions of the method: one is for working
with strict inequalities and another one for linear programming.

The modification of the algorithm for working with strict inequalities p > 0
is straightforward. First, when we consider the interval

I(S, σ, k) = [L(S, σ, k), U(S, σ, k)]

if any endpoint of this interval corresponds to a strict inequality, we use a semi-
open or an open interval instead. For example, if there is a strict inequality
(xk + p > 0) ∈ S such that −pσ = L(S, σ, k) but no strict inequality (−xk + q >
0) ∈ S such that qσ = U(S, σ, k), then we use the semi-open interval

I(S, σ, k) = (L(S, σ, k), U(S, σ, k)].

Second, the result of the conflict resolution rule is a strict inequality if at least
one of the premises is strict. It is not hard to generalise our method to deal with
disequalities p �= 0 as well.

To use our algorithm for linear programming, we can use the following trick.
Suppose, for example, that we want to find a maximum of a linear function
p. To this end we assume that the constraint do not contain the variable x1

and add the equality p − x1 = 0. After that we use our algorithm with the
only modification that we always select the maximal possible value for x1 in the

518 K. Korovin, N. Tsiskaridze, and A. Voronkov

assignment refinement rule. A special care should be taken when we have no a
priory upper bound on x1. However, using the method for linear programming
is beyond the scope of this paper.

8 Implementation

In this section we briefly describe details of our implementation of the conflict
resolution algorithm. Our implementation works with linear constraints of the
form q � 0, for � ∈ {≥, >, =}. In order to compare conflict resolution with other
methods for solving systems of linear constraints we also implemented the stan-
dard Fourier-Motzkin algorithm and the Chernikov algorithm [4] using the same
data structures as used in the implementation of CRA.

Informally, the Chernikov algorithm extends the Fourier-Motzkin algorithm,
(see Section 3) with the following restriction on added linear constraints. Let
S = Sn be the set of linear constraints. With each linear constraint we associate
a set of initial constraints used in the derivation of this constraint, called the
index set. Define the index set of an initial constraint c ∈ Sn to be {c}. Let
k > 0. The system Sk−1 is obtained from Sk by removing all linear constraints
containing xk and adding new linear constraints as follows. For every pair of
linear constraints xk + p ≥ 0 and −xk + q ≥ 0 in Sk, with index sets I, J
respectively, we add to Sk−1 a new constraint p + q ≥ 0 with the index set
I ∪ J , if the following conditions (i-ii) hold. Let l be the level of p + q ≥ 0 (see
Section 4), then (i) the cardinality of I ∪J is less than or equal to n− l + 1, and
(ii) there is no constraint c in Sk−1 of the level l with the index set U ⊆ (I ∪J).
It is shown in [4] that the original system S is unsatisfiable if and only if S0

contains ⊥.
Our implementation of conflict resolution follows Algorithm 1. There are a

number of key parameters that can be used to fine-tune the CRA algorithm,
namely

1. strategies for selecting conflicts,
2. strategies for selecting values in the assignment refinement rule,
3. order on variables.

Let us briefly describe possible choices for these parameters in our current im-
plementation.

The strategy for selecting conflicts in the current implementation is based on
maximal overlaps, as described below. At the line 7 of Algorithm 1 we select a
k-conflict xk + p ≥ 0 and −xk + q ≥ 0 in S (i.e. pσ + qσ < 0), such that −pσ =
L(S, σ, k) and qσ = U(S, σ, k). To explain the rationale behind this strategy let
us extend our notion of redundancy to constraints. We call a constraint c at a
level k redundant if this constraint is implied by S<k+1 − {c}. One can modify
our algorithm and show that any redundant constraint can be removed2.

It is not hard to prove that constraints xk + p ≥ 0 such that −pσ = L(S, σ, k)
are “almost” non-redundant in the following sense.
2 We cannot remove redundant constraints simultaneously since removal of a redun-

dant constraint can make another previously redundant constraint non-redundant.

Conflict Resolution 519

Lemma 9. Consider the set S+ of all constraints at a level k having the form
xk + p ≥ 0. Consider its subset S′ consisting of all constraints xk + p ≥ 0 such
that −pσ = L(S, σ, k). Then S′ is not implied by S<k ∪ (S+ − S′). ❏

One can formulate a symmetric property for constraints −xk + q ≥ 0 such that
qσ = U(S, σ, k).

Although our algorithm does not perform redundant inferences, the system
may contain redundant constraints at a level k for two reasons: (i) it may contain
redundant constraints initially; and (ii) addition of new constraints to a level k
may make other constraints at this and higher levels redundant. Choosing a
k-conflict xk + p ≥ 0 and −xk + q ≥ 0 in S (i.e. pσ + qσ < 0), such that
−pσ = L(S, σ, k) and qσ = U(S, σ, k) does not, in general, guarantee, that the
constraints forming the conflict are non-redundant but it guarantees that they
are “almost” non-redundant in the sense of Lemma 9.

We tried several strategies for selecting values in the assignment refinement
rule. One of the strategies is just selection of the middle point in the interval
I(S, σ, k) (line 11). Our experiments show that using this strategy frequently
results in a rapid growth of the sizes of numerators and denominators of rational
values in the assignment. In order to avoid this problem we used the following
strategy for selecting the update values from the interval I(S, σ, k). First, if the
endpoints of I(S, σ, k) coincide, then we select one of them. Otherwise, we select a
rational number n/m in I(S, σ, k) such that (i) m is the least power of 2 among
denominators of all rationals in I(S, σ, k), and (ii) n is such that, n/m is the
closest rational to the middle point of the interval, among all rationals satisfying
(i). It is possible to show that a rational satisfying both (i) and (ii) always exists.
In particular, if I(S, σ, k) contains integer points, then our strategy will select an
integer in I(S, σ, k) closest to the middle point. As our experiments show, such
choice of values considerably simplifies the assignment values and constraint
evaluation.

The last parameter of the CRA algorithm we consider here is the order on vari-
ables. In the current implementation the order on variables is selected randomly
before the run of the CRA algorithm. We believe that a careful selection of the
order on variables based on the properties of the input problem can considerably
improve the performance of our implementation and we will make experiments
with the order selection in the nearest future.

The CRA algorithm is implemented in C++ using the GMP library for ar-
bitrary precision arithmetic3. Thus, all computations with rational numbers are
done with arbitrary precision. We implemented two different representations of
constraints, one using arrays of the size n to store vectors and one storing only
non-zero coefficients. Not surprisingly, on randomly generated problems the first
implementation is slightly better in both time and space while the second one
can be much faster (and consume much less space) on non-random problems,
where vectors are normally sparse.

Finally, let us note that in the context of satisfiability modulo theories (SMT),
it is desirable for solvers to be incremental and be able to generate explanations
3 http://gmplib.org/

http://gmplib.org/

520 K. Korovin, N. Tsiskaridze, and A. Voronkov

for the unsatisfiability. The CRA algorithm and our implementation can easily
be made incremental: after adding/removing constraints we can always continue
with the current assignment, moreover the CRA never performs redundant in-
ferences and in particular, never performs the same inference twice (unless the
conclusion was removed). Explanations can be generated from the proofs of un-
satisfiability which are easily extractable from runs of the CRA algorithm.

9 Experimental Results

In this section we experimentally evaluate our implementation of the conflict res-
olution algorithm, the Fourier-Motzkin algorithm and the Chernikov algorithm.
We implemented the algorithm in C++ using the GNU Multiple Precision Arith-
metic Library (GMP) for handling arbitrary-precision rationals.

We compare our implementation with CVC3 [1] and Barcelogic [10], which
are well-developed solvers for satisfiability modulo theories (SMT). CVC3 incor-
porates a variant of the Fourier-Motzkin algorithm and Barcelogic incorporates
the simplex algorithm for reasoning with linear arithmetic. Let us note that our
implementation is at a very early stage, no preprocessing was used and crucial
for efficiency heuristics such as selection of suitable variable order are yet to be
implemented. Already for this implementation, our experimental results are very
encouraging, showing that the conflict resolution algorithm is considerably more
efficient in solving linear constraints than the standard Fourier-Motzkin algo-
rithm. For example, an order of magnitude difference occurs already on small
problems.

We evaluated the solvers on two sets of benchmarks4. The first set of bench-
marks consists of randomly generated systems of linear constraints. The second
set of benchmarks consists of systems of linear constraints extracted from real-life
SMT problems [2], using our tool called Hard Reality (HRT) [9]. All experiments
were run on a Linux laptop with CPU 2.8GHz and memory 4Gb.

Table 1. Randomly Generated Problems

4000 problems vars 3-12 (unsat/sat)
CRA CVC3 FM Ch

timeout (20s) 0/0 11/9 790/329 149/10
av. time (s) 0/0 0/0 0.4/0.1 0.6/0.1

400 problems vars 13-22 (unsat/sat)
CRA CVC3 FM Ch

timeout (20s) 5/2 21/33 183/144 155/65
av. time (s) 0.2/0.3 0/0 0.1/0.5 1.9/0.6

Results for randomly generated problems are shown in Table 1. The conflict
resolution algorithm can solve all 4000 randomly generated problems with the
number of variables ranging from 3 to 12 (within the total time of 7 seconds)
and on the problems with the number of variables ranging from 13 to 22 fails
only on 7. The CVC3 implementation of the Fourier-Motzkin algorithm fails
to solve 20 problems and 54 problems respectively. Our implementation of the
4 http://www.cs.man.ac.uk/˜korovink/cra bench

Conflict Resolution 521

Table 2. Hard Reality Problems

304 problems (unsat)
CRA CVC3 FM Ch

timeout (60s) 1 4 44 42
av. time 0.2 0.13 0.1 0.12

2x5 − 3x4 + x3 − 3x2 − 2x1 + 3 ≥ 0
2x5 + x4 − 2x3 − 2x1 + 2 ≥ 0
−x5 + 3x2 + x1 + 2 ≥ 0

−3x5 + 2x3 − 3x1 − 2 ≥ 0
x5 − 2x4 − 2x2 + 3x1 − 2 ≥ 0

−2x5 + 2x4 − 3x3 − x2 + 2x1 + 3 > 0
3x5 − 2x4 + 2x3 + 3x2 + 2x1 + 1 > 0
x5 + 2x1 + 2 > 0

2x4 − x3 − 3x2 − x1 + 3 = 0

Fig. 1. A randomly generated problem

Fourier-Motzkin algorithm solves considerably fewer problems than CRA. The
Chernikov algorithm improves over the Fourier-Motzkin but solves considerably
fewer problems than CRA.

Table 2 compares the solvers on the problems extracted from SMT bench-
marks using the Hard Reality Tool. These problems have different structure
than the randomly generated problems, in particular the number of variables
and constraints are considerably higher, most of problems contain several hun-
dred of different variables and constraints.

The CRA also solves more problems in the Hard Reality benchmarks than
any of CVC3, Fourier-Motzkin, and Chernikov algorithms. The average time of
the CRA is a bit higher than of CVC3 due to extra solved problems. Indeed, in
a pairwise comparison on all solved problems in these benchmarks the CRA is
faster than CVC3.

One of the most striking examples showing the difference in performance is
shown in Figure 1. The problem on this figure which was randomly generated
and contains 5 variables and 10 linear constraints.

The standard Fourier-Motzkin algorithm run on this problem generated over
280 million linear constraints, while the conflict resolution algorithm generated
only 21 constraints. However, this example is not outstanding as compared to
our other experiments described above.

Compared to the simplex algorithm, the conflict resolution shows promising
potential. In Table 3 the CRA is compared to Barcelogic. Already our non-
optimized implementation is faster than Barcelogic on a number of problems,
although Barcelogic can solve more problems than CRA within 20 seconds.

To summarise, our experiments show that a naive implementation of the con-
flict resolution algorithm outperforms the Fourier-Motzkin and Chernikov al-
gorithms in solving systems of linear constraints and has promising potential

522 K. Korovin, N. Tsiskaridze, and A. Voronkov

Table 3. CRA vs Barcelogic

400 problems vars 13-22 (unsat/sat)
faster same av. time timeout (20s)

Barcelogic 28/29 146/167 0.04/0 0/0
CRA 23/7 146/167 0.2/0.3 5/2

400 problems vars 23-32 (unsat/sat)
Barcelogic 110/67 31/88 0.25/1.0 0/0
CRA 63/41 31/88 0.7/1.6 60/37

compared to the simplex algorithm. For the future work we are planning to
extend the CRA algorithm with various heuristics for choosing conflicts, order
on variables, values in the assignment update rule and methods for avoiding
unnecessary re-evaluation of constraints.

10 Related Work

In this section we compare various modifications of the Fourier-Motzkin method
with the conflict resolution method.

Most of modifications of the Fourier-Motzkin method aim at identifying poten-
tially redundant constraints by providing some easy-to-check sufficient conditions
for redundancy. One of the most prominent methods for restricting generation
of redundant constraints was suggested by Chernikov [4]. His idea is to associate
with each constraint some bookkeeping information on how this constraint was
derived. Under certain conditions a newly derived constraint can be shown to
be redundant based on this information (see Section 8). There are a number
of extensions and modifications of this and other ideas developed over the past
decades (e.g., [5,8,6,7]). Our notion of redundancy seems to be orthogonal to
that of Chernikov and the others, in particular it is based on the ordering on
constraints and semantic entailment from the smaller constraints. One of im-
portant properties of the conflict resolution algorithm is that it never performs
redundant inferences as defined in this paper. As a future work, we will investi-
gate whether it is possible to combine our notion of redundancy with restrictions
used by other methods.

11 Conclusions

We presented a new algorithm for solving systems of linear constraints, called
conflict resolution. The method successively refines an initial assignment with
the help of newly derived constraints until either the assignment becomes a
solution of the system or the inconsistency of the initial system is proved. We
have shown that this method is correct and terminating. The conflict resolution
method has a number of attractive properties such as blocking of redundant
inferences. We implemented our method and experimental results show that on

Conflict Resolution 523

the majority of problems we tried conflict resolution considerably outperforms
well-developed methods such Fourier-Motzkin and Chernikov algorithms. We are
currently working on improving our implementation and integration of crucial for
efficiency heuristics such as various strategies for conflict selection, assignment
refinement and variable order.

References

1. Barrett, C., Cesare Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

2. Barrett, C., Ranise, S., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories
Library, SMT-LIB (2008), http://www.SMT-LIB.org

3. Chandru, V.: Variable elimination in linear constraints. Comput. J. 36(5), 463–472
(1993)

4. Chernikov, S.N.: Linejnye Neravenstva. Nauka, Moscow (1968) (in Russian)
5. Duffin, R.J.: On Fourier’s analyse of linear inequality systems. Mathematical Pro-

gramming Study 1, 71–95 (1974)
6. Imbert, J., Van Hentenryck, P.: A note on redundant linear constraints. Technical

Report CS-92-11, CS Department, Brown University (1992)
7. Jaffar, J., Maher, M.J., Roland, P.S., Yap, R.H.C.: Projecting CLP(R) constraints.

New Generation Computing 11 (1993)
8. Kohler, D.A.: Projection of Convex Polyhedral Sets. PhD thesis, University of

California, Barkaley (1967)
9. Korovin, K., Voronkov, A.: Hard Reality Tool (submitted, 2009),

http://www.cs.man.ac.uk/~korovink/hr

10. Nieuwenhuis, R., Oliveras, A.: Decision Procedures for SAT, SAT Modulo Theories
and Beyond. The BarcelogicTools (Invited Paper). In: Sutcliffe, G., Voronkov, A.
(eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 23–46. Springer, Heidelberg (2005)

11. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons,
Chichester (1998)

http://www.SMT-LIB.org
http://www.cs.man.ac.uk/~korovink/hr

Propagator Groups

Mikael Z. Lagerkvist and Christian Schulte

KTH – Royal Institute of Technology, Sweden
{zayenz,cschulte}@kth.se

Abstract. This paper introduces propagator groups as an abstraction
for controlling the execution of propagators as implementations of con-
straints. Propagator groups enable users of a constraint programming
system to program how propagators within a group are executed.

The paper exemplifies propagator groups for controlling both propa-
gation order and propagator interaction. Controlling propagation order
is applied to debugging constraint propagation and optimal constraint
propagation for Berge-acyclic propagator graphs. Controlling propagator
interaction by encapsulating failure and entailment is applied to general
reification and constructive disjunction. The paper describes an imple-
mentation of propagator groups (based on Gecode) that is applicable to
any propagator-centered constraint programming system. Experiments
show that groups incur little to no overhead and that the applications of
groups are practically usable and efficient.

1 Introduction

Over the last two decades, an array of techniques to control the execution of
groups of propagators have been developed:

– S-boxes [10] support the debugging of constraint propagation by grouping
several propagators into a conceptually bigger propagator that typically cap-
tures some problem structure. Then, the drastically fewer executions of the
bigger propagator can be understood by a modeler during debugging. While
it is generally acknowledged that the lack of support for debugging is one
of the key obstacles to learning constraint programming, none of today’s
mainstream systems support it.

– The optimal propagation of Berge-acyclic propagator graphs requires to or-
der the execution of a group of propagators and is generally acknowledged
to be significant for efficient propagation [16, 3]. However, no mainstream
constraint programming system implements it.

– General reification (reifying arbitrary constraints and groups of constraints)
and constructive disjunction are well known concepts that can improve prop-
agation considerably [13]. Both require to control the execution and inter-
action of groups of propagators. However, both concepts are only supported
to some extent by Propia [15] and general reification by Mozart [18, 19].

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 524–538, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Propagator Groups 525

In summary, these powerful and even essential techniques are known but either
not widely available or not even implemented. All these techniques have in com-
mon that they are based on controlling the execution of groups of propagators.
This paper introduces propagator groups as a new abstraction that supports the
user-level implementation of the above mentioned techniques. A group collects a
set of propagators and defers their scheduling and execution to a user-supplied
routine. This makes scheduling and execution programmable, while the imple-
mentation of propagator groups requires only very small and local changes to
the underlying constraint programming system.

Similar to groups, spaces in Mozart [19] also encapsulate failure and entail-
ment. However, the lack of control over propagation order and access to local
variables makes them unable to implement propagator ordering and construc-
tive disjunction. The Propia system [15] supports constructive disjunction and to
some extent generalized reification through a nested search procedure. However,
it can not express propagator ordering.

Contributions. This paper contributes propagator groups as a new abstraction
for constraint programming systems that allows many interesting techniques to
be implemented by a user without modifying the underlying system. The paper
contributes a simple yet expressive architecture for groups and techniques for
their efficient implementation. Moreover, the paper shows how propagator groups
can be applied to debugging, optimal propagator ordering, general reification,
and constructive disjunction. These applications are shown to be efficient with
propagator groups. In particular, the paper contributes the first implementation
of optimal propagation for Berge-acyclic propagator graphs.

Plan of the paper. In the following section the necessary background on con-
straint programming is given. In Sect. 3 a model and implementation of propa-
gator groups is presented. Sections 4 and 5 apply groups to debugging, optimal
propagation ordering, general reification, and constructive disjunction. The final
section concludes.

2 Constraint Programming

Constraint programming is based on two important concepts, variables (together
with their associated domains) and constraints.

Variables and domains. There is a finite set of variables Var and a finite set of
values Val . A domain d ∈ Dom is a set of values a variable can take, Dom =
P(Val). A store s ∈ Store is a complete mapping from variables to domains,
Store = Var → Dom . An assignment is a store where the range of the function
is restricted to singleton sets ({{v} | v ∈ Val}).

Set relations ∼ are lifted to a pair of stores S1 and S2 in the natural, point-
wise way (S1 ∼ S2 = ∀x ∈ Var . S1(x) ∼ S2(x)). A store S1 is stronger than a
store S2, written S1 ≤ S2, if S1 ⊆ S2. A store S1 is strictly stronger than a store

526 M.Z. Lagerkvist and C. Schulte

S2, written S1 < S2, if S1 ≤ S2 and S1 �= S2. The disagreement set dis (S1, S2)
of stores S1 and S2 is defined as {x ∈ Var | S1(x) �= S2(x)}.

A tuple of values over variables x1, . . . , xn can be turned into a store in the
following way: for a variable x ∈ Var , store (〈v1, . . . , vn〉) (x) is defined as {vl} if
x = xl for some l ∈ {1, . . . , n} and as Val otherwise.

Constraints. A constraint c ∈ Con over the set of variables var (c) = {x1, . . . , xn}
is defined by the set of assignments that are solutions to the constraint, Con =
P({〈v1, . . . , vn〉 | vi ∈ Val}). A store can be turned into a constraint over vari-
ables x = {x1, . . . , xn} using cons (S, x) = {〈v1, . . . , vn〉 | ∀i.vi ∈ S(xi)}.

A constraint satisfaction problem (CSP) is a pair of a set of constraints C
and a store S, 〈C, S〉 ∈ P(Con)×Store. A tuple 〈v1, . . . , vn〉 in a constraint over
variables x1, . . . , xn is valid under the store S iff ∀i.vi ∈ S(xi). An assignment a
is a solution to the CSP 〈C, S〉, both over variables {x1, . . . , xn}, iff the assign-
ment is a solution for each constraint, ∀c ∈ C. 〈a(x1), . . . , a(xn)〉 ∈ c, and the
assignment is valid for the store, a ⊆ S. The solutions to a CSP, sol (C, S), is
the set of all assignments that are solutions.

A constraint c is entailed by the store S iff cons (S, var (c)) ⊆ c. Entailed
constraints can safely be removed from the CSP since they no longer restrict the
set of solutions.

Propagators. To solve a CSP, a constraint programming system uses propagators
as implementations of constraints.

A propagator is a function p that takes a store S as input and returns a
tuple 〈stat, S′〉, where stat is a status message and S′ is a new store. The status
message will be ignored when only the resulting store is interesting. A propagator
p must be contracting (p(S) ≤ S for all stores S) and monotonic (if S1 ≤ S2 then
p(S1) ≤ p(S2) for all stores S1, S2). A store S is a fix-point of a propagator p iff
p(S) = S. The status-message indicates if the propagator is entailed (entailed)
or if it has detected failure (⊥). A propagator is entailed for a store S iff for
all stores S′ ≤ S it holds that p(S′) = S′. Entailed propagators can safely be
removed from the pool of propagators, since they will do no more pruning. A
propagator that reports failure indicates that there are no solutions left, and
propagation can be aborted.

A propagator p references variables var (p) = {x1, . . . , xn} and is said to
implement its induced constraint cp. The induced constraint is defined as the
set of assignments that the propagator identifies as solutions:

cp =
{
〈v1, . . . , vn〉 | p(store (〈v1, . . . , vn〉)) = store (〈v1, . . . , vn〉)

}
For a given constraint c, any propagator p such that cp = c can be used. Note
that many different propagators exist for the very same constraint, typically
differing in propagation strength and efficiency.

Constraint programs. Analogously to constraint satisfaction problems, a store
and a set of propagators can be combined to form a constraint program (CP)
〈P, S〉. The set of solutions sol (P, S) to a CP is defined as sol ({cp | p ∈ P}, S).

Propagator Groups 527

Propagate(S)
begin

Q ← P ;
while Q �= ∅ do

choose and remove p from Q;
〈stat, S′〉 ← p(S);
if stat = ⊥ then

return failure;
if stat = entailed then

remove p from P ;
foreach p ∈ ⋃x∈dis(S,S′) prop (x) ∩ P do

Schedule(p);
S ← S′;

return S;
end

Schedule(p)
begin

Q ← Q ∪ {p};
end

Algorithm 1. Propagator-centered propagation

Variable dependencies. To manage propagation efficiently, a constraint program-
ming system needs to know which propagators may affect which variables, and
for which variables a domain change might make a propagator not be at a fix-
point. For the purposes of this paper, the set of referenced variables for the
propagator can be used as the dependencies.

Dependencies are used in propagation as follows: if a store S is a fix-point of
a propagator p, then any store S′ ≤ S with var (p) ∩ dis (S, S′) = ∅ is also a fix-
point of p. To better characterize how propagators and variables are organized
in an implementation, the set of propagators prop (x) depending on a variable
x is defined as p ∈ prop (x) if and only if x ∈ var (p).

Propagation. Constraint propagation refers to the process of finding the largest
mutual fix-point (equivalently, the weakest mutual fix-point with respect to the
strength of stores) of the set of propagators from an initial store S that propaga-
tion starts from. Since propagators are defined to be monotonic and contracting
functions, it is guaranteed that there exists a unique largest mutual fix-point.
The cornerstone of a propagation algorithm is to maintain some representation
of which propagators might not be at fix-point. Propagator-centered propaga-
tion is controlled by the set of propagators still to be propagated (as opposed to
variable-centered that maintains a set of modified variables).

Propagator-centered propagation is shown in Algorithm 1. It is assumed that
all propagators are contained in the global propagator set P . The global queue Q
contains propagators not known to be at fix-point. The choose operation to get
the next propagator from Q is left unspecified, but a realistic implementation
bases the decision on priority or cost, see for example [21].

528 M.Z. Lagerkvist and C. Schulte

Algorithm 1 does not spell out some details. A real system will most probably
use events for variable modifications instead of a simple list of dependencies.
Furthermore, whether a propagator is at a fix-point or not after it has been
propagated should be taken into account to avoid needless re-execution. For a
complete discussion of constraint propagation algorithms, see [2], and see [20]
for the implementation of these algorithms in constraint programming systems.

3 Groups

A group is an execution manager for a set of propagators. It controls the order of
propagation as well as the handling of failure and entailment. The only change
to the system is that propagators that belong to a group must be scheduled in
their group rather than globally. Running a group is done through a propagator.

Section 3.1 presents a model of groups. Section 3.2 details the implementation
of the model. Section 3.3 evaluates the overhead of groups.

3.1 Model

A group is an abstraction that supports the operations schedule and propagate.
The first is used for scheduling a propagator that belongs to the group. The
second operation is used to run the propagators scheduled in the group.

A relation group (p) is defined for all propagators p. This relation maps a prop-
agator to the group it should be scheduled in. If the propagator is not a member
of any group, the relation is empty. To keep the number of concepts small, only
propagators can be scheduled and executed by the main propagation loop. Each
group g has an associated propagator that is called its controller propagator. The
controller propagator is given by controller (g). The set of propagators in P that
should be scheduled in a group g is given by prop (g) = {p ∈ P | group (p) = g}
(the inverse of the group (·) relation).

A group together with its controller propagator needs to maintain the require-
ments of a propagator: it should be contracting and monotonic. This must be
ensured by all group implementations.

Propagate(S)
� As in Algorithm 1

Schedule(p)
begin

if group (p) �= ∅ then
group (p).schedule(p);
Q ← Q ∪ controller (group (p));

else
Q ← Q ∪ {p};

end

Algorithm 2. Propagator-centered propagation with groups

Propagator Groups 529

Algorithm 2 presents the propagation algorithm that supports groups. The
only difference from Algorithm 1 is that when scheduling a propagator p, a check
is made to see if the propagator belongs to a group. If so, p is scheduled in that
group g = group (p) and controller (g) is added to the global queue.

Basic group g
begin

q : Queue;

schedule(p) begin
q.push(p);

end

propagate(S) : 〈Status, Store〉 begin
while ¬q.empty do

p ← q.pop;
〈stat, S′〉 ← p(S);
foreach p ∈ ⋃x∈dis(S,S′) prop (x) ∩ P do

Schedule(p);
if stat = ⊥ then

return 〈⊥, S′〉;
if stat = entailed then

remove p from P ;
if prop (g) = ∅ then

return 〈entailed, S′〉;
S ← S′;

return 〈∅, S〉;
end

end

Algorithm 3. Basic group g with a single flat queue of propagators

Algorithm 3 shows a basic group that maintains a queue of propagators to be
executed. This group implements no special behavior except grouping a set of
propagators together. Failure of any of the propagators is reported directly. The
group is only entailed if all its propagators are entailed (checked by prop (g) = ∅).
The basic controller propagator runs the group g by executing g.propagate(·)
and reports entailment and failure accordingly. As will be seen in Sect. 5, this
basic group can be used as a building block for more advanced controller prop-
agators.

3.2 Implementation

A group is a simple interface that specifies one function for scheduling a prop-
agator that belongs to that group, schedule, and one function for running the
propagators scheduled in the group, propagate. How scheduling is done is left
to the group implementation, as is the method for running the propagators.

To implement the group (·) relation each propagator has a pointer to a group.
This means that each propagator needs one extra word of memory. The standard

530 M.Z. Lagerkvist and C. Schulte

group is the null group, meaning that the scheduling is done in the normal system
queue. If there is a group different from the null group, then the scheduling
for that propagator is delegated to the group. This incurs an overhead of one
test against null per propagator scheduling. Additionally, one function call per
propagator scheduled in a group instead of the global queue needs to be done
(the call to g.schedule(·)).

Execution of a group is managed by the controller propagator. This means
that the system does not need to be aware of groups except when scheduling a
propagator. A difference from the model is that the way in which the controller
propagator for a group is added to the set of propagators to run is programmable;
it is done by the schedule function of the group. The benefit is that sometimes
the controller propagator is guaranteed to be scheduled anyway, and in those
cases a back-link to the propagator (represented in the model by controller (g)
for a group g) does not need to be maintained. If such a link is desired, the user
can add it to the group that needs it with a pointer

The basic group from Algorithm 3 uses the computed set prop (·) to check if
there are any propagators left to be scheduled in the group. In a real implemen-
tation, computing the set on the fly is not feasible. Instead the cardinality of
the set is maintained as a member of a group, and is updated by propagators as
they are created and removed.

Optimized implementation of group (·). Implementing the group (·) connection
with a pointer in each propagator wastes memory for propagators not belonging
to a group. By adding group-scheduled versions of all propagators, only those
propagators that belong to a group contains the pointer. Checking if a propagator
has a group pointer can be done cheaply using a tag-bit in pointers to it.

The main overhead in this design is the work in adding an extra optional
group-scheduled version of each propagator. Additionally, it would preclude mov-
ing a propagator dynamically from the general pool into a group.

The implementation of the model has been done in the Gecode system [22]
version 3.0.2. The general description of the implementation here is applicable
to any propagator-centered system and is by no means specific to Gecode.

3.3 Evaluation

The implementation of groups touches few parts of the core system, and should
therefore incur a small overhead. To evaluate this, the queens problem is tried
in two variants. Problems queens-n-* use the naive model with a quadratic
number of binary not-equals constraints. Problems queens-s-* use three large
alldifferent constraints instead (albeit with naive propagation only to guarantee
that both variants have the same search space). The two different versions test
the behavior of the system using many small and few but large propagators.

The experiments have been run on an Athlon 64 3500+ with 2GB of RAM
running Ubuntu Linux with gcc version 4.2.4. Times are computed as the av-
erage of at least 20 runs with a coefficient of deviation of less than 2%. The
queens-*-200 instances were limited to searching 100 000 nodes.

Propagator Groups 531

Table 1. Basic overhead of Groups. Systems compared are without groups (plain),
with groups added but not used (groups), and with groups added and used for schedul-
ing (scheduling). Time is given in milliseconds and memory in kilobytes allocated.

plain groups scheduling

Problem time memory time memory time memory

queens-n-10 0.16 63 0.16 63 0.17 63
queens-n-100 30.38 7 245 28.10 7 885 30.55 7 885
queens-n-200 1 876.30 45 779 1 913.25 50 323 2 061.33 50 323
queens-s-10 0.05 19 0.05 19 0.05 19
queens-s-100 1.21 355 1.22 356 1.14 356
queens-s-200 726.10 1 958 715.05 1 958 708.35 1 958

The results are presented in Table 1. The difference in time between plain
(the base system) and groups (groups added but not used) is not significant;
it is less than 2% in the worst case. The inevitable overhead associated with
scheduling through groups instead of in the normal queue is reasonably low at
around 7% in the worst case. The slightly larger memory-overhead for programs
with many propagators is due to the fact that each propagator has an additional
field for the group it belongs to. If the memory overhead is prohibitive, the
memory-optimized design where each propagator pointer is tagged can be used.

4 Controlling Propagation Order

In a modern constraint programming system, the execution order is defined by
the system and works on the granularity of single propagators. Propagator groups
can be used for debugging by giving a high-level view of the propagation process
(Sect. 4.1). For some sets of propagators, the optimal ordering of propagators is
known statically. By following this order instead of the generic order chosen by
the system, the optimal number of propagation steps can be achieved (Sect. 4.2).

4.1 Debugging

In many constraint models, the high-level constraints that the model is expressed
in can each correspond to many smaller concrete propagators in the system
used. As demonstrated in [10], grouping these smaller concrete constraints into
larger entities that represent the high-level conceptual constraints is beneficial for
understanding the propagation-process. If a high-level view of the propagation
process is presented, then stepping through propagation is meaningful.

Implementation. Using the basic group presented in Algorithm 3, it is easy to
group propagators into hierarchical groups. As long as the propagators in a group
are of roughly the same complexity level, the single-queue group works well. If
larger groups of different types of propagators is used, an implementation using
multiple queues such as presented in [21] could be used.

532 M.Z. Lagerkvist and C. Schulte

Table 2. Grouped propagator execution. Model compared are without groups (plain)
and with groups (groups). Time is given in milliseconds and steps are average propa-
gation steps per node.

plain groups

Problem time steps time steps

sudoku-val-5 5.45 7.55 5.41 4.15
sudoku-dom-5 3.27 22.86 3.68 9.75
sudoku-val-66 89.38 10.27 99.37 4.68
sudoku-dom-66 0.61 314.00 0.96 47.00
sudoku-val-87 1 433.37 8.53 1 484.20 4.20
sudoku-dom-87 5.00 59.35 6.93 16.57

Evaluation. In the basic constraint programming model for a n × n Sudoku,
there are 3n alldifferent constraints. These constraints are composed of three
sets that work on rows, columns, and boxes respectively. This division has the
interesting property that no two constraints from the same set share a variable.

To illustrate the constraint propagation for a Sudoku problem, it is natural to
divide the propagators into the three groups for rows, columns, and boxes. To test
this, three instances were run using naive propagation and domain propagation.
The numbers refer to the instance-number in the Gecode example. As seen in
Table 2, the efficiency of solving a Sudoku is roughly the same, but the number of
propagation steps per node is reduced. Thanks to the reduced number of steps,
going through the changes between each step becomes feasible.

Using the ability to group the propagators into larger groups, a visualization-
system such as the one developed in [14] can be used without getting an over-
whelming detail of information during debugging.

4.2 Optimal Propagation Ordering

Decompositions of global constraints that do not sacrifice propagation is an
interesting research topic [16, 3, 4, 5]. In some cases (such as the decomposition
of the regular constraint into extensional constraints [16]) the decomposition
uses a Berge-acyclic propagator graph, which ensures that the local propagation
achieves global domain consistency [1]. One benefit of such a decomposition is
that the optimal ordering of the propagation is known, with one forward and
one backward pass being sufficient to reach a fix-point.

Unfortunately, no constraint programming system supports the specification
of propagation order on such a fine-grained level. This means that while the
complexity of propagating the decomposition in the optimal order can be calcu-
lated, the actual complexity of the decomposition depends on the propagation
order that a particular system implements.

Propagator Groups 533

Implementation. An ordered propagation group g contains a list with the
propagators in prop (g). This list is sorted according to the order in which the
propagation should be done. For a Berge-acyclic propagator graph any topolog-
ical sorting of the propagators works. The controller propagator is the same as
for the basic group: it simply runs the group.

On activation, the group does one forward and one backward pass through
the list of propagators. When inspected, each propagator is executed until it
reaches a fix-point if it has been scheduled. After the two passes, the group is at
a fix-point if the propagators form a Berge-acyclic propagator graph.

The implementation does not try to find the set of propagators that should be
executed without inspecting all of the propagators since that would complicate
the scheduling operation. If the overhead of running through all the propagators
is too high for some applications, advisors [12] could be used to record the first
and last position that needs to be inspected, delimiting the range of propaga-
tors that need to be executed. This is a good compromise, since the scheduling
operation can be kept at constant time complexity.

Evaluation. Consider a simple ordering problem on n variables xi with domain
{1, . . . , n}. Each pair of consecutive variables is ordered using xi < xi+1. For a
system that uses queues for scheduling, as most system do, O(n2) runs through
the propagators are needed to ensure that the variables are assigned their respec-
tive values through propagation. The bad behavior is because the scheduling will
ensure that only forward-passes are made through the list of propagators. Using
a group to schedule the propagators in the optimal order, two passes through
the propagators are sufficient to ensure that the variables are assigned.

In Table 3, the simple example is tried for varying number of variables. At
small sizes (n = 10) there is no measurable overhead to using groups even though
the relative benefits in number of steps is smaller. As the sizes grow larger, the
complexity difference becomes apparent, with orders of magnitude difference in
the time. This example is conservative in that the individual propagators are
among the cheapest propagators that exist. The costlier the individual propaga-
tors are, the more important it is to use a good propagation ordering.

Table 3. Ordered propagator execution. Model compared are without groups (plain)
and with groups (groups). Time is given in milliseconds and steps are propagation
steps. For group, the steps are the number of steps inside the controlling group.

plain groups

Problem time steps time steps

order-10 0.04 36 0.03 18
order-100 2.95 4 851 0.39 198
order-1000 304.90 498 501 7.31 1 998
order-5000 7 743.35 12 492 501 103.35 9 998

534 M.Z. Lagerkvist and C. Schulte

5 Controlling Propagator Interaction

Since a group is responsible for executing a propagator, it is possible to control
how failure of the propagator is handled. Furthermore, a group also encapsu-
lates entailment, which is dual to failure (it represents failure of the negated
constraint). Using these facilities, it is possible to implement general reification
(Sect. 5.1) and constructive disjunction (Sect. 5.2) using groups.

5.1 General Reification

A reified constraint c ↔ (b = 1) reflects if the constraint c holds into a Boolean
variable b. Reification is commonly available in constraint programming systems
for simple constraints using specialized propagators. For larger and more complex
constraints such as alldifferent, the effort of implementation often outweighs the
benefit of having a reified version of the constraint.

The basic pattern of propagation for a reified constraint looks as follows.

c ↔ (b = 1) :=
c holds ⇒ propagate b = 1
¬c holds ⇒ propagate b = 0

b = 1 holds ⇒ propagate c
b = 0 holds ⇒ propagate ¬c

Implementation. Given a constraint c and a Boolean variable b a simple imple-
mentation of the reified constraint c ↔ (b = 1) can be done by posting the con-
straint in a basic group g. Instead of using the global store-variables x = var (c)
copies of the variables, x′, are made and used for the constraint, giving a mod-
ified store S′. The equality relation for the stores S and S′ is extended in the
obvious way. The controlling propagator proceeds through the following steps:

– Add new domain reductions from x to copied variables x′ and run the group.
– If g is failed, set b = 0 and report entailment.
– If g is entailed, set b = 1. If S = S′, report entailment.
– If b is set to one, add local domain reductions to the global store.

Unfortunately, the above implementation of generic reification lacks the possibil-
ity to propagate ¬c, instead it has to wait for failure or entailment of c. This is not
a problem with the approach, but a consequence of the problem of propagating
negated constraints and is something that is handled in the same way in general
reification in Mozart [18, 19]. To implement reification in Propia [15], both the
constraint and the negated constraint must be expressed as CLP clauses.

Evaluation. As a base evaluation of using groups for reification, the standard
no-overlaps constraints for perfect square packing are tried. For each pair of
squares i and j with coordinates x and y and size s, they do not overlap iff
(xi + si ≤ xj)∨ (xj + sj ≤ xi)∨ (yi + si ≤ yj)∨ (yj + sj ≤ yi). Three versions are
tested: using normal reification; using normal reification on copied variables; and

Propagator Groups 535

using groups to implement reification. The numbers refer to the instance numbers
in the Gecode example. As seen in Table 4 the overhead from using groups for
reification is not unreasonable, especially compared with using standard reified
propagators on copied variables which is always worse than groups.

Table 4. Reified no-overlap constraint for the perfect square problem. Models com-
pared use normal reification (reified), reification on copied variables (copied), and
an implementation using groups (group). Columns v and c indicate the number of vari-
ables and the number of reified constraints for no-overlap. Time is given in milliseconds
and memory in kilobytes allocated.

reified copied group

Problem c v time memory time memory time memory
perfsq-0 840 3360 280.83 4 998 618.35 8 646 493.80 7 366
perfsq-1 924 3696 1 530.05 5 254 3 848.30 8 902 3 164.80 7 750
perfsq-2 924 3696 388.57 8 326 650.08 12 166 565.12 10 886
perfsq-3 1012 4048 461.20 5 510 1 034.44 9 541 865.02 8 134
perfsq-4 1012 4048 2 281.11 15 175 3 314.45 19 783 2 960.56 18 436

The Equidistant Frequency Permutation Array (EFPA) problem [9] is a com-
binatorial design problem. One of the proposed improvements in [9] to the model
includes a reified version of alldifferent. Unfortunately, this is not available in
most constraint programming systems. Two versions are tested: using a decom-
position representing a reified alldifferent; and using a group to implement it.

Table 5. Reified alldifferent for the EFPA problem. Models compared use a decom-
position (decomposed) and an implementation using groups (group) for the reified
alldifferent constraint. Time is given in milliseconds.

decomposed group

〈d, λ, q, v〉 time nodes time nodes

〈4, 3, 4, 6〉 0.03 2 192 0.06 1 045
〈4, 4, 4, 8〉 3.23 20 564 2.32 10 104

As shown in Table 5, the additional pruning from the true reified alldifferent
propagator using groups pays of in the number of nodes that need to be explored.
The time is slightly improved, although not as much. Using groups, it is possible
to try a reified version of alldifferent in a reasonably efficient manner.

5.2 Constructive Disjunction

Given a constraint c ∨ c′ where c and c′ share common variables x, the use of
the reified decomposition c ↔ (b = 1) ∧ c′ ↔ (b′ = 1) ∧ b + b′ ≥ 1 sacrifices

536 M.Z. Lagerkvist and C. Schulte

propagation. Consider a disjunctive resource constraint between two tasks 1 and
2 with start-times s1 ∈ {1..10} and s2 ∈ {1..10} and durations d1 = 6 and
d2 = 7. The reified construction s1 + d1 ≤ s2 ↔ (b1 = 1)∧ s2 + d2 ≤ s1 ↔ (b2 =
1)∧b1+b2 ≥ 1 does not propagate any new information. It is not hard to see that
the domains could be reduced, giving s1 ∈ {1..4, 8..10} and s2 ∈ {1..3, 7..10}.

While it is possible to write a specialized propagator to handle disjunctive
resources, it may not be cost-efficient to do so. Furthermore, it does not handle
the general case of propagating disjunctive constraints. The technique of con-
structive disjunction [11, 13, 7, 6, 23] can be used to get full propagation. The
basic scheme is to add renamed copies of the variables, as in the previous sec-
tion, and to run the disjunctive constraints on each of the copies. For any given
variable x that is shared among the disjuncts, the union of the domains of the
variable-copies for the disjuncts is the new domain.

Implementation. For each disjunct ci, a new copy of the constraint variables
var (ci) in the store S is made, giving a new store Si. The propagators for each
disjunct ci are put in a basic group gi. By putting the disjuncts in separate
groups, the status of each disjunct (failure, entailment) can be checked. The
controlling propagator proceeds through the following steps:

– For each variable x, add the new domain-reductions to each copied store Si.
– Run each group gi that is not yet failed.
– If all groups are failed, report failure.
– If there exists an entailed group gi where Si = S, report entailment.
– For each variable x shared among all non-failed groups G, set x = ∪gj∈Gxj .

Implementing a constructive disjunction propagator is mostly straightforward.
One interesting aspect is that the largest part of the code and logic is related to
handling failed and entailed groups so that the (relatively) expensive propagator
is not run needlessly and so that no propagation is missed.

Implementing constructive disjunction using groups is similar to the hard-
coded implementation from the cc(FD) system [11]. The difference is that with
groups the system is kept unaware of constructive disjunction. Programming
constructive disjunction in Propia [15] is similar to groups in that the system is
not hard-coded for constructive disjunction, while it is different in that it uses
nested search to evaluate each disjunct. This is an approach that saves memory
and trades it for computation time.

Evaluation. The value of constructive disjunction as a general technique has been
investigated previously [23]. To give a basic evaluation of the implementation,
the disjunctive resource example from above is tried with normal reification and
with constructive disjunction. The branching used is to try the median value.
The example is scaled with a factor k representing time granularity on both
variables and durations. While this is a small artificial example, it is based on
the common serialization constraint. The results in Table 6 show that the use of
constructive disjunction gives an important speed-up. For the case where the use
of constructive disjunction is desired, groups enable the use without incurring
overhead for the system implementer.

Propagator Groups 537

Table 6. Simple use of constructive disjunction. Time is given in milliseconds.

reified constructive

k time nodes time nodes

100 0.00 402 0.00 18
1 000 0.02 4 002 0.01 182

10 000 0.20 40 002 0.04 1 802
100 000 1.97 400 002 0.18 18 002

6 Conclusions

The addition of groups to a propagator-oriented constraint programming sys-
tem is a small, simple, and minimal extension that allows several interesting and
useful techniques to be implemented at the user-level without any additional
support from the system. In particular, groups enable the first implementation
of optimal propagation ordering for Berge-acyclic constraint graphs. The imple-
mentation is simple, and the overhead of the system is kept low.

The advantage of being able to experiment with defining the order of propa-
gation and to control the execution of propagators opens up for many new in-
teresting topics. For example, combining the analysis of constraint graphs from
[8] with groups for optimal propagator ordering would allow optimal propagator
ordering for large subsets of the constraints without requiring the user to specify
these patterns.

The results show that groups can implement reification for complex con-
straints without reification-support and constructive disjunction with a mod-
erate overhead.

Acknowledgements. The authors would like to thank Guido Tack and the
anonymous reviewers for comments that considerably improved this paper.

References

[1] Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. J. ACM 30(3), 479–513 (1983)

[2] Bessiere, C.: Constraint propagation. In: Rossi, et al. (eds.) [17], ch. 3, pp. 29–84
[3] Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: SLIDE: A useful

special case of the CARDPATH constraint. In: Ghallab, M., Spyropoulos, C.D.,
Fakotakis, N., Avouris, N.M. (eds.) ECAI, pp. 475–479 (2008)

[4] Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Range and roots:
Two common patterns for specifying and propagating counting and occurrence
constraints. Artificial Intelligence (2009)

[5] Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.-G., Walsh, T.: Decom-
positions of all different, global cardinality and related constraints. In: IJCAI
(2009)

[6] Carlson, B., Carlsson, M.: Compiling and executing disjunctions of finite domain
constraints. In: ICLP, pp. 117–131 (1995)

538 M.Z. Lagerkvist and C. Schulte

[7] Codognet, C., Codognet, P.: Guarded constructive disjunction: Angel or demon?
In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 345–361. Springer,
Heidelberg (1995)

[8] Francis, K., Stuckey, P.J.: Constraint propagation for loose constraint graphs. In:
Cho, Y., Wainwright, R.L., Haddad, H., Shin, S.Y., Koo, Y.W. (eds.) SAC, pp.
334–335. ACM, New York (2007)

[9] Gent, I.P., McKay, P., Miguel, I., Nightingale, P., Huczynska, S.: Modelling
equidistant frequency permutation arrays in constraints. In: SARA (2009)

[10] Goualard, F., Benhamou, F.: Debugging constraint programs by store inspection.
In: Deransart, P., Ma�luszyński, J. (eds.) DiSCiPl 1999. LNCS, vol. 1870, pp. 273–
297. Springer, Heidelberg (2000)

[11] Hentenryck, P.V., Saraswat, V.A., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(FD). In: Podelski, A. (ed.) Constraint Pro-
gramming: Basics and Trends. LNCS, vol. 910, pp. 293–316. Springer, Heidelberg
(1995)

[12] Lagerkvist, M.Z., Schulte, C.: Advisors for incremental propagation. In: Bessière,
C. (ed.) CP 2007. LNCS, vol. 4741, pp. 409–422. Springer, Heidelberg (2007)

[13] Müller, T., Würtz, J.: Constructive Disjunction in Oz. In: Krall, A., Geske, U.
(eds.) 11. Workshop Logische Programmierung, Technische Universität Wien,
September 27-29 (1995)

[14] Paltzer, N.: Debugging constraint propagation. Master’s thesis, Saarland Univer-
ity, Germany (March 2008)

[15] Provost, T.L., Wallace, M.: Domain independent propagation. In: FGCS, pp.
1004–1011 (1992)

[16] Quimper, C.-G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

[17] Rossi, F., van Beek, P., Walsh, T.: Handbook of constraint programming (2006)
[18] Schulte, C.: Programming deep concurrent constraint combinators. In: Pontelli,

E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, pp. 215–229. Springer,
Heidelberg (2000)

[19] Schulte, C.: Programming Constraint Services. LNCS (LNAI), vol. 2302. Springer,
Heidelberg (2002)

[20] Schulte, C., Carlsson, M.: Finite domain constraint programming systems. In:
Rossi, et al. (eds.) [17], ch. 14, pp. 495–526

[21] Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. Transactions
on Programming Languages and Systems 31(1), 2:1–2:43 (2008)

[22] The Gecode team. Generic constraint development environment (2006),
http://www.gecode.org

[23] Würtz, J., Müller, T.: Constructive disjunction revisited. In: Görz, G., Hölldobler,
S. (eds.) KI 1996. LNCS, vol. 1137, pp. 377–386. Springer, Heidelberg (1996)

http://www.gecode.org

Efficient Generic Search Heuristics
within the EMBP Framework

Ronan Le Bras1,2, Alessandro Zanarini1,2, and Gilles Pesant1,2

1 École Polytechnique de Montréal, Montreal, Canada
2 CIRRELT, Université de Montréal, Montreal, Canada

{Ronan.LeBras,Alessandro.Zanarini,Gilles.Pesant}@cirrelt.ca

Abstract. Accurately estimating the distribution of solutions to a prob-
lem, should such solutions exist, provides efficient search heuristics. The
purpose of this paper is to propose new ways of computing such esti-
mates, with different degrees of accuracy and complexity. We build on the
Expectation-Maximization Belief-Propagation (EMPB) framework pro-
posed by Hsu et al. to solve Constraint Satisfaction Problems (CSPs).
We propose two general approaches within the EMBP framework: we
firstly derive update rules at the constraint level while enforcing domain
consistency and then derive update rules globally, at the problem level.
The contribution of this paper is two-fold: first, we derive new generic
update rules suited to tackle any CSP; second, we propose an efficient
EMBP-inspired approach, thereby improving this method and making
it competitive with the state of the art. We evaluate these approaches
experimentally and demonstrate their effectiveness.

Keywords: Constraint Satisfaction, Search Heuristics, Probabilistic
Reasoning, Expectation Maximization, Belief Propagation.

1 Introduction

In this paper we address Constraint Satisfaction Problems (CSPs). To guide the
backtrack search, we estimate the percentages of solutions that have a given vari-
able assigned a particular value. Accurately estimating this distribution of the
solutions, should such solutions exist, provide efficient search heuristics. Previous
work [4] already shows a positive correlation between accuracy of the estimates
and efficiency of the heuristic. The more accurate the estimations are, the more
efficient the heuristic is. On one side of this accuracy spectrum, a distribution
in which every variable-value assignment is equally probable represents a totally
random heuristic. On the other side lie exact marginal probabilities for a ran-
domly sampled solution of the problem. The first approach is trivial whereas the
second remains intractable for hard problems. Indeed, finding the proportion
of solutions that assign a variable a particular value is a generalization of the
problem of detecting backbone variables. (A backbone variable is defined as a
variable that takes the same value in every solution of a given problem; thus,
the marginal distribution of such a variable corresponds to a probability of 1

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 539–553, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

540 R. Le Bras, A. Zanarini, and G. Pesant

for this particular value, and 0 for the other values in its domain.) Since even
an approximation of a backbone is intractable in general [6], the problem of
estimating the distribution of solutions is a fortiori also intractable in general
for hard problems. The purpose of this paper is therefore not to present exact
estimation methods for these distributions but to specify approximate methods,
with different degrees of accuracy and of complexity.

In this probabilistic environment, inference methods such as message-passing
algorithms were proven to be very effective. Even if they are more traditionally
applied in probabilistic inference, their aptitude to estimate marginal proba-
bility makes them particularly suitable for a backtrack search framework. For
instance, Belief Propagation (BP) [10,8] (and later on Generalized Belief Prop-
agation [13]) was developed to tackle inference problems such as problems aris-
ing in computer vision or error-correcting coding theory. Kask et al. [5] then
demonstrated that BP was especially efficient when applied to CSPs and used
as a value-ordering heuristic. Mezard et al. [9] invented Survey Propagation,
which eventually turned out to be nothing less than the state of the art to solve
large random Boolean satisfiability (SAT) problems [1,7]. More recently, Hsu et
al. [3,4] suggested Expectation Maximization (EM) variants of these two major
message-passing algorithms.

Here we exploit Expectation-Maximization Belief Propagation (EMBP) which
was proposed by [3] to address the Quasigroup with Holes (QWH) problem.
The contribution of this paper is two-fold: first, we derive new generic update
rules suited to tackle any CSP; second, we propose an efficient EMBP-inspired
approach, thereby improving this method and making it competitive with the
state of the art. We evaluate these approaches experimentally and demonstrate
their effectiveness.

The following section presents the EMBP algorithm. Section 3 then introduces
the local consistency extensions of this algorithm, while Section 4 describes the
global consistency approach. Section 5 reports the experimental results on three
problems. Section 6 discusses connections between the EMBP framework and
search heuristics from the literature. Final comments are given in Section 7.

2 Expectation-Maximization Belief Propagation

A Constraint Satisfaction Problem (CSP) consists of a finite set of variables
X = {x1, x2, . . . , xn} with finite domains D = {D1, D2, . . . , Dn} such that
xi ∈ Di for all i, together with a finite set of constraints C, each on a sub-
set of X . A constraint Ci ∈ C is a subset T (Ci) of the Cartesian product of the
domains of the variables that are in Ci. We write X(Ci) to denote the set of
variables involved in Ci and we call tuple τ ∈ T (Ci) an allowed combination of
values of X(Ci).

This problem can be modeled indifferently as a Factor Graph, a Pairwise
Markov random field or a Bayesian Network [13]. These models then define a
joint probability function P (x1, x2, . . . , xn). Thus, estimating the distribution of
solutions boils down to approximating marginal probabilities P (xi), ∀i ∈ 1..n.

Efficient Generic Search Heuristics within the EMBP Framework 541

Here lies the purpose of inference methods, and particularly of message-passing
algorithms.

2.1 EMBP Framework

Like other message-passing algorithms, EMBP [3] iteratively adjusts the proba-
bility for a variable xi to be assigned a particular value v in a randomly chosen
solution. We will denote θxi(v) and call bias such a probability. Hence, θxi rep-
resents a probability distribution over the values in D(xi) which approximates
the exact marginal distribution P (xi). The EMBP framework also introduces a
binary-vector random variable y that indicates whether each constraint is sat-
isfied. EMBP proceeds by sending two kind of messages (thus falling into the
”message-passing” category), as illustrated on Figure 1. First, a variable sends
its probability distribution to the constraints (Figure 1(a)) so that the latter hy-
pothetically compute the probability of satisfying tuples. Then, every variable
retrieves this information from its relevant constraints (Figure 1(b)) in order to
update its probability distribution.

x1 x2 x3 x4 x5

C1 C2

θx2 θx4θx1 θx3 θx5

(a) E-Step

x1 x2 x3 x4 x5

C2C1q(C1) q(C2)

(b) M-Step

Fig. 1. Illustrating Expectation-Maximization messages for the following example: X =
{x1, x2, x3, x4, x5}, C = {C1, C2}, with X(C1) = {x1, x2, x3} and X(C2) = {x3, x4, x5}}

2.2 EMBP General Update Rule

Let Θ be the vector of variable biases θxi . In essence, the basic goal of the EM
algorithm consists of finding the variable biases Θ that maximize the probability
P (y|Θ) that the constraints are satisfied. However, the EMBP methodology
assumes that the vector of variables y was originally generated by using not
only the parameters Θ, but also hidden variables that we did not observe. In
a CSP environment, these latent variables (that we will call z) are actually
the satisfying configurations, i.e. tuples, of the constraints. In other words, the
variable z ranges over all valid solutions of the problem. We denote by Sz the
support of the distribution of z.

Hence, we now want to maximize P (y, z|Θ). The difficulty lies in the fact that
we cannot marginalize on z since it would assume that we can observe the solu-
tions of the problem. Instead, we divide this computation into two iterative steps.
In the first step of the EM algorithm (the E-Step), we hypothesize the distribu-
tion Q(z) = P (z|y, Θ). The distribution function Q(z) represents each solution

542 R. Le Bras, A. Zanarini, and G. Pesant

probability given the biases Θ and given the observation y that the constraints
are satisfied. Figure 1(a) illustrates this step, in which every constraint C receives
the probability distribution θxi (where xi ∈ X(C)) and computes the probability
of the satisfying configurations given these distributions. In the second step (the
M-Step), we revise the variable biases Θ. As illustrated in Figure 1(b), the vari-
ables adjust their distribution taking into account the probability of the valid
tuples of the constraints.

Within the Expectation-Maximization (EM) methodology, the E-step firstly
assumes the independence between constraints to compute Q(z) as we hypothet-
ically consider only satisfying configurations. Thus, Q(z) becomes the product of
the probabilities of the constraints, given a particular set of biases Θ. Therefore,
Q(z) =

∏m
i=1(q(Ci)), where q(Ci) is the probability of a given configuration for

the constraint Ci.
The M-step then enforces the dependence between constraints, and yields the

following general formula:

θxi(v) =
1
η

∑
Ck∈C:xi∈X(Ck)

(∑
z∈Sz:xi=v

Q(z)

)
(1)

Here η is a normalizing constant and equals the summation of the numerator
over all values of v. For more details about how to derive Equation (1), please
refer to [3].

As a result, EMBP provides a general algorithm to compute variable biases.
Within this framework, the definition of Q(z) remains however unspecified. The
methods presented in the following section exploit this degree of freedom.

2.3 Computing EMBP: A Tradeoff between Accuracy and
Complexity

One might consider determining Sz, the solution space of the problem, and then
computing Q(z) exactly. This approach is however intractable since it implies
expressing each solution of the problem to estimate the biases in order to find a
solution. Hence, an approximation of Q(z) is required. The methods described
in this paper (summarized in Table 1) gradually improve the accuracy of the
estimation of Q(z) and, by doing so, increase the complexity of its computation.
In that regard, the methods need to find the supports either locally (i.e. at the

Table 1. EMBP-based search heuristics

Heuristics Consistency
EMBP-a local Arc-Consistency
EMBP-Lsup local X-Consistency
EMBP-Gsup global X-Consistency

Efficient Generic Search Heuristics within the EMBP Framework 543

constraint level - Lsup) or globally (i.e. after propagating the whole constraint
network - Gsup) enforcing a level of consistency denoted by X.1

3 EMBP and Local Consistency

Whereas Equation (1) sums over the probabilities of all satisfying tuples, the
following local X-consistency methods (EMBP-a and EMBP-Lsup) are designed
to approximate this summation by simplifying it.

3.1 EMBP-a for the alldifferent Constraint

Originally, Hsu et al. [3] suggest such an approximation for the alldifferent
constraint. The probability that variable xi is assigned the value v can be ap-
proximated by the probability that no other variable in the constraint takes the
value v. The approach is therefore ensuring pairwise consistency between xi and
the other variables in the alldifferent constraint. Thus, the authors obtain
the following update rule for a set Ca of alldifferent constraints:

θxi(v) =
1
η

∑
Ck∈Ca:xi∈X(Ck)

⎛⎝ ∏
xj∈X(Ck)\xi

∑
v′∈D(xj)\v

θxj (v
′)

⎞⎠
=

1
η

∑
Ck∈Ca:xi∈X(Ck)

⎛⎝ ∏
xj∈X(Ck)\xi

(
1− θxj (v)

)⎞⎠ (2)

where η is again a normalizing constant.

3.2 EMBP-Lsup

We propose to derive local X-consistency EMBP methods, which are a fairly
natural extension of EMBP-a. The reasoning behind these methods to compute
θxi(v) for a given constraint is to consider all assignments xj = v′ that are X-
consistent with the assignment xi = v within this constraint. In other words,
these methods take into account domain reductions at the constraint level when
enforcing X-consistency. Essentially, the method processes one constraint at a
time, and for each variable-value assignment looks for the supports that are
X-consistent and updates the biases using the following formula:

θxi(v) =
1
η

∑
Ck∈C:xi∈X(Ck)

⎛⎝ ∏
xj∈X(Ck)\xi

∑
v′∈D̃xi=v(xj)

θxj (v
′)

⎞⎠ (3)

where D̃xi=v(xj) represents the reduced domain of the variable xj after assigning
xi = v and enforcing X-consistency on Ci.
1 Note that the constraints involved can even implement different levels of consistency,

as is common in practice.

544 R. Le Bras, A. Zanarini, and G. Pesant

Considering that ensuring pairwise consistency between one variable and the
others is reminiscent of arc consistency, EMBP-a indeed falls into the set of local
X-consistency EMBP methods, with X standing for arc consistency. Nonetheless
if we consider stronger consistency, such as domain consistency, the improve-
ment is twofold: it provides better accuracy since the variable biases rely only
on supports that are domain consistent (rather than arc consistent for EMBP-
a) and it is easily implementable for any constraint for which we can enforce
domain consistency. The method can be easily extended to consider any form
of consistency. As in the general EMBP update rule, EMBP-Lsup still assumes
independent constraints and only the M-Step enforces the dependence between
the constraints.

Algorithm 1 shows the pseudo-code to update θxi(v) at iteration t. PCi rep-
resents the contribution of Ci to θxi(v) and Sxj the summation for the variable
xj . Firstly, the algorithm picks up a constraint Ci whose variable set contains
xi, then propagates the assignment xi = v (line 3). For every variable xj in the
constraint’s scope, we add up the value biases of the reduced domain (line 8)
and multiply the result with PCi (line 9). Once the algorithm is done with pro-
cessing constraint Ci, it adds the contribution of this constraint to θxi(v), rolls
back the effect of the propagation (lines 10–11), and continues to iterate over
the remaining constraints. Note that when all the θxi(·) have been computed,
they have to be normalized.

θt+1
xi

(v) = 0;1

for each constraint Ci ∈ C : xj ∈ X(Ci) do2

enforce X-consistency on Ci with xi = v;3

PCi = 1;4

for each variable xj ∈ X(Ci) \ xi do5

Sxj = 0;6

for each value v′ ∈ D̃xi=v(xj) do7

Sxj = Sxj + θt
xj

(v′);8

PCi = PCi × Sxj ;9

θt+1
xi

(v) = θt+1
xi

(v) + PCi ;10

rollback propagation Ci;11

normalize θt+1
xi

(v);12

Algorithm 1. EMBP-Lsup update algorithm for θxi(v) at iteration t

Given k the number of constraints in which xi is involved, n their maximum
arity, d the maximum cardinality of the variable domains and P the worst-
case complexity of the constraints’ propagation algorithms, the worst-case time
complexity of Algorithm 1 is O(kP +knd). To reach convergence, the code shown
in Algorithm 1 should be run for every variable-value pair at each iteration of
the EMBP. In order to improve the efficiency of the procedure, the propagation
of the constraints is performed once and the information related to D̃xi=v is
cached since the reduced domains remain constant over the iterations.

Efficient Generic Search Heuristics within the EMBP Framework 545

This method aims to be a tradeoff between accuracy and performance: at
any given time no propagation other than the one of the processed constraint is
performed, which is less expensive than propagating the whole model, but also
less accurate.

4 EMBP and Global Consistency

Introducing a new method that we call EMBP-Gsup, we suggest to go one step
further in terms of accuracy for the computation of Q(z). Indeed, in EMBP-
Gsup, the problem is considered as a whole and the method directly exploits the
dependence between constraints when computing Q(z). EMBP-Lsup considers
supports that are X-consistent for one constraint at a time whereas EMBP-Gsup
will improve the quality of the approximation by taking into account supports
that are X-consistent after propagating each problem’s constraint. In the new
representation underlying the approximation of Q(z), instead of having m con-
straints (see Figure 1), we now consider only one, in which every variable in X
is involved.

The update formula is then:

θxi(v) =
1
η

∏
xj∈X\xi

∑
v′∈D̂xi=v(xj)

θxj (v
′)

=
1
η

∏
xj∈X\xi

⎛⎝1−
∑

v′∈D(xj)\D̂xi=v(xj)

θxj (v
′)

⎞⎠ (4)

where D(xj) is the domain of xj before assigning xi = v and D̂xi=v(xj) stands
for the reduced domain of the variable xj after assigning xi = v and enforcing
X-consistency on each problem constraint.

The method indirectly depends on the problem modelling since it depends on
the overall inference power underlying the specific modelling. However, this ap-
proach also offers the possibility of using different levels of consistency during the
probing phase (when we compute D̂xi=v) and during the effective propagation
phase of the search.

Algorithm 2 shows the pseudo-code to update θxi(v) at iteration t. The main
difference with Algorithm 1 lies in the fact that there is no summation over
the constraints since the contribution of each constraint is implicitly reflected
in D̂xi=v(xj) due to the initial propagation over the whole problem (line 2).
In practice the experiments revealed that it is faster to iterate over the delta
domain of the variables (which is the complementary set of D̂xi=v(xj)) rather
than over D̂xi=v(xj) itself (line 5).

Given K the total number of constraints, N the total number of variables, d
the maximum cardinality of the variable domains and P the worst-case complex-
ity of the constraints’ propagation algorithms, the worst-case time complexity
of Algorithm 2 is O(KP + Nd). Even though not obvious from the worst-case

546 R. Le Bras, A. Zanarini, and G. Pesant

θt+1
xi

(v) = 1;1

enforce X-consistency on the whole problem with xi = v;2

for each variable xj ∈ X \ xi do3

Sxj = 1;4

for each value v′ ∈ D(xj) \ D̂xi=v(xj) do5

Sxj = Sxj − θt
xj

(v′);6

θt+1
xi

(v) = θt+1
xi

(v) × Sxj ;7

rollback propagation of xi = v;8

normalize θt+1
xi

(v);9

Algorithm 2. EMBP-Gsup update algorithm for θxi(v) at iteration t

complexities, Algorithm 2 happens to be more time consuming than Algorithm 1
since we usually have K � k and N � n. In order to avoid propagation at each
iteration of the EMBP, the information related to D(xj)\D̂xi=v is also computed
once and then cached, as in Algorithm 1.

5 Experiments

In this section we evaluate search heuristics based on the methods we propose.
Fundamentally, at each node of the search tree, after computing the variable
biases according to EMBP-a, EMBP-Lsup, or EMBP-Gsup, the search heuristic
branches on the variable-value pair that presents the highest bias. We evaluate
the proposed search heuristics on three benchmark problems - the Nonogram
problem, the Quasigroup With Holes problem and the Magic Square problem.
We then compare our results with six other heuristics, rndMinDom, MaxSD,
IlogIBS, IlogAdvIBS, RSC-LA, and RSC2-LA. Before presenting the results of the
experiments, we detail these heuristics and explain the rationale behind the
selection of these six other search heuristics:

- rndMinDom randomly picks up a variable with the smallest domain size and
then randomly selects a value from its domain. We present the results for this
heuristic as a benchmark for fairly uninformed yet very common heuristics.

- MaxSD stands for maximum Solution Density and belongs to the family of
solution counting based heuristics. This heuristic exploits counting information
provided by the constraints in order to branch on the part of the search tree
where it is likely to find a higher number of solutions [14]. MaxSD is considered
the state-of-the-art for solving the hard QWH problems.

- Impact Based Search [11] methods first choose the variable whose instantia-
tion triggers the largest search space reduction (highest impact) that is approxi-
mated as the reduction of the Cartesian product of the domains of the variables.
The impact is either approximated as the average reduction observed during the
search or computed exactly at a given node of the search (the exact computa-
tion provides better information but is more time consuming). IlogIBS represents

Efficient Generic Search Heuristics within the EMBP Framework 547

Impact Based Search where the impacts are approximated. IlogAdvIBS chooses
a subset of 5 variables with the best approximated impacts and then it breaks
ties based on the exact impacts while further ties are broken randomly [11].

- RSC-LA stands for restricted singleton consistency look-ahead heuristic [2].
RSC-LA maintains restricted singleton consistency during the search while RSC2-
LA maintains this level of consistency for a subset of variables whose domain size
equals 2. While enforcing singleton consistency, the method collects look-ahead
information under the form of impacts and uses it in a manner similar to [11].
RSC-LA is similar to EMBP-Gsup since they both perform a complete look-
ahead procedure at every choice point. Hence, it is definitely worth comparing
the results for these two approaches, as they only differ on how to aggregate the
look-ahead information.

All tests were performed with Ilog Solver 6.5 on a AMD Opteron 2.4GHz
with 1GB of RAM; for the heuristics that have some sort of randomization we
present the arithmetic averages over 10 runs. In the heuristics based on EMBP,
the bias computation is performed at every node. At each node, we randomly
initialize the biases and iterate until convergence or until a fixed number of it-
erations is reached. Even though EMBP methods do guarantee convergence [3],
they converge to a local optimum, which might differ from the exact marginal-
izations. Nonetheless, convergence is relatively fast and every iteration is quite
time consuming so we decided to limit to 5 the number of iterations during these
experiments.

Nonogram. A Nonogram (problem 12 of CSPLib) is built on a rectangular n×m
grid and requires filling in some of the squares in the unique feasible way ac-
cording to some clues given on each row and column. As a reward, one gets
a pretty monochromatic picture. Each individual clue indicates how many se-
quences of consecutive filled-in squares there are in the row (column), with their
respective size in order of appearance. Each sequence is separated from the oth-
ers by at least one blank square but we know little about their actual position
in the row (column). Such clues can be modeled with regular constraints (the
actual automata Ar

i ,Ac
j are not difficult to derive but lie outside the scope of

this paper):

regular((xij)1≤j≤m,Ar
i) 1 ≤ i ≤ n

regular((xij)1≤i≤n,Ac
j) 1 ≤ j ≤ m

xij ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ j ≤ m

We experimented with 180 instances2 of sizes ranging from 16×16 to 32×32.
We enforced domain consistency on the constraints and set a timeout of 10
minutes for each run.

Figure 2 shows the percentage of instances solved within a given time. In
Nonograms the additional constraint inference performed by EMBP does not
bring a clear advantage over simply using information such as impacts. In fact,
as shown in the plot, this problem is a fairly easy one, most of the instances are
2 Instances taken from http://www.blindchicken.com/∼ali/games/puzzles.html

548 R. Le Bras, A. Zanarini, and G. Pesant

���

���

���

���

���

��	

��

�
�
��
��
��
	

�����

����

������

���������

������� !

������� !

�"#$

�

���

���

���

���

���

���

���

��	

��

�

� �� ��� �	� ��� ��� ��� ��� �	� ��� ���

�
��
��
��
	

���������

�����

����

������

���������

������� !

������� !

�"#$

�%���%$�&

Fig. 2. Percentage of solved instances vs time for 180 Nonogram instances

solved within few seconds; yet EMBP-Gsup, despite its inherent overhead, per-
forms basically the same as RSC-based and IBS-based heuristics. MaxSD and
EMBP-Lsup are slightly behind in this test, being able to solve fewer instances.
Finally, our baseline RndMinDom is significantly slower compared to the rest
of the heuristics. What the figure doesn’t show is that our proposed heuristics
dramatically improve the total number of backtracks (by three orders of magni-
tude) over any other heuristic tested except RSC-LA methods, even if it does not
translate to the best overall total running time (mainly due to a single instance
that timed out).

Quasigroup with Holes. A Latin Square of order n is defined on a n × n grid
whose cells each contain an integer from 1 to n such that each integer appears
exactly once per row and column. The Quasigroup with Holes (QWH) problem
gives a partially-filled Latin Square instance and asks to complete it. It can be
modeled easily as follows:

alldifferent((xij)1≤j≤n) 1 ≤ i ≤ n
alldifferent((xij)1≤i≤n) 1 ≤ j ≤ n
xij = d (i, j, d) ∈ S
xij ∈ {1, 2, . . . , n} 1 ≤ i, j ≤ n

where S represents the set of pre-assigned cells.
The set of instances is the same as in [14]: 40 instances with n = 30 and a

percentage of holes around 42% (near the phase transition). We enforced domain
consistency on the constraints and set a timeout of 20 minutes for each run.

For this test we also added the heuristic dom/ddeg; min conflicts that chooses
the variable with the lowest ratio of domain size over dynamic degree and then
selects the value with the minimum number of conflicts (this has been considered

Efficient Generic Search Heuristics within the EMBP Framework 549

��'

��'

��'

��'

��'

	�'

�'

���'
�
��
��
��
	

�"#$
������� !
�����
����
���������
������� !
�����"
$ ($� � -

�'

��'

��'

��'

��'

��'

��'

��'

	�'

�'

���'

� ��� ��� ��� ��� ��� ��� ��� 	��
�� ���� ���� ����

�
��
��
��
	

���������

�"#$
������� !
�����
����
���������
������� !
�����"
$�&($�)�*&�%+,�%-�
�%���%$�&
������

Fig. 3. Percentage of solved instances vs time for 40 hard QWH instances of order 30

for years one of the best custom heuristics for QWH). For the heuristic MaxSD,
the counting algorithm has been set as in [14].

Figure 3 shows the results (presented as in the Nonogram problem). Despite
the fact that EMBP-Lsup is significantly more lightweight than EMBP-Gsup, its
performance does not match that of EMBP-Gsup because of poorer heuristic
guidance. EMBP-Gsup performs very well in terms of number of backtracks (at
least one order of magnitude better than any other heuristic) and scores the
best total time. Again most of the computation time is spent at each node of the
search tree in propagating the whole problem for each variable-value pair but
the accuracy of the variables’ biases definitely pays off. This overhead can be
seen in Figure 3: the heuristic takes some time to get close to the leaves of the
search tree to find solutions. Therefore the heuristic hardly solves any instance
within the first minute. However it is able to solve about 75% of the instances in
90 seconds. MaxSD presents the same behavior, due to the sampling algorithm
used to count the number of solutions of the alldifferent constraints which
causes a significant overhead. Nonetheless, the total running time of EMBP-
Gsup is significantly lower. The heuristics that were scoring the best running
times on the Nonogram problem (RSC-based and IBS-based heuristics) strug-
gle more here and their running time goes from almost two to seven times the
running time of EMBP-Gsup to solve the same number of instances. The total
number of instances solved is also significantly lower compared to EMBP-Gsup.
Finally, it is interesting to see how Hsu et al.’s approach behaves with respect to
EMBP-Lsup: the two methods are similar (although Hsu et al.’s only applies to
alldifferent constraints), the only difference being that ours enforces domain
consistency on the constraints whereas EMBP-a keeps a weak form of arc con-
sistency. Hence, EMBP-a is able to perform more backtracks w.r.t. EMBP-Lsup
in the same amount of time but has poorer heuristic guidance.

550 R. Le Bras, A. Zanarini, and G. Pesant

Magic Square. This very old puzzle is built on a n×n grid. The task is to place
the first n2 integers in the grid so that each row, column and main diagonal
sums up to the same value. A partially filled Magic Square Problem asks for a
solution, if one exists. It can be made harder to solve than the traditional version
starting from a blank grid. More formally, here is a model for the Magic Square
Problem:

alldifferent((xi,j)1≤i,j≤n)∑
1≤j≤n xi,j = sum 1 ≤ i ≤ n∑
1≤i≤n xi,j = sum 1 ≤ j ≤ n∑
1≤i≤n xi,i = sum∑
1≤i≤n x(n+1−i),i = sum

xi,j ∈ {1, n2} 1 ≤ i ≤ n, 1 ≤ j ≤ n

where sum = n(n2+1)
2 . On the alldifferent constraint, domain consistency

is enforced, while for the equality knapsack constraint, bound consistency is
enforced. The set of instances is the same as in [12]: 40 instances with prefilled
cells (in order to avoid trivial solutions) — half of the instances have 10 preset
variables and the other half, 50. A timeout of one hour was set for each run.

��'

��'

��'

��'

��'

	�'

�'

���'

�
��
��
��
	

������� !

���������

�%���%$�&

�"#$

�����

����

������

�'

��'

��'

��'

��'

��'

��'

��'

	�'

�'

���'

� ��� ���
�� ���� ���� �	�� ���� ���� ���� ���� ���� ����

�
��
��
��
	

���������

������� !

���������

�%���%$�&

�"#$

�����

����

������

������� !

Fig. 4. Percentage of solved instances vs time for 40 Magic Square instances

Figure 4 shows the results as presented on the previous two problems. EMBP-
Gsup is the best performing heuristic, outperforming by about 35% the second
best heuristic (ilogAdvIBS) in terms of total time (including timeouts). As shown
in the plot, in this problem the heuristic is well suited both for hard and easy
instances. Again, the number of backtracks is the lowest among the group of
heuristics by at least one order of magnitude. Despite being fairly good on the
QWH problem, MaxSD falls far behind in this test taking more than double the
time of EMBP-Gsup.

Efficient Generic Search Heuristics within the EMBP Framework 551

As before, EMBP-Lsup was not able to provide an interesting performance
with respect to EMBP-Gsup. However, it is worth mentioning that the EMBP-
Gsup underlying algorithm provides at no extra cost a reduced form of singleton
consistency whereas EMBP-Lsup does not enforce implicitely such form of con-
sistency.

Overall, compared to some state-of-the-art heuristics, EMBP-Gsup turns out
to be the most consistent heuristic on the problems considered. RSC2-LA per-
forms better on Nonogram instances but not on QWH and it fails to solve 20%
of the Magic Square instances. Impact-Based Search heuristics achieve compara-
ble performance on Nonogram but finish far behind on QWH instances. Finally,
MaxSD performs very well on QWH but not as well as EMBP-Gsup when con-
sidering Nonogram and Magic Square.

6 Discussion

In this section we draw connections between some of the heuristics used in this
paper.

Solution counting algorithms [14] propose an approach which is closely related
to the EMBP method. Indeed, constraint-centered solution counting also offers
marginals of the variables for a specific constraint. This method however consid-
ers constraints separately. In the EMBP framework, this would be equivalent to
considering one independent factor graph for each constraint. Hence, constraint-
level solution counting estimates marginal distributions of a priori independent
constraints. Within a backtrack search tree, this approach then suggests to con-
sider a basic aggregation of these marginals but misses a more global reasoning
that considers the dependence between the constraints. Also, the first iteration
of the local X-consistency EMBP method would give the exact computation
of the solution densities as defined in [14] (again assuming variable biases are
uniformly initialized) if we were able to exactly compute Q(z).

The RSC-LA methods proposed by Correia and Barahona in [2] also present
strong similarities with EMBP-Gsup. In our case, we are building search heuris-
tics using look-ahead information which in return provides restricted singleton
consistency. Conversely, in [2], the authors ensure restricted singleton consisten-
cies and take advantage of the information provided during look-ahead proce-
dures to derive search heuristics. Compared to [2], when computing EMBP-Gsup,
we thus also benefit from restricted singleton consistency that allows us to shave
the search tree with every variable-value pair that is inconsistent. As a result,
both methods present a similar overhead of computation time at each node.
The difference in the search heuristics lies in the fact that [2] exploits impact
information whereas we are performing inference reasoning.

There are also some interesting connections between IBS and EMBP methods.
Were we to uniformly initialize the variable biases, the first iteration of EMBP-
Gsup would compute the impact of every variable-value pair as the reduction of
the Cartesian product of the domain, as [11,2] would do. Subsequent iterations
further refine this impact, thereby generating a sort of ”weighted” impact.

552 R. Le Bras, A. Zanarini, and G. Pesant

7 Conclusion and Open Issues

This paper provided generic and efficient heuristics built upon the EMBP frame-
work. Whereas previous EMBP proposals in [3] addressed problems involving
only alldifferent constraints, we lifted that restriction with our contribu-
tion. Furthermore, we provided a more efficient formulation that achieves very
promising performance and is competitive with the state of the art — it was
the most consistent on the problems considered. The number of backtracks for
our proposed heuristics was also consistently much lower, thus indicating excel-
lent heuristic guidance and some potential for runtime improvement if parts of
the computation are optimized or approximated (e.g. see the next paragraph).
An important step ahead has been achieved compared to the approaches pre-
sented in [3] and [14]. While these previous approaches respectively require
constraint-specific update rules and constraint-specific solution counting algo-
rithms, EMBP-Gsup and EMBP-Lsup are completely general and easily plug-
gable into any model.

Several important open issues still remain. First, even though accurate biases
certainly provide useful information for an underlying search framework, the
question remains of determining the most efficient way to use it. Indeed, when
used within a variable-ordering heuristic, a method providing a set of biases still
needs to define a branching strategy. Here the possibilities are numerous. For
example, we can choose to branch on the highest bias as we have done during
these experiments, but we could also choose the highest strength (difference
between a bias and the reciprocal of the domain size) or even remove the value
with the lowest bias from a variable domain. Second, instead of computing a
survey at each node of the search tree, we could use previous information. For
instance, we could set more than one variable at once, or also compute partial
surveys and keep track of the domain reduction information, as an IBS heuristic
would do. Finally, in future work, we would like to derive equivalent update rules
for the Expectation-Maximization Survey Propagation (EMSP) [4] and exploit
the promising potential of Survey Propagation.

Acknowledgements

The authors would like to thank Eric Hsu for useful comments about the EMBP
framework and the anonymous referees for their constructive comments. The
authors also thank the FCI-Relève program for financing the equipment on which
the experiments were partially conducted. This research was supported in part
by an NSERC discovery grant and an FQRNT doctoral scholarship.

References

1. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: An algorithm for
satisfiability. Random Structures Algorithms 27(2), 201–226 (2005)

2. Correia, M., Barahona, P.: On the integration of singleton consistencies and look-
ahead heuristics. In: CSCLP, pp. 62–75 (2007)

Efficient Generic Search Heuristics within the EMBP Framework 553

3. Hsu, E.I., Kitching, M., Bacchus, F., McIlraith, S.A.: Using expectation maximiza-
tion to find likely assignments for solving csp’s. In: AAAI, pp. 224–230 (2007)

4. Hsu, E.I., Muise, C.J., Beck, J.C., McIlraith, S.A.: Applying probabilistic inference
to heuristic search by estimating variable bias. In: Proceedings of the 1st Interna-
tional Symposium on Search Techniques in Artificial Intelligence and Robotics (at
AAAI 2008), Chicago, IL, USA, July 13–14, vol. WS-08-10, pp. 68–75 (2008)

5. Kask, K., Dechter, R., Gogate, V.: Counting-based look-ahead schemes for con-
straint satisfaction. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 317–331.
Springer, Heidelberg (2004)

6. Kilby, P., Slaney, J.K., Thibaux, S., Walsh, T.: Backbones and backdoors in sat-
isfiability. In: Veloso, M.M., Kambhampati, S. (eds.) AAAI, pp. 1368–1373. AAAI
Press / The MIT Press (2005)

7. Kroc, L., Sabharwal, A., Selman, B.: Survey propagation revisited. In: 23rd UAI,
Vancouver, BC, July 2007, pp. 217–226 (2007)

8. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

9. Mezard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random
satisfiability problems. Science 297(5582), 812–815 (2002)

10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

11. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

12. Trick, M.A.: A dynamic programming approach for consistency and propagation
for knapsack constraints. In: Annals of Operations Research, vol. 118, pp. 73–84
(2003)

13. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its
generalizations. Morgan Kaufmann Publishers Inc., San Francisco (2003)

14. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered
search heuristics. Constraints 14(3), 392–413 (2009)

Failed Value Consistencies for Constraint Satisfaction

Christophe Lecoutre and Olivier Roussel

Univ Lille Nord de France, F-59000 Lille, France
UArtois, CRIL, F-62307 Lens, France

CNRS, UMR 8188, F-62307 Lens, France
{lecoutre,roussel}@cril.fr

Abstract. In constraint satisfaction, basic inferences rely on some properties of
constraint networks, called consistencies, that allow the identification of incon-
sistent instantiations (also called nogoods). Two main families of consistencies
have been introduced so far: those that permit us to reason from variables such
as (i, j)-consistency and those that permit us to reason from constraints such as
relational (i, j)-consistency. This paper introduces a new family of consistencies
based on the concept of failed value (a value pruned during search). This family
is orthogonal to previous ones.

1 Introduction

Any user of a constraint solver ideally expects the system to be robust and clever enough
to automatically identify all relevant properties of a problem instance. These properties
typically depend on the structure of the instance and can help solving it. Some of the
approaches to reach that goal are inferences from strong consistencies, adaptive heuris-
tics, nogood recording and automatic symmetry breaking. They permit an efficient ex-
ploration of the search space, learning much useful information before or during search
so as to avoid exploring fruitless combinations of values of variables.

Usually, backtrack search is used for solving instances of the Constraint Satisfac-
tion Problem (CSP). Backtrack search combines a depth-first exploration to instantiate
variables and a backtracking mechanism to deal with encountered dead-ends. During
search, some values are proved to be inconsistent, i.e. not to participate to any solution
- we call them failed values. Interestingly, it is known [13] that failed values “convey”
some information: given a satisfiable binary CSP instance P , for any pair (x, a) where
x is a variable of P and a a value in the domain of x, if there is no solution containing
a for x, then there is necessarily a variable y �= x which is assigned a value b such that
(y, b) is not compatible with (x, a). It is then possible to dynamically and iteratively
decompose problem instances [13,2].

In this paper, we propose to exploit failed values in a different manner. By locally
reasoning from failed values, we show that some inferences can be performed within
reasonable complexities. In particular, we develop a new family of domain-filtering
consistencies based on failed values and show that they are complementary to (incom-
parable with) usual ones. They contribute to prune the search space and also offer a lazy
detection of a generalized form of the substitutability relation. Algorithms checking or
enforcing consistencies based on failed values can be naturally grafted to any constraint

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 554–568, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Failed Value Consistencies for Constraint Satisfaction 555

propagation engine in order to reinforce the filtering strength of the search algorithm.
This approach may represent an interesting contribution to the quest for robust solvers.

After recalling some technical background, two basic consistencies, called FVC and
AFVC and based on failed values, are presented. Next, algorithms for checking FVC
and enforcing AFVC are introduced, and AFVC is compared to substitutability and
usual consistencies. Finally, before presenting some preliminary experimental results,
we show that an entire class of consistencies based on failed values can be naturally
defined.

2 Technical Background

A constraint network (CN) P is composed of a finite set of n variables, denoted by
vars(P), and a finite set of e constraints, denoted by cons(P). Each variable x has an
associated domain, denoted by dom(x), that contains the finite set of values that can be
assigned to x. Each constraint c involves a set of variables, called the scope of c and
denoted by scp(c). It is defined by a relation, denoted by rel(c), which contains the set
of tuples allowed for the variables involved in c. A binary constraint involves exactly
2 variables, and a non-binary constraint strictly more than 2 variables. For a binary
constraint cxy such that scp(cxy) = {x, y}, if (a, b) ∈ rel(cxy), we say that (x, a) and
(y, b) are compatible. We also say that (x, a) and (y, b) are compatible if there is no
binary constraint between x and y.

In this paper, we shall consider given an initial CN P init and a current CN P derived
from P init by potentially reducing variable domains. The initial domain of a variable
x is denoted by dominit(x) whereas the current domain is denoted by domP (x) or
more simply by dom(x). A (current) value of P is a pair (x, a) with x ∈ vars(P) and
a ∈ dom(x). For any variable x, we always have dom(x) ⊆ dominit(x) and denote
this fact by P � P init. More generally, given two CNs P and P ′, we note P ′ � P iff
P and P ′ are defined on the same set of variables and the same set of constraints, and
for every variable x in vars(P) = vars(P ′), we have domP ′

(x) ⊆ domP (x). P ′ ≺ P
iff P ′ � P and there exists a variable x such that domP ′

(x) ⊂ domP (x).
An instantiation I of a set X = {x1, . . . , xk} of variables is a set {(x1, a1), . . . ,

(xk, ak)} such that ∀i, ai ∈ dominit(xi) ; the set X of variables occurring in I is
denoted by vars(I) and each value ai is denoted by I[xi]. An instantiation I on a CN
P is an instantiation of a set X ⊆ vars(P) ; it is complete if vars(I) = vars(P),
partial otherwise. I is valid on P iff ∀(x, a) ∈ I, a ∈ dom(x) (= domP (x)). I[x/a]
is the instantiation obtained from I by replacing the value assigned to x in I by a. An
instantiation I covers a constraint c iff scp(c) ⊆ vars(I), and satisfies a constraint c
with scp(c) = {x1, . . . , xr} iff a) I covers c and b) the tuple (a1, . . . , ar), such that
∀i, ai = I[xi], is allowed by c, i.e. (a1, . . . , ar) ∈ rel(c). An instantiation I on a CN
P is locally consistent iff a) I is valid on P and b) every constraint of P covered by
I is satisfied by I . It is locally inconsistent otherwise. A solution of P is a complete
instantiation on P that is locally consistent. An instantiation I on a CN P is globally
inconsistent, or a nogood, iff it cannot be extended to a solution of P . It is globally
consistent otherwise.

A CN is said to be satisfiable iff it admits at least one solution. The Constraint Sat-
isfaction Problem (CSP) is the NP-complete task of determining whether a given CN is

556 C. Lecoutre and O. Roussel

satisfiable or not. A CSP instance is defined by a CN which is solved either by finding
a solution or by proving unsatisfiability. To solve a CSP instance, a depth-first search
algorithm with backtracking can be applied, where at each step of the search, a variable
assignment is performed followed by a filtering process called constraint propagation.
Typically, constraint propagation algorithms are based on some properties of CNs that
allow us to identify and remove some values which cannot occur in any solution. Such
properties are called domain-filtering consistencies [6,4].

Let us introduce some classical consistencies. An instantiation I on P is a support
(resp. a conflict) for a value (x, a) on a constraint c involving x iff I is valid, I[x] = a
and I satisfies (resp. does not satisfy) c. A value (x, a) of P is GAC-consistent (GAC
stands for Generalized Arc Consistency) iff there exists a support for (x, a) on ev-
ery constraint of P involving x. P is GAC-consistent iff every value of P is GAC-
consistent. For binary CNs, GAC is referred to as AC (Arc Consistency). For any CN
P , we know that there exists a greatest GAC-consistent network, denoted by GAC (P)
and called the GAC-closure of P , which is equivalent to P and such that GAC (P) � P .
When the domain of a variable of P is empty, P is clearly unsatisfiable, which is de-
noted by P = ⊥. The CN P |x=a is obtained from P by removing every value b �= a
from dom(x). A value (x, a) of P is SAC-consistent (SAC stands for Singleton Arc
Consistent) iff GAC (P |x=a) �= ⊥. P is SAC-consistent iff every value of P is SAC-
consistent.

Any domain-filtering consistency allows us to identify and remove inconsistent val-
ues. In order to compare the pruning capability of different consistencies, we can intro-
duce a preorder [6]. Let φ and ψ be two consistencies. φ is stronger than ψ, denoted by
φ � ψ, iff whenever φ holds on a CN P , ψ also holds on P . φ is strictly stronger than
ψ, denoted by φ � ψ iff φ � ψ and there exists at least one CN P such that ψ holds
on P but not φ. When some consistencies cannot be ordered (none is stronger that the
other), we say that they are incomparable. For classical domain-filtering consistencies
defined on binary CNs, we have: SAC � MaxRPC � PIC � AC (MaxRPC and PIC are
respectively Max-Restricted Path Consistency and Path Inverse Consistency, see [3]).

3 Consistencies Based on Failed Values

In this section, we present two new basic consistencies. The first identifies nogoods
of any size whereas the second identifies inconsistent values (i.e. nogoods of size 1).
These two consistencies are based on failed values which are simply values proved to
be inconsistent (e.g. during search). Failed values “convey” some information:

Lemma 1 (directly derived from [13]). If a value (x, a) of a CN P is globally incon-
sistent then every solution S of P is such that S[x/a] violates at least one constraint of
P involving x.

Proof. S[x/a] is not a solution of P since (x, a) is globally inconsistent. This means
that at least one constraint of P is not satisfied by S[x/a]. But we know that every
constraint c of P that does not involve x is satisfied by S[x/a] because the restriction
of S[x/a] over scp(c) is exactly the restriction of S over scp(c). Consequently, at least
one constraint of P involving x is not satisfied by S[x/a]. �

Failed Value Consistencies for Constraint Satisfaction 557

If P is a binary CN, then every solution of P contains a value for a variable y �= x
which is not compatible with (x, a). A failed value is defined as follows:

Definition 1. Let P and P ′ be two CNs such that P ′ ≺ P . A failed value of P ′ with
respect to P is a value (x, a) of P such that P |x=a is unsatisfiable and a /∈ domP ′

(x) .

In practice, a failed value is a value pruned from a CN because it has been proved to
be inconsistent. At any time during search, a failed value can be identified by inference
and/or search methods [7,16]. For example, if P init|x=a is shown to be unsatisfiable,
clearly, a can be removed from dominit(x). We then obtain a smaller CN P with (x, a)
being a failed value of P (with respect to P init). However, note that failed values can
be defined with respect to any intermediate CN reached during search. We need now to
introduce conflict sets.

Definition 2. Let P be a CN, x be a variable of P and a ∈ dominit(x).

– The conflict set of (x, a) on a constraint c of P involving x, denoted by χP (c, x, a),
is the set of valid instantiations I of scp(c) \ {x} on P such that I ∪ {(x, a)} does
not satisfy c.

– The conflict set of (x, a) on P is χP (x, a) = ∪c∈cons(P)|x∈scp(c)χP (c, x, a).

For every conflict set χ, vars(χ) = ∪I∈χvars(I). When possible, we simplify
χP (x, a) into χ(x, a). Figure 1 shows1 a simple CN P with a binary constraint be-
tween w and x and a ternary constraint between w, y and z. Here χ(w, a) = {{(x, b)},
{(y, a), (z, a)}} and χ(w, c) = {{(x, b)}, {(x, c)}, {(y, c), (z, c)}}; note that {(x, b)}
and {(y, a), (z, a)} are two instantiations in χ(w, a) of size 1 and 2.

a b c

a b c a b c

x

w

a cb

y z

Fig. 1. Illustration of conflict sets

Failed values and instantiations can be connected as follows:

Definition 3. Let (x, a) be a failed value of a CN P and I a valid instantiation on P .

– (x, a) is covered by I iff vars(χP (x, a)) ⊆ vars(I).
– (x, a) is verified by I iff ∃J ∈ χP (x, a) | J ⊆ I .

1 In each figure of this paper, solid (resp. dashed) edges represent allowed (resp. forbidden)
tuples. The absence of edges between two variables means that there is no binary constraint
involving them.

558 C. Lecoutre and O. Roussel

Note that a failed value verified by an instantiation is not necessarily covered by it.
However, it is shown below that when a failed value is covered by an instantiation
but not verified, a nogood is identified. FVC (Failed Value Consistency) is a general
nogood-identifying consistency.

Definition 4. Let P be a constraint network.

– A valid instantiation I on P is FVC-consistent for a failed value (x, a) of P iff
either (x, a) is not covered by I or (x, a) is verified by I .

– A valid instantiation I on P is FVC-consistent iff it is FVC-consistent for every
failed value of P ; otherwise, I is said to be FVC-inconsistent.

Assume that (w, c) in Figure 1 is a failed value. I = {(x, a), (y, c), (z, c)} is an instan-
tiation that verifies (w, c) because I contains {(y, c), (z, c)} ∈ χ(w, c). I ′ = {(x, a)}
does not verify (w, c) but is FVC-consistent for (w, c) because (w, c) is not covered by
I ′. I ′′ = {(x, a), (y, a), (z, a)} is FVC-inconsistent because (w, c) is both covered by
I ′′ and not verified by I ′′.

Proposition 1. Any FVC-inconsistent instantiation is globally inconsistent.

Proof. Without any loss of generality, we consider here that I is a valid instantiation on
a constraint network P that is FVC-inconsistent for a failed value (x, a) of P with re-
spect to P init; we have P ≺ P init. We know that there is no solution of P init involving
(x, a) because (x, a) is a failed value of P wrt P init. We can even say more: for every
solution S of P init, the complete instantiation S[x/a] is not a solution because at least
one constraint involving x is violated (see Lemma 1). Because I is FVC-inconsistent
for (x, a), we know that I covers vars(χP (x, a)) and (x, a) is not verified by I . This
means that it is not possible to extend I into a complete instantiation I ′ on P such that
I ′[x/a] violates at least one constraint involving x. Every solution of P is a solution of
P init (since P ≺ P init) and every solution S of P init is such that S[x/a] violates at
least one constraint involving x. We can deduce that I is globally inconsistent. �

Otherwise stated, some nogoods can be identified via deleted values (that are themselves
nogoods). These nogoods are not necessarily of size 1. For example, in Figure 2 there
is a failed value (w, a) and three binary constraints involving w. Any valid instantiation

x Cx

Ix

Cy Iy

z

Cz

Iz

a

w

y

. . .

Fig. 2. A failed value (w, a), its compatible values in Cx, Cy and Cz and its incompatibles values
in Ix, Iy and Iz

Failed Value Consistencies for Constraint Satisfaction 559

x
a cb

a . . .

y
a cb

z

.

w
a b . . .

Fig. 3. Illustration of AFVC

of {x, y, z} is globally inconsistent if it only contains values compatible with (w, a). In
other words, every tuple in Cx × Cy × Cz is a nogood (of size 3).

Interestingly, inference can be conducted differently by reasoning between each
value and each failed value (through its conflict set). More precisely, we can define
a related domain-filtering consistency, called Arc Failed Value Consistency (AFVC).

Definition 5. Let P be a constraint network.

– A value (x, a) of P is AFVC-consistent for a failed value (y, b) of P iff (x, a) can
be extended to a locally consistent instantiation verifying (y, b).

– A value (x, a) of P is AFVC-consistent iff (x, a) is AFVC-consistent for every failed
value of P ; otherwise, (x, a) is said to be AFVC-inconsistent.

– P is AFVC-consistent iff every value of P is AFVC-consistent.

For the first item above, note that we may have x = y. In this case, necessarily, we have
a �= b since (x, a) is a current value whereas (y, b) is a pruned one. Note that AFVC
can be regarded as a local consistency since it suffices to reason from the conflict set of
each failed value. In particular for binary constraints, a value (x, a) is AFVC-consistent
for a failed value (y, b) iff (x, a) is compatible with a valid value in χ(y, b). The AFVC
algorithm given in Section 4 is based on this simple observation.

Proposition 2. Any AFVC-inconsistent value is globally inconsistent.

Proof. Let (x, a) be a current value of P that is AFVC-inconsistent for a failed value
(y, b) of P . Suppose that there exists a solution S of P such that S[x] = a. Necessarily,
as (x, a) is AFVC-inconsistent for (y, b), S[y/b] cannot violate any constraint involving
y, and consequently is a solution of P . This contradicts the fact that (y, b) is globally
inconsistent (since it is a failed value), and consequently our hypothesis. We can deduce
that (x, a) is globally inconsistent. �

As an illustration, let us consider the CN (partially) depicted in Figure 3. This CN can
be completed (see dots) so that some classical consistencies hold (e.g. arc consistency).
We assume here that (w, a) is a failed value and χ(w, a) = {{(x, a)}, {(y, c)}}. Ob-
serve that (w, b) and (z, a) are AFVC-inconsistent. Indeed, (w, b) (resp. (z, a)) is not
compatible with any value in χ(w, a).

Restricted to nogoods of size 1, FVC is strictly weaker than AFVC (the proof is
omitted). We have:

560 C. Lecoutre and O. Roussel

Proposition 3. Let (x, a) be a value of P . If I = {(x, a)} is FVC-inconsistent then
(x, a) is AFVC-inconsistent.

Finally, one can show that AFVC verifies certain properties (e.g. see [1,3,16]) that per-
mits us to define the AFVC-closure.

Proposition 4. For any CN P , there exists a greatest AFVC-consistent CN equivalent
to P , called the AFVC-closure of P and denoted by AFVC (P), such that AFVC (P) �
P .

AFVC (P) can be obtained by iteratively removing, in any order, values that are not
AFVC-consistent.

4 Algorithms for FVC and AFVC

We propose to embed filtering algorithms based on failed values within MAC (Main-
taining Arc Consistency) [23]. MAC is a backtrack search algorithm that develops a
binary search tree: at each node, an uninstantiated variable x is selected, a value a in
dom(x) is selected, a left subtree starting with a branch labelled with the positive de-
cision x = a (variable assignment) is first explored and a right subtree starting with a
branch labelled with the negative decision x �= a (value refutation) is later explored.
The consistency enforced at each node is GAC.

function checkFailedValue(P : CN, (x, a): failed value):Boolean1

begin2

if isValid(res[x,a]) then3

return true4

foreach constraint c of P such that x ∈ scp(c) do5

τ ← seekConflict(c, x, a)6

if τ �= nil then7

res[x, a] ← τ8

return true9

return false10

end11

function checkFVC(P : CN, F : set of failed values):Boolean12

begin13

foreach failed value (x, a) ∈ F do14

if ¬checkFailedValue(P,(x, a)) then15

return false16

return true17

end18

Algorithm 1. Checking FVC

For binary CNs, an immediate solution to make use of FVC is to post, for each
failed value (x, a), a non-binary constraint whose scope is vars(χ(x, a)): its associ-
ated relation forbids any instantiation FVC-inconsistent for (x, a). For our example

Failed Value Consistencies for Constraint Satisfaction 561

in Figure 2, we would obtain a ternary constraint cxyz such that rel(cxyz) = dom(x)×
dom(y)× dom(z) \ Cx × Cy × Cz . Interestingly, one may conceive efficient filtering
algorithms (propagators) to enforce GAC on such constraints. However, this approach
is intrusive and its generalization to non-binary CNs is rather complex. This is why
we propose a weakened approach for the general case: checking FVC at each node
of the search tree by checking that no identified failed value is currently covered and
unverified. To identify failed values during search, it suffices to keep the set F of nega-
tive decisions labelling the current branch (i.e. the branch leading from the root of the
search tree to the current node). Note that failed values that correspond to values re-
moved when enforcing GAC can be discarded because these failed values are always
verified (as long as no domain wipe-out occurs): for each of these values, there exists a
constraint with only conflicts.

To check FVC, Algorithm 1 is called. For each failed value, we seek a conflict;
seekConflict(c, x, a) seeks a conflict for (x, a) on c. When a conflict is found for a
failed value (x, a), it is stored in a backtrack-stable data structure called res; this plays
the role of residues as in [17] when establishing GAC. The validity of the residual con-
flict is first tested at line 3. When no conflict exists for a failed value, false is returned,
which forces the search algorithm to backtrack. The worst-case space complexity of
this algorithm is O(nd) whereas its worst-case time complexity is O(|F |edr−1) where
|F | denotes the number of failed values in F , e the number of constraints, d the great-
est domain size and r the greatest constraint arity. For binary constraint networks, the
worst-case time complexity is only O(|F |ed).

We now propose an algorithm to enforce the domain-filtering consistency AFVC on
binary constraint networks. Given a binary CN P with a set of failed values F , the
procedure enforceAFVC (see Algorithm 2) computes AFVC (P) and returns false
when a domain wipe-out occurs. The data structures are as follows. For each failed value
(x, a), χ(x, a) is considered to be an array of values indexed from 1 to length(χ(x, a)).
These values correspond to the instantiations (of size 1 since P is binary) in the conflict
set of (x, a). The 2-dimensional array last maps each pair composed of a failed value
(x, a) in F and a value (y, b) of P to an an integer corresponding to the index of the
most recent value found in χ(x, a) that is present in P and compatible with (y, b):
last[(x, a)][(y, b)] indicates the position of the last found (so-called) AFVC-support for
(y, b) on (x, a). For each value (z, c) of P , S(z, c) is a list storing the pairs (failed
value,value) for which (z, c) is the last found AFVC-support. Structures S and last are
inspired from those used in AC6 and AC2001 (see e.g. [3]).

Certainly, dynamically computing (or updating) conflict sets at each node would be
prohibitive. This is why we consider that conflict sets are computed for the initial prob-
lem instance by the call initialize(P init). The function enforceAFVC tries to identify
an AFVC-support for each pair (failed value,value). If no support can be found for a
value (y, b) on a failed value (x, a), b is removed from dom(y) and (y, b) is added to
the propagation queue Q. Each removed value (z, c) ∈ Q is “propagated”: a new sup-
port must be found for each pair stored in S(z, c) (this is done from the last recorded
position).

The worst-case space and time complexities of enforceAFVC are O(nd(M + |F |))
and O(M |F |nd) respectively, where n is the number of variables, d the greatest

562 C. Lecoutre and O. Roussel

procedure initialize(P : binary CN)1

begin2

foreach value (x, a) of P do3

χ(x, a) ← ∅4

S(x, a) ← ∅5

foreach constraint cxy of P do6

foreach tuple (a, b) ∈ dom(x) × dom(y) | (a, b) /∈ rel(cxy) do7

add (x, a) to χ(y, b)8

add (y, b) to χ(x, a)9

end10

function seekAFVCSupport((x,a): failed value, (y, b): value): Boolean11

begin12

position ← last[(x, a)][(y, b)] + 113

while position ≤ length(χ(x, a)) do14

(z, c) ← χ(x, a)[position]15

if c ∈ dom(z) ∧ (y, b) and (z, c) are compatible then16

last[(x, a)][(y, b)] ← position17

add ((x, a), (y, b)) to S(z, c)18

return true19

position ← position + 120

return false21

end22

function enforceAFVC(P : binary CN, F : set of failed values): Boolean23

begin24

Q ← ∅25

foreach failed value (x, a) ∈ F do26

foreach value (y, b) of P do27

last[(x, a)][(y, b)] ← 028

if ¬seekAFVCSupport((x,a), (y, b)) then29

remove b from dom(y)30

if dom(y) = ∅ then31

return false32

add (y, b) to Q33

while Q �= ∅ do34

pick and delete (z, c) from Q35

foreach ((x, a), (y, b)) ∈ S(z, c) do36

if b ∈ dom(y) ∧ ¬seekAFVCSupport((x,a), (y, b)) then37

remove b from dom(y)38

if dom(y) = ∅ then39

return false40

add (y, b) to Q41

S(z, c) ← ∅42

end43

Algorithm 2. Enforcing AFVC

Failed Value Consistencies for Constraint Satisfaction 563

domain size, |F | the number of failed values and M the maximum size of a con-
flict set (M = max(x,a)∈P init |χ(x, a)|). Indeed, the space required by χ arrays is
O(ndM), and that required by both last and S is O(|F |nd). On the other hand, the cu-
mulated complexity of seekAFVCSupport for each pair (failed value,value) is O(M),
and there are O(|F |nd) different pairs. Note that initialize has a O(ed2) time complex-
ity but this is amortized since initialize is only called initially (for P init). By definition,
|F | < nd and M < nd hence M |F |nd < n3d3. In practice, it may be worthwhile to
bound the number of failed values and/or to bound the maximum size of conflict sets
by a constant in order to concentrate only on promising failed values. If both are bound,
the complexity becomes O(nd). The algorithm presented above can be easily adapted
to be used at each node of the search tree developed by MAC (the complexity remains
the same for a branch of the search tree).

5 Substitutability and Usual Consistencies

Neighborhood substitutability is a weak form of substitutability [11] that can be related
to consistencies based on failed values. A value a ∈ dom(x) is neighborhood substi-
tutable for a value b ∈ dom(x) iff for every constraint c involving x and every support
I for (x, b) on c, I[x/a] is a support for (x, a) on c. For example, it can be exploited as
a reduction operator by applying a convergent sequence of neighborhood substitution
deletions [5]. We have the following interesting proposition.

Proposition 5. If a value (x, a) is neighborhood substitutable for a value (x, b) on a
CN P ′ � P , if (x, a) is a failed value of P and if (x, b) is a value of P then (x, b) is
AFVC-inconsistent.

Proof. The definition of neighborhood substitutability can be reformulated as: (x, a) is
neighborhood substitutable for (x, b) iff χ(x, a) ⊆ χ(x, b). If (x, a) is a failed value
of P , then it is not possible to extend (x, b) into a consistent instantiation that verifies
(x, a). (x, b) is then AFVC-inconsistent. �

AFVC can be seen as a lazy dynamic mechanism to detect values that can be substituted
(and are globally inconsistent). Importantly, it allows us to identify inconsistent values
for which no neighborhood substitutable value exists. Indeed, a value (x, b) is AFVC-
inconsistent if the conflict set of (x, b) is included in the conflict set of a failed value.
However, whereas only values for the same variable are considered for neighborhood
substitutability, AFVC is more general. An illustration is given in Figure 3: (w, a) is
substitutable for (w, b) but not for (z, a) since w �= z.

Interestingly, AFVC is incomparable with most of the domain-filtering consistencies.
More precisely, it is incomparable with “usual” consistencies, i.e. local consistencies φ
that do not rely on failed values and that verify the four basic properties: a) φ holds on
any CN only involving entailed constraints (a constraint is entailed on P iff it is satisfied
by every valid instantiation on its scope), b) φ holds on any CN iff it holds on each of
its connected sub-networks, c) there exist unsatisfiable CNs where φ holds and d) there
exist some CNs where φ does not hold. For example, (G)AC, SAC, PIC, . . . are “usual”
but global consistency (defined as: any locally consistent instantiation can be extended
to a solution) is not usual.

564 C. Lecoutre and O. Roussel

Proposition 6. AFVC is incomparable with usual consistencies.

Proof. Let us consider a “usual” local consistency φ. Let us consider a (satisfiable) CN
P1 that only contains entailed constraints, a CN P2, unsatisfiable but φ-consistent, on
a separate set of variables, and the problem P = P1 ∪ P2. Since P2 is unsatisfiable,
any value (x, a) of P1 can be identified as a failed value (e.g. after search). We now
assume that (x, a) is a failed value of P1. Since P1 contains only entailed constraints,
χ(x, a) = ∅ and therefore, no instantiation can verify (x, a). Thus, P is not AFVC-
consistent. In contrast, φ holds on P (by hypothesis), hence φ �� AFVC. Besides, AFVC
�� φ: it suffices to choose a CN P with no failed value such that φ does not hold.
Consequently, AFVC and φ are incomparable. �

6 A Hierarchy of Consistencies

In [10], Freuder introduced the general class of (i, j)-consistencies. Informally, a con-
straint network is (i, j)-consistent iff every locally consistent instantiation of a set of
i variables can be extended to a locally consistent instantiation involving any j addi-
tional variables. Arc consistency, path consistency [20,19] and path inverse consistency
(PIC) [12] all belong to this class since they correspond to (1, 1)-consistency, (2, 1)-
consistency and (1, 2)-consistency, respectively. Another important class of consisten-
cies defined in terms of (existing) constraints is that of relational (i, m)-consistencies
[8]. Informally, a constraint network is relational (i, m)-consistent iff for every set C
of m constraints and every set X ⊆ Y of i variables, where Y = ∪c∈Cscp(c), every
locally consistent instantiation of X can be extended to a valid instantiation of Y sat-
isfying each constraint of C. Generalized arc consistency and relational path-inverse-
consistency [4] respectively correspond to relational (1, 1)-consistency and relational
(1, 2)-consistency.

Here, we propose a new general class of original consistencies, based on the concept
of failed value.

Definition 6 (Failed Value (i, f)-consistency). P is FV(i, f)-consistent iff for every
set X of i variables of P and every set Y of f failed values of P , every locally consistent
instantiation of X can be extended to a locally consistent instantiation verifying each
failed value in Y .

From this general definition, many consistencies can be derived: Arc Failed Value
Consistency (AFVC) is FV(1, 1)-consistency; Path Failed Value Consistency (PFVC)
is FV(2, 1)-consistency; Path-Inverse Failed Value Consistency (PIFVC) is FV(1, 2)-
consistency. Inspired from their variable-based counterparts, MaxRPC and SAC, two
additional natural consistencies are introduced.

Definition 7 (MaxFVC). A value (x, a) of P is MaxFVC-consistent iff for every failed
value (y, b) of P , (x, a) can be extended to a locally consistent instantiation I verifying
(y, b) such that for every additional failed value (z, c) of P , I can be extended to a
locally consistent instantiation verifying (z, c).

Definition 8 (SAFVC). A value (x, a) of P is SAFVC-consistent iff AFVC (P |x=a) �=
⊥.

Failed Value Consistencies for Constraint Satisfaction 565

Proposition 7. PIFVC � AFVC and SAFVC � AFVC.

Proof. From definitions, we directly deduce that PIFVC � AFVC and SAFVC �
AFVC. To show strictness, let us consider Figure 4 where a CN P (partially de-
picted) admits two failed values (w, a), and (x, a). Here, we have χ(w, a) =
{{(y, b)}, {(z, b)}} and χ(x, a) = {{(y, a)}, {(z, b)}}. P is AFVC-consistent but nei-
ther SAFVC-consistent nor PIFVC-consistent. Indeed, (z, a) cannot be extended to an
instantiation verifying both failed values and AFVC (P |z=a) = ⊥. �

z
b

a
a

y b

.
w x

a a

Fig. 4. AFVC holds but neither SAFVC nor PIFVC holds

Figure 5 summarizes the relations between domain-filtering consistencies based on
failed values. Due to lack of space, proofs are omitted.

�������� ����	
��

�	���������

������

����� �����

����

Fig. 5. Relationships between domain-filtering consistencies based on failed values

7 Preliminary Experimental Results

In order to show the practical interest of consistencies based on failed values, we have
performed experiments with our constraint solver Abscon. On a computer equipped
with a 3GHz processor and 2GB of RAM under Linux, MAC was employed with
dom/ddeg and lexico as variable2 and value ordering heuristics, as our baseline. We
first compared, on binary instances, MAC with MAC embedding the procedure (see

2 Using dom/wdeg does not guarantee exploring the same search tree when additional filtering
is performed. This is why we have chosen dom/ddeg.

566 C. Lecoutre and O. Roussel

Table 1. Impact of checking FVC and enforcing AFVC on binary instances

MAC MAC+FVC MAC+AFVC
Instance CPU nodes CPU nodes CPU nodes

Graph coloring
1-fullins-4-4 106 7M934 4.8 215, 812 5.6 110, 636
2-fullins-4-4 10.7 177, 424 4.8 67, 924 2.3 12, 764

2-insertions-4-3 10.5 455, 533 3.2 112, 886 5.4 62, 753
2-insertions-5-3 3.1 7, 767 1.8 3, 494 2.4 2, 941

Composed
composed-25-5 178 10M864 85 4M838 148 2M333
composed-25-7 106 7M934 4.78 215, 812 5.6 110, 636

Job-shop
os-taillard-4-100-1 84 1M870 30.2 247, 383 83 206, 845
os-taillard-4-100-3 7.6 147, 270 2.3 29, 698 3.0 17, 818
os-taillard-4-95-2 7.5 195, 665 3.3 51, 957 19.7 41, 226

Queen Attacking
qa-5 7.5 318, 601 6.4 240, 495 10.0 238, 940
qa-6 311 7M703 259 5M883 443 5M576

Algorithm 1) that checks FVC at each search step (denoted by MAC+FVC) and also
with MAC embedding a function that enforces AFVC at each search step (denoted by
MAC+AFVC). For our preliminary tests, we have implemented a less sophisticated
version of Algorithm 2. This algorithm does enforce AFVC but is quite simpler (and
theoretically less efficient) as it does not integrate last and S structures.

Table 1 shows the results obtained on some binary instances3 with these three back-
track search variants in terms of CPU time and number of visited nodes. Because
dom/ddeg is a non-adaptive heuristic, we have the guarantee that MAC+FVC visits
less nodes than MAC and that MAC+AFVC visits less nodes than MAC+FVC. In Ta-
ble 1, for some instances, the number of visited nodes is significantly reduced when
consistencies based on failed values are used. MAC+FVC is clearly the most efficient
algorithm since it is usually better than MAC+AFVC and sometimes one order of mag-
nitude faster than MAC alone. Interestingly, reasoning from failed values allows us to
benefit from the structure (related to substitutability for graph coloring and job-shop in-
stances) contained in these instances. On some other series of instances (not presented
here) including random ones, MAC+FVC does not prune the search tree. However, we
have observed that this is never penalizing in terms of CPU time. This is because the
worst-case time complexity of checking FVC is limited and the number of failed val-
ues is usually small. Although one may be disappointed by the relative inefficiency of
MAC+AFVC, one should consider that a non optimized AFVC algorithm has been used
here and that many developments to control the complexity of AFVC (or even stronger
consistencies) remain to be studied.

3 Available at http://www.cril.fr/˜lecoutre/research/benchmarks/

http://www.cril.fr/~lecoutre/research/benchmarks/

Failed Value Consistencies for Constraint Satisfaction 567

Table 2. Impact of checking FVC on non-binary instances

MAC MAC+FVC
Instance CPU nodes CPU nodes

Dimacs
hole-08 5.8 0M699 1.9 0M177
hole-09 80 9M062 16 1M753

aim-100-1-6-sat-3 21.4 3M173 5.01 0M505
aim-100-1-6-sat-4 160 22M400 47.1 5M292

Renault-mod
renault-mod-15 505 1M969 118 0M511
renault-mod-18 1, 193 6M812 253 1M419
renault-mod-43 796 4M221 23 0M127
renault-mod-45 85.5 0M591 15.5 89, 494

Table 2 shows the results obtained on some series of non-binary instances. Clearly,
MAC+FVC outperforms MAC alone. Finally, note that MAC+FVC was used in Abscon
during the third constraint solver competition4 with good results.

8 Conclusion

In this paper, we have shown how values detected as globally inconsistent during search,
and called failed values, can be useful to prune the search space through the introduc-
tion of a new class of consistencies that are orthogonal to the usual ones. Whereas FVC
is a consistency that is cheap to check and that makes MAC more robust, AFVC and
its direct extensions require further developments to determine the best way of control-
ling the enforcement of these new domain-filtering consistencies. We have also noticed
that AFVC allows us to detect in a lazy manner a generalized form of neighborhood
substitutability.

Although it is related to approaches that eliminate redundancies by posting con-
straints (for SAT) [21,14] or decomposing problems [13], this way of reasoning has
been developed so as to yield a hierarchy of increasingly stronger consistencies. For
binary constraint networks, failed values basically permit us to identify and exploit a
form of nogood in the same spirit as generalized nogood in [15], global cut seed in
[9], kernel [22] and partial state [18]. We believe that identifying common properties to
these different approaches is an exciting perspective.

References

1. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press, Cambridge
(2003)

2. Bennaceur, H., Lecoutre, C., Roussel, O.: A decomposition technique for solving Max-CSP.
In: Proceedings of ECAI 2008, pp. 500–504 (2008)

4 See http://www.cril.univ-artois.fr/CPAI08/

http://www.cril.univ-artois.fr/CPAI08/

568 C. Lecoutre and O. Roussel

3. Bessiere, C.: Constraint propagation. In: Handbook of Constraint Programming, ch. 3. Else-
vier, Amsterdam (2006)

4. Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary con-
straints. Artificial Intelligence 72(6-7), 800–822 (2008)

5. Cooper, M.C.: Fundamental properties of neighbourhood substitution in constraint satisfac-
tion problems. Artificial Intelligence 90, 1–24 (1997)

6. Debruyne, R., Bessiere, C.: Domain filtering consistencies. Journal of Artificial Intelligence
Research 14, 205–230 (2001)

7. Dechter, R.: Constraint processing. Morgan Kaufmann, San Francisco (2003)
8. Dechter, R., van Beek, P.: Local and global relational consistency. Theoretical Computer

Science 173(1), 283–308 (1997)
9. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh, T. (ed.)

CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)
10. Freuder, E.C.: A sufficient condition for backtrack-bounded search. Journal of the

ACM 32(4), 755–761 (1985)
11. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction problems. In:

Proceedings of AAAI 1991, pp. 227–233 (1991)
12. Freuder, E.C., Elfe, C.: Neighborhood inverse consistency preprocessing. In: Proceedings of

AAAI 1996, pp. 202–208 (1996)
13. Freuder, E.C., Hubbe, P.D.: Using inferred disjunctive constraints to decompose constraint

satisfaction problems. In: Proceedings of IJCAI 1993, pp. 254–261 (1993)
14. Gallo, G., Urbani, G.: Algorithms for testing the satisfiability of propositional formulae.

Journal of Logic Programming 7(1), 45–61 (1989)
15. Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: Proceedings of AAAI 2005,

pp. 390–396 (2005)
16. Lecoutre, C.: Constraint networks: techniques and algorithms. ISTE/Wiley (2009)
17. Lecoutre, C., Hemery, F.: A study of residual supports in arc consistency. In: Proceedings of

IJCAI 2007, pp. 125–130 (2007)
18. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Exploiting past and future: Pruning by inconsis-

tent partial state dominance. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 453–467.
Springer, Heidelberg (2007)

19. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118
(1977)

20. Montanari, U.: Network of constraints: Fundamental properties and applications to picture
processing. Information Science 7, 95–132 (1974)

21. Purdom, P.W.: Solving satisfiability with less searching. IEEE transactions on pattern analy-
sis and machine intelligence 6(4), 510–513 (1984)

22. Razgon, I., Meisels, A.: A CSP search algorithm with responsibility sets and kernels. Con-
straints 12(2), 151–177 (2007)

23. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfaction. In:
Proceedings of CP 1994, pp. 10–20 (1994)

A Precedence Constraint Posting Approach for
the RCPSP with Time Lags and Variable

Durations

Michele Lombardi and Michela Milano

DEIS, Università di Bologna V.le Risorgimento 2, 40136, Bologna, Italy

Abstract. Resource Constrained Project Scheduling Problem is a very
important problem in project management, manufacturing and resource
optimization. We focus on a variant of RCPSP with time lags and vari-
able activity durations. The solving approach is based on Precedence
Constraint Posting that adds new precedence constraints to the original
project graph so that all resource conflicts are solved and a consistent
assignment of start times can be computed for whatever combination of
activity durations. We propose a novel method for computing resource
conflicts based on the minimum flow on the resource graph and we use it
in an efficient complete search strategy. We experiment the approach on
instances coming from the scheduling of parallel applications on multi
processor systems on chip.

1 Introduction

In this work we tackle the Resource Constrained Project Scheduling Prob-
lem (RCPSP) with minimum and maximum time lags and variable durations.
RCPSP aims to schedule a set of activities subject to precedence constraints and
the limited availability of resources.

The classical RCPSP formulation is based on a directed acyclic graph where
nodes are activities and arcs are precedence relations. Activities have release time
and deadlines and use a certain amount of finite capacity resources. The problem
consists in finding an assignment of start times to activities, such that no resource
capacity is exceed at any point of time and the makespan is minimized. Here
we introduce two variants to the classical RCPSP formulation: time lags (i.e.,
minimum and maximum time interval) between activities and variable duration.
We assume activity durations are not known a priori, but range at run time
between a worst and best case execution time. We want to schedule all activities
such that, whatever their duration is, all temporal and resource constraints are
satisfied.

This problem variant finds a broad spectrum of industrial and design appli-
cations, whenever uncertainty about durations is an issue and there are dead-
lines to be mandatory met. As a case study, we consider predictable scheduling
of parallel computer programs on multiprocessor systems, subject to hard real
time constraints. It is common in the embedded system research community to

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 569–583, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

570 M. Lombardi and M. Milano

cast a system design problem into that of scheduling a so called Task Graph
(indeed equivalent to a project graph), annotated with durations and resource
requirements, on a target hardware platform (set of processors, memories, com-
munication channels...). The objective is generally to maximize the application
performance (i.e. minimize the makespan) or to meet a fixed deadline. An ac-
knowledged issue is that task durations are data dependent and therefore not
a-priori known, despite lower and upper bounds can safely be identified; this is
especially troublesome when dealing with real time applications, when a speci-
fied performance must be guaranteed for whatever execution scenario. Minimum
and maximum time lags are useful as they enable the representation of setup
times for specific sequences of tasks: for example, if dynamic voltage scaling is
supported, a task t1 executing on a processors at clock frequency f1 cannot be
scheduled immediately after a task t2 with frequency f2, as requires the insertion
of some setup time to enable frequency switching.

We adopt a Precedence Constraint Posting approach (see [14]): the solution
we provide is an augmented project graph; this is the original project graph
plus a fixed set of new precedence constraints, such that all possible resource
conflicts are cleared and a consistent assignment of start times can be computed
for whatever combination of activity durations at run time. In practice, once a
solution (i.e. an augmented graph) is given, a feasible assignment of start times
to activities can be computed in polynomial time.

The main contribution of the paper concerns the detection of minimal con-
flict sets based on the minimal flow problem and its integration in an efficient
complete search strategy. Moreover, to the best of the authors knowledge, this
is the first paper dealing with both variable durations and minimum/maximum
time lags in RCPSP. We perform computational experiments on instances taken
from the field of system design, in particular for scheduling parallel multi-task
applications on multiprocessor systems. We compare our approach with a com-
plete approach implemented in [9] and we show order of magnitude speed ups
due mainly to the search strategy based on the min flow conflict detection.

2 Problem Definition

The most classical RCPSP is defined on a directed acyclic graph 〈A, E〉 (referred
to as project graph in the following), where A is a set of n activities ai having
fixed duration di, and E is a set of directed edges (ti, tj), defining precedence
relations over the set A. Time window constraints exist on the start and end time
of each activity; specifically, we assume every activity has to start after a specified
release time (rsi) and to end before a specified deadline (dli). Without loss of
generality, we assume there is a single source activity (a0) with no ingoing arcs
and a single sink activity (an−1) with no outgoing arcs. Each activity requires
a certain amount req(ai, rk) of one or more renewable resources rk within a set
R; all resources have finite capacity cap(rk). The problem consists in finding
a schedule (that is, an assignment of start times to activities), such that no
resource capacity is exceed at any point of time and the overall completion time

A Precedence Constraint Posting Approach for the RCPSP 571

(makespan) is minimized. In the RCPSP with minimum and maximum time lags
each arc (ai, aj) is labeled with a minimum and maximum value (dij , Dij), such
that the time distance between ai and aj cannot be lower than dij nor higher than
Dij . Finally, unlike in classical RCPSP definition, we assume activity durations
are not know a priori, but ranging at execution time between a lower and an
upper bound di and Di.

We require the time window constraints to be met at run time for every possi-
ble scenario, that is for every possible combination of duration values. Therefore,
all possible resource conflicts should be cleared so that a consistent assignment
of start times can be computed for whatever combination of activity durations.
Finally, dealing with variable activity durations requires to reformulate the noti-
ton of optimality: in particular we are interested here in finding the best possible
global deadline which can be met by a given project.

3 PCP: Background and Related Work

We adopt a Precedence Constraint Posting approach (PCP, see [14]); in PCP
possible resource conflicts are resolved off-line by adding a fixed set of precedence
constraints between the involved activities. The resulting augmented graph de-
fines a set of possible schedules, rather than a schedule in particular. More pre-
cisely, the graph can be used to devise an on-line linear time policy to schedule
an activity ai depending on the execution history so far; in particular when the
project is executed the start time of each activity ai: (1) must be within the time
window (2) must be greater than the end time of all activity predecessors. The
provided solution graph must be such that if these rules are followed, a feasible
assignment of start times is guaranteed to be found for every possible combi-
nation of task durations. This amounts to enforcing dynamic controllability, as
defined in [20]: a project is controllable if we can guarantee all deadline con-
straints are met; in particular, dynamic controllability requires that the activity
starting times should be decided knowing only already executed activities.

Central to any PCP approach is the definition of Minimal Conflict Set (MCS),
making its first appearance in [4] (1983), where a branching scheme based on
resolution of the so called “minimal forbidden sets” is first proposed. A MCS is
a set of activities collectively overusing one of the problem resources and such
that the removal of a single activity from the set wipes out the conflict as well;
additionally, the activities must have the possibility to overlap in time. Following
[8], we formally define a MCS for a resource rk as a set of activities such that:

1.
∑

ai∈MCS req(ai, rk) > cap(rk)
2. ∀ai ∈MCS :

∑
aj∈MCS\{ai} req(aj , rk) ≤ cap(rk)

3. ∀ai, aj ∈ MCS with i < j : start(ai) � end(aj) ∧ end(aj) � start(ai) is
consistent with current state of the model, where ti � tj denotes that a time
instant ti can occur before tj .

where 1. requires the set to be a conflict, 2. is the minimality condition and 3.
requires activities to be possibly overlapping. A MCS can be resolved by posting

572 M. Lombardi and M. Milano

a single precedence constraint between any pair of activities in the set; complete
search can thus be performed by using MCS as choice points and posting on
each branch a precedence constraint (also referred to as resolver). This is the
case of many PCP based works: for example [8] makes use of complete search to
detect MCS and proposes a heuristic to rank possible resolvers. Other branch
and bound approaches based on posting precedence constraints to resolve MCS
are reported in [18], where minimum and maximum time lags are also considered;
variable activity durations are not taken into account in any of these works.

One of the key difficulties with complete PCP approaches is that detecting
MCS by complete enumeration can be time consuming, as their number is in
general exponential in the size of the graph. A possible way to overcome this issue
is to only consider MCS which can occur given for a specified “execution policy”:
this is the case for example of the already cited work [18] where an earliest start
policy (start every activity as soon as possible) is implicitly assumed.

Having an earliest start policy [16,17] is also a basic assumption for many
stochastic RCPSP approaches; here variable task durations are explicitly consid-
ered and usually modeled as stochastic variables with known distribution. Most
works in this area assume the objective function is to minimize the makespan
and focus on computing restrictions of earliest start policies to resolve resource
conflicts on-line. This is the case of preselective policies, introduced in [4,5], and
a priori selecting for each minimal conflict set an activity to be delayed in case
the conflict occurs. A major drawback with this approach is the need to enumer-
ate all possible MCS [3,2]. To overcome this limitation, [19] introduces so called
linear preselective policies: in this case a fixed priority is assigned to each activ-
ity such that when a conflict is about to occur at run time, the lowest priority
activity is always delayed. To the best of the authors knowledge, no stochastic
RCPSP approach has considered minimum and maximum time lags so far. An-
other way to fix the issue of efficient conflict detection is to drop completeness
and resort to heuristic methods; see for example the method described in [14],
which also incorporates time reasoning by representing the target project as a
simple temporal network; many feature of this efficient and expressive model will
be leveraged by our approach.

Our answer to the conflict detection issue is to cast the detection of a conflict
to a (polynomial complexity) minimum flow problem by exploiting the transi-
tivity of the solution graph. This is a first major contribution of this work. A
related technique is outlined in [13], where a maximum (instead of minimum)
flow algorithm is used to extract usage envelopes from a particular activity-
resource graph; this latter technique is also employed in [15]. Finally, for excellent
overviews about methods for the RCPSP problem and dealing with uncertainty
in scheduling see [1,7,6].

4 Description of the Approach

We propose a PCP based approach for the RCPSP with minimum and maxi-
mum time lags and variable, bounded activity durations. The method performs

A Precedence Constraint Posting Approach for the RCPSP 573

complete search branching on MCS. The first major contribution w.r.t. similar
approaches like [8] is the use of an efficient, polynomial time, MCS detection
procedure based on the solution of a minimum flow problem.

Similarly to [14], our approach incorporates an expressive and efficient time
model, taking care of consistency checking of time windows constraints and
enabling the detection of possibly overlapping activities. Our second main contri-
bution is the extension of such a time model in order to provide efficient time rea-
soning with variable durations and enable constant time consistency/overlapping
check.

4.1 The Time Model

The time model we devised relates to Simple Temporal Networks with Uncer-
tainty (STNU, [20]), for which dynamic controllability has been proved to be
achievable in polynomial time (see [12]).

The model itself consists of a set T of temporal events or time points ti with
associated time windows, connected by directional binary constraints so as to
form a directed graph. Such constraints are in either of the two forms:

1. ti
[dij ,Dij]−−−−−→ tj (free constraint, with STNU terminology), meaning that a

value δ in the interval [dij , Dij] must exist such that tj = ti + δ; equivalently
we can state that dij ≤ tj − ti ≤ Dij .

2. ti
[dij:Dij]−−−−−→ tj (contingent constraint, with STNU terminology), meaning

that ti and tj must have enough flexibility to let tj = ti + δ hold for each
value δ ∈ [dij , Dij].

Both dij and Dij are assumed to be non-negative; therefore, unlike in STN, a
constraint cannot be reverted. The above elements are sufficient to represent a
variety of time constraints; in particular, an instance of the problem at hand,
can be modeled by:

1. introducing two time points si, ei for the start and the end of each activity,
respectively with time windows [sti,∞] and [0, dli];

2. adding a precedence constraint si
[di:Di]−−−−→ ei for each activity;

3. adding a precedence constraint ei
[dij ,Dij]−−−−−→ sj for each arc in the project

graph.

We rely on CP and constraint propagation for dynamic controllability checking,
rather than using a specialized algorithm like in [12,11]. In particular, we are
interested in maintaining for each time point ti four different bounds, namely:
the start (sp) and the end (ep) of the time region where the associated event
can occur (possible region); and the start (so) and the end (eo) of a time re-
gion (obligatory region) such that, if ti is forced to occur out of there, dynamic
controllability is compromised. An alternative view is that the obligatory region
keeps track of the amount of flexibility left to a time point.

Figure 1 shows as example of such bounds: sp and ep delimit the region where
each ti can occur at run: for example t1 can first occur at time 10, if t0 occurs

574 M. Lombardi and M. Milano

Fig. 1. Time bounds for a simple time point network

at 0 and has run time duration 10; similarly t2 can first occur at 20 as at least
10 time units must pass between t1 and t2 due to the precedence constraint. As
for the upper bounds, note that t2 cannot occur after time 60, or there would be
a value δ ∈ [10, 20] with no support in the time window of t3; conversely, t1 can
occur as late as time 50, since there is at least a value δ ∈ [10, 20] with a support
in the time window of t2. Consider now bounds on the obligatory region: note
that if (for instance) t1 is forced to occur before time 20 the network is no longer
dynamic controllable, as in that case there would not be sufficient time span
between t0 and t1. Similarly, t2 cannot be forced to occur later than time 60 or
there would be a value δ ∈ [10, 20] such that the precedence constraint between
t2 and t3 cannot be satisfied.

In general, bounds on the possible region (sp, ep) are needed to enable efficient
dynamic controllability checking (if the time window of every time point is not
empty) and constant time overlapping checking; bounds on the obligatory region
(so, eo) are a novel contribution and let one check in constant time whether a
new precedence constraint can be added without compromising dynamic con-
trollability. With this trick it is possible for example to remove inconsistent
ordering relations between tasks that cannot be trivially inferred starting from
the possible region.

We maintain the described bounds by introducing two CP integer variables
Tm, TM for each time point, such that min(Tm) marks the start of the possible
region and max(Tm) tells how far this start can be pushed forward; similarly,
max(TM) marks the end of the possible region and min(TM) tells how far this
end can be pulled back; consequently, we map sp to min(Tm), eo to max(Tm),
so to min(TM), ep to max(TM); then we post for each ti: Tmi ≤ TMi. This ensures
sp ≤ so, eo ≤ ep and triggers a failure whenever sp is pushed beyond eo (the
time point is forced to occur after the obligatory region) or ep is pulled before
so (the time point is forced to occur before the obligatory region). Note that if
dynamic controllability has to be kept, the case sp > eo never occurs. For each

constraint ti
[d,D]−−−→ tj , we perform the following filtering:

d ≤ max(Tmj) − max(Tmi) ≤ D

d ≤ min(Tmj) − min(Tmi) ≤ D

d ≤ max(TMj) max(TMi) ≤ D

d ≤ min(TMj) min(TMi) ≤ D

which can be done by posting d ≤ Tmj − Tmi ≤ D and d ≤ TMj − TMi ≤ D. The
rationale behind the filtering rules can be explained by looking at Figure 2A.

A Precedence Constraint Posting Approach for the RCPSP 575

Fig. 2. (A) Filtering rules for free constraints; (B) Filtering rules for contingent con-
straints

For example sp(tj) cannot be less than d time units away from sp(ti), or no δ
exists in [d, D] such that tj = ti +δ; so min(Tmj) can be updated to min(Tmi)+d, in
case it is less than that value: this is depicted in the figure with an arrow going
from sp(ti) to sp(tj). By reasoning in the same fashion one can derive all other

filtering rules. Similarly, for each contingent constraint ti
[d:D]−−−→ tj we perform

the following filtering:

max(Tmi) + D = max(Tmj)

min(Tmi) + d = min(Tmj)

max(TMi) + D = max(TMj)

min(TMi) + D = min(TMj)

As in the previous case, figure 2B gives a pictorial intuition of the rationale
behind the rules. Now, neither sp(tj) can be closer than d time units to sp(ti),
nor sp(ti) can be farther than d units from sp(tj); otherwise there would exist a δ
value in [d, D] such that tj could not be equal to ti + δ. This explains the second
filtering rule on the leftmost column. By reasoning similarly one can derive all
other rules. The described filtering runs in polynomial time and is sufficient
to enforce dynamic controllability on the network. A necessary and sufficient
filtering for dynamic controllability can be obtained by simply removing all rules
involving max(Tmj) and min(TMj).

Additionally, we keep track of all precedence constraints in the time model
as a directed graph 〈T, C〉, referred to as time graph. Here T is the set of time
points and (ti, tj) ∈ C iff there is a chain of precedence constraints between ti
and tj . The reason for having a graph is that it is not possible in general to
detect whether a time point has to come before another by just looking at the
time bounds: for example in Figure 1 we have sp(t0) ≤ ep(t1); nevertheless the
precedence constraints force t0 to execute before t1. In the following, we will write
ti � tj if an edge (ti, tj) exists in C (we write ti ≺ tj if the precedence relation
is strict). Transitive closure is kept on the time graph by dynamic updates with
cubic complexity along a branch on the search tree.

4.2 Search Strategy

One of the key difficulties with complete search based on MCS branching is how
to detect and choose conflict sets to branch on; this stems from the fact that the
number of MCS is in general exponential in the size of the project graph, hence
complete enumeration incurs the risk of combinatorial explosion. We propose

576 M. Lombardi and M. Milano

Algorithm 1. Overview of the search strategy
1: set best MCS so far (best) to ∅
2: for rk ∈ R do
3: find a conflict set S by solving a minimum flow problem
4: if weight of S is higher than cap(rk) then
5: refine S to a minimal conflict set S′
6: if S′ is better than the best MCS so far then
7: best = S′
8: end if
9: end if
10: end for
11: if best = ∅ then
12: the problem is solved
13: else
14: open a choice point branching on possible resolvers of best
15: end if

to detect possible conflict set by solving a minimum flow problem on a specific
resource rk, as described in [10]; the method has the major advantage of having
polynomial complexity. Note however the conflict set found is not guaranteed to
be minimal, nor to be well suited to open a choice point. We coped with this
issue by adding a conflict improvement step. An overview of the adopted search
strategy is shown in Algorithm 1. In the next section each of the steps will be
described in deeper detail; the adopted criterion to evaluate the quality of a
conflict set will be given as well.

Conflict Set Detection: The starting observation for the minimum flow based
conflict detection is that, if the problem contains a minimal conflict set, it also
contains a non necessarily minimal conflict set, i.e. a conflict set not necessarily
satisfying the minimality condition in the definition of section 2; let us refer
to this as a CS. Therefore we can check the existence of an MCS on a given
resource rk by checking the existence of any CS. Moreover, as the activities in
a CS must have the possibility to overlap, they always form a stable set (or
independent set) on the augmented project graph, further annotated with all
precedence constraint which can be detected by time reasoning; if we assign to
each activity the requirement req(ti, rk) as a weight, a stable set S is a CS iff∑

ai∈S req(ai, rk) > cap(rk). We refer to such weighted graph as resource graph
〈A, ER〉, where (ai, aj) ∈ ER iff ai � aj or ep(ei) ≤ sp(sj). We can therefore
check the existence of a MCS on a resource rk by finding the maximum weight
independent set on the resource graph and checking its total weight; this amounts
to solve the following ILP model P ′:

P′ : max
∑

ai∈A

req(ai, rt)xi

s.t.
∑

ai∈πj

xi ≤ 1 ∀πj ∈ Π(1)

xi ∈ {0, 1}

P′′ : min
∑

πj∈Π

yj

s.t.
∑

ai∈πj

yj ≥ req(ai, rt) ∀ai∈A (2)

yj ∈ {0, 1}

A Precedence Constraint Posting Approach for the RCPSP 577

where xi are the decision variables and xi = 1 iff activity ai is in the selected
set; Π is the set of all path in the graph (in exponential number) and πj is a
path in Π . As for the constraints (1) consider that, due to the transitivity of
temporal relations, a clique on the resource graph is always a path from source
to sink. In any independent set no two nodes can be selected from the same
clique, therefore, no more than one activity can be selected from each path πj

in the set Π of all graph paths.
The corresponding dual problem is P ′′, where variable yj is path πj is selected;

that is, finding the maximum weight stable set on a transitive graph amounts
to find the minimum set of source-to-sink paths such that all nodes are covered
by a number of paths at least equal to their requirement (constraints (2)). Note
that, while the primal problem features an exponential number of constraints,
its dual has an exponential number of variables. One can however see that the
described dual is equivalent to route the least possible amount of flow from
source to sink, such that a number of minimum flow constraints are satisfied;
therefore, by introducing a real variable fij for each edge in ER, we get:

min
∑

aj∈E+(a0) f0j

s.t.
∑

aj∈E−(ai)
fji ≥ req(ai, rt) ∀ai ∈ A (3)∑

aj∈E−(ai)
fji =

∑
aj∈E+(ai)

fij ∀ai ∈ A \ {a0, an−1} (4)

fij ≥ 0

where E+(ai) denotes the set of direct successors of ai and E−(ai) denotes
the set of direct predecessors. One can note this is a flow minimization problem.
Constraints (3) are the same as constraints (2), while the flow balance constraints
(4) for all intermediate activities are implicit in the previous model. The problem
can be solved starting for an initial feasible solution by iteratively reducing the
flow with the any embodiment of the inverse Ford-Fulkerson’s method, with
complexity O(|ER| · F) (where F is the value of the initial flow). Once the
final flow is known, activities in the source-sink cut form the maximum weight
independent set.

In our approach we solve the minimum flow problem by means of the Edmond-
Karp’s algorithm. On this purpose each activity ai has to be split into two subn-
odes a′

i, a
′′
i ; the connecting arc (a′

i, a
′′
i) is then given minimum flow requirement

req(ai, rk); every arc (ai, aj) ∈ ER is converted into an arc (a′′
i , a′

j) and assigned
minimum flow requirement 0. An initial solution is computed by:

1. selecting each arc (a′
i, a

′′
i) in the new graph with minimum flow requirement

req(ai, rk) > 0
2. routing req(ai, rk) units of flow along a backward path from a′

i to a′
0

3. routing req(ai, rk) units of flow along a forward path from a′′
i to a′′

n−1

minor optimizations are performed in order to reduce the value of the initial flow.
If at the end of the process the total weight of the independent set is higher than
cap(rk), then a CS has been identified.

Reduction to MCS: Once a conflict set has been identified, a number of issues
still have to be coped with; namely (1) the detected CS is not necessarily minimal

578 M. Lombardi and M. Milano

and (2) the detected CS does not necessarily yield a good choice point. Branching
on non-minimal CS can result in exploring unnecessary search paths; extracting
a MCS from a given CS rises however no practical trouble, as it can be done
very easily in polynomial time. The second issue is instead more complex, as it
requires to devise a good MCS evaluation heuristic. We propose to tackle both
problems by performing local search based intensification.

As evaluation criterion for a given conflict set S we use the lexicographic
composition of (1) the number of precedence constraints which can be posted
between pairs of activities (ai, aj) with ai, aj ∈ S, and of (2) the size of the
set itself (i.e. |S|); for both criteria, lower values are better. Note a precedence
constraint cannot be posted on (ai, aj) iff neither of the followings holds:

1. aj ≺ ai in the time graph (where ≺ denotes a strict precedence relation)
2. so(ei) > eo(sj) in the time model, as briefly discussed in section 4.1 (where

ei and sj are time points representing the end of ai and the start of aj)

As a consequence, local search first naturally moves towards CS yielding choice
points with a small number of branches: this goes in the same direction of
the “minimum size domain” variable selection criterion. Once the number of
branches in the resulting choice point cannot be further reduced, nodes are re-
moved from the CS turning it into a minimal conflict set. Note the total weight
must always exceed the capacity cap(rk).

Given a conflict set S, we consider the following pool of local search moves:

1. add(S, ai) : a node ai /∈ S is added to S, all nodes aj ∈ S such that
(ai, aj) ∈ ER or (aj , ai) ∈ ER are removed from the set. The number of
precedence constraints that can be posted is updated accordingly. The move
has quadratic complexity.

2. del(S, ai) : a node ai ∈ S is removed from S; the number of precedence
constraints that can be posted is updated accordingly. The move has linear
complexity.

At each local search step all del moves for ai ∈ S are evaluated, together with
all add moves for every immediate predecessor or successor of activities in S; the
best move strictly improving the current set is then chosen. The process stops
when a local optimum is reached.

Opening a choice point: As a MCS is selected, the next stage of the search
step is to open a choice point. Let RS = (ai0 , aj0), . . . (aim−1 , ajm−1) be the list
of pairs of nodes in the set such that a precedence constraints can be posted.
Then the choice point can be recursively expressed as:

CP (RS) =
{
post(ai0 , aj0) if |RS = 1|
post(ai0 , aj0) ∨ [forbid(ai0 , aj0) ∧ CP (RS \ (ai0 , aj0))]

where (ai0 , aj0) always denotes the first pair in the sequence being processed and

shrunk. The operation post(ai0 , aj0) amounts to add the constraint ei
[0,∞]−−−→ sj

in the time model, and forbid(ai0 , aj0) consists in adding sj
[1,∞]−−−→ ei (strict

A Precedence Constraint Posting Approach for the RCPSP 579

precedence relation). Prior to actually building the choice point, all precedence
constraints could in principle be sorted according to some heuristic criterion;
note however this is not done in the current implementation: introducing some
score to rank precedence constraints (e.g. the one proposed in [8], based on
preserved search space) is part of planned future work.

Detecting unsolvable conflict sets: At search time, it is in principle possible
for a conflict set to become unsolvable, that is: no resolver can be posted at all.
Despite being not too frequent in practice and having no impact on the method
convergence, this situation can have a substantial impact on the solver perfor-
mance if not promptly detected. On this purpose an additional step is added
at the beginning of each search step where an attempt to identify unsolvable
conflict sets is performed. Observe that a conflict set S is unsolvable iff for each

pair ai, aj ∈ S neither ei
[0,∞]−−−→ sj nor ej

[0,∞]−−−→ si can be posted. In practice, if
we build an undirected graph where an edge connecting ai and aj is present if
such a situation holds, an unsolvable CS for a resource rk always forms a clique
with weight higher than cap(rk).

As neither the special graph we have just described nor its complement are
transitive, the minimum flow based method cannot be used to detect an unsolv-
able CS. We therefore resorted to complete search, taking advantage of the very
sparse structure quite often exhibited by the special graph. During search, nodes
are selected according to their degree (number of adjacent edges) in the graph,
deprived of the currently selected set; such degree is dynamically updated as new
nodes are selected. In order to limit the search effort we finally run the process
with a fail limit, which was empirically set to 10× the size of the project graph.

5 Experimental Results

The described approach was implemented on top of ILOG Solver 6.3. The PCP
method with minimum flow based MCS detection was compared to a solver
exploiting a CP model in order to find MCS (see [9] for details). In the following,
we refer to the first approach as MF solver (Minimum Flow), and to the latter
as CS solver (Complete Search). In particular, we performed tests on RCPSP
instances derived from a system design problem. Given a computer application
described as a graph and a target platform, the problem consists in finding a
schedule guaranteed to meet a global deadline constraint; this is a very relevant
issue in the design of real time systems. Extensive experimentation on different
type of scheduling problems is planned for future work, as well as a comparison
with related methods such as Complete MCS Search [8]. Nodes in the application
graph denote tasks/processes or data communication activities; each node has
a priori unknown duration, bounded by a worst case and a best case execution
time. The considered platform features 16 processors (resources with capacity
1) and 32 communication devices (resources with capacity 10); this is indeed
representative of an advanced platform. Each task requires a processors and
each data communication activity requires up to 9 units of two communication
devices.

580 M. Lombardi and M. Milano

Table 1. Results on the first group of instances (growing number of nodes) for (A) the
CS solver and (B) the MF solver

FEAS INF
N FL TT T F NMCS TMCS TO MEM T TMCS T TMCS

A

41-49 0.59 — 7.03 22 164 2.82 0 11M 0.49 23.20 0.13 1.10
56-66 0.56 0.96 90.12 1832 1140 67.34 1 28M 1.37 30.56 8.84 116.56
75-82 0.55 — 49.24 30 287 18.07 0 55M 2.93 39.20 0.71 2.90
93-103 0.56 0.97 130.34 81 533 55.79 3 110M 8.42 66.14 1.66 6.57
111-116 0.56 0.89 251.08 71 720 129.22 4 172M 18.84 89.00 2.14 5.67
121-128 0.59 0.92 365.05 96 666 169.58 6 222M 22.11 75.75 5.82 11.25

B

41-49 0.60 — 0.39 6 155 0.37 0 0.22M 0.05 0.05 0.00 0.01
56-66 0.56 0.91 1.07 6 212 1.04 1 0.28M 0.15 0.15 0.00 0.01
75-82 0.56 — 3.32 18 309 3.25 0 0.32M 0.41 0.39 0.09 0.09
93-103 0.57 0.98 11.29 51 537 11.18 2 0.42M 1.29 1.27 0.23 0.23
111-116 0.55 0.92 27.52 1175 1549 26.86 4 0.49M 3.28 3.22 0.09 0.08
121-128 0.59 0.89 36.64 82 713 36.36 6 0.50M 3.19 3.19 1.80 1.78

Table 2. Results on the second group of instances (growing branching factor) for (A)
the CS solver and (B) the MF solver

FEAS INF
BF FL TT T F NMCS TMCS TO MEM T TMCS T TMCS

A

2-4 0.58 1.00 51.21 13 305 21.09 1 107M 3.05 38.22 0.62 0.00
3-5 0.56 0.99 67.51 14 405 31.21 1 125M 4.97 55.44 0.66 0.11
4-6 0.55 1.00 84.40 48 565 42.63 1 134M 6.72 75.00 0.83 2.78
5-7 0.54 0.98 71.15 15 476 33.13 2 133M 5.36 66.50 0.62 0.00
6-8 0.52 0.99 102.02 20 667 54.95 4 160M 8.40 88.00 0.67 0.33

B

2-4 0.58 — 3.74 48 385 3.67 0 0.33M 0.34 0.33 0.15 0.15
3-5 0.56 — 4.17 7 423 4.09 0 0.36M 0.54 0.53 0.01 0.01
4-6 0.56 0.80 41.00 5418 6230 39.65 1 0.39M 5.78 5.58 0.03 0.03
5-7 0.54 0.49 4.88 6 455 4.78 2 0.37M 0.67 0.63 0.00 0.01
6-8 0.51 0.93 6.16 6 576 6.06 4 0.42M 0.87 0.86 0.00 0.00

The following testing process has been devised: for each available instance
a very loose deadline requirement is first computed (namely, the sum of all
worst case durations); next binary search is performed iteratively tightening a
feasible upper bound and an infeasible lower bound on the achievable deadline;
the process converges to the best possible deadline and provides information
about the performance of the solvers, as well as an indication of the tightness to
the best deadline constraint which can be reached by both solvers. A time limit
of 900 seconds was set on the whole test process; all experiments were run on an
Intel Core2 Duo with 2GB of RAM. Being real world instances for the problem
at hand too scarce in number for a meaningful evaluation, we resorted to using
a random instance generator, specially devised to mimic the structure of real
world applications1: i.e. with quite many relations, fork (with many successors)
and join (with many predecessors) tasks almost fully nested, some added arcs
between these nested hierarchical structures. In particular, we generated two
groups of instances by scaling (1) the number of nodes in the graph and (2) the
branching factor (i.e. number of outgoing arcs of certain nodes in the graph).

1 Both the generator and the instances are available at
http://www.lia.deis.unibo.it/Staff/MicheleLombardi/

A Precedence Constraint Posting Approach for the RCPSP 581

Table 3. Performance of the MF solver when some features are turned off

NO UCS FINDER NO LOCAL SEARCH
N T NMCS NUCS TO NMF NLS T NMCS NUCS TO NMF NUF

41-49 0.37 155 0 0 914 562 0.43 198 36 0 973 242
56-66 1.04 212 0 1 1417 1042 1.07 243 2 1 1383 253
75-82 3.52 325 0 0 3355 2933 3.96 393 41 0 3533 442
93-103 11.96 538 0 2 7660 7168 14.02 727 159 2 8685 894
111-116 18.51 631 0 5 8566 8133 48.65 1318 279 4 23744 1606
121-128 40.98 713 0 6 15499 14983 133.13 2049 1088 5 46073 3145

Table 1 summarizes results on the first group of instance, respectively for the
CS (A) and MF solver (B). Here the branching factor was fixed to the range
3-5; the worst case duration for each task is around twice the best case duration;
those value are definitely reasonable for real world problems. Each row refers
to a group of 10 instances, and shows the minimum and maximum number
of nodes (N), the average solution time (T) and number of fails (F) for the
entire test process, the number of MCS used to branch (NMCS) and the time
spent to detect them (TMCS); the number of timed out instances and the total
memory usage are respectively in columns TO and MEM. The solution time
and the time to detect MCS is reported for single feasible and unfeasible runs
as well (FEAS, INF). Finally, columns FL and TT deserve special attention;
whenever a feasible solution is found a flexibility indicator can be given by the
ratio between the best case completion time and the worst case completion time
for the produced graph; the average of such indicator is reported in FL. When
a timeout occurs, the ratio between the current lower bound and the current
upper bound on the best achievable deadline is computed and used as a tightness
indicator; the average of such indicator is reported in TT. As one can see, the
MF solver reports improvements of around one order of magnitude both in the
total solution time and in the time required to detect MCS; in particular, the
latter has to be mainly ascribed to the flow based conflict detection method,
while the former also benefits from the much more efficient time model used
in the MF solver; the compactness of the time model also has a leading role
in the drastic improvement in memory usage. The flexibility and the tightness
achieved by the two solvers are comparable; note in particular the very high
values of the tightness indicator reached by both the approaches. Table 2 shows
the same results for the second group of instances; here the number of nodes
in the graph is always between 74 and 94, while the branching factor spans
the interval reported for each row in the column BF. As one can observe, the
trend of all results is around the same as the previous case, with the addition
of the flexibility indicator getting higher as the branching factor increases. Note
however the MF solver sometimes achieves considerably worse values for the
tightness indicator value; this indicates the MF solver tends to stop earlier (i.e.
for more loose bounds) in case of timeouts.

A last set of experiments was finally performed to test the impact of the
local search (LS) and the unsolvable conflict set (UCS) detector; in fact, as
those feature are not necessary for the method to converge, it is reasonable
to question their actual effect on the solver efficiency. Table 3 reports results

582 M. Lombardi and M. Milano

for those tests, performed on the first group of instances previously discussed.
Both for the case when the UCS finder and the local search are turned off,
the table shows the solution time (T), the number of processed MCS (NMCS)
and the number of detected UCS (NUCS); the number of timed out instances
(TO) is indicated as well. Columns NMF, NLS, NUF respectively report the
number of times the minimum flow, local search and UCS finder algorithm are
run. The results show that the actual advantage of incorporating a UCS finder
is shadowed by the efficacy of the local search CS improver, to the point that
sometimes a better run time is achieved without the feature. On the other hand,
no question arise about the effective utility of the local search method during
MCS detection. Quite surprisingly however, turning LS off helps reducing the
number of timeouts: this has to be further investigated.

6 Conclusion

An efficient complete solver for facing Resource Constraint Project Scheduling
with minimum and maximum time lags and variable durations is proposed. The
main contributions are: an effective time model inherited by STNU, an efficient
algorithm for conflict set detection and its encapsulation in a sophisticated search
strategy. Current research is aimed at introducing objective functions, and in
taking into account run time policies.

Acknowledgement

Many thanks to Valentina Cacchiani for the useful advices about algorithms for
finding stable sets. The work described in this publication was supported by
the PREDATOR Project funded by the European Community’s 7th Framework
Programme, Contract FP7-ICT-216008.

References

1. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: Notation, classification, models, and methods. European Jour-
nal of Operational Research 112(1), 3–41 (1999)

2. Stork, F.: Branch-and-bound algorithms for stochastic resource-constrained project
scheduling. Technical Report Research Report No. 702/2000, Technische Univer-
sität Berlin (2000)

3. Stork, F.: Stochastic resource-constrained project scheduling. PhD thesis, Technis-
che Universität Berlin (2001)

4. Igelmund, G., Radermacher, F.J.: Algorithmic approaches to preselective strategies
for stochastic scheduling problems. Networks 13(1), 29–48 (1983)

5. Igelmund, G., Radermacher, F.J.: Preselective strategies for the optimization
of stochastic project networks under resource constraints. Networks 13(1), 1–28
(1983)

A Precedence Constraint Posting Approach for the RCPSP 583

6. Herroelen, W., Leus, R.: Project scheduling under uncertainty: Survey and research
potentials. European Journal of Operational Research 165(2), 289–306 (2005);
Project Management and Scheduling

7. Beck, J.C., Davenport, A.J.: A survey of techniques for scheduling with uncertainty
(2002),
http://www.eil.utoronto.ca/profiles/chris/gz/uncertainty-survey.ps

8. Laborie, P.: Complete MCS-Based Search: Application to Resource Constrained
Project Scheduling. In: IJCAI, pp. 181–186 (2005)

9. Benini, L., Lombardi, M., Milano, M.: Robust non-preemptive hard real-time
scheduling for clustered multicore platforms. In: Proc. of DATE 2009 (2009)

10. Golumbic, M.: Algorithmic Graph Theory And Perfect Graphs, 2nd edn. Elsevier,
Amsterdam (2004)

11. Morris, P.H., Muscettola, N.: Temporal dynamic controllability revisited. In: AAAI,
pp. 1193–1198 (2005)

12. Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal
uncertainty. In: IJCAI, pp. 494–502 (2001)

13. Muscettola, N.: Computing the envelope for stepwise-constant resource allocations.
In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 139–154. Springer,
Heidelberg (2002)

14. Policella, N., Cesta, A., Oddi, A., Smith, S.F.: From precedence constraint posting
to partial order schedules: a csp approach to robust scheduling. AI Commun. 20(3),
163–180 (2007)

15. Policella, N., Oddi, A., Smith, S.F., Cesta, A.: Generating robust partial order
schedules. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 496–511. Springer,
Heidelberg (2004)

16. Möhring, R.H., Radermacher, F.J., Weiss, G.: Stochastic scheduling problems I -
General strategies. Mathematical Methods of Operations Research 28(7), 193–260
(1984)

17. Möhring, R.H., Radermacher, F.J., Weiss, G.: Stochastic scheduling problems II -
set strategies. Mathematical Methods of Operations Research 29(3), 65–104 (1985)

18. De Reyck, B., Herroelen, W.: A branch-and-bound procedure for the resource-
constrained project scheduling problem with generalized precedence relations. Eu-
ropean Journal of Operational Research 111(1), 152–174 (1998)

19. Möhring, R.H., Stork, F.: Linear preselective policies for stochastic project schedul-
ing. Mathematical Methods of Operations Research 52(3), 501–515 (2000)

20. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from
consistency to controllabilities. J. Exp. Theor. Artif. Intell. 11(1), 23–45 (1999)

http://www.eil.utoronto.ca/profiles/chris/gz/uncertainty-survey.ps

SOGgy Constraints:
Soft Open Global Constraints

Michael J. Maher

NICTA� and University of NSW
Sydney, Australia

Michael.Maher@nicta.com.au

Abstract. We investigate soft open constraints. We generalize and unify
classes of soft constraints and adapt them to the open setting. We give
sufficient conditions for generalized classes of decomposition-based and
edit-based soft constraints to be contractible. Finally, we outline a prop-
agator for an open generalized edit-based soft Regular constraint.

1 Introduction

Open global constraints [1,8,11] allow variables to be added to the global con-
straint during execution, which is vital when we want to interleave problem con-
struction and problem solving. Soft constraints are useful for addressing problems
that might be overconstrained. In this paper we investigate soft open constraints,
that is, soft constraints in the sense of Petit et al [14] that are dynamic, or open,
in the sense of Barták [1]. Until now, such constraints have not been investigated.

The main focus is on the ability to recognise when soft constraints are con-
tractible – a property that ensures that propagators for closed constraints can
be re-used for the corresponding open constraint. We give sufficient conditions
for generalized classes of decomposition-based and edit-based soft constraints
to be contractible. We also outline a propagator for an open generalized soft
Regular constraint to demonstrate the ease with which a propagator for a
closed constraint can be adapted for an open constraint.

The reader is assumed to have a basic knowledge of constraint programming,
CSPs, global constraints, and filtering, as might be found in [6,15,3]. In particu-
lar, global constraints not defined here can be found in [3]. Background on open
constraints is given in Section 2, while Section 3 is the main section, discussing
when soft constraints are contractible, and Section 4 outlines a propagator for a
soft open Regular constraint.

2 Open Constraints

In this paper, we view a global constraint as a relation over a sequence of vari-
ables [X1, X2, . . . , Xn] (also denoted by X). Other arguments of a constraint are
considered parameters and are assumed to be fixed before execution.
� NICTA is funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 584–591, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

SOGgy Constraints: Soft Open Global Constraints 585

We formalize the semantics of a constraint C as a formal language LC . A
word d1d2 . . . dn appears in LC iff the constraint C([X1, X2, . . . , Xn]) has a so-
lution X1 = d1, . . . Xn = dn. When it is convenient, we will describe languages
with Kleene regular expressions. We will need the following definitions later. Let
P (L) = {w | ∃u wu ∈ L} denote the set of prefixes of a language L, called the
prefix-closure of L. We say L is prefix-closed if P (L) = L.

In an open global constraint, variables may be appended to the end of the
sequence of variables during execution. A constraint may also be closed during
execution, at which point no further variables may be appended. The scope of
such constraints changes during the execution, and we refer to the state of the
constraint at some point in the execution as an occurrence of the constraint.

There are several models of open constraint that have been proposed. Barták’s
model [1] is straightforward: the constraint involves a sequence of variables to
which variables may be added. Thus the type of the constraint is unchanged,
whether the constraint is open or closed. The model of van Hoeve and Régin [8]
uses a set variable S describing a set of object variables, rather than a sequence,
to represent the collection of variables in the constraint. A third model [11] uses a
sequence of variables, with an additional integer variable N denoting the length
of the sequence. In this paper we focus on Barták’s model.

In general, a propagator for a closed constraint may be unsound for the corre-
sponding open constraint. That is, the propagator may make an inference that
turns out to be unjustified once the sequence of variables X is extended to XY .
The property of contractibility was introduced in [10] to characterize those con-
straints for which a closed propagator is sound for the open constraint, that is,
all domain reductions remain sound if the sequence of variables is extended. It
was shown there that a constraint C is contractible iff LC is prefix-closed. For
contractible constraints it appears to be straightforward to extend closed im-
plementations to open constraints [10]. Propagators also have been designed for
some incontractible constraints [8,11].

3 Contractibility of Soft Constraints

We consider “soft” constraints in the style of [14]1. In such constraints there is
a violation measure, which measures the degree to which an assignment to the
variables violates the associated “hard” constraint, and solutions are assignments
that satisfy an upper bound on the violation measure. Thus such soft constraints
have the form m(X) ≤ Z, where m is the violation measure2. We refer to the
hard constraint as C(X) and the corresponding soft constraint as Cs(X, Z).

Assessing the contractability of such constraints is made easier by a result of
[10]. We say a function f on a sequence is non-decreasing if f(a) ≤ f(b) for
every a and b where a is a prefix of b. (Here the notation a denotes a sequence
a1 . . . an or [a1, . . . , an].)
1 Consideration of other forms of soft constraint are left for future research.
2 Also called violation cost [14]. We assume that violation measures return non-

negative values, and return 0 exactly when the hard constraint holds.

586 M.J. Maher

Proposition 1. Let C be a global constraint and suppose C can be expressed as
f(X) ≤ Z. Then C is contractible iff f is a non-decreasing function.

Thus, to evaluate whether or not soft constraints are contractible we must con-
sider the form of the violation measure, and whether it forms a non-decreasing
function.

We can recognise four broad classes of violation measures: those based on
constraint decomposition, edit distance, graph properties, and the semantics of
a specific constraint. We address these classes in the following subsections.

3.1 Decomposition-Based Violation Measures

In the decomposition-based violation measures3, a decomposition of C into an
equivalent conjunction of more elementary constraints is identified, and the vi-
olation measure of Cs for a particular assignment is the number of elementary
constraints in the decomposition that are violated (i.e. not satisfied) by the as-
signment. Some work prefers the decomposition into binary constraints [14,7],
but there seems no reason to be limited by this restriction, and any canonical
decomposition should serve.

When the decomposition of C(X) is a subset of the decomposition of C(XY)
then it is clear that the number of violations for any assignment cannot decrease
when the sequence of variables is extended. Hence, the violation measure is non-
decreasing and the soft constraint Cs is contractible.

We can extend this result to decompositions that introduce new variables.
Let C(X) ↔ ∃U

∧
c∈C c(X, U) be the decomposition of C(X), where C is the

collection of elementary constraints in the decomposition of C(X). We define
the violation measure m as follows: for every assignment v to the variables X,
m(X) = min num violv′(C) where we minimize over all extensions v′ of v to U ,
and num violv′(S) is the number of unsatisfied constraints in S under v′.

We assume that the decomposition can be expressed as a formula of the form
∃U
∧

i pi(X, U), where each pi(X, U) denotes an occurrence of an elementary
constraint over a subset of the variables X, U , and constants. We permit du-
plicate occurrences of a constraint, which allows a form of weighting within a
decomposition. We denote such a formula by (X, U , S), where S is the collec-
tion of elementary constraints. We say that one formula (X, U , S) is covered by
another formula (W , V , T) if there is a variable renaming θ that maps X into
W and U into V ∪W such that the multiset Sθ is a submultiset of T 4 .

We can now provide a sufficient condition for a soft constraint with a
decomposition-based violation measure to be contractible.

Proposition 2. Let Cs be a soft constraint with a decomposition-based violation
measure. Let (X , U , S) be the decomposition of C(X) and (XY, V , T) be the
decomposition of C(XY). If (X , U , S) is covered by (XY, V , T) via a renaming
that is the identity on X then Cs is contractible.
3 This includes primal graph based violation costs [14].
4 A multiset M1 is a submultiset of multiset M2 if, for every element a ∈ M1, the

multiplicity of a in M1 is less than or equal to its multiplicity in M2.

SOGgy Constraints: Soft Open Global Constraints 587

For example, Contiguity is implemented in [9] essentially by the decomposition

Contiguity(X)↔ ∃L, R, X0, Xn+1

n∧
i=1

C′(Xi−1, Ri−1, Li, Xi, Ri, Li+1, Xi+1)

for a certain constraint C′. The decomposition of Contiguity(XY) covers
that of Contiguity(X), and hence a soft Contiguity constraint under the
decomposition-based violation measure is contractible.

In general, any constraint definition based on composition of smaller con-
straints can be viewed as a decomposition. Thus, as a consequence of the previ-
ous Proposition, we have a counterpart of results of [10] for decomposition-based
soft constraints.

Corollary 1. If C is a global constraint definable using only the meta-constraints
Slide and Splash, existential quantification, conjunction, and constraints on a
fixed finite prefix of X, then the soft constraint Cs based on that decomposition is
contractible.

As a result, decomposition-based soft AllDifferent, InterDistance,
Sequence and ≤lex constraints are contractible, using the decompositions men-
tioned in [10]. Different decompositions for the same constraint may lead to
different violation measures, with possibly different contractibility of the cor-
responding soft constraints. Thus it is necessary to specify the decomposition
involved.

Rather than using num violv′ to count the number of violations in a decom-
position, we can instead sum the amount of violation (by v′) of the constraints
in the decomposition. This gives rise to the value-based violation measure for
GCC [14,7] and the measure used for the soft Sequence constraint [12]. In
the latter case, the decomposition of C(X) is a subset of the decomposition of
C(XY) and it follows that the soft Sequence constraint is contractible. More
generally

Proposition 3. If C(X) is covered by C(XY) via a substitution θ that leaves
X unchanged then Cs is contractible under such measures.

This proposition does not apply to the value-based soft GCC because the decom-
position of C(X) involves constraints over X. These constraints c(X) cannot
be covered by the corresponding c(XY). In fact, the value-based soft GCC is
not contractible, for essentially the same reason that the hard GCC is not con-
tractible: lower bounds on the number of occurrences of a value can lead to the
violation measure decreasing as the sequence gets longer.

Covering is a purely syntactic relationship; it is independent of the meaning of
the constraints involved. Semantically equivalent (conjunctions of) constraints
do not, in general, cover each other. To take a trivial example, constraints X+0 =
Y and X∗1 = Y are semantically equivalent, but do not cover each other because
they are syntactically different. As a result, Propositions 2 and 3 may fail to
recognise cases of contractibility.

588 M.J. Maher

3.2 Edit-Based Violation Measures

The edit-based violation measures use a notion of edit distance, which is the
minimum number of edit operations required to transform a word into a word
of LC . There are many possible edit operations but the common ones are: to
substitute one letter for another, to insert a letter, to delete a letter, and to
transpose two adjacent letters. This class includes the variable-based violation
measures [14,7], since such measures are simply edit distances where substitution
is the only edit operation. The object-based measures of [4] are edit distances
where deletion is the only edit operation.

The edit-based violation measures for closed constraints are not appropriate
for open constraints, because they fail to take into account that the current
sequence of variables may be extended with more variables.

For example, consider an open constraint C where LC = abc + defghi and
an occurrence of the constraint C([X1, X2, X3]). If X1 = d, X2 = e and X3 = f
then the edit distance of this instance to LC is 3, even though this instance is
completely accurate if the sequence of variables is extended. Similarly, if LC =
abc and we have an occurrence C([X1, X2]) with X1 = a and X2 = b then the
edit distance is 1, even though there is no violation.

To take account of the possibility that a sequence of variables may be ex-
tended, we employ the edit distance to P (LC), the prefix-closure of LC . With
this choice, the violation measure in any occurrence is a lower bound on the
violation measure of the final occurrence of the constraint.

In [10] the prefix-closure was used to approximate a constraint so that con-
straint propagation is sound when the constraint is open. In [11] the approxi-
mation was used to design propagators for specific constraints. The use of the
prefix closure in this paper is somewhat different from its use in [10,11]: rather
than using P (LC) as an approximation to LC , P (LC) is used to formulate what
it means to be an open soft constraint.

To address a wide range of edit-based measures, we generalize the measures.
We allow non-negative weights α, β, γ, δ for the edit operations substitution,
insertion, deletion and transposition, respectively, and let ns, ni, nd, nt be the
number of the respective operations used in an edit. Then we define m(w) =
minedits αns +βni + γnd + δnt to be the minimum, over all edits that transform
w to an element of P (LC), of the weighted sum of the edit operations.

Proposition 4. Let Cs be a soft constraint with a weighted edit-based violation
measure. Suppose α ≤ δ or β ≤ δ.

Then Cs is contractible.

It follows that edit-based measures that only involve substitutions, insertions
and deletions provide contractible constraints. Thus the variable-based measures
[14,7], the object-based measures [4], and the edit-based measures of [7] induce
contractible soft constraints. However, when transpositions are allowed and have
a comparatively low cost, an edit-based violation measure can lead to a soft
constraint that is not contractible.

SOGgy Constraints: Soft Open Global Constraints 589

Example 1. Suppose δ < α, δ < β, and δ < γ. Consider a Regular constraint
for (ab)∗ + (ab)∗a, which is a prefix-closed language. The word abba has edit
distance δ, by transposing the last two letters, but its prefix abb has edit distance
min{α, β, γ}, since we could either substitute a for b, insert a before the second
b, or delete a b. Thus the weighted edit-distance violation measure is not non-
decreasing and hence, by Proposition 1, the corresponding soft open Regular
constraint is not contractible.

This example reinforces a point made earlier: the introduction of P (LC) to the
definition of edit-based violation measure plays a different role than its use in
[10,11]; in this case, its use does not ensure contractibility.

3.3 Graph Property-Based Violation Measures

The graph property-based violation measures [4] are based on representation of
global constraints by graph properties [2,3]. A global constraint C is represented
by an initial directed graph Gi, where each vertex corresponds to a variable and
each edge has an attached constraint on the variables, and a graph property5. An
assignment v to variables is a solution to C iff the graph Gf , obtained by deleting
all edges whose constraints are not solved by v and all isolated vertices, satisfies
the graph property. A graph property is a simple constraint on a characteristic of
Gf such as the number of vertices, edges, sources or sinks, or the number or size
of connected components or strongly connected components, etc. The violation
measure of C under v is the violation measure of the graph property on Gf .

This framework has great flexibility; [4] presents three different violation mea-
sures for AllDifferent in this framework. Unfortunately, this makes it difficult
to identify classes of constraints that are contractible. We need to narrow our
focus to get a result.

Proposition 5. Let C be a global constraint, defined in the graph property
framework, and Cs be the corresponding graph property-based soft constraint.

Suppose GX
i is a subgraph of GXY

i for every sequence X6; the only graph
characteristics used to define C are the number of vertices , number of arcs,
and the size of the largest (strongly) connected component in Gf ; and the graph
properties have the form of constant upper bounds on these graph characteristics.

Then Cs is contractible.

This result is applicable to Contiguity as defined in [3] and the third form
of AllDifferent in [4] (slightly altered to use ≤ in place of = in the graph
property, which is necessary in an open setting). It also applies to AtMost,
Disjoint, and Golomb.

The assumption that GX
i is a subgraph of GXY

i is not a strong assumption,
given that most arc generators in [3] have this property. However, the other
assumptions are very limiting.
5 In general, multiple graphs and/or graph properties may be used.
6 We use the sequence of variables as a superscript, to distinguish graphs.

590 M.J. Maher

3.4 Other Violation Measures

The last class of violation measures are ad hoc measures derived from the se-
mantics of C. Because formulations of the measures are related to the semantics
of the specific constraint and, perhaps, to a specific application, it is difficult
to make broad statements about the nature of these measures and, hence, the
contractibility of the corresponding soft constraints.

4 Propagator

The focus of this paper is not propagators, but we give a brief outline of a prop-
agator for an open soft Regular under a weighted edit-based measure, building
on the minimum cost network flow propagator designed in [7]. As discussed in
Section 3.2, we use the prefix-closure of the given automaton. The propagator
of [7] addressed only substitutions, insertions and deletions, but it can be ex-
tended to also handle transpositions. Transposition violation arcs have the form
(qi

k, qi+2
l) where δ(qk, di+1) = q and δ(q, di) = ql for some state q and some

di ∈ D(Xi), di+1 ∈ D(Xi+1). Violation arcs of the different types have capacity
1 and cost α, β, γ or δ, depending on type. When a new variable is appended
to the sequence of variables, an additional copy of the states of the automaton
must be added, with additional arcs representing both automata transitions and
violations, somewhat like the open Regular constraint in [11]. The propaga-
tion algorithm is essentially the same as the one for edit-based SoftRegular
in [7]. The only difference is that reductions in variable domains may require
transposition violation arcs to be deleted.

Because some of the variables in an open constraint will be unspecified dur-
ing part of the execution, we need to adapt the definition of consistency. The
following is an appropriate form of domain consistency for Barták’s model [11].

Definition 1. Given a domain D, an occurrence of a constraint C(X) is open
D-consistent if

for every Xi ∈ X and every d ∈ D(Xi) there is a word d1 . . . dn in LC such
that di = d, |X| ≤ n, and dj ∈ D(Xj) for j = 1, . . . , |X|.

Proposition 6. Suppose α ≤ δ or β ≤ δ, and β + γ ≤ 2δ.
The propagator described above achieves open D-consistency for the soft open

global Regular constraint under the weighted edit-distance violation measure.

The proof relies on a lemma that states that if β + γ ≤ 2δ then there is an edit
of minimal cost where any letter subject to transposition is not subject to any
other edit operation. It also relies on Proposition 4 above, Proposition 8 of [11]
and Corollary 6 of [7].

5 Conclusions

We have broadened some classes of violation measures, and used these classes to
establish that a wide range of soft constraints are contractible. Notice that the
contractibility of a soft constraint is independent of the contractibility of the un-
derlying hard constraint. The edit-based soft Regular constraint is contractible

SOGgy Constraints: Soft Open Global Constraints 591

if all edit operations have weight 1, even when the underlying Regular constraint
is not contractible. Conversely, a contractible hard constraint can give rise to an
uncontractible soft constraint if the violation measure is chosen badly, as we saw in
Example 1. Indeed, it appears that contractibility depends more on the violation
measure than on the hard constraint. For example, soft GCC is contractible under
many edit-based measures, such as the variable-based measure, but not under the
decomposition-oriented value-based measure.

Contractibility only supports the adaptation of closed constraint propagators
to open propagators. It seems orthogonal to issues like the usefulness of the
violation measure for an application, the complexity of propagation, and the
design of efficient propagators. These issues require further research.
Acknowledgements. Thanks to the referees for their insightful comments.

References
1. Barták, R.: Dynamic Global Constraints in Backtracking Based Environments.

Annals of Operations Research 118, 101–119 (2003)
2. Beldiceanu, N.: Global Constraints as Graph Properties on a Structured Network

of Elementary Constraints of the Same Type. In: Dechter, R. (ed.) CP 2000. LNCS,
vol. 1894, pp. 52–66. Springer, Heidelberg (2000)

3. Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global Constraint Catalog, SICS
Technical Report T2005:08. Current version,
http://www.emn.fr/x-info/sdemasse/gccat/

4. Beldiceanu, N., Petit, T.: Cost Evaluation of Soft Global Constraints. In: Régin,
J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 80–95. Springer,
Heidelberg (2004)

5. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: SLIDE: a useful special
case of the CardPath constraint. In: ECAI 2008, pp. 475–479 (2008)

6. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
7. van Hoeve, W.-J., Pesant, G., Rousseau, L.-M.: On Global Warming: Flow-Based

Soft Global Constraints. Journal of Heuristics 12(4-5), 347–373 (2006)
8. van Hoeve, W.-J., Régin, J.-C.: Open Constraints in a Closed World. In: Beck,

J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 244–257. Springer,
Heidelberg (2006)

9. Maher, M.J.: Analysis of a Global Contiguity Constraint. In: Proc. Workshop on
Rule-Based Constraint Reasoning and Programming (2002)

10. Maher, M.J.: Open Contractible Global Constraints. In: IJCAI 2009, pp. 578–583
(2009)

11. Maher, M.J.: Open Constraints in a Boundable World. In: van Hoeve, W.J., Hooker,
J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 163–177. Springer,Heidelberg (2009)

12. Maher, M., Narodytska, N., Quimper, C.-G., Walsh, T.: Flow-based propagators
for the SEQUENCE and related global constraints. In: Stuckey, P.J. (ed.) CP 2008.
LNCS, vol. 5202, pp. 159–174. Springer, Heidelberg (2008)

13. Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of
Variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

14. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-
constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463.
Springer, Heidelberg (2001)

15. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier, Amsterdam (2006)

http://www.emn.fr/x-info/sdemasse/gccat/

Exploiting Problem Decomposition in Multi-objective
Constraint Optimization

Radu Marinescu

Cork Constraint Computation Centre
University College Cork, Ireland
r.marinescu@4c.ucc.ie

Abstract. Multi-objective optimization is concerned with problems involving
multiple measures of performance which should be optimized simultaneously.
In this paper, we extend AND/OR Branch-and-Bound (AOBB), a well known
search algorithm, from mono-objective to multi-objective optimization. The new
algorithm MO-AOBB exploits efficiently the problem structure by traversing an
AND/OR search tree and uses static and dynamic mini-bucket heuristics to guide
the search. We show that MO-AOBB improves dramatically over the traditional
OR search approach, on various benchmarks for multi-objective optimization.

1 Introduction

A Constraint Optimization Problem (COP) is the minimization (or maximization) of
an objective function subject to a set of constraints on the possible values of a set of
independent decision variables. Many real-world problems involve multiple measures
of performance or objectives which should be optimized simultaneously. In contrast
with single function optimization, the simultaneous optimization of multiple, possi-
bly conflicting, objective functions does not in general admit a single, perfect solution.
Instead, Multi-objective Constraint Optimization Problems (MO-COP) tend to be char-
acterized by a set of alternatives which must be considered equivalent in the absence
of information concerning the relevance of each objective relative to the others. There-
fore, solving a MO-COP is to find the efficient frontier, namely the set of equivalent or
non-dominated costs of the set of feasible solutions.

Most complete algorithms for solving MO-COPs typically fall within one of the fol-
lowing two categories: search and inference. Search-based algorithms (e.g. depth-first
Branch-and-Bound) transform a problem into a set of subproblems by selecting a vari-
able and considering the assignment of each of its domain values. The subproblems are
solved in sequence applying recursively the same transformation rule. These algorithms
are not sensitive to the problem structure, have a time complexity which is exponential
in the number of variables, but can operate in polynomial space. Inference-based algo-
rithms (e.g., variable elimination) are known to be good at exploiting the structural in-
formation encoded in the problem. These methods apply a sequence of transformations
that reduce the problem size, while preserving the solution space of the problem. Their
time and space complexity is exponential in a topological parameter called treewidth
(always less than or equal to the number of variables). Due to their high space require-
ments, when the treewidth is large, the latter methods are often impractical.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 592–607, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Exploiting Problem Decomposition in Multi-objective Constraint Optimization 593

The AND/OR search space for COPs [1] is a relatively new framework for search
that is sensitive to the problem structure, often resulting in substantially improved per-
formance. It is based on a pseudo tree that captures conditional independencies in the
problem, resulting in a search tree exponential in the depth of the pseudo tree, rather
than in the number of variables. The AND/OR Branch-and-Bound (AOBB) is a recent
search algorithm introduced in [2] that traverses depth-first an AND/OR search tree
associated with a single objective COP instance.

In this paper, we extend the AND/OR search tree from mono-objective to multi-
objective optimization. We then present a multi-objective depth-first AND/OR Branch-
and-Bound algorithm (MO-AOBB) for finding the efficient frontier of a MO-COP
instance. The efficiency of the proposed algorithm also depends on the accuracy of
its guiding heuristic function. We investigate a class of partitioning-based heuristics
which is based on the multi-objective mini-bucket elimination introduced recently in
[3]. The mini-bucket heuristics can be either pre-compiled or generated dynamically at
each node in the search tree. We evaluate the impact of our advancement on several
benchmarks for MO-COPs, including risk-conscious combinatorial auctions, MAX-
SAT-ONE problem instances, bi-objective weighted vertex cover problems, as well as a
set of MO-COP instances derived from real-world mono-objective COP instances. Our
results show conclusively that the new multi-objective AND/OR Branch-and-Bound
algorithm improves dramatically over state-of-the-art search algorithms traversing the
traditional OR space, in many cases by several orders of magnitude.

The paper is organized as follows. Section 2 provides background on COPs,
AND/OR search trees for COPs as well as on MO-COPs. In Section 3 we extend the
AND/OR search tree from mono-objective to multi-objective optimization. Section 4
presents the multi-objective AND/OR Branch-and-Bound search algorithm for finding
the efficient frontier of a MO-COP instance. Section 5 is dedicated to our empirical
evaluation, while Section 6 provides concluding remarks and directions of future re-
search.

2 Background

2.1 Mono-objective Constraint Optimization Problems

A Constraint Optimization Problem (COP) is a triple P = 〈X,D,F〉, where X =
{X1, ..., Xn} is a set of variables, D = {D1, ..., Dn} is a set of finite domains and
F = {f1, ..., fr} is a set of cost functions. Cost functions can be either soft or hard
(constraints). Without loss of generality we assume that hard constraints are represented
as (bi-valued) cost functions. Allowed and forbidden tuples have cost 0 and∞, respec-
tively. The scope of function fi, denoted scope(fi) ⊆ X, is the set of arguments of fi.
The goal is to find a complete value assignment to the variables, x = (x1, ..., xn), that
minimizes the objective function defined by F(X) =

∑r
i=1 fi(Yi), where Yi ⊆ X.

Given a COP instance, its primal graph G has a node for each variable and an edge
connects any two nodes whose variables appear in the scope of the same function. The
induced graph of G relative to an ordering d of its variables is obtained by processing
the nodes in reverse order of d. For each node all its earlier neighbors are connected,
including neighbors connected by previously added edges. The width of a node is the

594 R. Marinescu

number of edges connecting it to nodes lower in the ordering. The treewidth of a graph
along d, denoted w∗(d), is the maximum width of nodes in the induced graph.

2.2 AND/OR Search Trees for COP

The AND/OR search space [1] is a unifying framework for advanced algorithmic
schemes for graphical models, including constraint networks and cost networks. Its
main virtue consists in exploiting independencies between variables during search,
which can provide exponential speedups over traditional structure-blind search methods
(called here OR search). The search space is defined using a backbone pseudo tree [4].

Definition 1 (pseudo tree). Given an undirected graph G = (V, E), a directed rooted
tree T = (V, E′) defined on all its nodes is called a pseudo tree if any edge of G that is
not included in E′ is a back-arc in T , namely it connects a node to an ancestor in T .

Given a COP instance P = 〈X,D,F〉, its primal graph G and a pseudo tree T of
G, the associated AND/OR search tree ST (P) has alternating levels of OR and AND
nodes. The OR nodes are labeled Xi and correspond to the variables. The AND nodes
are labeled 〈Xi, xi〉 (or just xi) and correspond to value assignments of the variables.
The structure of the AND/OR search tree is based on the underlying pseudo tree T .
The root of the AND/OR search tree is an OR node labeled with the root of T . The
children of an OR node Xi are AND nodes labeled with assignments 〈Xi, xi〉 that are
consistent with the assignments along the path from the root. The children of an AND
node 〈Xi, xi〉 are OR nodes labeled with the children of variable Xi in T .

A solution tree T of an AND/OR search tree ST (P) is an AND/OR subtree such
that: (1) it contains the root of ST (P), s; (2) if a non-terminal AND node n ∈ ST (P)
is in T then all of its children are in T ; (3) if a non-terminal OR node n ∈ ST (P) is in
T then exactly one of its children is in T ;

It was shown [4,5,1] that given a COP instance and a pseudo tree T of depth m, the
size of the AND/OR search tree based on T is O(n · km), where k bounds the domains
of variables. Moreover, a COP having treewidth w∗ has a pseudo tree of depth at most
w∗ · log n, and therefore it has an AND/OR search tree of size O(n · kw∗·log n).

2.3 Multi-objective Constraint Optimization Problems

Let us consider now problems with p objectives. A cost vector (also called a p-vector)
v = (v1, ..., vp) is a vector of p components where each vj ∈ R represents the cost with
respect to objective j. A cost vector which has all components equal to 0 is denoted by
{0}. A multi-objective function f is a function that associates a cost vector to each
assignment of its scope. Let v and u be two cost vectors. We say that v dominates u,
denoted by v ≤ u, if ∀j, vj ≤ uj . We say that v < u if v ≤ u and v �= u. The sum of
cost vectors is the usual point-wise sum.

Let α be a set of cost vectors. We define its non-dominated closure as ‖ α ‖= {u ∈
α | ∀v ∈ α, v ≮ u}. A set of cost vectors closed under non-domination is called
frontier. Let α and β be two frontiers. We say that α dominates β, denoted by α ≤ β,
if ∀v ∈ β, ∃u ∈ α s.t. u ≤ v. We say that α < β, if α ≤ β and α �= β. The sum of
frontiers is α + β =‖ {w = u + v | u ∈ α, v ∈ β} ‖.

Exploiting Problem Decomposition in Multi-objective Constraint Optimization 595

(a) Bi-objective functions (b) Primal graph

Fig. 1. An example of a MO-COP instance with 2 objectives

A Multi-objective Constraint Optimization Problem (MO-COP) is a triple M =
〈X,D,F〉, where X = {X1, ..., Xn}, D = {D1, ..., Dn} and F = {f1, ..., fr} are
variables, domains and multi-objective functions, respectively. The sum of functions in
F defines the objective function F . The only difference with respect to mono-objective
COP is that multi-objective functions are used. A solution is a complete assignment
x = (x1, ..., xn). A solution x is efficient or Pareto optimal if ∀x′, F(x′) ≮ F(x).
The efficient frontier is the set E = {F(x) | ∀x′,F(x′) ≮ F(x)}. The optimization
task is to compute E , and for each v ∈ E , one (of the possibly many) Pareto optimal
assignment with cost v1.

As in the mono-objective case, each MO-COP instance has an associated primal
graph, which is computed in the same way: nodes correspond to the variables and an
arc connects any pair of nodes whose variables belong to the scope of the same function.

Example 1. Figure 1 shows a MO-COP instance with 2 objectives, 5 bi-valued vari-
ables and 8 cost functions. The first objective is defined by functions f1, f2 and f3,
while functions g0, g1, g2, g3 and g4 form the second objective, respectively. The cor-
responding bi-objective functions are given in Figure 1(a). For example, the cost vector
associated with f1(X0 = 0, X1 = 0, X2 = 0) has two components, 5 and 0, which rep-
resent the costs with respect to the first and second objective, respectively. The primal
graph is shown in Figure 1(b). The problem has three solutions: (00000), (01000) and
(01100) with non-dominated costs (7, 0), (4, 2) and (3, 5), respectively.

3 Weighted AND/OR Search Trees for MO-COP

In this section we extend the AND/OR search tree from mono-objective to multi-
objective optimization. Given a MO-COP instance M = 〈X,D,F〉 and its primal
graph G, the AND/OR search tree ST (M) ofM is driven by a pseudo tree T of G, as
in the mono-objective case. The arcs from nodes OR nodes Xi to AND nodes 〈Xi, xi〉
in ST (M) are annotated by weights derived from the multi-objective cost functions
in F. Each node n in the weighted search tree is associated with a value v(n) which
stands for the answer to the optimization query restricted to the conditioned subproblem
below n.

1 In some cases, E may be too large and must be approximated. In this paper we do not consider
this situation.

596 R. Marinescu

(a) Pseudo tree (b) AND/OR search tree

Fig. 2. AND/OR search tree for the MO-COP instance from Fig. 1

Definition 2 (weight). The weight w(n, n′) of the arc from the OR node n labeled Xi

to the AND node n′ labeled 〈Xi, xi〉 is a cost vector defined as the sum of all the multi-
objective cost functions whose scope includes Xi and is fully assigned along the path
from the root to 〈Xi, xi〉, evaluated at the values along the path.

Definition 3 (value). The value v(n) of a node n in a weighted AND/OR search tree of
a MO-COP instanceM = 〈X,D,F〉 with p objectives is defined recursively as follows
(where succ(n) are the children of n):

(1) v(n) = {0}, if n = 〈Xi, xi〉 is a terminal AND node;
(2) v(n) =

∑
n′∈succ(n) v(n′), if n = 〈Xi, xi〉 is an internal AND node;

(3) v(n) =‖ {(w(n, n′) + v(n′)) | n′ ∈ succ(n)} ‖, if n = Xi is an OR node.

It is easy to see that the value v(n) of a node in the AND/OR search tree ST (M) is
the set of cost vectors representing the efficient frontier of the subproblem rooted at n,
subject to the current variable instantiation along the path from the root to n. If n is the
root of ST (M), then v(n) is the efficient frontier of the initial problem.

Example 2. Figure 2(b) shows the AND/OR search tree for the MO-COP instance
from Figure 1, relative to the pseudo tree from Figure 2(a). The numbers on the OR-
to-AND arcs are the weights corresponding to the function values. For example, the
weight of the arc from the OR node X2 to its AND child 〈X2, 0〉, along the path
(X0, 〈X0, 0〉, X1, 〈X1, 0〉, X2, 〈X2, 0〉), is (5, 0) and is obtained by summing the val-
ues of the functions f1(X0, X1, X2) and g2(X2), whose scopes contain X2 and are
fully instantiated along that path. A solution tree that corresponds to the assignment
(X0 = 0, X1 = 1, X2 = 1, X3 = 0, X4 = 0) with cost (3, 5) is highlighted in Figure
2(b). The OR node X2 along the path (X0, 〈X0, 1〉, X1, 〈X1, 0〉, X2) has value (2, 0)
which is the non-dominated closure of the frontier below it, namely {(2, 0), (3, 3)}.

4 Multi-objective AND/OR Branch-and-Bound Search

Multi-objective problems can be solved using a depth-first Branch-and-Bound schema,
which traverses a traditional OR search tree of possible assignments in a depth-first

Exploiting Problem Decomposition in Multi-objective Constraint Optimization 597

manner and outputs the efficient frontier E of the problem [6,7]. The algorithm, called
MO-BB, handles two frontiers, called lower and upper bound frontiers. The upper
bound frontier is the set of cost vectors of the best solutions found so far and is an over-
estimation of the efficient frontier E . During search, MO-BB computes at each visited
node a lower bound frontier [8] of the current subproblem using a heuristic evaluation
function. MO-BB backtracks if the upper bound dominates the lower bound, because it
implies that the current partial assignment cannot lead to any new efficient cost vector.

In this section, we apply the general principles of AND/OR search and extend MO-
BB into a Branch-and-Bound algorithm that explores an AND/OR rather than a regular
OR search tree for finding the efficient frontier of a MO-COP instance. The proposed
algorithm is an extension of the recently introduced single objective AND/OR Branch-
and-Bound (AOBB) algorithm [2] to the multi-objective optimization case. We start by
revisiting the notion of partial solution trees [9] to represent sets of solution trees.

Definition 4 (partial solution tree). A partial solution tree T ′ of an AND/OR search
tree ST (M) is a subtree which: (1) contains the root node s of ST (M); (2) if n is an
OR node in T ′ then it contains one of its AND child nodes in ST (M), and if n is an
AND node it contains all its OR children in ST (M). A node of T ′ is a tip node if it
has no children in T ′. A tip node of T ′ is either a terminal node (if it has no children in
ST (M)), or a non-terminal node (if it has children in ST (M)).

A partial solution tree may be extended (possibly in several ways) to a full solution
tree. It represents extension(T ′), the set of all full solution trees which can extend it.
Clearly, a partial solution tree all of whose tip nodes are terminal is a solution tree.

4.1 Heuristic Lower Bounds on Partial Solution Trees

We next define the notion of heuristic evaluation function of a partial solution tree,
which will be used to guide the AND/OR Branch-and-Bound search. Like in OR search,
we assume a given heuristic evaluation function h(n) associated with each node in the
search tree such that h(n) is an underestimation of the efficient frontier v(n) of the
conditioned subproblem below n.

Definition 5 (heuristic evaluation function). Given a partial solution tree T ′
n rooted

at node n in the AND/OR tree ST (M), the heuristic evaluation function f(T ′
n), is

defined recursively by: (1) if T ′
n consists of a single node n, then f(T ′

n) = h(n); (2) if
n is an OR node having the AND child m in T ′

n, then f(T ′
n) = w(n, m)+f(T ′

m); (3) if
n is an AND node having OR children m1, ..., mk in T ′

n, then f(T ′
n) =

∑k
i=1 f(T ′

mi
).

Clearly, by definition, f(T ′
n) is a lower bound frontier that underestimates the efficient

frontier of the subproblem represented by T ′
n. During search, the algorithm maintains

also an upper bound frontier ub(s) of the efficient frontier v(s), where s is the root of
the search tree. Given the current partial solution tree T ′

s and if the upper bound frontier
ub(s) dominates the lower bound frontier f(T ′

s) (i.e., ub(s) ≤ f(T ′
s)), then searching

below the current tip node t of T ′
s is guaranteed not to lead to any new efficient cost

vector and, therefore, search below t can be safely halted.

598 R. Marinescu

Algorithm 1. MO-AOBB
Data: A MO-COP instance M = 〈X, D, F〉 with p objectives, pseudo tree T .
Result: Efficient frontier E of M.
create an OR node s labeled X1 // Create and initialize the root node1
v(s) ← ∅; OPEN ← {s}2
while OPEN
= ∅ do3

n ← top(OPEN); remove n from OPEN4
if n is an OR node, labeled Xi then // EXPAND5

for xi ∈ DXi
do6

create an AND node n′ labeled 〈Xi, xi〉7
v(n′) ← {0}; h(n′) ← heuristic(n′)8
w(n, n′) ← ∑

f∈F,Xi∈scope(f) f(asgn(πn))9
succ(n) ← succ(n) ∪ {n′}10

else if n is an AND node, labeled 〈Xi, xi〉 then11
let T ′

s be the current partial solution tree12
if v(s) � f(T ′

s) then13
for Xj ∈ childrenT (Xi) do14

create an OR node n′ labeled Xj15
v(n′) ← ∅; h(n′) ← heuristic(n′)16
succ(n) ← succ(n) ∪ {n′}17

Add succ(n) on top of OPEN18
while succ(n) == ∅ do // PROPAGATE19

let par be the parent of n20
if n is an OR node, labeled Xi then21

if Xi == X1 then // Search is complete22
return v(n)23

v(par) ← v(par) + v(n)24

if n is an AND node, labeled 〈Xi, xi〉 then25
v(par) ←‖ v(par) ∪ {(w(par, n) + v(n))} ‖26

remove n from succ(par)27
n ← par28

4.2 The Branch-and-Bound Algorithm

The depth-first AND/OR Branch-and-Bound search algorithm, MO-AOBB, that tra-
verses an AND/OR search tree is described by Algorithm 1. It takes as input a MO-
COP instance M = 〈X,D,F〉 with p objectives as well as a pseudo tree T of its
primal graph and returns the efficient frontier of M. The fringe of the search is main-
tained by a stack called OPEN. The current node is denoted by n, its parent by par,
the current path by πn and its assignment by asgn(πn). The successors of the current
node are denoted by succ(n), while the children of a variable Xi in T are denoted by
childrenT (Xi).

Each node n in the search tree maintains its current value v(n), which is updated
based on the values of its children. For OR nodes, the current v(n) is an upper bound
frontier on the efficient frontier below n. Initially, v(n) is set to ∅ if n is OR, and {0} if
n is AND, respectively. Procedure heuristic(n) computes the lower bound h(n)
on the efficient frontier of the subproblem below n, conditioned on asgn(πn).

In the EXPAND step, the current node n is expanded in the usual way, depending
on whether it is an AND or an OR node (lines 5–17). The successors of an OR node
Xi are AND nodes labeled by the domain values xi of Xi. The successors of an AND
node 〈Xi, xi〉 are OR nodes labeled by the children Xj of Xi in the pseudo tree T . The

Exploiting Problem Decomposition in Multi-objective Constraint Optimization 599

algorithm also computes the heuristic evaluation function f(T ′
s) of the current partial

solution tree T ′
s being explored, based on Definition 5. The search below n is terminated

if the current upper bound frontier v(s) dominates f(T ′
s) (line 13).

The node values are updated by the PROPAGATE step (lines 19–28). It is triggered
when a node has an empty set of descendants (note that as each successor is evaluated,
it is removed from the set of successors in line 27). This means that all its children have
been evaluated, and their values are already determined. If the current node is the root,
then the search terminates with its value, namely the efficient frontier (line 23). If n
is an OR node, then its parent par is an AND node, and par updates its current value
v(par) by summation with the value of n (line 24). An AND node n propagates its
value to its parent par in a similar way, by the non-dominated closure (lines 25–26).
Finally, the current node n is set to its parent par (line 28), because n was completely
evaluated. Search continues either with a propagation step (if conditions are met) or
with an expansion step. The algorithm can be easily instrumented to also record the
solution trees that correspond to the cost vectors in the efficient frontier. Clearly,

Theorem 1. MO-AOBB is sound and complete for MO-COP. In a problem with a single
objective function (i.e., p = 1), the algorithm MO-AOBB is equivalent to AOBB.

While the time complexity of MO-AOBB is bounded by O(n · exp(m)), the size of
the AND/OR search tree, in practice, the running time of MO-AOBB is expected to be
much better than the worst-case bound because the pruning mechanism via the heuristic
evaluation function will prune unpromising portions of the search space.

4.3 Partitioning-Based Lower Bound Heuristics

We now describe briefly two general schemes for generating the heuristic estimates
h(n), based on the multi-objective Mini-Bucket approximation. These schemes are pa-
rameterized by the Mini-Bucket i-bound, thus allowing for a controllable trade-off be-
tween heuristic strength and its computational overhead.

Mini-Bucket Elimination. (MBE) [10] is an approximation algorithm designed to
avoid the high time and space complexity of Bucket Elimination (BE) [11], by par-
titioning large buckets into smaller subsets, called mini-buckets, each containing at
most i (called i-bound) distinct variables. The mini-buckets are then processed sepa-
rately. The algorithm computes a lower bound (assuming minimization) on the optimal
solution to a COP. The complexity is time and space O(exp(i)). More recently, [3] ex-
tended MBE(i) from mono-objective to multi-objective optimization problems, yield-
ing Multi-objective Mini-Bucket Elimination (MO-MBE). Given a MO-COP instance,
MO-MBE(i) outputs not only a lower bound frontier of the efficient frontier, but also
the collection of augmented buckets, which form the basis for the heuristics generated.

Static Mini-Bucket Heuristics. In the past, [12,2] showed that the intermediate func-
tions generated by the MBE(i) can be used to compute a heuristic function that un-
derestimates the minimal extension of the current assignment in both OR and AND/OR
search trees for COP. Here, we extend the idea to multi-objective optimization. Consider
a MO-COP instanceM and the ordered set of augmented buckets {B(X1), ..., B(Xn)}
generated by MO-MBE(i) along a DFS traversal of the pseudo tree T of M. Given

600 R. Marinescu

a node n in the AND/OR search tree relative to T , the static mini-bucket heuristic
function h(n) is computed as follows: (1) if n is an AND node labeled 〈Xj , xj〉, then
h(n) is the sum of all intermediate functions that were generated in buckets corre-
sponding to descendants of Xj in T and reside in bucket B(Xj) or the buckets cor-
responding to the ancestors of Xj in T ; (2) if n is an OR node labeled Xj , then
h(n) =‖ {(w(n, m) + h(m)) |m ∈ succ(n)} ‖.
Dynamic Mini-Bucket Heuristics. Rather than pre-compiling the mini-bucket heuris-
tic information, it is possible to generate it dynamically, during search [2,7]. Specifi-
cally, given the set of buckets {B(X1), ..., B(Xn)} ordered along a DFS traversal of T ,
a node n in the AND/OR search tree and given the current partial assignment asgn(πn)
along the path to n, the dynamic mini-bucket heuristic function h(n) is computed as fol-
lows: (1) if n is an AND node labeled 〈Xj , xj〉, then h(n) is the sum of the intermediate
functions that reside in bucket B(Xj) and were generated by MO-MBE(i), conditioned
on asgn(πn), in the buckets corresponding to the descendants of Xj in T ; (2) if n is an
OR node labeled Xj , then h(n) =‖ {(w(n, m) + h(m)) | m ∈ succ(n)} ‖. Given an
i-bound, the dynamic mini-bucket heuristic implies a much higher computational over-
head compared with the static version. However, the bounds generated dynamically
may be far more accurate since some of the variables are assigned and will therefore
yield smaller functions and less partitioning.

5 Experiments

To evaluate our multi-objective AND/OR Branch-and-Bound approach we have
conducted a number of experiments on several MO-COP problem classes such as
bi-objective combinatorial auction, bi-objective weighted vertex cover problems, MAX-
SAT-ONE problem instances as well as bi-objective Weighted CSPs derived from stan-
dard mono-objective instances. We implemented our algorithms in C++ and carried out
all experiments on a 2.4GHz dual quad-core with 8GB of RAM running Linux Ubuntu
8.10.

We considered two classes of depth-first AND/OR Branch-and-Bound search al-
gorithms guided by static and dynamic mini-bucket heuristics. They are denoted by
MO-AOBB+SMB(i) and MO-AOBB+DMB(i), respectively. We compare these algo-
rithms against traditional depth-first OR Branch-and-Bound algorithms with static and
dynamic mini-bucket heuristics, denoted by MO-BB+SMB(i) and MO-BB+DMB(i),
respectively. The parameter i represents the mini-bucket i-bound and controls the accu-
racy of the heuristic. For reference, we also ran the multi-objective Russian Doll Search
algorithm, denoted by MO-RDS, which was recently introduced in [6]. MO-RDS ex-
plores a traditional OR search tree and extends the well known Russian Doll Search [13]
from mono-objective to multi-objective optimization. Algorithms MO-BB+DMB(i)
and MO-RDS were evaluated extensively in [6,7] and shown to outperform dramati-
cally state-of-the-art algorithms for multi-objective optimization such as ε-constraint
based search [14], multi-objective iterative deepening search [3] and multi-objective
bucket elimination [3]. The pseudo trees that guide the AND/OR search algorithms
were generated using the min-fill heuristic [2]. All competing OR search algorithms
used a static variable ordering which was derived from the pseudo tree as well.

Exploiting Problem Decomposition in Multi-objective Constraint Optimization 601

In all our experiments we report the CPU time in seconds and the number of nodes
visited for solving the problems. We also specify the problems’ parameters such as the
number of variables (n), maximum domain size (k), the number of cost functions (c),
the depth of the pseudo tree (h) and the treewidth of the graph (w∗). In addition, we
also record the size of the efficient frontier found (|E|). The best performance points are
highlighted in each table. A ”-” stands for exceeding the time limit.

Bi-objective Weighted Vertex Cover. Given a graph G = (V, E), a vertex cover is a
subset of vertices S ⊆ V such that ∀(u, v) ∈ E, either u ∈ S or v ∈ S. The minimum
vertex cover is a vertex cover of minimum size. In the weighted version every vertex v
has an associated weight w(v) and the weighted minimum vertex cover is a vertex cover
S with minimum F (S) =

∑
v∈S w(v). In the bi-objective version, each vertex v has

two weights w1(v) and w2(v) and the task is to minimize the two associated objective
functions simultaneously [3].

We generated random graphs with parameters (V, E, C), where V is the number of
vertices, E is the number of edges and C is the maximum weight, as suggested in [3]. In-
stances were generated by randomly selecting E edges. The two weights associated with
each vertex were generated uniformly at random between 0 and C. Table 1 reports the
results obtained on two classes of random graphs: sparse (with V ∈ {60, 70, 80, 90}
and E ∈ {100, 120, 140, 160}), and medium (with V ∈ {30, 40, 50, 60} and C ∈
{90, 120, 150, 180}), respectively. In both cases we set C = 30. The columns are in-
dexed by the mini-bucket i-bound and the table entries represent an average over 10
random instances generated for each parameter configuration.

When looking at the algorithms guided by mini-bucket heuristics, we observe that
both MO-AOBB+SMB(i) and MO-AOBB+DMB(i) outperformed dramatically the cor-
responding OR Branch-and-Bound algorithms MO-BB+SMB(i) and MO-BB+DMB(i),
across all reported i-bounds. For example, on sparse graphs of size (60,100), MO-
AOBB+SMB(10) solved all instances in about 3 seconds, while MO-BB+SMB(10) ex-
ceeded the 1 hour time limit. In terms of the quality of the heuristic, we also see that
static mini-buckets with a relatively large i-bound represent the best choice. However,
if larger i-bounds are not possible, dynamic mini-buckets with small i-bounds are pre-
ferred, especially on sparse problems. For problems from the medium class, MO-
RDS proved to be cost effective with respect to the mini-bucket based algorithms.

Bi-objective Combinatorial Auctions. In combinatorial auctions, an auctioneer has a
set of goods to sell and the buyers submit a set of bids on indivisible subsets of goods
[15]. In risk-conscious auctions, the auctioneer wants also to control the risk of not be-
ing paid after a bid has been accepted, because it may cause large losses in revenue [16].
Let M = {1, ..., n} be the set of goods to be auctioned and let B = {B1, ..., Bm} be
the set of bids. A bid Bj is defined by a triple (Sj , pj , rj), where Sj ⊆M , pj is the bid
price and rj is the probability of failure, respectively. The auctioneer must decide which
bids to accept under the constraint that each good is allocated to at most one bid. The
first objective is to maximize the auctioneer profit. The second objective is to minimize
risk. Assuming independence, after a logarithmic transformation of probabilities, this
objective can also be expressed as an additive function [7].

602 R. Marinescu

Table 1. Result for bi-objective weighted vertex cover problems using static and dynamic mini-
bucket heuristics. Time limit 1 hour. Overall best performance points are boxed.

MO-BB+SMB(i) MO-BB+SMB(i) MO-BB+SMB(i) MO-BB+SMB(i) MO-BB+SMB(i)
(V, E) MO-AOBB+SMB(i) MO-AOBB+SMB(i) MO-AOBB+SMB(i) MO-AOBB+SMB(i) MO-AOBB+SMB(i)

(w*, h) MO-RDS MO-BB+DMB(i) MO-BB+DMB(i) MO-BB+DMB(i) MO-BB+DMB(i) MO-BB+DMB(i)
|E| MO-AOBB+DMB(i) MO-AOBB+DMB(i) MO-AOBB+DMB(i) MO-AOBB+DMB(i) MO-AOBB+DMB(i)

i=2 i=4 i=6 i=8 i=10
time nodes time nodes time nodes time nodes time nodes time nodes

sparse

(60, 100) - - - - - - - - - -
(10, 19) 13.27 109,182 14.10 53,051 3.39 49,877 3.28 49,317 3.27 49,104

14 108.74 12,774,381 - - - - - - - - - -
6.25 52,984 5.78 49,149 6.23 49,081 6.80 49,076 7.13 49,076

(70, 120) - - - - - - - - - -
(12, 22) 41.74 253,516 10.87 119,060 7.69 106,561 7.15 104,145 6.98 103,529

16 1560.06 224,998,226 - - - - - - - - - -
14.80 112,891 12.60 103,527 13.44 103,275 14.83 103,246 16.21 103,242

(80, 140) - - - - - - - - - -
(14, 26) 444.19 2,466,147 74.70 747,408 57.01 689,606 52.33 675,044 51.40 672,451

17 - - - - - - - - - - - -
103.91 735,773 83.71 671,259 85.34 669,980 91.02 698,885 96.33 698,860

(90, 160) - - - - - - - - - -
(16, 27) 1815.14 6,047,711 112.88 731,474 58.93 568,307 51.77 551,728 46.09 536,089

29 - - - - - - - - - - - -
169.56 704,192 84.37 533,688 90.17 532,051 100.80 531,590 118.75 531,519

medium

(30, 90) - - - - - - - - - -
(11, 19) 18.56 356,178 17.76 353,469 17.43 351,828 17.27 351,304 17.27 351,098

6 0.05 8,314 - - - - - - - - - -
21.89 351,295 24.18 351,081 25.39 351,039 26.17 351,027 26.76 351,026

(40, 120) - - - - - - - - - -
(14, 23) 139.99 2,312,847 133.06 2,291,297 130.34 2,277,972 129.44 2,274,436 128.74 2,271,194

10 0.97 113,751 - - - - - - - - - -
158.00 2,271,245 173.75 2,269,975 179.67 2,269,844 184.42 2,269,771 189.31 2,269,739

(50, 150) - - - - - - - - - -
(18, 27) 1356.05 19,902,899 1386.05 20,737,676 1306.88 19,962,033 1305.10 19,906,542 1303.90 19,874,904

8 21.56 2,252,573 - - - - - - - - - -
1415.91 18,386,161 1455.62 17,863,968 1469.87 17,559,896 1485.19 17,484,973 1499.06 17,414,634

(60, 180) - - - - - - - - - -
(21, 32) 3116.71 42,000,631 3054.23 41,731,445 3037.54 41,831,396 3031.55 41,834,376 3028.49 41,689,599

12 296.14 21,624,533 - - - - - - - - - -
3112.38 36,825,713 3122.18 34,713,221 3129.76 34,158,428 3138.68 33,822,995 3148.01 33,801,126

For our purpose, we generated mono-objective auctions from the paths distribution
of the CATS suite [15] and randomly added failure probabilities to the bids in the range
0 to 1. Figure 3 summarizes the results obtained on randomly generated auctions with
30 goods and increasing number of bids (each data point represents an average over 10
random instances). These problem instances tend to become highly connected as the
number of bids increases. The average treewidth ranged between 8 (for 30 bids) and 53
(for 150 bids), while the average pseudo tree depth was between 16 (for 30 bids) and
88 (for 150 bids), respectively. We report on three values of the mini-bucket i-bound,
namely i = 2, i = 8 and i = 14, respectively.

We see that MO-AOBB+SMB(i) is better than MO-BB+SMB(i) at relatively small
i-bounds when the heuristic is weak. This demonstrates the benefit of AND/OR versus
classical OR search when the heuristic estimates are relatively weak and the algorithms
rely primarily on search rather than pruning via the heuristic evaluation function. For
example, on auctions with 60 bids, the average running time of MO-AOBB+SMB(2)
was about 17 seconds, while MO-BB+SMB(2) took on average 1,951 seconds. As the i-
bound increases and the corresponding heuristics are strong enough to prune the search
space substantially, the difference between AND/OR and OR search decreases. When
focusing on dynamic mini-bucket heuristics, we see that MO-AOBB+DMB(i) is bet-
ter than MO-BB+DMB(i) at relatively small i-bounds, but the difference is not that

Exploiting Problem Decomposition in Multi-objective Constraint Optimization 603

paths - 30 goods - static mini-bucket heuristics [time]

ti
m

e
 (

s
e
c
)

0

1,000

2,000

3,000

4,000

bids
20 40 60 80 100 120 140 160

MO-BB+SMB(2)

MO-AOBB+SMB(2)

MO-BB+SMB(8)

MO-AOBB+SMB(8)

MO-BB+SMB(14)

MO-AOBB+SMB(14)

MO-RDS

paths - 30 goods - static mini-bucket heuristics [nodes]

n
o

d
e
s

100

1,000

1e+04

1e+05

1e+06

1e+07

1e+08

1e+091e+09

bids
20 40 60 80 100 120 140 160

MO-BB+SMB(2)

MO-AOBB+SMB(2)

MO-BB+SMB(8)

MO-AOBB+SMB(8)

MO-BB+SMB(14)

MO-AOBB+SMB(14)

MO-RDS

paths - 30 goods - dynamic mini-bucket heuristics [time]

ti
m

e
 (

s
e
c
)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

bids
20 40 60 80 100 120 140 160

MO-BB+DMB(2)

MO-AOBB+DMB(2)

MO-BB+DMB(8)

MO-AOBB+DMB(8)

MO-BB+DMB(14)

MO-AOBB+DMB(14)

MO-RDS

paths - 30 goods - dynamic mini-bucket heuristics [nodes]

n
o

d
e
s

100

1,000

1e+04

1e+05

1e+06

1e+07

1e+08

1e+091e+09

bids
20 40 60 80 100 120 140 160

MO-BB+DMB(2)

MO-AOBB+DMB(2)

MO-BB+DMB(8)

MO-AOBB+DMB(8)

MO-BB+DMB(14)

MO-AOBB+DMB(14)

MO-RDS

Fig. 3. Results for bi-objective combinatorial auctions with 30 goods and increasing number of
bids. CPU time and nodes visited using static (top) and dynamic (bottom) mini-bucket heuristics.
Time limit 1 hour. Average treewidth w∗ ∈ [8, 53], average pseudo tree depth h ∈ [16, 88].

paths 30 goods 80 bids - [w*=25, h=50] - (time)

ti
m

e
 (

s
e

c
)

10

100

1,000

1e+04

1e+05

i-bound

0 2 4 6 8 10 12 14 16 18 20

MO-BB+SMB(i)

MO-AOBB+SMB(i)

MO-BB+DMB(i)

MO-AOBB+DMB(i)

MO-RDS

paths 30 goods 80 bids - [w*=25, h=50] - (nodes)

n
o

d
e

s

1,000

1e+04

1e+05

1e+06

1e+07

1e+08

i-bound
0 2 4 6 8 10 12 14 16 18 20

MO-BB+SMB(i)

MO-AOBB+SMB(i)

MO-BB+DMB(i)

MO-AOBB+DMB(i)

MO-RDS

Fig. 4. Impact of the i-bound on bi-objective combinatorial auctions with 30 goods and 80 bids
using static and dynamic mini-bucket heuristics. CPU time (left) and nodes visited (right). Aver-
age treewidth w∗ = 25, average pseudo tree depth h = 50.

prominent as in the static case. This is because these heuristics are far more accurate
compared with the pre-compiled ones and the savings in number of nodes caused by
traversing the AND/OR search tree do not translate into additional time savings. On
this domain, we see that MO-AOBB+SMB(i) with relatively large i-bounds outper-
formed MO-RDS. However, MO-RDS was superior to MO-AOBB+DMB(i), except
for the smallest reported i-bound, in which case MO-AOBB+DMB(2) was competitive.

604 R. Marinescu

Table 2. Results for MAX-SAT-ONE instances using static and dynamic mini-bucket heuristics.
Time limit 30 minutes. Overall best performance points are highlighted.

MO-BB+SMB(i) MO-BB+SMB(i) MO-BB+SMB(i) MO-BB+SMB(i)
instance MO-AOBB+SMB(i) MO-AOBB+SMB(i) MO-AOBB+SMB(i) MO-AOBB+SMB(i)
(n, c, k) MO-RDS MO-BB+DMB(i) MO-BB+DMB(i) MO-BB+DMB(i) MO-BB+DMB(i)
(w*, h) MO-AOBB+DMB(i) MO-AOBB+DMB(i) MO-AOBB+DMB(i) MO-AOBB+DMB(i)
|E| i=6 i=8 i=10 i=12

time nodes time nodes time nodes time nodes time nodes
aim-50-1-6no-1 - - - - 14.20 43,072 12.46 36,837
(50, 119, 2) - - - - 7.98 27,929 6.49 22,054
(15, 31) - - - - 237.72 27,739 152.70 24,457 180.40 24,244
8 - - 220.02 13,184 134.92 9,903 164.30 9,690
aim-50-1-6no-2 - - - - 54.78 148,563
(50, 127, 2) - - - - 899.74 2,425,636 35.15 106,091
(19, 31) - - 271.66 48,118 295.76 36,233 314.72 33,226 535.52 32,712
11 218.24 27,115 237.42 16,524 251.69 13,926 450.64 13,504
aim-50-1-6no-3 - - - - - - 32.03 79,194
(50, 120, 2) - - 1125.50 3,820,213 379.20 1,127,093 3.84 13,015
(17, 27) - - 335.04 92,522 182.50 77,540 176.86 76,623 223.34 76,528
10 233.46 26,465 84.97 11,500 78.85 10,583 125.51 10,488
aim-50-1-6no-4 - - 423.19 900,024 312.10 660,848 433.63 778,334
(50, 126, 2) - - 311.94 657,833 269.36 592,225 379.00 730,513
(20, 30) - - 1102.11 94,624 587.73 44,434 721.36 38,521 1135.44 38,127
11 1040.83 72,361 531.54 23,047 667.06 17,323 1068.47 16,931
aim-50-1-6yes1-1 - - - - 619.58 1,417,018 68.76 153,541
(50, 127, 2) 80.02 213,427 50.02 140,081 25.14 78,158 26.28 68,358
(18, 29) 155.33 177,981,953 187.92 115,004 208.41 113,821 269.87 113,774 305.64 113,680
10 67.23 30,086 85.67 28,911 148.03 28,865 183.73 28,771
aim-50-1-6yes1-2 - - 74.05 183,418 75.17 198,489 30.43 75,738
(50, 126, 2) 596.16 1,757,792 38.33 106,507 61.72 175,580 20.11 57,089
(16, 34) - - 394.17 65,879 277.48 36,430 342.56 34,197 380.54 33,463
9 356.38 48,982 244.55 20,111 310.87 17,880 348.11 17,146
aim-50-1-6yes1-3 - - - - 653.68 1,027,972 525.84 846,067
(50, 128, 2) - - 150.80 397,432 61.28 146,520 42.28 100,060
(20, 27) - - 169.36 88,156 230.36 87,401 226.42 85,373 264.30 85,144
10 87.62 34,017 147.73 33,262 144.41 31,256 181.32 31,028
aim-50-1-6yes1-4 159.71 362,140 66.09 142,424 24.08 62,518 18.81 51,603
(50, 127, 2) 43.91 136,779 28.46 76,451 17.46 48,822 13.15 38,478
(19, 29) 146.56 22,063,228 55.05 24,839 100.66 24,434 132.36 23,524 280.12 23,317
9 43.19 11,842 88.56 11,435 121.40 10,525 267.98 10,318

The better performance of MO-RDS relative to the AND/OR algorithms can be ex-
plained by a reduced computational overhead for generating its guiding heuristic.

Figure 4 plots the running time and number of nodes visited by MO-AOBB+SMB(i)
and MO-AOBB+DMB(i) (resp. MO-BB+SMB(i) and MO-BB+DMB(i)), on auctions
with 30 goods and 80 bids. Focusing on MO-AOBB+SMB(i), for example, we see that
its running time, as a function of i, forms a U-shaped curve. At first (i = 2) it is high,
then as the i-bound increases the total time decreases (when i = 12 the time is 14.01),
but then as i increases further the time starts to increase again. The same behavior can
be observed in the case of MO-AOBB+DMB(i) as well.

MAX-SAT-ONE Instances. Let F be a Boolean formula in conjunctive normal form
(CNF). MAX-SAT is the problem of finding a truth assignment such that the number
of satisfied clauses in F is maximized. MAX-ONE is the problem of finding a model
for F with a maximum number of variables assigned to true. MAX-SAT-ONE is the
problem of maximizing both the number of satisfied clauses and variables assigned to
true, as described in [3].

Table 2 shows the results obtained for experiments with 8 CNF instances from the
DIMACS benchmark2. As before, we observe that MO-AOBB+SMB(i) offers the over-
all best performance, especially for relatively large i-bounds. For example, on the aim-
50-1-6yes1-1, MO-AOBB+SMB(10) is about 25 times faster than MO-BB+SMB(10),

2 Available online at: ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/

Exploiting Problem Decomposition in Multi-objective Constraint Optimization 605

Table 3. Results for bi-objective WCSPs derived from standard mono-objective WCSPs using
static mini-bucket heuristics. Time limit 10 hours. Overall best performance points are boxed.

MO-BB+SMB(i) MO-BB+SMB(i) MO-BB+SMB(i) MO-BB+SMB(i)
instance (w*, h) MO-RDS MO-AOBB+SMB(i) MO-AOBB+SMB(i) MO-AOBB+SMB(i) MO-AOBB+SMB(i)
(n, c, k) |E| i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes
c432 (27, 45) - - - - - - - - - -
(432, 648, 2) 31 38.99 96,805 25.15 59,330 31.21 62,597 39.95 50,753
c499 (23, 55) - - 25040.22 17,482,361 27633.93 20,140,468 5275.72 5,263,053 1611.60 1,266,736
(499, 748, 2) 24 21967.54 16,840,017 24407.10 19,498,060 4290.26 4,620,932 668.43 625,078
c880 (27, 67) - - - - - - - - - -
(881, 1323, 2) 53 - - - - 9088.16 9,723,797 3181.03 3,959,806
s386 (19, 44) - - - - - - - - - -
(172, 258, 2) 13 - - - - 14.30 73,572 20.85 73,372
s1423 (24, 54) - - - - - - - - - -
(749, 1125, 2) 119 - - - - 3990.74 1,193,420 4284.95 1,195,986
s1488 (47, 67) - - - - - - - - - -
(667, 1000, 2) 10 - - - - 2510.72 11,708,708 1751.86 9,392,631
s1494 (48, 69) - - - - - - - - - -
(661, 991, 2) 14 - - - - 2794.69 17,273,392 2924.80 16,089,333
90-14-1 (22, 66) - - - - - - - - - -
(196, 392, 2) 12 19.45 130,651 7.96 23,559 13.26 17,677 24.92 16,761
90-16-1 (24, 82) - - - - - - - - - -
(256, 512, 2) 8 328.61 1,073,957 122.99 446,091 139.18 441,316 84.88 127,279
cpcs360b (20, 27) - - - - - - - - - -
(360, 720, 2) 76 85.17 119,216 113.62 119,216 181.77 119,200 524.64 119,200
blockmap-05-01 (18, 48) - - - - - - - - - -
(700, 1400, 2) 1 3.51 3,483 11.61 3,417 39.74 2,269 52.32 2,110
blockmap-05-02 (20, 53) - - - - - - - - - -
(855, 1710, 2) 2 5.72 5,579 14.52 4,296 54.78 3,484 119.87 3,463
blockmap-05-03 (22, 59) - - - - - - - - - -
(1005, 2010, 2) 2 7.59 11,325 15.78 30,324 29.03 26,454 65.96 20,459
mm-03-08-03 (20, 57) - - - - - - - - - -
(1220, 2440, 2) 1 10.50 47,783 20.06 7,669 57.27 6,426 105.90 6,257

and about 6 times faster than MO-RDS, respectively. When using dynamic mini-bucket
heuristics, we see again that MO-AOBB+DMB(i) is competitive only for relatively
small i-bounds, due to computational overhead issues. Note also that MO-RDS could
solve only two instances, namely aim-50-1-6yes1-1 and aim-50-1-6yes1-4. The rela-
tively worse performance of MO-RDS on this domain can be explained by the quality
of its guiding heuristic function which was far inferior to the mini-bucket based ones.

Bi-objective Weighted CSPs. We considered a set of standard mono-objective
Weighted CSP [17] benchmarks from the UCI Graphical Models Repository (avail-
able online at: http://graphmod.ics.uci.edu/group/Repository). For our purpose, we con-
verted each of these instances into a bi-objective optimization problem by adding a
secondary additive objective function defined by F2 =

∑n
i=1 g(Xi), where g(Xi) is a

unary cost function defined on variable Xi with costs generated uniformly at random
between 0 and 10.

Table 3 shows the results obtained for experiments with 14 WCSP instances using
static mini-bucket heuristics. We did not report results with dynamic mini-bucket heuris-
tics because of the prohibitively large computational overhead associated with relatively
large i-bounds. We see that MO-AOBB+SMB(i) offers the overall best performance
on this domain, outperforming its competitors by several orders of magnitude. For ex-
ample, MO-AOBB+SMB(16) solves the 90-14-1 instance in about 8 seconds, whereas
MO-BB+SMB(16) exceeds the 10 hour time limit. We also note that MO-RDS was not
able to solve any of the test instance within the time limit, while MO-BB+SMB(i) could
solve only one instance, namely c499.

606 R. Marinescu

Summary of the Empirical Evaluation. Our empirical evaluation on several classes
of multi-objective optimization problems demonstrated conclusively that the AND/OR
Branch-and-Bound tree search algorithms guided by static mini-bucket heuristics were
the best performing algorithms overall. The difference between MO-AOBB+SMB(i)
and the OR tree search counterpart MO-BB+SMB(i) was more pronounced at relatively
small i-bounds (corresponding to relatively weak heuristic estimates) and amounted to
several orders of magnitude in terms of both running time and size of the search space
explored. For larger i-bounds, when the heuristic estimates are strong enough to prune
the search space substantially, the difference between MO-AOBB+SMB(i) and MO-
BB+SMB(i) decreased. We also showed that MO-AOBB+SMB(i) was able in many
cases to outperform dramatically recent state-of-the-art solvers for multi-objective opti-
mization such as MO-RDS. With dynamic mini-bucket heuristics, MO-AOBB+DMB(i)
proved competitive only for relatively small i-bounds due to computational overhead
issues. This suggests that these heuristics can be considered when space is restricted.
When comparing the AND/OR algorithms guided by mini-bucket heuristics with MO-
RDS, we observed that the former were better on relatively sparse networks while on
highly connected networks, the latter provided sometimes a better alternative.

6 Conclusion

The paper investigates the impact of AND/OR search spaces for graphical models
on multi-objective optimization. We introduced a general multi-objective AND/OR
Branch-and-Bound algorithm and specialized it with two schemes for generating
heuristic estimates that can guide the search. Our empirical evaluation on several bench-
marks for MO-COP showed that the new AND/OR algorithms improved dramatically
over traditional OR ones, in many cases by several orders of magnitude. Future work
includes the extension of the algorithm to explore a search graph rather than a tree,
via caching, as well as to investigate alternative control strategies such as best-first
or frontier search in the context of MO-COPs. We also plan to apply the AND/OR
search principle to the MO-RDS algorithm. Finally, we can exploit point quad-trees
for the representation of the efficient frontier in order to access the data structure more
efficiently.

References

1. Dechter, R., Mateescu, R.: AND/OR search spaces for graphical models. Artificial Intelli-
gence 171(2-3), 73–106 (2007)

2. Marinescu, R., Dechter, R.: AND/OR branch-and-bound for graphical models. In: Interna-
tional Joint Conference on Artificial intelligence (IJCAI), pp. 224–229 (2005)

3. Rollon, E., Larrosa, J.: Bucket elimination for multi-objective optimization problems. Journal
of Heuristics 12, 307–328 (2006)

4. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satis-
faction problems. In: IJCAI, pp. 1076–1078 (1985)

5. Bayardo, R., Miranker, D.: A complexity analysis of space-bound learning algorithms for the
constraint satisfaction problem. In: AAAI, pp. 298–304 (1996)

Exploiting Problem Decomposition in Multi-objective Constraint Optimization 607

6. Rollon, E., Larrosa, J.: Multi-objective Russian doll search. In: National Conference on Ar-
tificial Intelligence (AAAI), pp. 249–254 (2007)

7. Rollon, E., Larrosa, J.: Constraint optimization techniques for multiobjective branch and
bound search. In: International Conference on Logic Programming, ICLP (2008)

8. Ehrgott, M., Gandibleux, X.: Bounds and bound sets for biobjective combinatorial optimiza-
tion problems. Notes in Economics and Mathematical Systems 507, 241–253 (2001)

9. Nilsson, N.J.: Principles of Artificial Intelligence. Tioga, Palo Alto (1980)
10. Dechter, R., Rish, I.: Mini-buckets: A general scheme of approximating inference. Journal of

ACM 50(2), 107–153 (2003)
11. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelli-

gence 113, 41–85 (1999)
12. Kask, K., Dechter, R.: A general scheme for automatic generation of search heuristics from

specification dependencies. Artificial Intelligence 129(1-2), 91–131 (2001)
13. Verfaillie, G., Lematre, M., Schiex, T.: Russian doll search for solving constraint optimiza-

tion problems. In: AAAI, pp. 181–187 (1996)
14. Ehrgott, M., Gandibleux, X.: Multiple criteria optimization. State of the art. Annotated bib-

liographic surveys. Kluwer Academic Publishers, Dordrecht (2002)
15. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial

auction algorithms. In: ACM Electronic Commerce, pp. 66–76 (2000)
16. Holland, A.: Risk Management in Combinatorial Auctions. PhD thesis, University College

Cork (2005)
17. Bistarelli, S., Montanari, U., Rossi, F.: Semiring based constraint solving and optimization.

Journal of ACM 44(2), 309–315 (1997)

Search Space Extraction

Deepak Mehta, Barry O’Sullivan, Luis Quesada, and Nic Wilson

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{d.mehta,b.osullivan,l.quesada,n.wilson}@4c.ucc.ie

Abstract. Systematic tree search is often used in conjunction with inference and
restarts when solving challenging Constraint Satisfaction Problems (CSPs). In or-
der to improve the efficiency of constraint solving, techniques that learn during
search, such as constraint weighting and nogood learning, have been proposed.
Constraint weights can be used to guide heuristic choices. Nogood assignments
can be avoided by adding additional constraints. Both of these techniques can be
used in either one-shot systematic search, or in a setting in which we frequently
restart the search procedure. In this paper we propose a third way of learning
during search, generalising previous work by Freuder and Hubbe. Specifically,
we show how, in a restart context, we can guarantee that we avoid revisiting a
previously visited region of the search space by extracting it from the problem.
Likewise, we can avoid revisiting inconsistent regions of the search space by
extracting inconsistent subproblems, based on a significant improvement upon
Freuder and Hubbe’s approach. A major empirical result of this paper is that
our approach significantly outperforms MAC combined with weighted degree
heuristics and restarts on challenging constraint problems. Our approach can be
regarded as an efficient form of learning that does not rely on constraint propaga-
tion. Instead, we rely on a reformulation of a CSP into an equivalent set of CSPs,
none of which contain any of the search space we wish to avoid.

1 Introduction

Systematic tree search is often used in conjunction with inference and restarts when
solving challenging Constraint Satisfaction Problems (CSPs). Maintaining Arc Consis-
tency (MAC) is considered to be one of the best generic systematic algorithms for solv-
ing constraint satisfaction problems [1]. However, if search branches into an insoluble
subtree, as with all backtrack search algorithms, recovering from this mistake can take
an extremely long time due to thrashing.

Good search heuristics significantly help the efficiency of systematic search algo-
rithms. Recently, a class of variable ordering heuristics that attempt to branch on the
most critically constrained variables have been proposed. The most effective of these
involve maintaining weights for each constraint based on the number of times inconsis-
tency was caused by propagating it; these are the weighted degree class of heuristics [2].

Combining MAC-based systematic search with a random restarts strategy can also
significantly improve performance over a one-shot approach using systematic search
alone [3]. The insight here is that by restarting search once we have failed to solve
a problem within a pre-specified effort threshold, it can pay off to simply start again.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 608–622, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Search Space Extraction 609

However, in order to ensure that search remains complete, in subsequent runs we need
to increase our maximum effort threshold.

A complementary approach to improving search is to learn to avoid regions of the
search space that we know will only lead to failure. The general approach here is to
use nogood recording [4], where each nogood represents an assignment to a subset of
the variables which does not lead to a solution. Nogoods and restarts have also been
combined with MAC-based search with positive results [5].

In this paper we take a different approach. Freuder and Hubbe [6] proposed to re-
move the search space of a failed subproblem discovered at some point in the search
tree from the forward phase of the forward checking search algorithm. However, in
their approach when the search algorithm backtracks, the search space associated with
this failed subproblem is restored. Therefore, the algorithm may revisit the same failed
search space in a different branch of the search tree.

Extending the work of [6] we avoid regions of the search space by extracting them
from the unvisited search space of the problem. In other words, once the failed subprob-
lem is extracted it is never revisited. Specifically, in a restart context, we want to guaran-
tee that we avoid revisiting a previously visited region of the search space. Likewise, we
want to avoid revisiting inconsistent regions of the search. We propose an approach to
making such guarantees based on a significant improvement upon Freuder and Hubbe’s
earlier work. We show how previously visited search space can be extracted so that it
is not revisited upon restarting as well as showing that extracting inconsistent subprob-
lems can be achieved, in a much larger-scale way than reported previously. A major
empirical result of this paper is that our approach significantly outperforms MAC com-
bined with weighted degree heuristics and restarts on challenging constraint problems.
Our approach can be regarded as an efficient form of learning that does not rely on
constraint propagation. Instead, we rely on a reformulation of a CSP into an equivalent
set of CSPs, none of which contain any of the search space we wish to avoid.

The remainder of this paper is organised as follows. Section 2 presents the necessary
background required for this paper. We describe the principle of search space extraction
in Section 3. In Section 4 we present an algorithm called MACER for avoiding visited
search space when using a restart-based search algorithm. In Section 5 we present an
algorithm called MACER+ that can be used to extract unsatisfiable cores, providing an
alternative approach to nogood recording. We present and discuss our empirical results
in Section 6, clearly highlighting the strength of our approach. A number of conclusions
and directions for future work are discussed in Section 7.

2 Background

A constraint network (CN) P is a triple (X , C, D) where X is a set of n variables and
C is a set of e constraints. Each variable X ∈ X is associated with a domain (a set of
values), which is denoted by D(X). We use d to denote the maximum domain size.
Each constraint C ∈ C is associated with a set of variables on which the constraint C
is defined, which is denoted by scope(C). For simplicity, we restrict our attention to
binary CNs, where the constraints involve two variables. A possibility is an assignment
of values to all the variables. A solution of a CN is a possibility that satisfies all the

610 D. Mehta et al.

constraints. A CN is said to be satisfiable if and only if it admits at least one solution. In
general, determining the satisfiability of a CN is NP-complete. Solving a CN involves
either finding one (or more) solution or determining that the CN has no solution.

The basic procedure to solve a CN is systematic backtracking, which involves re-
peated selection of an unassigned variable and assigning a value from its domain. If
a variable is selected such that none of its possible values are consistent with the pre-
viously assigned variables, then the algorithm backtracks and attempts to assign an
alternative untried value. The search stops when either a single solution is found, or all
the combinations of instantiations to variables have been tried. This basic procedure for
solving a CN has been augmented by using variable ordering and value ordering heuris-
tics, local consistency techniques, branching strategies, randomisation and restarts, etc.

A local consistency technique is used to remove values from the domains that do
not participate in any solution. Usually after each variable assignment during search, a
domain consistency (e.g., arc consistency) is enforced (Chapter 4 of [7]). A constraint
C ∈ C is arc consistent if ∀X ∈ scope(C) and ∀a ∈ D(X), C is satisfied. A constraint
network is arc consistent if ∀C ∈ C is arc consistent. Maintaining Arc Consistency
(MAC) during search is considered to be one of the most efficient and generic approach
to solve constraint networks.

A branching strategy defines a search tree. The two most well-known branching
strategies are k-way branching and binary branching. In k-way branching, when a vari-
able X with k values in its domain is selected for instantiation, k branches are formed.
Here each branch corresponds to an assignment of a value to the selected variable. In
binary branching, when a variable X is selected for instantiation, its values are assigned
via a sequence of binary choices. If the values are assigned in the order v1, v2, . . . , vk,
then two branches are formed for the value v1, associated with X = v1 and X �= v1

respectively. Crucially, the constraint X �= v1 is propagated, before selecting another
variable-value pair. In this paper, we only focus on k-way branching. However, all the
ideas that are presented can be extended to binary-branching.

Definition 1 (Decision). Let P = (X , C, D) be a CN and (X, v) be a pair such that
X ∈ X and v ∈ D(X). The assignment X = v is called a decision.

Definition 2 (Restriction of a network). Let P be a CN and let $ be an ordered set
(sequence) of decisions taken during search, P |� is the CN derived from P such that,
for any decision (X = v) ∈ $, D(X) is set to {v} in P |�, and the other domains are
the same as in P .

Definition 3 (Filtering of a network). Let φ be an inference operator that enforces a
local consistency. φ(P) is the CN derived from P obtained after applying the inference
operator φ.

In this paper, φ is equivalent to arc consistency, unless stated otherwise.

Definition 4 (Unsatisfiable network). Let P be a CN. If there exists a variable with
an empty domain in P then P is unsatisfiable, which is denoted by P = ⊥.

Definition 5 (Nogood). Let P be a CN and $ be a set of decisions. $ is a nogood of
P if and only if φ(P |�) is unsatisfiable.

Search Space Extraction 611

Definition 6 (Subnetwork). Let P = (XP , CP , DP) be a CN. Q = (XQ, CQ, DQ) is
a subnetwork of P if and only if XQ ⊆ XP , CQ ⊆ CP and DQ ⊆ DP .

Definition 7 (Unsatisfiable core). Let P be an inconsistent CN. Q is an unsatisfiable
core of P if Q is an unsatisfiable subnetwork of P .

Although MAC is considered to be one of the best approaches for solving constraint
networks, it can get stuck in an unpromising search and can thrash too many times if
wrong decisions are taken earlier in the search tree. In order to avoid this thrashing,
randomisation and restart strategies are used [8].

3 Principles of Search Space Extraction

The techniques presented in this paper rely on the extraction of subnetworks from a set
of networks. In this section we formally define the principles of the approach.

Definition 8 (Size of a network). Let P = (X , C, DP) be a constraint network. The
size of P is the product of the domain sizes of its variables, i.e.,

∏
X∈X |DP (X)|.

Definition 9 (Intersection of networks). Let P = (X , C, DP) and P ′ = (X , C, DP ′
)

be constraint networks. We define P
 P ′ to be the constraint network (X , C, DP�P ′
),

where DP�P ′
is defined by ∀X ∈ X , DP�P ′

(X) = DP (X) ∩DP ′
(X).

Notice that P
 P ′ = ⊥ if there exists X ∈ X such that DP (X) ∩DP ′
(X) = ∅

Definition 10 (Subsumption of networks). Let P =(X , C, DP) and P ′=(X , C, DP ′
)

be constraint networks. We say that P subsumes P ′, P ′ � P (resp. P ′ % P), if for each
variable X ∈ X , DP ′

(X) ⊂ DP (X) (resp. DP ′
(X) ⊆ DP (X)).

Let P = (X , C, DP) and E = (X , C, DE) be constraint networks, where X =
{X, Y, Z}, DE = {X → {a}, Y → {a, b}, Z → {a, b, c}}, and DP = {X →
{a, b, c, d}, Y → {a, b, c, d}, Z → {a, b, c, d}}. Notice that E � P . Figure 1 shows
a tree describing the extraction of E from P , which results in the set of networks
{R1, R2, R3}. At every level of the tree a variable V is selected such that DP (V) �=
DP (V) ∩DE(V), and two branches (or subproblems) are created by splitting the do-
main of V . The left hand side subproblem has those values in DP (V) that are also in
DE(V). The right hand side subproblem has those values of DP (V) that are not in
DE(V). This is repeatedly done until the left hand side is equivalent to P
 E. In this
case P
 E is equivalent to E since E % P .

Definition 11 (Extraction of networks). Let P = (X , C, DP) and E = (X , C, DE)
be constraint networks. The extraction of E from P under the variable ordering r,
denoted as P &r E, is defined as the singleton set {P} if P
 E = ⊥. P &r E is ∅
if P % E. Otherwise, P &r E is the set of networks {R} ∪ (M &r E), where R =
(X , C, DR) and M = (X , C, DM), such that for the first variable X in X , under r,
satisfying DP (X) �= DP (X) ∩ DE(X), DR(X) = DP (X) − DE(X), DM (X) =
DP (X) ∩DE(X), and ∀Y �= X , DR(Y) = DM (Y) = DP (Y).

612 D. Mehta et al.

Fig. 1. The extraction of E from P results in the set of networks {R1, R2, R3}

Definition 11 follows the algorithm described in [6]. In those cases where no confusion
arises, we simplify the notation by omitting the variable ordering. If E
 P �= ⊥,
then the extraction of E from P , i.e. P & E = {R1, . . . , Rk}, is a minimum set of k
constraint networks such that the union of their possibilities is the set of possibilities that
are in P but not in E. The sets of possibilities of these networks are mutually disjoint.
Notice that {R1, . . . , Rk, E} can also be seen as a partition of P . The cardinality of
P & E is linear with respect to the number of the domains of the variables on which
P
 E and P are different. The worst-case time complexity of extracting a network
from another is O(n2 d), where n is the number of variables in the network and d is
the maximum domain size. Any solution of Ri ∈ P & E is a solution of P . If E is
inconsistent, the set of solutions of P & E is equal to the set of solutions of P .

Let P = {P1, . . . , Pp} and E = {E1, . . . , Ee} be two sets of networks. & can be
lifted to operate on sets of networks in the natural way. P & E is the set of networks
obtained after extracting Ej from Pi, for all 1 ≤ i ≤ p and for all 1 ≤ j ≤ e, i.e.,⋃

1≤i≤p,1≤j≤e Pi & Ej .

4 Extraction of Visited Search Space

When a search algorithm is used in conjunction with a restart strategy, whenever a
cutoff (in terms of the number of nodes or the number of failures) is reached, the search
restarts. Let $l be the last branch (nogood) before restarting search. If we are only
interested in finding a single solution, then there is no solution in any part of the search
space explored before$l. Therefore, ideally, when we restart we do not want to revisit
any part of the visited insoluble region. One way of doing this is to extract the visited
search space until $l from the original problem. In this way whenever we restart we
can guarantee that the same possibility will never be explored.

4.1 The Unvisited Search Space

Let P be a constraint network. Each dead-end in the search tree can be seen as a
nogood. Each nogood $i can be associated with an inconsistent problem P |�i . Let

Search Space Extraction 613

$l be the last nogood, and let vars($l) be the set of variables occurring in $l.
Let E = {P |�1 , P |�2 , . . . , P |�l

} be the set of inconsistent networks that represent
the visited search space until $l. In order to ensure that no possibility is revisited,
we need to search in the set of networks {P} & E . The search space represented by
{P} & E can be represented with a set of networks R defined as follows: for each
variable Xi ∈ vars($l), a constraint network Ri ∈ R is created such that for all
variables Y instantiated before Xi in $l, DRi(Y) = {$l(Y)}, for the variable Xi,
DRi(Xi) = {v ∈ DP (Xi)|v > $l(Xi)} and for the remaining variables Z that are
not instantiated DRi(Z) = DP (Z). It follows from the definition ofR that |R| ≤ |$l|.

Fig. 2. A search tree consisting of visited and unvisited search spaces

Figure 2 depicts a typical search tree of some problem P . Here each triangle rep-
resents a dead-end, which is associated with a nogood. The branch of the search tree
that is shown in bold corresponds to the last failed nogood before restarting search. So,
$l is equal to $6. At each node of the last failed branch, we create a subnetwork by
restricting the domain of the variable associated with that node with those values that
are not tried yet. The set of these networks is R = {R1, R4, R5}. Notice that at nodes
X2 = b and X3 = b no such subnetworks are created since there are no more values
left to try. In order to avoid revisiting a possibility in the already visited search space
we need to search in {P} & {P |�1 , P |�2 , . . . , P |�6}, which isR = {R1, R4, R5}.

4.2 Maintaining the Unvisited Search Space

In this section we present the algorithm that maintains arc consistency on the input prob-
lem during search and extracts visited search space before restarting search (MACER).
The result of this extraction is a set of networks associated with unexplored possibilities.

The pseudo-code for MACER is presented in Algorithm 1. In this algorithm R is
used to denote the set of networks associated with unexplored possibilities and sf is
a Boolean variable that is used to denote whether the solution is found or not. Initially
R is a singleton set containing the input network P , and sf is set to false. MACER

repeatedly selects and removes any network Q from R until a solution is found or

614 D. Mehta et al.

Algorithm 1. MACER(P)
1: sf← false
2: R ← {P}
3: while (sf = false ∧ R �= ∅) do
4: f← 0 // the number of failures is set to 0
5: mf is set to a value depending on the restart strategy
6: select and remove any Q from R
7: MACE (Q,R, f,mf, sf)

R becomes empty and invokes MACE to determine the satisfiability of Q. MACE may
generate more subnetworks while exploring Q. These subnetworks are added to R.
Before invoking MACE the number of failures f is initialised to 0 and mf is set to a
cutoff value in terms of the number of failures depending upon the restart strategy. P is
proved to be inconsistent whenR becomes empty and sf = false.

Algorithm 2. MACE(P,R,f,mf,sf)
Require:

P : input CSP (X , C, D)
R : set of networks representing the unvisited search space.
f : number of failures
mf: threshold on the number of failures
sf: solution found

1: if X = ∅ then
2: sf← true
3: else
4: select and remove any variable X from X
5: V ← DP (X)
6: repeat
7: select and remove any value v from V
8: P ′ ← AC(P |X=v)
9: if P ′ �=⊥ then

10: MACE(P ′,R,f,mf,sf)
11: else
12: f ← f+ 1
13: restart search← (f > mf)
14: until V = ∅ ∨sf ∨ restart search
15: if restart search ∧ V �= ∅ then
16: CREATESUBNETWORK(P,R, X, V)

The pseudo-code for MACE is presented in Algorithm 2. If X is empty then a so-
lution is found. Otherwise, a variable X is selected from X for the instantiation. The
algorithm continues to branch until all the values of the variable X are tried, or a so-
lution is found or restart search is set to True. After each assignment of the
variable X , the problem is made arc-consistent. If there is no domain wipeout after en-
forcing arc consistency then a recursive call is made, otherwise the number of failures is
incremented. If the number of failures reaches the maximum number of allowed failures

Search Space Extraction 615

then restart search is set to True. If restart search is set to True and if
there are still some values in V that have not been considered for the instantiation of the
variable X then the function CREATESUBNETWORK is invoked. The algorithm MACE

terminates when either of the following is true: all the values of the first variable of the
input network are tried, that means the problem is insoluble, or a solution is found, or a
restart search is triggered.

The pseudo-code for CREATESUBNETWORK is shown in Algorithm 3. This algo-
rithm creates a subnetwork by copying the domains of the future and past variables as
they are at that level and considering only those values of the current variable X that
are untried, which is basically the set V . When V = ∅ no subnetwork is created. Notice
that saving the subnetwork as described before also preserves the propagation carried
out due to the initialisation of variables before the current variable X .

Algorithm 3. CREATESUBNETWORK((X , C, DP),R, X, V)

1: P ′ ← (X , C, DP ′
)

2: DP ′
(X) ← V

3: for all Y ∈ X such X �= Y do
4: DP ′

(Y) ← DP (Y)
5: R ← R∪ {P ′}

If $l is the last branch explored before restarting search then at most |$l| networks
are created. Therefore, the worst-case time and space complexities of creating these
networks at each restart is O(|$l|n d), where n is the number of variables and d is the
maximum domain size of the variables. If r is the number of restarts required to solve
a constraint network P , and if m is the maximum number of variables involved in the
last branches of all those restarts, then the space complexity ofR isO(r m n d). Notice
that the number of networks in R of MACER grows linearly with respect to the number
of restarts.

5 Extraction of Unsatisfiable Cores

In this section we present an extension of MACER that not only extracts the visited
search space but also extracts an unsatisfiable core of the selected subnetwork Q from
the set of networks of R after proving the inconsistency of Q. We call this approach
MACER+, the pseudo-code for which is presented in Algorithm 4. Before invoking
MACE, the algorithm saves the number of networks of R in nr (Line 7). If MACE

does not find any solution in Q and if the remaining networks in R is equal to nr,
MACER+ infers that Q is unsatisfiable. If Q is unsatisfiable, then an unsatisfiable core
Q′ is obtained from Q. An unsatisfiable core of Q can be computed by determining
those variables which were involved in those constraints that were needed in proving
the unsatisfiability of the network Q. Effectively this means that constraints on those
variables were activated by the underlying arc consistency algorithm of MACE, which
led to domain updates.

616 D. Mehta et al.

In MACER+, each variable X ∈ X is associated with a Boolean variable active,
which is used to distinguish the variables that are activated from those that are not. Be-
fore searching in Q, active is set to false for all the variables in X (Line 8). During
search while enforcing arc consistency whenever a revision is effective, active is set
to true for the variables involved in the corresponding constraint. This approach for
computing an unsatisfiable core is similar to the pcore approach presented in [9].

Given Q = (X , C, DQ), an unsatisfiable core of Q that is extracted from the remain-
ing networks in R can be defined as (X , C, DQ′

), where ∀X ∈ X , if active[X] =
true, DQ′

(X) = DQ(X); otherwise DQ′
(X) = DP (X) (Line 12− 16). Notice that

the domains of the variables that are not involved in the unsatisfiable core are set to the
domains that the variables had in the input problem P . The complexity of constructing
this unsatisfiable core Q′ is O(n d) because it basically involves in traversing the do-
mains of the variables. As the worst-case time complexity of extracting a network from
another network is O(n2 d), the worst-case time complexity of extracting the unsatisfi-
able core from the networks inR isO(n2 d |R|), where n is the number of variables in
the network and d is the maximum domain size.

Algorithm 4. MACER+(P)
1: sf← false
2: R ← {P}
3: while (sf=false ∧ R �= ∅) do
4: f ← 0 // the number of failures is set to 0
5: mf is set to a value depending on the restart strategy
6: select and remove any Q = (X , C, DQ) from R
7: nr ← |R|
8: ∀X ∈ X , active[X] = false
9: MACE(Q,R,f,mf,sf)

10: if nr = |R| ∧ sf = false then
11: Q′ ← (X , C, DQ′

)
12: for all X ∈ X do
13: if active[X] then
14: DQ′

(X) ← DQ(X)
15: else
16: DQ′

(X) ← DP (X)
17: R ← R� {Q′}

Each time the extraction of an unsatisfiable core from a network in R is performed,
the number of networks in R can increase by n in the worst-case. Therefore, the car-
dinality ofR can increase exponentially with respect to the number of extracted unsat-
isfiable cores. If an unsatisfiable core is extracted each time a restart takes place, the
cardinality ofR can also increase exponentially with respect to the number of restarts.

6 Experimental Results

In this section we present some results that demonstrate the effectiveness of extracting
inconsistent search space in the context of restart search.

Search Space Extraction 617

We perform experiments on a variety of problems that were used as benchmarks
in the CP solver competition (http://cpai.ucc.ie/05/Benchmarks.html).
The instances of the following problems were used: forced random binary problem,
quasigroup completion problem, quasigroup with holes, queen-attacking problem,
job-shop scheduling problem and modified radio link frequency assignment problems.
The details of these problems are described in [10]. All the problems have only binary
constraints.

All the search algorithms were tested using the conflict-directed variable ordering
heuristic dom/wdeg [2]. As the domain over weighted degree heuristic has been shown
to be the most efficient generic variable ordering heuristic, it was a natural choice to
use it with all the approaches. Values were chosen lexically for all approaches. All the
search algorithms used AC-3 as an underlying arc consistency algorithm. We used the
geometric restart strategy. The initial number of allowed failures was set to 30 and at
each restart the number of failures was increased by a factor of 1.5. All the algorithms
were implemented in C. All the experiments were performed on a Linux machine with
Pentium M (CPU 2 GHz and 1GB of RAM) processor. The performances of all the ap-
proaches are measured in terms of search nodes (#nodes), failures (#failures), consis-
tency checks (#checks), and runtime in milliseconds (time). We used the time limit of
60 minutes to stop the search.

Table 1 presents the comparison between the performances of MAC, MACR (MAC

with restarts) and MACER (MAC with restarts and extraction of visited search space) on
a variety of problems. The first column denotes the name of the problem and the number
in the brackets indicates the number of instances; their average results are presented in
the corresponding row. The column #us denotes the number of instances not solved by
MAC for a given problem. Out of 81 instances MAC could not solve 6 instances within
the time limit while both MACR and MACER solved all the instances. We observe that
MACER, that does not revisit the same search space, outperforms MACR significantly.
Of course, because of the differences in the exploration of the search tree, it is not
always possible to expect these improvements. It is recalled that MACER is also flexible
enough to choose between different networks. In other words, it can jump out of an
unpromising search tree and can choose a different branch. However, for these results,
MACER simply uses a stack to save the networks and selects the network from the top
of the stack.

When MAC is used in conjunction with a restart strategy and the dom/wdeg variable
ordering heuristic, weights associated with the constraints are preserved from one run
to the other. This may help MACR to select the hard variables higher up in the search
tree and may increase the chances of detecting unsatisfiability of the network early in
the subsequent search [3] [9]. Before restarting search, MACER decomposes the prob-
lem into many networks. In the subsequent search it may identify the unsatisfiable core,
which may be present in the other subnetworks as well. Therefore, it may need to prove
the unsatisfiability of the same core in more than one network, which could be expen-
sive. In order to avoid this, we proposed MACER+. This phenomenon was observed for
the unsatisfiable instances of the modified RLFAP [11]. The results of these experiments
are summarised in Table 2. Here scen11 fk corresponds to scen11 with the k highest
frequencies removed from the domains of the variables [12]. MACER could solve only

http://cpai.ucc.ie/05/Benchmarks.html

618 D. Mehta et al.

Table 1. Average Results for MAC, MACR and MACER with dom/wdeg variable ordering heuristic

MAC MACR MACER

prob #us #nodes time #nodes time #nodes time
FRB-30-15 (5) 0 3,295 231 6,105 402 3,492 231
FRB-35-17 (5) 0 37,380 1,847 73,477 3,606 18,417 928
FRB-40-19 (5) 0 148,869 8,153 677,241 37,243 266,219 15,028
FRB-45-21 (5) 0 1,744,149 138,638 6,852,925 696,081 1,760,702 191,296
QCP-15 (21) 0 118,830 5,862 162,178 16,867 91,184 13,158
QWH-20 (10) 0 431,149 27,149 653,910 232,737 202,050 83,188
QWH-25 (5) 0 885,218 104,150 1,138,775 842,187 695,072 570,987
QA-5 (1) 0 82,602 3,508 671 30 133 8
QA-6 (1) 0 595,069 68,617 58,603 5,021 39,585 2,691
QA-7 (1) 1 - - 534,823 62,376 24,625 2,446
JS-E0DDR1 (10) 1 13,166,763 311,769 379 57 1,231 86
JS-E0DDR2 (10) 4 177 25 275 50 331 57
PIGEON-10 (1) 0 623,529 1,419 2,359,038 4,100 619,662 1,702
PIGEON-11 (1) 0 6,235,300 5,772 19,414,596 20,336 6,180,739 6,981
PIGEON-12 (1) 0 68,588,311 63,921 218,708,760 205,964 69,621,744 72,858

Table 2. Results for some hard instances of Modified RLFAP

algorithm #checks time #nodes #failures
MACER+ 2,328,392,085 52,577 995,105 797,616
MACER 28,091,626,592 1,507,003 12,125,814 9,648,834

scen11 f4 MACR 3,538,062,253 80,202 1,553,784 1,241,818
MAC - - - -
MACER+ 6,735,996,236 149,429 2,824,173 2,257,039
MACER - - - -

scen11 f3 MACR 9,484,306,821 196,341 4,164,335 3,328,121
MAC - - - -
MACER+ 17,812,913,144 470,833 7,833,259 6,242,426
MACER - - - -

scen11 f2 MACR 46,476,404,826 1,169,450 19,882,045 15,727,705
MAC - - - -
MACER+ 67,212,745,483 1,791,228 29,094,864 23,389,498
MACER - - - -

scen11 f1 MACR 101,349,033,658 2,904,688 45,423,629 36,428,007
MAC - - - -

one instance for which it took two orders of magnitude more time than MACR. When
MACER+ identifies an unsatisfiable core it tries to extract it from the remaining net-
works, and thus it may avoid proving the unsatisfiability of the same core many times.
We remark that MACER+ extracts an unsatisfiable core from a given network only when
the ratio of the size of the network and the number of restarts is less than or equal to
the size of the core being extracted. Results depicted in the table clearly show that the
extraction of unsatisfiable cores can make a significant difference in terms of checks,
time, nodes and failures. As the problem becomes harder, MACER+ starts performing
better. MAC could not solve any of the four instances within a time limit of 60 minutes.

A heuristic used for selecting a network Q from the set of remaining networksR can
have a substantial impact on the cardinality ofR in MACER+. For example, if a heuris-
tic always selects a network Q having maximum size and if MACE could not prove its
unsatisfiability or could not find a solution within a given cutoff value, then more sub-
networks would be added to R. Although the cardinality of R increases linearly with
respect to the number of restarts, the extraction of unsatisfiable cores can increase it

Search Space Extraction 619

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 s

ub
ne

tw
or

ks

Failures during search

minsize

(a) Heuristic minsize

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 s

ub
ne

tw
or

ks

Failures during search

maxsize

(b) Heuristic maxsize

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 s

ub
ne

tw
or

ks

Failures during search

random

(c) Heuristic random

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 s

ub
ne

tw
or

ks

Failures during search

stack

(d) Heuristic stack

Fig. 3. The number of networks in R during search with the heuristics (a) minsize, (b) maxsize,
(c) random and (d) stack

exponentially. If Q′ is an unsatisfiable core of the selected network Q and if its extrac-
tion from each network inR generates at least k networks thenR& {Q′} would result
in at least k × |R| networks.

We investigated the impact of using various simple heuristics like minimum size of
the network (minsize), maximum size of the network (maxsize), random selection of
the network (random), and stack-wise selection of the network (stack). The results ob-
tained by using these heuristics for the instance scen11 f3 are presented in Figure 3. The
graphs plot the relation between the cardinality of R and the total number of failures
encountered so far during search. Although the difference between the performances
(in terms of the number of failures) of different heuristics when used with MACER+ is
not much, the cardinality ofR at any given point is the lowest for the heuristic minsize.
The maximum number of the unexplored networks in R at any given point during the
search is 170 with the minsize heuristic, while with the heuristics maxsize, random and
stack, it is 356, 240 and 325 respectively. Keeping the cardinality of R low improves
the efficiency of the algorithm in terms of time. The results for MACER+ in Table 2 are
obtained by using the heuristic minsize. We remark that the extraction of an unsatisfi-
able core from the remaining networks can also decrease the cardinality ofR, since the
extraction can also generate empty networks, which are discarded. This can be observed
in the descending slopes of the graphs.

620 D. Mehta et al.

In MACER+ the extraction of an unsatisfiable core of Q from the set of networksR
is done after determining the inconsistency of Q. This can also be seen as extracting
the subnetwork resulting from the root node of Q from the remaining networks when
the algorithm backtracks to that node without finding a solution. This approach can be
extended further by extracting the inconsistent subnetwork resulting from any node of
the search tree of Q from the set of networks associated with the unexplored possibili-
ties. This approach is denoted by MACER∗. In the following we show that dom/wdeg
heuristic may not always perform efficiently on a certain class of problem. We identify
and present that problem class and show that MACER∗can solve such problem more
efficiently.

Let P1 denote a Model B random problem [13]. In this model a random CSP instance
is characterised by (n1, d, e, t), where n1 is the number of variables, d is the uniform
domain size of each variable, e is the number of constraints, t is the number of in-
compatible pairs in each constraint. Let P2 denotes a slightly modified version of the
Domino problem. An instance of P2 is characterised by (n2), where n2 is the number
of variables, the domain of each variable is {1, 2, . . . , n2 − 1}, the set of constraints is
{ci(i+1)|i < n2} ∪ {c1n2}, and the set of pairs of allowed values for each constraint
is {(i, i + 1)|i < n2 − 1} ∪ {(n2 − 1, 1)}. Informally it is an undirected constraint
graph with a cycle constraint. We generate problem P1 ⊕ P2 by merging P1 and P2.
In particular we merge a satisfiable instance of a dense loosely constrained Model B
random problem with an unsatisfiable instance of sparse tightly constrained modified
version of the Domino problem. Table 3 presents the comparison of MAC, MACR, and
MACER∗ on some instances of the described problem.

Table 3. For each class of the composed problem, 20 instances were generated and their mean
performances are reported. Time-out was set to 60 minutes.

problem parameters algorithm #checks time #nodes #failures
MACER∗ 197,131,624 48,204 190,322 102,165

(40, 10, 732, 11) ⊕ (10) MACR 2,152,566,608 570,989 2,146,392 1,143,770
MAC 7,822,074,968 1,820,608 7,793,099 4,139,248
MACER∗ 765,651,246 192,186 668,703 351,096

(50, 10, 1000, 10) ⊕ (5) MACR - - - -
MAC - - - -

The dom/wdeg variable ordering heuristic associates a counter with each constraint.
Whenever a domain is wiped out while enforcing arc consistency, the weight of the
corresponding constraint is incremented by 1. The weighted degree of a variable is the
sum of the weights of the constraints in which the variable is involved. In the beginning
of the search the dom/wdeg heuristic behaves like dom/deg heuristic, and therefore for
an instance of the P1 ⊕ P2 problem that are used here, it selects variables from P1. If
finding a solution for P1 is not easy then it fails and the result is that it increments the
weights of the variables of P1. The weights of P1 are incremented so much that both
MAC and MACR spend a lot of time in solving P1. To illustrate this point we present
the final weights of one of the instances of (40, 10, 732, 11)⊕ (10) in Figure 4. The
variables 1 to 40 and 41 to 50 on the x-axis correspond to P1 and P2 respectively.
For the (50, 10, 1000, 10)⊕ (5) problem class, neither MAC nor MACR solved a single

Search Space Extraction 621

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30 35 40 45 50

w
ei

gh
ts

 o
f t

he
 v

ar
ia

bl
es

variables

variables of problem P1
variables of problem P2

Fig. 4. Weight profiles for an instance of (40, 10, 732, 11) ⊕ (10)

instance within the time limit. MACER∗ is very efficient. As soon as it finds a solution of
P1 it extracts an unsatisfiable core associated with P2 from the complete search space,
which results in proving the inconsistency of the problem.

In our preliminary investigation MACER∗ proved to be expensive for the other prob-
lems. The reason is that in our current implementation it is necessary to traverse the
entire setR and perform the following operations: check whether the inconsistent sub-
network can be extracted from each network in R, and if the latter is true, it performs
the extraction. Although the search space could be reduced drastically, this comes at the
expense of huge space complexity and the overhead is such that it does not compensate
for the reduction in the number of failures and visited nodes. Nevertheless, we believe
that this overhead can be reduced significantly and may prove to be useful for many
problems if we store the networks in an efficient data structure such as multi-valued
decision diagrams, which is also one of the future directions for this work.

7 Conclusions and Future Work

In this paper we presented a new approach for avoiding revisiting the search space in
a restart context. First we proposed the algorithm MACER that extracts the inconsistent
visited search space by maintaining unvisited search space. Second we proposed the
algorithm MACER+ that not only extracts the visited search space but also extracts un-
satisfiable cores from the remaining search space. We also proposed MACER∗, which
can be seen as an extension of MACER+. Empirical results confirm the effectiveness of
extracting inconsistent search space.

There are many potential future directions of this work. The foremost is to use smart
data structures like multi-valued decision diagrams to store the networks associated with
the unexplored possibilities in order to extract networks efficiently. We would also like
to establish the relationship between nogood recording and extraction of inconsistent
search space in order to compare the level of pruning achieved by these two different
techniques. For some problem, it may be possible to use symmetry properties to learn
more inconsistent networks and extract them also from the remaining search space.

622 D. Mehta et al.

Acknowledgements

This material is based upon works supported by the Science Foundation Ireland under
Grants No. 05/IN/I886 and No. 08/PI/I1912, and Embark Post Doctoral Fellowships
No. CT1080049908 and No. CT1080049909.

References

1. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfaction. In:
ECAI, pp. 125–129 (1994)

2. Boussemart, F., Hemery, F., Lecoutre, C., Saı̈s, L.: Boosting systematic search by weighting
constraints. In: Proceedings of the Thirteenth European Conference on Artificial Intelligence
(2004)

3. Grimes, D., Wallace, R.J.: Learning to identify global bottlenecks in constraint satisfaction
search. In: FLAIRS Conference, pp. 592–597 (2007)

4. Schiex, T., Verfaillie, G.: Nogood recording for static and dynamic constraint satisfaction
problems. In: ICTAI, pp. 48–55 (1993)

5. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In: IJCAI, pp.
131–136 (2007)

6. Freuder, E.C., Hubbe, P.D.: Extracting constraint satisfaction subproblems. In: IJCAI, pp.
548–557 (1995)

7. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier Science
Inc., Amsterdam (2006)

8. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through randomiza-
tion. In: AAAI/IAAI, pp. 431–437 (1998)

9. Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting mucs from constraint networks.
In: ECAI, pp. 113–117 (2006)

10. Boussemart, F., Hemery, F., Lecoutre, C.: Description and representation of the problems
selected for the first international constraint satisfaction solver competition. In: van Dongen,
M. (ed.) Proceedings of the Second International Workshop on Constraint Propagation and
Implementation. Solver Competition, vol. 2, pp. 7–26 (2005)

11. Cabon, B., De Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio link frequency assign-
ment. Journal of Constraints 4, 79–89 (1999)

12. Bessière, C., Chmeiss, A., Saı̈s, L.: Neighborhood-based variable ordering heuristics for the
constraint satisfaction problem. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 565–569.
Springer, Heidelberg (2001)

13. Gent, I., MacIntyre, E., Prosser, P., Smith, B., Walsh, T.: Random constraint satisfaction:
Flaws and structure. Journal of Constraints 6(4), 345–372 (2001)

Coalition Structure Generation Utilizing
Compact Characteristic Function

Representations

Naoki Ohta1, Vincent Conitzer2, Ryo Ichimura1, Yuko Sakurai1,
Atsushi Iwasaki1, and Makoto Yokoo1

1 Department of ISEE, Kyushu University, Fukuoka 819-0395, Japan
{ohta@agent,ichimura@agent,sakurai@agent,iwasaki@,

yokoo@}is.kyushu-u.ac.jp
2 Department of Computer Science, Duke University, Durham, NC 27708, USA

conitzer@cs.duke.edu

Abstract. This paper presents a new way of formalizing the Coalition
Structure Generation problem (CSG), so that we can apply constraint
optimization techniques to it. Forming effective coalitions is a major
research challenge in AI and multi-agent systems. CSG involves parti-
tioning a set of agents into coalitions so that social surplus is maximized.
Traditionally, the input of the CSG problem is a black-box function called
a characteristic function, which takes a coalition as an input and returns
the value of the coalition. As a result, applying constraint optimization
techniques to this problem has been infeasible. However, characteristic
functions that appear in practice often can be represented concisely by a
set of rules, rather than a single black-box function. Then, we can solve
the CSG problem more efficiently by applying constraint optimization
techniques to the compact representation directly.

We present new formalizations of the CSG problem by utilizing recently
developed compact representation schemes for characteristic functions.We
first characterize the complexity of the CSG under these representation
schemes. In this context, the complexity is driven more by the number of
rules rather than by the number of agents. Furthermore, as an initial step
towards developing efficient constraint optimization algorithms for solving
the CSG problem, we develop mixed integer programming formulations
and show that an off-the-shelf optimization package can perform reason-
ably well, i.e., it can solve instances with a few hundred agents, while the
state-of-the-art algorithm (which does not make use of compact represen-
tations) can solve instances with up to 27 agents.

Keywords:Multiagent systems, coalition structuregeneration, constraint
optimization.

1 Introduction

Coalition formation is an important capability in automated negotiation among
self-interested agents. Coalition structure generation (CSG) involves partitioning

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 623–638, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

624 N. Ohta et al.

a set of agents into coalitions so that social surplus is maximized. This problem
has become a popular research topic in AI and multi-agent systems. Possible
applications of CSG include distributed vehicle routing (Sandholm and Lesser,
1997), multi-sensor networks (Dang et al., 2006), etc. The CSG problem is equiv-
alent to a complete set partition problem (Yeh, 1986), and various algorithms
for solving the CSG problem have been developed. Sandholm et al. (1999) pro-
pose an anytime algorithm with worst-case guarantees. However, to obtain an
optimal coalition structure, this algorithm must check all coalition structures.
Thus, the worst-case time complexity is O(nn), where n is the number of agents.
On the other hand, Dynamic Programming (DP) based algorithms (Yeh, 1986;
Rothkopf et al., 1998; Rahwan and Jennings, 2008b) are guaranteed to find an
optimal solution in O(3n). Shehory and Kraus (1998) propose a greedy algorithm
that puts constraints on the possible size of the coalitions.

Arguably, the state-of-the-art algorithm is the IP (integer partition) algo-
rithm (Rahwan et al., 2007). This is an anytime algorithm, which divides the
search space into partitions based on integer partition, and performs branch &
bound search. Although the worst-case time complexity for obtaining an opti-
mal solution is O(nn), in practice, IP is much faster than DP based algorithms.
Furthermore, Rahwan and Jennings (2008a) introduce an extension of the IP
algorithm that utilizes DP for preprocessing.

As far as we are aware, all existing works on CSG assume that the char-
acteristic function is represented implicitly, and we have oracle access to the
function—that is, the value of a coalition (or a coalition structure as a whole)
can be obtained using some procedure. This is because representing an arbitrary
characteristic function explicitly requires Θ(2n) numbers, which is prohibitive
for large n. When a characteristic function is represented by a black-box func-
tion, there is no room for applying constraint optimization techniques. Thus,
this problem has been irrelevant to the CP community.

However, characteristic functions that appear in practice often display sig-
nificant structure, and it is likely that such characteristic functions can be
represented much more concisely. Indeed, recently, several new methods for
representing characteristic functions have been developed (Ieong and Shoham,
2005; Conitzer and Sandholm, 2004, 2006). These representation schemes cap-
ture characteristics of interactions among agents in a natural and concise manner,
and can reduce the representation size significantly. Surprisingly, to our knowl-
edge, these representation schemes have not yet been used for CSG; this is what
we set out to do in this paper. Using these compact representation schemes, a
characteristic function is represented by a set of rules, rather than a single black-
box function. It is likely that we can solve the CSG problem more efficiently by
applying constraint optimization techniques to the compact representation di-
rectly.

We examine three representative compact representation schemes: (i) marginal
contribution nets (MC-nets) (Ieong and Shoham, 2005), (ii) synergy coalition
groups (SCGs) (Conitzer and Sandholm, 2006), and (iii) SCGs in multi-issue

CSG Utilizing Compact Characteristic Function Representations 625

domains (Conitzer and Sandholm, 2004). The optimal choice of a representation
scheme depends on the application.

There exist several other compact representation schemes, e.g., logic-based
approaches (Wooldridge and Dunne, 2004, 2006) and skill-based approaches
(Yokoo et al., 2005; Bachrach and Rosenschein, 2008). In this paper, we restrict
our attention to the schemes mentioned earlier, since they are more closely re-
lated to the traditional CSG problem.

Quite interestingly, we find that there exists some common structure among
these cases: in essence, the problem is to find a subset of rules that maximizes the
sum of rule values under certain constraints. For each case, we show that solving
the CSG problem is NP-hard, and the size of a problem instance is naturally
measured by the number of rules rather than the number of agents.

Furthermore, as an initial step towards developing efficient constraint opti-
mization algorithms for solving the CSG problem, we give a mixed integer pro-
gramming (MIP) formulation that captures the above mentioned structure. We
show that an off-the-shelf optimization package (CPLEX) can solve the resulting
MIP problem instances reasonably well, i.e., it can solve instances with a few
hundred agents, while the state-of-the-art algorithm (which does not make use
of compact representations) can solve instances up to 27 agents.

The rest of this paper is organized as follows. First, we review the model of
coalition structure generation (Section 2). Next, we introduce solution algorithms
when the characteristic function is represented by MC-nets (Section 3), SCGs
(Section 4) and SCGs in multi-issue domains (Section 5). Finally, we show the
evaluation results and discussions (Section 6).

2 Model

Let A = {1, 2, . . . , n} be the set of agents. We assume a characteristic function
game, i.e., the value of a coalition S is given by a characteristic function v. A
characteristic function v : 2A → (assigns a value to each set of agents (coali-
tion) S ⊆ A. We assume that each coalition’s value is nonnegative. This is not an
unreasonable assumption (Sandholm et al., 1999); even if some coalition’s values
are negative, as long as each coalition’s value is bounded (i.e., not infinitely neg-
ative), we can normalize the coalition values so that all values are non-negative.
This rescaled game is strategically equivalent to the original game.

A coalition structure CS is a partition of A, into disjoint, exhaustive coali-
tions. To be more precise, CS = {S1, S2, . . .} satisfies the following conditions:

∀i, j (i �= j), Si ∩ Sj = ∅,
⋃

Si∈CS

Si = A.

In other words, in CS, each agent belongs to exactly one coalition, and some
agents may be alone in their coalitions.

For example, in a game with three agents a, b, and c, there are seven possible
coalitions: {a}, {b}, {c}, {a, b},{b, c}, {a, c}, {a, b, c}, and five possible coalition
structures: {{a}, {b}, {c}}, {{a, b}, {c}}, {{a}, {b, c}}, {{b}, {a, c}}, {{a, b, c}}.

626 N. Ohta et al.

The value of a coalition structure CS, denoted as V (CS), is given by:

V (CS) =
∑

Si∈CS

v(Si).

An optimal coalition structure CS∗ is a coalition structure that satisfies the
following condition:

∀CS, V (CS∗) ≥ V (CS).

We say a characteristic function is super-additive, if for any disjoint sets Si, Sj ,
v(Si ∪Sj) ≥ v(Si) + v(Sj) holds. If the characteristic function is super-additive,
solving CSG becomes trivial, i.e., the grand coalition (the coalition of all agents)
is optimal.

Super-additivity means that any pair of coalitions is better off by merging
into one. One might think that super-additivity holds in most of the cases since
the agents in the composite coalition can work separately and perform at least
as well as the case that they were in different coalitions. However, organizing
a large coalition can be costly, e.g., there might be coordination overhead like
communication costs, or possible anti-trust penalties. Also, if time is limited, the
agents may not have time to carry out the communications and computations
required to coordinate effectively within the composite coalition, so component
coalitions may be more advantageous. Thus, we assume a characteristic function
can be non-super-additive.

3 CSG Using MC-Nets

Ieong and Shoham (2005) develop a concise representation of a characteristic
function called marginal contribution networks (MC-nets).

Definition 1 (MC-nets). An MC-net consists of a set of rules R. Each rule
r ∈ R is of the form: (Pr, Nr) → vr, where Pr ⊆ A, Nr ⊆ A, Pr ∩Nr = ∅, vr ∈
(. We say that rule r is applicable to coalition S if Pr ⊆ S and Nr ∩ S = ∅,
i.e., S contains all agents in Pr (positive literals), and it contains no agent in
Nr (negative literals). For a coalition S, v(S) is given as

∑
r∈RS

vr, where RS

is the set of rules applicable to S. Thus, for a coalition structure CS, V (CS) is
given as

∑
S∈CS

∑
r∈RS

vr.

Example 1. Let there be five agents a, b, c, d, e and four rules: r1 : ({b, e}, {})→
3, r2 : ({a, b, c}, {d}) → 2, r3 : ({a, d}, {}) → 1, and r4 : ({c}, {e}) → 1. In this
case, r1 and r2 are applicable to coalition {a, b, c, e}, but r3 and r4 are not. Thus,
v({a, b, c, e}) is equal to 3 + 2 = 5.

In the original definition from (Ieong and Shoham, 2005), a rule may have a neg-
ative value. In this paper, we assume all rules have positive values. Furthermore,
we assume each rule has at least one positive literal. Under these restrictions,
we can guarantee that having more applicable rules never hurts, and each rule
is applicable to only one coalition. Even under these restrictions, MC-nets can

CSG Utilizing Compact Characteristic Function Representations 627

represent any characteristic function. This is because, in the worst case, for each
coalition S ⊆ A, we can create a rule (S, A \ S) → v(S), i.e., each rule is appli-
cable only to S.

Definition 2 (Feasible rule set). We say a set of rules R′ ⊆ R is feasible if
there exists CS where each rule r ∈ R′ is applicable to some S ∈ CS.

In Example 1, {r2, r4} is feasible because each rule is applicable to CS =
{{a, b, c}, {d, e}}. On the other hand, {r1, r2, r4} and {r2, r3} are infeasible. The
problem of finding CS∗ is equivalent to finding a feasible rule set R′, so that∑

r∈R′ vr is maximized.

Definition 3 (Relations between rules). The possible relations between two
rules r and r′ can be classified into the following four nonoverlapping and ex-
haustive cases:

Compatible on the same coalition: Pr ∩Pr′ �= ∅ and Pr ∩Nr′ = Pr′ ∩Nr =
∅. For example, in Example 1, r1 and r2 are compatible on the same coalition:
if r1 and r2 are applicable at the same time, there must be a coalition S with
S ⊇ {a, b, c, e} and d �∈ S.

Incompatible: Pr ∩Pr′ �= ∅, and (Pr ∩Nr′ �= ∅ or Pr′ ∩Nr �= ∅). For example,
r2 and r3 are incompatible: these two rules are not applicable at the same
time.

Compatible on different coalitions: Pr ∩ Pr′ = ∅, and (Pr ∩ Nr′ �= ∅ or
Pr′ ∩Nr �= ∅). For example, r1 and r4 are compatible on different coalitions:
if r1 and r4 are applicable at the same time, there must be two different
coalitions S1 and S2, where S1 ⊇ {b, e} and S2 ⊇ {c}.

Independent: Pr ∩Pr′ = ∅, and Pr ∩Nr′ = Pr′ ∩Nr = ∅. For example, r1 and
r3 are independent. These two rules can be applied to the same coalition or
to different coalitions.

Let us consider a graphical representation of an MC-net in which each vertex is
a rule, and between any two vertices, there exists an edge whose type is one of
the four cases described above. Figure 1 shows the graphical representation of
Example 1 (“independent” edges are not shown).

The following conditions characterize whether a rule set is feasible.

Theorem 1. A set of rules R′ is feasible if and only if it satisfies the following
conditions.

(a) R′ includes no pair of rules/vertices connected by an “incompatible” edge,
and

(b) if two rules/vertices in R′ are connected by a “compatible on different coali-
tions” edge, then they are not reachable via “compatible on the same coali-
tion” edges within R′.

Proof. First, we prove the “if” part. From (a), there exists no incompatible edge
within R′. From (b), R′ can be divided into groups G1, G2, . . . , Gk where the rules
within Gi are reachable from each other by “compatible on the same coalition”

628 N. Ohta et al.

r4
({c}, {e})

r1
({b, e}, {})

r3
({a, d}, {})

r2
({a, b, c}, {d})

compatible on
different coalitions

compatible on
the same coalition

incompatible
compatible on
the same coalition

Fig. 1. Graphical representation of Example 1

edges, there exists no “compatible on different coalitions” edge between rules in
Gi, and there exists no “compatible on the same coalition” edge between rules
that belong to different groups.

Let us choose CS = {S1, S2, . . . , Sk} so that Si is the union of all positive
literals of r ∈ Gi. Then, for i �= j, Si ∩ Sj = ∅ holds. This is because Si ∩ Sj �= ∅
would imply that there exists at least one pair r ∈ Gi, r

′ ∈ Gj for which r and r′

are connected by a “compatible on the same coalition” edge (since there cannot
be an “incompatible” edge between them)—but this is in contradiction with
the way in which G1, . . . , Gk are chosen. Thus, {S1, . . . , Sk} is a valid coalition
structure.1

Now, we show that for any r ∈ Gi, r is applicable to coalition Si. Clearly, Si

contains all the positive literals of r. It remains to show that Si does not contain
any negative literal of r. For the sake of contradiction, assume Si contains agent
a, where a is a negative literal of r. Then, there exists another rule r′ ∈ Gi for
which a is a positive literal. There must be a “compatible on different coalitions”
or an “incompatible” edge between r and r′. Either case leads to a contradiction.
Hence, R′ is feasible.

Next, we prove the “only if” part. We show that if R′ does not satisfy the
above conditions, then there exists no coalition structure where R′ is applicable.
Clearly, if (a) is not satisfied, i.e., some r, r′ ∈ R′ are connected by an “incompat-
ible” edge, then there exists no coalition structure where r and r′ are applicable
at the same time.

Now, let us assume (b) is not satisfied, i.e., there exist ri, rj ∈ R′ such that
ri and rj are connected by a “compatible on different coalitions” edge, and they
are reachable by “compatible on the same coalition” edges within R′. Assume ri

is applicable to coalition Si and rj is applicable to coalition Sj . Since ri and rj

are connected by a “compatible on different coalitions” edge, Si and Sj must be
different. However, Si must contain all positive literals of rules reachable from ri

via “compatible on the same coalition” edges: otherwise, some rule in R′ is not

1 If some agent is not included in any Si, we can assume the agent forms its own
coalition.

CSG Utilizing Compact Characteristic Function Representations 629

applicable. Similarly, Sj must contain all positive literals of rules reachable from
rj via “compatible on the same coalition” edges. Since ri and rj are reachable
from each other via “compatible on the same coalition” edges, Si and Sj must
be the same—but this contradicts the fact that they must be different. �

Theorem 2. When the characteristic function is represented as an MC-net,
finding an optimal coalition structure is NP-hard. Moreover, unless P = NP,
there exists no polynomial-time O(|R|1−ε) approximation algorithm for any ε >
0, where |R| is the number of rules.

Proof. The maximum independent set problem is to choose V ′ ⊆ V for a graph
G = (V, E) such that there exists no edge between vertices in V ′, and |V ′| is
maximized under this constraint. It is NP-hard and, unless P = NP , there exists
no polynomial-time O(|V |1−ε) approximation algorithm for any ε > 0 (H̊astad,
1999; Zuckerman, 2007). We reduce an arbitrary maximal independent set in-
stance to a CSG problem instance, as follows. For each v ∈ V , let there be an
agent av; also, for each e ∈ E, let there be an agent ae. For each v ∈ V , we create
a rule rv where Prv = {av}∪{ae : v ∈ e}, Nrv = {aw : (v, w) ∈ E}, and vrv = 1.
Thus, rules are “incompatible” if they correspond to neighboring vertices, and
“independent” otherwise. It follows that feasible rule sets correspond exactly to
independent sets of vertices. �

The reduction in Theorem 2 relies heavily on “incompatibilities” between rules.
If there are no “incompatibilities” then the problem is equivalent to the multi-cut
problem (Vazirani, 2001), which is a generalization of the min-cut problem.

Definition 4 (MIP formulation of CSG for MC-nets). The problem of
finding a feasible rule set R′ that maximizes

∑
r∈R′ vr can be modeled as follows.

max
∑

r∈R vr · x(r)
s.t.∀e = (r, r′), where e is an “incompatible” edge,

x(r) + x(r′) ≤ 1, — (i)
∀e = (ri, rj), where e is

a “compatible on different coalitions” edge and i < j,
dis(e, ri) = 0, dis(e, rj) ≥ 1, — (ii)
∀e′ = (r1, r2), where e′ is

a “compatible on the same coalition” edge,
dis(e, r1) ≤ dis(e, r2) + (1 − x(r1)) + (1− x(r2)), — (iii)
dis(e, r2) ≤ dis(e, r1) + (1 − x(r1)) + (1− x(r2)), — (iv)

∀r ∈ R, x(r) ∈ {0, 1}.

x(r) = 1 means that rule r is selected. The constraint (i) ensures that two rules
connected by an “incompatible” edge will not be selected at the same time.
Also, for each “compatible on different coalitions” edge e = (ri, rj), we define
a distance/potential for e, so that dis(e, ri) = 0 and dis(e, rj) ≥ 1 (ii). The
constraints (iii) and (iv) ensure that if both of r1 and r2 are selected, where r1

and r2 are connected by a “compatible on the same coalition” edge, then the
distance/potential of these two rules for the aforementioned e must be equal.

630 N. Ohta et al.

Then, the facts that dis(e, ri) = 0 and dis(e, rj) ≥ 1 ensure that ri and rj are not
reachable from each other via “compatible on the same coalition” edges. Using
such a distance/potential is a standard method for representing connectivity
constraints in MIP formalization without enumerating possible paths.

In this formulation, the number of binary variables is equal to the number
of rules. The number of constraints is din + dcd(2dcs + 1), where din, dcd, dcs

are the number of edges with types “incompatible”, “compatible on different
coalitions”, and “compatible on the same coalition”, respectively.

4 CSG Using Synergy Coalition Groups

Conitzer and Sandholm (2006) introduce a concise representation of a charac-
teristic function called a synergy coalition group (SCG). The main idea is to
explicitly represent the value of a coalition only when there exists some positive
synergy.

Definition 5 (SCG). An SCG consists of a set of pairs of the form: (S, v(S)).
For any coalition S, the value of the characteristic function is:

v(S) = max{
∑

Si∈pS

v(Si)},

where pS is a partition of S, i.e., all the Si are disjoint and
⋃

Si∈pS
Si = S, and

for all the Si, (Si, v(Si)) ∈ SCG. To avoid senseless cases that have no feasible
partitions, we require that ({a}, 0) ∈ SCG whenever {a} does not receive a value
elsewhere in SCG.

Thus, if the value of a coalition S is not given explicitly in SCG, it is calculated
from the possible partitions of S. Using this original definition, we can repre-
sent only super-additive characteristic functions, i.e., for any disjoint sets Si, Sj ,
v(Si∪Sj) ≥ v(Si)+v(Sj) holds. But, as mentioned in Section 2, if the character-
istic function is super-additive, solving CSG becomes trivial: the grand coalition
is optimal. To allow for characteristic functions that are not super-additive, we
add the following requirement on the partition pS .

– ∀p′S ⊆ pS , where |p′S| ≥ 2, (
⋃

Si∈p′
S

Si, v(
⋃

Si∈p′
S

Si)) is not an element of
SCG.

This additional condition requires that if the value of a coalition is explicitly
given in SCG, then we cannot further divide it into smaller subcoalitions to
calculate values. In this way, we can represent negative synergies.

Example 2. Let there be five agents a, b, c, d, e and let SCG = {({a}, 0), ({b}, 0),
({c}, 1), ({d}, 2), ({e}, 3), ({a, b}, 3), ({a, b, c}, 3)}. In this case, v({d, e}) =
v({d})+v({e}) = 5, and v({a, b, c, d, e}) = v({a, b, c})+v({d})+v({e}) = 8. For
v({a, b, c, d, e}), we cannot use v({a, b})+ v({c}) + v({d}) + v({e}) = 9, because
{a, b} ∪ {c} = {a, b, c} appears in SCG.

CSG Utilizing Compact Characteristic Function Representations 631

The (modified) SCG can represent any characteristic function, including char-
acteristic functions that are non-super-additive, or even non-monotone. This is
because in the worst case, we can explicitly give the value of every coalition.
Due to the additional condition, only these explicit values can then be used to
calculate the characteristic function.

We show that when searching for CS∗, we need to consider only the coalitions
that are explicitly described in SCG.

Theorem 3. There exists a coalition structure CS for which V (CS) = V (CS∗)
and ∀S ∈ CS, (S, v(S)) ∈ SCG.

Proof. For the sake of contradiction, let us assume there exists some CS∗ so that
V (CS∗) is strictly larger than any CS that consists of only elements of SCG.
Let us examine some coalition S ∈ CS∗ that is not an element of SCG. From
the definition of SCG, there exists a partition of S (denoted as pS) such that
v(S) =

∑
Si∈pS

v(Si), and each Si is an element of SCG. Then, by replacing
each such S by pS , we obtain a new coalition structure CS that consists of
only elements of SCG, and V (CS) = V (CS∗) holds—so we have the desired
contradiction. �

Due to Theorem 3, finding CS∗ is equivalent to a weighted set packing
problem—equivalently, to the winner determination problem in combinatorial
auctions (Sandholm, 2002), where each agent is an item and each coalition de-
scribed in SCG is a bid.

Theorem 4. When the characteristic function is represented as an SCG, find-
ing an optimal coalition structure is NP-hard. Moreover, unless P = NP, there
exists no polynomial-time O(|SCG|1−ε) approximation algorithm for any ε > 0.

Proof. This follows directly from the corresponding inapproximability for the
winner determination problem (Sandholm, 2002) and the maximum independent
set problem (Zuckerman, 2007).

Definition 6 (MIP formulation of CSG for SCG). The problem of finding
CS∗ can be modeled as follows.

max
∑

(S,v(S))∈SCG

v(S) · x(S)

s.t. ∀a ∈ A,
∑
S�a

x(S) = 1,

x(S) ∈ {0, 1}.

x(S) is 1 if S is included in CS∗, 0 otherwise.

In this formulation (which corresponds to a standard winner determination for-
mulation), the number of binary variables is equal to |SCG|, and the number of
constraints is equal to the number of agents.

632 N. Ohta et al.

5 CSG in Multi-issue Domain

Conitzer and Sandholm (2004) introduce the concept of a multi-issue domain.
In a multi-issue domain, there are k independent issues. The overall value of a
coalition is the sum of the values of the coalition for the individual issues. More
specifically, we assume there are k characteristic functions v1, v2, . . . , vk such
that for any S ⊆ A, v(S) =

∑k
i=1 vi(S). If each vi can be represented concisely,

then this leads to a concise representation for v. In this paper, we assume that
vi is represented by SCGi.

Definition 7 (SCGs in multi-issue domains). We represent the charac-
teristic function by a vector of SCGs (SCG1, . . . , SCGk). For any S ⊆ A,
v(S) =

∑k
i=1 vi(S), where vi is calculated using SCGi. Also, for a coalition

structure CS, we denote Vi(CS) =
∑

S∈CS vi(S). Thus, V (CS) =
∑k

i=1 Vi(CS).

Example 3. Let there be four agents a, b, c, d and two SCGs : SCG1 = {({a}, 0),
({b}, 0), ({c}, 1), ({d}, 0), ({a, b}, 2), ({a, b, c}, 2)}, SCG2 = {({a}, 0), ({b}, 0),
({c}, 0), ({d}, 1), ({a, b, c}, 2)}.

In this case, v({a, b, c}) is v1({a, b, c}) + v2({a, b, c}) = 2 + 2 = 4.

When there are multiple issues, an optimal coalition structure CS∗ may need to
contain a coalition S that is not explicitly described in any SCGi. For example,
assume that in issue i, a and b have a strong positive synergy. Also, in issue j,
b and c have a strong positive synergy. Then, coalition {a, b, c} may need to be
included in CS∗, even though {a, b, c} appears in neither SCGi nor SCGj .

Definition 8 (Value-producing subset). Given a coalition structure CS, we
say that SCG′

i (where SCG′
i ⊆ SCGi) is a value-producing subset of SCGi

for CS, if SCG′
i consists exactly of elements of SCGi that are used to calculate

Vi(CS). Thus, Vi(CS) =
∑

(S,vi(S))∈SCG′
i
vi(S).

In Example 3, SCG′
1 = {({a, b, c}, 2), ({d}, 0)} and SCG′

2 = {({a, b, c}, 2),
({d}, 1)} are value-producing subsets for CS = {{a, b, c}, {d}}. From this defi-
nition, a value-producing subset SCG′

i must contain all agents, and elements of
SCG′

i must be disjoint. We call a subset that satisfies these conditions a valid
subset.

Definition 9 (Valid subset). SCG′
i ⊆ SCGi is a valid subset if⋃

(S,vi(S))∈SCG′
i
S = A, and ∀(S, vi(S)), (S′, vi(S′)) ∈ SCG′

i where S �= S′,
S ∩ S′ = ∅ holds.

Theorem 5. A valid subset SCG′
i ⊆ SCGi is a value-producing subset of SCGi

for CS if and only if for each S ∈ CS, either one of the following conditions
holds:

1. (S, vi(S)) ∈ SCG′
i,

2. ∃pS, where pS is a partition of S, such that |pS | ≥ 2, ∀S′ ∈ pS , (S′, vi(S′)) ∈
SCG′

i, and ∀p′S ⊆ pS, where |p′S | ≥ 2, (
⋃

S′′∈p′
S

S′′, vi(
⋃

S′′∈p′
S

S′′)) �∈ SCGi.

CSG Utilizing Compact Characteristic Function Representations 633

We omit the proof since it is straightforward from the (modified) definition of
the SCG representation. Quite interestingly, we can define the possible relations
between elements in SCGs in the same way as we did for MC-nets.

Definition 10 (Relations between coalitions). The possible relations be-
tween two coalitions (S, vi(S)) ∈ SCGi and (S′, vj(S′)) ∈ SCGj can be classified
into the following four cases, which are nonoverlapping and exhaustive:

Compatible on the same coalition: i �= j and S ∩ S′ �= ∅. For example,
in Example 3, ({a, b}, 2) ∈ SCG1 and ({a, b, c}, 2) ∈ SCG2 are compatible
on the same coalition. If these two elements are a part of value-producing
subsets at the same time, there must be a coalition S with S ⊇ {a, b, c}.

Incompatible: i = j and S ∩ S′ �= ∅. For example, ({a, b}, 2) ∈ SCG1 and
({a, b, c}, 2) ∈ SCG1 are incompatible. They cannot be used simultaneously.

Compatible on different coalitions: i = j, and there exists (S ∪ S′, vi(S ∪
S′)) ∈ SCGi. For example, ({a, b}, 2) ∈ SCG1 and ({c}, 1) ∈ SCG1 are
compatible on different coalitions. If these two elements are included in value-
producing subsets at the same time, there must be two coalitions S1, S2, where
S1 ⊇ {a, b} and S2 ⊇ {c}, since if there exists S ⊇ {a, b, c}, then, we need
to use ({a, b, c}, 2) for calculating v1. To be more precise, this relation must
be extended to a hyper-edge. If there exists (S, vi(S)) ∈ SCGi, such that
∀S′ ∈ pS , (S′, vi(S′)) ∈ SCGi holds, where pS is a partition of S, then, we
create a hyper-edge connecting the elements in pS. Note that we need to add
hyper-edges only for sub-additive cases.

Independent: otherwise. For example, ({a, b}, 2) ∈ SCG1 and ({d}, 0) ∈
SCG1 are independent. They can be used in both cases.

The following conditions characterize whether coalitions are value-producing.

Theorem 6. (SCG′
1, . . . , SCG′

k), where each SCG′
i is a valid subset of SCGi,

is a vector of value-producing subsets for some CS if and only if the following
conditions hold:

(a) (SCG′
1, . . . , SCG′

k) include no pair of coalitions connected by an “incom-
patible” edge, and

(b) if a set of coalitions in (SCG′
1, . . . , SCG′

k) is connected by a “compatible on
different coalitions” hyper-edge, then there exists at least one element that
is not reachable from other elements via “compatible on the same coalition”
edges.

We omit the proof since it is basically the same as that of Theorem 1.

Definition 11 (MIP formulation in multi-issue domains). The problem
of finding value-producing subsets that maximize the summation of values can be
modeled as follows.

max
∑

p=(S,v∗(S))∈⋃k
i=1 SCGi

v∗(S) · x(p)
s.t.∀e = (p, p′), where e is an “incompatible” edge,

x(p) + x(p′) ≤ 1,

634 N. Ohta et al.

∀e = (p1, p2, . . . , pl), where e is
a “compatible on different coalitions” hyper-edge,
dis(e, p1) = 0, dis(e, p2) + . . . + dis(e, pl) ≥ 1, — (i)
∀e′ = (pi, pj), where e′ is

a “compatible on the same coalition” edge,
dis(e, pi) ≤ dis(e, pj) + (1− x(pi)) + (1− x(pj)),
dis(e, pj) ≤ dis(e, pi) + (1− x(pi)) + (1− x(pj)),

∀p ∈
⋃k

i=1 SCGi, x(p) ∈ {0, 1}.

x(p) = 1 means the element p in
⋃k

i=1 SCGi is selected. This formulation is
basically the same as Definition 4, except for the constraint (i). This constraint
means that for a hyper-edge e that connects nodes p1, p2, . . . , pl, at least one ele-
ment must be unreachable. The number of variables and constraints are basically
the same as MC-nets.

Theorem 7. When the characteristic function is represented as SCGs in a
multi-issue domain, finding an optimal coalition structure is NP-hard. More-
over, unless P = NP, there exists no polynomial-time O(m1−ε) approximation
algorithm for any ε > 0, where m is the number of elements in SCGs.

Proof. We can use the same proof as Theorem 2. �

6 Evaluation and Discussion

We experimentally evaluated the performance of our proposed methods. All the
tests were run on a Core 2 Duo E6850 3GHz processor with 8GB RAM. The
test machine runs WindowsXP Professional x64 Edition SP2. We used CPLEX
version 11.2, a general-purpose mixed integer programming package.

We show results for the following cases: (i) MC-nets, (ii) SCGs, and (iii) SCGs
in multi-issue domains. The problem instances are generated slightly differently
in each case. For case (ii), we use a decay distribution (Sandholm, 2002) described
as follows. Create a coalition with one random agent. Then repeatedly add a new
random agent with probability α until an agent is not added or the coalition
includes all agents. Choose the value of the coalition between 0 and the number
of agents in the coalition uniformly at random. We use α = 0.55. For case (i),
we first create a rule (S, {})→ v(S) for each SCG in case (ii). Then, we modify
each rule by randomly moving an agent from the positive to the negative literals
with probability p. We use p = 0.2. For case (iii), the way of generating problem
instances is basically identical to case (ii), but we create five issues and each
issue has the same number of rules. For each issue, we assume 30% of agents are
involved.

In Figure 2 (a), we set #rules=#agents2, and vary #agents from 10 to 120.
In Figure 2 (b), (c), (d), we set #rules to 60, 90, and 120, respectively, and vary
#agents. Each data point is the median of 50 problem instances.
2 By #rules, we mean the number of elements in SCG/SCGs in cases (ii) and (iii).

CSG Utilizing Compact Characteristic Function Representations 635

(i) MC-nets (ii) SCGs (iii) multi-issue domains

(a) #rules = #agents (b) #rules = 60

(c) #rules = 90 (d) #rules = 120

10-1

100

101

102

103

104

 60 90 120 150 180 210 240

ti
m

e
[m

s]

#agents

10-1

100

101

102

103

104

105

 20 40 60 80 100 120

ti
m

e
[m

s]

#agents

100

101

102

103

104

 90 120 150 180 210 240 270

ti
m

e
[m

s]

#agents

100

101

102

103

104

105

 120 150 180 210 240 270 300

ti
m

e
[m

s]

#agents

Fig. 2. Computation time for MC-nets, SCGs, SCGs in multi-issue domains

In Figure 2 (b), (c), (d), the CSG problem actually becomes easier when
#agents increases. Since #rules, i.e., the number of vertices in the graph, is
constant, the graph becomes more sparse by increasing #agents. As long as
#rules is the same, case (ii) solves much faster than (i) and (iii). Also, as long
as #rules is the same, case (i) and (iii) are about the same, except for the
instances where #agents is large (Figure 2 (b), (c), (d)). This is because case
(iii) has more constraints since it tends to have more “compatible on different
coalitions” hyper-edges. We have tried several different settings and confirmed
that the trends are basically similar.

The SCG representation has an advantage since the MIP formulation is simple
and the resulting problem instances can be solved quite efficiently. Furthermore,
we can leverage existing mature techniques for winner determination problems,
including constraint-based approaches such as (Hoos and Boutilier, 2000). When
using the MC-net or multi-issue representation, the limiting factor would be the
number of edges (excluding “independent” edges) between rules, since we need

636 N. Ohta et al.

to use auxiliary variables for representing connectivity constraints. However, in
many cases, we can represent a characteristic function much more concisely by
using MC-nets or multi-issue domains than by using SCGs.

As discussed in (Sandholm, 2002), specialized algorithms are usually more
efficient than CPLEX for solving the winner determination problem. Thus, we
can expect that specialized algorithms would be more efficient that CPLEX for
solving the CSG problem. Here, we discuss several directions how specialized
algorithms can be constructed. Certainly, we can use a depth-first branch and
bound procedure. If we relax integer variables to continuous ones in the MIP
formalization, we can obtain an admissible estimation. Of course, CPLEX per-
forms a similar procedure, but we can use specialized graph-based heuristics for
selecting nodes/rules. Furthermore, it would be possible that we have an effi-
cient algorithm when a graph has some special structure (e.g., the graph is tree,
or the graph can be divided into independent subgraphs by removing a small
number of nodes). Also, if there exists no “incompatible” edge, then the problem
is equivalent to the multi-cut problem (Vazirani, 2001). There exists an efficient
approximation algorithm for the multi-cut problem (Vazirani, 2001). We can
construct an algorithm that interleaves the selection among incompatible rules
and the application of the approximate algorithm for the multi-cut problem.

Rahwan et al. (2007) reports that their IP algorithm can solve problem in-
stances with 27 agents in less than 90 minutes. Also, they report that an exten-
sion of the IP algorithm that utilizes DP for preprocessing (Rahwan and Jennings,
2008a) can obtain four-fold speed-up compared to IP. We cannot directly compare
our results with these results, since the formalizations of the CSG are different.
Here, we are not comparing the efficiency of particular algorithms, but checking
the scalability of different formalizations. Their algorithms inevitably evaluate all
possible (2n) coalitions. Thus, it is very unlikely that their approaches can scale
up to n = 100. On the other hand, the advantage of these approaches is that they
do not rely on particular representations.

7 Conclusion

We showed that coalition structure generation can scale up significantly when
the characteristic function is represented using recently developed compact rep-
resentation schemes: MC-nets, SCGs, and SCGs in multi-issue domains, even
though we use an off-the-shelf optimization package. For each case, we proved
that the problem is NP-hard and inapproximable and developed MIP formula-
tions. Experimental results illustrated that while the state-of-the-art algorithm,
which does not make use of compact representations, requires around 90 minutes
to solve a problem with 27 agents, our methods can solve a problem with 120
agents and 120 rules in less than 20 seconds. Future work includes developing
new algorithms (i) that can find an optimal solution more efficiently, (ii) that can
return a suboptimal solution in any time, and (iii) that can find an approximate
solution quickly, utilizing constraint optimization techniques.

CSG Utilizing Compact Characteristic Function Representations 637

Acknowledgments

The authors would like to thank Takayoshi Shoudai and Hirotaka Ono for their
helpful comments on the earlier version of this paper. This work is partially
supported by Japan Society for the Promotion of Science with Grant-in-Aid
for Scientific Research (A) 20240015 and 20240003. Conitzer is supported by
NSF award number IIS-0812113, a Research Fellowship from the Alfred P. Sloan
Foundation, and a Yahoo! Faculty Research Grant.

Bibliography

Bachrach, Y., Rosenschein, J.S.: Coalitional skill games. In: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems (AA-
MAS), pp. 1023–1030 (2008)

Conitzer, V., Sandholm, T.: Computing Shapley values, manipulating value division
schemes, and checking core membership in multi-issue domains. In: Proceedings of
the 19th National Conference on Artificial Intelligence (AAAI), pp. 219–225 (2004)

Conitzer, V., Sandholm, T.: Complexity of constructing solutions in the core based on
synergies among coalitions. Artificial Intelligence 170(6), 607–619 (2006)

Dang, V.D., Dash, R.K., Rogers, A., Jennings, N.R.: Overlapping coalition formation
for efficient data fusion in multi-sensor networks. In: Proceedings of the 21st National
Conference on Artificial Intelligence (AAAI), pp. 635–640 (2006)

Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local search.
In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI),
pp. 22–29 (2000)

H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182, 105–142
(1999)

Ieong, S., Shoham, Y.: Marginal contribution nets: a compact representation scheme
for coalitional games. In: Proceedings of the 6th ACM Conference on Electronic
Commerce (ACM EC), pp. 193–202 (2005)

Rahwan, T., Jennings, N.R.: Coalition structure generation: dynamic programming
meets anytime optimisation. In: Proceedings of the 23rd Conference on Artificial
Intelligence (AAAI), pp. 156–161 (2008)

Rahwan, T., Jennings, N.R.: An improved dynamic programming algorithm for coali-
tion structure generation. In: Proceedings of the 7th International joint Conference
on Autonomous Agents and Multi-agent Systems (AAMAS), pp. 1417–1420 (2008)

Rahwan, T., Ramchurn, S.D., Dang, V.D., Giovannucci, A., Jennings, N.R.: Anytime
optimal coalition structure generation. In: Proceedings of the 22nd Conference on
Artificial Intelligence (AAAI), pp. 1184–1190 (2007)

Rothkopf, M.H., Pekeč, A., Harstad, R.M.: Computationally manageable combinatorial
auctions. Management Science 44(8), 1131–1147 (1998)

Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions.
Artificial Intelligence 135(1-2), 1–54 (2002)

Sandholm, T., Lesser, V.R.: Coalitions among computationally bounded agents. Arti-
ficial Intelligence 94(1-2), 99–137 (1997)

Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohmé, F.: Coalition struc-
ture generation with worst case guarantees. Artificial Intelligence 111(1-2), 209–238
(1999)

638 N. Ohta et al.

Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation.
Artificial Intelligence 101(1-2), 165–200 (1998)

Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)
Wooldridge, M., Dunne, P.E.: On the computational complexity of qualitative coali-

tional games. Artificial Intelligence 158(1), 27–73 (2004)
Wooldridge, M., Dunne, P.E.: On the computational complexity of coalitional resource

games. Artificial Intelligence 170(10), 835–871 (2006)
Yeh, D.Y.: A dynamic programming approach to the complete set partitioning problem.

BIT Numerical Mathematics 26(4), 467–474 (1986)
Yokoo, M., Conitzer, V., Sandholm, T., Ohta, N., Iwasaki, A.: Coalitional games in

open anonymous environments. In: Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI), pp. 509–515 (2005)

Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing 3, 103–128 (2007)

Compiling All Possible Conflicts of a CSP�

Alexandre Papadopoulos and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{a.papadopoulos,b.osullivan}@4c.ucc.ie

Abstract. In interactive decision-making settings, such as product configuration,
users are stating preferences, or foreground constraints, over a set of possible so-
lutions, as defined by background constraints. When the foreground constraints
introduce inconsistencies with the background constraints, we wish to find ex-
planations that help the user converge to a solution. In order to provide satisfac-
tory explanations, it can be useful to know one or several subsets of conflicting
constraints; such a subset is called a conflict. When computing such conflicts is
intractable in an interactive context, we can choose to compile the problem so
as to allow faster response times. In this paper we propose a new representa-
tion, which implicitly encompasses all conflicts possibly introduced by a user’s
choices. We claim that it can help in situations where extra information about
conflicts is needed, such as when explanations of inconsistency are required.

1 Introduction

We consider a configuration tool with which a user can specify preferences for options.
These preferences are expressed as constraints. When preferences conflict, we want to
help the user find which preferences to relax. In an iterative process, the user might
relax constraints until at least one solution is found. Alternatively, the user might wish
to be told which particular subsets of his constraints can be satisfied. Most current ap-
proaches to explanation generation in constraint-based settings are based on the notion
of a minimal (with respect to inclusion) set of unsatisfiable constraints, known as a min-
imal conflict set of constraints. To demonstrate the concepts, we provide an example.

Example 1 (Car Configuration). Consider a simple car configuration problem, based on
an example in [10], with the following set of options; the Boolean variable xi ∈ {0, 1}
indicates whether constraint ci is in the current set of active constraints or not:

Constraint Option Selector Cost
c1 Budget x1 = 1

∑
i∈{2,...,5}(ki · xi) ≤ 3000

c2 Roof Rack x2 = 1 k2 = 500
c3 Convertible x3 = 1 k3 = 500
c4 CD Player x4 = 1 k4 = 500
c5 Leather Seats x5 = 1 k5 = 2600

Assume that the technical constraints of the configuration problem forbid convertible
cars having roof racks, therefore, constraints c2 and c3 form a conflict. Note that,

� This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886).

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 639–653, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

640 A. Papadopoulos and B. O’Sullivan

given the budget constraint, if the user selects option c5, it is not possible to have
any of the options c2, c3, c4. The set of all minimal conflicts for this example are:
{c2, c3}, {c1, c2, c5}, {c1, c3, c5}, and {c1, c4, c5}. �

As explanations, these conflicts are sufficient to explain why all constraints cannot be
satisfied simultaneously. Based on the set of minimal conflicts we can compute the set of
set-wise maximal relaxations showing which of the user’s constraints can be satisfied.
Maximal relaxations show how the user can satisfy at least some of his constraints.
For example, we can simultaneously satisfy the constraints in {c3, c4, c5}, but we must
exclude c1 and c2. The question that is posed then is which relaxation is best to choose.
Several answers can be given to it, many of which require some information about
all or some of the conflicts. However, computing all conflicts can be intractable in an
interactive context, as their number can be very large. In fact, relaxations and conflicts
have no direct relationship and the number of either can be exponential in the number of
the other. In this paper, we propose to compute in advance all possible conflicts, before
a user makes any choices, as a compilation step, thus providing precious information
for finding explanations online.

2 Preliminaries

We focus on constraint satisfaction problems in this paper, but the results hold for many
other settings in which consistency is monotonic. This property holds whenever the set
of solutions to a set of constraints C is a subset of the solutions to any set of constraints
that is a supersubset of C. In addition, we focus on constraint satisfaction problems that
are solved in an interactive manner, e.g. product configuration problems. It is useful to
distinguish between a background set of constraints, B, that cannot be relaxed, and a
set of constraints, U , that are added by the user as he finds a preferred solution to B by
finding a solution to B∪U , the constraint problem we denote as P def= 〈B,U〉. That way,
the set U can be seen as a query. In our context, we will make the assumption that U
contains only unary contraints.

A set of constraints is consistent if it admits a solution. We will assume that the set of
background constraints, B, admits at least one solution. If a set of constraints does not
admit a solution, we can provide an explanation of the inconsistency, by showing a set
of conflicting constraints or by excluding constraints in order to recover consistency.

Definition 1 (Minimal Conflict). Given a constraint problem P def= 〈B,U〉 that is in-
consistent, a subset C of U is a conflict of P if B ∪ C is inconsistent. The conflict C is
a minimal conflict if ∀C′ ⊂ C, B ∪ C′ admits a solution. The minimal conflict C is a
shortest conflict if for each other minimal conflict C′, |C| ≤ |C′|.

Definition 2 (Maximal Relaxation). Given a constraint problem P def= 〈B,U〉 that
is inconsistent, a subset R of U is a relaxation of P if B ∪ R admits a solution. The
relaxation R is a maximal relaxation if ∀R′ ⊃ R, B ∪R′ is inconsistent. The maximal
relaxation R is a longest relaxation if for each other maximal relaxation R′, |R′| ≤ |R|.

In some contexts, it might be more convenient to consider the following dual concept.

Compiling All Possible Conflicts of a CSP 641

Definition 3 (Minimal Exclusion Set). Given a constraint problem P def= 〈B,U〉 that
is inconsistent, a subset E of U is an exclusion set (resp. minimal exclusion, shortest
exclusion set) ofP if U\E is a relaxation (resp. maximal relaxation, longest relaxation).

There is a duality between minimal conflicts and maximal relaxations. Specifically, a
minimal conflict is a minimal hitting set of all minimal exclusion sets (i.e. the comple-
ment of a maximal relaxation), and a minimal exclusion set is a minimal hitting set of
all the minimal conflicts.

In the context we consider, interactivity, implying quick response times, is a key
requirements. On the other hand, as a well-known fact, explanation generation can be
a highly intractable task in theory and in practice. Therefore, a standard strategy is to
employ compilation techniques. The key principle is to shift ahead of time, during an
offline phase (that is before any user interaction) most expensive computations that need
to be performed only once, to allow for operations needed during an online session to
be much faster in practice.

3 Prime Implicates and Explanations

In this section, we recall some standard notions and notations, along with some main
results from the literature. Let Φ be a finite set of clauses in Conjunctive Normal Form
(CNF) (or any NNF for the purposes of the following definitions), and let C be a dis-
junction of literals (a clause).

Definition 4 (Implicate). Let C and C′ be two clauses.

– C is an implicate of Φ if Φ |= C.
– C subsumes C′ iff C ⊆ C′ iff C |= C′.

Usually we only consider non-trivial implicates, i.e. implicates that are not a tautology.
A prime implicate is then defined as follows.

Definition 5 (Prime Implicate). C is a prime implicate of Φ iff:

– C is an implicate of Φ and
– ∀C′ which is an implicate of Φ, C′ |= C ⇒ C |= C′.
– Equivalently, ∀C′ ⊂ C, Φ �|= C′.

PI(Φ) is the set of all the prime implicates of Φ.

Prime implicates, variants of them, and their generation, are used, amongst other things,
for consequence finding (see [14] for a survey). Particularly, they are of great use in the
context of explanations. Let us adapt the previously introduced notations for the boolean
case as follows. The background constraint are given by a formula Φ, and a user query is
a term γ, i.e. a conjunction of literals. The literals involved in γ are denoted by lit(γ).
Suppose the query is inconsistent, i.e. Φ ∧ γ |= ⊥. Now, let C ∈ PI (Φ) be a prime
implicate such that lit(¬C) ⊆ γ. Of course, ¬C is inconsistent with Φ. Because C
is a prime implicate, ¬C is also a set-wise minimal subset of the literals of γ that is
inconsistent with Φ, and so corresponds to a minimal conflict of the query γ.

642 A. Papadopoulos and B. O’Sullivan

Example 2. Let Φ be a CNF of the form (¬a ∨ b) ∧ (a ∨ d) ∧ (. . .). b ∨ d is a prime
implicate. That tells us that if we want ¬b ∧ c ∧ ¬d ∧ (. . .), it is inconsistent, and a
minimal conflict for that query is ¬b ∧ ¬d. �

Concerning the computation of prime implicates, most existing algorithms rely on re-
peatedly resolving pairs of clauses. Consider two clauses of the form x∨C and¬x∨C′.
Then the resolvent C ∨ C′ is another implicate, which has been obtained by resolv-
ing the two clauses on x. If there exists another variable y such that y ∈ lit(C) and
¬y ∈ lit(C′), then C ∨ C′ is a tautology, and should not be kept. This is the basis of
the Tison method [19]. Note that the method described in [18] is the first one to claim a
scalable method for representing and computing the prime implicates of a problem.

Prime implicates present an interest also from a compilation viewpoint. The prime
implicates of a given CNF, provide a classic technique to represent this formula in a
canonical or minimal way. As such, it can be seen also as a compilation technique. The
Compilation Map [3] presents an extensive survey of different compiled representations
of boolean formulas. A particular representation type is referred to as a language. The
NNF language is the most general, containing all formulas in negation normal form.
Any other language is a subset of NNF. Amongst all these languages, the one holding
our attention in this context is the PI language, characterised as follows:

Definition 6 (PI language). An NNF Φ belongs to PI iff Φ = PI(Φ).

While different languages can be more or less compact, they may or may not support
different queries. A language is said to support a query if, for any formula in this lan-
guage, there exists an algorithm that can answer this query in polynomial time. For
example, counting the number of solutions is not possible in the general case, but is
polynomial in the size of a binary decision diagrams. In [17], we defined queries rele-
vant for explanations. SES is the query that asks for the size of the shortest exclusion
set of a given user query, MR is the query that asks for the set of maximal relaxations
of a given user query. We can add now the query SC that asks for the size of the shortest
conflict of a given query. We saw that PI supports SC. We also have the two following
results (answering two questions that were left open in [17]).

Proposition 1. PI supports MR.

Proof. Given a query γ inconsistent with Φ, we first compute the minimal
conflicts min-conflicts(Φ, γ) = {C ∈ Φ/lit(¬C) ⊆ lit(γ)} then com-
pute all the minimal hitting sets of the minimal conflicts mr(Φ, γ) = {γ \
e/e is a min hitting set of min-conflicts(Φ, γ)}. Obviously the size of each of these two
sets (as well as the time to compute them) is linear in the size of Φ times the number of
maximal relaxations. �

On the other hand, PI does not support SES. Consider the following result.

Proposition 2. Let S = {S1, . . . , Sn}, Si ⊆ T be a collection of subsets of some set
T , let Φ(S) be the CNF associated with it, where each literal corresponds to an element
of T and each clause corresponds to a set of S. Then Φ(S) ∈ PI.

Compiling All Possible Conflicts of a CSP 643

Proof. A solution of Φ(S) corresponds to a hitting set of S. By definition, a (resp.
minimal) clause satisfied by every solution of Φ(S) is a (resp. prime) implicate. A
minimal clause satisfied by every solution of Φ(S) corresponds to a minimal hitting
set of all the hitting sets of S. Thus a minimal hitting set of all the hitting sets of S
corresponds to a prime implicate of Φ(S). But the minimal hittings of the hittings sets
of S are precisely the sets in S themselves. Thus the clauses of Φ(S) are all and the
only prime implicates of Φ(S). �

Proposition 3. PI does not support SES unless P = NP .

Proof. Let S = {S1, . . . , Sn}, Si ⊆ T be an collection of subsets of T . Consider the
sentence Φ(S) ∈ PI, and the query γ =

∧
v∈T ¬xv , where xv is the literal correspond-

ing to the element v ∈ T . Clearly Φ(S) ∧ γ is inconsistent. A shortest exclusion set
gives a smallest subset of literals we must set to true in order to satisfy Φ(S), i.e. a
smallest subset of elements T which is a hitting set of S. In other words, the size of
the shortest exclusion set of Φ ∧ γ is the size of the smallest hitting set of S, which is
NP-Hard to compute. �

Having given some insights into the application of prime implicates to explanations,
the remainder of this paper will therefore deal with generalising these concepts, that is,
defining the PI language for constraint problems.

4 Domain Consequences

Suppose we have a problem defined on a set of variables X1, . . . , Xn, taking their
values from the domains D(X1), . . . , D(Xn). We are interested in simple preferences
consisting of domain restrictions, expressed as unary constraints of the form Xi ∈
Di, with Di ⊆ D(Xi), holding on a subset of the variables of the problem. Given
an inconsistent query, giving one or all or some, according to some criteria, minimal
conflicts can be a highly intractable problem, and compilation with any of the classic
techniques (automata, BDDs, dDNNF) does not help either. It is, therefore, interesting
to have a way to compute in advance all the potential minimal conflicts of a problem,
or, to reuse the terminology of the literature, to infer all the consequences of the given
problem.

In the lack of any particular query, as we are working in an offline phase, we must
define a new, mathematically richer, notion of minimal conflict, which we will call
domain conflicts.

Definition 7 (Domain Conflict). The notion of domain conflict is defined as follows:

– A domain conflict for given problem is given by the sequence of domains C =
〈D1, . . . , Dn〉, such that imposing Xi ∈ Di for each Xi is inconsistent. Such a
conflict can be seen as a conjunction of unary constraints, which is inconsistent.

– Given two domain conflicts C1 = 〈D1, . . . , Dn〉 and C2 = 〈D′
1, . . . , D

′
n〉, we note

that C1 ⊆ C2 if ∀Xi, Di ⊆ D′
i.

– A maximal domain conflict is a domain conflict C such that no domain conflict
C′ �= C exists with C ⊆ C′. In other words, every component Di of C is maximal.

644 A. Papadopoulos and B. O’Sullivan

Another way of seeing a domain conflict is by considering it defines the Cartesian prod-
uct× i ≤ nDi. This product contains all the tuples that this domain conflict recognises
as being inconsistent. However, defining this list of inconsistent tuples as the elements
of a given Cartesian product is far more informative than giving an explicit list. Indeed,
a sequence of sets tells that all the tuples that can be obtained from their product are
conflicts of the problem. One implication of that observation is that a domain conflict
allows us to take into account conflicts resulting from unary constraints, rather than
simply variable assignments.

In this regard, we can observe that the notion of maximal domain conflict recovers
the classic one of minimal conflict, in the sense that for a given i, having Di = D(Xi)
is equivalent to having no constraint at all on Xi. Thus, the more values that are in the
Di sets, the fewer constraints there are on the corresponding Xi variables.

As to why this definition can be regarded as being “richer” than the classic one, con-
sider the following example. Suppose that 〈{a, b, c}, {a, b}, {b, c}〉 is a minimal domain
conflict (with the domain of each variable being {a, b, c}). If the user asks X1 ∈ {a, b},
X2 ∈ {a}, X3 ∈ {b}, it is inconsistent, and a minimal conflict is c2c3 (ci being the con-
straint holding on Xi). However, seen as a domain conflict, this conflict is not minimal.
For example, it does not tell the user that X2 ∈ {a, b}, X3 ∈ {b, c} is also inconsis-
tent. Also, we can see that a single maximal domain conflict can cover many potential
minimal conflicts resulting from a later user query. Conversely, a minimal conflict can
be recognised by more than a single maximal domain conflict, thus the potential min-
imal conflicts covered by different maximal domain conflicts may overlap. Finally, let
us point out that this notion is in its definition very close to the one of generalized
nogood [12] or global cut seed [9].

With that definition in mind, we can define the consequence of a given problem, thus
generalising the concept of prime implicate.

Definition 8 (Domain Consequence). A domain consequence is defined as follows:

– A domain consequence of a problem is given by P = 〈D1, . . . , Dn〉 such that
〈D1, . . . , Dn〉, with Di = D(Xi) \Di, is a domain conflict.

– Given two domain consequences P and P ′, whose corresponding domain conflicts
are C and C′, we have P ⊆ P ′ if C′ ⊆ C. To reuse classic terminology, we may
say that P subsumes P ′.

– A domain consequence P is minimal if its corresponding domain conflict is maxi-
mal. In other words, no domain consequence P ′ �= P exists such that P ′ ⊆ P .

A given consequence of the problem is read as a disjunction. In other words, for any
solution of the problem, it must be true that X1 ∈ D1 or X2 ∈ D2 or... and so on.

Definition 9 (Set of domain consequences). Let Π be a problem. Cons(Π) is the set
of all the minimal domain consequences of Π , that is if P is a domain consequence of Π ,
then ∃P ′ ∈ Cons(Π) such that P ′ ⊆ P , and ∀P, P ′ ∈ Cons(Π), P ⊆ P ′ ⇒ P = P ′.

A set of domain consequences must be seen as a conjunction, and so Cons(Π) ≡ Π .
The strategy will thus be, given a problem, to compute all of its consequences, as ef-
ficiently as possible, and represent them as compactly as possible. In other words, we

Compiling All Possible Conflicts of a CSP 645

intend to compile a problem to a new representation, in a manner orthogonal to the
existing approaches like automata, that supports queries related to conflicts (shortest
conflict, minimal conflict, specific subset of all the conflicts with completeness guar-
antee). By representing a problem by minimal consequences that cover all potential
consequences (or, equivalently, all potential conflicts), we indeed soundly and com-
pletely characterise this problem. However, since this paper opens a new direction in
compilation, our main focus is to introduce the concepts and the approaches we pro-
pose. How the consequences of a problem can be indeed compactly represented, and
how we can operate on this representation to compute the consequences or to perform
the subsequent online queries is not addressed in this paper.

Nevertheless, we can still give an idea of how domain consequences can help answer
conflict-related queries. Suppose we are given the user query U , where each constraint
c ∈ U is of the form X ∈ D, with D ⊆ D(X). We additionally assume that every
unary constraint holds on a distinct variable. From that query, we can build the domain
sequence S = 〈D1, . . . , Dn〉, where Di = D if there is a constraint Xi ∈ D in
U , or Di = D(Xi) otherwise. To see whether U is inconsistent, we simply have to
check if S is a domain conflict, by checking if its associated domain consequence is
subsumed by a minimal domain consequence of the problem. Let C = 〈D′

1, . . . , D
′
n〉 be

a maximal domain conflict such that S is included in it. The set {c ∈ U/c holds on Xi∧
D′

i �= D(Xi)} is a minimal conflict of the query. If we want a minimum conflict of the
query, we only have to iterate over all maximal domain conflicts and pick the one the
corresponding minimal conflict of which is of minimal cardinality. Additionally, when
looking for specific subsets, i.e. with a given property, of all minimal conflicts of a query
(like we did in [16]), reasoning on the set of minimal domain consequences allows us
to make efficient consistency checks as well as guarantee the desired property, without
generating online all the minimal conflicts of a specific user query.

5 Computation

5.1 Generation

Similar to the way implicates can be deduced from other prime implicates, new domain
consequences can be deduced from existing consequences.

Proposition 4. Let P1 = 〈D1, . . . , Dn〉 and P2 = 〈D′
1, . . . , D

′
n〉 be two domain con-

sequences of a given problem. Then, for any Xi, P = 〈D1∪D′
1, . . . , Di∩D′

i, . . . , Dn∪
D′

n〉 is also a domain consequence of the problem. We denote P = resXi(P1, P2).

Proof. Let us fix, without loss of generality, i = 1. P1 tells us that X1 �∈ D1 ⇒ X2 ∈
D2 ∨ . . . ∨Xn ∈ Dn. Similarly, X1 �∈ D′

1 ⇒ X2 ∈ D′
2 ∨ . . . ∨ Xn ∈ D′

n. In either
case, we have (X1 �∈ D1 ∨X1 �∈ D′

1)⇒ (X2 ∈ D2 ∪D′
2 ∨ . . .∨Xn ∈ D′

n ∪Dn), i.e.
(X1 ∈ D1 ∩D2) ∨ (X2 ∈ D2 ∪D′

2) ∨ . . . ∨ (Xn ∈ D′
n ∪Dn). �

We can say, reusing the existing terminology, that P has been inferred on Xi from P1

and P2. Note that if Di ∩D′
i is empty, the consequence becomes independent from the

variable Xi, thus retrieving the classical notion of resolvent in the boolean setting.

646 A. Papadopoulos and B. O’Sullivan

Some consequences are trivial and therefore useless:

– Di and D′
i have to be incomparable; if one is included in the other, say Di ⊆ D′

i, the
obtained consequence will necessarily be non-minimal, as the one containing Di

will be included in it. For example, suppose we have 〈ab, ab, c〉 and 〈a, a, cd〉, we
can infer on X1 the consequence 〈a, ab, cd〉, which will not be minimal as 〈a, a, cd〉
is included in it. This condition is equivalent to the fact that the resolvent of two
clauses exists only when one contains some literal X and the other ¬X .

– if some Dj∪D′
j , for any j ≤ n, contains all values allowed for Xj , the consequence

is always true. For example, suppose we have 〈ab, ab〉 and 〈bc, bc〉, with D1 =
D2 = abc, we can infer on X1 the consequence 〈b, abc〉, which is trivially true.
This condition is equivalent to the fact that two clauses that are resolved on some
literal and that also contain another literal in both the negated and non-negated form
will result in a trivial clause.

The following example will help illustrate the concepts of conflicts, consequences, min-
imal consequences, resolution, as well as the representation abilities of these concepts.

Example 3. Suppose we have a constraint on three variables with domain {a, b, c},
given by the following nogoods. We can notice that a nogood corresponds to a triv-
ial domain conflict. For example, knowing that aaa is forbidden is equivalent to saying
that X �= a ∨ Y �= a ∨ Y �= a. The domain consequence thus corresponding to each
nogood is given in the second column.

nogood domain consequence

aaa 〈bc, bc, bc〉
aac 〈bc, bc, ab〉
abb 〈bc, ac, ac〉
abc 〈bc, ac, ab〉
bab 〈ac, bc, ac〉
bbb 〈ac, ac, ac〉

From this set, different new consequences can be inferred, thus resulting in the fol-
lowing set of minimal domain consequences for that constraint, along with their corre-
sponding domain conflict.

minimal consequence maximal conflict

〈c, ac, ac〉 〈ab, b, b〉
〈bc, c, ab〉 〈a, ab, c〉
〈ac, c, ac〉 〈b, ab, b〉
〈bc, bc, b〉 〈a, a, ac〉
〈bc, ac, a〉 〈a, b, bc〉

The consequences that we end up with somehow “factorise” common parts among ex-
isting consequences. For example, the consequence 〈bc, ac, a〉 has been obtained from
the two initial consequences 〈bc, ac, ac〉 and 〈bc, ac, ab〉 (on the variable X3). In terms
of conflicts, we obtain the conflict 〈a, b, bc〉, which factorises the common prefix of the
two conflicts abb and abc. That is, of course, very similar to what automata perform,

Compiling All Possible Conflicts of a CSP 647

with some differences. First, automata merge only common prefixes, while a conflict
resulting from two other conflicts might “factorise” the common part of an arbitrary
subset of the variables (and thus is independent of any order on the variables). But most
importantly, automata are merely just a compact representation of a list of tuples. As
previously stressed, this does not allow us to easily answer queries consisting of domain
restrictions. Consider a problem where the forbidden tuples are aaa, aab, baa. By infer-
ring domain conflicts, we eventually obtain the two maximal domain conflicts 〈a, a, ab〉
and 〈ab, a, a〉. Suppose we required the three variables to be assigned the value a. While
an automaton representing these nogoods would easily determine that the query is in-
consistent no matter what value we assign to X3, it would not easily show that the query
is also inconsistent regardless of the value we assign to X1. In either case, it is also not
obvious that these two subconflicts are minimal. �

Having considered the production rules, we can now present how consequences can
be initialised. The basic idea is to start by representing each constraint as the set of
its minimal domain consequences. We already saw that trivial domain consequences
can be initialised from the nogoods of a constraint. However, most problems that are
to be compiled, especially in the context we will eventually address, define constraints
as their lists of valid tuples, and it would be intractable to first generate all the cor-
responding nogoods. Our working assumption will therefore be that we are given the
valid tuples of each constraint.

Definition 10. Let P1,P2 be two sets of minimal domain consequences, P1 ∪ P2 =
μ{P1∪P2/P1 ∈ P1, P2 ∈ P2}, where μP is the subset of P where subsumed elements
have been removed.

It is quite easy to see that P1 ∪ P2 contains the minimal domain consequences equiv-
alent to the logical disjunction between P1 and P2. The following proposition shows
how minimal consequences are built by iteratively taking into account the tuples of a
constraint. Slightly abusing notation, for a list of tuples T , we use Cons(T) to denote
Cons(C) (which in turn is an abuse of notation), where C is the constraint defined by
the valid tuples T .

Definition 11. Let t = a1 . . . an be a tuple defined on the variables X1, . . . , Xn. For
each ai, we define the consequence P (ai) = 〈D1, . . . , Dn〉 as follows:

Dj =

{
{ai}, if i = j

∅, otherwise.

We thus associate with the tuple t the set of domain consequences P(t) = {P (ai),
i ≤ n}.

Proposition 5. For a list T of tuples, we have:

Cons(T) =

{
∅, if T = ∅
μ(Cons(T \ {t}) ∪ P(t)), otherwise.

648 A. Papadopoulos and B. O’Sullivan

Example 4. Consider a constraint with two valid tuples 012 and 021. We have
Cons(012) = P(012) = 〈{0}, ∅, ∅〉,〈∅, {1}, ∅〉,〈∅, ∅, {2}〉, Cons(012) ∪ P(021) =
〈{0}, ∅, ∅〉, 〈{0}, {2}, ∅〉, 〈{0}, ∅, {1}〉, 〈{0}, {1}, ∅〉, 〈∅, {1, 2}, ∅〉, 〈∅, {1}, {1}〉,
〈{0}, ∅, {2}〉, 〈∅, {2}, {2}〉, 〈∅, ∅, {1, 2}〉, and finally Cons(012, 021) = 〈{0}, ∅, ∅〉,
〈∅, {1, 2}, ∅〉, 〈∅, {1}, {1}〉, 〈∅, {2}, {2}〉, 〈∅, ∅, {1, 2}〉. Although the size of the final
set is greater than the number of tuples, it is smaller than the number of nogoods (i.e.
25), and so is the size of the intermediate set, that is before removal of non-minimal
domain consequences. �

5.2 Algorithm

We present an algorithm for compiling a CSP as its set of all minimal domain conse-
quences, as Algorithm 1. In order to establish the correctness of the algorithm, let us
first introduce some notation and results.

Definition 12. Let P be a set of domain consequences, and Xi be a variable. P is a
domain consequence of P on Xi if ∃P1, P2 s.t. P = resXi(P1, P2), where P1 and P2

either belong to P or are themselves consequences of P on Xi.

Definition 13. LetP be a set of domain consequences, and Xi be a variable. ResXi(P)
is the set containing all the minimal domain consequences that can be inferred on Xi

from P . Formally, ∀P that is a domain consequence ofP on Xi, ∃P ′ ∈ ResXi(P) such
that P ′ ⊆ P , and ∀P, P ′ ∈ ResXi(P), P ⊆ P ′ ⇒ P = P ′.

Example 5. Let P = {〈ab, bc〉, 〈ac, bc〉, 〈bc, bc〉}. 〈ab, bc〉, 〈ac, bc〉, 〈bc, bc〉, 〈a, bc〉,
〈b, bc〉, 〈c, bc〉 and 〈∅, bc〉 are all domain consequences of P on X1, and ResX1(P) =
{〈∅, bc〉}. This tells us that given P , we can infer that a is forbidden for X2. �

Definition 14. LetP be a set of domain consequences, and [X1, . . . , Xk] be a sequence
of variables. Res[X1,...,Xk](P) = ResXk

◦ · · · ◦ ResX2 ◦ ResX1(P).

A very well-know result used in most algorithms for PI generation (as first established
in [13]) can be formulated in our context as follows:

Proposition 6. Let P be a set of domain consequences, Xi and Xj two variables. Then
Res [Xi,Xj ,Xi](P) = Res [Xi,Xj](P).

In other words, it is useless for new consequences inferred on some variable to be
tested again with another consequence on an already considered variable. This is a
direct consequence of the associativity and the commutativity of the res operation. In-
deed, resXj (P3, resXi (P1, P2)) = resXi(P2, resXj (P1, P3)). This result is of huge
computational importance, as, by fixing in advance an order on the variables, a given
consequence will be discovered in a unique way.

Example 6. Let C = {〈a, ∅, a〉, 〈b, a, ∅〉, 〈∅, b, b〉}, ResX1(C) = C ∪ {〈∅, a, a〉}, and
ResX2(C) = ResX1(C) ∪ {〈b, ∅, b〉, 〈∅, ∅, ab〉}. Take for example 〈b, ∅, b〉, it does not
need to be resolved again on X1 with any other consequence, as it will inevitably give
an element already in ResX2(C). �

Compiling All Possible Conflicts of a CSP 649

Algorithm 1. CONSEQUENCECOMPILATION

Data: A problem Π
Result: N = Cons(Π)

N ← ∅1

foreach Ci ∈ Π do2

N ← N ∪ Cons(Ci)3

foreach Xi ∈ Π do4

S ← N5

N ← ∅6

while S �= ∅ do7

D ← first(S)8

foreach D′ ∈ N do9

if non-trivial(Xi, D, D′) then10

D∗ ← resolve(Xi ,D ,D ′)11

if No element of N ∪ S subsumes D∗ then12

Remove from N ∪ S any element subsumed by D∗13

Add D∗ to the end of S14

if D is still in S then Remove D from S and add to N15

return N16

function non-trivial(Xi, 〈D1, . . . , Dn〉, 〈D′
1, . . . , D

′
n〉)17

if Di ⊆ D′
i ∨ D′

i ⊆ Di then18

return false19

if ∃Xj �= Xi s.t. Dj ∪ D′
j = D(Xj) then20

return false21

return true22

Corollary 1. We have Cons(Π) = Res [X1,...,Xn](P0) where P0 is the initial set of
domain consequences corresponding to each constraint.

Proposition 7. Algorithm 1 computes Cons(Π).

Proof. Lines 6-16 basically perform the ResXi operation, where S contains the ini-
tial domain consequences. During each iteration, the invariant that is maintained is that
N ∪ S contains only minimal consequences. Every pair of elements is tested exactly
once, and for each new inferred consequence, it is added to N ∪ S only if it is cur-
rently minimal. It is added specifically to S so that it can be in turn tested against other
consequences. When a domain consequence D in S is processed, it is resolved against
all known minimal consequences contained in N . If D is not subsumed by any new
consequence thus inferred, it is added to N . Therefore, when, in the end, S is empty, N
contains exactly ResXi(S). �

Concerning implementation details, each domain consequence has been implemented
using a single bitset, which allows very efficient operations, like the non-trivial

650 A. Papadopoulos and B. O’Sullivan

test, the subsumption test, and the resolve operation, which are by far the most frequent
operations in this algorithm. Also, some simple optimisations can be performed when
computing the disjunction of two sets of domain consequences, while generating the
domain consequences of each constraint (line 3). For example, when the union P of two
domain consequences is equal to one of them, then this original domain consequence
can be discarded, as any subsequently generated consequence will be subsumed by P ,
as it can be observed in Example 4.

5.3 Complexity

The complexity of Algorithm 1 is determined by the size of Cons(Π). We saw that
introducing a new valid tuple to the domain consequences of a constraint of arity k can
add up to k times new domain consequences. Therefore, we have an upper bound on
|Cons(Π)| of n|S|, where |S| is the number of solutions of the problem. |S| itself is
in O(dn), which gives an idea of the potential number of domain consequences. Ad-
ditionally, the number of intermediate domain consequences that have been generated
during the procedure can be far larger than the final number (as most become eventually
subsumed by fewer domain consequences), as we shall see in the next section. These
simple facts show that there is very little hope that an efficient way to generate explicitly
all the consequences exists, no matter what algorithm we design.

6 Experimental Study

We show how the concepts we introduced are put into practice on some very simple
instances. The purpose is not to test the validity of the algorithm, whose implementation
has been kept intentionally almost as naive as possible, for the reasons stated in the last
section. Indeed, we do not expect that, in the present stage, this algorithm can scale up
to any other than trivial problems.

We tested the algorithm on random uniform constraint networks of binary con-
straints1, using the seed 100. These instances contained 10 variables, with 10 values,
10 constraints. The tightness of each constraint varied from 1 to 19 allowed tuples, then
from 95 to 99. We expected our approach to work better on problems with many con-
flicts. In Figure 1, we show the average number of consequences produced after the
resolution of each variable, as well as the final total. This average number was in direct
correspondence with the overall number of iterations. This shows that the tighter the
constraints are, the fewer iterations it takes for the algorithm to finish. Not surprisingly,
no instance with a tightness outside the extreme values could be resolved in any rea-
sonable amount of time. Note that for the harder instances (1 to 19 allowed tuples per
constraint), the final number of consequences is only 1, as they were unsatisfiable. On
satisfiable instances, this number ranged from 250000 to 120. It is particularly striking,
especially on the unsatisfiable instances, that most of the consequences discovered are
not minimal in the end, as they end up being subsumed by the empty consequence.

To further illustrate this point, we show some more detailed figures on two instances,
an unsatisfiable instance with 17 allowed tuples per constraint, and a satisfiable one

1 We used the generator at: http://www.lirmm.fr/˜bessiere/generator.html

http://www.lirmm.fr/~bessiere/generator.html

Compiling All Possible Conflicts of a CSP 651

 1

 10

 100

 1000

 10000

 100000

10090200

nu
m

be
r

of
 c

on
se

qu
en

ce
s

(lo
gs

ca
le

)

number of tuples per constraint

Total # of consequences
Average # of consequences per variable

Fig. 1. The total number of consequences and the average for each variable per instance

Table 1. The intermediate number of consequences generated

Variable
17 tuples 95 tuples

generated non-subsumed variation generated non-subsumed variation

0 239179 6227 730 423 85 85
1 26843 1027 105 0 0 0
2 88841 4894 85 266531 2894 2894
3 16102 609 145 377234 2882 2056
4 397594 21603 -1545 6027194 13708 13708
5 259702 7844 481 13674500 29420 8121
6 58563 2987 -980 51688417 40006 40006
7 1371 225 -263 70889441 50362 18689
8 18 5 -22 63317577 0 0
9 0 0 0 1009075634 263964 165954

with 95. Table 1 shows for each instance and at the end of each basic iteration (i.e. the
resolution on each variable) the number of generated consequences (i.e. that passed the
non-trivial test), the number of non-subsumed consequences (i.e. the part of those
that have been successfully added to S), and eventually the final variation of the current
number of minimal consequences (i.e. the difference in size between N at the end and
at the beginning of the iteration).

These results are encouraging. They show that the size of the final set we aim to pro-
duce is tractable on those instances. With an adequately compact representation of the
set of minimal consequences, we can manage very satisfactory sizes. As a comparison,
it is a notable fact that automata can represent very efficiently a number of solutions
several orders of magnitude higher than the figures shown here. The practical ability of
such a representation to represent effectively a large number of potential conflicts will
depend a lot on different parameters of a problem. These could be parameters like the
number of actual conflicts for a user query, the size of such conflicts, value interchange-
ability, etc. That is of course a fundamental point that will need to be studied in further

652 A. Papadopoulos and B. O’Sullivan

work. We conjecture that the properties yielding compact consequence compilation will
be different from those needed for an automaton representation, where structural con-
siderations (the topological properties of the constraint graph) and variable orderings
are crucial. Finally, let us stress again that this work is a “proof of concept”, and that
these aspects have not yet been dealt with.

7 Related Work

Work on consequence-findinghas been an important task in Artificial Intelligence for the
past thirty years, with a particular interest for diagnosis, which closely relates to our set-
ting. A very complete survey of the field and its applications has been presented in [14].
Additionally, [5] presents the application of prime implicates to diagnoses. One of the
foundational works about prime implicates generation dates from 1967 [19]. Kernel res-
olution [7, 8] generalises this idea. In 1992, De Kleer proposed a practical implemen-
tation, where clause bases are stored using TRIE structures [4]. Several papers present
the approach of using prime implicate generation as a compilation technique. In 1995,
Marquis introduced the concept of theory prime implicates [15], that allows to reduce
the number of generated implicates by defining a stronger notion of entailment. In 1994,
del Val introduced the concept of tractable databases [6], which also allows to reduce the
number of generated implicates, by only selecting a subset that is refutation complete (a
set of clauses is said refutation complete if any clause can be tested to be an implicate
only by unit resolution deduction). Both papers show encouraging experimental results.
Another approach is to work on the representation of all the prime implicates. The TRIE
representation [4] and clause resolution can be extended to a ZBDD representation and
multi-resolution [1, 18]. Alternatively, [2] proposes an implicit representation based on
meta-products. In particular, the main contribution of [18], is an extensive experimental
study; it seems to be the first method for full prime implicates generation that scales
to instances of real practical interest. Finally, [11] presents a similar approach to ours
(though the concepts are different) in using a pre-analysis of the problem as a compila-
tion technique, in order to facilitate conflict and diagnosis computation.

8 Conclusions

We presented a new approach for compiling a problem into a form that is particularly
well-suited for the context of explanations. This approach basically generalises the con-
cept of prime implicate to constraint problems. We showed how domain consequences
can be used for computing different types of explanations, and explained the basics of
their computation. As a proof of concept, we set up a framework under which further
work will be carried out. The main directions will be to examine efficient ways to rep-
resent and operate on sets of domain consequences, aiming at scalability to problems of
practical interest. We will have to carefully measure the efficiency of explanation com-
putation from this representation, as well as, of course, compare it with other existing
representations and algorithms. Another, maybe more realistic, direction will be to de-
fine interesting restrictions on the domain conflicts we compute. In the longer term, we
intend to investigate other properties that such a canonical representation of a problem
might have.

Compiling All Possible Conflicts of a CSP 653

References

1. Chatalic, P., Simon, L.: Multi-resolution on compressed sets of clauses. In: ICTA, pp. 2–10.
IEEE Computer Society, Los Alamitos (2000)

2. Coudert, O., Madre, J.C.: A New Method to Compute Prime and Essential Prime Implicants
of Boolean Functions. In: Advanced Research in VLSI and Parallel Systems: Proceedings of
the 1992 Brown/MIT Conference. MIT Press, Cambridge (1992)

3. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res (JAIR) 17,
229–264 (2002)

4. de Kleer, J.: An improved incremental algorithm for generating prime implicates. In: AAAI,
pp. 780–785 (1992)

5. de Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnoses and systems. Artif. In-
tell. 56(2-3), 197–222 (1992)

6. del Val, A.: Tractable databases: How to make propositional unit resolution complete through
compilation. In: KR, pp. 551–561 (1994)

7. del Val, A.: A new method for consequence finding and compilation in restricted languages.
In: AAAI/IAAI, pp. 259–264 (1999)

8. del Val, A.: The complexity of restricted consequence finding and abduction. In: AAAI/IAAI,
pp. 337–342. AAAI Press/The MIT Press (2000)

9. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)

10. Junker, U.: QUICKXPLAIN: Preferred explanations and relaxations for over-constrained
problems. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI, pp. 167–172. AAAI Press/The
MIT Press (2004)

11. Junquera, B.P., González, C.A.: Possible conflicts: a compilation technique for consistency-
based diagnosis. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(5), 2192–
2206 (2004)

12. Katsirelos, G., Bacchus, F.: Generalized nogoods in csps. In: Veloso, M.M., Kambhampati,
S. (eds.) AAAI, pp. 390–396. AAAI Press/The MIT Press (2005)

13. Kean, A., Tsiknis, G.K.: An incremental method for generating prime implicants/impicates.
J. Symb. Comput. 9(2), 185–206 (1990)

14. Marquis, P.: Consequence finding algorithms. In: Handbook of Defeasible Reasoning and
Uncertainty Management Systems, vol. 5, pp. 41–145 (2000)

15. Marquis, P.: Knowledge compilation using theory prime implicates. In: IJCAI (1), pp. 837–
845 (1995)

16. O’Sullivan, B., Papadopoulos, A., Faltings, B., Pu, P.: Representative explanations for over-
constrained problems. In: AAAI, pp. 323–328. AAAI Press, Menlo Park (2007)

17. Papadopoulos, A., O’Sullivan, B.: Relaxations for compiled over-constrained problems. In:
Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 433–447. Springer, Heidelberg (2008)

18. Simon, L., del Val, A.: Efficient consequence finding. In: Nebel, B. (ed.) IJCAI, pp. 359–370.
Morgan Kaufmann, San Francisco (2001)

19. Tison, P.: Generalization of consensus theory and application to the minimization of boolean
functions. IEEE Transactions on Electronic Computers 16(4), 446–456 (1967)

On the Power of Clause-Learning SAT Solvers
with Restarts

Knot Pipatsrisawat and Adnan Darwiche

University of California, Los Angeles, USA
{thammakn,darwiche}@cs.ucla.edu

Abstract. In this work, we improve on existing work that studied the
relationship between the proof system of modern SAT solvers and general
resolution. Previous contributions such as those by Beame et al (2004),
Hertel et al (2008), and Buss et al (2008) demonstrated that variations
on modern clause-learning SAT solvers were as powerful as general res-
olution. However, the models used in these studies required either extra
degrees of non-determinism or a preprocessing step that are not utilized
by any state-of-the-art SAT solvers in practice. In this paper, we prove
that modern SAT solvers that learn asserting clauses indeed p-simulate
general resolution without the need for any additional techniques.

1 Introduction

It is well-known that modern clause-learning SAT solvers (and their original
ancestor, the DPLL algorithm [7]) can be interpreted as resolution-based proof
systems [4]. For each unsatisfiable formula, these solvers can be viewed as engines
that produce refutation proofs. One central question in this research direction is
whether the proof system implemented by modern SAT solvers still has enough
freedom to generate a short resolution proof (relative to general resolution) for
every unsatisfiable formula. The answer to this theoretical question could have
important practical implications on the efficiency of modern SAT solvers.

There is much previous work on this subject that demonstrates the strength
of variations on modern clause-learning SAT solvers. However, equivalence with
respect to general resolution has yet to be proven for modern clause-learning
SAT solvers as they are practiced today. In [4], Beame et al showed that a
proof system based on a more general variation of modern SAT solvers was
as powerful as general resolution. The proof presented, however, requires the
solver to make decisions on variables that are already implied by unit resolution
and to use a learning scheme not utilized by any top-performing SAT solver
(e.g., MiniSat [8], Rsat [15]). These modifications “utilize extra degrees of non-
determinism that would be very hard to exploit in practice” [10]. Hertel et al [10]
proved a slightly weaker result that clause-learning solvers effectively p-simulate
general resolution. This approach allows them to introduce a preprocessing step
to transform the CNF into one (with some new variables) that can be efficiently
solved by a more practical model of solvers (the model used in [10] is based

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 654–668, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Power of Clause-Learning SAT Solvers with Restarts 655

on the one developed by Van Gelder in [19]). Buss et al [5] also took a similar
approach by modifying the input CNF (and introduced some new variables)
to show that a generalized variation of clause-learning algorithm, which allows
decision making past conflicts, can effectively p-simulate general resolution.

In this work, we show that modern clause-learning SAT solvers, without any
extra modifications, are indeed as powerful as general resolution. In particular,
we prove that the proof system implemented by modern clause-learning solvers
(which uses unit resolution, asserting clause learning, and restarting) p-simulates
general resolution. We show that this result holds for any asserting-clause learn-
ing scheme. Our proof does not require any preprocessing or making decisions
on implied literal or past a conflict. This result implies that modern SAT solvers
in their current form are capable of producing proofs that are as “short” as any
resolution proof, given appropriate branching heuristic and restart policy.

The proof of our main result is made possible by the help of two important
concepts, namely 1–empowerment [16] and 1–provability. Together, they allow
us to more accurately capture the power of modern clause-learning SAT solvers
and to avoid the need to introduce any technique not present in practice.

The rest of the paper is organized as follows. In the next section, we discuss
basic notations and definitions. In Section 3, we present our model of modern
clause-learning SAT solvers and the proof system associated with it. Then, in
Section 4, we present some interesting key results, which provide some insights
on the power of modern SAT solvers and allow us to prove the main result. Next,
we present our main result in Section 5. Finally, we conclude in Section 7.

2 Preliminaries

In this section, we review some basic notations related to propositional logic and
proof systems. If Δ and α are two boolean formulas and � is a literal, we write
Δ |= α to mean that Δ entails α, and write Δ - � to mean that literal � can be
derived from Δ using unit resolution. Furthermore, we may treat a clause as the
set of literals in the clause and a CNF formula as the set of clauses it contains.

2.1 Proof Systems

A proof system is a language for expressing proofs that can be verified in time
polynomial in the size of the proof [6]. In this work, we are concerned only with
proof systems based on propositional resolution [17]. The resolution between
clause α ∨ x and β ∨ ¬x is the derivation of clause α ∨ β (i.e., the resolvent).
In this case, x is called the resolved variable. To make our analysis as related to
modern SAT solvers as possible, the weakening rule, which allows introduction
of arbitrary literals into existing clauses, is not permitted here.

Definition 1. A resolution proof (or resolution derivation) of the clause Ck

from the CNF Δ is a sequence of clauses Π = C1, C2, ..., Ck where each clause
Ci is either in Δ or is a resolvent of clauses preceding Ci.

656 K. Pipatsrisawat and A. Darwiche

We will also treat a resolution proof as the set of clauses in it. The size of a proof
is the number of clauses in it. A resolution proof of the empty clause (i.e., false) is
called a refutation proof. The notion of p-simulation, which was introduced in [6],
is used to compare the power of two proof systems. The definition presented here
is obtained from [10].

Definition 2 (P-Simulation). Proof system S p-simulates proof system T , if,
for every unsatisfiable formula Δ, the shortest refutation proof of Δ in S is at
most polynomially longer than the shortest refutation proof of Δ in T .

Intuitively, if proof system S p-simulates proof system T , it means that S is
unrestricted enough to express proofs that are as short as those expressible in
T . As far as resolution proofs are concerned, general resolution, which allows
any resolution operation to be performed, is the most powerful proof system.
Other resolution proof systems that are known to be less powerful (i.e., do not
p-simulate general resolution) include tree-like resolution, linear resolution, and
regular resolution (see Section 2.3 of [4] for a good review).

3 Modern Clause-Learning SAT Solvers as a Proof
System

3.1 Modern Clause-Learning SAT Solvers

In this section, we describe a model of modern clause-learning SAT solvers.
Included in our model are the following techniques: unit resolution [7], clause-
learning [12,20], restarting [9], and non-chronological backtracking [12,3] (i.e.,
far-backtracking as termed by [18]). Algorithm 1 shows a pseudo code of a typical
clause-learning SAT solver with restarts, which we will refer to as CLR from now
on. We will first provide a high-level description of the algorithm before giving
formal definitions of its different components.

This algorithm is based on making variable assignments called decisions. It
starts with an empty decision sequence D and an empty set of learned clauses Γ
(Lines 1-2). It then iterates until it either proves the satisfiability or unsatisfia-
bility of the input. In each iteration, the solver has an option of restarting, which
amounts to resetting the decision sequence to the empty sequence (Line 5). After
that, the conjunction of the input CNF Δ, learned clauses Γ , and decisions D
are checked for inconsistency using unit resolution (Line 7). If unit resolution
finds an inconsistency, the algorithm does one of two things:

– If the decision sequence is empty, the CNF Δ must be unsatisfiable and the
algorithm terminates (Line 9).

– If the decision sequence is not empty, a clause α is generated and a level m
is computed based on α. The algorithm then erases all decisions made after
level m, adds α to Γ , and moves on to the next iteration (Lines 10-13).1

1 The clause α is known as an asserting clause and m as the assertion level. We will
define them formally later.

On the Power of Clause-Learning SAT Solvers with Restarts 657

Algorithm 1. CLR: Clause-learning SAT solver with restarts
input : CNF formula Δ
output: A solution of Δ or unsat if Δ is not satisfiable

D ← 〈〉 // Decision literals1

Γ ← true // Learned clauses2

while true do3

if time to restart then4

D ← 〈〉5

S ← (Δ, Γ, D)6

if S is 1–inconsistent then7

// There is a conflict.

if D = 〈〉 then8

return unsat9

α ← an asserting clause of S10

m ← the assertion level of α11

D ← Dm // the first m decisions12

Γ ← Γ ∧ α13

else14

// There is no conflict.

Choose a literal � such that S � � and S � ¬�15

if � = then16

return D// satisfiable17

D ← D, 〈�〉18

If unit resolution detects no inconsistency, the solver makes a decision by select-
ing a literal � whose value is not currently implied or falsified by unit resolution,
and adds it to the decision sequence (Line 18). If no such literal is found, the al-
gorithms terminates having proved satisfiability (Line 17). We will now provide
the missing definitions.

– A decision sequence is an ordered set of literals D = 〈�1, . . . , �k〉. Each literal
�i is called the decision at level i. We write Dm to denote the subsequence
〈�1, . . . , �m〉.

– A SAT state is a tuple (Δ, Γ, D), where Δ and Γ are CNFs such that Δ |= Γ ,
and D is a decision sequence. We will write Sk to denote the state (Δ, Γ, Dk).

– A CNF Δ is 1–inconsistent iff Δ - false. It is 1–consistent otherwise. A SAT
state (Δ, Γ, D) is 1–inconsistent (1–consistent) iff Δ∧Γ ∧D is 1–inconsistent
(1–consistent). It is normal for an unsatisfiable CNF to be 1–consistent.

– A literal � is implied by state S = (Δ, Γ, D) at level k, written S -k �, iff k is
the smallest integer for which Δ ∧ Γ ∧Dk - �. We say that the implication
level of literals �,¬� is k in this case, write S - � to mean S -i � for some i,
and write S �- � to mean S �-i � for all i.

– A state S = (Δ, Γ, 〈�1, . . . , �k〉) is normal iff for all 1 ≤ i ≤ k, Si−1 is
1–consistent, Si−1 �- �i and Si−1 �- ¬�i.

658 K. Pipatsrisawat and A. Darwiche

The notion of normal states prohibits SAT solvers from (1) making a decision in
the presence of a conflict and (2) making a decision on a variable that is already
assigned a value. By construction, the state S on Line 7 of Algorithm 1 is always
normal. Therefore, from now on, we will assume that every SAT state is normal.

We are now ready to define the last two notions used in Algorithm 1: asserting
clause and assertion level. An asserting clause is a special type of conflict clause,
so we start first by defining the notion of a conflict clause. Our definition of
conflict clause closely follows the graphical definition in [20].

Definition 3 (Conflict Clause). Let S = (Δ, Γ, D) be a 1–inconsistent SAT
state. A clause α = �1 ∨ . . . ∨ �m is a conflict clause of state S iff:

1. Δ ∧ Γ ∧ ¬α - false. That is, we can show that α is implied by Δ ∧ Γ using
just unit resolution.

2. For each literal �i, S - ¬�i. That is, the literals ¬�i are a subset of the
implications (or decisions) discovered by unit resolution in state S.

In [4], it was shown (in their Proposition 4) that every conflict clause obtained
from a cut on an implication graph (or a conflict graph, to be more precise) can
be derived from the current knowledge base (Δ ∧ Γ) using what is known as
trivial resolution derivation, which captures the kind of resolution performed by
virtually all modern clause-learning SAT solvers [4]. A trivial resolution deriva-
tion is a resolution derivation in which:

1. Every resolution step (except the very first) is performed between the last
resolvent and a clause in the knowledge base.

2. The resolved variables are all distinct.

Our definition of conflict clause is independent of the notion of implication graph
and is slightly more general (for example, it encompasses unconventional clauses
derived in [2]). Nevertheless, we will later show that all of the conflict clauses
that we care to learn can still be “derived” using trivial resolution derivation (to
be proven later in Proposition 3).

In any case, modern SAT solvers, in practice, insist on learning conflict clauses
that contain exactly one literal falsified at the last level.

Definition 4 (Asserting Clause). A conflict clause α of a SAT state S =
(Δ, Γ, D) is an asserting clause iff it has exactly one literal � with implica-
tion level |D|. The literal � is called the asserted literal of α. Moreover, the
assertion level of clause α is defined as the highest implication level k < |D|
attained by some literal in α. If α contains only one literal, the assertion level
is defined to be zero.

Given a 1–inconsistent state, there always exists an asserting clause for it [16].
This result ensures that the execution of Line 10 of Algorithm 1 will always
succeed. This completes our description of CLR.

On the Power of Clause-Learning SAT Solvers with Restarts 659

3.2 Clause-Learning Schemes

CLR can employ various learning schemes to derive conflict clauses (Line 10).
Even though we insist on deriving asserting clauses in Algorithm 1, in general,
non-asserting clauses may be used.2 In our context, it is sufficient to view a learn-
ing scheme as a function that produces a conflict clause for every 1–inconsistent
SAT state. In this work, we will focus on a certain class of learning schemes
called asserting learning schemes, which always produces asserting clauses. We
will later show (in Proposition 3) that every asserting clause can essentially be
derived from a trivial resolution proof.

Given a learning scheme LS, we use CLRLS to denote the SAT algorithm
obtained by applying LS on Line 10 of Algorithm 1. We use CLR to denote the
algorithm with any learning scheme.

3.3 Non-determinism in CLR

Given a learning scheme LS, the only sources of non-determinism remaining
in CLRLS are (1) the branching heuristic, (2) the restart policy and (3) the
implementation of unit resolution.3

In this work, we utilize the notion of extended branching sequence (defined
by [4]) to capture (1) and (2). An extended branching sequence is simply a
sequence of literals and special symbol R that is used to control decision making
and restarting in CLR. For example, σ = 〈x,¬y,R,¬x〉 indicates that the first
decision should be x = true, the second decision should be y = false, then the
solver should restart, and set x = false next (unit resolution and conflict analysis
are applied normally between these steps). Given such a sequence σ, CLR(Δ, σ)
refers to the SAT state attained after executing CLR according to the decisions
and restarting points specified in σ (i.e., the choices on Lines 5 and 18 should be
made based on the next element in the sequence).4 For simplicity, we will insist
that CLR(Δ, σ) be a 1–consistent state (unless it contains the empty clause).5

Moreover, we shall use the notation CLR(Δ, σ) to also refer to the knowledge
base (original and learned) of the SAT state CLR(Δ, σ).

3.4 CLR as a Proof System

Modern clause-learning SAT solvers can be viewed as a proof system that con-
tains all proofs obtainable by executing the solver according to some decision
heuristic, restart policy, and implementation of unit resolution. If we view each
conflict clause as being derived from a resolution proof, we can combine these
2 Possibly at the expense of completeness.
3 The implementation of unit resolution may affect, for example, the order and deriva-

tions of unit implications, which, in practice, influence which conflict clauses even-
tually get derived.

4 A decision in σ should be skipped if its variable is already implied.
5 This only amounts to letting Algorithm 1 deal with conflicts until it reaches a 1–

consistent state.

660 K. Pipatsrisawat and A. Darwiche

sub-derivations into a resolution proof that is produced by the SAT solver. In
particular, if a given execution of CLR on an unsatisfiable problem produces con-
flict clauses C1, ..., Ck, we know that Σ = Δ∧C1∧ ...∧Ck is 1–inconsistent (this
is how the algorithm terminates). Let each clause Ci be derived using resolution
proof πi (from original and previously learned clauses), and τ be the unit reso-
lution derivation of false from Σ, then Π = π1, ..., πk, τ is the refutation proof
generated by this execution. For the purpose of this work, each πi can be viewed
as a trivial resolution derivation, whose size is at most linear in the number of
variables. We will later justify this claim in Proposition 3. In the following defi-
nition, which defines the proof system implemented by Algorithm 1, we overload
the notation CLR to refer to both the SAT algorithm and the proof system.

Definition 5. Given a learning scheme LS, proof system CLRLS consists of all
refutation proofs that can be generated by Algorithm 1 using learning scheme LS.

The main result of this work will show that, for all asserting learning schemes
LS, CLRLS p-simulates general resolution. Note that the size of τ is always at
most linear in the number of variables. Hence, we leave it out from our future
discussion and proofs.

4 Ingredients for the Main Result

In this section, we present three key results that allow us to prove the main
result. These results, some of which are interesting in their own rights, provide
insights on the power of CLR. They are made possible by two important concepts,
called 1–empowerment and 1–provability, which allow us to formalize the ability
of CLR and use it to simulate general resolution. We first give definitions of these
notions before presenting the results. The first notion is called 1–empowerment,
which is the ability of a clause to allow unit resolution to see a new implication.
We present here a slightly modified definition of the one presented in [16].

Definition 6 (1–Empowerment [16]). Let α ⇒ � be a clause where � is some
literal in the clause and α is a conjunction of literals. The clause is 1–empowering
with respect to CNF Δ iff

1. Δ |= (α ⇒ �): the clause is implied by Δ.
2. Δ ∧ α is 1–consistent: Asserting α does not result in a conflict that is de-

tectable by unit resolution.
3. Δ ∧ α �- �: the literal � cannot be derived from Δ ∧ α using unit resolution.

In this case, � is called an empowering literal of the clause. On the other hand,
a clause implied by Δ that is not 1–empowering is said to be absorbed by Δ.6

A clause implied by Δ is 1–empowering if it allows unit resolution to derive a new
implication that would be impossible to derive without the clause. For example,

6 This terminology, “absorbed”, was introduced in [1].

On the Power of Clause-Learning SAT Solvers with Restarts 661

consider Δ = (a∨b∨c)∧(a∨b∨¬c)∧(a∨¬b∨c)∧(a∨¬b∨¬c)∧(¬c∨d)∧(c∨e).
The clause (a ∨ b) is 1–empowering with respect to Δ because unit resolution
cannot derive a from Δ ∧ ¬b. On the other hand, (d ∨ e), which is implied by
Δ, is not 1–empowering (i.e., is absorbed), because unit resolution can already
derive e from Δ∧¬d and derive d from Δ∧¬e. Note that if clause C subsumes
clause C′ (i.e., C ⊆ C′), then C absorbes C′. Moreover, adding more clauses to
the knowledge base may make a 1–empowering clause become absorbed but can
never make an absorbed clause become 1–empowering. Every asserting clause is
1–empowering with respect to the knowledge base at the time of its derivation
with its asserted literal as an empowering literal [16].

The second key notion, called 1–provability, is related to the difficulty of
deriving a clause from a CNF.

Definition 7 (1–Provability). Given a CNF Δ, clause C is 1–provable with
respect to Δ iff Δ ∧ ¬C - false.

If a clause is 1–provable with respect to a given CNF, then we can show that it is
implied by the CNF using only unit resolution. For example, consider Δ defined
above. The clauses (a∨b) and (a) are both implied by Δ. In this case, the clause
(a ∨ b) is 1–provable with respect to Δ, because unit resolution is sufficient to
derive a contradiction after we assert the negation of the clause on top of Δ.
However, this is not the case for (a) (thus, it is not 1–provable). Notice that,
according to Definition 3, every conflict clause is 1–provable with respect to the
knowledge base at the time of its derivation. Moreover, a 1–provable clause still
remains 1–provable after a clause is added to the knowledge base.

We are now ready to present the results, whose proofs are in the Appendix.
The first key result states that, in every refutation proof of a 1–consistent CNF,
there is always a clause that is both 1–empowering and 1–provable with respect
to the CNF.

Proposition 1. Let Δ be an unsatisfiable CNF that is 1–consistent and Π be a
refutation proof of Δ. There exists a clause C ∈ Π such that C is 1–empowering
and 1–provable with respect to Δ.

The set of clauses which are both 1–empowering and 1–provable plays an im-
portant role in our main proof. In the next result, we show that CLR with any
asserting learning scheme can absorb such clauses in a quadratic number of deci-
sions. This result essentially states that, given any 1–empowering and 1–provable
clause C, we can always come up with a (short) sequence of appropriate decisions
(and restarts) to force CLR with an asserting learning scheme to derive clauses
that, together with the original knowledge base, allow unit resolution to see any
implication that C may allow us to derive (i.e., render C useless, as far as unit
resolution is concerned).

Proposition 2. Let Δ be a CNF with n variables and C be a clause that is 1–
empowering and 1–provable with respect to Δ. For any asserting learning scheme
AS, there exists an extended branching sequence σ such that

662 K. Pipatsrisawat and A. Darwiche

1. |σ| ∈ O(n2).
2. C is absorbed by CLRAS(Δ, σ).

Because of this result, we will call any clause that is both 1–empowering and
1–provable with respect to the given CNF Δ, CLR-derivable with respect to Δ.

The next result states that every 1–empowering conflict clause can always be
derived using a trivial resolution derivation from the original and learned clauses
at the time of the conflict.7

Proposition 3. Let S = (Δ, Γ, D) be a 1–inconsistent SAT state and C be a
conflict clause of S that is 1–empowering with respect to Δ ∧ Γ . There exists a
trivial resolution proof of some C′ ⊆ C from Δ ∧ Γ .

Since all resolved variables are distinct in a trivial resolution proof, the size of
the proof has to be in O(n), where n is the number of variables of Δ. This result
is important as it shows that every empowering learning scheme (including any
schemes yet to be conceived) can essentially be “implemented” with the kind of
resolution derivation already employed by modern clause-learning SAT solvers.
Since every asserting clause is 1–empowering, this result applies to all asserting
learning schemes as well.

5 Main Result

In this section, we present our main result, which shows that the proof system
implemented by modern clause-learning SAT solvers is as powerful as general
resolution. We first present our main result in its most general form, then derive
a corollary which is more closely related to modern SAT solvers.

Theorem 1. CLR with any asserting learning scheme p-simulates general reso-
lution.

This result is applicable to a class of clause-learning algorithms that is even more
general than what is used in practice (for example, it applies to any asserting
learning scheme not yet proposed). By restricting the learning scheme, we obtain
a more concrete result. Let 1UIP denote the first UIP learning scheme [13,20],
which is, by far, the most popular scheme in practice.

Corollary 1. CLR1UIP p-simulates general resolution.

We will give an intuitive proof sketch for the main theorem before presenting
the actual proof. In contrast to the proofs presented in [4], [10], and [5], we do
not try to simulate the derivation of every clause in the given resolution proof.
Instead, we force CLR to go after CLR-derivable clauses only.

Suppose Δ has n variables. Let Π be a refutation proof of Δ and AS be
an asserting learning scheme. If Δ is already 1–inconsistent the proof is trivial.
7 This result can be viewed as a variation on Proposition 4 of [4] for our definition of

conflict clauses and 1–empowering clauses.

On the Power of Clause-Learning SAT Solvers with Restarts 663

Otherwise, we know that we can always find a CLR-derivable clause C in Π .
We know that we can force CLR to absorb C while producing proofs whose
combined size is only polynomial in n. We can keep repeating this process until
the knowledge base becomes 1–inconsistent. Since this can go on for at most |Π |
times, the combined proof is polynomial in |Π | and n.

Proof of Theorem 1. Suppose AS is an asserting learning scheme. Given a
CNF Δ with n variables and any refutation proof Π of Δ, we will construct
an extended branching sequence σ that will induce CLRAS to derive the empty
clause and generate a proof of size O(n2|Π |).

In each iteration, consider Σ = Δ∧Γ , the current knowledge base of CLRAS .
We may assume that Σ is 1–consistent. From Proposition 1, we can always find
a clause C in Π that is CLR-derivable from Σ. Since we are using an asserting
learning scheme, Proposition 2 tells us that such a clause can be absorbed in
O(n2) decisions and restarts. After absorbing C, we force the solver to restart.
Let Σ now denote the updated knowledge base. Since Π is still a refutation
proof of Σ, we can still find another CLR-derivable clause as long as Σ is still 1–
consistent. We repeat this process until Σ is 1–inconsistent, at which point CLR
terminates on Line 9 of Algorithm 1. In each iteration, we absorb at least one
clause in Π (no absorbed clause can become 1–empowering after we add more
clauses to the knowledge base) and perform only O(n2) decisions and restarts.
The proof of Proposition 2 actually shows that at most O(n) conflicts are needed
to absorb each CLR-derivable clause. Hence, by Proposition 3, we know that each
iteration produces a proof whose length is at most in O(n2). Therefore, we can
use CLRAS to produce a refutation proof of Δ with size O(n2|Π |). 	

The next result shows that not only can we construct a CLR refutation proof
with length polynomial in the size of any resolution proof, but the construction
process can be carried out in polytime as well.

Theorem 2. The extended branching sequence required for the simulation in
Theorem 1 can be constructed in time polynomial in the sizes of the given refu-
tation proof and of the given CNF.

It suffices to show that finding a CLR-derivable clause in any given refutation
proof (with respect to any 1–consistent CNF) can be done in polytime. For each
clause Ci in the proof, checking if Ci is 1–provable only requires conditioning and
closing the knowledge base under unit resolution. This can be achieved in time
linear in the size of the CNF. Checking whether a literal is an empowering literal
of a clause can be performed by asserting the negations of the other literals in
the clause and see whether unit resolution can detect a conflict or derive the
remaining literal from the knowledge base or not. This process, whose time
complexity is linear in the size of the CNF, needs to be repeated for each literal
in the clause. Therefore, the overall time complexity for finding a CLR-derivable
clause is still polynomial in the sizes of the proof and the CNF.

664 K. Pipatsrisawat and A. Darwiche

(¬a v e)

(¬a v¬c)

e

(¬c v¬e)

¬e

(¬c v d)

¬a

(a v¬c v d)

a

(¬b v¬c)

d

(b v¬c)

d

(¬b v¬d)

¬d

(¬a v¬b)

c

(¬a v e)

(¬a v c)

e

(c v¬e)

¬e

¬c

(¬a)

¬b

(¬a v b)

b

false

¬a

(b v¬d)

¬d

(a v b)

¬c

(a v c v f)

(a v c)

f

(a v c v¬f)

¬f

c

(a v¬b v f)

(a v¬b)

f

(a v¬b v¬f)

¬f

(a)

¬bb

a

Fig. 1. A refutation proof of Δ. Each resolvent has two incoming edges from its resolved
clauses (original clauses have no incoming edges). Each edge is annotated with the
resolved literal of the corresponding resolved clause.

5.1 Example

We now show an example of the simulation described in the proof of Theorem 1.
Consider the following unsatisfiable CNF:

Δ = (¬a ∨ e), (¬c ∨ ¬e), (a ∨ ¬c ∨ d), (¬b ∨ ¬d), (c ∨ ¬e), (¬a ∨ b),
(a ∨ ¬b), (a ∨ c ∨ f), (a ∨ c ∨ ¬f), (b ∨ ¬d), (a ∨ ¬b ∨ f), (a ∨ ¬b ∨ ¬f).

Figure 1 shows a refutation proof of Δ. Alternatively, we can write this proof as

Π = (¬a ∨ e), (¬c ∨ ¬e), (¬a ∨ ¬c), (a ∨ ¬c ∨ d), (¬c ∨ d),
(¬b ∨ ¬d), (¬b ∨ ¬c), (c ∨ ¬e), (¬a ∨ c), (¬a ∨ ¬b), (¬a ∨ b),
(¬a), (b ∨ ¬d), (b ∨ ¬c), (a ∨ c ∨ f), (a ∨ c ∨ ¬f), (a ∨ c), (b ∨ d),
(a ∨ ¬b ∨ f), (a ∨ ¬b ∨ ¬f), (a ∨ ¬b), (a), false.

Initially, one of the CLR-derivable clauses in Π is (¬b∨¬c) and ¬c is the empow-
ering literal. If the solver assigns b = true and c = true, unit resolution will detect
a conflict. In this case, (¬b∨¬c) and (¬c∨d) are both asserting clauses. Suppose
(¬b∨¬c) is learned. After adding (¬b∨¬c) to the knowledge base, (¬c∨ d) and
(¬b ∨ ¬c), for example, become absorbed. Next, we force the solver to restart.
Suppose we choose (¬a) as the next CLR-derivable clause to absorb. We must
now force the solver to set a = true, which will immediately cause a conflict. In
this case, (¬a) is derived. Once again, we force the solver to restart. Suppose we

On the Power of Clause-Learning SAT Solvers with Restarts 665

select (a ∨ ¬b) as the next CLR-derivable clause. We must now force the solver
to set a = false, b = true. Since ¬a is already implied by the last learned clause,
the solver can skip the decision on a and only needs to assert b = true to cause a
conflict. From this conflict, assume that the asserting clause (a ∨¬b) is learned.
Adding this clause into the knowledge base will actually cause it to become 1–
inconsistent. Hence, the solver can now terminate, as unit resolution can derive
false from the set of original and learned clauses. The whole extended branching
sequence used in this process is 〈b, c,R, a,R,¬a, b〉.

6 Related Work

Early work in this direction was published by Beame et al in [4]. In that work,
the authors showed that a slight variation of modern SAT solvers can simulate
general resolution. However, one key modification required by the proof is to
allow the solvers to make decisions on variables that are already assigned. This
requirement essentially introduces another degree of freedom, which makes it
harder to come up with a good decision heuristic and to actually implement in
practice. It is interesting to note that the proof in [4] also requires the solver to
restart at every conflict.

Van Gelder proposed a different proof system called POOL for studying mod-
ern SAT solvers as resolution engines [19]. In that work, the author focused on
understanding the strength of POOL and using it to model modern SAT solvers.
The author did not directly compare modern SAT solvers against general reso-
lution.

Nevertheless, POOL later became a basis of the work by Hertel et al [10],
which proved that modern SAT solvers can effectively p-simulate general resolu-
tion. In other words, the authors showed that, with an additional preprocessing
step, modern solvers can become as strong as general resolution. While the pre-
processing is deterministic and independent of the proof being simulated, it can
be regarded as an extra component not utilized by any solver in practice.

Buss et al [5] also presented a similar argument. The authors showed that
with a preprocessing step (different from the one in [10]), a generalized version of
clause-learning algorithm can p-simulate general resolution. Apart from requiring
an extra preprocessing step, the proof also needed the solver to make decisions
on assigned variables.

7 Conclusions and Discussion

In this paper, we proved that clause-learning SAT solvers that utilize restarts
correspond to a proof system that is as powerful as general resolution. Our work
improves on previous results by avoiding the needs for additional degrees of
non-determinism and preprocessing. Our proof is made possible by the notions
of 1–empowerment and 1–provability, which allow us to capture the power of
modern SAT solvers in a more direct and natural way, and to avoid the need for
any special technique. The result presented in this paper essentially shows that

666 K. Pipatsrisawat and A. Darwiche

modern SAT solvers, as used in practice, are capable of simulating any resolution
proof (given the right branching and restarting heuristics, of course).

Note that the our proof requires the solver to restart at every conflict. While
no actual solver utilizes this particular restart policy, the proof suggests that a
frequent restart policy might be a key to the efficiency of modern solvers. In our
proof, restarting gives the solver the freedom to go after any clause necessary
for a short refutation. Interestingly, in recent years, there has been a clear trend
towards more and more frequent restarts for modern SAT solvers (e.g., [11], [14]).

In spite of our result, more theoretical work still remains to be done in this
research direction. The construction of our proof requires the solver to backtrack
to the top level upon each conflict (i.e., restart). While it is easy to implement
such a strategy, in practice, state-of-the-art solvers only backtrack to the asser-
tion level at each conflict (this type of backtracking is termed far-backtracking
in [18]). It still remains an open question whether far-backtracking (or even
chronological backtracking) is sufficient to achieve the presented result.

References

1. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. In: SAT 2009 (to appear, 2009)

2. Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S., Sais, L.: A generalized
framework for conflict analysis. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008.
LNCS, vol. 4996, pp. 21–27. Springer, Heidelberg (2008)

3. Bayardo, R.J.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of AAAI 1997, pp. 203–208 (1997)

4. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. JAIR 22, 319–351 (2004)

5. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolu-
tion refinements that characterize DLL algorithms with clause learning. Logical
Methods in Computer Science 4, 4 (2008)

6. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symb. Log. 44(1), 36–50 (1979)

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

8. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

9. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial
search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer,
Heidelberg (1997)

10. Hertel, A.P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effec-
tively p-simulate general propositional resolution. In: Proc. of AAAI 2008, pp.
283–290 (2008)

11. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proc. of
IJCAI 2007, pp. 2318–2323 (2007)

12. Marques-Silva, J.P., Sakallah, K.A.: GRASP - A New Search Algorithm for Satis-
fiability. In: Proceedings of ICCAD 1996, pp. 220–227 (1996)

13. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient sat solver. In: Proceedings of DAC 2001 (June 2001)

On the Power of Clause-Learning SAT Solvers with Restarts 667

14. Pipatsrisawat, K., Darwiche, A.: Width-based restart policies for clause-learning
satisfiability solvers. In: Proceedings of SAT 2009 (to appear, 2009)

15. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: Sat solver description. Tech. Rep. D–153,
Automated Reasoning Group, Comp. Sci. Department, UCLA (2007)

16. Pipatsrisawat, K., Darwiche, A.: A new clause learning scheme for efficient unsat-
isfiability proofs. In: Proceedings of AAAI 2008, pp. 1481–1484 (2008)

17. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM 12(1), 23–41 (1965)

18. Sang, T., Beame, P., Kautz, H.: Heuristics for fast exact model counting. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 226–240. Springer,
Heidelberg (2005)

19. Van Gelder, A.: Pool resolution and its relation to regular resolution and dpll with
clause learning. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI),
vol. 3835, pp. 580–594. Springer, Heidelberg (2005)

20. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in boolean satisfiability solver. In: ICCAD 2001, pp. 279–285 (2001)

A Proofs

In this appendix, we present proofs of Propositions 1, 2, 3. The proof of Propo-
sition 1 is accomplished with the help of two lemmas.

Lemma 1. Let C1 = α ∨ �, C2 = β ∨ ¬�. Suppose C1 and C2 are not 1–
empowering with respect to Δ. Then, α ∨ β is 1–provable with respect to Δ.

Proof. Let C = α∨β. Since both C1, C2 are not 1–empowering, we know that
Δ∧¬α - � and Δ∧ ¬β - ¬�.8 Therefore, unit resolution must be able to derive
both � and ¬� from Δ ∧ ¬C = Δ ∧ ¬α ∧ ¬β. Therefore, C is 1–provable with
respect to Δ. 	

Lemma 2. Let C be a clause that is not 1–provable with respect to Δ and Π be
a resolution proof of C from Δ. Then, there exists C′ ∈ Π, C′ �= C, such that C′

is CLR-derivable from Δ.

Proof. Let Π = C1, ..., Cn and Ci be the first clause in Π that is not 1–
provable with respect to Δ (i may be equal to n). Clearly, Ci must be the
resolvent of two 1–provable clauses Cj , Ck for some j, k < i. Assume for the sake
of contradiction that Cj , Ck are both not 1–empowering. Lemma 1 implies that
Ci must be 1–provable, which is a contradiction. Hence, either Cj or Ck must
be both 1–provable and 1–empowering. 	

Proof of Proposition 1. Given a 1–consistent CNF Δ, it is easy to see that
the empty clause (false) is not 1–provable with respect to Δ (otherwise, Δ would
be 1–inconsistent by definition). Since every refutation proof contains the empty
clause, Lemma 2 implies that the proof Π must contain a clause that is both
1–empowering and 1–provable. 	
8 It is also possible that asserting ¬α or ¬β may result in a 1–inconsistent CNF. We

omit this case as C is trivially 1–provable.

668 K. Pipatsrisawat and A. Darwiche

Next, we present the proof of Proposition 2.

Proof of Proposition 2. Let C = (α∨�) be the clause under consideration and
� be an empowering literal. Moreover, let δ be an extended branching sequence
consisting of the literals in ¬α in any order. Since C is 1–empowering, the SAT
state right after asserting δ must be 1–consistent (�). Moreover, because C is
1–empowering and 1–provable, at this point, neither � nor ¬� can be implied by
unit resolution.9 Hence, CLR can select ¬� as the next decision. The 1–provability
of C ensures that asserting δ together with ¬� will result in a 1–inconsistent state
S (��).

Let D be the asserting clause derived by AS from S. If Δ ∧D absorbs C, we
are done. Otherwise, we add D to the knowledge base, restart, and repeat this
whole process. We will now argue that this can only be repeated O(n) times.

Every asserting clause learned in the process must generate at least one new
implication (i.e., its asserted literal) under a subset of δ. In every iteration, at
least one more literal that was implied at the conflict level will now be implied
by the time that δ is asserted. Because of (�) and (��), which hold in every
iteration, a conflict only happens after ¬� is asserted (thus, after δ is asserted).
This implies that, in our proof, once a literal becomes an asserted literal of some
asserting clause, it will never be assigned at any future conflict level again. Thus,
each literal can only become an asserted literal (of any clause) only once in this
whole process.

Since there are only n variables, this can be repeated at most O(n) times be-
fore the empowering literal (�) itself is implied by the assertion of some asserting
clause. Whenever that happens, it means that the clause C has already been
absorbed. The resulting extended branching sequence σ alternates between δ,¬�
and R. Since each iteration takes at most |C| + 1 decisions, the size of σ is in
O(n2). 	

Note that the above proof only requires O(n) conflicts to absorb a CLR-derivable
clause. Next we prove Proposition 3.

Proof of Proposition 3. Let C = (α∨ �) and � be its empowering literal. Let
σ be a branching sequence consisting of the literals of ¬α (in any order) followed
by ¬�. Let DEC be the decision learning scheme (as defined based on implication
graph in Section 2 of [20]). In this scheme, conflict clauses contain only literals
of decision variables.

Asserting σ will result in a conflict and DEC will derive an asserting clause
C′ which consists entirely of the negations of decision literals. Since the decisions
in δ are all negations of literals in C, we have C′ ⊆ C. Since DEC is a learning
scheme based on implication graph, Proposition 4 of [4] implies that every conflict
clause produced by it, C′ in particular, can be derived using a trivial resolution
proof. 	

9 That � is not implied is straightforward. If ¬� was implied, the current state would
be 1–inconsistent, because C is 1–provable. This contradicts (�).

Slice Encoding for Constraint-Based Planning

Cédric Pralet and Gérard Verfaillie

ONERA, 2 avenue Édouard Belin, BP 74025, 31055 Toulouse Cedex 4, France
{Cedric.Pralet,Gerard.Verfaillie}@onera.fr

Abstract. In most of the constraint-based approaches to planning, the
problem is unfolded over a given number of steps. Because this unfolded
CSP encoding is very time and memory consuming, we propose on top of
the CNT framework (Constraint Networks on Timelines) a more efficient
slice CSP encoding which allows only a limited number of steps to be
considered at each step of the search.

1 Introduction

In planning problems [1], we are looking for a plan that satisfies some proper-
ties and optimizes some criterion, but whose length i.e., the number of steps it
involves, is unknown and possibly unbounded. To overcome such a difficulty, fol-
lowing the seminal work of [2], constraint-based approaches to planning [3,4,5,6]
model as a CSP the problem of finding a plan of fixed length H , with H in-
cremented each time no plan of length H has been found. On the other hand,
the CNT framework (Constraint Network on Timelines [7]) allows the length of
the plan to be considered as a variable h, with a domain and with constraints
linking it to any other variables. Following the lazy approach of [8], the problem
can be unfolded only over the number of steps induced by the minimum value
in the domain of h and extended only when this minimum value increases due
to constraint propagation or branching choice.

However, what is common to all these approaches is an unfolded CSP en-
coding of the planning problem over a fixed or variable number of steps. Such
an encoding may be very costly in terms of memory required to store all the
data structures necessary to define and to manage the CSP and in terms of time
required to create the CSP and to perform constraint propagation and search.
For example, we observed some minutes or tens of minutes to create the CSP
on some instances we wanted to solve. On some of them, there was even not
enough memory to create the CSP without memory swaps. This led us to search
for more compact CSP encodings of planning problems.

This paper presents the so-called slice encoding we developed on top of the
CNT framework to allow only a limited number of steps, depending on the
constraint graph structure, to be considered at each step of the search. The
paper is organized as follows: first, the CNT framework is defined again via an
illustrative example; second, the slice encoding is defined as well as a generic
algorithm able to reason and to search on it; finally, experiments on planning
benchmarks show its dramatic impact in terms of memory and time.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 669–683, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

670 C. Pralet and G. Verfaillie

2 The CNT Framework

2.1 An Illustrative Example

Let us consider the following planning problem which is a very simplified version
of a real mission management problem for an Earth observation satellite.

We assume a satellite able to perform observations of specified areas of the
Earth’s surface. We consider a planning horizon [Ts..T e] ([a..b] denotes the set of
integers between a and b). We assume N candidate observations on this horizon,
numbered from 1 to N . Each observation k ∈ [1..N] has a starting time Ts[k]
and an ending time Te[k], with Ts < Ts[k] < Te[k] < Te. Two observations
cannot overlap. To perform an observation, the instrument must be switched
on at least Δon before starting observing. The instrument is initially off. Solar
panels deliver a power Pe. When the instrument is on, a power Ce > Pe is
consumed. The initial energy level is Ei. Its minimum and maximum levels are
Emin and Emax. All data are assumed to be positive integers. The objective is
to maximize the number of observations performed.

instrument

energy

observations

(a)

(b)

Emax

Emin

on

o1 o3 o5

o1 o3 o5

o4o2

Ts Te

off

Fig. 1. Graphical representation of an instance (a) and of an optimal solution (b) of
the mission management problem for an Earth observation satellite

Figure 1a represents an instance of this problem. Observations o1 and o2 are
incompatible because of overlapping. Similarly, observation o4 is incompatible
with o3 and o5 because of overlapping. Figure 1b is a graphical representation
of an optimal solution of this instance. Only observations o1, o3, and o5 are
performed. The instrument remains on between o3 and o5 because of insufficient
time to switch it off. We can observe that the evolution of the energy level
depends only on the status of the instrument. Let us use this planning problem
to illustrate the basic definitions of the CNT framework.

2.2 Horizon Variables

Horizon variables are used to represent the number of steps to be considered.

Slice Encoding for Constraint-Based Planning 671

Definition 1. A horizon variable h is a variable whose domain of values is any
subset of N. We will use D(h) to denote the domain of a horizon variable h.

In the planning problem described above, it may be useful to consider two horizon
variables: a horizon variable ho to represent the number of steps in terms of
observation and another one hi to represent the number of steps in terms of
instrument status. If we associate a step with the start and the end of the
horizon and with the start and the end of each observation performed, D(ho) =
[2..2N +2]: at least 2 steps when no observation is performed and at most 2N +2
steps when all the candidate observations are performed. In the same way, if we
associate a step with the start and the end of the horizon and with each instant
at which the status of the instrument changes, D(hi) = D(ho).

2.3 Time References and Timelines

Time references represent the temporal positions of the successive steps.

Definition 2. A time reference t is a pair 〈D, h〉 where D is any subset of R

and h a horizon variable. D is the domain of values of t and h is its horizon
i.e., the number of steps in t. We will use D(t) and h(t) to denote respectively
the domain and the horizon of a time reference t.

In our planning problem, we can consider two time references: one time refer-
ence to associated with observation, with h(to) = ho and D(to) = {Ts, T e} ∪
(∪N

k=1{Ts[k], T e[k]}), and one time reference ti associated with instrument sta-
tus, with h(ti) = hi and D(ti) = {Ts, T e} ∪ (∪N

k=1 {Ts[k] − Δon, T e[k]}) (it
would be counterproductive to switch the instrument on strictly more than Δon
before starting observing and to switch it off strictly after ending observing).

Timelines are used to represent the values of the relevant attributes of the
system at the successive steps.

Definition 3. A timeline x is a pair 〈D, t〉 where D is the domain of values of
x and t its time reference. We will use D(x) and t(x) to denote respectively the
domain and the time reference of a timeline x. For brevity, we will often use
h(x) to denote the horizon of the time reference of a timeline x: h(x) = h(t(x)).

In our planning problem, we can consider three timelines: a timeline no to rep-
resent the number of the starting observation if any, a timeline in to represent
the current instrument status, and a timeline en to represent the current level of
energy, with t(no) = to and t(in) = t(en) = ti (timelines in and en are fully syn-
chronized). Moreover, we have D(no) = [0..N] (0 when no observation is start-
ing), D(in) = {0, 1} (0 when the instrument is off), and D(en) = [Emin..Emax].

2.4 Static and Dynamic Variables

Definition 4. A static variable is either a horizon variable, or any other vari-
able independent from time references and timelines.

672 C. Pralet and G. Verfaillie

In our planning problem, it may be convenient to associate with each candidate
observation k ∈ [1..N] a variable st[k] of domain [0..2N + 2] to represent the
observation step at which observation k is performed (0 when k is not performed).
It may be also convenient to use a static variable obj of domain [0..N] to represent
the number of observations performed.

Dynamic variables are associated with steps of time references and timelines.

Definition 5. A time reference t (resp. timeline x) and an assignment H of its
horizon variable together induce a finite set of variables {ti | i ∈ [1..H]} (resp.
{xi | i ∈ [1..H]}). This set is empty when H = 0. All these variables share the
same domain of values D(t) (resp. D(x)).

See Fig. 2 for a graphical representation of time reference ti and timeline en
when h(ti) = 4. For example, variable ti3 represents the temporal position of
step 3 and variable en3 the energy level at step 3.

ti2 ti

en1

en2

en3

en4

ti1 ti3 ti4

en

Fig. 2. Graphical representation of time reference ti and timeline en

2.5 Static and Dynamic Constraints

Static constraints are used to limit the possible assignments of static variables.

Definition 6. A static constraint c is simply a CSP constraint [9] whose scope
is limited to static variables.

In our planning problem, the following static constraints can be defined:

obj = card{k ∈ [1..N] | st[k] �= 0} (1)
(Even(hi)) ∧ (Even(ho)) ∧ (hi ≤ ho) (2)

Constraint 1 defines the objective to be maximized as the number of observations
performed. Constraint 2 limits the values of horizon variables hi and ho.

Dynamic constraints are used to limit the possible combinations of assignments
of static and dynamic variables. The difficulty is that the set of dynamic variables
associated with time references and timelines is not fixed. It depends on the
assignments of the horizon variables. This leads us to a definition of a dynamic
constraint which is not as obvious as the previous definitions are. We will use
several examples to illustrate it.

Slice Encoding for Constraint-Based Planning 673

Definition 7. A dynamic constraint c is a tuple 〈S, D, f〉 where S is a finite set
of static variables, D is a finite set of time references and timelines, and f is a
function which associates a finite set of CSP constraints with each assignment
H of the horizon variables of the timelines and time references in D. Variables
in the scope of these induced CSP constraints must be either static variables in
S or dynamic variables in the set of dynamic variables induced by H for time
references and timelines in D.

In our planning problem, the following dynamic constraints can be defined:

(to1 = Ts) ∧ (no1 = 0) ∧ (toho = Te) ∧ (noho = 0) (3)
∀i ∈ [2..ho− 1], (noi = 0)↔ (noi−1 �= 0) (4)
∀k ∈ [1..N], ∀i ∈ [2..ho], (noi−1 = k) → ((toi−1 = Ts[k]) ∧ (toi = Te[k])) (5)
∀k ∈ [1..N], ∀i ∈ [1..ho], (noi = k)↔ (st[k] = i) (6)
(ti1 = Ts) ∧ (in1 = 0) ∧ (en1 = Ei) ∧ (tihi = Te) ∧ (inhi = 0) (7)
∀i ∈ [2..hi− 1], ini �= ini−1 (8)
∀i ∈ [2..hi], eni = min(Emax, eni−1 + (tii − tii−1) · (Pe− Ce · ini−1)) (9)
∀i ∈ [2..ho], (noi−1 �= 0)→ (DuringV al(in, 1, toi−1 −Δon, toi)) (10)

More precisely, Constraints 3 and 7 define the initial and final states. With regard
to Definition 7, a constraint like toho = Te is a dynamic constraint defined
by the tuple c = 〈∅, {to}, f〉 with f the function which associates with each
assignment H of ho the unique unary CSP constraint toH = Te on dynamic
variable toH . Constraint 4 defines the alternation of observation starting and
ending for timeline no. It corresponds to a dynamic constraint defined by the
tuple c = 〈∅, {no}, f〉 with f the function which associates with each assignment
H of ho the set {(noi = 0)↔ (noi−1 �= 0) | i ∈ [2..H−1]} of (H−2) binary CSP
constraints, each one connecting dynamic variables noi and noi−1.

Constraint 5 links timeline no and time reference to. Together with the basic
assumption of the CNT framework according to which temporal positions in any
time reference are totally and strictly ordered (see Sect. 2.6 below), it guarantees
that there is no overlapping between observations. Constraint 6 enforces consis-
tency between timeline no and static variables st[k]. Constraint 8 defines the
alternation of values 0 and 1 for timeline in. Constraint 9 describes the way the
energy level evolves. Note that the minimum level of energy Emin is guaranteed
via the domain of timeline en. Constraint 10 uses a special constraint called
DuringVal (not detailed here) and guarantees that the instrument is switched
on at least Δon before starting observing and that it remains on until ending
observing. Such a constraint is called a synchronization constraint because it
links timeline no and timeline in, which do not share the same time reference.

2.6 Constraint Networks on Timelines (CNTs)

All these definitions can be put together in order to define constraint networks
on timelines.

674 C. Pralet and G. Verfaillie

Definition 8. A constraint network on timelines is a tuple N =
〈V, CS, T, X, CD〉 where V is a finite set of static variables, CS is a finite set
of static constraints whose scopes are included in V , T is a finite set of time
references whose horizons belong to V , X is a finite set of timelines whose time
references belong to T , and CD is a finite set of dynamic constraints whose
scopes in terms of static variables, time references, and timelines are respec-
tively included in V , T , and X.

It is assumed that a default dynamic constraint ct is associated with each time
reference t ∈ T . This constraint enforces that the temporal variables associated
with t are totally and strictly ordered: ∀t ∈ T, ∀i ∈ [1..h(t)− 1], ti < ti+1.

The CNT which results from the modeling of our planning problem is defined
by the tuple 〈V, CS, T, X, CD〉, with V = {ho, hi, obj} ∪ {st[k] | k ∈ [1..N]},
CS = {ci | i ∈ [1..2]}, T = {to, ti}, X = {no, in, en}, and CD = {ci | i ∈ [3..10]}.

2.7 Assignments, Solutions, Consistency, and Optimality

Definition 9. An assignment of a CNT N is an assignment of all its static
variables (including all the horizon variables) and of all the induced dynamic
variables. A solution is an assignment of N such that all its static constraints
and all the CSP constraints induced by all its dynamic constraints are satisfied.
A CNT is consistent if and only if it admits a solution. An objective variable
obj is a static variable which is a function of other static or dynamic variables
and whose domain is equipped with a total order �. A solution Sol is optimal iff
there is no other solution Sol′ such that Sol′[obj] � Sol[obj].1

In our planning problem, obj = npo and �=>. Figure 3 represents an optimal
solution of the CNT which results from the modeling of the instance of our plan-
ning problem described in Fig. 1a, with Ts = 0, Te = 58, Δon = 3, Pe = 20,
Ce = 22, Ei = 150, Emin = 50, and Emax = 300. This is a tabular represen-
tation of the solution described in Fig. 1b. Assignments of static variables are
omitted.

step 1 2 3 4 5 6 7 8
to 0 4 14 24 34 36 52 58
no 0 1 0 3 0 5 0 0
ti 0 1 14 21 52 58
in 0 1 0 1 0 0
en 150 170 144 284 222 300

Fig. 3. Optimal solution of the CNT resulting from the modeling of the instance of
the mission management problem described in Fig. 1a

1 A[v] denotes the value of variable v in assignment A.

Slice Encoding for Constraint-Based Planning 675

2.8 Comparison with Other Modeling Frameworks

From the constraint programming point of view, a CNT is a kind of dynamic
(conditional) CSP [10] whose dynamic aspect comes from the assignment of the
horizon variables and from the definition of the dynamic constraints. The CNT
framework is in some way more specialized because it aims at modeling specific
systems: discrete event dynamic systems. This justifies the presence of the basic
notions of horizon and time, which do not appear in standard dynamic CSPs.

From the planning point of view, contrarily to classical frameworks such as
PDDL [11], built around the notions of action, precondition, effect, duration, and
resource consumption, the CNT framework is a more basic modeling framework,
built around the notions of time reference, timeline, and constraint. This allows
complex dynamic phenomena to be modeled. According to several features, the
CNT framework is close to the CAIP framework used in the EUROPA planning
system [12]. But the CNT framework is a pure CSP framework, which inherits
the clear semantics and the flexibility of CSPs.

3 Slice CSP Encoding of Stationary Constraints

We can now present the slice CSP encoding of CNTs we propose. For the moment,
this encoding is limited to CNTs where static constraints are of any kind, but
dynamic ones are limited to so-called stationary dynamic constraints. Although
such constraints already allow a wide range of planning problems to be modeled,
extension to other dynamic constraints is discussed in Sect. 3.3.

3.1 Stationary Dynamic Constraints

To define stationary dynamic constraints, we first define constraint generators.

Definition 10. A constraint generator c is a tuple c = 〈S, G, R〉 such that:

– S is a finite set of static variables;
– G is a finite sequence of pairs 〈x,−k〉 where x is either a time reference or

a timeline and k a positive integer, and such that all time references and
timelines x involved in G share the same horizon variable, denoted h(c);

– R is a subset of Πv∈SD(v)×Π(x,−k)∈GD(x), implicitly or explicitly defined.

For each x involved in G, we will use m(c, x) to denote the memory of x in c,
defined as m(c, x) = max{k | 〈x,−k〉 ∈ G}. Finally, we will use m(c) to denote
the memory of c, defined as m(c) = max{m(c, x) | 〈x, .〉 ∈ G}.

Definition 11. Let c = 〈S, G, R〉 be a constraint generator. Given i ∈ [m(c) +
1.. max(D(h(c)))], the CSP constraint ci generated by c at step i is a constraint
whose scope is S∪{xi−k | 〈x,−k〉 ∈ G} and relation is R. The dynamic constraint
generated by c is defined by the tuple 〈S, D, f〉 where D = {x | 〈x, .〉 ∈ G},
and f is the function which associates with each assignment H of h(c) the set
{ci | i ∈ [m(c) + 1..H]} of CSP constraints i.e., the dynamic constraint ∀i ∈
[m(c) + 1..h(c)], ci.

676 C. Pralet and G. Verfaillie

Such a dynamic constraint is referred to as a stationary dynamic constraint be-
cause relation R does not depend on i. For example, let us consider the constraint
generator c = 〈∅, {〈in, 0〉, 〈in,−1〉}, R〉, where in is the timeline introduced in
Sect. 2 and R is the relation which includes all pairs (a, b) such that a �= b.
Intuitively, this constraint generator states that the value of timeline in at the
current step must differ from the value of timeline in one step before. The mem-
ory of in in c is m(c, in) = 1, which informally means that one step before
the current step needs to be considered for in. In this case, the memory of c
is m(c) = 1 too. For each i ∈ [m(c) + 1.. max(D(hi))], the CSP constraint ci

generated by c at step i is ini �= ini−1 and the stationary dynamic constraint
generated by c is ∀i ∈ [2..hi], ini �= ini−1.

When relation R depends on i, it is possible to remain stationary by intro-
ducing a timeline st(h(c)) whose value at each step i is equal to i. This im-
plies introducing the stationary dynamic constraint ∀i ∈ [2..h(c)], st(h(c))i =
st(h(c))i−1 +1 together with the special initialization constraint st(h(c))1 = 1.2
For example, constraint ti1 = Ts can be defined as the stationary dynamic con-
straint ∀i ∈ [1..hi], (st(hi)i = 1) → (tii = Ts) and constraint tihi = Te as the
stationary dynamic constraint ∀i ∈ [1..hi], (st(hi)i = hi)→ (tii = Te).

In the following, given the bijection existing between a constraint generator
and its associated stationary dynamic constraint, constraint generators are di-
rectly considered as stationary dynamic constraints.

3.2 Slice Encoding of Stationary CNTs

It is now possible to define stationary CNTs and their slice encoding:

Definition 12. A stationary CNT N = 〈V, CS, T, X, CD〉 is a CNT such that
all the dynamic constraints in CD are stationary.

For each time reference or timeline x ∈ T ∪X, m(x) denotes the memory of
x, defined as m(x) = max{m(c, x) | c ∈ CD}.

Definition 13. Let N = 〈V, CS, T, X, CD〉 be a stationary CNT. The slice en-
coding of N is the CSP 〈slV(N), slC(N)〉 such that:

– slV(N) is the set of slice variables generated by N , defined as V ∪{x(−k) | (x ∈
T ∪ X) ∧ (k ∈ [0..m(x)])} with D(x(−k)) = D(x) for each k (x(−k) is just a
variable name);

– slC(N) is the set of slice constraints generated by N , defined as CS ∪
{c(0) | c ∈ CD} where, for each constraint generator c = 〈S, G, R〉 ∈ CD,
c(0), called the slice constraint associated with c, is the CSP constraint whose
scope is S ∪ {x(−k) | 〈x,−k〉 ∈ G} and relation is R.

Given a stationary CNT, its slice encoding can be built automatically. For ex-
ample, let us consider the part of our illustrative planning problem limited to
2 This special initialization constraint, which is not stationary, will be handled specif-

ically by the algorithms defined in Sect. 4 (see function sliceSolve).

Slice Encoding for Constraint-Based Planning 677

horizon variable hi, time reference ti, timelines in and en, and Constraints 7
to 9. To get a slice encoding, a timeline st(hi) is introduced to represent the cur-
rent step and Constraints 7 to 9 are transformed into the following stationary
dynamic constraints (associated constraint generators are omitted):

∀i ∈ [2..hi], st(hi)i = st(hi)i−1 + 1 (11)
∀i ∈ [1..hi], (st(hi)i = 1)→ ((tii = Ts) ∧ (ini = 0) ∧ (eni = Ei)) (12)
∀i ∈ [1..hi], (st(hi)i = hi)→ ((tii = Te) ∧ (ini = 0)) (13)
∀i ∈ [1..hi], (2 ≤ st(hi)i ≤ hi− 1)→ (ini �= ini−1) (14)
∀i ∈ [1..hi], (st(hi)i ≥ 2)→

(eni = min(Emax, eni−1 + (tii − tii−1) · (Pe− Ce · ini−1))) (15)

In this particular case, all the time references and timelines have a memory of 1.
But, in general, time references and timelines can have any memory greater than
or equal to 0. According to Def. 13, the resulting slice encoding is as follows:

st(hi)(0) = st(hi)(−1) + 1 (16)
(st(hi)(0) = 1)→ ((ti(0) = Ts) ∧ (in(0) = 0) ∧ (en(0) = Ei)) (17)
(st(hi)(0) = hi)→ ((ti(0) = Te) ∧ (in(0) = 0)) (18)
(2 ≤ st(hi)(0) ≤ hi− 1)→ (in(0) �= in(−1)) (19)
(st(hi)(0) ≥ 2)→

(en(0) = min(Emax, en(−1) + (ti(0) − ti(−1)) · (Pe− Ce · in(−1)))) (20)

Informally speaking, the slice encoding of a CNT contains all the constraints
that must be checked at each step with regard to previous steps. Contrarily
to an unfolded encoding whose size is in the best case a linear function of the
number of steps to be considered, the size of a slice encoding is constant, only
a function of the time reference and timeline memories. In this case, it involves
only 8 variables and 5 constraints.

Step 1 2 3 4 5 6 7 8 9 10
in in1 in2 in3 in4 in5 in6 in7 in8 in9 in10

en en1 en2 en3 en4 en5 en6 en7 en8 en9 en10

ti ti1 ti2 ti3 ti4 ti5 ti6 ti7 ti8 ti9 ti10
Unfolded CSP encoding

st(hi) st(hi)(−1) st(hi)(0)

in in(−1) in(0)

en en(−1) en(0)

ti ti(−1) ti(0)

Slice CSP encoding

Fig. 4. Comparison between a unfolded and a slice CSP encoding when hi = 10

678 C. Pralet and G. Verfaillie

3.3 Extension to Other Constraints

The slice encoding presented in Sect. 3.2 works only on stationary dynamic
constraints, that is on constraints that link dynamic variables that share the
same horizon variable. For example, Constraint 10 in our illustrative planning
problem, which links time reference to, timeline no, and timeline in in order to
synchronize observations and instrument status, cannot be managed.

Fortunately, if each horizon is used by at most one time reference, it is pos-
sible to produce an automatic slice encoding (not detailed here) of so-called
synchronization dynamic constraints, which use functions linking timelines hav-
ing distinct time references, like DuringV al. When an horizon h is shared by two
references t, t′, it is always possible to create an additional variable h′, to take
h(t′) = h′ instead of h(t′) = h, and to add constraint h = h′, so that h is used
by only one time reference. As a result, it is possible to build a complete slice
encoding of our illustrative planning problem and of many similar problems.

However, some constraints, such as allDifferent(xi | i ∈ [1..h(x)]), remain
uncovered. To deal with them, several options could be considered: to exhibit an
automatic slice encoding as done with synchronization dynamic constraints, to
reformulate the constraint by introducing additional variables in order to get a
stationary dynamic constraint, or to come back to an unfolded encoding for x.

4 Reasoning and Searching on a Slice CSP Encoding

Functions 1, 2, 3, and 4 show the pseudo-code of an algorithm able to reason
and to search on a slice encoding of any stationary CNT.

Algorithm 1. Main function
N = 〈V, CS, T, X, CD〉 a stationary CNT, with H the set of horizon variables1
sliceSolve(N)2
begin3

slV ← V ∪ {x(−k) | (x ∈ T ∪ X) ∧ (k ∈ [0..m(x)])}4

slC ← CS ∪ {c(0) | c ∈ CD}5
A ← {}6

foreach h ∈ H do D(st(h)(0)) ← {1}7
(slV, slC, A) ← propagateAndShift(N, slV, slC, A)8
return recSolve(N, slV, slC, A)9

end10

The main function sliceSolve automatically creates the slice encoding from
the definition of the static and dynamic constraints, launches the system by
setting to 1 the value at slice 0 of the step variable associated with each horizon
variable, then calls functions propagateAndShift and recSolve.

Function recSolve is a standard depth-first tree search algorithm. The only
restriction is that variables on which to branch must be either static variables

Slice Encoding for Constraint-Based Planning 679

Algorithm 2. Recursive search function
recSolve(N, slV, slC, A)1
begin2

nasV ← {v ∈ V | (|D(v)| > 1)}3

nadV ← {x(0) | (x ∈ T ∪X)∧(|D(x(0))| > 1)∧(st(h(x))(0) ≤ min(D(h(x))))}4
naV ← nasV ∪ nadV5
if (naV = ∅) then6

return A.{(v, a) | v ∈ V, a ∈ D(v)}7

else8
(A′′, opt) ← (null, +∞)9
choose v ∈ naV and a partition {d1, d2} of D(v)10
for i = 1 to 2 do11

D(v) ← di12
(slV ′, slC′, A′) ← propagateAndShift(N, slV, slC∪{obj < opt}, A)13
if (∀v′ ∈ slV ′, |D(v′)| > 0) then A′ ← recSolve(N, slV ′, slC′, A′)14
if (A′ �= null) then (A′′, opt) ← (A′, A′[obj])15

return A′′16

end17

or dynamic variables at slice 0 when the minimum value in the domain of the
associated horizon variable makes this slice mandatory. This allows the search
to be performed systematically forward.

Algorithm 3. Propagate and shift function
propagateAndShift(N, slV, slC, A)1
begin2

(slV, slC) ← propagate(slV, slC)3
shift ← true4
while ((∀v ∈ slV, |D(v)| > 0) ∧ shift) do5

shift ← false6

shH ← {h ∈ H | (∀x ∈ X ∪ T |h(x) = h, |D(x(0))| = 1) ∧ (st(h)(0) ≤7
min(D(h)))}
if (shH �= ∅) then8

foreach h ∈ shH do (slV, slC, A) ← shift(N, h, slV, slC, A)9
(slV, slC) ← propagate(slV, slC)
shift ← true10

return (slV, slC, A)11

end12

Function propagateAndShift alternates classical propagations and shifts. Shifts
occur on a horizon variable h each time all the associated dynamic variables at
slice 0 are assigned and the minimum value in the domain of h makes a shift
mandatory (the horizon is not reached yet).

680 C. Pralet and G. Verfaillie

Algorithm 4. Shift function
shift(N, h, slV, slC, A)1
begin2

foreach c ∈ CD | h(c) = h do3

slC ← slC ∪ {project(c(0), V)}4
reinit(c)5

foreach x ∈ X ∪ T |h(x) = h do6
A ← A.{(xst(h)(0) , x

(0))}7

for k = m(x) to 1 do D(x(−k)) ← D(x(−k+1))8

D(x(0)) ← D(x)9

return (slV, slC, A)10

end11

(-1) (0)
st [0..4] [0..4]
in 0, 1 0, 1
en [2..10] [2..10]
ti 0, 2, 6, 8 0, 2, 6, 8

h : [2..4]
Slice encoding

(a)

(-1) (0)
st [0..4] 1
in 0, 1 0, 1
en [2..10] [2..10]
ti 0, 2, 6, 8 0, 2, 6, 8

h : [2..4]
Initialization

(b)

(-1) (0)
st 0 1
in 0, 1 0
en [2..10] 4
ti 0, 2, 6, 8 0

h : [2..4]
Propagation

(c)

(-1) (0)
st 1 [0..4]
in 0 0, 1
en 4 [2..10]
ti 0 0, 2, 6, 8

h : [2..4]
Shift
(d)

(-1) (0)
st 1 2
in 0 0, 1
en 4 [5..8]
ti 0 2, 6, 8

h : [2..4]
Propagation

(e)

(-1) (0)
st 1 2
in 0 0, 1
en 4 [5..8]
ti 0 2

h : [2..4]
Choice ti(0)=2

(f)

(-1) (0)
st 1 2
in 0 1
en 4 5
ti 0 2

h : 4
Propagation

(g)

(-1) (0)
st 2 [0..4]
in 1 0, 1
en 5 [2..10]
ti 2 0, 2, 6, 8

h : 4
Shift
(h)

(-1) (0)
st 2 3
in 1 0, 1
en 5 ∅

ti 2 6, 8
h : 4

Propagation
Inconsistency

(i)

(-1) (0)
st 1 2
in 0 0, 1
en 4 [5..8]
ti 0 6, 8

h : [2..4]
Backtrack to e
Post ti(0) �= 2

(j)

(-1) (0)
st 1 2
in 0 0, 1
en 4 [7..8]
ti 0 6, 8

h : [2..4]
Propagation

(k)

(-1) (0)
st 1 2
in 0 0, 1
en 4 [7..8]
ti 0 8

h : [2..4]
Choice

ti(0) = 8
(l)

(-1) (0)
st 1 2
in 0 0
en 4 8
ti 0 8

h : 2
Propagation
→Solution

(m)

Fig. 5. An example of execution of the algorithm (st stands for st(hi))

Slice Encoding for Constraint-Based Planning 681

As for function shift, it handles changes to be performed on the slice encoding
when shifting. First, each dynamic constraint is projected to take into account
the assignment of dynamic variables before forgetting it. For example, let us
assume a constraint x(0) ≤ v where x is a timeline and v a static variable. Let
us assume that x must be shifted and that x(0) = 3. Constraint 3 ≤ v must be
posted before shifting the slice encoding. Second, dynamic variable assignments
at slice 0 are recorded and shifting operations are performed. Note that, due to
the shifting operations, the domain of a dynamic variable x(−k) may decrease or
increase. This contrasts with classical CSP solving where variable domains can
only decrease along a search branch.

To make things more concrete, we show in Fig. 5 an example of execution of
the algorithm previously described on a very small instance of the slice encoding
defined by Constraints 16 to 20 in Sect. 3.2. We assume the following data:
Ts = 0, Te = 8, N = 1, Ts[1] = 5, Te[1] = 6, Δon = 3, Pe = 0.5, Ce = 1.5,
Ei = 4, Emin = 2, and Emax = 10. In fact, there is only one candidate
observation which requires the instrument to be on at least over the interval
[2..6]. Figures 5a and 5b show the slice encoding and the initialization. Figures 5c
to 5e show an alternation of propagations and shifts. Figure 5f shows a branching
choice followed by another alternation of propagations and shifts (Figs. 5g to 5i)
which ends with inconsistency detection (there is not enough energy to switch
on the instrument). After a backtrack (Fig. 5j) followed by an alternation of
propagations and choices (Figs. 5k to 5m), a solution is found (the instrument
is not switched on and the candidate observation is not performed).

It can be proved that, if all domains are finite (including the domains of the
horizon variables), then this algorithm terminates and returns an optimal solu-
tion when the CNT is consistent and no solution when it is inconsistent. The key
to the proof is the fact that, thanks to the forward approach, for each stationary
dynamic constraint of the form ∀i ∈ [m(c) + 1..h(c)], ci , the algorithm guaran-
tees at each step the satisfaction of the constraint ∀i ∈ [m(c)+1..st(h(c))(0)], ci.

5 Experiments

The algorithm defined in Sect. 4 has been implemented in a CNT solver called
SCOT (Solver for Constraints On Timelines) developed on top of the Choco2 con-
straint solver (http://choco-solver.net). The implementation includes the man-
agement of synchronization dynamic constraints. As SCOT can handle unfolded
and slice encodings of a same CNT, we are able to compare both approaches. Ex-
periments were run on a SunUltra45, 1.6GHz, 1GBRAM.

Figure 6 shows the memory and time consumed by CSP creation on three
planning problems of the International Planning Competition. The time limit
was of 30 minutes. Unsurprisingly, results show the dramatic impact of a slice
encoding. On the third problem, which involves synchronization constraints, an
unfolded encoding cannot be produced within the time limit except for two
instances, whereas a sliced encoding can be built for all instances.

682 C. Pralet and G. Verfaillie

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16 18

m
od

el
 m

em
or

y
(in

 M
o)

instance number

unfolded encoding
slice encoding

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16 18 20

instance number

unfolded encoding
slice encoding

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16 18 20

instance number

unfolded encoding
slice encoding

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18

m
od

el
 c

re
at

io
n

tim
e

(in
 s

ec
.)

instance number

unfolded encoding
slice encoding

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18 20

instance number

unfolded encoding
slice encoding

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18 20

instance number

unfolded encoding
slice encoding

blocks-world problem satellite-time problem trucks-time problem

Fig. 6. CSP creation (first row: memory; second row: time)

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40

unfolded encoding
slice encoding

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40

unfolded encoding
slice encoding

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 20 40 60 80 100 120 140

unfolded encoding
slice encoding

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 20 40 60 80 100 120 140

unfolded encoding
slice encoding

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 0 200 400 600 800 1000 1200 1400 1600 1800

unfolded encoding
slice encoding

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 0 200 400 600 800 1000 1200 1400 1600 1800

unfolded encoding
slice encoding

satellite-time-5 satellite-time-10 satellite-time-15

Fig. 7. Evolution of the makespan (y-axis) with cpu-time in seconds (x-axis)

Figure 7 shows the anytime quality profiles, i.e. the way plan quality evolves
with cpu-time, on three instances of the second problem (satellite-time). On
these instances, plan quality corresponds to the makespan, to be minimized.
The profiles include the time necessary to create the problem. Search algorithm
parameters used are the same for both encodings. Again, results show the posi-
tive impact of the slice encoding. On the three instances, the algorithm working
on a slice encoding is already producing good quality solutions when the same
algorithm working on an unfolded encoding is still creating the CSP. However,
the search with a slice encoding can start faster than the search with an un-
folded encoding but be overtaken by the latter one. This is due to contradictory
effects of the slice encoding: it generates smaller problems, but it limits look-
ahead propagation and can result finally in a slower search. To make up for this
negative effect, slice encodings with limited look-ahead could be considered.

The comparison of SCOT with other planners is out of the scope of this paper
and can be found in [13].

Slice Encoding for Constraint-Based Planning 683

6 Conclusion

This paper shows (1) that the slice encoding is an alternative to the usual un-
folded CSP encoding of planning problems, (2) that it is equivalent to the un-
folded one thanks to a forward search approach and to changes in standard
CSP algorithms, and (3) that it is far more efficient in terms of memory and
time required by CSP creation and in terms of anytime quality profile. Finally,
we would like to acknowledge the Choco2 developers for fruitful interactions,
especially Hadrien Cambazard and Charles Prud’homme.

References

1. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann, San Francisco (2004)

2. Kautz, H., Selman, B.: Planning as Satisfiability. In: Proc. of the 10th European
Conference on Artificial Intelligence (ECAI 1992), Vienna, Austria, pp. 359–363
(1992)

3. van Beek, P., Chen, X.: CPlan: A Constraint Programming Approach to Planning.
In: Proc. of the 16th National Conference on Artificial Intelligence (AAAI 1999),
Orlando, FL, USA, pp. 585–590 (1999)

4. Do, M., Kambhampati, S.: Planning as Constraint Satisfaction: Solving the
Planning-Graph by Compiling it into CSP. Artificial Intelligence 132(2), 151–182
(2001)

5. Miguel, I., Shen, Q., Jarvis, P.: Efficient Flexible Planning via Dynamic Flexible
Constraint Satisfaction. Engineering Applications of Artificial Intelligence 14(3),
301–327 (2001)

6. Lopez, A., Bacchus, F.: Generalizing GraphPlan by Formulating Planning as a
CSP. In: Proc. of the 18th International Joint Conference on Artificial Intelligence
(IJCAI 2003), Acapulco, Mexico, pp. 954–960 (2003)

7. Verfaillie, G., Pralet, C., Lemaître, M.: Constraint-based Modeling of Discrete
Event Dynamic Systems. Journal of Intelligent Manufacturing (2008) (published
online)

8. Pralet, C., Verfaillie, G.: Using Constraint Networks on Timelines to Model and
Solve Planning and Scheduling Problems. In: Proc. of the 18th International Con-
ference on Automated Planning and Scheduling (ICAPS 2008), Sydney, Australia,
pp. 272–279 (2008)

9. Rossi, R., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier, Amsterdam (2006)

10. Mittal, S., Falkenhainer, B.: Dynamic Constraint Satisfaction Problems. In: Proc.
of the 8th National Conference on Artificial Intelligence (AAAI 1990), Boston, MA,
USA, pp. 25–32 (1990)

11. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

12. Frank, J., Jónsson, A.: Constraint-Based Attribute and Interval Planning. Con-
straints 8(4), 339–364 (2003)

13. Pralet, C., Verfaillie, G.: Forward Constraint-based Algorithms for Anytime Plan-
ning. In: Proc. of the 19th International Conference on Automated Planning and
Scheduling (ICAPS 2009), Thessaloniki, Greece (2009)

Evolving Parameterised Policies for
Stochastic Constraint Programming�

Steven Prestwich1, S. Armagan Tarim2, Roberto Rossi3, and Brahim Hnich4

1Cork Constraint Computation Centre, University College Cork, Ireland
2Operations Management Division, Nottingham University Business School, Nottingham, UK

3Logistics, Decision and Information Sciences Group, Wageningen UR, The Netherlands
4Faculty of Computer Science, Izmir University of Economics, Turkey

s.prestwich@cs.ucc.ie, armtar@yahoo.com,
roberto.rossi@wur.nl, brahim.hnich@ieu.edu.tr

Abstract. Stochastic Constraint Programming is an extension of Constraint
Programming for modelling and solving combinatorial problems involving un-
certainty. A solution to such a problem is a policy tree that specifies decision vari-
able assignments in each scenario. Several solution methods have been proposed
but none seems practical for large multi-stage problems. We propose an incom-
plete approach: specifying a policy tree indirectly by a parameterised function,
whose parameter values are found by evolutionary search. On some problems
this method is orders of magnitude faster than a state-of-the-art scenario-based
approach, and it also provides a very compact representation of policy trees.

1 Introduction

Stochastic Constraint Programming (SCP) is a recently proposed extension of Con-
straint Programming (CP) designed to model and solve complex problems involving
uncertainty and probability, a direction of research first proposed in [2]. Stochastic Con-
straint Satisfaction Problems (SCSPs) are in a higher complexity class than Constraint
Satisfaction Problems (CSPs) and usually harder to solve.

An m-stage SCSP is defined as a tuple (V, S, D, P, C, Θ, L) where V is a set of
decision variables, S a set of stochastic variables, D a function mapping each element
of V ∪S to a domain of values, P a function mapping each variable in S to a probability
distribution, C a set of constraints on V ∪ S, Θ a function mapping each constraint in
C to a threshold value θ ∈ (0, 1], and L = (〈V1, S1〉, . . . , 〈Vm, Sm〉) a list of decision
stages such that the Vi partition V and the Si partition S. Each constraint must contain
at least one V variable, a constraint h ∈ C containing only V variables is a hard
constraint with threshold Θ(h) = 1, and one containing at least one S variable is a
chance constraint. To solve an m-stage SCSP an assignment to the variables in V1 must
be found such that, given random values for S1, assignments can be found for V2 such
that, given random values for S2, . . . assignments can be found for Vm so that, given

� B. Hnich is supported by the Scientific and Technological Research Council of Turkey
(TUBITAK) under Grant No. SOBAG-108K027. This material is based in part upon works
supported by the Science Foundation Ireland under Grant No. 05/IN/I886.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 684–691, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Evolving Parameterised Policies for Stochastic Constraint Programming 685

random values for Sm, the hard constraints are each satisfied and the chance constraints
(containing both decision and stochastic variables) are satisfied in the specified fraction
of all possible scenarios (set of values for the stochastic variables). A useful concept is
that of a policy tree of decisions, in which each node represents a value chosen for a
decision variable, and each arc from a node represents the value assigned to a stochastic
variable. Each path in the tree represents a different possible scenario and the values
assigned to decision variables in that scenario. A satisfying policy (tree) is a policy tree
in which each chance constraint is satisfied with respect to the tree. A chance constraint
h ∈ C is satisfied with respect to a policy tree if it is satisfied under some fraction
φ ≥ Θ(h) of all possible paths in the tree.

As an example, consider a 2-stage SCSP with V1 = {x1}, S1 = {s1}, V2 = {x2}
and S2 = {s2}. Let dom(x1) = [1, 4], dom(x2) = [3, 6], dom(s1) = [4, 5] and
dom(s2) = [3, 4] where [a, b] represents the discrete interval {i ∈ Z | a ≤ i ≤ b},
and the stochastic variable values each have probability 0.5. There are two chance con-
straints c1: (s1x1 + s2x2 ≥ 30) and c2: (s2x1 = 12) with θc1 = 0.75 and θc2 = 0.5.
Decision variable x1 must be set to a unique value while the value of x2 depends on
that of s1. A policy for this problem is shown in Figure 1: notice that it is in the form
of a tree. The 4 scenarios A, B, C and D each have probability 0.25. Constraint c1 is
satisfied in A, C and D therefore with probability 0.75. Constraint c2 is satisfied in A
and C therefore with probability 0.5. These probabilities satisfy the thresholds θc1 , θc2

so this is a satisfying policy.

x1=3

x2=4 x2=6

s1=5s1=4

s2=3 s2=4 s2=3 s2=4

A B C D

Fig. 1. Example of a satisfying policy tree

No practical way of solving large multi-stage SCSPs has yet been proposed. The
design of local search algorithms for SCP has been suggested [20] in order to improve
scalability but this idea does not seem to have been pursued, and it does not address
the problem of representing large policy trees. We propose a novel approach: using an
evolutionary algorithm to choose parameter values for a parameterised function that
indirectly specifies a policy tree. The result is an incomplete SCP algorithm that is
intended to scale well in two ways: a simple parameterised function can be used to
represent a large policy tree, and evolutionary search can handle problems with many
decision variables.

686 S. Prestwich et al.

The paper is organised as follows. Section 2 describes how to evolve parameterised
functions that specify policies. Section 3 shows empirically that an evolutionary algo-
rithm can find a function representing a satisfying policy. Section 4 discusses related
work. Section 5 concludes the paper.

2 Evolving Parameterised Policies

Instead of explicitly representing a policy tree we use a parameterised function τw,
whose input is the current stochastic variable assignments and a decision variable, and
whose output is a domain value for that variable. Its parameters w = (w1, w2. . . .) are
real-valued numbers which we shall call weights. τw completely defines the policy tree,
and if it does not require an exponential number of weights then it avoids the memory
problem associated with large trees. For any given function there exist policy trees that
cannot be represented, and there is a risk that these are the only satisfying policy trees,
but the hope is that relatively simple functions will suffice for most problems of interest.

To simplify the discussion we consider only SCSPs whose decision and stochastic
variable domains are intervals [L, U] of integer values, but the method easily generalises
to variables with other domains. We assume a fixed ordering of the problem variables
(any ordering that conforms to the stage structure will do). First we compute an affine
function

αw(S, xj) = wj +
∑
i∈σj

wisi

where σj denotes the set of indices of the stochastic variables S that precede decision
variable xj . This is the simplest possible function that involves all relevant stochastic
variables; we do not claim that it will suffice for all SCSPs, but it requires only a linear
number of weights and works well in experiments so far (see Section 3). The constant
wj is necessary because in the case of a decision variable xj that is not preceded by any
stochastic variable (so that σj = ∅) we require a default value: in the special cases of
a deterministic CSP or a 1-stage SCSP no decision variable is preceded by a stochastic
variable, so the policy is simply a weight wj for each decision variable xj . Note that the
stochastic variables Sm (those in the final stage) do not precede any decision variables,
and therefore do not appear in w: thus they do not appear in the policy, though they are
used to evaluate it.

However, the value of αw(S, xj) is a real number and not a domain value, so to
obtain an integer in [L, U] it is discretised by truncation, then modular arithmetic is
used to obtain an integer in the required range:

τw(S, xj) = L + (.αw(S, xj)/ mod [U − L + 1])

Now w defines a policy: for each decision variable xj we choose its value to be τw(S, xj).
For example, consider a 3-stage problem with V1 = {x1, x2}, S1 = {s1, s2}, V2 =

{x3, x4}, S2 = {s3, s4}, V3 = {x5, x6} and S3 = {s5, s6}. Suppose we wish to find
the value of x3 given that s1 = 5, s2 = 7, dom(x3) = [5, 10] and our policy is specified
by a weight vector

w = (0.1, 5.3, 7.1, 9.9, 8.7, 4.1,−0.6, 5.5,−5.2, 2.9)

Evolving Parameterised Policies for Stochastic Constraint Programming 687

Notice that w has 10 components though there are 12 variables in the SCSP: this is
because the S3 variables do not precede any decision variables, as mentioned above.
Then

αw(S, x3) = 8.7 + 7.1s1 + 9.9s2 = 113.5

and

τw(S, x3) = 5 + (.113.5/ mod [10− 5 + 1]) = 5 + (113 mod 6) = 5 + 5 = 10

So under the policy defined by w, variable x3 is set to 10 under any scenario in which
s1 = 5 and s2 = 7.

Now that we have defined the form of our policies we can describe how to search
for them. The state space to be explored is the Cartesian product Rk representing the
space of real-valued weight vectors w, where k is the total number of SCP variables not
counting those in Sm. To handle the SCP constraints we use penalty functions to obtain
an unconstrained optimisation problem: this is a standard technique that penalises con-
straint violations, commonly used when applying genetic algorithms or local search to
CSPs. Specifically, the objective function to be minimised is

Φ(w) =
∑
h∈C

φ(h, w)

where the penalty functions are

φ(h, w) =
{

0 if πh(w) ≥ Θ(h)
Θ(h) − πh(w) if πh(w) < Θ(h)

and πh(w) is the probability that that h is satisfied under the policy defined by w. Any
policy defined by w such that Φ(w) = 0 is clearly a satisfying policy.

Given the search space and objective function we can apply an evolutionary (or local)
search algorithm to solve the problem. In this paper we do not describe the algorithm
we used in detail because our emphasis is on showing the feasibility of the approach.
Briefly, it is a cellular evolution strategy with Cauchy mutation, plus some additional
mutation heuristics designed for this application. Each chromosome is a weight vector
w, and for each chromosome we compute its fitness Φ(w) (fitness is conventionally
maximised but we minimise Φ). To compute the πh(w) we check every leaf node in
the implied policy tree. The probability associated with a leaf � is the product of the
probabilities associated with the stochastic variable assignments in the arcs of the path
leading to �. At each leaf a chance constraint h ∈ C is either satisfied or violated, and by
summing the probabilities of the leaves at which h is satisfied we obtain the probability
that πh(w) that h is satisfied under the policy defined by w. The πh(w) can also be
estimated by sampling the leaves using any of the scenario reduction techniques used
in [18], and this is important for problems with many stages. But we can sample many
more leaves than [18] because we do not use them to derive a deterministic CSP (in sec-
tion 3 we use over 1000 scenarios). Chance and hard constraints are treated uniformly:
the only difference between them is that a hard constraint h has Θ(h) = 1 while a
chance constraint has Θ(h) < 1. We could compute πh(w) for every chromosome by
using all leaves, but to be more efficient we use a number of leaves that depends on

688 S. Prestwich et al.

how promising the current fitness estimate is: only the fittest chromosomes (including
the one representing the satisfying policy tree) sample all leaves. To do this we use the
resampling scheme of [15].

We call our method EPP (Evolved Parameterised Policies). EPP transforms a multi-
stage SCSP into a noisy numerical optimisation problem. The word “noisy” here refers
to the fact that the objective function must be averaged over many scenarios. There are
many evolutionary algorithms designed to handle noisy fitness functions: see [3,9] for
surveys.

3 Experiments

In this section we show empirically that it is possible to find a satisfying policy us-
ing EPP. We use a benchmark set of random SCSPs with 5 chance constraints over 4
decision variables x1 . . . x4 and 8 stochastic variables s1 . . . s8. The decision variable
domains are the discrete intervals dom(x1) = [5, 10], dom(x2) = [4, 10], dom(x1) =
[3, 10] and dom(x2) = [6, 10]. The domains of stochastic variable s1, s3, s5, s7 contain
2 values while those of s2, s4, s6, s8 contain 3 values; in both bases the values are cho-
sen randomly from the discrete interval [1, 5] and have equal probabilities. The chance
constraints are:

x1s1 + x2s2 + x3s3 + x4s4 = 80 (θ = α)
x1s5 + x2s6 + x3s7 + x4s8 ≤ 100 (θ = β)
x1s5 + x2s6 + x3s7 + x4s8 ≥ 60 (θ = β)

x1s2 + x3s6 ≥ 30 (θ = 0.7)
x2s4 + x4s8 = 20 (θ = 0.05)

where α ∈ {0.005, 0.01, 0.03, 0.05, 0.07, 0.1} and β ∈ {0.6, 0.7, 0.8}. The problems
are 4-stage: V1 = {x1}, S1 = {s1, s5}, V2 = {x2}, S2 = {s2, s6}, V3 = {x3},
S3 = {s3, s7}, V4 = {x4} and S4 = {s4, s8}. In total we have 6 α-values and 3 β-
values, and we randomly generate 5 different sets of stochastic variable domains, giving
90 instances in total.

The table in Figure 2 compares the scenario-based approach (SBA) of [18] (see Sec-
tion 4) with EPP. All figures are in seconds and “—” denotes that the time is greater
than 200 seconds. All times were obtained on a 2.8 GHz Pentium (R) 4 with 512 MB
RAM, or on another machine then normalised to this one. EPP figures are medians over
30 runs. Both methods used all 24×34 = 1296 scenarios. Though these are quite small
SCSPs they turn out to be non-trivial for SBA, which transforms them into determin-
istic CSPs with 6739 variables and 6485 constraints. In contrast, EPP transforms them
into unconstrained noisy optimisation problems with 10 real-valued variables.

A clear pattern emerges from the results: where SBA solved a problem it was up to 48
times faster than EPP, but EPP solved every problem that SBA solved plus many more,
and in some cases EPP was at least 2000 times faster; EPP is on average much faster
than SBA. Where SBA and EPP both failed to solve an instance, the instance might be
infeasible. However, we do know that in a few cases both SBA and EPP failed to solve
a feasible instance (verified by further experiments) so there is room for improvement.
It might be that our parameterised policy space does not contain satisfying policies for
these problems, and that a more complex parameterised function is required.

Evolving Parameterised Policies for Stochastic Constraint Programming 689

problem set 1 problem set 2 problem set 3 problem set 4 problem set 5
α β SBA EPP α β SBA EPP α β SBA EPP α β SBA EPP α β SBA EPP

0.6 0.05 — 0.5 0.6 0.05 — 1.6 0.6 0.05 0.7 0.4 0.6 0.05 — 4.2 0.6 0.05 — 0.1
0.6 0.10 — 1.0 0.6 0.10 — 4.8 0.6 0.10 0.5 3.1 0.6 0.10 — — 0.6 0.10 — 0.5
0.6 0.12 — 0.9 0.6 0.12 — 14 0.6 0.12 0.5 3.1 0.6 0.12 — — 0.6 0.12 — 0.7
0.6 0.15 — 1.4 0.6 0.15 — 15 0.6 0.15 — 15 0.6 0.15 — — 0.6 0.15 — 0.8
0.6 0.17 — 1.7 0.6 0.17 — 118 0.6 0.17 — 14 0.6 0.17 — — 0.6 0.17 — 2.2
0.6 0.20 — 1.6 0.6 0.20 — — 0.6 0.20 — 49 0.6 0.20 — — 0.6 0.20 — 1.9
0.7 0.05 — 1.3 0.7 0.05 — 1.7 0.7 0.05 0.6 2.5 0.7 0.05 — 4.9 0.7 0.05 0.2 0.1
0.7 0.10 — 1.2 0.7 0.10 — 4.8 0.7 0.10 0.7 9.1 0.7 0.10 — — 0.7 0.10 — 0.4
0.7 0.12 — 1.3 0.7 0.12 — 16 0.7 0.12 0.6 12 0.7 0.12 — — 0.7 0.12 — 0.7
0.7 0.15 — 1.9 0.7 0.15 — 16 0.7 0.15 — 27 0.7 0.15 — — 0.7 0.15 — 0.8
0.7 0.17 — 2.7 0.7 0.17 — 144 0.7 0.17 — 46 0.7 0.17 — — 0.7 0.17 — 1.8
0.7 0.20 — 2.8 0.7 0.20 — — 0.7 0.20 — 159 0.7 0.20 — — 0.7 0.20 — 3.3
0.8 0.05 — 12 0.8 0.05 — 2.7 0.8 0.05 0.8 9.7 0.8 0.05 — 7.5 0.8 0.05 — 0.2
0.8 0.10 — 9.4 0.8 0.10 — 7.1 0.8 0.10 0.6 17 0.8 0.10 — — 0.8 0.10 — 0.9
0.8 0.12 — 11 0.8 0.12 — 20 0.8 0.12 0.6 29 0.8 0.12 — — 0.8 0.12 — 0.8
0.8 0.15 — 12 0.8 0.15 — 13 0.8 0.15 — 58 0.8 0.15 — — 0.8 0.15 — 1.2
0.8 0.17 — 15 0.8 0.17 — — 0.8 0.17 — 109 0.8 0.17 — — 0.8 0.17 — 1.6
0.8 0.20 — 13 0.8 0.20 — — 0.8 0.20 — — 0.8 0.20 — — 0.8 0.20 — 3.3

Fig. 2. Experimental results

4 Related Work

Several SCSP solution methods have been proposed. [20] presented two complete algo-
rithms based on backtracking and forward checking and suggested some approximation
procedures, while [1] described an arc-consistency algorithm. In the method of [18]
an SCSP is transformed into a deterministic equivalent Constraint Satisfaction Prob-
lem (CSP) and solved by standard CP methods. It is also extended to handle multiple
chance constraints and multiple objective functions. This method gives much better per-
formance on the book production planning problem of [20] compared to the tree search
methods. To reduce the size of the CSP scenario reduction methods are proposed, as
used in Stochastic Programming. These choose a small but representative set of sce-
narios. However, it might not always be possible to find a small representative set of
scenarios, and in some cases choosing an inappropriate set of scenarios can yield an un-
solvable CSP. Moreover, using even a modest number of scenarios leads to a CSP that
is several times larger than the original SCSP. [4] modify a standard backtracking al-
gorithm to one that can handle multiple chance constraints and uses polynomial space,
but is inefficient in time. [16] proposed a cost-based filtering technique for SCP. For
the special case of SCP with linear recourse, [19] propose a Bender’s decomposition
algorithm.

Stochastic Boolean Satisfiability (SSAT) is related to SCP. A recent survey of the
SSAT field is given in [13], on which we base this discussion. An SSAT problem can be
regarded as an SCSP in which all variable domains are Boolean, all constraints are ex-
tensional and may be non-binary, and all constraints are treated as a single chance con-
straint (there are also restricted and extended versions). Our method therefore applies

690 S. Prestwich et al.

immediately to SSAT problems. SSAT algorithms fall into three classes: systematic, ap-
proximation, and non-systematic. Systematic algorithms are based on the standard SAT
backtracking algorithm and correspond roughly to some current SCP algorithms. Ap-
proximation algorithms work well on restricted forms of SSAT but less well on general
SSAT problems. For example the APPSSAT algorithm [12] considers scenarios in de-
creasing order of probability to construct a partial tree, but does not work well when all
scenarios have similar probability. A non-systematic algorithm for SSAT is randevalssat
[10], which applies local search to the decision (existential) variables in a random set
of scenarios. This algorithm also suffers from memory problems because it must build
a partial tree.

5 Conclusion

We have proposed a method for SCP called EPP, based on the evolution of a param-
eterised function that indirectly specifies a policy tree. EPP does not suffer from the
memory problems of most methods and does not introduce a large number of new vari-
ables. It is also the first incomplete algorithm for SCP, and experiments show that on
some problems EPP is several orders of magnitude faster than the current best (com-
plete) method. It does not exploit constraint filtering techniques but these could perhaps
be used to handle hard constraints. EPP will also require slight modification for han-
dling variable domains that contain arbitrary integers or real numbers, and for handling
problems with objective functions. We will explore these issues in future work and test
EPP on more interesting SCP problems, and also on SSAT, QBF and QCSP problems
which can all be modelled as SCSPs.

EPP is closely related to a machine learning method that has been used for many
optimisation problems involving uncertainty: neuroevolution. In neuroevolution the pa-
rameterised function is an artificial neural network whose parameters are the network
weights, which are found by evolutionary search. Unlike our simple function, neural
networks are universal function approximators which can in principle approximate any
policy. They might turn out to be necessary for harder SCP problems, but on our bench-
mark set they had no effect other than to make the problem harder to solve, because they
must learn more weights. Neuroevolution has been applied to very challenging control
problems with good results: see for example [7,8,17]. It has also been used for learning
to play games such as Backgammon [14], Go [11], Checkers [5] and Chess [6]. These
successes indicate that EPP might work well on real-world SCP problems that are too
large to solve by complete methods.

References

1. Balafoutis, T., Stergiou, K.: Algorithms for Stochastic CSPs. In: Benhamou, F. (ed.) CP 2006.
LNCS, vol. 4204, pp. 44–58. Springer, Heidelberg (2006)

2. Benoist, T., Bourreau, E., Caseau, Y., Rottembourg, B.: Towards Stochastic Constraint Pro-
gramming: A Study of On-Line Multi-Choice Knapsack with Deadlines. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 61–76. Springer, Heidelberg (2001)

Evolving Parameterised Policies for Stochastic Constraint Programming 691

3. Beyer, H.-G.: Evolutionary Algorithms in Noisy Environments: Theoretical Issues and
Guidelines for Practice. Computer Methods in Applied Mechanics and Engineering 186(2-
4), 239–267 (2000)

4. Bordeaux, L., Samulowitz, H.: On the Stochastic Constraint Satisfaction Framework. In:
ACM Symposium on Applied Computing, pp. 316–320 (2007)

5. Fogel, D.B., Chellapilla, K.: Verifying Anaconda’s Expert Rating by Competing Against
Chinook: Experiments in Co-Evolving a Neural Checkers Player. Neurocomputing 42(1-4),
69–86 (2002)

6. Fogel, D.B., Hays, T.J., Hahn, S.L., Quon, J.: A Self-Learning Evolutionary Chess Program.
Proceedings of the IEEE 92(12), 1947–1954 (2004)

7. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Efficient Non-Linear Control Through Neu-
roevolution. Journal of Machine Learning Research 9, 937–965 (2008)

8. Hewahi, N.M.: Engineering Industry Controllers Using Neuroevolution. Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing 19(1), 49–57 (2005)

9. Jin, Y., Branke, J.: Evolutionary Optimization in Uncertain Environments — a Survey. IEEE
Transactions on Evolutionary Computation 9(3), 303–317 (2005)

10. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean Satisfiability. Journal of Au-
tomated Reasoning 27(3), 251–296 (2001)

11. Lubberts, A., Miikkulainen, R.: Co-Evolving a Go-Playing Neural Network. In: Genetic and
Evolutionary Computation Conference, pp. 14–19. Kaufmann, San Francisco (2001)

12. Majercik, S.M.: APPSSAT: Approximate Probabilistic Planning Using Stochastic Satisfia-
bility. International Journal of Approximate Reasoning 45(2), 402–419 (2007)

13. Majercik, S.M.: Stochastic Boolean Satisfiability. In: Handbook of Satisfiability, ch. 27, pp.
887–925. IOS Press, Amsterdam (2009)

14. Pollack, J.B., Blair, A.D.: Co-Evolution in the Successful Learning of Backgammon Strategy.
Machine Learning 32(3), 225–240 (1998)

15. Prestwich, S.D., Tarim, S.A., Rossi, R., Hnich, B.: A Steady-State Genetic Algorithm With
Resampling for Noisy Inventory Control. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C.,
Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 559–568. Springer, Heidelberg (2008)

16. Rossi, R., Tarim, S.A., Hnich, B., Prestwich, S.D.: Cost-Based Domain Filtering for Stochas-
tic Constraint Programming. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 235–250.
Springer, Heidelberg (2008)

17. Stanley, K.O., Miikkulainen, R.: Evolving Neural Networks Through Augmenting Topolo-
gies. Evolutionary Computation 10(2), 99–127 (2002)

18. Tarim, S.A., Manandhar, S., Walsh, T.: Stochastic Constraint Programming: A Scenario-
Based Approach. Constraints 11(1), 1383–7133 (2006)

19. Tarim, S.A., Miguel, I.: A Hybrid Bender’s Decomposition Method for Solving Stochastic
Constraint Programs with Linear Recourse. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F.
(eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 133–148. Springer, Heidelberg (2006)

20. Walsh, T.: Stochastic Constraint Programming. In: 15th European Conference on Artificial
Intelligence (2002)

Maintaining State in Propagation Solvers

Raphael M. Reischuk1, Christian Schulte2, Peter J. Stuckey3, and Guido Tack4

1 IS&C, Saarland University, Saarbrücken, Germany
reischuk@cs.uni-sb.de

2 KTH - Royal Institute of Technology, Sweden
cschulte@kth.se

3 National ICT Australia, Victoria Laboratory, Department of Computer Science
and Software Engineering, University of Melbourne, Australia

pjs@cs.mu.oz.au
4 PS Lab, Saarland University, Saarbrücken, Germany

tack@ps.uni-sb.de

Abstract. Constraint propagation solvers interleave propagation, re-
moving impossible values from variable domains, with search. The solver
state is modified during propagation. But search requires the solver to re-
turn to a previous state. Hence a propagation solver must determine how
to maintain state during propagation and forward and backward search.
This paper sets out the possible ways in which a propagation solver can
choose to maintain state, and the restrictions that such choices place on
the resulting system. Experiments illustrate the result of various choices
for the three principle state components of a solver: variables, propaga-
tors, and dependencies between them. This paper also provides the first
realistic comparison of trailing versus copying for state restoration.

1 Introduction

Constraint propagation solvers interleave propagation (removing impossible val-
ues from variable domains) with complete tree search. During propagation and
search, these solvers modify their state. Backtracking during search requires the
solvers to recover a state that is equivalent to a previous node in the search tree.

The state of a propagation solver, often called the constraint store, principally
represents three different kinds of information. (1) The information about what
variables are involved in the problem and what possible values they can take
(their domains); (2) the propagators implementing the constraints of the prob-
lem; and (3) dependencies between variables and propagators: which propagators
should be (re-)executed on changes to each variable domain.

Each of these kinds of information can change during search. (1) Variables’ do-
main information changes (the key state change made by a propagation solver).
New variables may be added by the search (this is uncommon) or by the de-
composition of existing propagators. Existing variables may become irrelevant
if they are involved in redundant constraints only and are not of interest in the
final solution. (2) Propagators can become propagation redundant (they cannot
have further effect) and can hence be deleted. New propagators can be added by

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 692–706, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Maintaining State in Propagation Solvers 693

the search. Propagators can replace themselves with more efficient versions (or
even split into multiple propagators) as execution proceeds. (3) Dependencies
between variables and propagators can change because a variable becomes irrel-
evant to a propagator (when the variable is fixed, for example). Dependencies
may change as execution proceeds, as in watched literals for Boolean clauses.

There are essentially two ways a propagation solver can store and access state
information:

globally: all search nodes access the same global state; and
locally: each search node has a local, independent copy of the state.

Given the way in which state information is stored, there may be restrictions on
its use. For global state information we have essentially three options:

static: this state may never be modified during the computation.
backtrack-safe: all changes made to the state are such that the state remains

equivalent to all previous states on the path from the root node to the
current node. The canonical example for this is watched literals for clausal
propagators [12]. Although the literals that are watched are modified as
search proceeds forward, the resulting state is correct for all previous states.

trailed: when backtracking to a previous node on the path from the root node,
any changes to the state between the current and the previous node are
undone. The mechanism for storing the undo information is called a trail.

For local state, there is only one option. The solver can make arbitrary changes,
as they only affect a single search node. Local state is implemented by combining
copying and recomputation: for some nodes in the search tree, a copy of the state
of that node is stored; when backtracking, the closest copy on the path from the
root is searched, copied, and the remaining search steps to the target node are
redone. Finally a fixpoint is computed for the target node.

Global and local storage approaches differ in how optimistic they are. Global
trailed state is optimistic in that it assumes that only a small part of the state
will need restoration upon backtracking; local (copied) state is pessimistic in
this sense. Both are pessimistic when it comes to search, as they assume that
eventually, the solver will have to backtrack. In this sense, recomputation for
local state is optimistic, as failure requires recomputation, which may be more
expensive than just untrailing the changes or restarting from a copy.

Due to the different nature of the two approaches, each has advantages over
the other. Global state using trailing (and other mechanisms where applicable)
offers several advantages over local state. First, less copying is required, since the
part that has changed can be substantially smaller than the entire state. Second,
backtracking is potentially cheaper than when using recomputation. Finally, it
is easier to share information (for example objective function values) between
search nodes, because information can be global. On the other hand, local state
which is copied and recomputed has the advantages of:

– Simplicity of propagator implementation: each propagator has its own local
state information that it can arbitrarily adjust;

694 R.M. Reischuk et al.

– Forward simplification, removing useless parts of the state such as propaga-
tion-redundant propagators (trailing systems must trail such removals);

– Tuning of required memory by adjusting recomputation parameters;
– Easy parallel search: each thread can work on a local copy independent of

the rest of the computation;
– Straightforward support for best-first search: moving to a different part of

the search tree just means moving to a different copy. A solver based on
global trailed state can only jump between nodes using recomputation [13].

Contributions. In this paper we explore the advantages and disadvantages of
different state restoration strategies, we show the interdependence of choices for
state restoration within a CP system, and we present experiments that measure
the performance for various choices in state restoration.

We give an architecture for a fully hybrid system that uses trailing for prop-
agators and recomputation for domains. The paper is the first to identify and
analyze the interdependence of important design decisions with respect to dif-
ferent state restoration strategies.

We provide the first comparison of trailing and recomputation based on a
production-quality system, Gecode [18]. Both trailing and copying use the same
propagation loop, search control, and (as far as possible) propagators and vari-
able data structures, resulting in meaningful results and a fair comparison.

2 Propagation Solvers

This section reviews the basic design of propagation solvers, and which stateful
entities they consist of.

The principle components of a constraint programming problem are: a set of
variables V each with a set of possible values, its domain D(v), v ∈ V and a set
of constraints C on variables V . A constraint c is implemented by a propagator
f which in the abstract is a function from domains to domains, e.g. f(D) = D′,
removing values from the domains of the variables in c that cannot take part in
any solution of c that is possible in the domain D.

In practice, attached to each variable v ∈ V is information about its current
domain D(v). In addition, for each event changing the variable’s domain, a
dependency list of propagators f (to be woken on this event) is also attached.
The usual set of events (for integer variables) consists of: fix , the variable becomes
fixed; bnd , the lower or upper bound of the variable changes; and dom , some
other change to the domain is made. Each propagator f stores at least the
variables vars(c) for the constraint c that it implements, as well as internal state
relevant to its implementation.

Search. The propagation solver interleaves propagation with search. A search
tree is constructed and explored incrementally. Each node n in the search tree
has an attached state Sn.

Search begins from a root node ε whose state reflects the original problem
after the propagation loop has executed (the state of a node always represents a

Maintaining State in Propagation Solvers 695

fixpoint of the propagation loop). Given a current node n we determine a set of
choice constraints c1, . . . , cm whose disjunction is a consequence of the current
state (for example v = d ∨ v �= d). The choice defines unexplored child nodes
ni = n.ci. To visit node ni we add propagators representing ci to the current
state Sn and execute the propagation loop to arrive at state Sni .

If the propagation loop detects failure on the current node n then we choose
to visit an unexplored target node n′ in the search tree. We construct a correct
starting state (before propagation) for the target node by copying, recomputing
and/or untrailing and then running the propagation loop.

Propagation loop. The propagation loop is the “inner loop” of the propagation
solver where it spends the bulk of its computation time. The propagation loop,
given a domain D and set of propagators F , computes D′ as the greatest fixpoint
of all f ∈ F less than D. The loop starts with an initial queue of propagators
F ′ ⊆ F not guaranteed to be at fixpoint with D. The first propagator from the
queue is removed and executed, possibly changing the domains of its variables.
These changes create events like fix , bnd and dom which access the dependencies
to place more propagators in the queue. Once the propagator has completed,
the next propagator from the queue is selected, until the queue is empty. For a
complete discussion of the propagation loop, see Schulte and Stuckey [17].

Propagation solver state. There are essentially five kinds of state in a propagation
solver: variable names; domain information for variables (and other variable
state); propagator names; internal propagator state; and dependencies between
variables and propagators. We separate the names of variables and propagators
from their attached state since we may want to use different storage arrangements
for each. Note that the propagator queue is always empty at choicepoints, and
hence is not part of the state.

Figure 1 shows the access patterns of information in the propagation loop.
An arrow s → e represents that from data s you can access data e. The impor-
tance of this diagram is that it captures interdependencies in choices of storage
mechanisms. For an arrow s → e if s is local and e is global then this is easily
handled since the local object can refer to global names. But if s is global and e
is local then we need a way to find which local copy we are referring to, implying

V ariables ��

��

Domains

Dependencies

��
Propagators ��

��

PropagatorState

���
�

�
�

�
�

�
�

�
�

Fig. 1. Diagram of access patterns in a propagation solver

696 R.M. Reischuk et al.

a global name en for the local e objects and a map map(en,node)→ e. Typically
the map is implemented by having the global name be an index in an array or a
memory offset, and having each node use the same array/memory block. This of
course prevents shrinking the array/memory block in the local state as execution
proceeds. Also note that many times propagator state does not refer directly to
variables but uses the local names in the propagator (hence the dashed arrow).

Systems. Current constraint programming systems can be roughly categorized
as either global state or local state systems, depending on whether their state
restoration is predominantly based on trailing or copying with recomputation.

– Constraint solvers based on Prolog such as ECLiPSe [2] or SICStus [3] tra-
ditionally use global state, and state is recovered by trailing. The same is
true for several constraint solvers based on object-oriented programming
languages, such as ILOG Solver [9], CHOCO [4], or JaCoP [10].

– Gecode [6, 18] is based on local state, using copying and recomputation.
– Minion [7] is a mainly local state system. Variables and propagators are

global static. Dependencies can change in a backtrack safe manner. Most
domains are stored locally; for Booleans the domain representation is split:
half local and half global in a backtrack safe manner; for one kind of integer
variables, the domain is kept in a trailed state. Propagator state may be
backtrack-safe or local. In addition to these features described in [7, 8], a
look at the source code reveals that recent versions of Minion use trailed
state for the internal state of some propagators.

– Figaro [5] allows various choices for state representation. Variables and prop-
agators are global, but domains and propagator state can be: local and
copied; lazily copied, i.e., they point to a previous copy until modified; or
coarsely trailed, i.e., they trail only the first change to a variable or propa-
gator by trailing the complete old value. Dependencies appear to be static.

3 A Hybrid System

This section briefly reviews three techniques for restoring solver state: trailing,
copying, and recomputation. It then presents an architecture for a hybrid system
that combines the different approaches.

Trailing. Global state that is neither static nor backtrack-safe can be restored
upon backtracking using a trail of undo information. In its simplest form, before
updating information at address a, a pair of a and the current value v at a is
pushed on a stack. When backtracking, the solver restores the memory location
at address a to v. This is shown in Fig. 2 (a) and (b): when the solver backtracks
from the failed (square) node, it undoes the three trail entries, adds the choice
constraint c5, and computes a fixpoint for the dashed target node.

In principle, this technique can be used to store the necessary undo informa-
tion for arbitrary state, but it can become inefficient when large parts of the
state need to be trailed. To overcome these inefficiencies, multi-value trailing

Maintaining State in Propagation Solvers 697

c2

c3

c4 c5

〈a,v〉
〈a,v〉
〈a,v〉

〈a,v〉
〈a,v〉

〈a,v〉
〈a,v〉
〈a,v〉

〈a,v〉
〈a,v〉

〈a,v〉
〈a,v〉
〈a,v〉

〈a,v〉

c1

Fig. 2. (a) choices and trail, (b) untrailing, (c) fixed, and (d) adaptive recomputation

allows one to trail an address a and a vector of values at consecutive memory
cells starting at a, and time stamping remembers whether an address a has al-
ready been trailed for the current search node and hence does not need trailing
again [1]. Function trailing, or semantic trailing, puts the address of a function
and an argument for the function on the trail. Untrailing then simply executes
the function, which will cause the undo.

Copying and recomputation. The basis for restoring local state upon backtrack-
ing is a copy of the state. In the simplest form, a copy is made for each node, this
is called full copying. To reduce the amount of required memory, solvers based
on recomputation only store copies at some nodes in the tree. When moving to
visit a new target node, the state for the node is computed from the nearest copy
above the target node. In Fig. 2 (c), the nearest copy above the target node is
at the root (marked as a small circle). When moving from the failed node to
the unexplored dashed node, the solver takes the copy, copies it again (it is still
needed for later backtracking), adds propagators for the choice constraints c1,
c2, c3 and c5 on the path from the copied node to the target node and computes
a fixpoint for the target node. Note this single fixpoint computation is much
faster than computing the fixpoint for each intervening node (a technique called
batch recomputation [5] or decomposition-based search [11]).

Schulte [16] describes two strategies for placing the copies in the tree: fixed
recomputation places a copy every k nodes (k is called the recomputation dis-
tance); adaptive recomputation places a copy in the middle of the path between
the current node and the nearest copy (as sketched in Fig. 2 (d)). Here we recon-
struct the state of the middle node from a copy of the root node with propagators
for c1 and c2 added and a fixpoint computed, then store a copy of this state (the
grey small circle), before adding c3 and c5 and computing a fixpoint to construct
the state for the target node.

Combining trailing and recomputation. Combining trailing and copying with
recomputation in a single solver is a nontrivial task. This section presents such
a hybrid architecture. The hybrid system has both local state and global state.
This results in the following issues.

698 R.M. Reischuk et al.

In order to use the same propagation loop, local and global propagators must
be able to reside in the same queues. The queues are realized as local state (to
support multi-threaded computation). In Gecode, propagators are elements of
a doubly-linked list: either they are in the queue, or they are in a list of idle
propagators. Global propagators must therefore be removed from the queues
when the memory for the local state is deallocated (for example upon failure).

Variables need dependencies to both local and global propagators. The latter
should be global themselves, in order to save the copying cost (which is linear
in the number of propagators). Similarly the dependencies for local propagators
should be local, too; otherwise we require a secondary map lookup from the
dependency to the propagator. The currently implemented hybrid system there-
fore does not support global variables with dependencies to local propagators. In
summary, dependencies should always be of the same kind of state (global/local)
as the propagators they refer to.

Propagators can refer to both global and local variables. Because of the re-
striction mentioned above, the implemented hybrid system does not support
local propagators with references to global variables.

The crucial interaction between the different kinds of state is on backtracking.
When moving to a new target node the solver must untrail to the closest copy
above the common ancestor of the current and target node (instead of just the
closest common ancestor as would be usual in pure trailing systems). This is the
nearest place where the solver has a consistent view of the overall state.

When performing recomputation (as in Fig. 2 (c)), a single fixpoint is com-
puted for the target node. It is important to note that this implies that the
trail entries for all modifications between the copy and the target are now re-
generated, but in a different order than during the original exploration. In partic-
ular, the sets of trail entries that corresponded to the individual fixpoints during
the original exploration may now be arbitrarily mixed. The trail thus cannot
recover any state between the copy and the target. But this is not necessary, as
recomputation always starts from a copy anyway. Adaptive recomputation (as
in Fig. 2 (d)) works exactly like fixed recomputation, except that two fixpoints
are computed, one for the copy in the middle of the path, and one for the target.

We have extended Gecode to support both global and local state for variable
domains, propagators and dependencies, all coexisting. For the experiments we
restrict ourself to one form of hybrid where propagators can be global or local
but domains are always local, and to the fully global system. There are other
important hybrids to consider. The extended system also supports a hybrid with
fully global state but where we can copy the global state at any node in the search
tree. This is an important feature for supporting advanced search strategies such
as best-first and parallel search in a global state system [13].

4 Local versus Global State

This section presents and evaluates the possible choices of state representation
for variables, propagators, and dependencies.

Maintaining State in Propagation Solvers 699

Experimental platform. The experiments in this paper use three different prop-
agation solvers: one based on fully local state, one based on fully global state,
and a hybrid using both global and local state. The local state system is Gecode
version 3.0.2. For the global state system, we added a trail to the Gecode ker-
nel and reimplemented Boolean and integer variables and several propagators
to use backtrack-safe and trailed global state. The hybrid system is based on
local variables, but supports both local and global (backtrack-safe and trailed)
propagator state and dependencies.

The models are taken from the standard Gecode distribution and were com-
piled using the gcc compiler, version 4.2.1, on a Pentium 4 machine at 2.8 GHz
running Linux. All runtime results are given as the arithmetic mean of 20 runs,
with a coefficient of deviation less than 2%. Memory measurements represent
the peak amount of the system’s overall allocated memory.

Benchmarking rationale. All three systems are based on the same core solver.
They share the same propagation loop, the same propagator scheduling mecha-
nisms, the same data representation for variable domains and dependencies, the
same search engines, and (up to the state representation) the same propagation
algorithms. That way, the experiments indeed capture solely the difference in
state representation. The starting point for the implementation was a copying
solver, and some design decisions still reflect that, so there may be potential
for optimization. However, the results show that both the global state and the
hybrid solver are competitive with Gecode, and previous benchmarks show that
Gecode is one of the fastest solvers available. Furthermore, we will see that we
can explain the behavior of all three solvers in terms of properties of the models.
The results are therefore largely independent of concrete implementation details.

4.1 Variable Domains

The first suite of experiments investigates the performance impact of the choice
of state representation for the variable domains. The experiments compare the
fully global state system with the hybrid system in which all state is global
except local variable domains.

Runtime efficiency. Table 1 shows the experimental results. The Knights exam-
ple has been included for statistics only, the required propagators have not been
implemented for the hybrid system. Below the horizontal line are SAT bench-
marks. We make the following observations:

– When the average percentage of domains modified in a fixpoint is high
(> 40%), copying domains is slightly preferable.

– When the percentage of updated domains is low (and there are many vari-
ables) then the optimistic approach of using global trailed domains benefits,
and it can be much better than copying.

– The overall results show that trailing versus copying and recomputation of
variable domains does not make that much difference except in the extreme
cases, illustrated by the Radiotherapy benchmark.

700 R.M. Reischuk et al.

Table 1. Local versus global variable domains. Var. is the number of variables in the
problem, Prop. the number of propagators, mod % the average percentage of variables
modified per fixpoint.

Benchmark Hybrid Global
Var. Prop. Failures mod % time (ms) time %

Queens (10) 10 3 4992 42.35 31.15 118.46
Queens (100) 100 3 22 32.61 4.40 41.20
Queens (200) 200 3 146 838 3.87 3 033.00 52.51
Golomb Rulers (10) 46 46 173 568 57.27 5 398.50 101.76
Golomb Rulers (bounds, 10) 46 46 30 345 64.10 1 642.00 105.83
Golomb Rulers (bounds, 11) 56 56 689 749 63.05 48 818.00 108.33
Alpha (Z–A) 26 21 10 530 183 42.98 243 556.50 100.00
Alpha (A–Z) 26 21 7 435 30.09 93.15 93.96
Radiotherapy 4 363 2 477 903 982 0.52 360 089.00 4.20
Magic Square (7) 49 19 481 301 19.94 6 075.00 85.37
Sudoku (1) 256 48 9721 8.87 1 007.00 90.07
Sudoku (2) 256 48 14277 8.02 1 281.00 91.76
Failure Stress (500) 2 1 000 1 100.00 3 173.30 171.81
Knights (30) 22188 26880 40 4.25 − −
Knights (32) 25392 30780 34 4.27 − −
Knights (34) 28812 34944 20 3.54 − −
Ramsey (4-4-11) 55 660 211 605 6.65 6 330.00 90.66
Ramsey (4-4-12) 66 990 1 834 459 5.53 56 519.50 85.13
Hanoi (4) 718 4 934 888 424 2.66 95 021.50 58.28
Pigeon Holes (7) 56 204 32 781 10.30 441.00 80.95
Pigeon Holes (8) 72 297 378 344 8.46 6 107.00 69.17
Pigeon Holes (9) 90 415 4 912 515 7.16 88 390.00 77.21
Dubois (20) 60 160 3 145 728 8.05 30 880.00 67.26
Flat (200-1) 600 2 237 167 618 8.45 20 769.00 69.83

Time-stamped trailing. The example Failure Stress exhibits the worst case be-
havior for trailing. It consists of 1000 propagators for x < y and y < x, shrinking
the variable domains step by step until detecting failure. Not shown in this ta-
ble, the memory consumption due to trailing is several orders of magnitude
higher than in the local state solver. An implementation therefore must use
time-stamped trailing to protect against this pathological behavior, but our ex-
perimental system does not use time stamping (to simplify the implementation).
However, for all examples we consider for benchmarking here except Failure
Stress, each variable is changed at most 2.7 times on average per fixpoint; so the
comparisons are fair despite the lack of time-stamped trailing.

Memory consumption. One advantage of local state is the finer control of mem-
ory consumption using recomputation. We can confirm the results presented
in [15] for the case where only variable domains are copied or trailed, and the
remaining state is global. Table 2 compares the peak memory consumption of the
global state solver with that of the hybrid solver using different recomputation

Maintaining State in Propagation Solvers 701

Table 2. Percentage of peak memory allocated at different recomputation distances,
compared to trailing = 100%. Diagram cut off at 140%. Examples (left to right): Queens
(200), Queens (100), Flat (200-1), Pigeon Holes (9), Ramsey (4-4-12), Pigeon Holes (7),
Pigeon Holes (8), Ramsey (4-4-11), Hanoi (4), Golomb Rulers (bounds, 11), Golomb
Rulers (10), Golomb Rulers (bounds, 10), Radiotherapy, Alpha (Z–A), Alpha (A–Z).

0%

20%

40%

60%

80%

100%

120%

140%

full copying 5 10 15 20 25 30

distances. (The cut off example is Radiotherapy at 158%.) Clearly the hybrid
solver is advantageous over the trailing solver in memory usage, with median
usage of 20% at recomputation distance 10, and 13% at distance 25.

4.2 Dependencies

Dependencies between variables and propagators are a critical part of the propa-
gation solver, as they are accessed frequently during propagation. The key obser-
vation about dependencies was made earlier: dependencies should be the same
kind of state (global/local) as the propagators they refer to.

Global dependencies. Static dependencies are sufficient for many small con-
straints, in particular those that are only propagation redundant when all vari-
ables are fixed. Backtrack-safe dependencies are sufficient for watched literals
(and beneficial for Boolean clauses [12]). It is difficult to compare backtrack-
safe with static or dynamic dependencies, as this leads to different propagator
scheduling. Table 3 compares watched literals versus dynamic dependencies (two
per clause) that are backtracked, and static dependencies (n for a clause of length
n). For some SAT instances, watched literals can reduce the runtime in the global
state system drastically (left), while for others, there is hardly any difference
(right). For some propagators, however, dynamic dependencies are crucial:

– Canceling dependencies is essential for �= propagators. Using only static de-
pendencies for the Queens example with binary propagators, the number of
propagation steps and the runtime are an order of magnitude higher than
with dynamic dependencies, independent of which system is used.

– Modifying dependencies (in a non-backtrack-safe way) is important for rei-
fied = propagators. Once the Boolean control variable is fixed to false, the
propagator should be woken only for fix events. For the Knights examples,
the global state system shows a 20% runtime overhead otherwise.

702 R.M. Reischuk et al.

Table 3. Relative performance of backtracked and static dependencies for Boolean
clauses compared to using watched literals, in the global state solver

Benchmark Backtracked Stateless
time % time %

Ramsey (4-4-11) 160.57 220.86
Ramsey (4-4-12) 193.66 272.75
Hanoi (4) 104.23 119.68

Benchmark Backtracked Stateless
time % time %

Pigeon Holes (7) 91.88 87.54
Pigeon Holes (8) 106.85 103.52
Pigeon Holes (9) 100.30 94.05
Dubois (20) 108.08 103.35
Flat (200-1) 103.31 105.73

As dependencies are modified much less frequently than domains, the hybrid
and global systems use function trailing for dynamic dependencies.

Local dependencies. Local state dependencies are automatically restored upon
backtracking. This has the advantage that dynamic dependencies are free, but
the disadvantage that watched literals, relying on backtrack-safe state, cannot
be implemented directly.

4.3 Propagators and Propagator State

Propagators with internal state are an essential prerequisite for incremental
propagation. In the following, the performance impact of the choice of state
restoration for propagator state is analyzed.

Runtime efficiency. Table 4 shows the results of comparing the fully local solver
with the hybrid solver (differing only in what kind of state the propagators use).

Many simple propagators (e.g. x � y, Boolean clauses) are stateless. The
results illustrate that stateless propagators should not be copied. For the SAT
examples which are dominated by stateless propagators, the hybrid system im-
proves over the local system. The contrary results for Pigeon Holes are caused
by substantially reduced propagation that has occurred (seemingly randomly)
due to the use of dynamic dependencies rather than watched literals.

The importance of state in propagators is illustrated by naive alldifferent.
This propagator has state which eliminates fixed variables from further consid-
eration. If we do not record this state and simply try to remove the values of
all fixed variables on each invocation the complexity of the propagator changes.
Table 5 shows how a stateless alldifferent slows down the hybrid system.

Memory consumption. The memory consumption at different recomputation
distances of the local solver compared to the global solver is shown in Table 6.
Some examples require significantly more memory in the local solver. (The cut
off examples are Radiotherapy at 183% and Knights (30, 32, 34) at more than
300%.) This occurs because all propagators including their complete state must
be copied, penalizing examples with many propagators. This is especially true
for the added examples Knights (30, 32, 34), which use large numbers of reified

Maintaining State in Propagation Solvers 703

Table 4. Relative runtime of the hybrid and global compared to the local system

Benchmark Local Hybrid Global
time (ms) time % time %

Queens (10) 36.90 83.33 100.00
Queens (100) 1.50 293.67 120.67
Queens (200) 3 244.00 93.45 49.10
Golomb Rulers (10) 5 925.10 90.98 92.72
Golomb Rulers (bounds, 10) 1 657.75 110.59 104.83
Golomb Rulers (bounds, 11) 51 325.00 105.37 103.04
Alpha (Z–A) 275 562.50 87.68 88.39
Alpha (A–Z) 109.40 86.47 80.00
Radiotherapy 409 870.00 88.25 3.69
Magic Square (7) 6 593.00 92.45 78.66
Sudoku (1) 1 390.25 63.15 65.24
Sudoku (2) 1 743.50 93.36 67.42
Failure Stress (500) 3 173.30 100.00 171.81
Ramsey (4-4-11) 11 486.50 55.11 48.58
Ramsey (4-4-12) 138 305.50 40.87 36.21
Hanoi (4) 112 305.00 84.61 54.19
Pigeon Holes (7) 272.00 162.13 119.85
Pigeon Holes (8) 3 239.50 188.52 145.30
Pigeon Holes (9) 45 846.50 192.80 152.89
Dubois (20) 36 695.00 84.15 60.73
Flat (200-1) 25 205.00 82.40 61.42

Table 5. Relative runtime using a stateless alldifferent propagator

Benchmark time %

Queens (10) 126.83
Queens (100) 509.93
Queens (200) 1 129.65

Benchmark time %

Golomb Rulers (10) 103.16
Alpha (Z–A) 116.80
Alpha (A–Z) 134.16

propagators. On the other hand, some examples require significantly less memory
in the local solver. This is due to the automatic garbage collection made possible
by copying: propagation redundant propagators and fixed auxiliary variables can
be removed. A trailing solver could partly achieve the same effect by deleting the
trail after computing the fixpoint of the root node. In summary, recomputation
saves memory of the same order of magnitude as in the hybrid system, while
sometimes starting from significantly higher amounts at full copying.

Recomputing propagator state. Some propagator state can be reconstructed from
other state information. Its only purpose is to make the propagation more in-
cremental. A well-known example of this is the variable-value graph used in
domain consistent alldifferent [14]. It can be reconstructed from the domains
of the variables. Both local and global propagators can use recomputed state.

704 R.M. Reischuk et al.

Table 6. Percentage of peak memory allocated at different recomputation distances,
compared to trailing. The examples are the same as in Table 2, plus three instances of
Knights (30,32,34) added on the right.

0%

20%

40%

60%

80%

100%

120%

140%

full copying 5 10 15 20 25 30

The advantage is that the state does not need to be trailed or copied. Each time
the search moves to a non-child target node, this propagator state must be re-
computed. This may seem expensive but the number of failures is much smaller
than the number of executions of a propagator. Gecode use this approach for
the variable-value graph for alldifferent, while JaCoP [10] (a trailing solver)
also uses the approach for several propagators.

4.4 Summary

Trailing and copying with recomputation have been the dominant restoration
techniques. Although there are several papers attempting comparative studies
of the two techniques, this is the first time that a realistic comparison based on
a production-quality solver is presented. Let us therefore summarize the results.

– Each of the solvers (local, hybrid, and global) is the best on some examples.
– While the trailing solver is generally faster than a copying solver, in almost

all cases the difference between them is less than a factor of two.
– The trailing solver is more robust in terms of runtime than either the copying

or hybrid solvers for problems with very weak propagation. Robustness for
problems with strong propagation can be achieved by time-stamped trailing.

– Copying with recomputation is more robust than either trailing or full copy-
ing in terms of memory for any problem.

5 Related Work

There are a couple of papers that describe or compare different techniques for
state management in constraint solvers. Schulte [15] introduced the copying and
recomputation state maintenance model, and defined fixed and adaptive recom-
putation. The paper compared the Mozart local state solver versus a number
of global state systems and showed that it was comparable or better than each

Maintaining State in Propagation Solvers 705

of them in runtime. It also illustrated (but only by simulation of trailing) how
the memory requirements of a local state system can be less than global (trail-
ing) state systems when it is using fixed or adaptive recomputation. Here we
reinforce the results on memory, but also show that trailing is more robust in
runtime than copying and recomputation.

Choi et al. [5] compared different state maintenance approaches in the Figaro
system. They compare copying versus lazy copying and coarse-grained trailing.
In the system variables and propagators are global, while dependencies appear
to be static. Lazy copying is a kind of copy-on-write technique, where there is a
level of indirection added to each variable and propagator. Coarse grained trail-
ing works similarly. There is one global map which is timestamped. Whenever
an object is to be changed, the old value pointed to by the map is copied to
the trail and the timestamp updated, and the object can be modified. Their
results showed that coarse-grained trailing was faster than full copying which
was itself faster than the recomputation approaches, and each of trailing and
the recomputations usually gave significant savings in memory; while lazy copy-
ing improved on copying and coarse-grained trailing in terms of execution and
memory. The results, while interesting, are for a research prototype solver that
is several orders of magnitude slower than state of the art solvers.

6 Conclusion

In this paper we set out the possible ways in which a propagation solver can
choose to maintain state, and the restrictions that such choices place on the
resulting system. We describe how to combine global and local state maintenance
in a single solver, and have extended Gecode to support both kinds of state. This
allows us to give the first realistic comparison of trailing versus copying solvers,
using a state of the art solver. Our results show that while the global state solver
is in general faster than the copying and recomputation solver, and avoids some
worst case behavior, it uses substantially more memory. As parallelism becomes
more important, driven by multi-core CPUs, we foresee the importance of hybrid
trailing and copying solvers to support this.

Acknowledgements. We thank Thibaut Feydy and Sebastian Brand for many
interesting discussions related to this work. Raphael Reischuk and Guido Tack
were supported by the Saarbrücken Graduate School of Computer Science which
receives funding from the DFG as part of the Excellence Initiative of the German
Federal and State Governments. NICTA is funded by the Australian Government
as represented by the Department of Broadband, Communications and the Dig-
ital Economy and the Australian Research Council.

References

[1] Aggoun, A., Beldiceanu, N.: Time Stamps Techniques for the Trailed Data in
Constraint Logic Programming Systems. In: Actes du Séminaire 1990 de pro-
grammation en Logique, pp. 487–509. CNET, Lannion (1990)

706 R.M. Reischuk et al.

[2] Apt, K.R., Wallace, M.: Constraint Logic Programming Using ECLiPSe. Cam-
bridge University Press, Cambridge (2006)

[3] Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain con-
straint solver. In: Glaser, H., Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS,
vol. 1292, pp. 191–206. Springer, Heidelberg (1997)

[4] CHOCO (2009), http://choco-solver.net
[5] Choi, C.W., Henz, M., Ng, K.B.: Components for state restoration in tree search.

In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 240–255. Springer, Heidelberg
(2001)

[6] Gecode: generic constraint development environment (2009),
http://www.gecode.org

[7] Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) European Conference
on Artificial Intelligence, pp. 98–102. IOS Press, Amsterdam (2006)

[8] Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in
Minion. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 182–197. Springer,
Heidelberg (2006)

[9] ILOG Solver, part of ILOG CP (2009), http://www.ilog.com/products/cp
[10] JaCoP (2009), http://jacop.osolpro.com/
[11] Michel, L., Van Hentenryck, P.: A decomposition-based implementation of search

strategies. ACM Trans. Comput. Logic 5(2), 351–383 (2004)
[12] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-

neering an efficient SAT solver. In: DAC 2001: Proceedings of the 38th conference
on Design automation, pp. 530–535. ACM Press, New York (2001)

[13] Perron, L.: Search procedures and parallelism in constraint programming. In:
Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 346–361. Springer, Heidelberg
(1999)

[14] Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI
1994: Proceedings of the Twelfth National Conference on Artificial intelligence,
Menlo Park, CA, USA, vol. 1, pp. 362–367 (1994)

[15] Schulte, C.: Comparing trailing and copying for constraint programming. In: Schr-
eye, D.D. (ed.) Proceedings of the Sixteenth International Conference on Logic
Programming, Las Cruces, NM, USA, pp. 275–289. MIT Press, Cambridge (1999)

[16] Schulte, C.: Programming Constraint Services. LNCS (LNAI), vol. 2302. Springer,
Heidelberg (2002)

[17] Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. Transactions
on Programming Languages and Systems 31(1), 2:1–2:43 (2008)

[18] Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling with Gecode (2009),
http://www.gecode.org/doc-latest/modeling.pdf

http://choco-solver.net
http://www.gecode.org
http://www.ilog.com/products/cp
http://jacop.osolpro.com/
http://www.gecode.org/doc-latest/modeling.pdf

Cost-Driven Interactive CSP with Constraint
Relaxation

Yevgeny Schreiber

Intel Corporation, Haifa, Israel
yevgeny.schreiber@intel.com

Abstract. We revisit the Interactive CSP framework (ICSP) and pro-
pose a new, somewhat more general model, which we call Cost-Driven
Interactive CSP (CICSP). First, we extend the value acquisition by a
more general concept of constraint relaxation. Second, we loosen the
basic assumption of ICSP that “value acquisition is expensive” by in-
troducing external cost functions of the constraint relaxation and the
constraint propagation effort. We also propose a general Interactive
Relaxation algorithm template that is designated for CICSP. The ef-
fectiveness of this approach is illustrated on a real-life scenario from the
Functional Test Generation problem domain.

Keywords: Functional Test Generation, Constraint Relaxation, Cost-
Driven Interactive CSP, ICSP.

1 Introduction

A Constraint Satisfaction Problem (CSP) is defined as a set X of variables, a
set D of corresponding value domains, and a set C of constraints that define the
allowed value combinations of the variables. A CSP solution is an assignment of
values to variables so that all the constraints in C are satisfied.

The Interactive CSP framework (ICSP) was first introduced by Cucchiara
et al. [3] (following the general idea of Sergot [19]). While in the conventional
CSP all the variable domains are fully known before the beginning of the solu-
tion search, the formulation and the algorithms in [3] allow the process to be
interactive, starting with only partially known domains, and acquiring further
values when needed during the search. This framework is motivated by real-life
problems where the acquisition of all domain values before the search is either
inefficient or impossible. In ICSP, the search engine and the external value ac-
quisition engine work cooperatively; in particular, the latter can be “guided” by
the former in order to produce “better” values. As such, this can be considered
as a special case of the distributed constraint programming framework [6], where
the computation is performed by a network of several engines. This approach
was demonstrated in [2,3] on several applications.

A few years later, Faltings and Macho-González [7,13] proposed the Open CSP
framework (OCSP), which is quite similar to ICSP (see also [14]). This line of
work focuses primarily on the minimization of the number of value acquisitions

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 707–722, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

708 Y. Schreiber

during the search, with a somewhat lesser focus on its cooperative nature (in
particular, the value acquisition engine in the OCSP framework is not guided).

In the rest of the paper, we refer mainly to the original ICSP model described
in [3], to emphasize the interactive nature of the search in their model, as well
as in the extension that we propose. When discussing issues that are common
to both the ICSP and the OCSP models, we will use the name “ICSP” (even in
the context of [7,13]), to prevent unnecessary distinction.

While the ICSP framework is mainly oriented to the extension of variable
domains, it is noted in [7,13] that constraints can be handled similarly by using
the hidden variable encoding method [4]. ICSP can also be considered as a special
case of the more general Dynamic CSP framework (DCSP) [5,20]. A DCSP
is a sequence of constraint satisfaction problems, each of which results from
some changes in the definition of its predecessor. These changes may affect any
component in the problem definition: additions or removals of variables, domain
values, constraints, etc. In this sense, the ICSP can be considered as a special case
of the DCSP where all the possible changes result in extension of the variable
domains (or relaxation of constraints that are encoded as hidden variables).

We choose to analyze the ICSP model from a somewhat different point of
view. The condition that a variable x belongs to some “currently known” set
of values (its current domain) can be considered as a unary constraint c on x;
extending the domain of x is equivalent to a relaxation of c.1 Similarly, we can
relax any other (not necessarily unary) constraint interactively, during the search
process. We can therefore consider the ICSP as a special case of a more general
framework with constraints that can be iteratively relaxed. Note that we do not
need to encode constraints as hidden variables, since we are no longer bounded
by the concept of variable domain extension; instead, we can freely operate on
any explicit or implicit form of a constraint.

Note that the concept of constraint relaxation was thoroughly examined in
several works [8,12,17], where complex explanation systems are used in order to
determine a constraint that has to be relaxed, and to perform the relaxation
efficiently. In this paper we focus on a different angle, using a simple backtrack-
ing mechanism instead (as described in Section 3); we leave its enhancement
(possibly, using the methods developed in [8,12,17]) for further research.

As in [3], we make the relaxation process efficient by allowing the search
engine to guide it. The main motivation for this approach is the cooperative
solving. Often, a large-scale CSP must be decomposed into a set of smaller
sub-problems, each of which can be efficiently solved. However, since the sub-
problems are not completely disconnected from each other, a solution spi of a
sub-problem pi implies a constraint ci for each sub-problem pj that is connected
to pi. It is possible that pj is infeasible with ci, while it may be feasible with a
different (less restrictive) constraint c′i, implied by a different solution of pi (if
such exists). Note that if there are any other sub-problems connected to pi that
have been successfully solved with ci before the attempt to solve pj , then, if c′i

1 By “relaxing a constraint” (which is a somewhat overused term) we mean replacing
the constraint by another one that is less restrictive.

Cost-Driven Interactive CSP with Constraint Relaxation 709

is strictly less restrictive than ci, replacing ci by c′i would not invalidate their
solutions. This use case is further discussed in Section 4.

Another aspect that we choose to revisit is the cost of value acquisition, or in
our (more general) case, of constraint relaxation. The basic assumption in the
original ICSP framework in [3], as well as in [7,13], is that each value acquisition
is costly, and therefore it is never beneficial to try and gather any new infor-
mation until it is determined that the values gathered so far fail to satisfy all
the constraints. However, a “cost” is a real-life term that applies to many facets
of the solution process, and should therefore be defined carefully and relatively
to other aspects. In particular, many practical constraint satisfaction problems
require exponentially long runtime, and so the constraint relaxation cost can be
defined, for example, relatively to the cost of the search effort: In some scenarios,
it is possible that generating a new tuple that relaxes a constraint, by using the
relaxation generator (with correct guidance), is cheaper than searching among
the tuples that are already known.

We call the resulting framework Cost-Driven Interactive CSP (CICSP). It is
mainly intended for problems with one or more “difficult” constraints that in-
volve many variables and imply a large number of allowed and forbidden value
tuples. We assume that in these cases it is usually possible to construct an “exter-
nal” engine that is dedicated for these constraints, and to query it interactively,
as in the cooperative solving example described above. A detailed application
example is discussed in Section 4; other examples can include a database server
that generates table constraints whose size depends on query parameters, or a
mathematical equation solver for complex multivariate functions.

Before we continue to describe the details of CICSP, note its differences from
the Valued CSP framework (VCSP), which deals with soft constraints and penal-
ties for their violation (see [18]). The constraints in CICSP are not soft — the
constraint relaxation function is part of the given problem, and there is no way
to withdraw a constraint by paying a penalty. Moreover, the constraint relax-
ation cost is paid each time when a constraint is being relaxed, which is different
from the violation penalty that is paid at most once for each violated constraint.
That being said, in Section 5 we propose a possible extension of CICSP that can
support soft constraints and violation penalties.

The rest of the paper is organized as follows. In the next section we describe
the CICSP framework more formally; the designated Interactive Relaxation
algorithm template is described in Section 3. The address-translation use-case in
the field of Functional Test Generation as an application of CICSP is illustrated
in Section 4, including some experimental results. In Section 5 we summarize
the discussion and suggest several further extensions.

2 Cost-Driven Interactive CSP

Definition 1. A CICSP is a tuple (X , C,G,R,P), so that:

710 Y. Schreiber

(i) X is a set of variables x1, . . . , xn. The domains of all variables in X are
initially considered full — that is, each variable in X can be assigned any
value.2

(ii) Let S denote the infinite set of all possible constraints on the variables in X .
C ⊂ S is the initial set of constraints c1, . . . , cm (of any arity). Each ci ∈ C
explicitly or implicitly defines the set Si of value tuples that satisfy ci.

(iii) G : S → S is a constraint relaxation function. Given a constraint c ∈ C,
G(c) = c′ is its extension constraint: relaxing c replaces it by c ∨ c′.3

(iv) R : S → R+ is a cost function assigning each relaxation step c → c∨ c′ the
positive cost R(c).

(v) P : S → R+ is a cost function assigning each propagation of a constraint
c the positive cost P(c).

CICSP vs. ICSP. Before discussing the methods of solution of CICSP, we com-
pare the model more formally to the ICSP framework, as formulated in [3]; for
the sake of completeness, we summarize the definition of ICSP here. An in-
teractive domain Di of a variable xi is composed of the known set of values
vi1 , . . . , vik

and the unknown component x′
i. The tuples in an interactive con-

straint c(xi, xj) ⊆ Di ×Dj can contain both the known and the unknown parts
of the corresponding interactive domains Di, Dj ; if the unknown component x′

i

appears in a tuple (x′
i, vj) ∈ c(xi, xj), then for each possible “future” value v′i of

x′
i, the tuple (v′i, vj) satisfies c(xi, xj). The ICSP is defined as a finite set of vari-

ables X , a set of corresponding interactive domains D, and a set of interactive
constraints C.

Theorem 1. The CICSP extends the ICSP model.

Proof. Let the tuple (X ,D, C) be a given ICSP. Then we formulate it as the
CICSP tuple (X , C′,G,R,P), where C′,G,R, and P are defined as follows.

We start with C′ = C and then extend it: For each domain Di ∈ D of a
variable xi ∈ X , let vi1 , . . . , vik

be its known set of values; we define a unary
constraint ci(xi) = {(vi1), . . . , (vik

)}, and add it to C′. For each c ∈ C, we define
G(c) = ∅. Let the unknown component x′

i of Di be the set {vik+1 , . . . , vik+t
}; for

each j ∈ [1, . . . , t] denote by c′i,j the constraint that is satisfied by the singleton
(vik+j

). For each ci ∈ C′, we define G(ci) = c′i,1. For each j ∈ [1, . . . , t − 1] we
define G(ci ∨ c′i,1 ∨ · · · ∨ c′i,j) = c′i,j+1, and G(ci ∨ c′i,1 ∨ · · · ∨ c′i,t) = ∅.

We define R(c) = +∞ and P(c) = 1, for any constraint c, implying that c
will always be propagated before an attempt to relax it (which will only happen
if all other search branches fail).
�

Remark 1. It is important to emphasize that the CICSP model does not require
all the initial variable domains to be full, as well as it is not required that

2 For practical reasons, each variable can be of a specific type, which limits its domain,
such as: k-bit integer, k-character string, etc.

3 Note that this replacement does not change the original CICSP, since G is given as
part of the problem definition.

Cost-Driven Interactive CSP with Constraint Relaxation 711

every constraint in C should be eligible for relaxation (by G). The case where a
variable is defined over some limited domain that is known a priori and does not
need to be extended, which is the most common standard CSP scenario, is fully
supported by the CICSP framework.

3 Interactive Relaxation Algorithm Template

We propose the following Interactive Relaxation (IR) algorithm template,
which emphasizes the division of functions between the search engine, the re-
laxation generator, and the cost-driven oracle, and suggests an algorithm for
the search engine, as described next — see Fig. 1. The relaxation generator
and the cost-driven oracle are treated as black boxes, so that a more specific
algorithm can implement each of these entities according to a specific CICSP
instance. Moreover, the interface that we suggest for each of these entities is also
described in quite general terms, and can easily be extended.

Search
EngineOracle

Relaxation
Generator

Solution

Cost−Driven

GX CR P

Fig. 1. The entities of the CICSP framework

Relaxation generator. The relaxation generator module (or simply the genera-
tor) uses the given constraint relaxation function G to process relaxation queries
that it receives from the search engine during the solving process. Each relaxation
query consists of a constraint c and the guidance: the current state of domains
of the variables in V (c), where V (c) denotes the set of all variables involved in c.
Let S′ be the set of tuples that satisfy the extension constraint G(c) = c′. When
the query is processed, the generator returns a (possibly empty) subset S′′ ⊆ S′

that does not conflict with the current state of domains of the variables in V (c),
or, equivalently, the corresponding constraint c′′.

We assume that all the tuples in S′′ have not been known to the search engine
before the relaxation query; that is, S ∩ S′′ = ∅, where S is the set of tuples
that satisfy c. This assumption extends the general idea of the ICSP framework,
where the generator returns new values at each query. (Note that without this
assumption, the search engine can compute S′′ \ S.)

The guidance part of the relaxation query is very important. Consider, for
example, the relaxation of a constraint c(xi, xj). It is possible that during the
solution search, the domains of xi, xj (which were considered full at the begin-
ning of the search) have been significantly reduced. Without any guidance, the
generator, when requested to relax c(xi, xj), might repeatedly generate numer-
ous value tuples that conflict with the current state of the domains of xi, xj

712 Y. Schreiber

before it either succeeds to generate a tuple that does not create a conflict or
determines that no such tuple can be generated.

Note that the domains do not have to be reported to the generator explicitly
(this might be quite costly, since there is no limitation on their size); instead, the
state of the domain can be reported implicitly, by reporting only the relevant
domain reduction decisions that have been made by the search engine so far.
Similarly, the returned constraint can be reported in a compact form.

Cost-driven oracle. In the standard CSP, given a constraint c that defines a
set S of tuples that satisfy it, any feasible solution must be consistent with
one of the tuples in S. In CICSP, we have a choice: We can either propagate c
until either it is satisfied or a conflict is reached, or we can try to relax c and
obtain a new tuple (which satisfies at least all the constraints that have been
propagated so far). Eventually, to ensure that the search is complete, we may
need to do both; however, the order in which we perform these operations may
have a tremendous effect on the effectiveness of the algorithm in practice.4 This
problem-specific order can be realized for each CICSP instance by implementing
the corresponding cost-driven oracle.

The oracle uses the cost functions R and P to process oracle queries that it
receives from the search engine during the solving process. Each oracle query
consists of a constraint c and the search state information that can be relevant,
such as the number of times c has been propagated and / or relaxed so far, etc.
Using this information, the oracle selects the next action that should be taken to
satisfy c: propagate c or relax it. The search state information can help the oracle
make better choices: For example, if c has been propagated k times (each time
reaching a conflict, backtracking, and trying another search branch), the oracle
can reach a conclusion that c has a higher chance of being successfully satisfied
by relaxation. In this case, the parameter k has to be passed to the oracle as
part of the query. Since this kind of knowledge is very application-specific, we
leave it without further formalization. In any case, in order to make any kind of
nontrivial decision-making possible, the oracle has to compare R(c) to P(c).

As shown in Theorem 1, a trivial oracle can implement the policy that is
used in [3,7,13], where it is assumed that it is always cheaper to search among
the existing values than to generate new ones, without considering R and P . In
Section 4 we describe a real-life problem where this assumption does not hold.

Constraint Propagation. The constraint propagation method used in IR can be
considered as a more general version of forward checking: Instead of enforcing
a constraint c (on variables that have not been instantiated yet) only when a
variable in V (c) is instantiated, c can also be enforced each time that the domain
of a variable in V (c) is modified (by registering c to be triggered when needed
— see below). The propagation of c is initiated before any variable in V (c) is
instantiated, since the fact that we can start with full domains requires us to
reduce the domains as much as possible before the instantiation can take place.
4 This is similar to the effect that may be caused by the order in which variables are

instantiated, or the order in which values are selected for each variable instantiation.

Cost-Driven Interactive CSP with Constraint Relaxation 713

Interactive Relaxation Algorithm

1. for each c ∈ C do
initialize unsatisfied(c) = extendable(c) = enforceable(c) = true;

2. for each unsatisfied c ∈ C do
if not Satisfy(c) then return no solution;

3. for each remaining uninstantiated x ∈ X do Instantiate(x);
4. return solution found ;

We use the following notations in the rest of the paper. For x ∈ X , denote by
D(x) the current domain of x: the full domain minus the reductions that have
been made during the search so far. We say that a constraint c is fully relaxed
by the generator if relaxation-query(c, {D(x) | x ∈ V (c)}) returns ∅; note that
this definition depends on the current state of the relevant domains.

Satisfy(constraint c)

1. while unsatisfied(c) do
(a) if extendable(c) and enforceable(c) then

action = oracle-query(c, {relevant search state data});
(b) else if extendable(c) then action = relax ;
(c) else if enforceable(c) then action = propagate;
(d) else return false;
(e) if (action == relax and Relax(c)) or

(action == propagate and Propagate(c)) then
i. unsatisfied(c) = false;
ii. return true;

Relax(constraint c)

1. c′ = relaxation-query(c, {D(x) | x ∈ V (c)});
2. if c′ == ∅ then

(a) extendable(c) = false; (∗ c is fully relaxed. ∗)
(b) return false;

3. else return Propagate(c′);

Remark 2. In practice, many changes can be made to improve the efficiency of
Propagate(c). For example, it can be split to several sub-procedures, each of
which can be triggered separately when the domain of a particular variable in
V (c) changes. Moreover, the propagation of the registered constraints does not
have to be triggered each time when the corresponding domain is reduced. The
domain reduction at step 1a can be made implicitly; and so on.

714 Y. Schreiber

Propagate(constraint c)

1. for each x ∈ V (c) do
(a) Remove all values from D(x) that cannot satisfy c;
(b) if D(x) == ∅ then goto step 5;
(c) if |D(x)| �= 1 then register c for future reductions of D(x);
(d) if D(x) has been reduced by step 1a then

for each unsatisfied c′ �= c registered for reduction of D(x) do
if not Propagate(c′) then goto step 5;

2. for each unsatisfied c′ ∈ C so that V (c) ∩ V (c′) �= ∅ do
if not Satisfy(c′) then goto step 5;

3. for each x ∈ V (c) do
if not Instantiate(x) then goto step 5;

4. return true;
5. undo all changes starting from step 1;
6. enforceable(c) = false;
7. return false;

Instantiate(variable x)

1. if |D(x)| == 1 then return true;
2. while v = next available value in D(x) do

(a) set D(x) = {v};
(b) for each unsatisfied c registered for reduction of D(x) do

if not Propagate(c) then
i. undo changes starting from step 2a;
ii. remove v from D(x);
iii. goto step 2;

(c) return true;
3. return false; (∗ Tried all possible values in D(x). ∗)

Lemma 1. Each Instantiate procedure called at step 3 of IR returns true.

Proof. Indeed, Instantiate(x) can fail only if it has at least one constraint c
registered to be triggered when D(x) is modified. However, in this case Instan-
tiate(x) would have been called from step 3 of Propagate(c), and therefore
it would not be called at step 3 of IR.
�

Lemma 2. The IR algorithm returns no solution only if there is a nonempty
subset C′ of constraints in C that conflict with each other and cannot be satisfied,
even if all the possible tuples of each constraint in C′ (that can ever be returned
by the generator) are known.

Proof. IR returns no solution only if some invocation I of Satisfy(c), called
directly from the main loop of IR, returns false. This implies that extendable(c)
= false and enforceable(c) = false. It follows that (a) Relax(c) was called from
I as many times as possible (until the generator returns ∅), each time returning
false, and (b) Propagate(c) was called from I at least once, and returned false.

Cost-Driven Interactive CSP with Constraint Relaxation 715

We claim that Satisfy(c) was never called before I. Indeed, if Satisfy(c)
would have been called from previous calls of Propagate(c′) for some constraint
c′ �= c, it would either result in satisfaction of c, or in failure of Propagate(c′).
The former is impossible since c is unsatisfied in I, and the latter would cause
Satisfy(c′) to fail, which would eventually result in IR returning no solution
before calling I, a contradiction.

Therefore, at the beginning of I, the domains of the variables in V (c) have
never been reduced, and so the generator is not limited when it is requested
to relax c, and eventually it returns all the potentially possible tuples of G(c).
Hence, the propagation of both c and of each possible extension of c has failed.

Propagate(c) (where c is either the original constraint or one of its exten-
sions) fails only if it either discovers a conflict (at step 1b or at step 3), or the
satisfaction of some constraint c′ that has common variables with c. In the lat-
ter case we can apply the argument recursively, with only one difference: When
relaxation-query(c′) is called, the generator is limited by the former propagation
of c. However, since every possible extension of c is propagated (as shown above),
relaxation-query(c′) eventually returns all the potentially possible tuples.

We can therefore conclude that c, and every constraint c′ that was attempted
to be satisfied in the function call subtree of I, belong to a subset C′ of constraints
that unavoidably conflict with each other.
�
Lemma 3. If IR returns a solution, then it satisfies each constraint in C.
Proof. IR returns a solution only if every call of Satisfy from the main loop
succeeds, which implies that each x ∈ V (c), for all c ∈ C, is instantiated. In-
stantiate(x) succeeds only after all constraints that involve x are satisfied.
�
Theorem 2. If IR terminates, then it either finds an assignment for each vari-
able in X so that each constraint in C is satisfied, or determines that the problem
is infeasible. If the IR algorithm does not terminate, then either (a) There is a
constraint c ∈ C that is relaxed an infinite number of times (that is, relaxation-
query(c) never returns an empty set, given some specific state of the domains
of the variables in V (c)), or (b) There is a constraint c ∈ C that is enforced on
variables with unbounded domains, so that its propagation takes infinite time.

Proof. The first part of the theorem follows from Lemmas 1–3. To prove the
second part, assume that conditions (a) and (b) do not hold. The search tree is
composed of two types of nodes: constraint nodes, where a constraint can either
be propagated or relaxed (possibly more than once), and variable nodes, where a
variable is instantiated by a value from its current domain. Since conditions (a)
and (b) do not hold, both types of nodes take finite number of processing time,
so it is only left to show that the total number of nodes is finite.

The depth of the search tree is at most |C|+ |X | = m+n, since in each branch
each constraint is satisfied at most once, and each variable is instantiated at
most once. Since condition (a) (resp., (b)) does not hold, the maximum rank of
a constraint (resp., variable) node is finite, and the theorem follows.
�
Remark 3. As it is evident from Theorem 2, IR is only practical when the condi-
tions (a) and (b) do not materialize during the search. One of the most effective

716 Y. Schreiber

ways to prevent this is by selecting a “good” application-specific order of the
search tree nodes. Another possible way is, if possible, to configure a “smart”
policy for the oracle, preferring to relax constraints whose propagation is a priori
suspected to take a long time, and propagate constraints whose relaxation is a
priori suspected to be inefficient. It is also possible to extend the problem de-
composition and provide the generator not only the current domains of variables
in V (c), but also the constraints that interact with c and their variable domains;
however, this would require the generator to solve the resulting CSP.

4 CICSP in Functional Test Generation

4.1 Address Generation Problem

In current industrial practice, simulation-based verification techniques play the
major role in the functional verification of hardware designs. However, due to
the complexity of modern hardware architectures, it is infeasible to cover all pos-
sible test scenarios (stimuli) deterministically. Therefore, the common approach
is to generate the so called directed random tests, using the automated pseudo-
random test generation tools [9,15,16]. The input is a set of constraints that
reflect the hardware design, and a set of user-given constraints that direct the
tool; the output is a sequence of hardware-language instructions that give rise to
“interesting” events during the simulation. The randomness is employed to ex-
tend the reach (coverage) of the generated test. This problem can be formulated
as a CSP, and is often (eventually) decomposed into a sequence of sub-problems,
each of which generates a single instruction in the final instruction sequence.

To demonstrate the CICSP approach, we choose a common sub-problem of the
instruction generation problem. An instruction can involve one or more operands,
each of which can possibly be located at some memory address. This address
belongs to some virtual memory address space that is mapped to the physical
hardware resources. For example, the IA-32 processor architecture [11] contains
two related mechanisms: First, the segmentation mechanism translates a logical
memory address that belongs to some memory segment with a set of logical
attributes into the so-called linear address space. Second, the paging mechanism
maps chunks (or pages) of the linear address space into physical address ranges.
These mechanisms operate in several different modes that imply page sizes and
other parameters; for example, in Fig. 2 the mode implies a page size of 4K
bytes. Similar mechanisms also exist in other processor architectures [1].

A common implementation of these mechanisms is a hierarchy of translation
tables, where each next table is pointed by an entry of the preceding table in
the hierarchy. For example, in the paging mechanism in Fig. 2, the location of
the required page table can be calculated using the relevant entry of the page
directory (which can be pointed from a higher table in the hierarchy, and so on).
The relevant entry within each table is computed using the corresponding field
value within the address that is being translated — for example, k specific bits
within the linear address are used as an index of the page table entry. Apart from

Cost-Driven Interactive CSP with Constraint Relaxation 717

Offset
Segment
Selector

Logical Address

Linear
Directory

Page
Table
Page

Physical
Address Space

Linear Address

Page
Dir.
Entry
Index

Address Space

Segment

Offset
Page

Physical Address
Page
Table
Entry
Index

P.D. Entry

P.T. Entry
Descriptor

Table

Seg. Descriptor

PagingSegmentation

Segment

Fig. 2. A general outline of the segmentation and the paging mechanisms in IA-32

pointing to the next node in the hierarchy, each table entry also stores several
related attributes — for example, the access type of the node (read or write).

The Address Generation Problem (AGP) requires finding an address that
(a) has a legal mapping in all the translation mechanisms (that is, all the relevant
table entries contain valid data at the time of simulation), and (b) satisfies a set of
additional constraints that are implied by a specific test scenario. For instance:
Compute a linear address whose least significant bit is 1, most significant bit
is 0, it is mapped to a physical address that is greater than 0xFFFF0000, and it
belongs to a read-only page that is pointed by an even page table entry.

4.2 Solution Approaches

If all the address generation constraints for each required instruction were known
at the beginning of the test generation, it would be possible to construct a priori
an initial architectural state (that is, all the required translation tables) that
satisfies all the constraints. Unfortunately, often this is not the case, since many
of the constraints for one instruction are by-products of other instructions, and
the problem of generating all the instructions at once is usually too complex to
be solved as a single CSP. In the rest of the paper we describe and compare
two problem decomposition schemes and the corresponding cooperative solving
approaches: a straightforward classic CSP and the CICSP.

Standard CSP approach. The test generation problem can be decomposed into
a set of (interconnected) sub-problems p0, . . . , pk, where p0 is the problem of
computing the initial architectural state, and pi is the problem of generating
the i-th instruction, for i ∈ [1, . . . , k]. Here we consider only the AGP aspects
of the test generation problem — the solution of p0 comprises all the address
translation tables, and in each further pi we are interested only in the address
of each memory operand of the i-th instruction.

Since the output of each pj �= pk implies an architectural state that restricts
pj+1, we can solve all the sub-problems consecutively, until either the whole
test is generated, or an infeasible sub-problem is encountered. Obviously, in this

718 Y. Schreiber

approach, the more restrictive is the initial state prepared by p0, the higher is
the probability that some later sub-problem pi will become infeasible. We can
therefore try to initialize the translation tables (as part of the solution of p0)
by as many different entries as possible, in hope that the resulting mechanism
will cover all the requirements that may arise during the solving of p1, . . . , pk.
However, the number of all possible requirement combinations that may arise
during the solving of p1, . . . , pk is immensely greater than the number of the
translation paths (that is, valid translation table entry combinations) that can
be a priori prepared, and therefore, using this approach, we can never be prepared
for every possible scenario. To overcome this limitation, we can introduce some
randomness into the solving process of p0, and if the test generation fails on
some further pi, we can retry with a different solution of p0.

An important practical parameter in the above model is the initial translation
table density μ. While the maximal number of valid entries in each translation
table is constant (defined by the hardware architecture), not every entry has
to be part of the CSP model. An entry that is not part of the CSP model is
ignored by the solving process, and can never be selected as part of the AGP
solution. Using all the possible table entries as part of the CSP model increases
the probability of a successful test generation as discussed above, but it also
inflates the CSP model and therefore slows down the solution search, as shown
below. The initial translation table density 0 ≤ μ ≤ 1 is the probability of each
table entry to be added to the CSP model, and so it allows us to control the
effective number of the valid translation table entries.

We leave the modeling of p0 out of the scope of this paper. For each pi �= p0,
the set Xi of variables includes the logical, linear, and physical form of a memory
address and all their fields, as well as all the fields of the table entries that are
involved in the address translation process, for each memory operand of the i-th
instruction. The domains of all these variables are completely determined by the
initial architectural state: For example, the domain of a variable that represents
a specific field f of the involved page table entry contains all the values that are
stored at the field f of each page table entry in the initial architectural state.
The constraints Ci include all the constraints that are implied by the hardware
architecture, the requirements for the i-th instruction in the test scenario, and
the requirement that the table entries that are involved in the generated address
translation process are consistent with the architectural state.

CICSP approach. We decompose the problem similarly to the standard CSP
approach described above, with the following difference: The initial architectural
state is not completely computed before the solving of each p1, . . . , pk; rather, it is
constructed by an interactive process, where each pi is responsible to add into the
initial architectural state representation the table entries that are required for the
i-th instruction. The purpose of p0 is to construct only a partial representation
of the initial architectural state, in a way that many “simple” address generation
requirements would have a high probability to be satisfied without adding new
table entries. See Fig. 3 for an illustration.

Cost-Driven Interactive CSP with Constraint Relaxation 719

Cost−Driven
Oracle

Arch. State
Manager

Search
Engine

Search
Engine

Search
Engine

p1

pk

p0

Fig. 3. Cooperative solving of the AGP aspects in the test generation problem

For each pi �= p0, Xi is defined as in the standard CSP approach. The ini-
tial domains of most of these variables are full : For example, the domain of the
32-bit linear address is [0, . . . , 232 − 1]. The constraints in Ci can be subdivided
into C1

i , C2
i : (a) The constraints C1

i ⊂ Ci require that the table entries involved
in the generated address translation process are consistent with the current ar-
chitectural state; these constraints are extendable, as described below. (b) The
rest of the constraints C2

i = Ci \ C1
i are non-extendable — this set includes all

the constraints that are implied by the IA-32 architecture and the test scenario.
For each constraint in C1

i , the initially allowed value configurations are based
only on the part of the architectural state that has been defined before the
beginning of the solution search of pi. These constraints can be relaxed during
the solution search by asking the architectural state manager (which acts as the
relaxation generator) to extend the existing architectural state — that is, to
add new tables, table entries, pages, etc. The relaxation generator can be guided
(by the current domains of all the relevant variables) so that the new generated
architectural state elements would satisfy all the constraints propagated so far.

The cost-driven oracle can implement many possible decision policies. The
trade-off in these policies is between the amount of the newly generated ar-
chitectural state elements, and the time of search among all the possibilities
bestowed by the existing architectural state. The modification of the existing
state is costly since it requires a nontrivial interaction with the architectural
state simulator and other practical reasons. On the other hand, the translation
table hierarchy can include several layers of tables, where each table can point
to thousands of elements in the next layer; searching in all this hierarchy can
be very expensive. In our experiments (described below), we have chosen to im-
plement a policy that allocates a propagation time budget for each extendable
constraint c ∈ C1

i . As long as the budget has not run out, we propagate c; when
the budget is over, we backtrack to the point before the propagation of c, and
ask the generator to relax c. (Note that this specific policy does not guarantee a
complete search.) By setting the propagation effort budget of c proportional to
R(c), we can bound the total (propagation plus relaxation) effort that is made
to satisfy c.

Experiments. We have modeled the AGP both as a standard CSP and as a
CICSP using the ILOG Solver [10]. We constrain the table entries involved in
the address translation process to be consistent with the architectural state using
the custom lookup constraints [9], which provide an efficient interaction between
the search engine and the external architectural state.

720 Y. Schreiber

In our experiments we have modeled a specific mode of the IA-32 architec-
ture: 4K-byte and 4M-byte paging mechanism with a two-level translation table
hierarchy, and without considering the segmentation mechanism. The test sce-
nario contains a set C̃ of constraints, each of which has an equal probability ρ
to be included in C2

i ; each of these constraints is defined on a different subset
of paging attributes. We say that ρ is the test scenario constraint density (note
that except the constraints in C̃ there is also a set of mandatory constraints that
describe the IA-32 architecture); we experiment with ρ ∈ { 1

7 , 1
5 , 1

3}.
For each value of ρ we vary the initial translation table density μ, and compare

the standard CSP with the CICSP approach. By increasing μ we can increase
the probability of success of the standard CSP approach (see Fig. 4(a)) and
decrease the average number of constraint relaxations in the CICSP approach
(Fig. 4(b)). However, as can be seen in Fig. 4(c), increasing μ inflates the search
space, and consequently, the solution search time (here the effect of ρ is minor,
and therefore not depicted). According to the results in Fig. 4, increasing μ can
be a successful policy only when ρ is very low: Even with ρ as low as 1

3 the
standard CSP approach does not reach the 100% success ratio, in contrast with
the CICSP approach, whose success ratio was always 100%. With ρ = 1

2 most
of the standard CSP instances were infeasible (not depicted in Fig. 4).

0.10 0.2 0.3 0.4 0.5

1
1
1

/
/
/7
5
3

Constraint density

0.10 0.2 0.3 0.4 0.5

(c)

Search time
(sec)

0
2
4
6
8

10
12

Initial table density
0.10 0.2 0.3 0.4 0.5

1
1
1

/
/
/7
5
3

Constraint density

CSP:
Feasible problems (%)

0

20

40

60

80

100

Initial table density

(a)

(average per problem)

0.4
0.6
0.8
1.0
1.2

CICSP: Table entries added

0.2
0.0

Initial table density

(b)

ρ

μ

ρ

μ μ

Fig. 4. Experimental results for the AGP in the IA-32 architecture

Moreover, even with low ρ, increasing μ results in a sharp increase of the search
algorithm running time: For example, increasing μ from 0.01 to 0.5 increases the
average search time from 0.025 to 12.5 seconds. On the other hand, in the CICSP
framework, by increasing μ we decrease the average number of times that the
relaxation generator is asked to relax a constraint. By analyzing the graphs in
Fig. 4(b,c) we can compute the optimal value of μ for the CICSP approach: By
setting μ = 0.1 we get a reasonably low running time (about 1 second), while
the average number of relaxations is still sufficiently small. Therefore, in order to
bring the probability of success close to 100% for ρ ≤ 1

3 , we can get ×10 search
time speed-up by using the CICSP, compared to the standard CSP approach.
For higher values of constraint density the gain is even higher.

Cost-Driven Interactive CSP with Constraint Relaxation 721

5 Concluding Remarks

We have presented a new framework that extends the ICSP model of [3] in two
directions: First, it allows the relaxation of arbitrary constraints. Second, it does
not assume that relaxing a constraint is necessarily much more expensive than
its propagation effort. We have also described the IR algorithm template, whose
effectiveness was demonstrated on the Address Generation Problem by achiev-
ing a ×10 search time speed-up in comparison to the standard CSP approach.
Similarly to the original ICSP framework, CICSP is most useful in the presence
of a relaxation generator that can be efficiently guided.

The suggested CICSP framework is very flexible — it is not difficult to use
it for several additional extensions. For example, a possible extension of CICSP
can support soft constraints and violation penalties, simply by extending the
interface between the search engine and the cost-driven oracle: When the oracle
is asked how to satisfy a constraint c, one of the possible replies for a soft
constraint can be “leave it unsatisfied.” This decision can be taken by the oracle
by considering, among other parameters, the penalty for the violation of c.

It seems that one of the most promising future research directions is the im-
provement of the search algorithm in the IR template. While its basic version,
proposed in Section 3, works very well in the presence of a relaxation generator
that can be efficiently guided, its effectiveness can decrease dramatically when
the probability of a constraint to be successfully relaxed by the generator is low.
This behavior can probably be improved by using more advanced search algo-
rithms. In particular, it would be interesting to combine IR with the explanation
techniques of [8,12,17].

Acknowledgments. The author is very grateful to Anna Moss and Boris
Gutkovich for fruitful discussions and valuable comments, as well as for the
usage of their code that demonstrates the lookup constraints concept of [9].

References

1. Adir, A., Emek, R., Katz, Y., Koyfman, A.: DeepTrans — a model-based approach
to functional verification of address translation mechanisms. In: Proc. 4th Inter-
nat. Worksh. on Microprocessor Test and Verification: Common Challenges and
Solutions, pp. 3–6. IEEE CS Press, Los Alamitos (2003)

2. Barruffi, R., Lamma, E., Mello, P., Milano, M.: Least commitment on variable
binding in presence of incomplete knowledge. In: Biundo, S., Fox, M. (eds.) ECP
1999. LNCS, vol. 1809, pp. 159–171. Springer, Heidelberg (2000)

3. Cucchiara, R., Gavanelli, M., Lamma, E., Mello, P., Milano, M., Piccardi, M.:
Constraint propagation and value acquisition: Why we should do it interactively.
In: Proc. 16th Internat. Joint Conf. on Artif. Intell., Stockholm, pp. 468–477 (1999)

4. Dechter, R.: On the expressiveness of networks with hidden variables. In: Proc. 8th
National Conf. on Artif. Intell., Boston, pp. 556–562 (1990)

5. Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In:
Proc. 7th National Conf. on Artif. Intell., St. Paul, pp. 37–42 (1988)

722 Y. Schreiber

6. Faltings, B.: Distributed constraint programming. In: Rossi, F., van Beek, P.,
Walsh, T. (eds.) Handbook of Constraint Programming, ch. 20, pp. 699–729. Else-
vier, Amsterdam (2006)

7. Faltings, B., Macho-González, S.: Open constraint programming. Artif. In-
tell. 161(1-2), 181–208 (2005)

8. Ferguson, A., O’Sullivan, B.: Quantified constraint satisfaction problems: from re-
laxations to explanations. In: Proc. Internat. Joint Conf. on Artif. Intell (IJCAI),
pp. 74–79. Morgan Kaufmann, San Francisco (2007)

9. Gutkovich, B., Moss, A.: CP with architectural state lookup for functional test gen-
eration. In: 11th Annu. IEEE Internat. Worksh. on High Level Design Validation
and Test, pp. 111–118 (2006)

10. ILOG Solver 6.5 reference manual (October 2007)
11. Intel R© 64 and IA-32 architectures software developer’s manual (February 2008)
12. Jussien, N., Boizumault, P.: Implementing constraint relaxation over finite domains

using ATMS. In: Jampel, M., Maher, M.J., Freuder, E.C. (eds.) CP-WS 1995.
LNCS, vol. 1106, pp. 265–280. Springer, Heidelberg (1996)

13. Macho-González, S., Ansótegui, C., Meseguer, P.: Boosting open CSPs. In: Ben-
hamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 314–328. Springer, Heidelberg
(2006)

14. Macho-González, S., Meseguer, P.: Open, Interactive and Dynamic CSP. In: Proc.
Internat. Worksh. on Constraint Solving under Change and Uncertainty (CP 2005),
pp. 13–17 (2005)

15. Moss, A.: Constraint patterns and search procedures for CP-based random test
generation. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 86–103. Springer,
Heidelberg (2008)

16. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:
Constraint-based random stimuli generation for hardware verification. AI Maga-
zine 28(3), 13–30 (2007)

17. Papadopoulos, A., O’Sullivan, B.: Relaxations for compiled over-constrained prob-
lems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 433–447. Springer,
Heidelberg (2008)

18. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard
and easy problems. In: Proc. Internat. Joint Conf. on Artif. Intell (IJCAI), Mon-
treal, pp. 631–637 (1995)

19. Sergot, M.: A query-the-user facility for logic programming. In: Degano, P., Sande-
wall, E. (eds.) Integrated Interactive Computing Systems, pp. 27–41. North-
Holland, Amsterdam (1983)

20. Verfaillie, G., Jussien, N.: Constraint solving in uncertain and dynamic environ-
ments: A survey. Constraints 10(33), 253–281 (2005)

Weakly Monotonic Propagators

Christian Schulte1 and Guido Tack2

1 KTH - Royal Institute of Technology, Sweden
cschulte@kth.se

2 Programming Systems Lab, Saarland University, Germany
tack@ps.uni-sb.de

Abstract. Today’s models for propagation-based constraint solvers re-
quire propagators as implementations of constraints to be at least con-
tracting and monotonic. These models do not comply with reality:
today’s constraint programming systems actually use non-monotonic
propagators. This paper introduces the first realistic model of constraint
propagation by assuming a propagator to be weakly monotonic (com-
plying with the constraint it implements). Weak monotonicity is shown
to be the minimal property that guarantees constraint propagation to
be sound and complete. The important insight is that weak monotonic-
ity makes propagation in combination with search well behaved. A case
study suggests that non-monotonicity can be seen as an opportunity for
more efficient propagation.

1 Introduction

When implementing a propagator for a constraint, the propagator must comply
with policies mandated by the underlying constraint programming system such
that constraint propagation becomes well behaved. The most obvious property
is contraction: values are removed but never added. A second property is mono-
tonicity: a propagator can perform stronger pruning only when being applied to
stronger input (fewer values for variables). Contraction captures pruning as the
very essence of constraint propagation, while monotonicity guarantees that the
same result (the weakest possible) is computed regardless of propagation order.

However, some propagators are non-monotonic. They may compromise be-
tween propagation strength and efficiency, like task intervals in scheduling [1]
and propagating the circuit (Sect. 5) or multicost-regular constraint [2].
Other approaches yield non-monotonic propagators due to delaying or adapt-
ing propagation [3,4], using randomization [5,6], or approximation [7]. For some
propagators, it may just not be obvious whether they are monotonic.

Systems implement some of these non-monotonic propagators, for example
Choco, Gecode, Oz, and SICStus Prolog. It is realistic to assume that many
more non-monotonic propagators are used, and that many more systems rely
on them. Essentially, many systems use non-monotonic constraint propagation
while not spelling out the most basic guarantees: Is the result of propagation
unique? Is propagation correct? Do two runs of the same problem return the
same solution? Do techniques such as recomputation for search still work?

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 723–730, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

724 C. Schulte and G. Tack

This paper attempts to answer these questions. We show that even non-
monotonic propagators have to be monotonic to a certain extent, in order to
ensure soundness. This leads to the definition of weakly monotonic propagators,
a class of propagators that covers approximative, heuristic, and randomized al-
gorithms, while yielding strong enough guarantees to keep propagation sound.

After presenting preliminaries in Sect. 2, the paper contributes the first theory
of non-monotonic propagators, based on weak monotonicity, that fills the gap
between models for propagation and reality (Sect. 3). It analyzes the interaction
between propagation of weakly monotonic propagators and search, including an
analysis of recomputation (Sect. 4). Finally, it provides a case study that suggests
that non-monotonicity should be seen as an opportunity rather than a problem
(Sect. 5) and concludes with Sect. 6.

2 Preliminaries

We assume a finite set of variables Var = {x1, . . . , xn} and a finite set of values
Val . Constraints are characterized by assignments a ∈ Asn that map variables to
values: Asn = Var → Val . A constraint c ∈ Con is a relation over the variables:
a set of all assignments that satisfy the constraint, Con = 2Asn . Constraints are
defined for all variables in Var . Typically, only a subset vars(c) of the variables
is significant ; the constraint is the full relation for all x /∈ vars(c).

A domain d ∈ Dom maps each variable x ∈ Var to a set of possible values,
the variable domain d(x) ⊆ Val . A domain d can be identified with the set
of assignments {a | ∀x : a(x) ∈ d(x)}. We can therefore identify domains with
constraints. In particular, {a} is a domain and a constraint for any assignment a.

A domain d1 is stronger than a domain d2 (d1 ⊆ d2), iff ∀x ∈ Var : d1(x) ⊆
d2(x). By dom(c) we refer to the strongest domain including all valid assignments
of a constraint: min {d ∈ Dom | c ⊆ d} = {a | ∀x ∃b ∈ c. a(x) = b(x)}. Note that
the minimum exists (domains are closed under intersection) and that not every
constraint can be captured by a domain. For a constraint c and a domain d,
dom(c ∩ d) refers to removing all values from d not supported by c.

A constraint satisfaction problem (CSP) is a pair 〈d, C〉 of a domain d and
a set of constraints C. The solutions of a CSP 〈d, C〉 are all assignments that
satisfy all constraints: sol(d, C) = {a ∈ Asn | {a} ⊆ d, ∀c ∈ C : a ∈ c}.

3 Weakly Monotonic Propagators

Propagators, sometimes also referred to as constraint narrowing operators or
filter functions, serve as implementations of constraints. They are usually defined
as contracting functions over domains: p ∈ Dom → Dom , p(d) ⊆ d. Requiring
propagators to be contracting is uncontroversial, after all it captures the very
essence of constraint propagation and guarantees termination.

Many models of propagation additionally require propagators to be idempo-
tent (p(p(d)) = p(d)) and monotonic (d1 ⊆ d2 ⇒ p(d1) ⊆ p(d2)). Then, propa-
gators are closure or consequence operators over the lattice of domains [8,9,10].
Examples for definitions of propagators as closure operators are [11,12,13,14].

Weakly Monotonic Propagators 725

Theorem 1. Given a propagation problem, a pair 〈d, P 〉 of a domain d and a
set of monotonic propagators P , there is a unique weakest simultaneous fixpoint
of all p ∈ P that is stronger than d. It can be computed by iteration:

prop(d, P) ≡ while ∃p ∈ P : p(d) �= d do
d← p(d)

return d

The theorem still holds without idempotency. In practice, it is better to deter-
mine the fixpoint status of a propagator dynamically [15]. Similarly, strength
of propagators is irrelevant (bounds or domain consistency, or forward check-
ing). Consequently, propagators are sometimes defined to be contracting and
monotonic. Examples for this definition of propagators are [16,17,15].

In order to relax the definition of propagators, consider how a propagator p can
implement a constraint c. The first condition is correctness, p must not remove
solutions of c: a ∈ c∧ a ∈ d⇒ a ∈ p(d) for any assignment a and domain d. The
second condition is that for an assignment a, p checks whether a is a solution of
c: p({a}) = {a} ⇔ a ∈ c. The interesting connection between these properties
and monotonicity is that every monotonic propagator implements exactly one
constraint.

Definition 2. A monotonic propagator p implements the constraint defined as
the set of assignments accepted by the propagator, {a | p({a}) = {a}}. This is
called the induced constraint cp of p.

By definition, a propagator p checks whether assignments are solutions of cp. And
by monotonicity, if a ∈ cp and a ∈ d, then p({a}) ⊆ p(d), and hence a ∈ p(d).
Thus, p is correct for cp. Having correct propagators for constraints, it makes
sense to define the set of solutions of a propagation problem 〈d, P 〉 for a domain
d and a set of propagators P as the set of solutions of the induced constraints:
sol(d, P) = sol(d, {cp | p ∈ P}).

In Def. 2 monotonicity is used to enforce correctness of the propagator. How-
ever, monotonicity was only used for assignments. This leads to the central
definition used in this paper.

Definition 3. A function p over domains is called weakly monotonic iff a ∈ d⇒
p({a}) ⊆ p(d) for all assignments a and domains d. A propagator is a contract-
ing and weakly monotonic function over domains.

Every weakly monotonic propagator also induces a single constraint. Weak mono-
tonicity yields a minimal definition of propagators, as every propagator can be
made weakly monotonic. Given a non-monotonic propagator that is correct for a
constraint c, we can turn it into a weakly monotonic propagator that implements
c by composing it with a function that checks c on assignments.

Lemma 4. A monotonic propagator is weakly monotonic.

The lemma follows directly from the definitions. Conversely, a weakly monotonic
propagator is not necessarily monotonic. Assume a propagator p that only prunes

726 C. Schulte and G. Tack

the domain if |d(x)| ∈ {1, 3}. A domain with |d(x)| = 2 can be stronger than
a domain with |d(x)| = 3 but yield weaker propagation, so p is not monotonic.
But it is weakly monotonic, because p does propagate when |d(x)| = 1 and thus
still checks assignments.

Lemma 5. Propagation preserves solutions: sol(d, P) = sol(p(d), P) for p ∈ P .

Theorem 1 does not hold for non-monotonic propagators. But, prop(d, P) still ter-
minates, as propagators are contracting and domains are finite. Thus, prop(d, P)
still produces simultaneous fixpoints for all p ∈ P . However, these fixpoints can
now be different for different orders of propagator application. Thus, prop turns
into a relation. For convenience, we will continue to write d′ = prop(d, P) instead
of d′ ∈ prop(d, P).

Lemma 6. Assume that prop(d, P) = d1 and prop(d, P) = d2. Then d1 and d2

may not be comparable: d1 �⊆ d2 and d2 �⊆ d1.

Consider propagators p and q with cp ≡ (x > 0) and cq ≡ (x < 2). To make
them non-monotonic, assume that both p and q only propagate if |d(x)| ∈ {1, 3}.
Given the domain d = (x �→ {0, 1, 2}), there are two incomparable fixpoints
d1 = p(q(d)) = (x �→ {0, 1}) and d2 = q(p(d)) = (x �→ {1, 2}).

Although there is no unique weakest fixpoint, the different fixpoints are still
well behaved in that they contain all solutions of the original problem. The
following lemma will be central for the discussion of search in the next section.

Lemma 7. If prop(d, P) = d′, then d′ ⊆ d and sol(d, P) = sol(d′, P).

This follows from the fact that if some p ∈ P prunes an assignment a from d,
then weak monotonicity guarantees that p({a}) = ∅. Therefore, a is no solution
of cp, and hence not of 〈d, P 〉, either.

But how are these fixpoints related to the unique weakest fixpoint computed
by monotonic propagation? We define the strongest possible propagator for a
constraint c. This so-called domain propagator p̂c establishes domain consistency
(also known as generalized arc consistency), it removes all values from all variable
domains that cannot be extended to a solution of c. That is, p̂c returns the
strongest domain that contains all solutions of c and d: p̂c(d) = dom(c ∩ d).

Lemma 8. Any propagator p implementing c returns a weaker domain than p̂c:
p̂c(d) ⊆ p(d). For any constraint c, p̂c is monotonic.

Any non-monotonic propagator for a constraint c is weaker than p̂c. Fixpoints
are therefore always weaker than those obtained by domain propagation.

The astute reader may have noticed that none of the results depends on
propagators being functions, except when being applied to assignments. This
is an important insight, as it allows for example randomized propagation: on
the same domain d, a propagator may return different results. In other words,
propagators can be relaxed to be contracting and weakly monotonic relations
over Dom × Dom, as long as they are functional on assignments.

Weakly Monotonic Propagators 727

4 Search

A constraint solver interleaves propagation with search. It starts with a propaga-
tion problem 〈d, P 〉 and computes a fixpoint. If this fixpoint is neither failed (an
empty domain) nor solved (all variables assigned), the solver splits the problem
and solves the resulting subproblems recursively. Splitting creates two branches
(we assume binary search for simplicity), adding propagators to each branch
that make the problem simpler (for instance x = i for one branch and x �= i for
the other). Splitting must partition the solution space of the original problem.

Thus, the solver explores a search tree. A solver is sound if all solutions that
it finds by exploring the search tree are solutions of the original problem. It is
complete if the search tree contains all solutions of the original problem.

If all propagators are monotonic, there is a unique fixpoint for each propa-
gation problem. As long as the addition of propagators to the branches is de-
terministic, the search tree is completely determined by the initial propagation
problem. With non-monotonic propagators, the order of propagation matters. As
a result, the shape of the tree also depends on the order of propagation chosen
by the solver. As discussed in Lemma 6, the resulting fixpoints may be incompa-
rable, resulting in a different search tree. The good news is that non-monotonic
propagation is still correct, it does not remove solutions.

Lemma 9. A combination of non-monotonic propagation and search is a sound
and complete solver for propagation problems. The set of solutions found by
search is thus determined solely by the original problem to be solved. The order
of the solutions in the tree depends on the order of propagation.

For a solver, propagation order may depend on the environment, for instance
on memory allocation or other things out of the control of the solver, and may
be different for different runs of the same problem. Hence, the first solution
may not even be the same between different runs of the same solver. While this
may seem inconvenient, non-monotonic propagation is not alone in this respect:
parallel search and random restarts share the same properties.

Mozart solves the problem of non-unique fixpoints by fixing the order in which
non-monotonic propagators are executed [17]. This technique however clashes
with priorities for propagator scheduling, which has proven extremely useful [15].

Recomputation. Recomputation is an important technique for making solvers
based on copying efficient [18], and for enabling trailing solvers to perform more
advanced search strategies such as best-first search [19].

The main idea is to recompute a node in the search tree from a state further
up in the tree, using a path that describes the choices that lead to the node.
Such a path can consist of a sequence of moves to a child of a node (for example
1.2.2.1.1). Recomputation amounts to redoing the exploration along this path,
computing fixpoints for every intermediate step. This is the method described
in [18], called fixpoint recomputation. Alternatively, a path is a sequence of prop-
agators added by splitting (for example P1.P2.P3). Then recomputation adds all
propagators to the original propagation problem and computes a single fixpoint.

728 C. Schulte and G. Tack

We will refer to this as path recomputation (called batch recomputation in [20]
and decomposition based search in [21]).

Fixpoint recomputation fails in the presence of non-monotonic propagators.
Assume that splitting adds x = 1 on the left and x �= 1 on the right branch. When
recomputing the same node, splitting may make an entirely different decision,
choosing y = 1 and y �= 1 instead. But recomputation just explores the right
branch, resulting in an incomplete search: possible solutions with y = 1 are lost.
The Mozart approach of fixing propagator order solves this problem.

Path recomputation is well-behaved even for non-monotonic propagation. In
the above example, the splitting decision would be made only once (during the
original exploration), and recomputation just adds x �= 1 on the right branch.
As propagation preserves solutions, the set of solutions of the right branch is ex-
actly the same as during original exploration. Interestingly, Choi et al. [20] state
that path recomputation requires monotonic propagators. This over-cautious as-
sumption underlines the importance of a theory of non-monotonic propagation.

With non-monotonic propagation, the fixpoint after recomputation can differ
from the one during exploration. Instead of failure, the solver may recompute a
non-failed node, and instead of a solution, a node where some variables are not
assigned yet. However, as the set of solutions is the same, further search will only
produce failure or the very same solution, respectively. The solver must thus be
able to perform less or additional search when recomputing.

Theorem 10. Constraint propagation with weakly monotonic propagators, com-
bined with search (possibly based on path recomputation), yields a sound and
complete solver for propagation problems.

5 Case Study: Propagating circuit

The circuit(x1, . . . , xn) constraint over n finite domain integer variables is true
iff the graph with edges i→ j where xi = j has a single cycle covering all nodes.
Domain-consistent propagation of circuit is of course NP-hard.

A simple monotonic propagator for the circuit constraint based on the graph
G with nodes i and edges i → j for all j ∈ d(xi) for 1 ≤ i ≤ n is as follows: use
a standard alldifferent propagation algorithm, as all xi have to be pairwise
distinct; check the mandatory condition that G has only a single strongly con-
nected component. Checking the mandatory condition can be done using DFS
on G. However, the DFS spanning tree starting from a node i with |d(xi)| > 1
also offers potential for propagation [22].

The disjoint subtrees explored by DFS are
sketched as triangles. For circuit, the following
must hold: There must be an edge from each sub-
tree to its predecessor subtree, and an edge from
the leftmost subtree to the root (otherwise, there
is no covering cycle). There must not be any edges
between non-neighbor subtrees (such as the dot-
ted edge: the root node must be visited twice if following this edge). This insight
can be propagated: prune edges between non-neighbor subtrees, and if there is

Weakly Monotonic Propagators 729

a single edge between neighbors or from the leftmost subtree to the root, assign
the corresponding variable.

This algorithm is obviously non-monotonic: pruning is likely to increase with
the number of subtrees in the DFS spanning tree. The DFS spanning tree has
more subtrees, if the variable from which DFS starts has more values. Hence,
the more values the variable has from which DFS starts, the more pruning.

The propagator is weakly monotonic, as it checks the constraint on assign-
ments. Propagation depends on where DFS starts, so different heuristics for se-
lecting the start variable can be: the first variable; a random variable; a variable
with the largest domain. The experiments below confirm that the propagator is
indeed non-monotonic: pruning depends on where DFS starts, as witnessed by
the different number of fails during search.

The following table shows the effect of non-monotonicity for circuit. We have
used Gecode 3.0.2 on a MacPro with 2×2.8 GHz Intel Xeons and 8 GB memory
running Windows Vista. The runtimes (average of 20 runs, with a coefficient of
deviation less than 2% except for random) and number of failures for pruning
are relative to just checking by DFS. The alldifferent part of circuit uses
domain-consistency. knights-n finds a Knights tour on an n × n board and
tsp-* finds an optimal traveling salesman tour.

Example check first largest random
time (s) fail time fail time fail time fail

knights-18 0.36 6 070 86.1% 83.4% 66.9% 57.4% 11.4% 2.2%
knights-20 0.05 39 98.1% 92.3% 101.9% 100.0% 100.0% 87.2%
knights-22 45.03 543 384 94.4% 93.2% 81.3% 75.6% 0.9% 0.6%
knights-24 4.36 42 260 28.4% 26.1% 67.8% 54.0% 4.9% 1.9%
tsp-br17 0.83 48 804 98.2% 97.9% 100.4% 98.1% 102.7% 99.1%
tsp-ftv33 1423.71 31 013 229 99.8% 99.5% 99.8% 97.9% 96.9% 92.5%

Random variable selection vastly outperforms the other strategies for difficult
knights instances and shows some speedup for the medium-sized tsp-ftv33
instance. The coefficient of deviation for runtime and number of failures for
random is less than 5% for tsp and around 45% for knights-n. That is, for
knights-22 and knights-24 the speedup is almost always at least one order of
magnitude thanks to randomization now legalized by weak monotonicity.

6 Conclusion

This paper has introduced a minimal model of propagation based on weakly
monotonic propagators and has clarified the properties of propagation and search
based on the model. By this, the paper for the first time gives a model to capture
the essential properties of many constraint programming systems that use non-
monotonic propagators. The hope is that non-monotonic propagation is seen as
a general opportunity for more efficient propagation rather than a problem that
is best ignored.

Acknowledgements. We thank Nicolas Beldiceanu, Mats Carlsson, Mikael Lager-
kvist, Gert Smolka, and Peter Stuckey for insightful discussions. Part of this work

730 C. Schulte and G. Tack

was done while Guido Tack was at NICTA Victoria Laboratory, Melbourne,
Australia.

References

1. Baptiste, P., Le Pape, C.: A theoretical and experimental comparison of constraint
propagation techniques for disjunctive scheduling. In: IJCAI, pp. 600–606 (1995)

2. Menana, J., Demassey, S.: Sequencing and counting with the multicost-regular con-
straint. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547,
pp. 178–192. Springer, Heidelberg (2009)

3. Katriel, I.: Expected-case analysis for delayed filtering. In: Beck, J.C., Smith, B.M.
(eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 119–125. Springer, Heidelberg (2006)

4. Stergiou, K.: Heuristics for dynamically adapting propagation. In: ECAI, pp. 485–
489 (2008)

5. Katriel, I., Van Hentenryck, P.: Randomized filtering algorithms. Technical Report
CS-06-09, Brown University, Providence, RI, USA (2006)

6. Mehta, D., van Dongen, M.R.C.: Probabilistic consistency boosts MAC and SAC.
In: IJCAI, pp. 143–148 (2007)

7. Sellmann, M.: Approximated consistency for Knapsack constraints. In: Rossi, F.
(ed.) CP 2003. LNCS, vol. 2833, pp. 679–693. Springer, Heidelberg (2003)

8. Ward, M.: The closure operators of a lattice. Annals of Mathematics 43(2), 191–196
(1942)

9. Tarski, A.: Fundamentale Begriffe der Methodologie der deduktiven Wis-
senschaften. I. Monatshefte für Mathematik 37(1), 361–404 (1930)

10. Tarski, A.: V. In: Logic, semantics, metamathematics, 2nd edn., pp. 60–109. Hack-
ett Publishing Company (1983)

11. Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: POPL, pp. 333–352 (1991)

12. Benhamou, F., McAllester, D.A., Van Hentenryck, P.: CLP(Intervals) revisited. In:
ILPS, pp. 124–138. The MIT Press, Cambridge (1994)

13. Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Constraint processing in cc(FD).
Technical report, Brown University (1991)

14. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press,
Cambridge (2003)

15. Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. ACM Trans.
Program. Lang. Syst. 31(1), 2:1–2:43 (2008)

16. Benhamou, F.: Heterogeneous Constraint Solving. In: Hanus, M., Rodŕıguez-
Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 62–76. Springer, Heidelberg
(1996)

17. Müller, T.: Constraint Propagation in Mozart. Doctoral dissertation, Universität
des Saarlandes, Saarbrücken, Germany (2001)

18. Schulte, C.: Programming Constraint Services. LNCS (LNAI), vol. 2302. Springer,
Heidelberg (2002)

19. Perron, L.: Search procedures and parallelism in constraint programming. In: Jaf-
far, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 346–361. Springer, Heidelberg (1999)

20. Choi, C.W., Henz, M., Ng, K.B.: Components for state restoration in tree search.
In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 240–255. Springer, Heidelberg
(2001)

21. Michel, L., Van Hentenryck, P.: A decomposition-based implementation of search
strategies. ACM Trans. Comput. Logic 5(2), 351–383 (2004)

22. Carlsson, M.: Personal communication (February 2007)

Constraint-Based Optimal Testing
Using DNNF Graphs�

Anika Schumann1, Martin Sachenbacher2, and Jinbo Huang3

1 Cork Constraint Computation Centre, University College Cork, Ireland
2 Institut für Informatik, Technische Universität München, Germany

3 NICTA and Australian National University, Australia

Abstract. The goal of testing is to distinguish between a number of
hypotheses about a system—for example, different diagnoses of faults—
by applying input patterns and verifying or falsifying the hypotheses from
the observed outputs. Optimal distinguishing tests (ODTs) are those
input patterns that are most likely to distinguish between hypotheses
about non-deterministic systems. Finding ODTs is practically important,
but it amounts in general to determining a ratio of model counts and is
therefore computationally very expensive.

In this paper, we present a novel approach to constraint-based ODT
generation, which uses structural properties of the system to limit the
complexity of computation. We first construct a compact graphical repre-
sentation of the testing problem via compilation into decomposable nega-
tion normal form. Based on this compiled representation, we show how
one can evaluate distinguishing tests in linear time, which allows us to
efficiently determine an ODT. Experimental results from a real-world
application show that our method can compute ODTs for instances that
were intractable for previous approaches.

Keywords: Algorithms, applications, testing, DNNF graphs.

1 Introduction

Testing asks whether a system can be stimulated with input patterns, such
that different hypotheses about the system can be verified or falsified from the
observed output patterns. Applications include model-based fault analysis of
technical systems, autonomous control (acquiring sensor inputs to discriminate
among competing state estimates), and bioinformatics (designing experiments
that help distinguish between different possible explanations of biological phe-
nomena).

In many real-world applications of testing, the underlying models are non-
deterministic; applying an input can lead to several possible outputs. Different
� This work was supported by Deutsche Forschungsgemeinschaft under grant SA

1000/2-1, the Science Foundation Ireland under the ITOBO Grant No. 05/IN/I886,
and NICTA. The latter is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 731–745, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

732 A. Schumann, M. Sachenbacher, and J. Huang

notions of testing with such non-deterministic models have been introduced. In
the area of diagnosis, [13] introduced definitely and possibly discriminating tests
(DDTs and PDTs) for systems modeled as constraints. For a DDT, the sets of
possible outputs are disjoint and thus it will necessarily distinguish among hy-
potheses, whereas for a PDT, the sets partially overlap and thus it may or may
not distinguish among hypotheses. In automata theory, [1] studied the analo-
gous problem of generating strong and weak distinguishing sequences for non-
deterministic finite state machines; for sequences of length at most k ∈ N, this
can be reduced to the problem of finding DDTs and PDTs [7].

For example, consider the network shown in Figure 1, which consists of one
not component and two adders A2H and AUL. The former is high dominant
upon receiving input i2 = H and the latter is low dominant upon receiving
input u = L. Here we consider the two hypotheses M1, M2 that either both
adders function normally, i.e. M1 = {not, A2H , AUL} or that both adders are
faulty, i.e. M2 = {not, A′

2H , A′
UL}. Then there exists no DDT, but two PDTs:

[−i1, i2] and [−i1,−i2].
[8] introduced optimal distinguishing tests (ODTs), which generalize DDTs

and PDTs by maximizing the ratio of distinguishing over non-distinguishing
possible outcomes. In the example from Figure 1, the PDT [−i1, i2] has a better
distinguishing ratio than the PDT [−i1,−i2], and is therefore an ODT for this
example. Finding ODTs is important as it reduces the number of tests to be
executed and the overall costs of the testing process. [8] proposed and analyzed
a simple greedy-type algorithm to approximate ODTs, which in some real-world
applications produces test inputs whose distinguishing ratios are close to those
of ODTs.

In this paper, we present a novel search algorithm to compute ODTs (and thus
DDTs and PDTs), which exploits structural properties of the model to limit the
complexity of optimal test generation. Its main feature is a carefully constructed
graph—through manipulation of logical theories and compilation into decom-
posable negation normal form (DNNF) [6]—that allows efficient computation of
good upper bounds on ratios of model counts. These upper bounds are used

A2H : i1 i2 o1 A′
2H : i1 i2 o1

L L L L L L
L H L L H L
L H H H L H
H L H H H H
H H H

not: i1 u AUL: u o1 o2 A′
UL: u o1 o2

L H L L L L L L
H L L H L L H L

H L L H L L
H L H H H L
H H H

Fig. 1. Circuit with two possibly faulty adders: A′
2H and A′

UL

Constraint-Based Optimal Testing Using DNNF Graphs 733

to prune the search in a way motivated by a recent planning algorithm [9]. We
show that our method can compute ODTs for instances that were intractable
for previous approaches.

2 Background

Following the framework in [8,12,13], we assume that the system can be modeled
as a constraint satisfaction problem (CSP), which is a triple M = (V ,D, C), where
D = D(v1)× . . .×D(vn) are the finite domains of finitely many variables vj ∈ V ,
j = 1, . . . , n, and C = {C1, . . . , Cm} is a finite set of constraints with Ci ⊆ D,
i = 1, . . . , m. We denote by X the set of all solutions, that is, assignments x ∈ D
to the variables such that all constraints are satisfied. That is, X = {x | x ∈
D, C(x)}, where C(x) denotes x ∈ Ci for all i = 1, . . . , m.

In addition, the system under investigation defines a set of controllable (in-
put) variables I and a set of observable (output) variables O. Formally, a hy-
pothesis M for a system is then a CSP whose variables are partitioned into
V = I ∪ O ∪ L, such that I and O are the input and output variables of the
system, and for all assignments to I, the CSP is satisfiable. The remaining vari-
ables L = V \ (I ∪ O) are called internal state variables. We denote by D(I)
and D(O) the cross product of the domains of the input and output variables,
respectively: D(I) =×v∈I D(v) and D(O) =×v∈O D(v).

The goal of testing is then to find assignments of the input variables I that
will cause different assignments of output variables O for different hypotheses.
In the general case of non-deterministic systems, an input assignment can yield
more than one possible output assignments. This case is frequent in practice; one
reason is that in order to reduce the size of a model, it is common to aggregate
the domains of system variables into small sets of values such as ‘low’, ‘med’,
and ‘high’; a side-effect of this abstraction is that the resulting models can no
longer be assumed to be deterministic functions, even if the underlying system
behavior was deterministic. Another reason is the test situation itself: even in a
rigid environment such as an automotive test-bed, there are inevitably variables
or parameters that cannot be completely controlled while testing the device.

In order to capture sets of outputs, for a given hypothesis M and an assign-
ment t ∈ D(I) to the input variables, we define the output function X : D(I) →
2D(O) with t �→ {y | y ∈ D(O), ∃x ∈ X : x[I] = t ∧ x[O] = y}, where 2D(O)

denotes the power set of D(O), and x[I], x[O] denote the restriction of the vec-
tor x to the input variables I and the output variables O, respectively. Note
that since M will always yield an output, X (t) is non-empty.

2.1 Distinguishing Tests

Non-deterministic models have given rise to the introduction of so-called pos-
sibly and definitely distinguishing tests, for short PDT and DDT, respectively
[13]. The first type of test (PDT) might distinguish between hypotheses, as the
sets of possible outputs partially overlap, whereas the second type (DDT) will
necessarily do so, as the sets of possible outputs are disjunct:

734 A. Schumann, M. Sachenbacher, and J. Huang

Definition 1 (Distinguishing Tests). Consider k ∈ N hypotheses M1, . . . , Mk

with input variables I and output variables O. Let Xi be the output function of
hypothesis Mi with i ∈ {1, . . . , k}. An assignment t ∈ D(I) to I is a pos-
sibly distinguishing test (PDT), if there exists an i ∈ {1, . . . , k} such that
Xi(t) \

⋃
j
=i Xj(t) �= ∅. An assignment t ∈ D(I) is a definitely distinguish-

ing test (DDT), if for all i ∈ {1, . . . , k} it holds that Xi(t) \
⋃

j
=i Xj(t) = Xi(t).

For testing with non-deterministic automata models instead of logical theories
or CSPs, there exists the analogous notion of so-called weak and strong distin-
guishing sequences [1,3]. Finding such sequences with a length bounded by some
k ∈ N can be reduced to the problem of finding PDTs and DDTs, by unrolling
automata into a constraint network using k copies of the automata’s transition
and observation relation [7]. Therefore, in this paper we restrict ourselves to
models given as networks of finite-domain constraints.

2.2 Optimal Distinguishing Tests

Due to limited observability or a high degree of non-determinism, it is not un-
common that a DDT for the hypotheses does not exist, and one can instead
only find PDTs. This motivates a quantitative measure for tests that refines and
generalizes the previous notions of PDTs and DDTs. The intuition is that if we
assume the possible outcomes (feasible assignments to the output variables) to
be (roughly) equally likely, a PDT will be more likely to distinguish among two
given hypotheses compared to another PDT, if the ratio of possible outcomes
that are unique to a hypothesis versus all possible outcomes is higher. The notion
of optimal distinguishing tests introduced in [8] formalizes this goal of finding
tests that discriminate among two hypotheses as good as possible:

Definition 2 (Distinguishing Ratio). Given a test input t ∈ D(I) for two
hypotheses M1, M2 with input variables I and output variables O, we define Γ (t)
to be the ratio of feasible outputs that distinguish among the hypotheses versus
all feasible outputs:

Γ (t) :=
|X1(t) ∪ X2(t)| − |X1(t) ∩ X2(t)|

|X1(t) ∪ X2(t)|

Γ is a measure for test quality that refines the notion of PDTs and DDTs: if Γ
is 0, then the test does not distinguish at all, as both hypotheses lead to the same
observations (output patterns). If the value is 1, then the test is a DDT, since the
hypotheses always lead to different observations. If the value is between 0 and 1,
then the test is a PDT (there is some non-overlap in the possible observations).
Note that Γ is well-defined since for any chosen t ∈ D(I), the sets X1(t) and
X2(t) are non-empty.

An optimal distinguishing test (ODT) is one that has the maximal distinguish-
ing ratio. For the example in Figure 1, the two PDTs [−i1, i2] and [−i1,−i2] for
the hypotheses M1 = {not, A2H , AUL} and M2 = {not, A′

2H , A′
UL} have the

following distinguishing ratios:

Constraint-Based Optimal Testing Using DNNF Graphs 735

Γ ([−i1, i2]) = |{o1,o2},{−o1,o2}|
|{o1,o2},{−o1,o2},{−o1,−o2}| = 2

3 and

Γ ([−i1,−i2]) = |{−o1,o2}|
|{−o1,o2},{−o1,−o2}| = 1

2 .

Therefore, the input [−i1, i2] is an ODT for this example.

2.3 Deterministic DNNF

We briefly review graph-based representations of propositional theories. A propo-
sitional theory f is in negation normal form (NNF) [6] if it only uses conjunction
(and, ∧), disjunction (or, ∨), and negation (not, ¬), and negation only appears
next to variables. An NNF is decomposable (DNNF) if conjuncts of every con-
junction share no variables. A DNNF is deterministic (d-DNNF) if disjuncts
of every disjunction are pairwise logically inconsistent. A d-DNNF is smooth if
disjuncts of every OR node mention the same set of variables. In the rest of
the paper we also assume that every variable of the logical theory appears in
a smooth d-DNNF graph (this can always be ensured in polynomial time [6]).
Such graphs represent each of its models by a subgraph Gs that satisfies the
properties:

– every OR node in Gs has exactly one child,
– every AND node in Gs has the same children as it has in G, and
– Gs has the same root as G.

Henceforth we will denote subgraphs with these properties as m-subgraphs. Those
that satisfy only the first two properties we will denote as s-subgraphs. Further
we say that a subgraph is labeled by a literal l if it has a leaf node l, and that it
is consistent with a partial assignment X to the d-DNNF variables if its labels
are consistent with X .

d-DNNF graphs can be generated for propositional theories in conjunctive
normal form (CNF) using the publicly available C2D compiler [5]. The complex-
ity of this operation is polynomial in the number of variables and exponential
only in the treewidth of the system in the worst case. Furthermore, given a
DNNF graph G one can compute its projection ΠΣ(G) on variable set Σ in
linear time. Without impact on the computation time we therefore assume that
M1 and M2 are defined over input and output variables only.

The left graph of Figure 2 illustrates a smooth d-DNNF graph GN repre-
senting the models for the numerator of Γ for all test vectors for the example
illustrated in Figure 1, i.e. GN = (M1 ∨M2) ∧ ¬(M1 ∧M2). Thus it consists of
the three models below that are each represented by a m-subgraph:

Model Nodes of corresponding m-subgraph
{−i1, i2, o1, o2} A1, O2, A3, O5, A6, −i1, i2, o1, o2

{−i1, i2,−o1, o2} A1, O2, A3, O5, A7, −i1, i2, −o1, o2

{−i1,−i2,−o1, o2} A1, O2, A4, A7, −i1, −i2, −o1, o2

Based on a smooth d-DNNF graph G the number of models |G(X)| consistent
with a partial assignment X to the d-DNNF variables can be determined by

736 A. Schumann, M. Sachenbacher, and J. Huang

Algorithm 1. Model counting with respect to instantiation X

Λ(N) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if N is a leaf node consistent with X

0 if N is a leaf node inconsistent with X∑
i Λ(Ni) if N =

∨
i Ni∏

i Λ(Ni) if N =
∧

i Ni

counting the number of consistent m-subgraphs in G. This is done by a bottom-
up traversal of the graph that computes for each node N the number of consistent
s-subgraphs Λ(N) rooted in N . Hence, the Λ(N) value of the root of the graph
denotes the total number of consistent models represented by G. Algorithm 1
describes this linear time procedure [4]. An example of it is shown on the right of
Figure 2. The numbers next to the nodes of that graph denote the Λ(N) values
computed by Algorithm 1 when running it with X = [−i1, i2]. Hence for the
numerator of Γ ([−i1, i2]) we get |X1([−i1, i2]) ∪ X2([−i1, i2])| − |X1([−i1, i2]) ∩
X2([−i1, i2])| = 2.

-i2 i2

O2

A3A4

A6 A7

O5

o2 -o1o11 1 1

10

11

2

2

20

-i1

A1 2

1

-i2 i2

O2

A3A4

A6 A7

O5

o2 -o1o1

-i1

A1

Fig. 2. Smooth d-DNNF graph GN representing (M1 ∨ M2) ∧ ¬(M1 ∩ M2) for the
example shown in Figure 1. “A" and “O" indicate an And and an Or node, respectively.
Numbers in non-leaf nodes are their identifiers. On the right, the numbers next to
the nodes denote the Λ(N) values computed by Algorithm 1 when running it with
X = [−i1, i2].

3 ODT Computation Using a d-DNNF Graph

The last section suggests that we can straightforwardly exploit the linear time
d-DNNF based model counting algorithm for our ODT search. Similarly to the
generation of a graph GN representing the models of the numerator of the dis-
tinguishing ratio Γ we could also generate a graph representing the models of
the denominator of Γ . Based on these two graphs we could then determine the
Γ value for any test vector in linear time. However, in order to obtain the test

Constraint-Based Optimal Testing Using DNNF Graphs 737

vector with maximal distinguishing ratio, i.e. the ODT, such an approach re-
quires the computation of the Γ values for every complete instantiation of a test
vector (CITV). Since the number of test cases is exponential in the number of
input variables this procedure would be infeasible for large applications.

This section presents a d-DNNF based branch-and-bound approach that does
not require the Γ computation for every test vector. Its main component is a
linear time algorithm that computes the upper Γ bound for any partial instanti-
ation of a test vector (PITV). Such a procedure requires the simultaneous count
of the models for the numerator and denominator of Γ based on d-DNNF graphs
with identical structure. Since it is computationally very expensive to ensure that
two independently generated d-DNNF graphs have the same structure we rep-
resent the whole ODT problem by a single d-DNNF graph that allows both: the
computation of the numerator and that of the denominator of Γ for every test
vector. The developed branch-and-bound approach then consists of the following
building blocks that are each detailed in the following subsections:

– representation of the ODT problem as single d-DNNF graph G,
– linear time algorithm that computes the Γ value for any CITV based on G,
– linear time algorithm that computes an upper bound for the Γ value for any

PITV based on G, and
– an exhaustive search algorithm that iteratively sets input variables until

either all variables are set and the Γ value for that CITV is computed or
until the upper Γ bound for the PITV is not higher than the Γ value for a
previously computed CITV.

3.1 Encoding the ODT Problem as Single d-DNNF Graph

We now describe how we can represent the ODT problem as a single d-DNNF
graph G that allows the distinction of its models into those that belong to the
numerator of Γ and those that do not. In order to achieve such a partitioning
of nodes we introduce an auxiliary variable d and label every m-subgraph rep-
resenting a model consistent with the numerator with the literal −d and add
the literal d to the remaining m-subgraphs. The latter comprises of the mod-
els GN̄ = M1 ∧M2 as stated in Definition 2. Thus, the propositional formula
represented by G is defined as follows:

G = ((M1 ∨M2) ∧ ¬(M1 ∧M2) ∧ ¬d) ∨ (M1 ∧M2 ∧ d)
= (GN ∧ ¬d) ∨ (GN̄ ∧ d)

For our example we generate a graph G that represents the following models:
{−d,−i1, i2, o1, o2}, {d,−i1, i2,−o1,−o2}, and
{−d,−i1, i2,−o1, o2}, {d,−i1,−i2,−o1,−o2}.
{−d,−i1,−i2,−o1, o2},

The models on the left correspond to the numerator models of Γ and the ones on
the right to the denominator models of Γ . The graph is illustrated in Figure 3.
Its definition ensures that the distinguishing ratio can be obtained as follows:

738 A. Schumann, M. Sachenbacher, and J. Huang

Γ (t) =
|X1(t) ∪ X2(t)| − |X1(t) ∩ X2(t)|

|X1(t) ∪ X2(t)|

=
|X1(t) ∪ X2(t)| − |X1(t) ∩ X2(t)|

(|X1(t) ∪ X2(t)| − |X1(t) ∩ X2(t)|) + |X1(t) ∩ X2(t)|

=
|GN (t)|

|GN (t)|+ |GN̄ (t)| GN GN̄

=
|G(t ∧ ¬d)|

|G(t ∧ ¬d)|+ |G(t ∧ d)| G

=
|G(t ∧ ¬d)|
|G(t)|

d ∨ ¬d
true

The computation of the distinguishing ratio based on the later fraction is the
subject of the next subsection.

3.2 Computation of Γ (t) Based on DNNF Graph G
We now show that we can compute the distinguishing ratio by resorting to the
single graph G = (GN ∧ ¬d) ∨ (GN̄ ∧ d). Although this algorithm has the same
complexity than the one based on graphs GN and GN̄ , which we described
earlier, we chose to present it since it will be the basis for the upper bound
algorithm detailed in the next subsection. The latter requires the simultaneous
computation of numerator Λα and denominator Λβ values of Γ . This can be
done by a single bottom-up traversal of the graph as described in Algorithm 2.
The model counting procedure itself is almost identical to the one shown in
Algorithm 1. The only difference is that we set the numerator value Λα for
the leaf node labeled d to 0. This results from the fact that Algorithm 2 is
executed with respect to the instantiation t only, but that the numerator of Γ ,
i.e. |G(t∧¬d)|, is defined with respect to instantiation t∧¬d. Hence we have to
explicitly add the constraint ¬d, i.e. set Λα(d) to 0.

The bottom node label of graph G shown on the left of Figure 3 denotes the
Λα and Λβ values for t = [−i1,−i2]. From its root label the distinguishing ratio
can be retrieved as formally stated in Theorem 1. Note that the distinguishing
ratio of a node is only guaranteed to be correct if it is obtained from the Λα and
Λβ values of its children. Resorting to their Γ values would not be sufficient,
since the numerator and denominator values for OR nodes need to be computed
separately (see also Algorithm 1). For instance, consider node O5 shown on the
left of Figure 3. Its Γ value of 2

3 cannot be obtained from the Γ values of its
children which are 0 (for node A9) and 1 (for nodes A7 and A8).

Theorem 1 (Test Assessment). Let G be the root node of a smooth d-DNNF
graph G representing the propositional formula ((M1∨M2)∧¬(M1 ∧M2)∧¬d)∨
(M1 ∧M2 ∧ d). Then Γ (t) = Γ (G, t) for any complete instantiation t of input
variables.

Constraint-Based Optimal Testing Using DNNF Graphs 739

The correctness of this Theorem follows from the fact that Γ (t) = |G(t∧¬d)|
|G(t)| as

derived in the previous subsection and from the basic d-DNNF model counting
procedure shown in Algorithm 1.

Algorithm 2. Test assessment with respect to instantiation t

For a leaf N we set:

Λα(N) =

⎧⎨⎩
0 if N = d or

N is inconsistent with t
1 otherwise

Λβ(N) =
{

1 if N = d
Λα(N) otherwise

For remaining nodes we compute:

(Λα(N), Λβ(N)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
∑

i Λα(Ni),∑
i Λβ(Ni)) if N =

∨
i Ni

(
∏

i Λα(Ni),∏
i Λβ(Ni)) if N =

∧
i Ni

Then we compute the distinguishing ratio for each node:

Γ (N, t) =

{
0 if Λβ(N) = 0
Λα(N)
Λβ(N) otherwise

3.3 Upper Bounds for Partial Test Vectors

While the computation of the distinguishing ratio could have also been done
based on two separate d-DNNF graphs, we now show how this single graph is
essential to our new method for computing upper bounds on the distinguishing
ratio based on a PITV tp. These bounds Γ ′(N, tp) are also obtained for each
node N by a bottom-up traversal of graph G. We will show that for any CITV
t of tp we have Γ (N, t) ≤ Γ ′(N, tp) and that we can therefore retrieve an upper
bound of the distinguishing ratio from the Γ ′ value of the root of G.

Naturally, the search for an ODT will be the more efficient the tighter the
upper bounds. The tightest possible bound for a node N is Γ ′(N, tp) = Γ (N, t)
and indeed there is a well defined set of nodes for which we can obtain precisely
that bound. This node set Ns is comprised of all those nodes whose Γ value
does not depend on a free input variable, i.e. on a variable in If which is not set
by tp. This results from the fact that the Γ value for a node is obtained from a
bottom-up traversal of the graph. Hence it depends only on the truth value of its
descendant variables, but not on the remaining variables of the graph. Let Nf

denote the set of the remaining nodes, i.e. that are an ancestor of a free input
variable.1 Then resulting from G being smooth all children NchildN of an OR
node N belong to the same node set, i.e. either NchildN ⊆ Ns or NchildN ⊆ Nf .
For instance, let us consider the computation of the Γ (O2, [−i2]) value for our
1 Formally, N ∈ Nf , iff N is a leaf node of a variable v ∈ If , or N is an AND or OR

node that has at least one child Ni ∈ Nf .

740 A. Schumann, M. Sachenbacher, and J. Huang

A1
(1,2)

O2
(1,2)

A3
(0,0)

A4
(1,2)

A7
(1,1)

A8
(1,1)

A9
(0,1)

O5
(2,3)

O6
(1,2)

-i1
(1,1)

-i2
(1,1)

o1
(1,1)

o2
(1,1)

-o1
(1,1)

-o2
(1,1)

i2
(0,0)

d
(0,1)

-d
(1,1)

A1
(2,3)

O2
(2,3)

A3
(2,3)

A4
(1,2)

A7
(1,1)

A8
(1,1)

A9
(0,1)

O5
(2,3)

O6
(1,2)

-i1
(1,1)

-i2
(1,1)

o1
(1,1)

o2
(1,1)

-o1
(1,1)

-o2
(1,1)

i2
(0,0)

d
(0,1)

-d
(1,1)

Fig. 3. Graph G for the example shown in Figure 1. On the left, the bottom labels
(Λα(N), Λβ(N)) of the nodes refer to the test assessment values computed by Algo-
rithm 2 when running it with t = [−i1,−i2] and on the right they to the upper bound
values computed by Algorithm 3 when running it with tp = [−i1].

example (see left graph of Figure 3). Here we have If = {i1} and thus neither
one of the children A3 or A4 nor O2 itself is labeled by a free input variable.
This means that Γ (O2, [−i2]) is necessarily 1/2 regardless of how tp = [−i2] is
completed, i.e. regardless of whether the CITV is [−i1,−i2] or [i1,−i2].

Hence we can compute the Γ ′(N, tp) value for any node N ∈ Ns using Al-
gorithm 2. In addition, that algorithm can also be used to obtain the Γ ′(N, tp)
value for any leaf node N ∈ Nf . This results from the fact that the free variables
are not inconsistent with tp which implies that Λα(N) and Λβ(N) and therefore
the Γ (N, tp) value are set to the maximal value 1.

Moreover we show (see proof below) that also the Γ ′ value of an AND node
N ∈ Nf can be obtained in analogy to Algorithm 2. Only for OR nodes with
more than one child we need to apply a different procedure if the denominator
value is larger than 0. This results from the fact that the Γ value of an OR
node is retrieved from the separate summation of its children’s numerator and
denominator values, namely:

Γ (N, t) =
Λα(N1) + Λα(N2) · · ·+ Λα(Nj)
Λβ(N1) + Λβ(N2) · · ·+ Λβ(Nj)

.

This means that the way in which the Λα(Ni) and Λβ(Ni) values of a free child
Ni influence the Γ (N, t) value depends not only on whether a CITV t will turn
node Ni into a root of a consistent s-subgraph but also on the specific values of
Λα(Ni) and Λβ(Ni). For instance, suppose N has two children N1 and N2 with

Constraint-Based Optimal Testing Using DNNF Graphs 741

Λα(N1) = 1 and Λβ(N1) = 2. Depending on the values of N2 the Γ (N, t) value
could be lower, equal, or higher to the one of Γ (N1, t)=1/2:

Γ (N1, t) > Γ (N, t) = 1+1
2+4 = 1

3 if Λα(N2) = 1 and Λβ(N2) = 4

Γ (N1, t) = Γ (N, t) = 1+1
2+2 = 1

2 if Λα(N2) = 1 and Λβ(N2) = 2 and

Γ (N1, t) < Γ (N, t) = 1+3
2+4 = 2

3 if Λα(N2) = 3 and Λβ(N2) = 4.

Thus it is not possible to determine whether the Λα(Ni) and Λβ(Ni) values
of a particular child should be considered for the upper bound computation of
Γ ′ = (N, tp) without looking at the specific values of its other children. Only the
values of the child with maximal distinguishing ratio can be safely taken into
account for the upper bound computation (see proof below). The procedure is
described in Algorithm 3.

Algorithm 3. Upper bound with respect to instantiation tp

For a leaf N we have:
Λ′

α(N) = Λα(N) and Λ′
β(N) = Λβ(N).

For remaining nodes we compute:

(Λ′
α(N), Λ′

β(N)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(Λα(N), Λβ(N)) if N =
∨

i Ni and N ∈ Ns

(Λ′
α(Nm), if N =

∨
i Ni and N ∈ Nf and

Λ′
β(Nm)) Γ (Nm, tp)= maxi Γ (Ni, tp)

(
∏

i Λ′
α(Ni),∏

i Λ′
β(Ni)) if N =

∧
i Ni

Then we compute the distinguishing ratio for each node:

Γ ′(N, t) =

{
0 if Λ′

β(N) = 0
Λ′

α(N)
Λ′

β
(N) otherwise

Note that Algorithm 2 can be regarded as a special case of Algorithm 3 where
t is a complete instantiation of a test vector. It is precisely in this case that
the computed value is guaranteed to be exact. Otherwise we certainly obtain an
upper bound as formally stated in the following theorem:

Theorem 2 (Upper Bound). Let tp be a PITV and G the root node of the
smooth d-DNNF graph G representing the propositional formula ((M1 ∨M2) ∧
¬(M1 ∧ M2) ∧ ¬d) ∨ (M1 ∧ M2 ∧ d). Then Γ (t) ≤ Γ (G, tp) for any complete
instantiation t of the free variables in tp.

Proof
We prove this Theorem by showing that Γ (N, t) ≤ Γ ′(N, tp) for every CITV t
of tp and every node N . This is done by induction on the depth of graph G. The

742 A. Schumann, M. Sachenbacher, and J. Huang

base case is straightforward. The distinguishing ratio Γ (N, tp) of a leaf node N
can either be 0 or 1. In order to ensure that Γ ′(N, tp) is an upper bound for
Γ (N, tp) it is therefore sufficient to set the Γ ′(N, tp) value for all leaves labeled
by a free input variable to 1. This is precisely what Algorithm 3 does by setting
the Λα and Λβ values for these nodes to 1. Thus given a node N with children
N1, . . . , Nj we have the following induction hypothesis for the Λα and Λβ values
with respect to any CITV t of tp:

Λα(N1)
Λβ(N1)

≤ Λ′
α(N1)

Λ′
β(N1)

Λα(N2)
Λβ(N2)

≤ Λ′
α(N2)

Λ′
β(N2)

· · · Λα(Nj)
Λβ(Nj)

≤ Λ′
α(Nj)

Λ′
β(Nj)

(1)

In the induction step we show that for any node whose children satisfy above
hypothesis we also have Γ (N, t) ≤ Γ ′(N, tp). Here we distinguish two cases: (i)
N is an AND node and (ii) N is an OR node.
(i) For an AND node N Algorithm 2 gives us:2

Γ (N, t) =
Λα(N1) · Λα(N2) · · · · Λα(Nj)
Λβ(N1) · Λβ(N2) · · · · Λβ(Nj)

⇒ Γ (N, t) =
Λα(N1)
Λβ(N1)

· Λα(N2)
Λβ(N2)

· · · · Λα(Nj)
Λβ(Nj)

⇒ Γ (N, t) ≤ Λ′
α(N1)

Λ′
β(N1)

· Λ′
α(N2)

Λ′
β(N2)

· · · · Λ′
α(Nj)

Λ′
β(Nj)

see induction hypothesis

⇒ Γ (N, t) ≤ Γ ′(N, tp) see Algorithm 3

(ii) In case an OR node N is not labeled by a free variable we have Γ (N, t) =
Γ ′(N, tp) and therefore Γ (N, t) ≤ Γ ′(N, tp). To prove the other case we denote
with Λ′

αMax = Λα(Nmax) and Λ′
βMax = Λβ(Nmax) the corresponding values for

the node with the maximal distinguishing ratio, i.e. Γ ′(Nmax, tp) = Λ′
αMax

Λ′
βMax

=

maxi
Λ′

α(Ni)
Λ′

β(Ni)
. This gives us:

Λα(N1)
Λβ(N1)

≤ Λ′
αMax

Λ′
βMax

Λα(N2)
Λβ(N2)

≤ Λ′
αMax

Λ′
βMax

· · · Λα(Nj)
Λβ(Nj)

≤ Λ′
αMax

Λ′
βMax

see induction hypothesis

⇒ Λα(N1) · Λ′
βMax ≤ Λβ(N1) · Λ′

αMax

. . .
Λα(Nj) · Λ′

βMax ≤ Λβ(Nj) · Λ′
αMax

⇒ Λα(N1) ·Λ′
βMax · · ·+Λα(Nj) ·Λ′

βMax ≤ Λβ(N1) ·Λ′
αMax · · ·+Λβ(Nj) ·Λ′

αMax

⇒ (Λα(N1) · · ·+ Λα(Nj)) · Λ′
βMax ≤ Λ′

αMax · (Λβ(N1) · · ·+ Λβ(Nj))

2 In case the Λβ value of a child is 0 the Γ (N, t) value is 0 and hence necessarily less
or equal to Γ ′(N, tp).

Constraint-Based Optimal Testing Using DNNF Graphs 743

⇒ Λα(N1) · · ·+ Λα(Nj)
Λβ(N1) · · ·+ Λβ(Nj)

≤ Λ′
αMax

Λ′
βMax

⇒ Λα(N1) · · ·+ Λα(Nj)
Λβ(N1) · · ·+ Λβ(Nj)

≤ Γ ′(N, tp)

⇒ Γ (N, t) ≤ Γ ′(N, tp) see Algorithm 2 �

3.4 ODT Computation

With the d-DNNF graph G and the linear time algorithms to compute the precise
distinguishing ratio for a CITV and an upper bound for a PITV we have obtained
the basis for our ODT search method. This consists of a branch-and-bound
search over the input variables. Iteratively we set the input variables until either
all variables are set and the precise Γ value is obtained or until the upper bound
of the PITV is lower than the Γ value of a previously computed CITV.

Interestingly, if G has a certain structure (see below) we can obtain an ODT
without a search by making use of the facts (i) that we can compute an upper
bound ΓUB for the distinguishing ratio of the ODT by running Algorithm 3 with
respect to instantiation true, and (ii) that there is exactly one test vector t that
is consistent with the resulting subgraph GT . The latter consists of all nodes
from whose Λ′

α and Λ′
β values the upper bound ΓUB was derived.3

Note, since GT was obtained from running Algorithm 3 with respect to in-
stantiation true it means that all input variables belong to the set of free ones,
i.e. IF = I. Hence every OR node N ∈ NT with an input variable as descendant
belongs to the set Nf and has therefore only one child in GT . Therefore, the
labels of the input variables of GT form a unique CITV t which is exploited in
the following Theorem:

Theorem 3. Let G be the root node of a smooth d-DNNF graph G representing
the propositional theory ((M1 ∨M2) ∧ ¬(M1 ∧M2) ∧ ¬d) ∨ (M1 ∧M2 ∧ d) and
satisfying the following condition: No two children of an OR node are labeled by
the same value of an input variable. Then the test vector t consistent with the
subgraph GT that is obtained from computing Γ ′(G, true) is an ODT.

Proof
We prove this Theorem by contradiction. Suppose Γ (G, t) �= Γ ′(G, true). Since
Algorithms 2 and 3 differ only in the Γ computation for an OR node in Nf

which has more than one child the assumption implies that there is an OR node
N ∈ Nf in graph G with at least two children that are both consistent with t.
This implies that N has at least two children labeled by the same value of an
input variable which contradicts the condition of the theorem. �
3 Formally, a node N ∈ NT is in GT , iff one of the following conditions is satisfied: (i)

N is the root, (ii) N is a child of an AND node in NT , (iii) N ∈ Ns is a child of an
OR node in NT , or (iv) N ∈ Nf is the child with the maximal Γ ′ value among the
children of an OR node in NT .

744 A. Schumann, M. Sachenbacher, and J. Huang

For our example the condition of above theorem holds. The right graph of
Figure 3 also shows the upper bound values computed by Algorithm 3 when run-
ning it with tp = true. Thus we obtained the ODT t = [−i1, i2] for our example
in linear time. Note that the condition is certainly satisfied if G is a constrained
d-DNNF graph [11]. Unfortunately, the compilation into constrained d-DNNF
graphs is more complex and will therefore only be possible for small graphs.

4 Experimental Evaluation

We evaluated our DNNF-based testing method on a model of an automotive en-
gine test-bed [10], which consists of three major components: engine, pipe, and
throttle. The goal is to find leaks in the pipe by assigning three to four control-
lable variables, and observing three to four measurable variables. The problem
has been turned into sets of discrete instances of varying sizes by applying dif-
ferent abstractions to the original mixed discrete-continuous model, and using a
direct encoding from CSP to SAT [14].

Table 1. Results of ODT (left) and DDT (right) computation

inst. #nodes time inst. #nodes time
1a 58 0.04 1b 66 0.06
2a 103 0.06 2b 124 0.07
3a 161 0.09 3b 191 0.10
4a 205 0.10 4b 4865 14.7
5a 329 0.20 5b 48238 396
6a 245 0.21 6b 102817 1566
7a 362 0.40 7b – –
8a 4766 5.41 8b – –
9a 2654 36.6 9b – –
10a 65063 414 10b – –

Table 1 shows the experimental results for computing ODTs and DDTs. For
each instance, we report the size (number of nodes) of the DNNF graph com-
puted, and the computation time in seconds on a Linux Dual-Core PC with 1GB
of RAM. For instances that have DDTs, we compared our method with the most
recent specialized DDT approach [12] based on quantified Boolean formulas and
the QBF solver sKizzo [2]. That approach was able to solve instances 1b–3b and
ran out of memory for the rest. In contrast, our ODT approach could also solve
instances 4b–6b.

Our method is the first that computes exact ODTs; hence we cannot compare
it directly with previous approaches. However, we used the greedy algorithm
of [8] to compute approximate solutions for the same problem instances. This
algorithm was only able to solve instances 1a–7a; that is, for instances 8a–10a
we were able to compute an optimal solution where the previous approach could
not even compute a suboptimal one.

Constraint-Based Optimal Testing Using DNNF Graphs 745

5 Conclusion and Future Work

Optimal distinguishing tests generalize and refine the notion of possibly and def-
initely distinguishing and strong and weak tests for non-deterministic systems.
Since computing ODTs can be computationally very expensive, previous work
has focused on approximate solutions. We presented a new method to compute
exact ODTs based on innovative ways of compiling the ODT problem into DNNF
and computing upper bounds to prune a systematic search. Experimental results
show that the method is able to compute both ODTs and DDTs for instances
that were too large for previous methods. Thus our approach provides a signifi-
cant improvement for many applications where output patterns can be assumed
to be equally likely or where probabilities are not given. Where probabilistic
models are available, our technique provides a baseline from which new tech-
niques can be developed. Note that both model counting and weighted model
counting can be done with the same linear complexity on d-DNNF. In fact, this
is the basis for the recent compilation based approach to probabilistic reasoning,
and will provide the basis also for extending our work to the probabilistic case.

References

1. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondetermin-
istic and probabilistic machines. In: Proc. ACM Symposium on Theory of Com-
puting, pp. 363–372 (1995)

2. Benedetti, M.: skizzo: A suite to evaluate and certify QBFs. In: Proc. CADE 2005
(2005)

3. Boroday, S., Petrenko, A., Groz, R.: Can a model checker generate tests for non-
deterministic systems? Elec. Notes Theor. Comp. Sci. 190, 3–19 (2007)

4. Darwiche, A.: On the tractable counting of theory models and its application to
belief revision and truth maintenance. In: CoRR (2000)

5. Darwiche, A.: The c2d compiler user manual. Technical report, UCLA (2005)
6. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial

Intelligence Research 17, 229–264 (2002)
7. Esser, M., Struss, P.: Fault-model-based test generation for embedded software. In:

Proc. IJCAI 2007, pp. 342–347 (2007)
8. Heinz, S., Sachenbacher, M.: Using model counting to find optimal distinguishing

tests. In: Proc. of CPAIOR (2009)
9. Huang, J.: Combining knowledge compilation and search for conformant proba-

bilistic planning. In: Proc. ICAPS 2006, pp. 253–262 (2006)
10. Luo, J., Pattipati, K., Qiao, L., Chigusa, S.: An integrated diagnostic development

process for automotive engine control systems. IEEE Trans. on Systems, Man, and
Cybernetics 37(6), 1163–1173 (2007)

11. Pipatsrisawat, K., Darwiche, A.: A new d-dnnf-based bound computation algo-
rithm for functional EMAJSAT. In: Proc. of IJCAI 2009 (2009)

12. Sachenbacher, M., Schwoon, S.: Model-based testing using quantified CSPs. In:
ECAI 2008 Workshop on Model-based Systems (2008)

13. Struss, P.: Testing physical systems. In: Proc. AAAI 1994, pp. 251–256 (1994)
14. Walsh, T.: SAT vs. CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp.

441–456. Springer, Heidelberg (2000)

Why Cumulative Decomposition Is Not as Bad as
It Sounds

Andreas Schutt1, Thibaut Feydy1, Peter J. Stuckey1, and Mark G. Wallace2

1 National ICT Australia, Department of Computer Science & Software Engineering,
The University of Melbourne, Australia

{aschutt,tfeydy,pjs}@csse.unimelb.edu.au
2 School of Computer Science & Software Engineering, Monash University, Australia

mark.wallace@infotech.monash.edu.au

Abstract. The global cumulative constraint was proposed for mod-
elling cumulative resources in scheduling problems for finite domain (FD)
propagation. Since that time a great deal of research has investigated new
stronger and faster filtering techniques for cumulative, but still most of
these techniques only pay off in limited cases or are not scalable. Re-
cently, the “lazy clause generation” hybrid solving approach has been
devised which allows a finite domain propagation engine possible to take
advantage of advanced SAT technology, by “lazily” creating a SAT model
of an FD problem as computation progresses. This allows the solver to
make use of SAT nogood learning and autonomous search capabilities.
In this paper we show that using lazy clause generation where we model
cumulative constraint by decomposition gives a very competitive im-
plementation of cumulative resource problems. We are able to close a
number of open problems from the well-established PSPlib benchmark
library of resource-constrained project scheduling problems.

1 Introduction

Cumulative resources are part of many real-world scheduling problems. A re-
source can represent not only a machine which is able to run multiple tasks in
parallel but also entities such as: electricity, water, consumables or even human
skills. Those resources arises for example in the resource-constrained project
scheduling problem Rcpsp, their variants, their extensions and their specialisa-
tions. A Rcpsp consists of tasks (also called activities) consuming one or more
resources, precedences between some tasks, and resources. In this paper we re-
strict ourselves to case of non-preemptive tasks and renewable resources with a
constant resource capacity over the planning horizon. A solution is a schedule of
all tasks so that all precedences and resource constraints are satisfied. Rcpsp is
an NP-hard problem.

Example 1. Consider a simple resource scheduling problem. There are 5 tasks a,
b, c, d and e to be scheduled to end before time 10. The tasks have respective
durations 1, 2, 3, 3 and 4, each respective task requiring 1, 1, 2, 2 and 2 units of

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 746–761, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Why Cumulative Decomposition Is Not as Bad as It Sounds 747

0 42 6 8 10

e

d ba

c

c e

a b
d e

d

0 42 6 8 10

(a) (b) (c)

Fig. 1. (a) A small cumulative resource problem, with 5 tasks to place in the 5x10 box,
with task a before d before b, (b) a possible schedule, and (c) a profile under some
further conditions

resource, with a resource capacity of 5. Assume further that there are precedence
constraints: task a must complete before task d begins, written a
 d, and
similarly d
 b. Figure 1(a) shows the 5 tasks and precedences, while (b) shows
a possible schedule, where the respective start times are: 0, 4, 0, 1, 3.

In 1993 Aggoun and Beldiceanu [2] introduced the global cumulative constraint
in order to efficiently solve complex scheduling problems in a constraint program-
ming framework. The cumulative constraint cannot compete with specific OR
methods for restricted forms of scheduling, but since it is applicable whatever
the side constraints are it is very valuable. Many improvements have been pro-
posed to the cumulative constraint: see e.g. Caseau and Laburthe [5], Carlier
and Pinson [4], Nuijten [16] and Baptiste and Le Pape [3].

The best known exact algorithm for solving Rcpsp is from Demeulemeester
and Herroelen [6]. Their specific method is a branch-and-bound approach relying
heavily on dominance rules and cut sets, a kind of problem specific nogoods. They
implicitly show the importance of nogoods to fathom the huge search space of
Rcpsp problems. Unfortunately, the number of cut sets grows exponentially in
the number of tasks, so that this method is considered to be efficient only for
small problems.

In comparison to Demeulemeester and Herroelen’s specific nogoods SAT
solvers records general nogoods. Since the introduction of cumulative SAT solv-
ing has improved drastically. Nowadays, modern SAT solvers can often handle
problems with millions of constraints and hundreds of thousands of variables.
But problems like Rcpsp are difficult to encode into SAT without breaking these
implicit limits. Recently, Ohrimenko et al. [17] showed how to build a powerful
hybrid of SAT solving and FD solving that maintains the advantages of both: the
high level modelling and small models of FD solvers, and the efficient nogood
recording and conflict driven search of SAT. The key idea in this lazy clause
generation approach is that finite domain propagators lazily generate a clausal
representation of their behaviour. They show that this combination outperforms
the best available constraint solvers on Open-Shop-Job problems which is a spe-
cial case of Rcpsp.

Since 1993 little attention has been paid to decompositions of cumulative
because decomposition cannot compete with the global propagator. But once

748 A. Schutt et al.

we consider explanation we have to revisit this. Decomposition of globals means
that explanation of behaviour is more fine grained and hence more reusable. Also
it avoids the need for complex explanation algorithms to be developed for the
global. Note that there is some preliminary work on explanation generation for
cumulative, in PaLM [9] where (in 2000) it is described as current work, and [18]
which restricts attention to the disjunctive constraint (resource capacity 1).

In this paper we show how a decomposition based approach for solving com-
plex scheduling problems can be competitive with state-of-the-art specialised
methods from the CP and OR community. The G12 Constraint Programming
Platform is used for implementation of decomposed cumulative constraint as
a lazy clause generator. We evaluate our approach on Rcpsp from the well-
established and challenging benchmark library PSPLib [1].

2 Lazy Clause Generation

Lazy clause generation is a powerful hybrid of SAT and finite domain solving that
inherits advantages of both: high level modelling, and specialised propagation
algorithms from FD; nogood recording, and conflict driven search from SAT.

2.1 Finite Domain Propagation

We consider a set of integer variables V . A domain D is a complete mapping
from V to finite sets of integers. Let D1 and D2 be domains and V ⊆ V . We say
that D1 is tighter than D2, written D1 % D2, if D1(v) ⊆ D2(v) for all v ∈ V .
We use range notation: [l .. u] denotes the set of integers {d | l ≤ d ≤ u, d ∈ Z}.
We assume an initial domain Dinit such that all domains D that occur will be
stronger i.e. D % Dinit.

A valuation θ is a mapping of variables to values, written {x1 �→ d1, . . . , xn �→
dn}. We extend the valuation θ to map expressions or constraints involving the
variables in the natural way. Let vars be the function that returns the set of
variables appearing in an expression, constraint or valuation. In an abuse of
notation, we define a valuation θ to be an element of a domain D, written
θ ∈ D, if θ(v) ∈ D(v) for all v ∈ vars(θ).

A constraint c is a set of valuations over vars(c) which give the allowable
values for a set of variables. In finite domain propagation constraints are im-
plemented by propagators. A propagator f for c is a monotonically decreasing
function on domains such that for all domains D % Dinit: f(D) % D and
{θ ∈ D | θ ∈ c} = {θ ∈ f(D) | θ ∈ c}. A propagation solver for a set of propaga-
tors F and current domain D, solv(F, D), repeatedly applies all the propagators
in F starting from domain D until there is no further change in resulting domain.
solv (F, D) is the weakest domain D′ % D which is a fixpoint for all f ∈ F .

2.2 SAT Solving

DPLL SAT solvers can be understood as a form of propagation solver where
variables are Boolean, and the only constraints are clauses C: ∨l∈C l. The differ-
ence with an FD solver is that propagation engines are highly specialised and

Why Cumulative Decomposition Is Not as Bad as It Sounds 749

more importantly the reason for propagation is recorded, and on failure used to
generate a nogood which explains the failure. This clause is added to the propa-
gators to shortcircuit later search. It also helps direct backtracking to go above
the cause of the failure.

2.3 Lazy Clause Generation

The lazy clause generation [17] works as follows. Propagators are considered
as clause generators for the SAT solver. Instead of applying propagator f to
domain D to obtain f(D), whenever f(D) �= D we build a clause that encodes
the change in domains. In order to do so we must link the integer variables of
the finite domain problem to a Boolean representation.

We represent an integer variable x with domain Dinit(x) = [l .. u] using the
Boolean variables �x = l�, . . . , �x = u� and �x ≤ l�, . . . , �x ≤ u − 1� where the
former is generated on demand. The variable �x = d� is true if x takes the value
d, and false for a value different from d. Similarly the variable �x ≤ d� is true if
x takes a value less than or equal to d and false for a value greater than d.

Not every assignment of Boolean variables is consistent with the integer vari-
able x, for example {�x = 3�, �x ≤ 2�} requires that x is both 3 and ≤ 2. In
order to ensure that assignments represent a consistent set of possibilities for
the integer variable x we add to the SAT solver clauses DOM (x) that encode
�x ≤ d� → �x ≤ d + 1� and �x = d� ↔ (�x ≤ d� ∧ ¬�x ≤ d − 1�). We let
DOM = ∪{DOM (v) | v ∈ V}.

Any assignment A on these Boolean variables can be converted to a domain:
domain(A)(x) = {d ∈ Dinit(x) | ∀�c� ∈ A, vars(�c�) = {x} : x = d |= c} that
is the domain includes all values for x that are consistent with all the Boolean
variables related to x. Note that the domain may assign no values to some
variable.

Example 2. The assignment A = {�x1 ≤ 10�, ¬�x1 ≤ 5�, ¬�x1 = 7�, ¬�x1 = 8�,
�x2 ≤ 11�, ¬�x2 ≤ 5�, �x3 ≤ 10�, ¬�x3 ≤ −2�} is consistent with x1 = 6, x1 = 9
and x1 = 10. Hence domain(A)(x1) = {6, 9, 10}. For the remaining variables
domain(A)(x2) = [6 .. 11] and domain(A)(x3) = [−1 .. 10]. �

In lazy clause generation a propagator changes from a mapping from domains
to domains to a generator of clauses describing propagation. When f(D) �= D
we assume the propagator f can determine a set of clauses C which explain the
domain changes.

Example 3. Consider the propagator f for x1 ≤ x2 +1. When applied to domain
D(x1) = [0 .. 9], D(x2) = [−3 .. 5] it obtains f(D)(x1) = [0 .. 6], f(D)(x2) =
[−1 .. 5]. The clausal explanation of the change in domain of x1 is �x2 ≤ 5� →
�x1 ≤ 6�, similarly the change in domain of x2 is ¬�x1 ≤ −1� → ¬�x2 ≤ −2�
(x1 ≥ 0 → x2 ≥ −1). These become the clauses ¬�x2 ≤ 5� ∨ �x1 ≤ 6� and
�x1 ≤ −1� ∨ ¬�x2 ≤ −2�.

750 A. Schutt et al.

Assuming domain(A) % D, then when clauses C that explain the propagation
of f are added to the SAT database and unit propagation is performed, then the
resulting assignment A′ will be such that domain(A′) % f(D).

Using the lazy clause generation we can show that the SAT solver maintains
an assignment which is at least as tight as that determined by finite domain
propagation [17]. The advantages over a normal FD solver are that we auto-
matically have the nogood recording and backjumping ability of the SAT solver
applied to our FD problem. We can also use activity counts from the SAT solver
to direct the FD search.

3 Modelling the Cumulative Resource Constraint

In this section we define the cumulative constraint and discuss two possible
decompositions of it.

The cumulative constraint introduced by Aggoun and Beldiceanu [2] in 1993
is a constraint with Zinc [14] type

predicate cumulative(list of var int: s, list of var int: d,

list of var int: r, var int: c);

Each of the first three arguments are lists of the same length n and indicate
information about a set of tasks. s[i] is the start time of the ith task, d[i] is the
duration of the ith task, and r[i] is the resource usage (per time unit) of the ith

task. The last argument c is the resource capacity.
The cumulative constraints represent cumulative resources with a constant

capacity over the considered planning horizon applied to non-preemptive tasks,
i.e. if they are started they cannot be interrupted. W.l.o.g. we assume that all
values are integral and non-negative and there is a planning horizon tmax which
is the latest time any task can finish.

We also assume for simplicity that each of d, r and c are fixed integers, al-
though this is not important for much of the discussion. This is certainly the
most common case of cumulative.

The cumulative constraint enforces that at all times the sum of resources
used by active tasks is no more than the resource capacity.

∀t ∈ [0 .. tmax − 1] :
∑

i∈[1 .. n]:s[i]≤t<s[i]+d[i]

r[i] ≤ c (1)

Example 4. Consider the cumulative resource problem defined in Example 1.
This can be modelled by the cumulative constraint

cumulative ([sa, sb, sc, sd, se], [1, 2, 3, 3, 4], [1, 1, 2, 2, 2], 5)

with precedence constraints a
 d, d
 b, modelled by sa +1 ≤ sd and sd +3 ≤
sb. The propagator for the precedence constraints determines a domain D where
D(sa) = [0 .. 3], D(sb) = [4 .. 8], D(sc) = [0 .. 7], D(sd) = [1 .. 5], D(se) =
[0 .. 6]. The cumulative constraint does not determine any new information. If
we add the constraints se ≥ 2, se ≤ 4, sb ≤ 7, sa ≥ 1, then precedence determines

Why Cumulative Decomposition Is Not as Bad as It Sounds 751

the domains D(sa) = [1 .. 3], D(sb) = [4 .. 6], D(sc) = [0 .. 7], D(sd) = [2 .. 4],
D(se) = [2 .. 4]. We can determine that task d must use two resources between
times 4 and 5, and task e must use two resources between times 4 and 6 (see
Figure 1(c)). Hence task c cannot overlap these between times 4 and 5, and we
can determine that sc �= 2, sc �= 3, sc �= 4. If we restrict ourselves to bounds
propagation then the cumulative constraint learns nothing. If we then add the
constraint that sc ≥ 2, then the bounds propagation on the cumulative constraint
determines that sc ≥ 5 and D(sc) becomes [5 .. 7].

Usually the cumulative constraint is implemented as a global propagator, since
it can then take more information into account during propagation. In the re-
mainder of this section we give two decompositions.

3.1 Time-Resource Decomposition

The time-resource decomposition (Time-RD) [2] arises from the Formula (1). For
every time t the sum of all resource requirements must be less than or equal to
the resource capacity. The Zinc encoding of the decomposition is shown below
where: index set(a) returns the index set of an array a (here [1 .. n]), lb(x)
(ub(x)) returns the declared lower (resp. upper) bound of a integer variable x,
and bool2int(b) is 0 if the Boolean b is false, and 1 if it is true.

predicate cumulative(list of var int: s, list of var int: d,

list of var int: r, var int: c) =

let {set of int: tasks = index set(s),

set of int: times = min([lb(s[i]) | i in tasks]) ..

max([ub(s[i]) + ub(d[i]) - 1 | i in tasks])

} in forall(t in times) (

c >= sum(i in tasks) (

bool2int(s[i] <= t /\ t < s[i] + d[i]) * r[i]));

This decomposition implicitly introduces new Boolean variables Bit represents
that task i is active at time t:

∀t ∈ [0 .. tmax − 1] , ∀i ∈ [1 .. n] : Bit ↔ �s[i] ≤ t� ∧ ¬�s[i] ≤ t− d[i]�

∀t ∈ [0 .. tmax − 1] :
∑

i∈[1 .. n]

r[i] · Bit ≤ c

Note that since we are using lazy clause generation, the Booleans for the expres-
sions �s[i] ≤ t� and �s[i] ≤ t − d[i]� already exist and that for a task i we only
need to construct variables Bit where lb(s[i]) ≤ t < ub(s[i]) + ub(d[i]).

At most ntmax new Boolean variables are created, ntmax conjunction con-
straints, and tmax sum constraints (of size n). This decomposition implicitly
profiles the resource histograms for all times for the resource.

Note that if we have another cumulative constraint for a different resource
on the same tasks then we can reuse the Boolean variables, and we just need to
create tmax new sum constraints.

752 A. Schutt et al.

Example 5. Consider the problem of Example 4 after the addition of se ≥ 2,
se ≤ 4, sb ≤ 7, sa ≥ 1, the decomposition determines that Bd4 is true since sd ≤ 4
and ¬(sd ≤ 4 − 4 = 0), similarly for Be4 and Be5. Using the sum constraint it
determines that Bc4 is false, and hence ¬(sc ≤ 4)∨sc ≤ 1. This does not change
any bounds. When we add that sc ≥ 2 we determine that ¬(sc ≤ 4) or sc ≥ 5.

We can expand the model to represent holes in the domains of start times. The
literal �s[i] = t� is a Boolean representing the start time of the ith task is t. We
add the constraint

�s[i] = t� →
∧

t≤t′<t+d[i]

Bit′

which ensures that if Bit′ becomes false then the values {t′ − d[i] + 1, t′ − d[i] +
2, . . . , t′} are removed from the domain of s[i]. We do not use this constraint for
our experiments since it was inferior in solving time to the model without it.

Example 6. Consider again the problem of Example 4, with the extended de-
composition we also determine that sc �= 2, sc �= 3, sc �= 4, so the resulting
domain is D(sc) = {0, 1, 5, 6, 7}.

3.2 Task-Resource Decomposition

The Task-resource decomposition (Task-RD) is a relaxation of the Time-RD.
It ensures a non-overload of resources only at the start (or end) times which
is sufficient to ensure non-overload at every time for the non-preemptive case.
Therefore, the number of variables and linear inequality constraints is indepen-
dent of the size of the planning horizon tmax. It was used by El-Kholy [7] for
temporal and resource reasoning in planning. The Zinc code for the decomposi-
tion at the start times is below.

predicate cumulative(list of var int: s, list of var int: d,

list of var int: r, var int: c) =

let { set of int: tasks = index set(s) }
in forall(j in tasks) (

c >= r[j] + sum(i in tasks where i != j) (

bool2int(s[i] <= s[j] /\ s[j] < s[i] + d[i]) * r[i]));

The decomposition implicitly introduces new Boolean variables: B1
ij ≡ task j

starts at or after task i starts, B2
ij ≡ task j starts before task i ends, and Bij ≡

task j starts when task i is running.

∀j ∈ [1 .. n] , ∀i ∈ [1 .. n] \ {j} : Bij ↔ B1
ij ∧B2

ij

B1
ij ↔ s[i] ≤ s[j]

B2
ij ↔ s[j] < s[i] + d[i]

∀j ∈ [1 .. n] :
∑

i∈[1 .. n]\{j}
r[i] ·Bij ≤ c− r[j]

Why Cumulative Decomposition Is Not as Bad as It Sounds 753

Note not all tasks i must be considered for a task j, only those i which can
overlap at the start times s[j] wrt. precedence constraints, resource constraints
and the initial domain Dinit.

Since the SAT solver does not know about the relationship among the B1
∗∗

and B2
∗∗ the following redundant constraints can be posted for all i, j ∈ [1 .. n]

where i < j in order to improve the propagation and the learning.

B1
ij ∨B2

ij B1
ji ∨B2

ji B1
ij ∨B1

ji B1
ij → B2

ji B1
ji → B2

ij

The size of this decomposition only depends on n whereas Time-RD depends on n
and the number of points in the planning horizon tmax. At most 3n(n−1) Boolean
variables, 3n(n−1) equivalence relations, n or relations, 3n redundant constraints
and n sum constraints are generated. Again adding another cumulative resource
constraints can reuse the Boolean variables and requires only adding n new sum
constraints.

Example 7. Consider the problem of Example 4 after the addition of se ≥ 2, se ≤
4, sb ≤ 7, sa ≥ 1, after the precedence constraints are applied the decomposition
learns ¬B2

ad, ¬B2
db direct from precedence constraints and hence ¬Bad, ¬Bdb.

From the start times it determines that B1
ab, B1

db, B1
eb, ¬B2

ba, ¬B2
bd, ¬B2

be, ¬Bba,
¬Bbd, ¬Bbe. But nothing is determined from the sum constraints and no bounds
changes are made by the cumulative. Adding sc ≥ 2 does not change this. This
illustrates the weaker propagation of the Task-RD.

If we use end time variables e[i] = s[i]+d[i], we can generate a symmetric model
to that defined above.

In comparison, to the Time-RD decomposition the Task-RD decomposition
is stronger in its ability to relate to task information, but generates a weaker
profile of resource usage, since no implicit profile is recorded.

3.3 Explanations

To see the advantage of decomposition in terms of explanations let us revisit
Example 4. After the addition of se ≥ 2, se ≤ 4, sb ≤ 7, sa ≥ 1, together
with sc ≥ 2 a global (bounds consistent) cumulative constraint propagates that
sc ≥ 5. A minimal explanation of this is that se ≥ 2 ∧ se ≤ 4 ∧ sd ≥ 2 ∧ sd ≤
4 ∧ sc ≥ 2 → sc ≥ 5. This is recorded as the clause �se ≤ 1� ∨ ¬�se ≤ 4�∨ �sd ≤
1� ∨ �sd ≤ 4� ∨ �sc ≤ 1� ∨ ¬�sc ≤ 4�.

Consider what happens in the Time-RD decomposition. After the addition of
se ≥ 2, se ≤ 4, sb ≤ 7, sa ≥ 1, we learn sd ≤ 4 ∧ sd ≥ 2 → Bd4, se ≤ 4 ∧ se ≥
1 → Be4, se ≤ 5 ∧ se ≥ 2 → Be5, and Bd4 ∧ Bd5 → ¬Bc4 With the addition of
sc ≥ 2 we learn that sc ≥ 2 ∧ ¬Bc4 → sc ≥ 5. Each of the clauses is smaller
and more reuseable. For example if we replace the constraint se ≥ 2 by se ≥ 1
then the same reasoning will apply. The crucial benefit of this is that nogoods
are more reusable.

754 A. Schutt et al.

4 Resource-Constrained Project Scheduling Problems

Resource-constrained project scheduling problems (Rcpsp) appear as variants,
extensions and restrictions in many real-world scheduling problems. Therefore we
test our decomposition on the well-known Rcpsp benchmark library PSPLib [1].

An Rcpsp is denoted by a triple (T, A, R) where T is a set of tasks, A a set of
precedences between tasks and R is a set of resources. Each task i has a duration
d[i] and a resource usage r[k, i] for each resource k ∈ R. Each resource has a
resource capacity c[r].

The goal is to find either a schedule or an optimal schedule with respect to
an objective function where a schedule s is an assignment which meets following
conditions

∀i
 j ∈ A : s[i] + d[i] ≤ s[j]

∀t ∈ [0 .. tmax − 1] , ∀k ∈ R :
∑

i∈T :s[i]≤t<s[i]+d[i]

r[k, i] ≤ c[r] ,

where tmax is the planning horizon. For our experiments we search for a schedule
which minimises the makespan (i.e. latest end time). A basic Zinc model is given
at http://www.cs.mu.oz.au/~pjs/rcpsp

In practice we share the Boolean variables generated inside the cumulative
constraints as described in Section 3.1 (by common sub-expression elimination)
and add redundant constraints as described in Section 3.2 when using the Task-
RD decomposition. We also add redundant non-overlap constraints for each pair
of tasks whose resource usages make them unable to overlap. Moreover, the
planning horizon tmax was determined as the makespan of first solution found
by labelling the smallest value of the start time variables in order. The initial
domain of each variable s[i] was determined as Dinit(s[i]) = [p[i] .. tmax − q[i]]
where p[i] is the duration of the longest chain of predecessor tasks, and q[i] is
the duration of the longest chain of successor tasks.

In the remainder of this section we discuss alternate search strategies.

4.1 Search Using Serial Scheduling Generation

The serial scheduling generation scheme (serial Sgs) is one of basic deterministic
algorithms to assign stepwise a start time to an unscheduled task. It incremen-
tally extends a partial schedule by choosing an eligible task—i.e. all of whose
predecessors are fixed in the partial schedule—and assigns it to its earliest start
time with respect to the precedence and resource constraints. For more details
about SGS, different methods based on it, and computational results in Opera-
tions Research see [10, 8, 11].

Baptiste and Le Pape [3] adapt serial Sgs for a constraint programming frame-
work. For our experiments we use a form where we do not apply their dominance
rules, and where we impose a lower bound on the start time instead of posting
the delaying constraint “task i executes after at least one task in S”.

Why Cumulative Decomposition Is Not as Bad as It Sounds 755

1. Select an eligible unscheduled task i with the earliest start time t = lb(s[i]).
If there is a tie between some tasks then select that one with the minimal
latest start time ub(s[i]). Create a choice point.

2. Left branch: Extend the partial schedule by setting s[i] = t. If this branch
fails then go to the right branch; Otherwise go to step 1.

3. Right branch: Delay task i by setting s[i] ≥ t′ where t′ = min{lb(s[j]) +
d[j] | j ∈ T : lb(s[j]) + d[j] > lb(s[i])}, that is, the earliest end time of the
concurrent tasks. If this branch fails then backtrack to the previous choice
point; Otherwise go to step 1.

The right branch uses the dominance rule that amongst all optimal schedules
there exists one where every task starts either at the first possible time or imme-
diately after the end of another task. Therefore, the imposing of the new lower
bound is sound. If we add side constraints then this assumption could be invalid.

Note that we use this search strategy with branch and bound, where whenever
a new solution is found, a constraint requiring a better solution is dynamically
(globally) added during the search.

4.2 Search Using Variable State Independent Decaying Sum

The SAT decision heuristic Variable State Independent Decaying Sum (Vsids) [15]
is a generic search approach that is currently almost universally used in DPLL
SAT solvers. Each variable is associated with a dynamic activity counter that is
increased when the variable is involved in a failure. Periodically, all counters are
reduced, thus decaying. The unfixed variable with the highest activity is selected
to branch on at each stage. Benchmark results by Moskewicz [15] shows that Vsids
performs better on average on hard problems than other heuristics.

To use Vsids in a lazy clause generation solver, we ask the SAT solver what its
preferred literal for branching on is. This corresponds to an atomic constraint x ≤
d or x = d and we branch on x ≤ d∨x > d or x = d∨x �= d. Note that the search
is still controlled by the FD search engine, so that we use its standard approach
to implementing branch-and-bound to implement the optimisation search.

Normally SAT solvers use dichotomic restart search for optimisation as the
SAT solver itself does not have optimisation search built in, although in some
cases it is possible to maintain the nogoods from the previous search. The combi-
nation of Vsids and branch and bound is much stronger since in the continuation
of the search with a better bound, the activity counts at the time of finding a
new better solution are used in the same part of the search tree.

Restarting is shown to be beneficial in SAT solving (and CSP solving) in
speeding up solution finding, and being more robust on hard problems. We also
use Vsids search with restarting, which we denote Restart.1

1 Note that restarting Sgs search while possible is not attractive since the nogoods
do not modify the search in most cases.

756 A. Schutt et al.

4.3 Hybrid Search Strategies

One drawback of Vsids is that at the beginning of the search the activity coun-
ters are only related to the clauses occurring in the original model, and not to
any conflict. This is exacerbated in lazy clause generation where many of the
constraints of the problem may not appear at all in the clause database initially.
This can lead to poor decisions in the early stages of the search. Our experiments
support this, there are a number of “easy” instances which Sgs can solve within
a small number of choice points, where Vsids requires substantially more.

In order to avoid these poor decisions we consider a hybrid search strategy. We
use Sgs for the first 500 choice points and then restart the search with Vsids.
The Sgs search may solve the whole problem if it is easy enough, but otherwise it
sets the activity counters to meaningful values so that Vsids starts concentrating
on meaningful decisions. We denote this search as Hot Start, and the version
where the secondary Vsids search also restarts as Hot Restart.

5 Experiments

We carried out extensive experiments on Rcpsp instances comparing our ap-
proach to decomposition without explanation, global cumulative propagators
from sicstus and eclipse, as well as a state-of-the-art exact solving algorithm
[12]. Detailed results are available at http://www.cs.mu.oz.au/~pjs/rcpsp

We use two suites of benchmarks. The library PSPLib [1] contains the four
classes J30, J60, J90, and J120 consisting of 480 instances of 30, 60, 90 task and
600 instances of 120 tasks respectively. We also use a suite (BL) of 40 highly
cumulative instances with either 20 or 25 tasks constructed by Baptiste and Le
Pape [3].

The experiments were run on a X86-64 architecture running GNU/Linux and
a 3.4 GHz processor. The code was written in G12 Constraint Programming
Platform and compiled with the Mercury Compiler and grade hlc.gc.trseg. Each
run was given a 10 minute limit.

5.1 Results on J30 and BL Instances

The first experiment compares different decompositions and search on the small-
est instances J30 and BL. We compare Sgs, Vsids, Restart and the hybrid
search approaches using three decompositions Time-RD (t), Task-RD (s), and
an equivalent version to Task-RD on end times (e). The results are shown in
Table 1. For J30 we show the number of problems solved (#svd), (cmpr(477))
the average solving time in seconds and number of choice points (#cp) on the
477 problems that all approaches solved, and (all(480)) average solving time in
seconds and number of choice points on all 480 problems to find the best solu-
tion found.2 Note that we shall use similar comparisons and notation in future
2 This means that for problems that time out this may be significantly smaller than

the number of choice points explored before timeout.

Why Cumulative Decomposition Is Not as Bad as It Sounds 757

Table 1. Results on J30 and BL instances

J30 BL
search dec #svd cmpr(477) all(480) #svd all(40) #svd cp(4000)

time #cp time #cp time #cp time #cp

Sgs
s 477 3.25 3069 6.97 4114 40 4.18 9628 24 0.22 1261
e 477 3.31 3054 7.04 4101 40 4.41 9443 24 0.19 1144
t 480 1.36 2339 4.09 4230 40 1.40 5892 29 0.05 781

Vsids
s 480 1.82 2128 2.62 2984 40 1.24 4436 31 0.20 1115
e 480 0.85 1504 1.45 2220 40 1.27 4104 30 0.20 1025
t 480 0.43 1002 0.54 1271 40 0.30 2540 34 0.05 661

Restart
s 480 0.93 1504 1.73 2339 40 1.46 4597 31 0.23 1207
e 480 0.82 1392 1.52 2153 40 2.61 5848 32 0.23 1177
t 480 0.39 892 0.54 1212 40 0.17 1670 35 0.06 639

Hot Start t 480 0.34 782 0.56 1223 40 0.13 1456 36 0.05 688
Hot Restart t 480 0.42 892 0.59 1241 40 0.20 1850 35 0.07 733

tables. For BL we show the number of solved problems, (all(40)) average solving
time and number of choice points with 10 minute limit (on all 40 instances), as
well as cp(4000) with a 4000 choice point limit.

Clearly the Time-RD decomposition is superior regardless of search, and the
best search strategies are Restart and the hybrid ones.

The results on the BL instances show that approaches using Time-RD and
Vsids could solve between 6 and 8 instances more than the base approach (FE) of
Baptiste and Le Pape [3] within 4000 backtracking steps.3 Their “left-shift/right-
shift” approach could solve 40 instances in 30 minutes, with an average of 3634
steps and 39.4 seconds on a 200 MHz machine. All our approaches with Time-
RD and Vsids find the optimal solution faster and in fewer backtracking steps
(between a factor of 1.39 and 2.4).

Next we compare the Time-RD decomposition (Sgs+t) against implemen-
tations of cumulative in sicstus v4.0 (default, and with the flag global) and
eclipse v6.0 (using its 3 cumulative versions from the libraries cumulative,
edge finder and edge finder3). We also compare against (FD+t) a decom-
position without explanation (a normal FD solver) executed in the G12 system.
All approaches use the Sgs search strategy.

The results are shown in the Table 2. We can see that none of the other
approaches compare to the lazy clause generation approach. The best is the
sicstus cumulative with global flag. Clearly nogoods are very important to
fathom search space.

While the Time-RD decomposition clearly outperforms Task-RD on these
small examples, as the planning horizon grows at some point Task-RD should be
better, since its model size is independent of the planning horizon. To investigate
this we took 20 examples from J30 and multiplied the durations and planning
horizon by 10 and 100. We compare the Time-RD decomposition versus the (e)
3 We count the number of choice points which is not smaller than the number of

backtracking steps.

758 A. Schutt et al.

Table 2. Results of the FD solvers on the J30 and BL instances

J30 BL
solver #svd cmpr(361) all(480) #svd cmpr(6) all(40)

si
c
st

us default 417 0.24 268 89.00 13986 30 2.86 20865 213.59 489218
global 411 0.43 263 96.85 6661 39 0.32 1265 19.19 10262

e
c
l
ip

se cumu 365 11.60 19529 158.30 42698 6 149.90 252462 532.31 123839
ef 361 15.15 15438 161.32 22907 36 8.79 11265 117.21 89034
ef3 362 13.37 12391 159.41 19186 37 7.17 7717 90.82 49114

G
12 FD+t 403 1.93 5665 104.72 156598 30 2.23 34677 217.12 918287

Sgs+t 480 0.02 75 4.09 4230 40 0.02 293 1.40 5892

Table 3. Results on 20 modified instance from J30 instances

Sgs Vsids
duration dec #svd cmpr(12) all(20) #svd cmpr(12) all(20)

1× e 17 0.74 2383 152.49 67257 20 0.25 735 26.89 34563
t 20 0.44 1817 87.19 72888 20 0.11 404 6.59 14405

10× e 13 4.25 7493 212.75 47394 20 1.98 3971 117.27 68097
t 14 4.74 2516 201.27 41081 20 1.66 1622 94.09 28250

100× e 13 22.03 17620 225.71 35349 14 10.52 6379 192.90 24959
t 13 55.78 3017 259.98 7175 14 22.42 9836 233.60 12618

end-time Task-RD decomposition (which is slightly better than start-time s).
The results are shown in Table 3. First we should note that simply increasing
the durations makes the problems significantly more difficult for a decomposed
cumulative. While the Time-RD decomposition is still just better than the Task-
RD decomposition for the 10× extended examples, it is inferior for scheduling
problems with very long durations.

5.2 Results on J60, J90 and J120

We now examine the larger instances J60, J90 and J120 from PSPLib. For J60 we
compare the most competitive approaches from the previous subsection: Vsids
+ t, Restart + t, Hot Start + t and Hot Restart + t. For this suite
our solvers cannot solve all 480 instances within 10 minutes. The results are
presented in the Table 4. For these examples we show the average distance of
our best solution found from the best known solution from PSPLib (most of
which are generated by specialised heuristic methods), as well as the usual time
and number of choice points comparisons. Many of these are currently open
problems. Our best approaches close 21 open instances (considering results from
PSPlib [1], Laborie [12] and Liess and Michelon [13]). Clearly the hybrid search
strategies are superior, although all of these approaches are quite competitive.

For the largest instances J90 and J120 we ran only Hot Restart + t, since
it is the most robust strategy. For J90 we can solve 396 of 480 instances, with

Why Cumulative Decomposition Is Not as Bad as It Sounds 759

Table 4. Results on J60 instances for Time-RD

solver #svd avg. dist. cmpr(424) all(480)

Vsids + t 424 4.5 5.77 6351 75.07 19781
Restart + t 428 4.8 5.07 5010 69.70 24333
Hot Start + t 429 9.3 3.83 4111 68.27 12072
Hot Restart + t 429 4.2 4.66 4617 68.25 25810

Table 5. Comparison between Laborie’s method and Hot Restart + t

J60 J90 J120
1.4 GHz 45s 300s 1800s 45s 300s 1800s 45s 300s 1800s
Laborie - 84.2 85.0 - 78.5 79.4 - 41.3 41.7

Hot Restart + t 85.2 88.1 89.4 79.8 81.3 82.5 42.5 44.8 45.3
3.4 GHz 18s 120s 600s∗ 18s 120s 600s∗ 18s 120s 600s∗

an average solution distance of 7.6. The average for solved instances is 6.56s
with 5077 #cp. We close 13 open instances in J90. For J120 we can solve 272 of
600 instances, with an average solution distance of 9.7, with average (on solved
instances) times of 7.52s and 6136 #cp. We close 20 open instances in J120.

We compare our best method Hot Restart + t to the method by La-
borie [12], the best published method on the J60, J90, and J120 instances.

Table 5 shows the percentage of solved instances within a maximal solve time.
We give an equivalent time to our solver taking into account the speeds of the
processors: 3.4GHz vs. 1.4GHz. At the top of the table is the time cutoff for a
1.4GHz processor, and at the bottom the approximately equivalent cutoff times
for a 3.4GHz machine. Note, that all ∗ marked 3.4GHz times are much lower
than the equivalent time for the 1.4GHz processor. Clearly this comparison can
only be seen as indicative.

Our method clearly outperforms Laborie’s method: for every class our method
was able to solve more problems within 18s than they could solve in half an
hour respectively on their machine. Interestingly, our solver could not solve six
instances which were solved by others.

Finally we used Hot Start + t to try to improve lower bounds of the
remaining open problems, by searching for a solution to the problem with the
makespan varying from the best known lower bound to the best known upper
bound from PSPLib. In this way we closed 9 more problems and improved 76
lower bounds.

6 Conclusion

We present a new approach solving Rcpsp problems by modelling cumulative
constraints by decomposition and using lazy clause generation. Benchmarks from
the PSPLib show the strong power of nogoods and Vsids style search to fathom

760 A. Schutt et al.

a large part of the search space. Without building complex specific global propa-
gators or highly specialised search algorithms we are able to compete with highly
specialised Rcpsp solving approaches and close 63 open problems.

Acknowledgments. We would like to thank Phillipe Baptiste for suggesting
this line of enquiry. We would also like to thank the anonymous reviewer who
pointed out the recent work of Laborie [12] which we had missed, and provided
a detailed comparison. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.

References

[1] PSPLib — project scheduling problem library,
http://129.187.106.231/psplib/ (23.04.2009)

[2] Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
and placement problems. Mathematical and Computer Modelling 17(7), 57–73
(1993)

[3] Baptiste, P., Le Pape, C.: Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Con-
straints 5(1-2), 119–139 (2000)

[4] Carlier, J., Pinson, E.: Jackson’s pseudo-preemptive schedule and cumulative
scheduling problems. Discrete Applied Mathematics 145(1), 80–94 (2004)

[5] Caseau, Y., Laburthe, F.: Cumulative scheduling with task intervals. In: Procs. of
the 1996 Joint International Conference and Symposium on Logic Programming,
pp. 363–377. MIT Press, Cambridge (1996)

[6] Demeulemeester, E.L., Herroelen, W.S.: New benchmark results for the resource-
constrained project scheduling problem. Management Science 43(11), 1485–1492
(1997)

[7] El-Kholy, A.O.: Resource Feasibility in Planning. PhD thesis, Imperial College,
University of London (1996)

[8] Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics
for the resource-constrained project scheduling problem. EJOR 127(2), 394–407
(2000)

[9] Jussien, N., Barichard, V.: The PaLM system: explanation-based constraint pro-
gramming. In: Proceedings of Techniques foR Implementing Constraint program-
ming Systems, pp. 118–133 (2000)

[10] Kolisch, R.: Serial and parallel resource-constrained project scheduling methods
revisited: Theory and computation. EJOR 90(2), 320–333 (1996)

[11] Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-
constrained project scheduling: An update. EJOR 174(1), 23–37 (2006)

[12] Laborie, P.: Complete MCS-based search: Application to resource constrained
project scheduling. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings IJCAI 2005,
pp. 181–186. Professional Book Center (2005)

[13] Liess, O., Michelon, P.: A constraint programming approach for the resource-
constrained project scheduling problem. Annals of Operations Research 157(1),
25–36 (2008)

http://129.187.106.231/psplib/

Why Cumulative Decomposition Is Not as Bad as It Sounds 761

[14] Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., Garcia de la Banda, M.,
Wallace, M.G.: The design of the Zinc modelling language. Constraints 13(3),
229–267 (2008)

[15] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Design Automation Conference, pp. 530–535.
ACM, New York (2001)

[16] Nuijten, W.P.M.: Time and Resource Constrained Scheduling. PhD thesis, Eind-
hoven University of Technology (1994)

[17] Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg
(2007)

[18] Viĺım, P.: Computing explanations for the unary resource constraint. In: Barták,
R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 396–409. Springer,
Heidelberg (2005)

On Decomposing Knapsack Constraints
for Length-Lex Bounds Consistency�

Meinolf Sellmann

Brown University, Department of Computer Science
115 Waterman Street, P.O. Box 1910, Providence, RI 02912

Abstract. The length-lex representation for set variables orders all subsets of a
given universe of values according to cardinality and lexicography. To achieve
length-lex bounds consistency for Knapsack constraints it has been proposed
to decompose the constraint into two sum constraints. We provide theoretical
and practical evidence which shows that decomposition increases the problem of
computing a fixpoint which is intrinsic to the length-lex representation: 1. The
fixpoint problem for this domain representation is NP-hard in general. 2. For a
tractable sub-family of Knapsack decomposition takes more time than exponen-
tial brute-force enumeration. 3. Experimental results on decomposed Knapsack
constraints show that exponential-time fixpoint computation is the rule and not
some pathological exception.

1 Introduction

In CP, finite variable domains are commonly given by explicit enumeration of values.
Then, when constraints remove values from variables’ domains, a fixpoint is trivially
reached after a linear number of calls to each filtering routine. The research focus in CP
is therefore often concentrated on efficient constraint filtering algorithms. The situation
changes fundamentally when domains become exponentially large in the instance input
size, as it is, e.g., the case for set variables.

The traditional subset-superset representation for set variables elegantly circumvents
the problem by ensuring that the number of potential domain changes is limited by a
linear number of steps before the set variable is bound. This is however not the case for
the newly proposed length-lex representation for set variables [3]. Consequently, the
time until a fixpoint is reached cannot be ignored anymore.

The frequently prohibitively long time before a fixpoint is reached is a well-known
practical problem in interval propagation where domains generally also have exponen-
tial size. In [1] it was rigorously proven that slow convergence is intrinsic to propaga-
tion methods. That is, the decomposition of a problem into individual constraints who
exchange information only via their domains can cause NP-hard fixpoint generation
problems when domains are exponentially large.

In light of these results, we study the recent proposition to decompose Knapsack
constraints to achieve length-lex bounds consistency. We prove a series of negative
results. 1. Computing fixpoints at which constraints are length-lex bounds consistent is
NP-hard in general. 2. Constraint decomposition may introduce exponential runtimes

� This work was supported by the National Science Foundation through the Career: Cornflower
Project (award number 0644113).

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 762–770, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Decomposing Knapsack Constraints for Length-Lex Bounds Consistency 763

even when the global problem is in P . 3. Experimental results on number partitioning
and market split problems show that slow convergence is the rule and not some rare
pathological exception.

2 Length-Lex Bounds Consistency

A set-variable is a variable whose domain values are sets. We assume that the elements
originate from a finite universe of elements. Because the number of possible values of
a set-variable can be enormous (the size of a power set, in the worst case), one usually
represents the domain of a set-variable S by a ‘lower bound’ and an ‘upper bound’ on
the values that S can take.

A natural representation for the domain of a set-variable is based on the subset order-
ing of the universe. That is, the lower bound M(S) represents all mandatory elements,
while the upper bound P (S) represents all possible elements, i.e., DSS(S) := {s |
M(S) ⊆ s ⊆ P (S)}. We refer to this representation as the subset representation.

An alternate representation is based on the length-lexicographic ordering of the uni-
verse [3] where the lower bound L(S) represents the smallest set that can be assigned
to S, while the upper bound U(S) represents the largest set, i.e., D(S) := DLL(S) :=
[L(S), U(S)] := {s | L(S) ≤LL s ≤LL U(S)}. Here ≤LL denotes the length-lexico-
graphic order which sorts sets first according to their cardinality and, as a sub-criterion
when the cardinalities are equal, according to their lexicography, whereby we assume
that an ordering on the universe is given and elements in a set are sorted accordingly.
We refer to this representation as the length-lex representation. To keep the presentation
simple, throughout the paper we will assume that the length-lex lower bound contains
the first value and the upper bound does not as this value could otherwise be removed
from consideration (see the length-lex∗ representation which treats all mandatory and
impossible elements separately [4]).

Example 1. Let S be a set-variable over the universe {1, . . . , 4} with domain D(S) =
[{1, 3}, {2, 3, 4}]. Then, the values that S can take are D(S) = {{1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.

For constraints involving set-variables, the filtering task is to tighten the bounds of
the domains. The respective definition of bounds consistency depends on the domain
representation used. For the traditional subset representation, bounds consistency of
a unary constraint over a set variable means that all values that must be part of the
final set according to the constraint are included in the lower bound and all values that
cannot be part of the final set are not elements of the upper bound. For the length-
lex representation, bounds consistency simply means that both the lower and the upper
bound are consistent according to the constraint.

This latter property appears highly desirable. However, as we will see shortly, it is
the reason why computing fixpoints of length-lex bounds consistency is intractable.

3 Decomposing Knapsack Constraints

Consider the Knapsack constraint KP(S, p, B, w, C) where we are given a set of items
modeled by a set-variable S over a universe of n items, a profit vector p which gives

764 M. Sellmann

the non-negative profit of each item, a weight vector w which gives the weight of each
item, a lower bound B on the total profit, and a capacity C bounding the total weight of
the knapsack. The constraint requires that the set s assigned to S fulfills

∑
i∈S pi ≥ B,

and
∑

i∈S wi ≤ C. In [4] we studied the question whether Knapsack problems are
still approximable when conjoined with cardinality and lexicographic constraints. We
proved that this is possible and gave an fully polynomial time approximation scheme
for the problem. Based on this scheme, we proved that approximated length-lex bounds
consistency can be achieved in polynomial time.

While the runtime of our filtering algorithm is polynomial, it is too expensive to be
invoked in a constraint propagation engine. Therefore, as a practical alternative to this
algorithm, in [7] it is suggested to decompose KP into one sum constraint which en-
forces the capacity bound and another sum constraint which enforces the profit bound.
A complex algorithm for these constraints is devised which requires a preprocessing
step in O(n3) and then runs in amortized time O(n log n) for each sum constraint. We
will now analyze the proposed decomposition theoretically and practically.

3.1 Knapsack Decomposition in Theory

We begin by stating a trivial intractability result which shows that slow-convergence
when generating fixpoints is an intrinsic problem of length-lex bounds consistency.

Lemma 1. It is NP-hard to decide whether a fixpoint exists to a system of only one
set-variable and just two unary constraints with associated monotonic and idempotent
filtering operators that achieve length-lex bounds consistency.

Proof. We reduce from Knapsack, i.e., we want to decide whether there exists a subset
I ⊆ {1, . . . , n} such that setting S ← I satisfies constraint W (S) :=

∑
i∈S wi ≤ C

and constraint P (S) :=
∑

i∈S pi ≥ B for natural numbers wi, pi, C, and B. Note
that W and P both affect both bounds of the length-lex domain. [7] devised monotonic
and idempotent filtering operators for the constraints W (S) and P (S). If there exists
a fixpoint where both constraints are length-lex bounds consistent, then, at the bounds
found, both constraints are satisfied. Therefore, each bound gives a solution that satisfies
both constraints, and thus solves the Knapsack problem. On the other hand, assume that
the Knapsack instance is valid, i.e., there exists an I ⊆ {1, . . . , n} such that W (S) and
P (S) are satisfied when setting S ← I . Then, D(S) = [I, I] is a fixpoint where both
constraints are length-lex bounds consistent.
�

Remark 1. The proof above shows that the problem with fixpoint intractability is not
actually caused by the specific (in our case: length-lex) ordering of the set variable’s
domain. The same argument can be made for any form of set bounds consistency which
requires that constraints are satisfied at the domain bounds.

While the intractability of computing a fixpoint is certainly disconcerting, it is not really
surprising since we are tackling an NP-hard problem after all. However, even more
concerning is the following:

Lemma 2. Decomposing Knapsack constraints into two sum constraints in a propaga-
tion engine can introduce exponential runtimes even for tractable problems.

On Decomposing Knapsack Constraints for Length-Lex Bounds Consistency 765

Proof. Consider the following family of Knapsack instances which belong to the large
class of Knapsack problems in P for which min{||p||∞, ||w||∞} is bounded by a poly-
nomial in n. For any even number of variables n we set p1 = w1 = n, pn = wn = n,
and pi = wi = 1 for all 1 < i < n. Assume we introduce a set variable S ⊆ {1, . . . , n}
and pose two separate constraints, W (S) which enforces

∑
i∈S wi ≤ 3n/2, and P (S)

which enforces
∑

i∈S pi ≥ 3n/2.

Observe how the lower length-lex bound evolves during the fixpoint computation: Af-
ter filtering W and P twice, we observe the sequence {1, 3, 4}, {1, 3, n}, {1, 4, 5},
{1, 4, n}, . . . , {1, n− 2, n}. That is, we observe all sets of cardinality 3 which contain
1 and n and do not contain n− 1.

The fixpoint computation continues: {1, 2, 3, 4}, {1, 2, 3, n},{1, 2, 4, 5}, {1, 2, 4, n},
. . . , {1, 2, n − 2, n}, {1, 3, 4, 5}, {1, 3, 4, n}, {1, 3, 5, 6}, {1, 3, 5, n}, . . . , {1, 3, n −
2, n}, . . . {1, n− 3, n − 2, n}. That is, among others we visit all sets of cardinality 4
which contain 1 and n and do not contain n− 1.

Next we visit, among other sets, all sets of cardinality 5 which contain 1 and n and
do not contain n − 1. And so on and so forth until we finally find the lower bound
of cardinality n/2 + 1, {1, 2, . . . , n/2 + 1}. We observe: by filtering constraints W
and P separately and in turn, we implicitly compute a sequence of increasing lower
bounds in the length-lex representation of all sets of cardinality from 3 to n/2 which
contain items 1 and n and not n− 1. Consequently, for n ≥ 6, the fixpoint computation
requires more than

∑
i<n/2−1

(
n−3

i

)
≥ 2n−5 calls to the filtering methods, and thus

runs in time Ω(2nn log n) – more than brute force enumeration. On the other hand, the
pseudo-polynomial approach from [4] can be followed to compute the same bounds in
time O(n3).
�

3.2 Knapsack Decomposition in Practice

Fig. 1. Filtering calls (log-scale) on number parti-
tioning problems with 4 to 20 numbers (100 in-
stances per data point, numbers drawn uniformly
from [1, 106]). The upper curve shows the mini-
mum number of calls needed by at least 50% of the
instances, the lower the minimum number of calls
needed by at least 90% of the instances.

Number Partitioning. The previ-
ous discussion shows that Knapsack
decomposition for length-lex bounds
consistency is certainly not appeal-
ing from a theoretical worst-case point
of view. The question arises whether
slow convergence occurs only rarely
in practice. One of the simplest prob-
lems for which we may consider
employing a filtering algorithm for
Knapsack constraints is number parti-
tioning. Given numbers a1, . . . , an, is
there a set I ⊆ {1, . . . , n} such that∑

i∈I ai =
∑

i ai

2 ?
Figure 1 shows the number of filter-

ing calls of 100 small, randomly gen-
erated number partitioning problems
modeled by one set variable with one unary Knapsack constraint that is decomposed
into two sum constraints. The two curves (logarithmic scale) depict lower bounds on

766 M. Sellmann

the number of calls that are required until a fixpoint is reached for 90% and 50% of
the instances. We see clearly that exponential-time fixpoint computations occur in the
vast majority of test cases. Slow convergence is thus the predominant rule and not some
pathological worst-case exception.

Speeding up Convergence. In order to show that Knapsack decomposition is not ap-
pealing in practice either, in the following we introduce a heuristic improvement which
tries to address the slow convergence problem. We will then show that even this im-
proved algorithm cannot compete with non-decomposition approaches.

To speed up convergence we exploit the method based on dynamic programming
(DP) from [4] which simplifies considerably for sum constraints. Let us consider sum
constraints of the form

∑
i∈I wi ≤ C, with wi, C ∈ Q. We set up a dynamic pro-

gram in two dimensions (compare with Figure 2). The first gives the current index of
the largest element allowed in the solution set, which is restricted to be a subset of
∅, {1}, {1, 2}, . . . , or {1, . . . , n}. The other dimension gives the cardinality 0, 1, . . . , n.
Then, in Wic we store the weight of the set I ⊆ {1, . . . , i} with cardinality |I| = c that
has the smallest weight w(I) :=

∑
i∈I wi. The ordinary recursion equation Wi+1,c ←

min{Wic, Wi−1,c−1 + wi} can be used to find the set I ⊆ {1, . . . , n} with cardinality
κ that minimizes w(I) = Wnκ.

For the purpose of achieving length-lex bounds consistency for sum constraints,
this basic DP can be adapted following the same ideas as given in [4]. Assume that
we are given a set variable S ⊆ {1, . . . , n} with domain D(S) = [L, U], L, U ⊆
{1, . . . , n}. We are to find new lower and upper bounds L′, U ′ ⊆ {1, . . . , n} such that
w(L′), w(U ′) ≤ C and for all L′′, U ′′ with L ≤LL L′′ <LL L′, U ′ <LL U ′′ ≤LL U it
holds w(L′′), w(U ′′) > C. Following the approach in [4], it is sufficient to devise an
algorithm for the case where κ ← |L| = |U |.

Note that L and U define paths πL and πU in the DP from W00 to Wnκ (see Figure 2).
Analogously, every path π from W00 to Wnκ defines a set Sπ ⊆ {1, . . . , n}. We call a
path admissible iff L ≤LL Sπ ≤LL U . It will be important for us to know the shortest
path distance from the root to a given node when the choices implied by that path
π already ensure that the resulting set Sπ must obey the lexicographic bounds L, U .
Conversely, we will also need to argue about paths from nodes in the DP-induced graph
to the sink-node Wnκ:

Definition 1. For a path π from the root to Wic, we write L <lex Sπ (or Sπ <lex U) if
and only if for all S ⊆ {1, . . . , n} such that S∩(Sπ ∪{i+1, . . . , n}) = S and |S| = κ
it holds that L <lex S (S <lex U).

For a path π from Wic to Wnκ, we write L ≤lex Sπ (or Sπ ≤lex U) if and only if
for T ← Sπ ∪ (L∩ {1, . . . , i}) (T ← Sπ ∪ (U ∩ {1, . . . , i})) it holds that |T | = κ and
L ≤lex T (T ≤lex U).

Now, for every node Wic in the DP, we compute the following quantities:

1. For Wic ∈ πL, M1
ic gives the distance from the root W00 to Wic when following

πL, that is M1
ic ←

∑
i∈L,i≤k wi. For Wic /∈ πL, we set M1

ic ←∞.
2. For Wic ∈ πU , M2

ic gives the distance from the root W00 to Wic when following
πU , that is M2

ic ←
∑

i∈U,i≤k wi. For Wic /∈ πU , we set M2
ic ←∞.

On Decomposing Knapsack Constraints for Length-Lex Bounds Consistency 767

3. For arbitrary nodes Wic, M3
ic gives the length of the shortest path π from the root

to Wic with L <lex Sπ <lex U .
4. For arbitrary nodes Wic, M4

ic gives the length of the shortest path π from Wic to
Wnκ.

5. For Wic ∈ πL, M5
ic gives the length of the shortest path π from Wic to Wnκ with

L ≤lex Sπ.
6. For Wic ∈ πU , M6

ic gives the length of the shortest path π from Wic to Wnκ with
Sπ ≤lex U .

In [4] we devised recursion equations that allow us to compute all these values in time
O(n2). Based on this data, we can compute the desired bounds L′, U ′. To this end, we
propose a new procedure which is more efficient than the one presented in [4].

Let us consider the problem of computing L′ (the computation of U ′ works anal-
ogously). We start at node W00. Recall that we may assume that 1 ∈ L and 1 /∈ U .
We start at node W00 and initialize the already committed cost g ← 0. Clearly 1 ∈ L′

if and only if g + w1 + M5
11 ≤ C. In this case, we move to W11 and update g ←

g + w1. While we stay on πL, we update in this way: at Wic, if i + 1 /∈ L or when
g + wi+1 + M5

i+1,c+1 > C, we move to Wi+1,c. Otherwise we add i + 1 to L′, move
to Wi+1,c+1, and update g ← g + wi+1. At some point it may occur that i + 1 ∈ L
but g + wi+1 + M5

i+1,c+1 > C. Then, we leave πL and we are already guaranteed that
L <LL L′. So we continue as follows: If g + wi+1 + M4

i+1,c+1 ≤ C, we add i + 1 to
L′, move to Wi+1,c+1, and update g ← g + wi+1. Otherwise, we move to Wi+1,c. In
this way, we can compute the new lower bound L′ in time O(n) once the values Mk

ic

are known. With this procedure, length-lex bounds consistency for sum constraints can
be achieved in time O(n2).

The previous algorithm is very simple and easy to implement. In contrast to the algo-
rithm presented in [7], it requires no specialized theory, cubic preprocessing, or amor-
tized runtime analysis. On the other hand, it is slower than the O(n log n) amortized
time from [7]. However, as we have seen earlier, the problem with decomposing Knap-
sack constraints is not caused by the inefficiencies when propagating sum constraints.
The problem is the very slow convergence before a fixpoint is reached. The algorithm
presented above has the potential to reduce this time by filtering all sum constraints
within the same dynamic program.

To achieve this practical improvement, we will filter edges from the graph induced by
the DP. Since a sum constraint is a Knapsack constraint where the profits are all zero,
from Lemma 1 in [4], we know that the following quantities can be used to remove
edges from the DP-induced graph:

Lemma 3

– The length of a shortest admissible path through an edge (Wic, Wi+1,c) is
min{M3

ic +M4
i+1,c, M

1
ic +D1

ic, M
2
ic +D2

ic}, where D1
ic = M4

i+1,c if i+1 ∈ L and
D1

ic = M5
i+1,c otherwise, and D2

ic = M6
i+1,c if i+1 /∈ U and D2

ic = ∞ otherwise.
– The length of a shortest admissible path through an edge (Wic, Wi+1,c+1) is

min{M3
ic + M4

i+1,c+1 + wi+1, M
1
ic + E1

ic + wi+1, M
2
ic + E2

ic + wi+1}, where
E1

ic = M5
i+1,c+1 if i + 1 ∈ L and E1

ic = ∞ otherwise, and E2
ic = M4

i+1,c+1 if
i + 1 /∈ U and E2

ic = M6
i+1,c+1 otherwise.

768 M. Sellmann

6 75 8

L

U

M3

M4

2

2

���
���
���

���
���
���

���
���
���
���

0

1

2

3

4

Cardinality

21 3 40

inf

4

0

4

0

6

0

6

33

inf

3

1 1 1

5

1

5

5

1

2

2

2

2

2

5

6

0

6

0

2

2

6

0

5

0

4

0

��
��
��

��
��
��0

4

0

4

M2

M5

M1

M6

���
���
���
���

0

1

2

3

4

0

4 6

0 0

6

1

5 5

1

1

2

4

5

3

2 2

3

2

6 6

2

0

0 0 0

6

0

111111

11

Fig. 2. The DP for the weight constraint in Example 1. The top gives values M3 and M4

for all nodes, the bottom M1, M2, M5, M6 for nodes on L and U . Note that node W4,3 is
valid as {2, 3, 4, 6} obeys the length-lex bounds and defines a path that visits this node. Edge
(W6,3, W7,4) has been removed previously by the profit constraint.

Example 2. For a set variable S ⊆ {1, . . . , 8}, consider the Knapsack constraint
KP (S, (0, 0, 0, 0, 0, 0,−1, 1)T , 0, (2, 1, 4, 1, 5, 0, 3, 2)T , 7). That is, we want a subset
of items S such that x8 − x7 ≥ 0 and 2x1 + x2 + 4x3 + x4 + 5x5 + 3x7 + 2x8 ≤
7, where xi = 1 if i ∈ S and xi = 0 otherwise. Assume further that D(S) =
[{1, 3, 5, 6}, {4, 6, 7, 8}]. Propagating the profit constraint x7 − x8 ≤ 0, we detect that
the edge (W6,3, W7,4) cannot be used by any admissible path with weight lower or equal
0. Then, we propagate the constraint 2x1 + x2 + 4x3 + x4 + 5x5 + 3x7 + 2x8 ≤ 7.
Figure 2 shows the DP, the lower and upper bounds, as well as all values Mk

ic at this
point. To compute a new lower bound, we initialize g ← 0 and begin at W00. It holds
g + w1 + M5

11 = 0 + 2 + 3 ≤ 7, so we include 1 in L′ and update g ← 2. Since we are
still on L and 2 /∈ L, we cannot include 2 in L′ and move to W2,1. Then, 2+4+2 > 7,
so we move to W3,1, leaving πL. From now on we will use M4 instead of M5. Next,
g + w4 + M4

4,2 = 2 + 1 + 2 ≤ 7, so we include 4 in L′, update g ← 3, and move to
W4,2. Then, 3 + 5 + 0 > 7, so we move to W5,2. Next, 3 + 0 + 2 ≤ 7, so we include 6
in L′, update g ← 3, and move to W6,3. Now, the edge (W6,3, W7,4) has been removed,
so we move to W7,3. Finally, we find 3 + 2 + 0 ≤ 7 and include 8 in L′. The new
lower bound is L′ = {1, 4, 6, 8}. Note that, without the prior removal of (W6,3, W7,4),
the new bound would have been {1, 4, 6, 7}. This bound would disagree with the profit

On Decomposing Knapsack Constraints for Length-Lex Bounds Consistency 769

Table 1. Test results on 100 random market split problems. We give number of variables, con-
straints, the average number of filtering calls, time in CPU seconds, and, in case where the number
of pure bound computations is limited, the average number of choice points.

LL LL-red LL-red-100 LL-red-100-noEdge
Vars Cons Filt. Calls Time Filt. Calls Time CPs Filt. Calls Time CPs Filt. Calls Time
10 2 55.1 0 47.0 0 1 47.0 0 1 109 0
20 3 34.8K 0.58 34.0K 0.57 9.94 31.3K 0.49 31.5 35.0K 0.62
30 4 14.4M 481 14.3M 475 2.9K 12.8M 298 9.3K 13.4M 426
40 5 > 500M > 5h > 500M > 5h > 100K > 500M >5h > 100K > 500M >5h

constraint x7 − x8 ≤ 0, resulting in a need to update the bound again by the profit
constraint. The removal of edges and the propagation of sum constraints within the
same DP graph can thus contribute to faster convergence in practice.

We test this algorithm on Market Split Problems which consist in the conjunction
of several number partitioning constraints. We use randomly generated Cornuejols/
Dawande instances [2] for our tests. Our length-lex approach - which does not need
to branch as a fixpoint of length-lex bounds consistency satisfies all constraints, is re-
ferred to as “LL”. To strengthen the filtering power, we use redundant constraints which
result from a weighted sum of the original equalities as they were introduced in [6]
and later used successfully in [5]. The respective approach is called “LL-red”. In prac-
tice it may be beneficial not to wait until a fixpoint of length-lex bounds consistency has
been achieved. We test a third approach where we continue propagating sum constraints
within the same DP until for 100 iterations only the length-lex bounds have changed,
but no edge could be removed. In this case, branching becomes of course necessary. We
refer to this approach as “LL-red-100”. Finally, we experiment with the latter approach
where we turn off the edge-removal heuristic and to which we refer as “LL-red-100-
noEdge”. Tests were run on on an AMD Athlon 64 3800+ 2.0GHz CPU.

We see that adding redundant constraints helps a little, and limiting the number of
pure length-lex bounds improvements helps further reduce the total number of filtering
calls. Moreover, our edge-removal heuristic effectively reduces the number of filtering
calls, the number of choice points, and the total time needed. However, even with all
these improvements the decomposition approach is not competitive at all. The non-
decomposition algorithm based on approximated subset-bounds consistency from [5],
run on an AMD Athlon 1.2GHz, solves on average instances with 4 constraints in less
than a second while visiting less than 6 choice points, and instances with 5 constraints
in less than a minute while visiting less than 60 choice points.

4 Conclusion

We rejected the conjecture from [7] that vanilla Knapsack constraint decomposition
was appealing for achieving length-lex bounds consistency. In theory, it can lead to
exponential filtering times even for tractable filtering problems. In practice, even when
using improvements like propagating sum constraints within the same DP, it is vastly
outperformed by an approach based on non-decomposed Knapsack constraint filtering.

770 M. Sellmann

In general, we argue that filtering algorithms achieving length-lex bounds consis-
tency must not be evaluated based on the filtering-time alone but always have to be
viewed as posing a fixpoint problem that is potentially hard in theory and in practice.
Decomposing constraints for achieving length-lex bounds consistency appears particu-
larly disadvantageous as this puts even more burden on the fixpoint algorithm.

References

1. Bordeaux, L., Hamadi, Y., Vardi, M.Y.: An Analysis of Slow Convergence in Interval Propa-
gation. In: CP, pp. 790–797 (2007)

2. Cornuejols, G., Dawande, M.: A Class of Hard Small 0-1 Program. In: IPCO, pp. 284–293
(1998)

3. Gervet, C., Van Hentenryck, P.: Length-lex ordering for set CSPs. In: AAAI (2006)
4. Malitsky, Y., Sellmann, M., van Hoeve, W.-J.: Length-Lex Bounds Consistency for Knapsack

Constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 266–281. Springer, Heidel-
berg (2008)

5. Sellmann, M.: The Practice of Approximated Consistency for Knapsack Constraints. In:
AAAI, pp. 179–184 (2004)

6. Trick, M.: A Dynamic Programming Approach for Consistency and Propagation for Knapsack
Constraints. In: CPAIOR, pp. 113–124 (2001)

7. Yip, J., Van Hentenryck, P.: Length-Lex Bound Consistency for Knapsack Constraints. In:
ACM SAC (2009)

Realtime Online Solving of Quantified CSPs�

David Stynes and Kenneth N. Brown

Cork Constraint Computation Centre,
Dept of Computer Science, University College Cork, Ireland

d.stynes@4c.ucc.ie, k.brown@cs.ucc.ie

Abstract. We define Realtime Online solving of Quantified Constraint
Satisfaction Problems (QCSPs) as a model for realtime online CSP solv-
ing. We use a combination of propagation, lookahead and heuristics and
show how all three improve performance. For adversarial opponents we
show that we can achieve promising results through good lookahead and
heuristics and that a version of alpha beta pruning performs strongly.
For random opponents, we show that we can frequently achieve solutions
even on problems which lack a winning strategy and that we can improve
our success rate by using Existential Quantified Generalised Arc Consis-
tency, a lower level of consistency than SQGAC, to maximise pruning
without removing solutions. We also consider the power of the universal
opponent and show that through good heuristic selection we can generate
a significantly stronger player than a static heuristic provides.

1 Introduction

Many practical decision problems are not under the control of a single decision
maker. For example, in planning under uncertainty, mixed initiative planning,
interactive configuration or game playing, either the external environment or
another actor refines the detail of the problem as decisions are being made. Such
problems can be modeled as online constraint satisfaction, where the problem
variables must be instantiated in a fixed sequence, but where some of those
variables are set externally, and the aim is to achieve a complete satisfying
assignment at the end of the process. Quantified constraint satisfaction (QCSP)
is a generalization of CSP, which also has a fixed sequence of variables, but where
some of the variables are universally quantified. The aim is to find a winning
strategy, which guarantees a complete satisfying assignment for every possible
combination of values for the universal variables. QCSP can be regarded as a
model for online CSP: the existential variables represent the values under our
control, while the universal variables represent the externally assigned variables,
and if we can find a winning strategy for the QCSP, then we can guarantee to
find a solution to the online CSP. But in many online problems, including for
example delivery dispatch, game playing or reservation management, we have
� This work was supported in part by Microsoft Research through the European PhD

Scholarship Programme, and by the Embark Initiative of the Irish Research Council
for Science, Engineering and Technology (IRCSET).

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 771–786, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

772 D. Stynes and K.N. Brown

limited time in which to make each decision, and so online CSP can be extended
to realtime online CSP. Given the time limits, it may no longer be feasible to
search for a winning strategy for the corresponding QCSP. If we are to continue
using QCSP as a model, then we must develop methods for finding solutions to
a QCSP interactively, or online, as the universal variables are assigned, and we
must do this under time constraints.

Here, we investigate realtime online solving of QCSPs. We continue to use
QCSP as an idealised model of online CSP, but at each time-limited step we
search partial strategies to find the best decision, in the style of game tree search.
We develop the use of constraint propagation, game-tree search and ordering
heuristics for finding partial strategies. We consider two types of external ac-
tors: (i) adversarial opponents, who try to prevent us finding a solution, and (ii)
random solvers, which simply select random values for the variables. We develop
existential generalised arc consistency, which does not prune any solutions from
a QCSP, and which is particularly effective against random solvers. We develop a
version of alpha-beta pruning for adversarial opponents, and a method based on
weighted estimates for random solvers. We evaluate our methods empirically. On
random binary QCSPs, we show that alpha-beta is most effective on large adver-
sarial problems, while against random solvers we show that weighted estimates
frequently finds solutions where no winning strategy exists. We then consider
Online Bin Packing problems, requiring non-binary constraints, where the ex-
ternal solver generates the items to be packed into the bins. For these problems
we propose some online heuristics tailored to bin packing, and we show that
these heuristics outperform static heuristics. Performance is obviously affected
by the quality of the opponent, and we show the effect of different strategies and
heuristics for the opposing solver.

2 Background

A Quantified Constraint Satisfaction Problem[1] is a tuple P = (X ,D, C,Q)
where X = {X1, . . . , Xn} is a set of variables, D = {D1, . . . , Dn} is their do-
mains, C = {C1, . . . , Ce} is a finite set of constraints and Q = Q1X1 . . . QnXn is
a sequence of quantifiers for each variable, where each Qi is either ∃ (existential)
or ∀ (universal). We define a Normal Form QCSP as one with a strictly alternat-
ing sequence of quantifiers, starting with ∀ and ending with ∃. Each constraint
C acts on its scope, an ordered subset of the variables SC = (Xi, . . . , Xj), where
C ⊆ Di × . . .×Dj . A solution is a tuple containing a value assignment for each
variable in X which satisfies all of the constraints in C. A strategy is a tree of
value assignments which assigns a value for each existential variable for all pos-
sible sequences of assignments to the preceding universal variables. If every path
in the strategy tree generates a solution tuple, it is a winning strategy. A QCSP
is satisfiable if and only if a winning strategy exists, i.e. if we can guarantee to
reach a solution no matter what values the universal variables take. Determining
whether a winning strategy exists is PSPACE-complete[2]. Note that a QCSP
may have solutions which are not part of any winning strategy. When generat-
ing binary QCSP problems, it is common[3] to generate only constraints where

Realtime Online Solving of Quantified CSPs 773

the second variable is existentially quantified (i.e. ∃∃ and ∀∃ constraints), since
other constraints can be removed during preprocessing.

For QCSP, a constraint C is Strongly Quantified Generalised Arc Consistent
(SQGAC)[4] iff for each variable Xi ∈ SC and value a ∈ Di, a vertex labeled
Xi←a is contained in M , where M is a multiple winning strategy tree represent-
ing the union of all winning strategies for the constraint C. Any values not in the
tree are pruned from their domains, and following each domain reduction the
tree is updated to be a valid representation of all remaining winning strategies.
SQGAC applied to binary QCSPs reduces to arc consistency for QCSPs[5] which
we shall refer to as Quantified Arc Consistency(QAC), and can be implemented
without a complex tree structure.

Gent et al.[3] proposed QCSP-Solve as a solver for QCSP, and included a
Pure Value Rule for binary constraints, later extended to cover non-binary
constraints[4]. A value a for variable Xi is pure if and only if all possible tu-
ples with Xi←a are actual solutions to Pi, the sub-problem containing only all
constraints over the variable Xi. As domains are reduced during search, values
may dynamically become pure. Existential pure values can be instantly assigned,
while universal pure values can be safely pruned from their domains (assuming
one other value still remains) to reduce search. Value ordering heuristics have
been developed for QCSP, including Dynamic Geelen’s Promise[6,7].

A difficulty in modeling using QCSPs is that in many problems some val-
ues for the universal variables are only legal depending on preceding decisions,
and so no winning strategy is possible. To handle such problem types, Strategic
CSPs [8] extend QCSPs by allowing universal variables to adapt their domains
to be compatible with previous choices. Alternatively, QCSP+[9] introduces re-
stricted quantification to state when values are legal in the universal domains.
[10] proposes backpropagation methods for value ordering in QCSP+. To use
QCSP-Solve on such problems, shadow variables [4] and associated constraints
can be introduced, which make universal values pure when they are no longer
legal choices, and thus they are removed from the search.

Dynamic Constraint Satisfaction [11,12] considers problems that change over
time, by the addition, retraction or modification of variables, domains and con-
straints. Formalisms that specifically focus on problems that progress by the as-
signment of values to variables include Mixed CSP [13] and Stochastic CSP [14],
although in the latter case probability distributions are associated with the as-
signment of each uncontrolled variable. Sampling methods have been used[15,16]
to solve Online Stochastic Optimization problems under time constraints, in
which problems are gradually revealed, although again with an assumption that
there is some model of the likely growth. Finally, Groetschel [17] considers the
general problem of Realtime Online Combinatorial Optimization.

In AI game playing [18], the game is represented as a tree of game states.
Players take turns making moves, which are a transition from one state in the
tree to another. Players perform game-tree search to determine their best option,
but it is typically infeasible for the player to search the entire tree. Players are
forced to form estimates of which move will lead them to a win. In practice, a

774 D. Stynes and K.N. Brown

subtree of limited depth is generated and the leaf states are evaluated according
to a problem specific heuristic function. These values are then propagated back
up the tree to the current root state, in order for the player to make a decision.
For adversarial zero sum games, most algorithms for performing this propagation
are based upon the minimax heuristic [18], which states that a player should
make the choice which minimises the (estimated) maximum that the opponent
can achieve. When propagating up the tree, a state in which it is the player’s
move will take the value of its child with the highest estimate, since that is the
minimum for the opponent. Conversely, a state in which it is the opponent’s
move will take the value of its child with the lowest estimate. The best known
algorithms use variants of Alpha-Beta Pruning[19], which uses minimax based
reasoning to prune moves which cannot improve on already discovered scores.
[20] applied game-tree search in what they call Adversarial CSP, in which solving
agents take turns to choose instantiations for variables in a shared CSP.

In a bin packing problem [21], we are given a list of items of varying size, and
required to place them into a minimal number of fixed capacity bins without
causing any of the bins to overflow. In an online bin packing problem, we must
permanently assign each incoming item to a bin with no knowledge of the future
remaining items to come. Two of the simplest heuristics to achieve this are
First Fit (FF) and Best Fit (BF). First fit tries to place a packet into the first
bin it can fit into. Best Fit places the packet into whatever bin will have the
least space remaining after inserting the packet, and is equivalent to ordering
the bins in descending fullness and then applying FF. Best Fit is known[22] to
have worst case performance of 1.7 times as many bins as an off-line optimal
algorithm, where the theoretical best possible by any online algorithm is 1.54,
and an average waste of O(n1/2log3/4n) bins.

3 Realtime Online Solving of QCSP

When solving realtime online CSPs using QCSP as a model, we treat the QCSP
as a two-player game, in which one player (the existential player) assigns values to
the existentially quantified variables, and the other (the universal player) assigns
values to the universally quantified variables. The variables are assigned in the
order of the quantifier sequence, and a time limit is imposed on each decision.
For the existential the objective is to reach a solution, while for an adversarial
universal it is to cause a failure (i.e. prevent a solution being reached). Formally,
we define Realtime Online solving of QCSP for the existential as:

Definition 1 (Existential RO-QCSP). Given a normal form QCSP P, an
increasing sequence of time points t1, t2, . . . , tn, and a sequence of values v1, v3, v5,
. . . , vn−1 such that each value vj is in Dj and is revealed at time tj, generate at each
time tk for k = 2, 4, 6, . . . , n a value vk ∈ Dk such that the tuple (v1, v2, . . . , vn) is
a solution for P.

When choosing each value vk, the existential player has a known time limit for
making the decision. A competent player should reason about the best value

Realtime Online Solving of Quantified CSPs 775

to select, taking into account the possible future actions of the other player.
If the time limit is sufficiently large, the first player can search for a winning
strategy, and if it finds one it can simply execute this for each successive decision.
However, we assume that finding a winning strategy will be initially infeasible,
and instead we will generate partial strategies. The player looks ahead at possible
future moves of both itself and the opponent, performing a partial exploration
of the search tree. Different lookahead methods determine which area of the tree
is explored. While exploring the tree, constraint propagation prunes unwanted
branches. The player heuristically evaluates nodes as they are generated and
propagates the evaluations back up to the root node. Once the time limit is
reached, it selects the root value with the highest evaluation.

3.1 Constraint Propagation

The strongest level of consistency we consider is SQGAC. However, depending
on the type of opponent, maintaining arc consistency can be detrimental, since
our aim is simply to find any solution, and not necessarily a winning strategy.
Consider a sequence of quantified variables ∃X1∀X2∃X3, with domains D1 =
D3 = {b, c} and D2 = {a, b}, and constraints X1 = X3 and X2 �= X3. If we
maintain arc consistency, then assigning X1 = b will remove c from D3, causing
b to be removed from D2. At this point, we backtrack, since no winning strategy
is now possible. For online problem solving with an adversarial opponent this is
sensible, since when it reaches variable X2 after X1 = b, it is simple to detect that
X2 = b removes all options for X3 and thus the adversary would win. However,
when a random opponent reaches X2 after X1 = b, it may still choose X2 = a,
and thus a solution is still possible. In this case, maintaining arc consistency
may prevent us finding a solution. Therefore, to avoid losing solutions against
random opponents but to keep some of the propagation power of arc consistency,
we introduce Existential Quantified Generalised Arc Consistency (EQGAC):

Definition 2 (EQGAC). A QCSP is Existential Quantified Generalised Arc
Consistent (EQGAC) if for every Xi with Qi = ∃, for all constraints C with
Xi ∈ SC , ∀a ∈ Di, ∃ a tuple t ∈ C, s.t. each tuple element tj ∈ Dj and ti = a.

When all constraints are binary, EQGAC reduces to EQAC (Existential Quanti-
fied Arc Consistency). Maintaining EQAC or EQGAC does not remove solutions
from the problem. When maintaining EQAC, all ∃∃ constraints are propagated
like standard constraints in a CSP with MAC, while propagating ∀∃ constraints
never prunes values from the universal domain. Maintaining EQGAC uses the
SQGAC algorithm[4], except we never place universal values on the remove list,
and when removing a universal value from the tree, we do not remove sibling val-
ues, maintaining multiple solution trees, and not winning strategy trees. Main-
taining SQGAC or EQGAC constructs a large tree in a preprocessing step, and
as problem sizes increase, it becomes extremely expensive in time and space to
construct and maintain these trees. To test the impact of this processing cost, we
also implement solvers using forward checking. For non-binary QCSPs we extend

776 D. Stynes and K.N. Brown

nFC0 [23] to QnFC0, which provides much weaker propagation, but requires no
preprocessing and no significant extra data structures:

QnFC0: After assigning the current variable, achieve arc consistency on all
constraints involving the current variable, past variables and exactly one
future variable. If the future variable is existentially quantified, if the domain
is not emptied, continue with a new variable, otherwise backtrack. If the
future variable is universally quantified, if any value is removed from the
domain, backtrack immediately, otherwise continue with a new variable.

3.2 Lookahead and Heuristics

The lookahead strategy and heuristic determine the sub-tree explored for each
decision. Each strategy implements the general lookahead algorithm (Alg 1).
Nodes is the main data structure, containing the unexpanded nodes in the
search tree: each node represents a partial instantiation of the variables, in
order, with the domains of uninstantiated variables reduced by propagation,
and is ni(Xi, vi, σi, pi), recording the last instantiated variable, its value, the
domains and propagation information, and its parent node. Initially Nodes con-
tains a single node n0(φ, φ, σ0, φ), where σ0 is the current state of the QCSP. We
also maintain Store, a global store of evaluated nodes, initially empty. Different
strategies implement Nodes differently, and are explained below.

Algorithm 1. lookahead(N,S) - the basic lookahead algorithm
Input: Nodes,Store
Data: τ , ε ; // empty data structures

ni ← select-and-remove-node(Nodes) ; // select a node to expand1

if Xj ← next-variable(ni) is not null then2

σi← pure-value-rule(Xj , σi) ; // apply PV rule to Xj3

for each value w in Xj ’s domain do4

σw ← assign-and-propagate(Xj , w, σi) ; // propagate the assignment5

τ ← τ + nj(Xj , w, σw, ni) ; // record the new state6

ew ← evaluate(σw) ; // evaluate by inspecting domains7

ε← ε + (Xj , w, ew) ; // record the evaluation8

Store ← Store + ni(Xi, vi, ε, pi) ; // store the old evaluated node9

prop-eval(ε,ni,Store) ; // propagate evaluations upwards10

Nodes←Nodes +τ ; // add new nodes to data structure11

if Nodes is not empty and time remaining then12

lookahead(Nodes, Store) ; // continue expanding nodes13

Depth First(DF): Uses a stack; children are pushed onto the stack in order
of generation; the next node to be expanded is popped off the top.

Breadth First(BrF): Uses a queue; children are added to the end in order of
generation; the next node to be expanded is taken from the front.

Best First: Uses an ordered list; children are evaluated and inserted into the
appropriate position; the next node to be expanded is taken from the front
(with highest evaluation).

Realtime Online Solving of Quantified CSPs 777

Partial Best First(PBF): Best First can perform poorly against adversarial
opponents, as the best move for a universal variable is the worst for an
existential variable and vice versa. PBF is a modification which behaves as
best first for existential nodes, but when expanding a universal node the
best child for the universal (lowest scored evaluation) will be immediately
explored and the remaining children have their estimation negated and then
are added to the ordered list.

Alpha Beta Pruning(AB): As depth first but using alpha and beta bounds
to prune parts of the search tree which would never be reached, identified
when the node is popped off the stack.

Intelligent Depth First(IDF): As DF, but where children are ordered from
best to worst before being pushed onto the stack.

Intelligent Alpha Beta(IAB): As AB, but with children ordered as in IDF.

AB and IAB do not search to the bottom of the tree since they are too time
consuming and would not finish within the time limit. Instead, we perform an
iteratively deepening form of AB which searches to a fixed depth limit and then
increases that depth limit before performing AB lookahead again. We continue
until we have searched to the final variable (maximum depth) or we have run
out of time. In our tests we set the initial depth limit to 2 and at each iteration
we increase the depth limit by 1.

For general heuristics to evaluate states, we use Dynamic Geelen’s Promise
(DGP)[7] which is the product of the future existential domain sizes and was
shown to be a good value ordering heuristic for solving QCSPs. Since we are
looking ahead we need to compare states at different depths of the search tree,
where the heuristic evaluations are the product of different numbers of future
existential domains, and thus the DGP evaluations are incomparable. We present
two different modifications to DGP for achieving that. Proportional Promise(PP)
is calculated as DGP divided by the product of the original sizes of those future
domains. The Geometric Mean(GM) of a heuristic is calculated as the nth root
of the evaluation given by the heuristic. For random QCSPs, n is the number
of future existential domains. For the online bin packing problems, we introduce
two heuristics based upon the principals of First Fit (FF) and Best Fit (BF).
The Ordered Fitting (OF) heuristic is based on First Fit, and prefers states in
which the first bin is the most filled, the second bin is the second most filled, etc..
For a problem with a set of k bins, b = {b1, b2, .., bk} of maximum capacity c,
where fi is how full the ith bin is, we calculate OF as Σk

i=1fi ∗ ck−i. The Heavily
Filled (HF) heuristic is based on Best Fit, and prefers states in which bins are
as highly filled as possible and the rest empty, to those in which many bins are
only partially filled. We calculate HF as Σk

i=1

√
fi/c. For applying GM in bin

packing, n is the number of packets which have already arrived (since OF/HF
evaluations increase with depth, unlike DGP evaluations which decrease).

To propagate heuristic evaluations back up the tree, we use either Minimax,
or what we term Weighted Estimates(WE) reasoning. At each level, we switch
the method of aggregating child scores depending on the quantifier of the parent
variable. In a node where an existential variable’s valuation is being decided,

778 D. Stynes and K.N. Brown

 0

 10

 20

 30

 40

 50

 25 30 35 40 45

S
ol

ut
io

ns

Qee

n = 20, tle = 1000ms

DF DGP
IDF PP

PBF PP
AB DGP

IAB DGP
Probs with WinStrat

Fig. 1. Random RO-QCSP against uni-
versal using AB with no time limit

 0

 10

 20

 30

 40

 50

 25 30 35 40 45

Qee

n = 20, tl = 1000ms

DF DGP
IDF PP

PBF PP
AB DGP

IAB DGP
Probs with WinStrat

Fig. 2. Random RO-QCSP against uni-
versal using DF with time limit

both methods select the highest of the children’s valuations. In a node where
a universal variable’s valuation is being decided, minimax selects the lowest of
the children’s valuations, while Weighted Estimates computes the average of
the children’s valuations. While minimax reports that certain values lead to
failure, weighted estimates gives an indication of how likely it is an unintelligent
opponent can pick a value which causes domain wipe outs.

4 Experiments: Random Binary QCSPs

We tested on randomly generated binary QCSPs with a strictly alternating se-
quence of ∃ and ∀ quantifiers, using the flawless generator described in Section
6 of [7]. In all our tests, the block size = 1, domain size = 8, constraint density
= 0.20, q∀∃ = 1/2. q∀∃[3] is looseness for ∀∃-constraints, q∃∃ is the looseness
of ∃∃-constraints, and n is the number of variables. We denote as tl the time
limit for both players, and tle the time limit for the existential. For each value
of Q∃∃ we generated 50 random problems. We measure the number of solutions
reached. We omit many of the combinations of lookahead methods, propagation
and heuristics from our graphs for clarity. Unless explicitly stated to be using
Weighted Estimates(WE), all strategies are using Minimax. Both participants re-
ceive the same time limit, tl, per move unless explicitly stated otherwise. For the
smaller problems with 20 variables we also show how many problems contained
a winning strategy. For larger problems, n = 51, finding a winning strategy in
reasonable time was not possible. Experiments ran on a 2.0GHz Pentium with
512MB RAM.

Figure 1 shows the number of solutions against an opponent performing a
complete lookahead with infinite time on problems with n = 20. This is the
best a universal player is able to perform - if there is no winning strategy for

Realtime Online Solving of Quantified CSPs 779

 0

 10

 20

 30

 40

 50

 70 75 80 85 90 95

S
ol

ut
io

ns

Qee

n = 51, tl = 1000ms

DF DGP
IDF PP

PBF PP
AB DGP

IAB DGP

Fig. 3. Random RO-QCSP against uni-
versal using DF

 0

 10

 20

 30

 40

 50

 70 75 80 85 90 95

Qee

n = 51, tl = 1000ms

DF DGP
IDF PP

PBF PP
AB DGP

IAB DGP

Fig. 4. Random RO-QCSP against uni-
versal using DGP AB

the QCSP or if the existential makes any choice which is not part of a winning
strategy, the universal will win. We see that our time-limited existential solvers
are still able to find most of the winning strategies, with PBF-PP finding them
all for lower levels of QEE . Figure 2 shows performance against a time-limited
universal opponent using depth-first lookahead, also with n = 20. Against this
weaker universal, the existentials improve, and in a number of cases at lower
QEE achieve solutions even when the QCSP has no winning strategy. In both
figures, we see that PBF-PP outperforms AB and IAB; we believe that on these
relatively small problems PBF-PP is able to search enough of the space to make
intelligent decisions, while AB and IAB’s higher overhead restricts their search.
Figures 3 and 4 show performance on larger problems against weak and strong
opponents respectively, and we see that IAB is now outperforming PBF-PP,
finding solutions for up to five times as many problems at lower QEE. The value
ordering used by IAB also allows it to prune the search space faster than AB,
and thus enables it to search to a deeper level and make more informed decisions.

For problems against a random opponent, again we set n = 20, but reduce
the time limit to 500ms, as it is significantly easier for the existential player to
succeed. In Figure 5 the existential maintains QAC, while in Figure 6 it maintains
EQAC. In both cases, IAB and methods using WE find many solutions even
when the problem has no winning strategy. The WE approaches, which estimate
the likelihood of an opponent picking a particular value, benefit significantly
from the use of EQAC, and outperform IAB in Figure 6.

5 Modeling Online Bin Packing

We test on two types of Online Bin Packing problems in which the universal
player selects packet sizes, while the existential player attempts to place them in

780 D. Stynes and K.N. Brown

 0

 20

 40

 60

 80

 100

 15 20 25 30 35 40 45

S
ol

ut
io

ns

Qee

n = 20, tle = 500ms

DF DGP
BF DGP
AB DGP

IAB DGP
WE BF PP-DGP

WE PBF GM-DGP
Probs with a WinStrat

Fig. 5. Random RO-QCSP using QAC
against random universal

 0

 20

 40

 60

 80

 100

 15 20 25 30 35 40 45

Qee

n = 20, tle = 500ms

DF DGP
BF DGP
AB DGP

IAB DGP
WE BF PP-DGP

WE PBF GM-DGP
Probs with WinStrat

Fig. 6. Random RO-QCSP using EQAC
against random universal

the bins. We present the models in an abstract form, in which we assume pruning
the universals is unrestricted, to provide a clear and concise description. The
footnotes describe how we transform this to a correct quantified form, through
use of shadow variables and pure value pruning. The basic model is common
to both problems and we describe it first. A known number of packets will be
chosen from a limited set, and there is a fixed number of bins, each of the same
capacity. We use state variables for each bin to record how much capacity it
has left, we have decision variables for the universal which determine the size
of each packet, and decision variables for the existential to state into which bin
the current packet will be placed. Note that no lookahead is performed before
assigning state variables, since they are uniquely determined by previous choices.
As an example, the variables for the jth packet choice are

∃a(j−1)b1∃a(j−1)b2 . . . ∃a(j−1)bk
∀pj∃lj∃a(j)b1∃a(j)b2 . . . ∃a(j)bk

where a(j−1)bi
is the state of bin bi before the jth packet arrives, pj is the size of

the jth packet, lj is the bin the jth packet is placed into, and a(j)bi
is the state

of bin bi after the jth packet has been placed. The following constraints for each
j and i ensure the state variables are consistent1:

(lj = bi)⇒ a(j)bi
= a(j−1)bi

− pj

(lj �= bi)⇒ a(j)bi
= a(j−1)bi

1 Note that this describes the abstract model. The limited set of possible packets con-
strains the universal choices, and so in the implementation we use shadow variables
to render illegal universal values pure, and modify the constraints accordingly. Each
universal variable pj has an existential shadow variable spj placed immediately after
it in the variable sequence (and they will be linked in later constraints). Thus the
variables for the jth packet choice become . . . ∃a(j−1)bk

∀pj∃spj∃lj . . ., and we replace
the first constraint by (lj = bi) ⇒ a(j)bi

= a(j−1)bi
− spj .

Realtime Online Solving of Quantified CSPs 781

5.1 Type 1 Problems

In type 1 problems, the universal player has a fixed set of m packets, for which
the sum of their sizes is the value B, and must decide on which order to provide
them to the existential player. By testing with both a random and an adversarial
universal we can evaluate the existential’s performance against both average
case and worst-case order scenarios for randomly generated sets of packets. The
existential player does not know the sizes of the packets before they arrive, but
does know the upper bound on the sum of their sizes. Thus the existential is
less informed than the universal and the two actually assign values in slightly
different synchronised problem models.

We represent the fixed set of packets with a single global cardinality constraint
over the pj variables2:

gcc(p1, p2, . . . , pm, cs1 , cs2 , . . . , cst).

The domain for each pj is a set {s1, s2, ..., st} of possible sizes, and the csi state
exactly how many of the pj must take each value si. Note that the csi in this case
are constants, rather than constrained variables. The existential player does not
see the gcc constraint; instead it sees a less restrictive global sum constraint3:

Σm
j=1pj ≤ B

In the Type-1 problems, our aim is to show how the existential player can improve
over strategies like First Fit or Best Fit, even when its perception of the problem
is more restricted than that of the opponent.

5.2 Type 2 Problems

In the second type of problems, the universal and existential players both share
the same problem. This time the list of packets for the universal is larger than

2 The universal value must respect the gcc constraint. Instead of posting the
gcc constraint, for each pi we post an extensional constraint with scope
(sp1, sp2, ..., spi−1, pi, spi), such that each possible tuple satisfies the following rule:
if the values for the spj should disallow a value v for pi (pi ← v would cause a vi-
olation of the gcc constraint), then pi ← v is compatible with all values of spi, and
otherwise, pi = spi. Thus as soon as choices for some pj disallow a value v for pi, v
becomes pure; immediately before pi is to be assigned, the pure value rule removes
v from its domain.

3 As before, we replace this with a shadow variable form for each pi with scope
(sp1, sp2, ..., spi−1, pi, spi), as an extensional constraint which implements the rule:
if the values of the spj plus the number of remaining packets would disallow v for pi

(pi←v would cause the sum to exceed B), then pi←v is compatible with all values
of spi, and otherwise pi = spi. Note that this never makes a value pure if it has not
also been made pure in the universal’s problem model.

782 D. Stynes and K.N. Brown

 0

 10

 20

 30

 40

 50

 16 16.5 17 17.5 18 18.5 19 19.5 20

E
xi

st
en

tia
l W

in
s

B

m = 4, k = 2, tle = 1000ms

IAB HF (SQGAC)
WE PBF GM-HF (EQGAC)

IAB HF (QnFC0)
WE IDF GM-HF (QnFC0)

BF

Fig. 7. Bin packing type I against random
universal

 0

 10

 20

 30

 40

 50

 16 16.5 17 17.5 18 18.5 19 19.5 20

B

m = 4, k = 2, tle = 1000ms

IAB DGP (SQGAC)
PBF OF (SQGAC)
IAB DGP (QnFC0)
PBF OF (QnFC0)

BF

Fig. 8. Bin packing type I against univer-
sal using IAB OF

the number of packets it must pick. However, the subset of packets it can pick
is restricted by an upper bound, B, on their combined size4:

gcc(p1, p2, . . . , pm, vs1 , vs2 , . . . , vst)
Σm

j=1pj ≤ B

where the vsi are now variables, each of which has its own upper bound and
a lower bound of 0. In these type-2 problems, the universal has more freedom
as to what values to pick and in what order, and our aim is to show that by
exploiting constraint propagation, lookahead and heuristics the universal can
have a significant effect on the success rate of the existential.

6 Experiments: Online Bin Packing

In our Online Bin Packing problems, packets range in size from 1 to 10 and
each bin’s capacity is 10. We test 50 problems, each with a different randomly
generated list of packets, at each of the different upper bounds on the sum of
the sizes of all packets. The size of the list of packets in Type 2 problems is
twice the number of incoming packets. The number of incoming packets is m,
the number of bins is k, and the time limit per decision for the existential is
tle. In all problems the universal has 1000ms per decision. Again, many of the
lookaheads and heuristics are omitted from these graphs for clarity. In general,
we plot the best AB-based heuristic+lookahead combination, and the best non-
AB heuristic+lookahead combination, with other relevant combinations shown
4 The shadow variable form is an extensional constraint for each pi with scope

(sp1, sp2, ..., spi−1, pi, spi) such that if the spj values disallow v for pi (due to the gcc
constraint or the upper bound constraint), then pi←v is compatible with all values
of spi, and otherwise pi = spi.

Realtime Online Solving of Quantified CSPs 783

when appropriate. As a baseline for our tests, we compare our results against an
existential using Best Fit, as it is always at least as good as First Fit.

Figures 7 and 8 show the results for small Type 1 problems against Random
and IAB OF universals respectively. Against a random opponent we see that the
simple BF strategy does well, and our combination of propagation, heuristics and
lookahead only achieves a small performance gain over it. Against an adversarial
opponent however we see that we can perform significantly better than BF. We
also note that the existential using QnFC0 propagation instead of SQGAC or
EQGAC performs worse due to the reduced amount of propagation. In all these
tests the universal is using SQGAC.

 0

 10

 20

 30

 40

 50

 16 16.5 17 17.5 18 18.5 19 19.5 20

E
xi

st
en

tia
l W

in
s

B

m = 4, k = 2, tle = 1000ms

IAB HF (SQGAC)
WE PBF GM-HF (EQGAC)

IAB HF (QnFC0)
BF

Fig. 9. Bin packing type II against ran-
dom universal

 0

 10

 20

 30

 40

 50

 16 16.5 17 17.5 18 18.5 19 19.5 20

B

m = 4, k = 2, tle = 1000ms

AB HF (SQGAC)
PBF GM-OF (SQGAC)

AB HF (QnFC0)
IDF GM-OF (QnFC0)

BF

Fig. 10. Bin packing type II against uni-
versal using IAB OF

Figures 9 and 10 show the results for small Type 2 problems. The relative
performance is similar to Type 1. In Figure 11 we increase the problem size,
and use QnFC0 propagation for every player, as SQGAC is too slow on large
problems. These larger problems reveal an flaw with IAB OF for the universal,
and IAB DGP for the existential player exploits it, obtaining exceptionally good
results. A universal using IAB OF essentially assumes the existential wants to
maximise the content of the first bin, and so initially picks a small packet to be
placed into it. However, IAB DGP’s implementation places the first packet into
the final bin, so the universal ends up continually feeding small packets expecting
them to be placed into the first bin, making it easy for the existential to win.

To overcome this flaw, we develop a new heuristic intended for the universal
called MinSpace(MS). MS tries to leave a minimal non-zero empty space in each
bin. By leaving these small gaps, it makes it hard for the existential to succeed at
high upper bounds. We calculate the MS measure using Σk

i=1g(i), where g(i)=0
when c− fi = 0, and g(i)=

√
(c− fi)/c otherwise. Figure 12 shows a universal

using MS on the same problems as in Fig. 11. As can be seen the performance

784 D. Stynes and K.N. Brown

of the universal is drastically improved. When both the existential and universal
have 1000ms time limits, the existential struggles to do well against MS and
only achieves close to the performance of BF, as shown by AB OF (1000ms).
The remainder of the plots in Figure 12 show how well we can do when the
existential’s time limit is raised to 5000ms. With this additional time on these
larger problems, we can achieve many more solutions than BF.

 0

 10

 20

 30

 40

 50

 51 52 53 54 55 56 57 58 59 60

E
xi

st
en

tia
l W

in
s

B

m = 10, k = 6, tle = 1000ms

IAB DGP
IAB HF

IDF GM-HF
FF
BF

Fig. 11. Bin packing type II against uni-
versal using IAB OF

 0

 10

 20

 30

 40

 50

 51 52 53 54 55 56 57 58 59 60

B

m = 10, k = 6, tle = 5000ms

AB OF
IAB OF

WE DF MS
WE IDF MS

BF
AB OF (1000ms)

Fig. 12. Bin packing type II against uni-
versal using IAB MS

We also compared against a universal using a policy of picking the largest
packet it can at each turn. Due to the nature of this universal policy, our choice
of existential strategy has no effect until far into the packet stream and BF
and most of the heuristics perform almost identically against it. A universal
using IAB MS performs consistently significantly better than this Largest First
approach at all upper bounds.

7 Conclusions and Future Work

Quantified CSPs can be used as a model for solving online CSPs, generating
winning strategies in advance. But when decisions in the online problem have
to be made in realtime, complete solving of a QCSP is infeasible. We have de-
veloped techniques for realtime online solving of QCSP using a combination
of propagation, lookahead and heuristics, for online CSPs involving both ad-
versarial opponents and random external solvers. We have proposed existential
quantified generalised arc consistency for handling random solver opponents,
which allows us to achieve solutions even when the underlying QCSP has no
winning strategy. We have demonstrated that a version of alpha-beta pruning
with a constraint-based value-ordering heuristic outperforms other heuristics on
large binary QCSPs against adversarial opponents. We have developed a non-
binary constraint model of Online Bin Packing, and we have shown that with

Realtime Online Solving of Quantified CSPs 785

good heuristic selection, a significantly stronger universal player can be gener-
ated using our reasoning, but that against even a strong opponent the existential
reasoning can help us reach more solutions.

In future work we will consider weaker consistency levels than SQGAC or
EQGAC to avoid the large overhead, we will investigate the use of other forms
of quantified constraint problems for realtime online problem solving, and we
will consider solution methods based on sampling.

References

1. Bordeaux, L., Cadoli, M., Mancini, T.: CSP Properties for Quantified Constraints:
Definitions and Complexity. In: Proceedings of AAAI, pp. 360–365 (2005)

2. Börner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified constraints: Algo-
rithms and complexity. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS,
vol. 2803, pp. 58–70. Springer, Heidelberg (2003)

3. Gent, I.P., Nightingale, P., Stergiou, K.: QCSP-Solve: A solver for quantified con-
straint satisfaction problems. In: Proceedings of IJCAI, pp. 138–143 (2005)

4. Nightingale, P.: Consistency and the Quantified Constraint Satisfaction Problem.
PhD thesis, University of St Andrews (2007)

5. Bordeaux, L., Monfroy, E.: Beyond NP: Arc-consistency for quantified constraints.
In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 371–386. Springer,
Heidelberg (2002)

6. Stynes, D., Brown, K.N.: Value Ordering for Quantified CSPs. In: Proceedings of
CP2007 Doctoral Programme, pp. 157–162 (2007)

7. Stynes, D., Brown, K.N.: Value Ordering for Quantified CSPs. Constraints 14(1),
16–37 (2009)

8. Bessiere, C., Verger, G.: Strategic constraint satisfaction problems. In: Proceedings
of CP Workshop on Modelling and Reformulation, pp. 17–29 (2006)

9. Benedetti, M., Lallouet, A., Vautard, J.: QCSP made Practical by Virtue of Re-
stricted Quantification. In: Proceedings of IJCAI, pp. 38–43 (2007)

10. Verger, G., Bessiere, C.: Guiding Search in QCSP+ with Back-Propagation. In:
Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 175–189. Springer, Heidelberg
(2008)

11. Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In:
Proceedings of AAAI, pp. 37–42 (1988)

12. Brown, K.N., Miguel, I.: Uncertainty and Change. In: Handbook of Constraint
Programming, ch. 21, pp. 731–760 (2006)

13. Fargier, H., Lang, J., Schiex, T.: Mixed constraint satisfaction: a frameworkfor
decision problems under incomplete knowledge. In: Proceedings of AAAI, pp. 175–
180 (1996)

14. Walsh, T.: Stochastic constraint programming. In: Proceedings of ECAI, pp. 111–
115 (2002)

15. Bent, R., van Hentenryck, P.: Regrets only! online stochastic optimization under-
time constraints. In: Proceedings of AAAI, pp. 501–506 (2004)

16. Hentenryck, P.V., Bent, R.: Online Stochastic Combinatorial Optimization. The
MIT Press, Cambridge (2006)

17. Grötschel, M., Krumke, S.O., Rambau, J., Winter, T., Zimmermann, U.T.: Com-
binatorial Online Optimization in Real Time. Online Optimization of Large Scale
Systems, 679–704 (2001)

786 D. Stynes and K.N. Brown

18. Shannon, C.E.: Programming a computer for playing chess. Philosophical Magazine
(Series 7), 256–275 (1950)

19. Knuth, D.E., Moore, R.W.: An Analysis of Alpha-Beta Pruning. Artificial Intelli-
gence 6(4), 293–326 (1975)

20. Brown, K.N., Little, J., Creed, P.J., Freuder, E.C.: Adversarial constraint satisfac-
tion by game-tree search. In: Proceedings of ECAI, pp. 151–155 (2004)

21. Johnson, D.S.: Fast Algorithms for Bin Packing. Journal of Computing and System
Sciences 8(3), 272–314 (1974)

22. Version, P., Kenyon, C., Rabani, Y., Sinclair, A.: Biased Random Walks, Lyapunov
Functions, and Stochastic Analysis of Best Fit Bin Packing. J. Algorithms, 351–358
(1998)

23. Bessière, C., Meseguer, P., Freuder, E.C., Larrosa, J.: On forward checking for
non-binary constraint satisfaction. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713,
pp. 88–102. Springer, Heidelberg (1999)

Constraint-Based Local Search for the
Automatic Generation of Architectural Tests

Pascal Van Hentenryck1, Carleton Coffrin1, and Boris Gutkovich2

1 Brown University, Providence RI 02912, USA
2 Intel Corporation, Haifa, Israel

Abstract. This paper considers the automatic generation of architectural
tests (ATGP), a fundamental problem in processor validation. ATGPs are
complex conditional constraint satisfaction problems which typically fea-
ture both hard and soft constraints and very large domains (e.g., all mem-
ory addresses). Moreover, the goal is to generate a large number of diverse
solutions under tight runtime constraints. To improve solution diversity,
this paper proposes a novel approach to ATGPs by modeling them as
MaxDiversekSet problems and solving them with constraint-based lo-
cal search over conditional variables. The paper presents the semantics and
implementation of conditional variables in this context and demonstrates
the computational benefits of the approach.

1 Background and Motivation

The automatic generation of architectural tests is a fundamental and complex
problem in processor design. It consists of generating random sequences of in-
structions obeying specified constraints. The complexity of this process prevents
the problem from being represented and solved globally. Instead the problem is
traditionally solved by an incremental process (see Figure 1) which generates
one instruction at a time and transforms the constraints on the sequence into
constraints on the test generation of single instructions.

This paper considers the main step in this process: the single instruction
generator. This automatic test generation problem (ATGP) can be viewed as a
constraint satisfaction problem involving three types of constraints:

1. Architectural Constraints that specify the instruction set, i.e., which
instructions are valid.

2. Test Scenario Constraints that specify the intention of a validation en-
gineer.

3. State Constraints that specify the current architectural state maintained
by the test generator.

The goal is not to find a single solution or to find all solutions, which is imprac-
tical due to the size and complexity of modern architectures. Rather, it is to
generate diverse tests which exercise the architecture as thoroughly as possible.

To make the problem concrete, consider the simple example depicted in
Figure 2. The left table specifies the instruction set. The first two instruction

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 787–801, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

788 P. Van Hentenryck, C. Coffrin, and B. Gutkovich

Architectural
Constraints

Test Scenario
Constraints

Single
Instruction
Generator

Simulator and
Trackers

Test
Builder

Test

Instruction

State
State Imposed

Constraints

Fig. 1. The Architecture of Automatic Generation of Architectural Tests

Instruction Set
add register r1 r2 r3
sub register r1 r2 r3
load immediate r1 constant
load memory r1 address
jump immediate constant
jump memory address

Test Scenario: address = 1234 ∨ constant = abcd
jump memory 1234
load immediate 12 abcd
jump immediate abcd
load memory 4b 1234

Fig. 2. A Simple Processor Instruction Example

types are arithmetic operations that operate on registers and have three regis-
ters. The third and fourth instruction types are an immediate and a memory
load. The last two instruction types are immediate and memory jump. The right
table depicts a disjunctive constraint proposed by a validation engineer and the
instructions that satisfy it. Observe that the constraint implicitly specifies that
the instruction is either a load or a jump. The CSPs induced by ATGPs are
generally quite complex for various reasons:

1. The ATGP is a so-called conditional constraint satisfaction problem [1]1,
since the existence of some instruction fields are conditioned on the value
of other fields such as the opcode and the addressing mode. In our simple
example, the constant field is only defined if the instruction is a load or a
jump and the mode is immediate.

2. The ATGP typically operates over large instruction sets due to the complex-
ity of modern architectures. Moreover, some of these fields have very large
domains, since they represent memory addresses or large constants.

3. The ATGP typically contains both soft and hard constraints, specified by
the validation engineer.

4. The validation engineer may specify a desired distribution of instructions to
bias toward some specific instructions.

1 Conditional CSPs were originally called Dynamic CSPs in [1]. Both terms are heavily
overloaded; we use CCSPs in this paper.

Constraint-Based Local Search 789

Earlier approaches (e.g., [2]) address these difficulties by introducing conditional
variables to handle the CCSP and use randomization to obtain diverse solutions.

In this paper, we reconsider the issue of producing diverse solutions for AT-
GPs. We propose to view the ATGP as a MaxDiversekSet problem in the
sense of [3] over the CCSP and to use constraint-based local search to obtain
high-quality solutions to the model. We show that the resulting approach pro-
duces significant improvements in solution diversity compared to pseudo-random
solutions, while the running times remain reasonable. The technical contributions
can be summarized as follows:

1. The paper proposes a new approach to producing diverse solutions to AT-
GPs, exploiting jointly earlier results in constraint programming and con-
straint-based local search.

2. The paper shows that constraint-based local search finds high-quality so-
lutions to MaxDiversekSet problems, even when the number of required
solutions increases significantly. The paper also quantifies the quality loss
experimentally.

3. The paper presents a new semantics for conditional variables, which is more
suited for ATGPs than the original one which was designed for configuration
problems.

4. The paper presents the algorithmic foundations for constraint-based local
search over conditional variables and shows how constraint-based local search
can accommodate conditional variables naturally and compositionally.

The rest of the paper is organized as follows. The next two sections present the
building blocks of our approach. Section 2 presents the approach to generate
diverse solutions to CSPs and presents experimental results on some simple
problems. Section 3 discusses the modeling of the problem as a CCSP and the
semantics of conditional variables and how to perform constraint-based local
search over conditional variables. Section 4 shows how to model ATGPs in CBLS
and search for diverse solutions. Section 5 reports experimental results of our
prototype implementation on some benchmark ATGPs to validate the approach,
and Section 6 concludes the paper.

2 Generating Diverse Solutions

Modern approaches to ATGPs (e.g., [2]) use a pseudo-random exploration of the
search space to generate diverse solutions. This is often sub-optimal however.
The goal of this paper is to provide a more principled approach to diversity for
ATGPs. For this reason, ATGPs are modeled as MaxDiversekSet problems,
which were studied extensively in [3]. More precisely, given a CSP P , its set of
solutions sol(P), and a function δ to measure the distance between solutions,
the MaxDiversekSet problem for P consists in finding a set of solutions S =
{s1, . . . , sk} maximizing ∑

1≤i<j≤k

δ(si, sj)

790 P. Van Hentenryck, C. Coffrin, and B. Gutkovich

10 20 30 40 50

8.
0

8.
5

9.
0

9.
5

10
.0

Number of Solutions (of 296 total)

A
ve

ra
ge

 H
am

m
in

g
of

 T
w

o
S

ol
ut

io
ns Upper Bound

Incremental−CP
Incremental−CBLS
Control−CBLS
Standard Deviation

10 20 30 40 50

0
10

20
30

40
50

60

Number of Solutions (of 296 total)

S
ec

on
ds

Incremental−CP
Incremental−CBLS
Control−CBLS
Standard Deviation

Fig. 3. Diversity Results and Computation Times for the Allinterval Series of Size 10

In ATGPs, it is convenient to use the Hamming distance for the distance function
δ between two solutions s1 = 〈v1, . . . , vn〉 and s2 = 〈w1, . . . , wn〉

δ(s1, s2) =
n∑

i=1

(vi �= wi)

This problem is in general quite difficult from a practical standpoint, since it
requires to search for k solutions simultaneously and produces very large CSPs
(See also [3] for the theoretical complexity which is FPNP [logn]-complete). More-
over, in this application domain, it is often desirable to produce the solutions
incrementally, one at a time. For this reason, the incremental algorithm in [3] is
an excellent candidate for finding approximated solution to MaxDiversekSet
problems associated with ATGPs. The algorithm can be formalized as follows:

IncrementalGeneration(P)
1 S ← {};
2 while |S| ≤ k
3 do find s ∈ sol(P) maximizing

∑
e∈S δ(s, e);

4 S ← S ∪ {s};
5 return S;

The algorithm generates one solution at a time until a set of the required car-
dinality is obtained. The core of the algorithm is in Line 3, which generates the
solution maximizing the distance to already generated solutions.

To implement line 3, reference [3] proposed a constraint-programming algo-
rithm using a global constraint for enforcing arc consistency on the distance
constraint (derived from the objective). The resulting algorithm was applied to
the generation of three solutions to a real-life configuration application, where
“three” is considered the “optimal” cardinality to present to users in recom-
mender systems. However, in ATGPs, the cardinality is in general much larger
and it is typical to generate 50 to 100 instructions. This led us to approximate
the computation in Line 3 with constraint-based local search in order to scale
the incremental algorithm effectively.

Constraint-Based Local Search 791

0 20 40 60 80 100

98
.5

99
.0

99
.5

10
0.

0

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g
of

 T
w

o
S

ol
ut

io
ns

Upper Bound
Incremental−CP
Incremental−CBLS
Control−CBLS
Standard Deviation

0 20 40 60 80 100

0
50

0
10

00
15

00

Number of Solutions

S
ec

on
ds

Incremental−CP
Incremental−CBLS
Control−CBLS
Standard Deviation

Fig. 4. Diversity Results and Computation Times for the Queens Problem of Size 100

Figures 3 and 4, depict experimental results on the allinterval series of size
10 and the 100-queens problem (with 100 variables). The figures report the av-
erage Hamming distance between two generated solutions (y-axis) in sets of in-
creasing cardinality (x-axis) for three methods: the incremental CBLS algorithm
(Incremental-CBLS), the incremental CP algorithm (Incremental-CP), and a con-
trol CBLS algorithm (Control-CBLS), which generates pseudo-random solutions
using CBLS. The CBLS techniques are averaged over ten runs. Incremental-CP
uses a global constraint maintaining arc consistency for the Hamming distance
and the variable/value heuristic proposed in [3]. Incremental-CBLS uses a generic
min-conflict search and a global constraint for the Hamming distance, with value-
based violations [4] enabling move evaluation in constant time. The average dis-
tance of two solutions is calculated by dividing the MaxDiverse-kSet value by
the number of solution pairs in the set S. Specifically, given a distance function δ
and a set of solutions S = {s1, . . . , sk} the average distance is∑

1≤i<j≤k

δ(si, sj)(
k
2

)
The figures also depict a simple upper bound on the maximal diversity and
the standard deviation. The upper bound ignores the problem constraints and
uses only the domains of the variables, shifting the assignment by one for each
successive solution. Assuming that the problem variables are v1, . . . , vm and that
D(vi)n denotes the n-th value of domain of vi, the upper bound is computed as
follows:

HammingUpperBound(k)
1 for i ∈ 1..m
2 do for j ∈ 1..k
3 do si,j ← D(vi)((j−1)%|D(vi)|)+1

4 return
∑

1≤i<j≤k

∑m
a=1 sa,i �= sa,j

For consistency with the MaxDiversekSet value, the upper bound is also
divided by the number of solution pairs in the set S, i.e.

(
k
2

)
, to produce a

bound on the average distance between two solutions. The results are particularly

792 P. Van Hentenryck, C. Coffrin, and B. Gutkovich

Table 1. The Variables in The Simple ATG Problem

opcode mode r1 r2 r3 address constant
add register 0..0xff 0..0xff 0..0xff
sub register 0..0xff 0..0xff 0..0xff
load immediate 0..0xff 0..0xffff
load memory 0..0xff 0..0xffff
jump immediate 0..0xffff
jump memory 0..0xffff

interesting. They indicate that Incremental-CBLS is near-optimal in quality on
both benchmarks, since the distance to the upper bound is minimal, and out-
performs Control-CBLS significantly and asymptotically (the two curves never
converge). The quality of Incremental-CP is of course at least as good as the
quality of Incremental-CBLS. However, the computational results also show that
Incremental-CP does not scale well once the number of solutions is increased.
Note also that the Control-CBLS is extremely fast, since it simply finds pseudo-
random solutions at each step and never tries to optimize the diversity.

3 Conditional Variables

When modelling an ATGP, it is traditional to introduce a variable for each field
which appears in some instruction. As an illustration, Table 1 describes the vari-
ables and their domains in our simple ATG example, as well as the instructions
they are used in. The first row depicts the variables, while subsequent ones de-
pict the instructions, the variables they use, and the domains of these variables.
For instance, the add and the sub instructions do not use the address and con-
stant variables. As a result, the ATGP gives rise to a Conditional Constraint
Satisfaction Problem (CCSP) in the sense of [1], as observed in [5]. Mittal and
Falkenhainer showed how to transform a CCSP into a CSP by introducing addi-
tional variables denoting whether a variable is active, i.e., whether its condition
holds. Subsequent work produces new reformulation techniques (e.g., introduc-
ing a dummy value in the domain to express whether the variable is active) and
dedicated algorithms to produce significant improvements in efficiency [6,7].

In the context of ATGPs, Moss [2] extended constraint-programming solvers
with the concept of conditional variables. A conditional variable y is a pair (x, C),
in which x is a regular variable and C is a constraint. Figure 5 depicts the mod-
eling of the simple ATG problem with conditional variables. The variable section
declares the variables, their domains, and possibly a condition. The last 5 vari-
ables are conditional and depend on the values of the opcode or mode variables.
The second section depicts the architectural constraints which, together with
the domains, specify the legal instructions. The test scenario is depicted in the
third section.

The motivation for introducing conditional variables was twofold. First, Moss
argued that the reformulation techniques are not necessarily feasible in ATGPs,

Constraint-Based Local Search 793

Variables:
opcode ∈ {add, sub, load, jump}
mode ∈ {register, immediate, memory}
r1 ∈ {0..0xff} if opcode = add ∨ opcode = sub ∨ opcode = load
r2 ∈ {0..0xff} if opcode = add ∨ opcode = sub
r3 ∈ {0..0xff} if opcode = add ∨ opcode = sub
address ∈ {0..0xffff} if mode = memory
constant ∈ {0..0xffff} if mode = immediate

Architectural Constraints:
(opcode ∈ {add, sub} ∧ mode = register)∨
(opcode = load ∧ mode ∈ {immediate, memory})∨
(opcode = jump ∧ mode ∈ {immediate, memory}

Test Scenario:
address = 1234 ∨ constant = abcd

Fig. 5. Modeling the Simple ATG Example with Conditional Variables

since the domain can already take the entire memory word. She also argued that
the more specialized techniques are not general enough for ATGPs. Second, the
availability of conditional variables at the modeling level makes it possible to
design search algorithms exploiting the semantics of conditional variables in the
ATGP context. In particular, the search procedure in [2] nondeterministically de-
cides the active status of each variable and enforces the condition or its negation
by adding a new constraint.

This research follows a similar path but for constraint-based local search
instead of constraint programming. It uses conditional variables as first-class
modeling objects and uses their semantics to guide the search, albeit in a fun-
damentally different way. The rest of this section will specify the semantics of
conditional variables which is only defined informally in [2] and extends the
concept of constraint violations in CBLS to conditional variables.

The Semantics of Conditional Variables. There are many possible semantics for
conditional variables, each of which may be appropriate for a particular appli-
cation domain. Mittal and Falkenhainer use what we call a lenient semantics in
which a constraint holds as soon as one of its conditional variables is inactive.
The lenient semantics are appropriate for the configuration problems they con-
sider, but is not suited for ATGPs. Consider the instruction set proposed earlier
and the test scenario

constant > 10.

Using the lenient semantics, the ATGP problem admits as solutions, all the in-
tructions that do not include a constant, i.e., the arithmetic instructions and the
memory load and jump instructions, as well as all those for which the constant
is greater than 10. Indeed, if the constant variable is inactive, the constraint is
ignored in the lenient semantics.

The semantics we propose are strict on the basic constraints: A constraint only
holds if all its variables are active. However, the strictness requirement does not
carry over logical or threshold connectives. Consider the test scenario

794 P. Van Hentenryck, C. Coffrin, and B. Gutkovich

address = 1234∨ constant = abcd.

If we require strictness on the disjunction, the resulting ATGP has no solution,
since no instruction has both an address and a constant. The intended semantics
here is to generate instructions which have either an address with value “1234”
or a constant whose value is “abcd”. Finally, consider a Hamming distance con-
straint

n∑
i=1

(vi �= wi) ≥ d

which involves reification. The semantics cannot be strict over the entire con-
straint or it would never be instrumental in comparing two solutions. Rather
the reified constraint should only return 1 (true) when it is satisfied and all
its variables are active and 0 (false) otherwise. In other words, the strictness
is limited to the reified constraint and not the enclosing expression. Note also
that a lenient semantics does not make sense for this constraint, since the con-
straint would hold as soon as a variable is not active. Even a lenient semantics
on the reified constraints is not desirable, since similar instructions would have
a positive score when many of their variables are undefined.

Figures 7, 8, and 9 describe the semantics of the small language given in
Figure 6. The figures use var(y) and cond(y) to denote the variable and condi-
tion part of a conditional variable. The semantics are given for an assignment α
of values to the variables. The figures also give the invariants which maintain the
truth values of all constraints, showing that the semantics can be implemented
compositionally and maintained incrementally, as was the case for differentiable
invariants [8]. This indicates that our approach does not require any program
transformation and leverages all the functionalities of CBLS. Figure 7 gives the
semantics for the evaluation of expressions and should not raise any issue. Ob-
serve that the condition of a conditional variable is ignored and is handled at
a different level. Figure 8 gives the semantics of constraints. The primitive con-
straints hold when their traditional semantics hold and when their expressions
are well-defined, meaning that their variables are active. The logical connectives
simply apply the semantics recursively on their subexpressions. By definition, a
conjunction is always strict: all its variables must be active. The rest of the fig-
ure specifies when an expression is well-defined. Figure 9 depicts how to handle
reification, which is important to give the semantics to the Hamming distance
over conditional variables. The evaluation of a reified constraint simply calls the
semantic definition for constraints and uses the Kronecker symbol δ to convert
Boolean values into 0/1 values:

δ(b) =
{

1 if b = true;
0 otherwise.

The rule of well-definedness of a reified constraint simply returns true, meaning
that the definedness is local to the reified constraints and does not propagate to
the enclosing expression.

Constraint-Based Local Search 795

v ∈ N ; x ∈ Variable; y ∈ ConditionalVariable; e ∈ Expression ; c ∈ Constraint .
e ::= v | x | y | e + e | e − e | e × e | c
c ::= e = e | e ≤ e | c ∨ c | c ∧ c

Fig. 6. The Syntax of Expressions and Constraints (Partial Description)

E
α
[v] = v iv ← v

E
α
[x] = α(x) ix ← x

E
α
[y] = α(var(y)) iy ← ivar(y)

E
α
[e1 + e2] = E

α
[e1] + E

α
[e2] ie1+e2 ← ie1 + ie2

E
α
[e1 − e2] = E

α
[e1] − E

α
[e2] ie1−e2 ← ie1 − ie2

E
α
[e1 × e2] = E

α
[e1] × E

α
[e2] ie1×e2 ← ie1 × ie2

Fig. 7. The Evaluation of Expressions and their Underlying Invariants

It is worth highlighting that the lenient semantics can be obtained in a very
similar way: just replace the conjunction by disjunction and negate the well-
definedness condition in the first two lines of Figure 8 and include a recursive
call in the definition of well-definedness for reified constraints. So it is possible
to accommodate easily both the lenient and the strict semantics in the same
system. Observe also that the generated invariants are acyclic by construction
since the condition in a conditional variable can only use previously declared
variables. Acyclicity is in fact always assumed in CCSPs and is natural in their
application domains.

The Definition of Violations. Figure 10 depicts the violations of constraints
over conditional variables, as well as the invariants to maintain them. Several
points deserve to be highlighted. First, the definition of violations capture the
importance of conditions in conditional variables. The violations of a constraint
c(y1, . . . , yn) over conditional variables is expressed directly in terms of the vio-
lations of the same constraint over traditional variables c(var(y1), . . . , var(yn))
but it adds a penalty φ for each of its conditional variables whose condition
does not hold. The expression U

α
[e] computes the number of inactive conditional

variables in e. The penalty is large to focus the search on making the condi-
tional variables active before considering the other violations. Second, observe
that conditional variables in reifed constraints are not counted, reflecting the
semantics of reification in this context too. Finally, the invariants are once again
computed naturally, showing the compositional nature of the implementation.

4 Modeling and Solving the ATGP Problem

We now describe how to model and solve ATGPs.

796 P. Van Hentenryck, C. Coffrin, and B. Gutkovich

B
α
[e1 = e2] = E

α
[e1] = E

α
[e2] ∧ D

α
[e1] ∧ D

α
[e2] be1=e2 ← ie1 = ie2 ∧ de1 ∧ de2

B
α
[e1 ≤ e2] = E

α
[e1] ≤ E

α
[e2] ∧ D

α
[e1] ∧ D

α
[e2] be1≤e2 ← ie1 ≤ ie2 ∧ de1 ∧ de2

B
α
[r1 ∨ r2] = B

α
[r1] ∨ B

α
[r2] br1∨r2 ← br1 ∨ br2

B
α
[r1 ∧ r2] = B

α
[r1] ∧ B

α
[r2] br1∧r2 ← br1 ∧ br2

D
α
[v] = true dv ← true

D
α
[x] = true dx ← true

D
α
[y] = B

α
[cond(y)] dy ← dcond(y)

D
α
[e1 + e2] = D

α
[e1] ∧ D

α
[e2] de1+e2 ← de1 ∧ de2

D
α
[e1 − e2] = D

α
[e1] ∧ D

α
[e2] de1−e2 ← de1 ∧ de2

D
α
[e1 × e2] = D

α
[e1] ∧ D

α
[e2] de1×e2 ← de1 ∧ de2

Fig. 8. The Evaluation of Constraints and their Corresponding Invariants

E
α
[c] = δ(B

α
[c]) ic ← δ(bc)

D
α
[c] = true dc ← true

Fig. 9. The Evaluation of Reified Constraints and their Corresponding Invariants

The Model. An ATGP consists of four different components: the objective func-
tion to achieve diversity, a hard constraint system, a soft constraint system, and
a probabilistic constraint system. The hard constraint system contains the archi-
tectural constraints, as well as the hard constraints in the test scenario. The soft
constraint system contains the soft constraints of the test scenario. The prob-
abilistic constraint system allows the validation engineer to bias the generated
sequence toward some instructions. An entry in a probabilistic constraint sys-
tem is a tuple 〈(c1, p1), . . . , (ck, pk)〉 where ci are mutually exclusive constraints
and pi are probabilities satisfying

∑k
i=1 pi = 1. The intention is to generate a

sequence of instructions which satisfy ci with probability pi. A typical example
would be

(opcode = add, 0.7), (opcode = jump, 0.2), (opcode = load, 0.1)

which would generate add, jump, and load instructions 70%, 20%, and 10% of
the time respectively.

The Search. We experimented with various search procedures sharing a common
core. The core has four main features. First, the hard and soft constraint systems
H and S are combined into a single constraint system C through weights, i.e.,
C = wh∗H +S. The resulting constraint system is then reified into the objective
function, once again using weights

O = wd ∗HammingDistance − wc ∗ C

Constraint-Based Local Search 797

V
α
[e1 = e2] = E

α
[abs(e1 − e2)] + φU

α
[e1] + φU

α
[e2] ve1=e2 ← iabs(e1−e2) + φue1 + φue2

V
α
[e1 ≤ e2] = E

α
[max(e1−e2, 0)]+φU

α
[e1]+φU

α
[e2] ve1≤e2 ← imax(e1−e2,0)+φue1+φue2

V
α
[c1 ∧ c2] = V

α
[c1] + V[c2] vc1∧c2 ← vc1 + vc2

V
α
[c1 ∨ c2] = min(V

α
[r1], V

α
[r2]) vc1∧c2 ← min(vc1 , vc2)

U
α
[v] = 0 uv ← 0

U
α
[x] = 0 ux ← 0

U
α
[y] = δ(¬B

α
[cond(y)]) uy ← δ(¬dcond(y))

U
α
[e1 + e2] = U

α
[e1] + U

α
[e2] ue1+e2 ← ue1 + ue2

U
α
[e1 − e2] = U

α
[e1] + U

α
[e2] ue1−e2 ← ue1 + ue2

U
α
[e1 × e2] = U

α
[e1] + U

α
[e2] ue1×e2 ← ue1 + ue2

U
α
[c] = 0 uc ← 0

Fig. 10. Violations of Constraints over Conditional Variables and their Invariants

Second, the search always selects the variable with the steepest gradient and
always assigns to it the value producing the steepest increase in objective O.
Third, tabu-search is used as the meta-heuristic. Fourth, the search always in-
cludes a restarting strategy. The probabilistic constraint system is handled in an
initial step. For each probabilistic constraint, the search flips a coin and imposes
the appropriate constraint based on the provided distribution.

This core can be enhanced with a strategic oscillation strategy which adjusts
the weights to balance the time spent in the feasible and infeasible region [9].
However, the core procedure achieves the best quality/efficiency tradeoff over
the benchmarks presented in the next section. The strategic oscillation offers
benefits in solution quality at the expense of an increase in computation times.
Since efficiency is a critical factor in ATGPs, this strategy was not retained.

A critical aspect of the search procedure is also its handling of large domains.
As mentioned earlier, domains in ATGPs can vary in size considerably. A domain
may be small (e.g., the available registers) or very large (e.g., the set of all 32-
bit addresses or the set of all 16-bit constants). It is not practical to find the
value that decreases the objective the most by differentiation in these cases: It
would take too much time to enumerate all the values. Our search handles large
domains differently by performing a random sampling of the domain.

It is important to emphasize that ATGPs have many local minima and it is
not easy to escape them. This is the main justification for restarts which are
critical to achieve a reasonable tradeoff between solution quality and efficiency.
This situation is partly due to our modeling which is geared toward feasibility:
Violations of the conditions from conditional variables have a significant penalty
(the φ value in the violation definition). However, without this penalty, the
search has difficulty finding feasible solutions and is heavily biased toward the
Hamming distance.

798 P. Van Hentenryck, C. Coffrin, and B. Gutkovich

Test Scenario 2:

Hard: OpTypeSp1 = imm32 && OpValue1 > 0x12345

Soft: OpValue1 < 0x22222 || (OpValue1 > 0x33333 && OpValue1 < 0x77777)

Test Scenario 3:

Prob: InstructionGroups = {arithm%70, logic%20, cmp%10}
Test Scenario 7:

Hard: OpType1 = immediate || OpType2 = immediate

Hard: if (OpType1 = immediate) then (OpValue1 > 0xff)

Hard: if (OpType2 = immediate) then (OpSize2 > 8)

Soft: OpRole0 = dest

Test Scenario 8:

Hard: InstructionClass != GP && InstructionGroups = logic

Soft: OpValue0 = OpValue1

Fig. 11. The ATG Test Scenarios

5 Experimental Results

This section presents the experimental results on some benchmarks provided by
Intel. The benchmarks consist of an instruction set consisting of 80 instruction
types with up to 20 fields and 8 test scenarios. For space reasons, it is not pos-
sible to present all the results but Figure 11 depicts some interesting scenarios.
Scenario 2 features both hard and soft constraints, including some over large
domains. Scenario 3 features a probabilistic constraint. Scenario 7 features hard
and soft constraints with implications and disjunctions. Scenario 8 features a
soft constraint which restricts the feasible region significantly and creates a sig-
nificant tension with the Hamming distance. Incremental-CBLS is implemented
on top of the Comet system [4] (Significant improvement in speed would result
from a native support of conditional variables) and the experiments were run on
Intel Xeon CPU 2.80GHz machines running 64-bit Linux Debian.

Figures 12 and 13 depict the experimental results on the above scenarios.
Other results are consistent but cannot be included for space reasons. Once
again, the graphs on the left give the average Hamming distance between two
solutions as a function of the number of solutions and each point corresponds
to an average of 10 runs. In general, it is difficult to compute a tight upper
bound on ATGPs because of the conditional variables, some of which are not
active. The figure reports an upper bound on scenario 8, since the set of feasible
instructions is more restricted in this case and the upper bound can exploit that
information (a similar result holds for scenario 5 whose results are not shown
for space reasons). The results show a significant benefit in solution quality for
Incremental-CBLS compared to Control-CBLS. Interestingly, the shape of the
results closely follows the queen and allinterval results presented earlier. The
curves for the average Hamming distance do not converge, Incremental-CBLS
is close to the upper bound on scenarios 5 and 8, and Incremental-CBLS has
significantly smaller standard deviations on ATGPs.

The computation times remain reasonable for Incremental-CBLS but obvi-
ously the computation times increase compared to Control-CBLS which only

Constraint-Based Local Search 799

10 20 30 40 50

4.
0

4.
5

5.
0

5.
5

6.
0

Scenario 2 − Diversity

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g
of

 T
w

o
S

ol
ut

io
ns Incremental−CBLS

Control−CBLS
Standard Deviation

10 20 30 40 50

0
5

10
15

Scenario 2 − Computation Time

Number of Solutions

S
ec

on
ds

Incremental−CBLS
Control−CBLS
Standard Deviation

10 20 30 40 50

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

Scenario 3 − Diversity

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g
of

 T
w

o
S

ol
ut

io
ns Incremental−CBLS

Control−CBLS
Standard Deviation

10 20 30 40 50

0
5

10
15

20
25

Scenario 3 − Computation Time

Number of Solutions

S
ec

on
ds

Incremental−CBLS
Control−CBLS
Standard Deviation

Fig. 12. Diversity Results and Computation Times for the ATGPs

10 20 30 40 50

5
6

7
8

9

Scenario 7 − Diversity

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g
of

 T
w

o
S

ol
ut

io
ns Incremental−CBLS

Control−CBLS
Standard Deviation

10 20 30 40 50

0
5

10
15

Scenario 7 − Computation Time

Number of Solutions

S
ec

on
ds

Incremental−CBLS
Control−CBLS
Standard Deviation

10 20 30 40 50

2.
5

3.
0

3.
5

4.
0

Scenario 8 − Diversity

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g
of

 T
w

o
S

ol
ut

io
ns Upper Bound

Incremental−CBLS
Control−CBLS
Standard Deviation

10 20 30 40 50

0
5

10
15

20
25

30

Scenario 8 − Computation Time

Number of Solutions

S
ec

on
ds

Incremental−CBLS
Control−CBLS
Standard Deviation

Fig. 13. Diversity Results and Computation Times for the ATGPs

800 P. Van Hentenryck, C. Coffrin, and B. Gutkovich

10 20 30 40 50

4.
5

5.
0

5.
5

6.
0

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g
of

 T
w

o
S

ol
ut

io
ns Incremental−CBLS − 8 Restarts

Incremental−CBLS − 4 Restarts
Incremental−CBLS − 2 Restarts
Control−CBLS

10 20 30 40 50

0
5

10
15

20

Number of Solutions

S
ec

on
ds

Incremental−CBLS − 8 Restarts
Incremental−CBLS − 4 Restarts
Incremental−CBLS − 2 Restarts
Control−CBLS

Fig. 14. Tradeoff Between Solution Quality and Efficiency on Scenario 2

10 20 30 40 50

4.
5

5.
0

5.
5

6.
0

Number of Solutions

A
ve

ra
ge

 H
am

m
in

g
of

 T
w

o
S

ol
ut

io
ns Incremental−CBLS − 8 Multistarts

Incremental−CBLS − 4 Multistarts
Control−CBLS

10 20 30 40 50

0
2

4
6

8
10

Number of Solutions

S
ec

on
ds

Incremental−CBLS − 8 Multistarts
Incremental−CBLS − 4 Multistarts
Control−CBLS

Fig. 15. The Benefits of Parallelism on Scenario 2

searches for random feasible solutions. Scenario 8 is more demanding, since the
soft constraint is in direct contradiction with the Hamming distance and restricts
the search space significantly when enforced. Only assignments were considered
as local moves. An improvement could be gained from considering value swaps
as well.

The tradeoffs between solution quality and efficiency was also investigated
since both diversity and efficiency are important in ATGPs. Figure 14 shows
the results on scenario 2. The number of restarts is reduced from 8 to 4 without
significant degradation in quality but with a 50% reduction in computation time.
This indicates that Incremental-CBLS can likely be tuned to meet strong timing
constraints while still bringing significant benefits.

Finally, Figure 15 shows the benefits of parallelism in ATGPs problems. It
transforms the search into a multistart procedure which are executed on 4 pro-
cessors. The figure shows that the computation times are decreased by 50%
again for 8 and 4 multistarts, closing further the gap with Control-CBLS. The
generation of 50 diverse solutions now takes less than 6 seconds.

6 Conclusion

This paper reconsidered the automatic generation of architectural tests (ATGP),
a fundamental problem in processor validation. It proposed to view ATGPs as

Constraint-Based Local Search 801

MaxDiversekSet problems to produce more diverse solutions than the ran-
dom exploration traditionally used. The paper showed that constraint-based lo-
cal search over conditional variables can provide significant benefits in solution
quality, while retaining reasonable efficiency. The paper described a semantics
and implementation of constraint-based local search over conditional variables,
which is particularly appropriate for ATGPs. It also showed that constraint-
based local search brings significant computational benefits over existing tech-
niques as an implementation technique for approximating MaxDiversekSet
problems.

There are many directions for future work. The treatment of large domains
should be enhanced and the tabu search should be complemented by constraint-
based repair techniques to suggest moves that can efficiently reduce the violations
of constraints involving large domains. Our prototype implementation should be
embedded in the Comet kernel and tested on large scale instances modeling
IA-32 and IA-64 processors.

References

1. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: Proceed-
ings of the Eighth National Conference on Artificial Intelligence (1990)

2. Moss, A.: Constraint patterns and search procedures for cp-based random test gen-
eration. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 86–103. Springer,
Heidelberg (2008)

3. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar so-
lutions in constraint programming. In: Proceedings of the Twentieth National Con-
ference on Artificial Intelligence (2005)

4. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press,
Cambridge (2005)

5. Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formulation
and solution techniques for random test program generation. IBM Systems Jour-
nal 41(3) (2002)

6. Geller, F., Veksler, M.: Assumption-based pruning in conditional csp. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, pp. 241–255. Springer, Heidelberg (2005)

7. Sabin, D., Freuder, E.C.: Configuration as composite constraint satisfaction. In: Pro-
ceedings of Artificial Intelligence and Manufacturing Research Planning Workshop
(1996)

8. Van Hentenryck, P., Michel, L.: Differentiable invariants. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 604–619. Springer, Heidelberg (2006)

9. Glover, F., Laguna, M.: Tabu Search. Kluwer, Dordrecht (1997)

Edge Finding Filtering Algorithm for Discrete
Cumulative Resources in O(kn log n)

Petr Viĺım

ILOG S.A. an IBM Company, 9, rue de Verdun, BP 85
F-94253 Gentilly Cedex, France

petr vilim@cz.ibm.com

Abstract. This paper presents new Edge Finding algorithm for dis-
crete cumulative resources, i.e. resources which can process several ac-
tivities simultaneously up to some maximal capacity C. The algorithm
has better time complexity than the current version of this algorithm:
O(kn log n) versus O(kn2) where n is number of activities on the resource
and k is number of distinct capacity demands. Moreover the new algo-
rithm is slightly stronger and it is able to handle optional activities. The
algorithm is based on the Θ-tree – a binary tree data structure which
already proved to be very useful in filtering algorithms for unary resource
constraints.

1 Introduction

Nowadays, constraint based scheduling engines like IBM ILOG CP-Optimizer
[1] allow to describe and solve very complex scheduling problems involving a
variety of different constraints. This paper describes a filtering algorithm called
Edge Finding for one of them – for discrete cumulative resource constraint.

Let us demonstrate the problem on a simple example on Figure 1. Note that
this example may be just a small part of much more complex problem. There
are three equivalent workers (a resource with capacity C = 3) who must perform
four different activities T = {A, B, C, D}. Activity A requires all three workers
(cA = 3) for one hour (pA = 1), activity B requires only one worker (cB = 1) but

A

B

C D

estA = estD = 0

estB = estC = 2

lctA = lctB = lctC = 5

C = 3

0 5 10

Fig. 1. An example: estD can be updated from 0 to 4

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 802–816, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Edge Finding Filtering Algorithm 803

for 3 hours (pB = 3) and remaining two activities C and D require two workers
each (cC = cD = 2), activity C for 2 hours (pC = 2) and activity D for 3 hours
(pD = 3). Moreover the earliest possible starting time of activities A and D is
zero (estA = estD = 0), for activities B and C it is 2 (estB = estC = 2). Latest
possible completion time (deadline) for activities A, B and C is 5 (lctA = lctB =
lctC = 5), activity D does not have a deadline (lctD =∞).

Looking closely to the problem we can see that there is no way for D to start
before 4. Therefore we can update estD from 0 to 4 and this way limit the search
space of the problem. The rest of this paper describes the algorithm (called Edge
Finding) which performs such an update.

Note that there are also filtering algorithms for discrete cumulative resource
other than Edge Finding. For example Timetable propagation [2], Not-First/Not-
Last [3], Energetic Reasoning [2], Max Energy propagation [4] or Extended Edge
Finding [5]. However Timetable and Edge Finding are the ones which are used
most of the time.

Let us quickly review existing Edge Finding algorithms for discrete cumulative
resources. To the author’s knowledge the current state-of-the-art algorithm can
be found in [5]. In this paper Luc Mercier and Pascal Van Hentenryck proved
that the original cumulative Edge Finding algorithm with time complexityO(n2)
in [2] is incomplete, and therefore they designed new (complete) algorithm with
time complexity O(kn2).

This paper further improves the algorithm [5] in several aspects:

– Θ-tree data structure improves time complexity from O(kn2) to O(kn log n).
– Better usage of relation “ends before end” makes the filtering a little bit

stronger. There are cases when the new algorithm propagates while the old
one does not (Section 6.2).

– The algorithm can be easily adapted to handle optional activities. Although
propagation of optional activities can be further improved [6], it is already
pretty strong. We will show how to handle optional activities at the end of
the paper (Section 9).

– The algorithm is based on modified Edge Finding rules which are more
suitable for propagation. We provide a proof that the new rules are not
weaker than the original ones (Section 8).

Like algorithm [5] the new algorithm has two phases:

Detection phase tries to discover necessary relative positions of activities on
the resource. The result of this phase is a partial knowledge of a relation
“ends before end” (see later), which will be used in the next phase. For the
example on Figure 1 the algorithm in this phase detects that activity D must
end after the end of {A, B, C}.

Adjustment phase utilizes results of the previous phase to improve temporal
bounds of activities – earliest start times and latest completion times.

In comparison with algorithm [5] the time complexities of both phases are im-
proved. For detection phase from O(n2) to O(n log n), for adjustment phase from
O(kn2) to O(kn log n). For simplicity we will describe each phase separately.

804 P. Viĺım

We present only the algorithm to update earliest start times (not latest com-
pletion times) because the algorithm for update of latest completion times is
symmetrical.

Note also that Edge Finding algorithm is not idempotent and therefore it is
usually repeated until a fixpoint is reached.

2 Basic Notation

Let us formalize the notation already used in the introduction. The input of the
algorithm is a discrete cumulative resource with capacity C ∈ N+ and a set of
activities T (|T | = n) which must be processed by the resource. Each activity
i ∈ T is characterized by the following attributes:

– earliest possible start time esti ∈ N,
– latest possible completion time lcti ∈ N,
– processing time (duration) pi ∈ N – a constant,
– required capacity ci ∈ N – a constant ci ≤ C.

Activities are not preemptive, that is, if an activity i starts at time t it must con-
tinue without interruption until time t + pi where it ends. During the whole pro-
cessing from t to t + pi it requires capacity ci from the resource. At any time, the
total capacity required from the resource cannot exceed the maximum capacity
C. We define k to be number of distinct capacity demands k = |{cl, l ∈ T }|.

Values esti and lcti can change – they can be updated by other filtering
algorithms or by the Edge Finding algorithm itself. Therefore the input of the
Edge Finding algorithm are current bounds esti and lcti, the output are new
(updated) bounds.

Note that at any time the following inequality must hold for every activity i:

esti + pi ≤ lcti

If it does not hold then the problem does not have any solution and the propa-
gation ends (a fail).

From the processing time and required capacity we can compute an energy of
an activity i:

ei = ci pi

The energy corresponds to the area occupied by the activity on the resource
when depicted like on Figure 1.

The notation for earliest start time, latest completion time and energy can be
easily extended for a set of activities Ω ⊆ T :

estΩ = min {esti, i ∈ Ω}
lctΩ = max {lcti, i ∈ Ω}

eΩ =
∑
i∈Ω

ei

Edge Finding Filtering Algorithm 805

e = 16

Env = 16

e = 9

Env = 9

e = 7

Env = 13

estA = 0

eA = 3

Env = 3

estD = 0

eD = 6

Env = 6

estB = 2

eB = 3

Env = 9

estC = 2

eC = 4

Env = 10

Fig. 2. An example of a Θ-tree for Θ = {A,B, C, D} from Figure 1

3 Earliest Completion Time, Energy Envelope

A critical role in the algorithm plays a computation of possible earliest comple-
tion time of a set of intervals Θ ⊆ T . This computation was already described
in detail in [4], therefore here we only quickly repeat the main idea. We defined
a lower bound Ect(Θ) of earliest completion time of a set of activities Θ ⊆ T as:

Ect(Θ) =
⌈

Env(Θ)
C

⌉
where Env(Θ) is so-called energy envelope of set Θ:

Env(Θ) = max
Ω⊆Θ

{C estΩ + eΩ} (1)

3.1 Cumulative Θ-Tree

The paper [4] also describes how to compute Env(Θ). The idea is to organize
set Θ in a balanced binary tree which we call cumulative Θ-tree. Activities are
represented by leaf nodes and sorted by esti from left to right. Each node v of
the tree holds the following values:

ev = eLeaves(v) (2)
Envv = Env (Leaves (v)) (3)

Where Leaves(v) is a set of all activities represented by leaves of the subtree
rooted in v.

Figure 2 shows a Θ-tree for Θ = {A, B, C, D} from Figure 1. Notice that the
energy envelope of the represented set Θ is equivalent to the value Env of the
root node. We can conclude that Ect ({A, B, C, D}) = 116/32 = 6.

For a leaf node v representing an activity i ∈ T the values in the tree are set
to:

ev = ei Envv = Env ({i})

For internal nodes v these values can be computed recursively from their children
nodes left(v) and right(v) as shown in the following proposition.

806 P. Viĺım

Proposition 1. For an internal node v, values ev and Envv can be computed
by the following recursive formulas:

ev = eleft(v) + eright(v) (4)

Envv = max
{
Envleft(v) + eright(v), Envright(v)

}
(5)

Proof. See [4].
�

Thanks to formulas (4) and (5), computation of values ev and Envv can be inte-
grated within standard operations with balanced binary trees without changing
their usual time complexities.

4 Relation “Ends before End”

Before going into details about Edge Finding, let us introduce a notion of ends
before end. We say that an activity j ends before the end of an activity i (denoted
by j � i) if in all solutions end(j) ≤ end(i). The goal of the Edge Finding
algorithm is to discover as much of the relation � as possible and use it to
update temporal bounds. Until a solution is found the relation “ends before
end” is known only partially. Therefore in the following we will use the notation
j � i in the sense “it is known that in all solutions j ends before the end of i”.

The notation for “ends before end” can be extended also to sets of activities:

∀Ω ⊂ T, ∀i ∈ T \Ω : Ω � i ⇔ (∀j ∈ Ω : j � i)

5 Edge Finding: Detection Rule

Let us start by definition of a left cut of T by activity j:

LCut(T, j) = {l, l ∈ T & lctl ≤ lctj}

To detect the relation � we will use the following rule:

∀j ∈ T, i ∈ T \ LCut (T, j) :
(Ect (LCut (T, j) ∪ {i}) > lctj ⇒ LCut(T, j) � i)

The idea of this rule follows. The set LCut(T, j) must be processed before lctj .
So if there is not enough time to process i together with LCut(T, j) then the
activity i must end after LCut(T, j). Note that this rule is different from the
original Edge Finding rule. We will show that this new rule is not weaker later
in Section 8.

The rule above can be rewritten using energy envelope into a form more
suitable for the algorithm:

∀j ∈ T, i ∈ T \ LCut (T, j) :
(Env (LCut (T, j) ∪ {i}) > C lctj ⇒ LCut(T, j) � i) (EF1)

Edge Finding Filtering Algorithm 807

Our goal is to discover as much of the relation � as possible. Therefore for each
activity i ∈ T we are looking for an activity j ∈ T with maximal1 lctj such that
LCut(T, j) � i can be detected by the rule (EF1). This is the task for the first
part of the algorithm.

6 Detection Algorithm

Notice that once we prove by (EF1) that LCut (T, j) � i then it is pointless to
evaluate the rule (EF1) for the same activity i and any j′ ∈ T such that lct′j ≤
lctj because it cannot bring any new information (LCut(T, j′) ⊆ LCut(T, j)).

The algorithm is similar to the Edge Finding algorithm for unary resource [7].
We iterate over activities j in non-increasing order by lctj and we maintain a set
Λ ⊆ T \ LCut (T, j) of all activities i for which we still did not find a set which
must end before end of i. In each step of the algorithm we check whether there
is some activity i ∈ Λ such that the rule (EF1) proves that LCut (T, j) � i. In
other words, we test whether the following inequality holds:

max
i∈Λ

{Env (LCut (T, j) ∪ {i})} > C lctj

– If it holds then we find the responsible activity i ∈ Λ and conclude that
LCut (T, j) � i. Therefore we can remove i from Λ.

– If it does not hold then we move activity j into Λ and continue by next
activity j (because there is no activity i such that LCut(j)� i can be proved
by (EF1)).

To formalize the algorithm let us define:

Env (Θ, Λ) = max
i∈Λ

{Env (Θ ∪ {i})}

Although we did not show yet how to compute Env (Θ, Λ) we can already present
the resulting Algorithm 1. The result of the computation is the array prec which
has the following meaning:

∀i ∈ T : {l, l ∈ T & lctl ≤ prec [i]}� i

In the algorithm, Θ = LCut(T, j) unless there are duplicities in lctj (the algo-
rithm is correct even with such duplicities). In the following we will concentrate
on the computation of Env (Θ, Λ) and the proof that the algorithm 1 has time
complexity O(n log n).

6.1 Computation of Env (Θ, Λ)

The idea is to extend cumulative Θ-tree into Θ-Λ-tree in a similar way it was
done for unary resource in [7]. The cumulative Θ-Λ-tree is a balanced binary tree

1 Maximality of lctj assures that for any other j′ ∈ T satisfying LCut(T, j′) � i by
(EF1) we have LCut(T, j′) ⊆ LCut(T, j).

808 P. Viĺım

Algorithm 1. Edge Finding: Detection

1 ��� i ∈ T ��

2 prec [i] := −∞ ;
3 Θ := T ;
4 Λ := ∅ ;
5 ��� j ∈ T in non-increasing order of lctj �� ����	

6
���� Env(Θ, Λ) > C lctj �� ����	

7 i := activity from Λ responsible for Env(Θ, Λ) ;
8 prec [i] := lctj ; // means: LCut(T, j) � i
9 Λ := Λ \ {i} ;

10 �	� ;
11 Θ := Θ \ {j} ;
12 Λ := Λ ∪ {j} ;
13 �	� ;

where each leaf represents one activity from the set Θ or Λ. Leaves are sorted
from left to right according to esti. Each node of the tree holds the following
values:

ev = eLeaves(v)∩Θ

eΛ
v = eLeaves(v)∩Θ + max

i∈Leaves(v)∩Λ
{ei}

Envv = Env (Leaves (v) ∩Θ)

EnvΛ
v = Env (Leaves (v) ∩Θ, Leaves (v) ∩ Λ)

Notice that Env (Θ, Λ) is equivalent to EnvΛ
v in the root node. For an example

of the cumulative Θ-Λ-tree see Figure 3.
For a leaf node v an activity i ∈ Θ ∪ Λ these values are set to:

ev =

{
ei if i ∈ Θ

0 if i ∈ Λ
eΛ
v =

{
−∞ if i ∈ Θ

ei if i ∈ Λ

Envv =

{
C esti + ei if i ∈ Θ

−∞ if i ∈ Λ
EnvΛ

v =

{
−∞ if i ∈ Θ

C esti + ei if i ∈ Λ

For internal nodes v these values are computed recursively from their children
nodes left(v) and right(v):

Proposition 2. For an internal node v values ev, eΛ
v , Envv and EnvΛ

v can be
computed by the following formulas:

ev = eleft(v) + eright(v) (6)

eΛ
v = max

{
eΛ
left(v) + eright(v), eleft(v) + eΛ

right(v)

}
(7)

Envv = max
{
Envleft(v) + eright(v), Envright(v)

}
(8)

EnvΛ
v = max

{
EnvΛ

left(v) + eright(v), Envleft(v) + eΛ
right(v), EnvΛ

right(v)

}
(9)

Edge Finding Filtering Algorithm 809

e = 10

Env = 13

eΛ = 16

EnvΛ = 16e = 3

Env = 3

eΛ = 9

EnvΛ = 9

e = 7

Env = 13

eΛ = −∞
EnvΛ = −∞

estA = 0

e = 3

Env = 3

eΛ = −∞
Env

Λ
= −∞

estD = 0

e = 0

Env = −∞
eΛ = 6

Env
Λ

= 6

estB = 2

e = 3

Env = 9

eΛ = −∞
Env

Λ
= −∞

estC = 2

e = 4

Env = 10

eΛ = −∞
Env

Λ
= −∞

Fig. 3. An example of a Θ-Λ-tree for Θ = LCut(T, A) = {A, B, C} and Λ = {D} from
Figure 1. We see that Env(Θ, Λ) = 16 which is more than C lctA = 15 and therefore
{A, B, C} � D.

Proof. First notice that formulas (6) and (8) are the same as formulas (4) and
(5) in Proposition 1. Addition of new leaves representing Λ into the tree cannot
invalidate these formulas because for these leaves v we have ev = 0 and Envv =
−∞. Therefore formulas (6) and (8) hold by Proposition 1.

Formula (7) is simple to prove. It is enough to realize that the difference
between computation of ev by (6) and computation of eΛ

v is that it is allowed to
use one of the activities i ∈ Λ. This activity i can be either in the left subtree of v
(and in this case we can use eΛ

left(v) instead of eleft(v)) or in the right subtree of v

(and we can use eΛ
right(v) instead of eright(v)). Putting this together we transform

formula (6) into (7).
It remains to prove formula (9). Again the difference between computation of

Envv and EnvΛ
v is that it is allowed to use one of the activities i ∈ Λ. This activity

can be either in the left subtree of v (and in this case we can use EnvΛ
left(v) instead

of Envleft(v)) or in the right subtree of v (and we can use EnvΛ
right(v) instead of

EnvΛ
right(v) or eΛ

right(v) instead of eright(v) but not both). This way we transform
formula (8) into (9).
�
Thanks to these recursive formulas it is possible to recompute internal values
within standard operations with balanced binary trees without changing their
time complexity. Therefore lines 9, 11 and 12 of Algorithm 1 has time complexity
O(log n) and line 6 has time complexity O(1). To prove that time complexity of
the whole Algorithm 1 is O(n log n) it remains to show that time complexity of
line 7 is also O(log n).

The activity i ∈ Λ responsible for Env(Θ, Λ) can be found by following a path
from the root of the tree to the responsible leaf. In each internal node we can
recognize in O(1) whether the responsible activity is in the left or right subtree
by analyzing which part of the formulas (9) or (7) was used in the given node:

810 P. Viĺım

M N

O

estM = estN = 2

estO = 0

lctM = lctN = 5

C = 3

0 5 10

Fig. 4. An example: {M, N} � O but the rule (EF1) is not able to detect it

responsibleeΛ(v) =

{
responsibleeΛ (left (v)) if eΛ(v) = eΛ

left(v) + eright(v)

responsibleeΛ (right (v)) if eΛ(v) = eleft(v) + eΛ
right(v)

responsibleEnvΛ(v) =

⎧⎪⎨⎪⎩
responsibleEnvΛ (right (v)) if EnvΛ(v) = EnvΛ

right(v)

responsibleeΛ (right (v)) if EnvΛ(v) = Envleft(v) + eΛ
right(v)

responsibleEnvΛ (left (v)) if EnvΛ(v) = EnvΛ
left(v) + eright(v)

We start the search in the root node r looking for responsibleEnvΛ(r) and con-
tinue down the tree using the formulas above (and possibly switching from
responsibleEnvΛ(v) to responsibleeΛ(v) on the path) until we reach a leaf.

6.2 Improving Detection

Consider the example on Figure 4. In this example we can see that in every
solution end(M) ≤ end(O) because the maximum possible value for end(M) is
lctM = 5 and the minimum possible value for end(O) is estO + pO = 5. Therefore
M �O. Similarly N �O. However Edge Finding rule (EF1) is not able to detect
that {M, N} � O and we miss the update of estO from 0 to 5. It is a similar
situation to Detectable Precedences for unary resource described in [7].

The idea is to improve the propagation by improving the knowledge of the
relation � stored in the array prec:

prec[i] := max {prec [i] , esti + pi}

It takes time O(n) to update all prec[i] according to the formula above.

7 Time Bound Adjustment

Let us return again to the example on Figure 1. The algorithm presented in the
previous chapter detected that {A, B, C}�D. We will try to use this knowledge
to update estD. Notice that activity A is actually not important for the update
(but it was important in the previous phase to realize that {A, B, C} � D), it
is a set Ω = {B, C} ⊂ Θ which determines new estD. With this set Ω we can
compute new value of estD denoted as est′D:

est′D = estΩ +
⌈

eΩ −(C − cD)(lctΩ − estΩ)
cD

⌉
= 2 +

⌈
7− (3 − 2)(5− 2)

2

⌉
= 4

Edge Finding Filtering Algorithm 811

X

W

Y

Z

estX = estW = estZ = 0

estY = 6

lctW = lctX = lctY = 7

C = 2

0 5 10

Fig. 5. An example: estZ can be updated from 0 to 2

However when LCut(T, j) � i we cannot use just any subset Ω ⊆ LCut(T, j)
to compute update of esti as we did for estD above. Consider the example on
Figure 5. Here {W, X, Y } � Z but we cannot use Ω = {Y } because the result
would be invalid:

estΩ +
⌈

eΩ −(C − cZ)(lctΩ − estΩ)
CZ

⌉
= 6 +

⌈
1− (2− 1)(7− 6)

1

⌉
= 6

The valid update would be to set estZ to 2, not to 6. The reason that we cannot
use Ω = {Y } for update of estZ is that there is not enough energy in Ω = {Y }
to be in potential conflict with Z.

Let us generalize the idea demonstrated on these examples. When LCut(T, j)�
i then we want to update esti the following way:

LCut(T, j) � i ⇒ est′i := max {update (j, ci) , esti} (EF2)

where:

update(j, c) = max
Ω⊆LCut(T,j)

eΩ>(C−c)(lctΩ − estΩ)

{
estΩ +

⌈
eΩ − (C − c) (lctΩ − estΩ)

c

⌉}
The condition eΩ > (C − c)(lctΩ − estΩ) makes sure that we do not make any
invalid update as described above.

In the following we will describe how to compute values update(j, c). When
all values update(j, c) are computed then update of esti using array prec and
formula (EF2) is trivial.

Let’s assume for simplicity that there are no duplicates in the set {lctj , j ∈
T }. Therefore if we sort activities T by increasing lctj in a sequence j1, j2, . . . , jn

we get:
LCut(T, j1) � LCut(T, j2) � · · · � LCut(T, jn)

So when we compute value update(jl, c) we do not have to iterate again on all
possible subsets Ω ⊆ LCut(T, jl), we can use the fact that we already considered
part of them in the computation of update(jl−1, c). I.e. in the outermost cycle
of the algorithm we iterate over all c ∈ {cm, m ∈ T } and in the inner cycle we
iterate over all jl ∈ T and compute:

update(jl, c) =

{
diff (j1, c) when l = 1
max {update (jl−1, c) , diff (jl, c)} when l > 1

(10)

812 P. Viĺım

where:

diff(j, c) = max
Ω⊆LCut(T,j)

eΩ>(C−c)(lctj − estΩ)

{
estΩ +

⌈
eΩ −(C − c)(lctj − estΩ)

c

⌉}
(11)

So in the computation of diff(j, c) we “pretend” that all sets Ω ⊆ LCut(T, j)
has lctΩ = lctj . This is not true, there may be sets Ω � LCut(T, j) such that
lctΩ < lctj . However these sets are correctly considered during computation of
diff(j′, c) such that lctj′ = lctΩ.

Let’s define function minest(j, c) as:

minest(j, c) = min {estΩ, Ω ⊆ LCut (T, j) & eΩ > (C − c)(lctj − estΩ)}

Notice that for a particular set Ωm which defines minest(j, c), i.e. estΩm =
minest(j, c), we have:

estΩm +
⌈

eΩm −(C − c)(lctj − estΩ)
c

⌉
> estΩm = minest(j, c)

and therefore diff(j, c) > minest(j, c). Now we will show that:

diff(j, c) = max
Ω⊆LCut(T,j)

estΩ≤minest(j,c)

{
estΩ +

⌈
eΩ −(C − c)(lctj − estΩ)

c

⌉}
(12)

The reason follows. The original condition was more restrictive than the new one:
in (12) we iterate over more sets Ω than in (11). However for every additional
set Ω we have estΩ ≤ minest(j, c) and eΩ ≤ (C − c)(lctj − estΩ) therefore:

estΩ +
⌈

eΩ −(C − c)(lctj − estΩ)
c

⌉
≤ estΩ ≤ minest(j, c)

And we already know that diff(j, c) > minest(j, c). Therefore newly added sets
cannot influence the resulting maximum value in formula (12).

Formula (12) is algebraically equivalent to:

diff(j, c) =
⌈

Env(j, c)− (C − c) lctj

c

⌉
(13)

where:

Env(j, c) = max
Ω⊆LCut(T,j)

eΩ>(C−c)(lctj − estΩ)

{C estΩ + eΩ} (14)

We can split each set Ω by minest(j, c) into two parts:

Ω1 = {l, l ∈ Ω & estl ≤ minest (j, c)}
Ω2 = {l, l ∈ Ω & estl > minest (j, c)}

Edge Finding Filtering Algorithm 813

Cut

α(j, c) β(j, c)

minest(j, c)

e = 9

Env = 13

Envc = 9
e = 8

Env = 8

Env
c

= 8

e = 1

Env = 13

Env
c

= 7

estW = 0

e = 2

Env = 2

Envc = 2

estX = 0

e = 6

Env = 6

Envc = 6

estY = 6

e = 1

Env = 13

Envc = 7

Fig. 6. Example: computation of Env(j, c) for c = 1 and j = Y from example on
Figure 5. Therefore LCut(T, j) = {W, X, Y }. Situation just before the cut.

And thenC estΩ + eΩ = C estΩ1 + eΩ1 + eΩ2 . Let’s apply this idea on formula (14).
We define:

α(j, c) = {l, l ∈ LCut (T, j) & estl ≤ minest (j, c)}
β(j, c) = {l, l ∈ LCut (T, j) & estl > minest (j, c)}

And (14) is equivalent to:

Env(j, c) = max
Ω1⊆α(j,c)
Ω2⊆β(j,c)

{C estΩ1 + eΩ1 + eΩ2} =

= eβ(j,c) + Env (α (j, c)) (15)

We can compute Env (α (j, c)) by building Θ-tree for the set α(j, c) as shown in
Proposition 1. However it is more suitable for the algorithm to build Θ-tree for
the whole set LCut(T, j) and cut it into two parts just before the computation
of Env (α (j, c)). The cut operation splits the tree into two trees, it is done in
such a way that all activities l ∈ LCut(T, j) such that estl ≤ minest(j, c) go to
the left part while the others go into the right part. See Figure 6 for an example.
The cut operation has time complexity O(log n) and it splits the set LCut(T, j)
into sets α(j, c) and β(j, c). The value Env (α (j, c)) can be found in the root
node of the Θ-tree for α(j, c), and eβ(j,c) can be found in the root node of the
Θ-tree for β(j, c).

It remains to show how to compute minest(j, c). The value minest(j, c) was
defined as:

minest(j, c) = min {estΩ, Ω ⊆ LCut (T, j) & eΩ > (C − c)(lctj − estΩ)}

The condition eΩ > (C − c)(lctj − estΩ) is algebraically equivalent to:

(C − c) estΩ + eΩ > (C − c) lctj (16)

814 P. Viĺım

Algorithm 2. Computation of minest(j, c) using Θ-tree for LCut(T, j)

1 v := root ;
2 E := 0 ;
3
���� v is not a leaf node �� ����	

4 �� Envc (right (v)) + E > (C − c) lctj ��	

5 v := right(v) ;
6 ���� ����	

7 E := E + eright(v) ;
8 v := left(v) ;
9 �	� ;

10 �	� ;
11 l := activity represented by leaf v ;
12 ����	 estl ;

Algorithm 3. Computation of all update(j, c)

1 ��� c ∈ {cm, m ∈ T} �� ����	

2 Θ := ∅ ;
3 upd := −∞ ;
4 ��� j ∈ T in non-decreasing order by lctj �� ����	

5 Θ := Θ ∪ {j} ;
6 minest := minest(j, c) ; // see Algorithm 2
7 (α, β) := Cut (Θ , minest) ;
8 Env(j, c) := e(β) + Env(α) ; // see (15)

9 diff :=
⌈

Env(j,c)+(C−c) lctj

c

⌉
; // see (13)

10 upd := max (upd , diff) ; // see (10)
11 update(j, c) := upd ;
12 Θ := join (α , β) ;
13 �	� ;
14 �	� ;

Notice that the left part of this inequality is very similar to the computation of
energy envelope, just C is replaced by (C − c). Let us define a new variant of
energy envelope Envc:

Envc(Θ) = max
Ω⊆Θ

{(C − c) estΩ + eΩ}

The computation of Envc can be done again using Θ-tree by Proposition 1. We
can compute Env and Envc in the same Θ-tree as shown on Figure 6. Now we
can see that because of condition (16) it must hold:

Envc (β (j, c)) < (C − c) lctj

but if we would include activities l with estl = minest(j, c) into the right tree
(in other words if we would do the cut more on the left) then this condition
would not hold. That allows to find a leaf l with estl = minest(j, c) by following

Edge Finding Filtering Algorithm 815

a path from the root the leaf as shown in Algorithm 2. Using this procedure
we can compute all values update(j, c) by Algorithm 3 with time complexity
O(kn log n). Note that once update(j, c) is computed we can trivially update
values esti using (EF2).

8 Relation with Standard Edge Finding

We will show that the algorithm described in the paper does not miss any update
done by Edge Finding algorithm described in [5]. It is enough to prove that the
original Edge Finding propagation rules are subsumed by the new rules (EF1)
and (EF2).

The traditional Edge Finding rule is:

∀i ∈ T, ∀Θ ⊆ T \Θ : C
(
lctΘ − estΘ∪{i}

)
< eΘ∪{i}⇒ esti := max (esti, newesti)

where:

newesti = max
Ω⊆Θ

eΩ>(C−c)(lctΩ − estΩ)

{
estΩ +

⌈
eΩ − (C − c) (lctΩ − estΩ)

ci

⌉}
(17)

Let’s consider an activity i and sets Θ and Ω which achieves the best update
by the rule above. Then we can define j to be an activity from Θ such that
lctj = lctΘ. And because Θ ⊆ LCut(T, j) we can see that the rule (EF1) holds
for i and j. And because Ω ⊆ Θ ⊆ LCut(T, j) the update by the rule (EF2)
must be at least the same as by the original rule (17).

9 Optional Activities

Optional activity is an activity which may or may not be present in the resulting
schedule [1]. Optional activities makes modeling of certain types of problems
much easier (for example dealing with alternatives) and it also allows the CP
engine to propagate better. Therefore it is very important that Edge Finding
algorithm can handle optional activities.

To handle optional activities we can use the same idea as suggested in [4]: in-
stead of changing the algorithm we can just change its input data. If an activity j
is optional, we set for the algorithm lctj = ∞ regardless the real value of lctj .
This way the algorithm can never conclude that j � i for any activity i because
from the point of view of the algorithm the activity j can be always scheduled
later than i. Therefore optional activities will be influenced by non-optional ones,
but non-optional activities will not be influenced by optional ones.

Note that propagation for optional activities could be further improved as
suggested for unary resource in [6]. However it would probably result in increase
of time complexity of the algorithm.

816 P. Viĺım

10 Experimental Results

Speed of the presented algorithm was tested against incomplete algorithm [2]
by measuring time needed for initial propagation. These tests was done on cu-
mulative job-shop instances with resources of capacity 2 (note that in this case
k = 1). For n = 20 activities on resource the presented algorithm is on average
faster by factor 1.34, for n = 30 it is faster by factor 1.60, for n = 40 by 1.99,
for n = 60 by 2.68, for n = 100 by 4.15 and for n = 200 by factor 7.35.

11 Conclusions

This paper presents a new Edge Finding algorithm for discrete capacity re-
sources. The new algorithm is stronger than the state-of-the-art algorithm [5], it
is faster (in term of time complexity) and it can handle optional activities. The
algorithm is successfully used by CP-Optimizer [1] starting from version 2.0.

References

1. IBM ILOG CP Optimizer, http://www.ilog.com/products/cpoptimizer/
2. Philippe Baptiste, C.L.P., Nuijten, W.: Constraint-Based Scheduling: Applying Con-

straint Programming to Scheduling Problems. Kluwer Academic Publishers, Dor-
drecht (2001)

3. Schutt, A., Wolf, A., Schrader, G.: Not-first and not-last detection for cumula-
tive scheduling in O(n3 log n). In: Umeda, M., Wolf, A., Bartenstein, O., Geske,
U., Seipel, D., Takata, O. (eds.) INAP 2005. LNCS (LNAI), vol. 4369, pp. 66–80.
Springer, Heidelberg (2006)

4. Viĺım, P.: Max energy filtering algorithm for discrete cumulative resources. In: van
Hoeve, W.J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 294–308.
Springer, Heidelberg (2009)

5. Mercier, L., Hentenryck, P.V.: Edge finding for cumulative scheduling. Informs Jour-
nal of Computing 20, 143–153 (2008)

6. Kuhnert, S.: Efficient edge-finding on unary resources with optional activities. In:
Proceedings of INAP 2007 and WLP 2007 (2007)

7. Viĺım, P.: Global Constraints in Scheduling. PhD thesis, Charles University in
Prague, Faculty of Mathematics and Physics, Department of Theoretical Computer
Science and Mathematical Logic (2007)

http://www.ilog.com/products/cpoptimizer/

Evaluation of Length-Lex Set Variables

Justin Yip and Pascal Van Hentenryck

Department of Computer Science, Brown University, USA

Abstract. This paper presents the first experimental evaluation of the
length-lex domain for set variables. The implementation is based on
bound-consistency algorithms proposed in earlier work and two novel
technical contributions: a generic filtering algorithm which automatically
pushes ordering constraints into symmetric binary constraints with only
a logarithmic overhead and an adaptation of symmetry-breaking con-
straints from 0/1 matrices to the length-lex ordering. The experimental
results indicate that the length-lex representation for set variables is very
effective and robust on traditional set-CSPs benchmarks.

1 Introduction

Set variables for constraint programming were proposed in the early 1990s [1]
but they have received increasing attention in recent years. The main issue in
set variables is that their domain may contain an exponential number of sets
and an explicit representation is often too costly. Hence, most of the research
has focused on representations that either approximate the set domain or are
as compact as possible. The traditional set domain is the subset-bound rep-
resentation [1,2], which maintains a pair of sets (R, P) to denote the domain
{s|R ⊆ s ⊆ P}. The addition of a cardinality component to the subset-bound
representation, and the associated pruning rules, was proposed in [3,4]. This
richer domain was further enhanced by a lexicographic component in [5,6] since
many set constraint satisfaction problems contain many symmetries which can
broken by lexicographic constraints. 0/1 matrix models can also be used to en-
code the characteristic function of the subset-bound domain, while cardinality
and lexicographic restrictions are expressed by posting constraints [7,8]. An ex-
act representation of set domains using binary decision diagrams was proposed
in [9]. It enables the solver to enforce arc consistency. The representation may
require exponential space in the worst case, but convincing experimental results
were given on a variety of benchmarks.

This paper considers the length-lex representation recently proposed in [10].
In theory, the length-lex representation offers three fundamental advantages.
First, contrary to the subset-bound representation, it features a total ordering on
sets, which makes it possible to enforce bound consistency. Second, the length-
lex representation directly captures cardinality and lexicographic information.
Finally, the representation often makes it possible to enforce bound consistency
in polynomial time. However, despite these potential theoretical benefits, the
length-lex domain was never evaluated experimentally.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 817–832, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

818 J. Yip and P. Van Hentenryck

The contributions of this paper are threefold. First, the paper presents the
first experimental evaluation of the length-lex representation for set variables.
The implementation, which consists of about 18,000 lines of code, was integrated
inside the Comet system and evaluated on the traditional benchmarks for set
variables. The experimental results on this preliminary implementation indicate
that the length-lex representation for set variables is extremely effective on tradi-
tional benchmarks and the filtering algorithms reduce the search space by orders
of magnitude compared to most representations. The models used for the bench-
marks also feature two technical contributions. The first technical contribution
is algorithmic and shows how to push lexicographic ordering constraints into
(symmetric) set constraints. The idea of pushing lexicographic constraints into
other constraints was proposed before (e.g., [11,10,20]), as it typically achieves
a stronger propagation. The novelty in this paper is a generic routine that
pushes the length-lex ordering into any symmetric binary constraint with only an
O(log n) overhead. The second technical contribution pertains to dual modeling
and symmetric breaking in primal/dual set-CSPs [7,8,13,14,15,16]. This paper
shows that the traditional techniques used in 0/1 matrices to break variables
and value symmetries also apply to the length-lex ordering. This is particularly
significant since the length-lex representation capture lexicographic information
directly, allowing a strong pruning of the search space. The rest of this paper
is organized as follows. Section 2 gives an overview of the length-lex representa-
tion. Section 3 introduces the filtering algorithms to handle the combination of
a symmetric constraint and a length-lex ordering constraint. Section 4 presents
how to adapt the dual modeling technique to the length-lex domain. Section 5
presents the empirical results and Section 6 concludes the paper.

2 The Length-Lex Representation of Set Variables

Notations: For simplicity, we assume that sets take their values in a universe
U(n) of integers {1, . . . , n} equipped with traditional set operations. n, m are
integers denoting the size of a universe, the number of variables, or both. S, T, P
and Q, possibly subscripted, are set variables. X and Y are the length-lex do-
mains of S and T respectively. Elements of U(n) are denoted by the letter f ,
possibly subscripted and modified as f̌ , ḟ and f̂ to denote the minimum, mean
and maximum value respectively. Sets are denoted by lb, ub, s, t, w, x, y, z. A sub-
set s of U(n) of cardinality c is called c-set and is denoted as {s1, s2, . . . , sc} where
(s1 < s2 < . . . < sc). The notation si..j is a shorthand for {si, si+1, . . . , sj}.

Length-Lex Representation: The length-lex ordering �, proposed in [10], totally
orders sets first by cardinality and then lexicographically.

Definition 1 (Length-Lex Ordering). The length-lex ordering is defined by

s � t iff s = ∅ ∨ |s| < |t| ∨ |s| = |t| ∧ (s1 < t1 ∨ s1 = t1 ∧ s \ {s1} � t \ {t1})

Its strict version is defined by s ≺ t iff s � t ∧ s �= t.

Evaluation of Length-Lex Set Variables 819

Example 1 (Length-Lex Ordering). Given U(4) = {1, . . . , 4}, we have ∅ ≺ {1} ≺
{2} ≺ {3} ≺ {4} ≺ {1, 2} ≺ {1, 3} ≺ {1, 4} ≺ {2, 3} ≺ {2, 4} ≺ {3, 4} ≺
{1, 2, 3} ≺ {1, 2, 4} ≺ {1, 3, 4} ≺ {2, 3, 4} ≺ {1, 2, 3, 4}.

Definition 2 (Length-Lex Interval). Given a universe U(n), a length-lex
interval is a pair of sets 〈lb, ub〉. It contains all sets (inclusively) between lb and
ub in the length-lex ordering, i.e., {s ⊆ U(n)|lb � s � ub}.

Example 2 (Length-Lex Interval). Given U(6), the interval 〈{1, 3, 4}, {1, 5, 6}〉
denotes the set {{1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}}.

Because the length-lex ordering defines a total order on sets, it is possible to
enforce bound consistency on set constraints.

Definition 3 (Bound Consistency for Binary Constraint). A constraint
C over two set variables S and T with respective domains X = 〈lbX , ubX〉 and
Y = 〈lbY , ubY 〉 is bound consistent if

∃y ∈ Y : C(lbX , y)∧∃y ∈ Y : C(ubX , y)∧∃x ∈ X : C(x, lbY)∧∃x ∈ X : C(x, ubY).

Consistency algorithms for the length-lex representation have been studied in-
tensively. Reference [10] presented algorithms to enforce bound consistency on
many unary constraints in time Õ(c), where c is the maximum cardinality of the
set variable, and provided the first propagator for set domains whose running
time is independent of the universe size n (usually n � c). A generic algorithm
that enforces bound consistency on binary constraints and only relies on a sim-
ple feasibility routine was proposed in [17]. The generic algorithm can easily be
generalized to a propagation routine for a k-arity constraint. That paper also
demonstrated a specialized algorithm for binary disjoint constraint running in
time O(c3). An O(n4/ε) propagator for approximated bound consistency of a
combination of two knapsack constraints was proposed in [19], while an algo-
rithm for enforcing bound consistency on a knapsack constraint running in time
Õ(c) with an one-time preprocessing cost O(c2n) was proposed in [18]. The same
paper also gave an amortization scheme that reduces the running time for the
binary disjoint constraint from O(c3) to O(c2).

PF-interval: [17] proposed the concept of PF-closed interval (hereinafter called
PF-interval for short) in order to simplify the design of propagators. The key
idea is that any length-lex interval can be partitioned into a linear number of PF-
intervals, a special class of length-lex interval that enjoys some elegant properties
of the subset-bound representation with cardinality. Informally, a PF-interval
denotes all c-sets that begin with the same prefix, immediately followed by one
element f of a set F (we call it the F-set), the rest being filled by elements
greater than f . The F-set is critical for the efficient inference of lexicographic
order, since it determines the most significant element after the required prefix.
Moreover, the generic algorithm in [17] guarantees that the F-set is always a
range. This paper exploits this property and formally redefines PF-interval.

820 J. Yip and P. Van Hentenryck

Definition 4 (PF-Interval). Let P be a set and f̌ , f̂ , n and c be integers. A
PF-interval pf〈P, f̌ , f̂ , n, c〉 satisfies

(max(P) < f̌) ∧ (f̌ ≤ f̂) ∧ (n− f̂ + 1 ≥ c− |P |)

and denotes the set of sets{
P 3 {f} 3 s

∣∣∣f̌ ≤ f ≤ f̂ ∧ s ⊆ {f + 1, . . . , n} ∧ |P 3 {f} 3 s| = c
}

.

Example 3 (PF-interval). Consider the length-lex interval in example 2. It con-
tains all sets that begin with {1}, and immediately followed by 3, 4 or 5, and filled
by elements in {3, ..., 6}. It can be expressed as a PF-interval pf〈{1}, 3, 5, 6, 3〉.

Example 4 (PF-interval). The PF-interval pf〈{1, 2}, 5, 6, 8, 4〉 denotes of set of
sets {{1, 2, 5, 6}, {1, 2, 5, 7}, {1, 2, 5, 8}, {1, 2, 6, 7}, {1, 2, 6, 8}}.

The structure of PF-interval makes its inferences almost equivalent to the subset-
bound+cardinality representation. The inferences are based on a feasibility rou-
tine hs that takes two intervals and return whether there is a solution.

Specification 1 (Feasibility Routine hs〈C〉). Given a constraint C and length-
lex intervals X and Y , hs〈C〉(X, Y) ≡ ∃x ∈ X, y ∈ Y : C(x, y).

Consider the binary disjoint constraint D. Given two PF-intervals, the feasibility
routine hs〈D〉 checks whether two prefixes (which corresponds to required sets
in the subset-bound domain) are disjoint and whether there are enough free
elements (possible sets) to satisfy the cardinality requirements. In addition, the
routine must check if both PF-intervals can pick different elements from their F-
set. If these three conditions hold, there is a solution. The successor(predecessor)
construction algorithms are based on this feasibility routine and they greedily
pick the smallest(largest) element one at a time that satisfies the feasibility
routine. The whole process takes O(c) time.

However, not all length-lex intervals enjoy these elegant properties. This prob-
lem can be remedied by observing any length-lex interval can be partitioned
into O(c) PF-intervals. With this decomposition technique available, we can
enforce bound consistency on binary length-lex constraint by first partitioning
both length-lex intervals into O(c) PF-intervals, and then performing pair-wise
comparisons. The total runtime is O(c3). See [17] for more details.

3 Pushing Length-Lex Ordering into Binary Constraints

This section shows how to push a length-lex constraint into a binary symmetric
constraint. The idea of pushing lexicographic constraints into other constraints
was proposed before (e.g., [11,10,20]). In particular, [11] presented an algorithm
to enforce the lexicographic ordering and sum constraint for two vectors of vari-
ables simultaneously. [20] proposed an generic algorithm to push the lexico-
graphic order into a global constraint by invoking O(m) calls to the domain-
consistent global constraint propagator, m being the number of variables.

Evaluation of Length-Lex Set Variables 821

Algorithm 1. bc〈C�〉(X = 〈lbX , ubX〉, Y = 〈lbY , ubY 〉)
1: (lbX , ubX) ← (succX〈C�〉(X, Y), predX〈C�〉(X, Y))
2: (lbY , ubY) ← (succY 〈C�〉(X, Y), predY 〈C�〉(X,Y))
3: return lbX �= ⊥ ∧ ubX �= ⊥∧ lbY �= ⊥ ∧ ubY �= ⊥

Table 1. The Slicing (Left) and Decomposition (Right) of Length-Lex Domains

X:〈{1, 4, 5}, {6, 7, 9}〉 Y :〈{2, 3, 4}, {6, 8, 9}〉
X̌:〈{1, 4, 5}, {1, 8, 9}〉 Y̌ : ∅
Ẋ:〈{2, 3, 4}, {6, 7, 9}〉 Ẏ :〈{2, 3, 4}, {6, 7, 9}〉
X̂: ∅ Ŷ :〈{6, 8, 9}, {6, 8, 9}〉

X̌1
pf : pf〈{1}, 4, 8, 9, 3〉 :

Ẋ1
pf : pf〈{}, 2, 5, 9, 3〉 Ẏ 1

pf : pf〈{}, 2, 5, 9, 3〉
Ẋ2

pf :pf〈{6, 7}, 8, 9, 9, 3〉 Ẏ 2
pf :pf〈{6, 7}, 8, 9, 9, 3〉

: Ŷ 1
pf :pf〈{6, 8}, 9, 9, 9, 3〉

In this section, we give a generic bound consistency algorithm bc〈C�〉 that
pushes the length-lex ordering constraint into a symmetric binary constraint1,
only assuming a feasibility routine hs〈C〉. The algorithm bc〈C�〉 enforces bound
consistency with time O(αc2 log2 n), which is a O(log n) overhead incurred over
the generic bound consistency algorithm bc〈C〉. Indeed, bc〈C〉 is an algorithm
presented in [17] which enforces bound consistency in O(αc2 log n) time and
only relies on a feasibility routine hs〈C〉 over two PF-intervals(that takes O(α)
time). hs〈C〉 is usually computationally inexpensive. For instance, for binary
disjoint constraint D, hs〈D〉 takes O(c) and therefore bc〈D〉 takes O(c3 log n),
which is only a O(log n) overhead compared to the specialized O(c3) algorithm.

Definition 5 (Symmetric Constraint). A binary constraint C over two set
variables S and T is symmetric if and only if C(S, T)⇔ C(T, S).

The generic algorithm bc〈C�〉 is depicted in Algorithm 1 and simply computes
the predecessor and successor for the two sets. What is interesting is their im-
plementation which is based on two key observations. First, if the greatest set
in X is smaller than the smallest set in Y , the length-lex ordering constraint
is entailed and we can simply apply bc〈C〉. Second, when two PF-intervals are
identical (X = Y) and C is symmetric, if hs〈C〉(X, Y) holds, then hs〈C�〉(X, Y)
also holds. As a consequence of the first property, the algorithms start by slic-
ing the representation in several pieces, which we first illustrate on an example
before defining it formally.

Example 5. Suppose we have U(9), X = 〈{1, 4, 5}, {6, 7, 9}〉, Y =
〈{2, 3, 4}, {6, 8, 9}〉. X can be sliced into two length-lex intervals, the first in-
terval X̌ contains all sets smaller than min Y = {2, 3, 4} and the second interval
Ẋ contains all sets in Y . Similarly, Y can also be sliced. Table 1 shows the
partitions. The table also shows the decomposition of the resulting intervals in
PF-intervals. Note that all sets in X̌ and Ŷ satisfy the ordering constraint.

1 The restriction to symmetric constraint is natural, since otherwise the symmetry
would already be broken by the constraint itself.

822 J. Yip and P. Van Hentenryck

Specification 2 (3Slices).Given two length-lex intervals X and Y = 〈lbY , ubY 〉.
3Slices(X, Y) returns three intervals X̌, Ẋ, and X̂ such that

X̌ ≡ {x ∈ X |x ≺ lbY } and Ẋ ≡ {x ∈ X |x ∈ Y } and X̂ ≡ {x ∈ X |ubY ≺ x}
Lemma 1. Given two length-lex intervals X and Y . 3Slices(X, Y) = X̌, Ẋ, X̂
and 3Slices(Y, X) = Y̌ , Ẏ , Ŷ , we have Ẋ = Ẏ .

The algorithm bc〈C�〉 first decomposes a length-lex interval into two parts. One
part can ignore the length-lex ordering because the ordering constraint is already
satisfied and calls the existing bc〈C〉 algorithm. The other part deals with two
identical intervals and exploits the following symmetric property.

Lemma 2. If a binary constraint C is symmetric, hs〈C〉(X, X) = hs〈C�〉(X, X).

Proof. Suppose C(s, t) holds for s, t ∈ X . By symmetry, C(t, s) holds and s �
t ∨ t � s also holds.
�

3.1 predX for Length-Lex Intervals

We now demonstrate the generic algorithm (Algorithm 2) for finding the new
upper bound for X .

Specification 3 (predX). For a constraint C and two length-lex intervals X
and Y , function predX〈C〉(X, Y) returns the greatest set x ∈ X in the length-lex
ordering which belongs to a solution of the constraint or ⊥ if there is no solution:

predX〈C〉(X, Y) ≡
{

max{x ∈ X
∣∣∣∃y ∈ Y : C(x, y)} if hs〈C〉(X, Y)

⊥ otherwise
.

Xpf Xpf

pfYYpf

Xpf
1 Xpf

1

Ypf
1 Ypf

i
pfY1

Xpf
ioXpf

oYpf

oXpf

o
pfY

Fig. 1. Key Observations. predX〈C�〉(X, Y) (Left). predX〈C�〉(Xpf , Ypf) (Right).

The algorithm first slices the length-lex intervals (lines 1–2) and then decom-
pose the results into PF-intervals (lines 3–4). X̂ and Y̌ are not considered as
they violate the ordering constraints. The algorithm then locates the largest PF-
interval that contains the new bound and constructs the new bound (lines 5–10).
The routine for locating the PF-interval is similar to bc〈C〉, except that we
must pay some attention to the ordering constraint. The intuition is captured in
Figure 1. When considering PF-intervals Ẋ i

pf , we only consider the PF-intervals
in Y no smaller than Ẋ i

pf . Two cases must be distinguished. First, there is exactly
one PF-interval in Y identical to Ẋ i

pf and the algorithm must call predX〈C�〉 to
take into account the ordering constraint (line 8 and the vertical line in Figure 1
(Left)). Second, the remaining PF-intervals are greater than Ẋ i

pf and the

Evaluation of Length-Lex Set Variables 823

Algorithm 2. predX〈C�〉(X = 〈lbX , ubX〉, Y = 〈lbY , ubY 〉)
1: X̌, Ẋ, X̂ ← 3Slices(X, Y)
2: Y̌ , Ẏ , Ŷ ← 3Slices(Y, X)
3: [Ẋ1

pf , ..., Ẋ ȯ
pf] ← decomp(Ẋ)

4: [Ŷ 1
pf , ..., Ŷ ô

pf] ← decomp(Ŷ)
5: s ← �
6: for i = ȯ down to 1 do
7: s ← max(maxj∈{1..ô}(predX〈C〉(Ẋi

pf , Ŷ j
pf)), maxj∈{i+1..ȯ}(predX〈C〉(Ẋi

pf , Ẋj
pf)))

8: s ← max(s, predX〈C�〉(Ẋi
pf , Ẋi

pf))
9: if s �= � then

10: return s
11: return predX〈C〉(X̌, Ẏ � Ŷ)

algorithm simply calls predX〈C〉 (line 7 and the diagonal lines in Figure 1 (Left)).
If no PF-interval in Ẋ contain a new upper bound, we will try X̌. As all sets in
X̌ are smaller than Y , we use the simple predecessor algorithm predX〈C〉 (line
11). Note also that the loop starts with the largest PF-interval (line 6), since we
are interested in the largest predecessor.

3.2 predX for PF-Interval

It remains to show how to find the predecessor for two identical PF-intervals
(line 8). Algorithm 3 constructs the upper bound by performing a binary search
in the F-set and the main idea is depicted in Figure 1 (Right). It partitions the
F-set into two halves (line 9) and first checks if there is a solution in the upper
half. (line 11 and the right vertical line in the figure). Notice that by Lemma 2,
we can simply call hs〈C〉. This upper half needs to be compared only with the
upper half Ŷpf of Ypf , since the lower half Y̌pf violates the ordering constraint.
If there is a solution (line 10), the algorithm is called recursively within X̂pf

(line 11). Otherwise, the algorithm tries the lower half X̌pf . Now there are two
possible choices (Y̌pf and Ŷpf) and we do not know which one gives a greater
bound. The algorithm tries both (lines 13–14) and returns the largest (line 15).
Once the F-set becomes a singleton, it is inserted in the prefix and the algorithm
considers the next position (lines 3–8).

Lemma 3. Suppose hs〈C〉(Xpf , Ypf) takes O(α). Algorithm 3 takes O(αc2 log2 n).

Proof. The running time of Algorithm 3 is affected by the number of unfixed
positions (maximum is c), the number of possible choices r in the F-set (i.e.,
f̂− f̌ +1) and the universe size n. Denote the computation time of the algorithm
by Tn(r, c). Tn(r, c) can be expressed by the following recurrence relation:

Tn(r, c) =

{
O(α) + max(Tn(r/2, c), Tn(r/2, c) + O(αc log n)) if r > 1
Tn(n, c− 1) if r = 1 ∧ c > 1
O(1) otherwise

Solving the recurrence relation gives Tn(r, c) = O(αc2 log2 n).
�

824 J. Yip and P. Van Hentenryck

Algorithm 3. predX〈C�〉(Xpf = pf〈P, f̌, f̂, n, c〉, Ypf = pf〈P, f̌, f̂, n, c〉)
Require: Xpf == Ypf

1: if not hs〈C�〉(Xpf , Ypf) then
2: return ⊥
3: if f̌ = f̂ then
4: if |P | = c − 1 then
5: return P � {f̌}
6: else
7: P ′, f̌ ′, f̂ ′ ← P � {f̌}, f̌ + 1, n − c − |P |
8: return predX〈C�〉(pf〈P ′, f̌ ′, f̂ ′, n, c〉, pf〈P ′, f̌ ′, f̂ ′, n, c〉)
9: ḟ ← (f̌ + f̂)/2

10: if hs〈C〉(pf〈P, ḟ + 1, f̂ , n, c〉, pf〈P, ḟ + 1, f̂ , n, c〉) then
11: return predX〈C�〉(pf〈P, ḟ + 1, f̂ , n, c〉, pf〈P, ḟ + 1, f̂ , n, c〉)
12: else
13: s0 = predX〈C〉(pf〈P, f̌ , ḟ , n, c〉, pf〈P, ḟ + 1, f̂ , n, c〉)
14: s1 = predX〈C�〉(pf〈P, f̌ , ḟ , n, c〉, pf〈P, f̌ , ḟ , n, c〉))
15: return max(s0, s1)

Theorem 1. Assume hs〈C〉(Xpf , Ypf) takes time O(α). Then Algorithm 2 takes
O(αc2 log2 n).

Proof. Locating the first supported Xpf takes O(αc2) time. Once the algorithm
locates the Xpf , it constructs a predecessor against every possible Ypf . There
are at most O(c) possible choices and O(c) of them require only the simple
predecessor algorithm predX〈C〉 that takes O(αc log n) [17] . At most one of them
must be taken care specially by Algorithm 3 and takes O(αc2 log2 n). Hence, the
total run time is O(αc2 log2 n).
�

The above generic algorithm pushes the length-lex ordering constraint into arbi-
trary binary symmetric constraints. Specialized algorithms can of course be de-
signed for specific constraints. For instance, there exists a specialized algorithm
for binary disjoint&length-lex constraint with O(1) overhead. Space constraints
do not allow us to describe it in detail. The key observation is by disjointness,
we include the ordering constraint by considering the first element only.

4 Dual Modeling for Length-Lex Set Variables

This section considers fully interchangeable set-CSPs in which both the vari-
ables and the values are fully interchangeable. In the 0/1 matrix formulation,
these symmetries are broken by imposing a lexicographic ordering on both the
rows and columns. It is guaranteed that some solutions of each symmetry class
remains after this process. Since the length-lex representation provides a total
ordering on its sets, it also provides an ideal vehicle to break symmetries and we
would like to use a similar technique with length-lex variables. Variable symme-
tries can be broken by imposing an ordering on the set variables. If the values

Evaluation of Length-Lex Set Variables 825

Table 2. Preserving the length-lex ordering by padding dummy elements

Original 0/1 of Original Padded 0/1 of Padded
w {1,3} {1,0,1,0} {-4,-3,1,3} {1,1,0,0,1,0,1,0}
x {3,4} {0,0,1,1} {-4,-3,3,4} {1,1,0,0,0,0,1,1}
y {1,2,4} {1,1,0,1} {-4,1,2,4} {1,0,0,0,1,1,0,1}
z {1,3,4} {1,0,1,1} {-4,1,3,4} {1,0,0,0,1,0,1,1}

are also interchangeable, we can consider the dual problem and impose an or-
dering on the dual variables. Unfortunately, it is unclear whether enforcing the
length-lex ordering on both variables and values will still leave some solutions
in each symmetry class, since the length-lex ordering is different from the lex
ordering (See Example 6 below). The contribution of this section is to show that
imposing a double length-lex ordering on a fully interchangeable set-CSP does
not eliminate all solutions in each symmetry class.

Definition 6 (Set-CSP). A set-CSP is a pair 〈V × D, C〉, where V denotes
the set of variables, D denotes the universe for these variables. An (primal)
assignment γ : V → P(D) maps variables to sets. C : (V → P(D)) → bool is a
constraint that specifies which assignments are solutions (i.e. C(γ) = true).

Definition 7 (Fully Interchangeable Set-CSP). A set CSP is fully inter-
changeable if and only if when γ is a solution, for any bijective σ : V → V
and τ : D → D, and a mapping function φf (s) = {f(e)|e ∈ s}, assignment
γ′ = φτ ◦ γ ◦ σ is also a solution.

The key observation is that, when sets are of the same cardinality, their length-
lex order is equivalent to the lexicographic order. By padding some dummy
elements to make all sets the same size, we can reduce the length-lex ordering
technique to the lexicographic order of 0/1 matrices.

Example 6. Table 2 illustrates difference between length-lex and lex ordering
for a universe U(4) and four sets w, x, y, z. The first column shows the sets in
length-lex order. These sets are not in lex-order as x >lex y. The 0/1 character-
istic function (second column) is not in anti-lex-order either since x <lex y. By
padding dummy elements (third column), the sets are in both length-lex-order
and lex-order and their 0/1 characteristic functions are in anti-lex order.

The formal definition of padding is as follows.

Definition 8 (Padding). We abuse the notation of a universe to allow nega-
tive value element, such that U ′(n) = {−n, ...,−1, 1, ..., n}. padn : P(U(n)) →
P(U ′(n)) maps a set to a n-set padded by dummy elements. Formally, given
s ⊆ U(n) and c = |s|, padn(s) ≡ {−n, ...,−(c + 1), s1, ..., sc}.

Lemma 4. Suppose s, t ⊆ U(n). s � t⇔ padn(s) ≤lex padn(t).

Proof. Trivial when |s| = |t|. When |s| < |t|, denote s′ = padn(s), t′ = padn(t),
observe that s′1..n−|t| = t′1..n−|t| as they are dummy elements. s′n−|t|+1 is a dummy
negative element, whilst t′n−|t|+1 = t1, Hence s′ ≤lex t′.
�

826 J. Yip and P. Van Hentenryck

Definition 9 (Double Length-Lex Primal/Dual Set-CSP). Let 〈PM ×
N, C〉 be a CSP where PM = {P1, ..., Pm} are (primal) set variables and N =
{1, ..., n}. Its double length-lex primal/dual version is defined as 〈PM×N3QN×
M, C′〉 where QN = {Q1, ..., Qn} are the dual set variables, M = {1, ..., m} and

C′ ≡ C ∧ (P1 � . . . � Pm) ∧ (Q1 � . . . � Qn) ∧
∧

i∈N,j∈M

(j ∈ Pi ⇔ i ∈ Qj)

Theorem 2. Given a fully interchangeable CSP, its double length-lex primal/dual
version does not eliminate all solutions in each symmetry class.

Proof. (sketch) Consider a solution γ, transform it to γ′ = padmax(n,m)◦γ. Every
sets in the range of γ′ are of the same cardinality. The case reduces to the double
anti-lex ordering in the 0/1 matrix model.
�

5 Experimental Evaluation

This section compares the length-lex set domain with other set-variable rep-
resentations in four standard benchmarks: The Social Golfer (SG), Error Cor-
recting Code (EC), Steiner System(SS) and Balanced Incomplete Block Design
(BI) problems. The goal is to compare the performance (time and failures) be-
tween different domain representations (see Table 3). We try our best to compare
different static modeling techniques under the same search strategy (with few
explicitly stated exceptions). For some techniques (like the ROBDD domain),
a variety of approaches and search strategies were proposed and it is impos-
sible to list all results. Hence we choose the best overall approaches as stated
by the authors. Correspondingly, in Table 3, symbol ◦ indicates the compared
approaches, while symbol × denotes the fact that the corresponding papers also
evaluate this benchmark but the results is not included in our comparison for
space reasons. The column tl indicates the time limit in seconds (timeout in-
stances are denoted as −1) and the column cpu denotes the processor type and
speed used. No existing approach, except ours, was evaluated on all benchmarks.
On all benchmarks, the search heuristic of our algorithm uses a simple static or-
dering. Note that dynamic symmetry-breaking techniques are available for some
of these benchmarks but such comparison is out of the scope of this paper.

Social Golfer Problem. Figure 2 gives the social golfer model in Comet which
takes 3 parameters nbgroup, nbsize, and nbweek. X[w,i] is the primal set vari-
able representing the i-th group in w-th week and Y[g] is the dual set variable
denoting the groups assigned to golfer g. Like most approaches, the search ini-
tially fixes some variables due to the symmetries, i.e., the first week and first
group of the second week in the primal model and the first nbsize players in the
dual model. The search first instantiates the first group of every week, then per-
forms a week-wise labeling (except for 6-5-5, where a simple week-wise labeling
is used).

The length-lex representation gives very robust results. It quickly solves all
instances that other approaches can solve. Compared to ROBDD, length-lex is

Evaluation of Length-Lex Set Variables 827

Table 3. Evaluation Overview

Name Abbrev. SG EC SS BI tl cpu
Length-Lex/seq Length-Lex ◦ ◦ ◦ ◦ 900 C2D–M 2.53GHz

ROBDD-split/seq [9] Split/seq ◦ × × 600 P4 2.8GHz
ROBDD-split/minDom [9] Split/dyn ◦ 600 P4 2.8GHz
ROBDD-domain/seq [9] Domain/seq × ◦ ◦ 600 P4 2.8GHz
ROBDD-bound/seq [9] Bound/seq × × ◦ 600 P4 2.8GHz

Pair-atmost-1/minDom [21] Pair/dyn ◦ Xeon 3.8GHz
Dual-subset-Bound/seq [5][6] Subset/seq × ◦ 240 P4 2GHz

Dual-hybrid/seq [5][6] Hybrid/seq × ◦ 240 P4 2GHz
Cardinal/seq [4] Card/seq ◦ 900 P4 2.4GHz

Cardinal/minDom [4] Card/dyn ◦ 900 P4 2.4GHz
Dual-set-int/minDom [14] Set-int/dyn ◦ × 7200 Sun Blade 1000

Valprec+dual/minDom [14] Valprec/dyn × ◦ 7200 Sun Blade 1000
0/1-Matrix-lex-sum/seq [8][22] Lex-sum/seq × ◦ ◦ 3600 PIII 1GHz

0/1-Matrix-lex/seq [8][22] Lex/seq × × ◦ 3600 PIII 1GHz
Max-Variety/maxDeg [23] VM/dyn ◦ Ultra60 360MHz

var<CP>{set{int}} X[Weeks,Groups](cp,Golfers,nbsize);

var<CP>{set{int}} Y[Golfers](cp,WeekGroups,nbweek);

solve<cp> {

forall(w in Weeks, i in Groups, j in Groups: i < j)

cp.post(lldisjointLeq(X[w,i],X[w,j]));

forall(w in Weeks, wo in Weeks: w < wo, i in Groups, j in Groups)

cp.post(llatmostIntersection(X[w,i],X[wo,j],1));

forall(w in Weeks: w < Weeks.getUp())

cp.post(llatmostIntersectionLeq(X[w,1],X[w+1,1],1));

cp.post(llchanneling(all(w in Weeks, g in Groups) X[w,g],Y));

forall(g in Golfers: g < Golfers.getUp())

cp.post(llleq(Y[g],Y[g+1]));

}

Fig. 2. Model of Social Golfer Problem in Comet

significantly faster. It dramatically outperforms (in speed and in the explored
nodes) Cardinal and Set-int/dyn, a dual-modeling approach using integer dual
variables. Pair-at-most-1 uses the subset-bound representation and some de-
composition ideas which were inspired by length-lex. In general, length-lex also
dominates this approach significantly in time and in explored nodes, except on
10-3-* problems for which it is roughly similar when machines are scaled (We
run our tests on an energy efficient mobile processor, while Pair-at-most-1 is on
non-consumer-level Xeon processor with a significantly faster processor speed).

Error Correcting Code Problem. The error correcting code problem is a chal-
lenging optimization problem which requires to explore the entire search tree to
prove the optimality. This benchmark was first proposed in [5] in which only a
graph is reported, making it impossible to compare on an instance-by-instance
basis. The ROBDD approach was able to prove the optimality of 51 instances

828 J. Yip and P. Van Hentenryck

Table 4. Social Golfer Problem
Length-Lex Split/seq Split/dyn Set-int/dyn Card/dyn Pair/dyn

g,s,w Time Fails Time Fails Time Fails Time Fails Time Time Fails
4,2,4 0.01 0 0.19 266
4,2,5 0.01 0 0.52 884
4,2,6 0.01 0 0.51 721
4,2,7 0.01 0 0.15 97
4,3,4 0.01 10 0.81 3222
4,3,5 0.40 732 32.1 5165 26 3812 165.63
4,3,6 0.02 29 23 2132 15.2 1504 94.67
4,4,4 0.06 111 8.11 15759
4,4,5 0.05 57 5.63 7510
5,2,3 0.01 0 1.07 521
5,2,4 0.01 0 78.46 95063
5,2,5 0.01 0 1956.71 2554588
5,2,6 0.01 0
5,2,7 0.02 1
5,2,8 0.02 1
5,2,9 0.02 1 6841.59 3895064
5,3,3 0.01 1 140.06 491452
5,3,4 0.01 1
5,3,5 0.02 5
5,3,6 0.41 316 1.5 82 1 34 -1
5,3,7 74.59 46117 13.1 528 -1
5,4,2 0.01 11 0.1 0 0.1 0 0.83
5,4,3 0.02 24 0.3 0 0.3 0 98.23 658755 1.89
5,4,4 0.14 194 0.6 0 0.6 0 4770.94 30802587 3.13
5,4,5 1.87 1947 2.3 41 1.7 18 28.65
5,5,3 0.06 93 0.46 1418
5,5,4 4.72 6876 2.1 13009
5,5,5 54.27 50623
5,5,6 29.21 15769
5,5,7 0.01 1 0.4 0 0.4 0 -1
6,3,2 0.00 0 1.16 30
6,3,3 0.01 1
6,3,4 0.01 1
6,3,5 0.02 6
6,3,6 0.04 10 1.4 0 1.3 7 1.2
6,4,2 0.01 14 0.1 0 0.1 0 0.99 45 1.75
6,4,3 0.03 42 1.4 0 0.9 0 4.62
6,5,2 0.05 118 0.1 60 17.2 171664
6,5,3 2.54 3351 29.6 197607
6,5,4 32.60 31270 80.7 0 40.1 0 -1 39.7 197837
6,5,5 28.76 6758 75.5 239966
6,6,3 0.82 661 414.16 1521747
7,2,2 0.01 0 0.69 21
7,3,2 0.01 1 58.94 42
7,4,2 0.01 0 0.4 0 0.4 0 236.73 63 2.82
7,4,3 0.03 21 8.4 0 1.7 0 6.37
7,4,4 0.05 26 481.6 5.1 0 12.46 4.4 27877
7,4,5 0.36 152 -1 -1 12.8 0 17.18
7,5,2 0.31 574 42.98 84
7,6,2 0.78 1271 0.53 105
7,7,2 0.28 0 0.7 308
8,3,5 34.52 45477 7.8 0 3.9 0 1.01
8,4,4 0.06 18 157.7 738393
8,5,2 0.25 307 1.6 0 1.6 0 -1
9,4,4 0.21 94 -1 -1 107.4 0 42.45
10,3,6 5.86 2941 17.3 57364
10,3,9 233.80 45437 52.4 78613
10,3,10 210.80 25246 67.2 78976
10,4,4 0.27 104 4 22043
10,4,5 0.58 149 4.5 22044

Evaluation of Length-Lex Set Variables 829

Table 5. Error Correcting Code: 11 Difficult Cases(Left), 51 Easy Cases(Right)

Length-lex Domain
l,d,w Time Fails Time Fails
8,4,4 0.07 110 1.6 224
9,4,3 2.05 4617 11.3 5615
9,4,6 0.40 908 25.4 16554
10,6,5 0.034 158 26.7 16635
9,4,4 -1 -1 -1 -1
9,4,5 -1 -1 -1 -1
10,4,3 359.3 629822 -1 -1
10,4,4 -1 -1 -1 -1
10,4,5 -1 -1 -1 -1
10,4,6 -1 -1 -1 -1
10,4,7 1.99 4415 -1 -1

Length-Lex Domain
time fails time fails

Mean 0.0060 5.92 0.2 210.7
Total 0.31 11.4
min 0.0038 1 0.03 0

25 percentile 0.0042 1 0.03 0
median 0.0046 1 0.04 2

75 percentile 0.0053 1 0.06 25
max 0.47 134 4.16 3740

Table 6. Experimental Results on the Steiner Triple System

Length-Lex Bound/seq Domain/seq Lex-sum/seq Card/seq Valprec/dyn
n Time Fails Time Fails Time Fails Time Fails Time Time Fail
7 0.002 0 < 0.1 8 < 0.1 8 0 1 0.01 0 12
9 0.009 1 0.2 325 0.1 9 0.1 250 0.05 0.03 153
13 0.05 10 -1 -1 109.2 24723 0.61 1738.24 3935567
15 0.089 0 0.4 56 1.3 0 0.91
19 0.459 164 7.94
21 1.04 448 39.07
25 14.074 5100
27 23.548 7066
31 5.289 0 23.3 280 -1 -1 48.52

(compared to 48 in [5]) with a shorter total time. Hence we compare length-lex
with the ROBDD approach. The authors claimed there are 11 difficult instances
(see Table 5 (Left)) that not all ROBDD-based solvers are able to solve. One
of them was able to solve 4. Length-lex solves 6 of the difficult instances and
is significantly faster. For the easy instances, length-lex is more than 30 times
faster than the ROBDD approach to solve all instances (Table 5 (Right)).

Steiner System. The Steiner triple system is a special class of Steiner system
(with t = 2, k = 3) which has drawn more attention. Hence, the results are given
in two tables. Table 6 depicts the results for the Steiner triple system, while
Table 7 shows the results for the remaining instances. For the triple system, the
search adopted the labeling technique of [4](and [22]), which assigns the small-
est available value to the first possible domain (column-wise labeling). Under
our set dual modeling approach, it is equivalent to label the dual variables se-
quentially. Length-lex solves all instances and outperforms other representations
significantly. For the remaining instances, the search uses the standard sequen-
tial labeling. Once again, length-lex is the most robust representation and is able
to solve all instances efficiently.

830 J. Yip and P. Van Hentenryck

Table 7. Experimental Results on the Steiner System

Length-Lex Bound/seq Domain/seq Hybrid/seq Subset/seq
t,k,n Time Fails Time Fails Time Fails Time Fails Time Fails
2,4,13 0.008 0 0.1 157 0.1 0 0.14 0 0.02 1
2,4,16 0.14 98 421.4 522706 0.6 15
2,5,21 0.04 0 0.5 413 1.4 0 2.83 0 0.1 0
2,6,16 0.005 1 -1 -1 80.7 15205
3,4,8 0.006 0 0.1 18 0.1 0 0.08 2 0.03 8
3,4,16 3.43 0 9.7 274 548.7 0 54.69 132 7.11 240
3,6,22 2.84 0 8.3 1608 -1 -1 54.98 42 2.47 92

Table 8. Experimental Results on Balanced Incomplete Block Design

Length-Lex VM/dyn Lex/seq Lex-sum/seq
v,b,r,k,l Time Fails Time Nodes Time Fails Time Fails

6,20,10,3,4 0.009 1 0.033 61 0 43 0 43
6,30,15,3,6 0.018 1 0.14 95 0.1 68 0.1 68
6,40,20,3,8 0.041 3 0.39 128 0.1 108 0.1 108
6,80,40,3,16 0.82 32 3.6 245 0.1-1 100-1000
7,21,9,3,3 0.008 0 0.045 75 0 42 0 42
7,28,12,3,4 0.010 0 0.12 86 0.1 64 0.1 64
7,35,15,3,5 0.012 0 0.27 109 0.1 88 0.1 88
7,42,18,3,6 0.015 0 0.48 139 0.2 115 0.2 115
7,84,36,3,12 0.040 0 4.2 254 0.1-1 100-1000
7,91,39,3,13 0.047 0 5.4 280 0.1-1 100-1000
9,24,8,3,2 0.012 1 0.1 48 0.1 48
9,72,24,3,6 0.17 27 2.7 252 0.1-1 100-1000
9,84,28,3,7 0.30 43 4.2 257 1 - 10 1000-10000
9,96,32,3,8 0.50 66 6.3 296 1 - 10 1000-10000
9,108,36,3,9 0.80 97 14 365 1 - 10 1000-10000
9,120,40,3,10 1.27 138 14 268 1 - 10 1000-10000
10,90,27,3,6 1.05 150 5.3 289 1 - 10 100-1000
10,120,36,3,8 4.77 576 13 377 1 - 10 1000-10000
11,110,30,3,6 7.66 1192 16 366 1 - 10 100-1000
12,88,22,3,4 5.65 1173 5.1 296 1 - 10 100-1000
13,52,12,3,2 0.11 15 2.9 218 0.1-1 100-1000
13,78,18,3,3 0.47 78 3.5 282 0.1-1 100-1000
13,104,24,3,4 1.52 207 8.7 344 1 - 10 100-1000
15,21,7,5,2 24.78 16891 10 - 100 105 − 106

15,70,14,3,2 0.11 0 5.5 383 0.1-1 100-1000
16,32,12,6,4 3.84 980 10 - 100 106 − 107

16,80,15,3,2 0.68 148 4.7 485 1 - 10 100-1000
19,57,9,3,1 0.13 6 8.2 802 1 - 10 100-1000
22,22,7,7,2 74.26 21552 10 - 100 105 − 106

Balanced Incomplete Block Design Problem. For this problem, we give a com-
prehensive list containing instances from [23] and [8] (some small and trivial
instances were removed due to space constraints). VM/dyn is a randomized ap-
proach with a maximum node limit 10000. Every instance was run 50 times and
not all instances finishes within the limit and only the average time and nodes
of the successful instances was reported in [23]. Lex/seq gives only a logarithmic

Evaluation of Length-Lex Set Variables 831

scale for most instances and we can only report the time and number of fails as
a range, [22] gives the number of fails for some smaller instances as well. Note
that this is the first result of a set representation on the BIBD problem and the
length-lex representation is robust and effective.

6 Conclusion

This paper presented the first experimental evaluation of the length-lex domain
for set variables. The implementation was based on two novel technical con-
tributions: a generic propagation algorithm which pushes the length-lex order-
ing constraint into any symmetric binary constraints and an adaptation of the
symmetry-breaking technique from 0/1 matrices to the length-lex ordering. The
resulting implementation, which consists of 18,000 lines of C++, demonstrates
that the length-lex representation for set variables is robust and efficient across
the standard benchmarks.

References

1. Puget, J.F.: Pecos a high level constraint programming language. In: Proc. of Spicis
(1992)

2. Gervet, C.: Interval propagation to reason about sets: Definition and implementa-
tion of a practical language. Constraints 1(3), 191–244 (1997)

3. Azevedo, F., Barahona, P.: Modelling digital circuits problems with set constraints.
In: CP 2000, pp. 414–428 (2000)

4. Azevedo, F.: Cardinal: A finite sets constraint solver. Constraints 12(1), 93–129
(2007)

5. Sadler, A., Gervet, C.: Hybrid set domains to strengthen constraint propagation
and reduce symmetries. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 604–
618. Springer, Heidelberg (2004)

6. Sadler, A., Gervet, C.: Enhancing set constraint solvers with lexicographic bounds.
J. Heuristics 14(1), 23–67 (2008)

7. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetries in matrix models. In: Van Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 462–476. Springer, Heidelberg (2002)

8. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algorithms
for lexicographic ordering constraints. Artificial Intelligence (170) (2006)

9. Peter Hawkins, V.L., Stuckey, P.J.: Solving set constraint satisfaction problems
using robdds. JAIR 24, 109–156 (2005)

10. Gervet, C., Van Hentenryck, P.: Length-lex ordering for set csps. In: AAAI 2006
(2006)

11. Hnich, B., Kiziltan, Z., Walsh, T.: Combining symmetry breaking with other con-
straints: Lexicographic ordering with sums. In: AMAI 2004 (2004)

12. Cheng, B.M.W., Choi, K.M.F., Lee, J.H.M., Wu, J.C.K.: Increasing constraint
propagation by redundant modeling: an experience report. Constraints 4(2), 167–
192 (1999)

13. Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems.
In: ECAI 1992, pp. 31–35 (1992)

832 J. Yip and P. Van Hentenryck

14. Law, Y.C., Lee, J.H.M.: Symmetry breaking constraints for value symmetries in
constraint satisfaction. Constraints 11 (2006)

15. Puget, J.F.: An efficient way of breaking value symmetries. In: AAAI 2006 (2006)
16. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.) CP

2006. LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006)
17. Van Hentenryck, P., Yip, J., Gervet, C., Dooms, G.: Bound consistency for binary

length-lex set constraints. In: AAAI 2008, pp. 375–380 (2008)
18. Yip, J., Van Hentenryck, P.: Length-lex bound consistency for knapsack con-

straints. In: SAC 2009 (2009)
19. Malitsky, Y., Sellmann, M., van Hoeve, W.J.: Length-lex bounds consistency for

knapsack constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 266–
281. Springer, Heidelberg (2008)

20. Katsirelos, G., Narodytska, N., Walsh, T.: Combining symmetry breaking and
global constraints. In: CSCLP 2008 (2009)

21. van Hoeve, W.J., Sabharwal, A.: Filtering atmost1 on pairs of set variables. In: Per-
ron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 382–386. Springer,
Heidelberg (2008)

22. Kiziltan, Z.: Symmetry breaking ordering constraints. Phd Thesis. Uppsala Uni-
versity

23. Meseguer, P., Torras, C.: Exploiting symmetries within constraint satisfaction
search. Artificial Intelligence 129(1-2), 133–163 (2001)

The Complexity of Valued Constraint Models�

Stanislav Živný and Peter G. Jeavons

Computing Laboratory, University of Oxford, Oxford, UK
{stanislav.zivny,peter.jeavons}@comlab.ox.ac.uk

Abstract. The Valued Constraint Satisfaction Problem (VCSP)
is a general framework encompassing many optimisation problems. We
discuss precisely what it means for a problem to be modelled in the
VCSP framework. Using our analysis, we show that some optimisation
problems, such as (s, t)-Min-Cut and Submodular Function Min-
imisation, can be modelled using a restricted set of valued constraints
which are tractable to solve regardless of how they are combined. Hence,
these problems can be viewed as special cases of more general prob-
lems which include all possible instances using the same forms of valued
constraint. However, other, apparently similar, problems such as Min-
Cut and Symmetric Submodular Function Minimisation, which
also have polynomial-time algorithms, can only be naturally modelled
in the VCSP framework by using valued constraints which can repre-
sent NP-complete problems. This suggests that the reason for tractabil-
ity in these problems is more subtle; it relies not only on the form of
the valued constraints, but also on the precise structure of the problem.
Furthermore, our results suggest that allowing constant constraints can
significantly alter the complexity of problems in the VCSP framework,
in contrast to the CSP framework.

1 Introduction

The study of combinatorial optimisation traditionally considers a range of spe-
cific problem types, including integer programming problems, problems on graphs
and networks, and Boolean problems [2], such as submodular function minimisa-
tion [14]. An important issue for any combinatorial optimisation problem is how to
choose an effective representation, which can be crucial to the efficiency of solving
the problem.

The valued constraint satisfaction problem (VCSP) is a single generic
framework, for modelling a wide range of optimisation problems [1,11,12].

Our aim in this paper is to investigate which standard combinatorial optimi-
sation problems can be modelled in the VCSP framework, and whether finding
such models sheds new light on the complexity of these problems. We will focus
on Boolean problems (i.e., each variable can take one of two possible values),
which are equivalent to minimising functions defined on sets.

We need to be a little careful in defining what it means for a problem to
be modelled in the VCSP framework: we clearly need to exclude modelling
� Stanislav Živný is supported by EPSRC grant EP/F01161X/1.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 833–841, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

834 S. Živný and P.G. Jeavons

procedures that simply obliterate the structure of the problem we are attempting
to model. For example, simply finding a solution to each given instance (using
some algorithm) and then creating a VCSP instance which allows precisely that
solution is not a useful approach to modelling. The standard way of excluding
such pathological approaches is to limit the computational resources allowed
to transform the problem from one representation to another. However, when
dealing with tractable problems, we also need a suitably tight definition of what it
means for a problem to be modelled in the VCSP framework. (More on modelling
via constraints can be found in [15].)

In this paper we shall say that we have a VCSP model for a given com-
binatorial optimisation problem if the entire function to be minimised in that
problem is expressible using some collection of valued constraints (in a precise
sense defined below; note that this notion of expressibility was a major tool in the
complexity analysis of a wide variety of Boolean constraint problems carried out
by Creignou et al. [5], where it was referred to as implementation). We show that
many standard problems can be modelled in this way. Moreover, some problems,
including for example the (s, t)-Min-Cut problem and the problem of Submod-
ular Function Minimisation, can be modelled using very restricted forms of
constraints. In fact the forms of constraints needed to model these problems are
sufficiently restricted that they can be solved in polynomial time regardless of
how they are combined. Hence, these problems can be viewed as special cases of
more general problems which include all possible instances using the same forms
of valued constraint.

On the other hand, we show that other apparently similar problems, which also
have polynomial-time algorithms, can only be modelled using forms of constraint
which are powerful enough to represent NP-complete problems. Our examples
include the standard Min-Cut problem. This result indicates that the reason for
the tractability of such problems relies on the precise structure of the problem
and not just the form of the individual constraints. Such problems provide a
fresh incentive to develop the theoretical analysis of the complexity of valued
constraint problems, which currently has very little to say about such “hybrid”
reasons for tractability.

2 Background

Given some fixed set D, a function from Dk to Q+, where Q+ is the set of all
positive rational numbers together with infinity will be called a cost function.

Definition 1. An instance P of VCSP is a triple 〈V, D, C〉, where V is a finite
set of variables, which are to be assigned values from the set D, and C is a set
of valued constraints. Each constraint c ∈ C is a pair c = 〈σ, φ〉, where σ is a
tuple of variables of length |σ|, called the scope of c, and φ : D|σ| → Q+ is a cost
function. An assignment for the instance P is a mapping s from V to D. The
cost of an assignment s is defined as follows:

The Complexity of Valued Constraint Models 835

CostP (s) =
∑

〈〈v1,v2,...,vm〉,φ〉∈C
φ(〈s(v1), s(v2), . . . , s(vm)〉).

A solution to P is an assignment with minimum cost.

The VCSP is a very general framework which allows us to describe many opti-
misation problems, including many NP-hard problems [11]. Any set, Γ , of cost
functions is called a valued constraint language. The class VCSP(Γ) is defined
to be the class of all VCSP instances where the cost functions of all valued con-
straints lie in Γ . The complexity of a valued constraint language Γ is defined as
the complexity of VCSP(Γ). A valued constraint language Γ is called tractable
if VCSP(Γ ′) is solvable in polynomial time for every finite Γ ′ ⊆ Γ , and Γ is
called intractable if VCSP(Γ ′) is NP-hard for some finite subset Γ ′ ⊆ Γ . Many
examples of tractable valued constraint languages have now been identified [4].

Definition 2. For anyVCSP instanceP = 〈V, D, C〉, and any list l = 〈v1, . . . , vm〉
of variables of P, the projection of P onto l, denoted πl(P), is the m-ary cost func-
tion defined as follows:

πl(P)(x1, . . . , xm) = min
{s:V →D|〈s(v1),...,s(vm)〉=〈x1,...,xm〉}

CostP(s).

We say that a cost function φ is expressible over a valued constraint language
Γ if there exists an instance P ∈ VCSP(Γ) and a list l of variables of P such
that πl(P) = φ.

We denote by 〈Γ 〉 the expressive power of Γ , which is the set of all cost functions
expressible over Γ up to additive and multiplicative constants.

Theorem 3 ([4]). For any valued constraint language Γ and any cost function
φ expressible over Γ , VCSP(Γ) and VCSP(Γ ∪{φ}) are linear-time equivalent.

3 Boolean Optimisation Problems

In this section we recall some standard Boolean optimisation problems.

(s, t)-Min-Cut: For a directed graph G = 〈V, E〉 with weights w : E → Q+,
s, t ∈ V , C is an (s, t)-cut if C ⊆ V , s ∈ C and t �∈ C. The weight of C
is
∑

(u,v)∈E,u∈C,v
∈C w(u, v). The (s, t)-Min-Cut problem consists in finding
the minimum-weight (s, t)-cut. A cubic-time algorithm (in the number of
vertices) based on network flows is known for this problem [6].

Min-Cut: For an undirected graph G = 〈V, E〉 with weights w : E → Q+, C is
a cut if C ⊆ V . The weight of C is defined as above. The Min-Cut problem
consists in finding the minimum-weight cut C such that C �= ∅ and C �= V .
Using the cubic-time algorithm for the (s, t)-Min-Cut problem [6], one can
easily construct an algorithm for the Min-Cut problem of order O(n4). A
purely combinatorial cubic-time algorithm which is not based on network
flows is also known for this problem [16].

836 S. Živný and P.G. Jeavons

Submodular Function Minimisation (SFM): A function ψ defined on sub-
sets of a set V is called a submodular function [14] if, for all subsets S and
T of V , ψ(S ∩ T) + ψ(S ∪ T) ≤ ψ(S) + ψ(T). The problem of Submodu-
lar Function Minimisation (SFM) consists in finding a subset S of V
for which the value of ψ(S) is minimal. It is a central problem in discrete
optimisation, with links to many different areas [14]. The time complexity
of the fastest published algorithm for SFM is O(n5EO + n6) where n = |V |
and EO is the time to evaluate ψ(S) for some S ⊆ V [9,7].

(s, t)-SFM: Given a submodular function ψ defined on subsets of a set V ,
and two elements s, t ∈ V , the problem of (s, t)-Submodular Function
Minimisation consists in finding a nonempty subset S of V such that s ∈ S,
t �∈ S, and the value of ψ(S) is minimal.

Proposition 4. (s, t)-SFM is linear-time equivalent to SFM.

Proof. First we show that (s, t)-SFM is reducible to SFM. Clearly, S ⊂ V
is a solution to an instance 〈V, ψ〉 of (s, t)-SFM if and only if S \ {s} is a
solution to the instance 〈V \{s, t}, ψ〉 of SFM where ψ(U) = ψ(U ∪{s}). On
the other hand, S ⊆ V is a solution to an instance 〈V, ψ〉 of SFM if and only
if S ∪ {s} is a solution to the instance 〈V ∪ {s, t}, ψ〉 of (s, t)-SFM, where
ψ(U) = ψ(U \ {s}).
�

Symmetric SFM (SSFM): Given a submodular function ψ defined on sub-
sets of a set V , we say that ψ is symmetric if for every U ⊆ V , ψ(U) =
ψ(V \ U). Note that ψ(∅) = ψ(V) ≤ ψ(U) for every U ⊆ V . Symmet-
ric Submodular Function Minimisation consists in finding a nonempty
proper subset S of V for which the value of ψ(S) is minimal. Queyranne ex-
tended the cubic-time algorithm for the Min-Cut problem mentioned above
to obtain a purely combinatorial cubic-time algorithm for SSFM [10].

(s, t)-SSFM: Given a symmetric submodular set function ψ on subsets of V
and two elements s, t ∈ V , the problem of (s, t)-Symmetric Submodular
Function Minimisation consists in finding a proper nonempty subset S
of V , where s ∈ S and t �∈ S, for which the value of ψ(S) is minimal.

Similarly to the proof of Proposition 4, it can be easily shown that SSFM
is reducible to (s, t)-SSFM.

Proposition 5 ([10]). SFM is linear-time reducible to (s, t)-SSFM.

However, using the same proof idea as Proposition 4 does not show that
(s, t)-SSFM is reducible to SSFM (as it seems difficult to preserve two
properties, namely being submodular and symmetric, at the same time).1

Moreover, Proposition 5 shows that (s, t)-SSFM is as hard as SFM, so
a time-complexity-preserving reduction from (s, t)-SSFM to SSFM would
make SFM equivalent to SSFM, which would yield a cubic-time algorithm
for SFM. This would be a major advance in discrete optimisation.

1 More on the relationships between SFM, SSFM and (s, t)-SSFM can be found in [8].

The Complexity of Valued Constraint Models 837

4 Modelling in the VCSP Framework

It is easy (and standard) to see that any set function ψ defined on subsets of
V = {v1, . . . , vn} can be associated with a function φ : {0, 1}n → Q+ defined as
follows: for each tuple t ∈ {0, 1}n, set φ(t) = ψ(T), where T = {vi | t[i] = 1}
(moreover, if U ⊆ V is forbidden, then set ψ(T) =∞).

Note that the submodularity condition on a set function ψ is equivalent to the
following condition on the associated Boolean function φ: for every two tuples
s, t ∈ {0, 1}n, φ(Min(s, t)) + φ(Max(s, t)) ≤ φ(s) + φ(t), where both Min and
Max are applied coordinate-wise. We therefore call a cost function φ satisfying
this condition submodular. We now define a precise notion of what it means to
model a problem in the VCSP framework. This notion is designed to rule out
pathological cases and ensure that the models we allow do provide some insight
into the nature of the problem being modelled.

Definition 6. Let P be a problem which consists in minimising a given function
ψ defined on the subsets of a given set V , and let φ be the associated Boolean
cost function, as defined above. We say that P can be e-modelled by VCSP(Γ)
if φ can be expressed over Γ .

In other words, a problem P can be e-modelled by VCSP(Γ) if, for any instance
〈{v1, v2, . . . , vn}, ψ〉 of P , there is an instance I = 〈W, {0, 1}, C〉 of VCSP(Γ),
and a list of variables 〈wv1 , wv2 , . . . , wvn〉 ⊆ W , such that for any S ⊆ V , the
minimal cost over all assignments for I which assign each variable wvi the value
0 or 1 according to whether or not vi ∈ S, is equal to ψ(S).

Theorem 7

– (s, t)-Min-Cut, SFM, (s, t)-SFM, and (s, t)-SSFM can be e-modelled by
VCSP(Γ), by a suitable choice of tractable valued constraint language Γ .

– Min-Cut and SSFM can be e-modelled by VCSP(Γ), but only by using an
intractable language Γ .

Proof. Consider first the (s, t)-Min-Cut problem. We have to prove that there
exists a tractable valued constraint language Γcut such that (s, t)-Min-Cut can
be e-modelled by VCSP(Γcut). For any w ∈ Q+, we define the binary cost
function λw as λw(x, y) = w if 〈x, y〉 = 〈0, 1〉, and 0 otherwise. For each d ∈ {0, 1}
and each c ∈ Q+, we define the unary cost function μc

d as μc
d(x) = c if x �= d,

and 0 otherwise. Now let Γcut consist of all λw and μc
u for w ∈ Q+, c ∈ Q+ and

d ∈ {0, 1}.
Now consider any instance of (s, t)-Min-Cut with graph G = 〈V, E〉 and

weight function w : E → Q+. Define a corresponding instance I of VCSP(Γcut)
as I = 〈V, {0, 1}, {〈〈i, j〉, λw(i,j)〉 | 〈i, j〉 ∈ E} ∪ {〈s, μ∞

0 〉, 〈t, μ∞
1 〉}〉. Note that in

any solution to I the source and target nodes, s and t, must take the values 0 and
1, respectively. Moreover, the weight of any cut containing s and not containing
t is equal to the cost of the corresponding assignment to I. Hence we have shown
that (s, t)-Min-Cut can be e-modelled by VCSP(Γcut).

838 S. Živný and P.G. Jeavons

On the other hand, we claim that VCSP(Γcut) can be reduced to (s, t)-Min-
Cut in linear time as follows: any unary constraint on variable v with cost
function μc

0 (respectively μc
1) is represented by an edge of weight c from the

source node s to node v (respectively, from node v to the target node t). Any
binary constraint on variables v1, v2 with cost function λw is represented by an
edge of weight w from nodes v1 to v2. Hence VCSP(Γcut) has the same time
complexity as (s, t)-Min-Cut.

Next we consider the SFM problem. Let Γsub be the valued constraint lan-
guage which consists of all submodular cost functions. Because submodular cost
functions may take infinite values, instances of VCSP(Γsub) cannot be sim-
ply solved by standard submodular function minimisation algorithms for finite-
valued submodular functions. However, Cohen et al. showed [4] that VCSP(Γsub)
is polynomial-time reducible to the problem of SFM over a ring family2 which
is known to be equivalent to SFM [13], so Γsub is tractable.

Now we consider the (s, t)-SFM problem. A constant constraint is a unary
constraint μ∞

d for an arbitrary d ∈ D. We denote by Γconst = {μ∞
d | d ∈ D} the

valued constraint language consisting of all constant constraints.
Clearly, (s, t)-SFM can be e-modelled by VCSP(Γsub ∪ Γconst). Also, as con-

stant constraints are submodular, we have Γconst ⊆ Γsub, so (s, t)-SFM can be
e-modelled by VCSP(Γsub) and we have already shown that Γsub is tractable.

Now we consider the Min-Cut problem. To e-model Min-Cut, we can use
the valued constraint language Γcut defined above, and then forbid the empty and
complete cuts by putting a crisp Not-All-Equal constraint over the variables
w1, . . . , wn which represent V . In other words, Min-Cut can be e-modelled by
VCSP(Γcut ∪ Γnae) where Γnae consists of Not-All-Equal constraints of all
possible arities.

However, since Not-All-Equal Satisfiability is NP-complete, it follows
that Γnae is intractable. We now show that for any valued constraint language Γ
which e-models Min-Cut, VCSP(Γ) must be intractable.

Let Γ be a valued constraint language such that Min-Cut can be e-modelled
by VCSP(Γ). Consider an instance of Min-Cut which is a triangle with all
weights set to zero. The empty and complete cuts are forbidden, any other cut has
cost 0, so Γ expresses a Not-All-Equal constraint, and hence is intractable.

Now, let Γssub be the valued constraint language which consists of all symmetric
submodular functions. The SSFM problem can be e-modelled by VCSP(Γssub ∪
Γnae) in a similar way to Min-Cut. However, since Min-Cut is just a special case
of SSFM, it follows from the argument just given that any suitable choice of Γ
will again be intractable.

Finally, we consider the (s, t)-SSFM problem. Similarly to the arguments
above, (s, t)-SSFM can be e-modelled by the language Γssub ∪ Γconst which is a
subset of Γsub.
�

We now examine more closely the language Γssub∪Γconst consisting of symmetric
submodular constraints and constant constraints, which was introduced to model

2 A collection of sets C is called a ring family if C is closed under union and intersection.

The Complexity of Valued Constraint Models 839

the (s, t)-SSFM problem. The following proposition shows that all submodular
constraints can be expressed by this language.

Proposition 8. Γsub = 〈Γssub ∪ Γconst〉.

Proof. Since Γssub ∪ Γconst ⊆ Γsub, it only remains to prove that any submod-
ular function can be expressed by symmetric submodular functions and unary
constant constraints. Our proof is adapted from the construction given in [10].

Let ψ be a submodular function defined on subsets of a set V , with |V | = n.
Let M = Max(ψ(U)|U ⊆ V, ψ(U) < ∞). Define V = V ∪ {s, t} for s, t �∈ V and
ψ as follows:

ψ(U) =

⎧⎨⎩
ψ(U \ {s}) + M(n + 2) if s ∈ U and t �∈ U ,
M | U | if s, t ∈ U ,
ψ(V \ U) if s �∈ U .

It can be shown that ψ is symmetric and submodular, and that S ⊆ V where
s ∈ S and t �∈ S minimises ψ if and only if S \{s} minimises ψ [10]. Hence ψ can
be expressed (up to an additive constant) by ψ and two elements of Γconst.
�

Note that, in the CSP, it has been shown that adding constant constraints to a
tractable language which is a core does not change the complexity (i.e., CSP(Γ)
is linear-time equivalent to CSP(Γ ∪ Γconst), provided Γ is a core) [3]. However,
in the valued constraint case Proposition 8 suggests that the situation may be
rather different: the complexity of the valued language Γssub, consisting of all
symmetric submodular functions, is cubic, whereas adding constant constraints
allows us to express all submodular functions. The best known algorithm for
minimising arbitrary submodular functions is Ω(n6).

The concept of e-modelling we have defined here is designed to avoid trivial
models by requiring the constraints in the model to be capable of expressing
the function being minimised. However, more relaxed notions of modelling can
also yield non-trivial representations, and may provide more flexibility, as the
following result indicates:

Theorem 9. There is a tractable valued constraint language Γ over an infinite
domain such that Min-Cut can be reduced to VCSP(Γ) in linear-time.

Proof. Let D = {〈i, d〉 | i ∈ N, d ∈ {0, 1}}.
For any w ∈ Q+ and k ∈ N, we define the binary cost function λw

k as follows:

λw
k (〈i, d1〉, 〈j, d2〉) =

⎧⎨⎩
∞ if Max(i, j) > k or i �= j,
0 if i = j and d1 = d2,
w otherwise.

Next, for any d ∈ {0, 1} and k ∈ N, we define the unary cost function μk→d as
follows:

μk→d(〈i, x〉) =
{
∞ if i = k and x �= d,
0 otherwise.

840 S. Živný and P.G. Jeavons

Let Γ be the valued constraint language over D consisting of the cost functions
λw

k and μk→d for all w ∈ Q+, k ∈ N and d ∈ {0, 1}. We first show how to reduce
Min-Cut to VCSP(Γ).

Consider an instance of Min-Cut with graph G = 〈V, E〉 (without loss of
generality, without isolated vertices), where V = {v1, . . . , vn}, and weight w(i, j)
for every {vi, vj} ∈ E. We define a corresponding instance I of VCSP(Γ) as
follows. Let I = 〈V, D, C〉, where C = {〈〈vi, vj〉, λw(i,j)

n−1 〉 | i < j, {vi, vj} ∈ E} ∪
{〈v1, μ(i−1)→0〉, 〈vi, μ(i−1)→1〉 | vi ∈ V \ {v1}}.

Clearly, if ∅ �= U � V is a minimum cut of G, then so is V \U . Therefore, we
can assume that v1 ∈ U . Note that a necessary condition for an assignment of
variables of I to have a finite cost is that there exists some i ∈ {1, . . . , n − 1}
such that every variable of I is assigned a value of the form 〈i, .〉. Such an i
forces the variable v1 to be assigned 〈i, 0〉 (i.e., v1 belongs to the cut), and the
variable vi+1 to be assigned 〈i, 1〉 (i.e., vi+1 does not belong to the cut). For the
minimum cut U , there has to be an i ∈ {2, . . . , n} such that vi �∈ U and the
assignment of 〈i − 1, 0〉 to variables in U , and 〈i − 1, 1〉 to variables not in U ,
gives the weight of U . (This construction is similar to the one used in the proof
of Theorem 7 which shows that (s, t)-Min-Cut can be e-modelled.)

It remains to show that Γ is tractable. Let Γ ′ be any finite subset of Γ , and let
k be the biggest number which occurs in the subscript of any λ cost function in
Γ ′. The cost of an assignment to any instance of VCSP(Γ ′) which is of the form
〈i, .〉, for i ∈ {1, . . . , k}, corresponds to the cost of an (s, t)-cut in an associated
graph. Therefore, VCSP(Γ ′) can be solved by solving k instances of the (s, t)-
Min-Cut problem, and hence its time complexity is O(kn3). For a fixed Γ ′ (and
hence a fixed value of k) this is polynomial in the size of the instance.
�

The language Γ used in Theorem 9 has a much higher complexity than Min-
Cut. It is an interesting open question whether Min-Cut can be reduced to
VCSP(Γ) for some Γ with the same complexity as Min-Cut (i.e., such that
VCSP(Γ) is linear-time reducible to Min-Cut).

References

1. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.:
Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison.
Constraints 4, 199–240 (1999)

2. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Applied Mathe-
matics 123(1-3), 155–225 (2002)

3. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34(3), 720–742 (2005)

4. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: The complexity of soft constraint
satisfaction. Artificial Intelligence 170, 983–1016 (2006)

5. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Con-
straint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and
Applications, vol. 7. SIAM, Philadelphia (2001)

6. Goldberg, A., Tarjan, R.: A new approach to the maximum flow problem. Journal
of the ACM 35, 921–940 (1988)

The Complexity of Valued Constraint Models 841

7. Iwata, S., Orlin, J.B.: A Simple Combinatorial Algorithm for Submodular Function
Minimization. In: Proceedings of the 20th SODA, pp. 1230–1237 (2009)

8. Narayanan, H.: A note on the minimization of symmetric and general submodular
functions. Discrete Applied Mathematics 131(2), 513–522 (2003)

9. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function
minimization. Mathematical Programming 118, 237–251 (2009)

10. Queyranne, M.: Minimising symmetric submodular functions. Mathematical Pro-
gramming 82, 3–12 (1998)

11. Rossi, F., van Beek, P., Walsh, T. (eds.): The Handbook of Constraint Program-
ming. Elsevier, Amsterdam (2006)

12. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard
and easy problems. In: Proceedings of the 14th IJCAI, Montreal, Canada (1995)

13. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. of Combinatorial Theory, Series B 80, 346–355 (2000)

14. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and Combinatorics, vol. 24. Springer, Heidelberg (2003)

15. Smith, B.: Modelling. In: The Handbook of Constraint Programming, ch. 11. El-
sevier, Amsterdam (2006)

16. Stoer, M., Wagner, F.: A simple min-cut algorithm. Journal of the ACM 44(4),
585–591 (1997)

Author Index

Ågren, Magnus 119
Ansótegui, Carlos 127, 142
Araya, Ignacio 158

Baptiste, Philippe 1
Beck, J. Christopher 344
Benelallam, Imade 304
Berlanga, A. 21
Bessiere, Christian 173, 304
Boizumault, Patrice 73
Bonet, Maŕıa Luisa 127
Bouyakhf, El Houssine 304
Brown, Kenneth N. 771

Chabert, Gilles 188, 196
Choi, Arthur 211
Chu, Geoffrey 226, 242, 258
Coffrin, Carleton 787
Cohen, David A. 289
Conitzer, Vincent 623

Darwiche, Adnan 211, 654
de Givry, Simon 335
Delgado, Alberto 6
Deville, Yves 274
Dotu, Ivan 21
Dubrov, Bella 35

Eran, Haggai 35
Ezzahir, Redouane 304

Fages, François 319
Favier, Aurélie 335
Fazel-Zarandi, Mohammad M. 344
Feydy, Thibaut 352, 746
Freund, Ari 35
Frisch, Alan M. 367
Fukunaga, Alex S. 383

Garćıa, Jose 21
Garcia de la Banda, Maria 258
Gomes, Carla P. 2
Grayland, Andrew 391
Green, Martin J. 289

Grimes, Diarmuid 400
Gutkovich, Boris 787

Hadžić, Tarik 409
Hebrard, Emmanuel 173, 400, 424
Hnich, Brahim 439, 684
Holland, Alan 409
Houghton, Chris 289
Huang, Jinbo 731
Huczynska, Sophie 50

Ichimura, Ryo 623
Iwasaki, Atsushi 623

Jaffar, Joxan 454
Jaulin, Luc 188, 196
Jeavons, Peter G. 833
Jefferson, Christopher 470
Jégou, Philippe 335
Jensen, Rune Møller 6

Kadioglu, Serdar 470, 486
Katsirelos, George 501
Korovin, Konstantin 509

Lagerkvist, Mikael Z. 524
Le Bras, Ronan 539
le Clément, Vianney 274
Lecoutre, Christophe 554
Levy, Jordi 127
Loewenstern, Andrew 65
Lombardi, Michele 569
Lorca, Xavier 196
Loudni, Samir 73

Maher, Michael J. 584
Malapert, Arnaud 400
Maneth, Sebastian 501
Marinescu, Radu 592
Mark, Edward F. 35
Marx, Dániel 424
McKay, Paul 50
Mehta, Deepak 608
Métivier, Jean-Philippe 73
Michel, Laurent 88
Miguel, Ian 50, 391

844 Author Index

Milano, Michela 569
Molina, Jose M. 21
Moraal, Martijn 88

Narodytska, Nina 501
Neveu, Bertrand 158
Nightingale, Peter 50

Ohta, Naoki 623
O’Sullivan, Barry 173, 409, 424,

608, 639

Papadopoulos, Alexandre 639
Patricio, Miguel A. 21
Pesant, Gilles 539
Petrie, Karen E. 470
Pipatsrisawat, Knot 654
Pralet, Cédric 669
Prestwich, Steven 439, 684

Quesada, Luis 608

Ramji, Shyam 35
Razgon, Igor 424
Reischuk, Raphael M. 692
Rizk, Aurélien 319
Roney-Dougal, Colva M. 391
Rossi, Roberto 439, 684
Roussel, Olivier 554

Sachenbacher, Martin 731
Sakurai, Yuko 623
Santosa, Andrew E. 454
Schell, Timothy A. 35
Schreiber, Yevgeny 707
Schulte, Christian 6, 226, 524, 692, 723

Schumann, Anika 731
Schutt, Andreas 746
Sellmann, Meinolf 142, 470, 486, 762
Shvartsman, Alexander 88
Simonis, Helmut 104
Smith, Barbara M. 5
Solnon, Christine 274
Sonderegger, Elaine 88
Standley, Trevor 211
Stuckey, Peter J. 226, 242, 258, 352,

367, 692, 746
Stynes, David 771

Tack, Guido 692, 723
Tarim, S. Armagan 439, 684
Tierney, Kevin 142
Trombettoni, Gilles 158
Tsiskaridze, Nestan 509

Van Hentenryck, Pascal 21, 88, 787, 817
Verfaillie, Gérard 669
Viĺım, Petr 802
Voicu, Răzvan 454
Voronkov, Andrei 509

Wahbi, Mohamed 304
Wallace, Mark G. 746
Walsh, Toby 501
Wilson, Nic 608

Yip, Justin 817
Yokoo, Makoto 623

Zanarini, Alessandro 539
Živný, Stanislav 470, 833

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Constraint-Based Schedulers, Do They Really Work?
	Challenges for Constraint Reasoning and Optimization in Computational Sustainability
	Observations on Symmetry Breaking

	Application Track Papers
	Generating Optimal Stowage Plans for Container Vessel Bays
	Introduction
	The Container Stowage Problem for an under Deck Location
	The Model
	Objectives
	Branch and Bound
	Branching Strategies
	Improving the Model

	Why CP
	Experimental Evaluation
	Conclusion
	References

	Real-Time Tabu Search for Video Tracking Association
	Introduction
	Related Work
	Problem Formalization and Modeling
	The Tabu Search Algorithm
	Incremental Data Structures
	The Moves
	The Starting Point

	Results
	Conclusions
	References

	Pin Assignment Using Stochastic Local Search Constraint Programming
	Introduction
	Stochastic Local Search
	Paper Organization

	The Pin Assignment Problem and Its Modeling
	Formalization
	Grouping into Buses
	Model Improvements

	Experimental Results
	Conclusion
	References

	Modelling Equidistant Frequency Permutation Arrays: An Application of Constraints to Mathematics
	Introduction
	Modelling the EFPA Problem
	Boolean and Non-Boolean Models
	Extensions of the Non-Boolean Model

	Conclusions
	References

	Scheduling the CB1000 Nanoproteomic Analysis System with Python, Tailor, and Minion
	Introduction
	Cell Biosciences CB1000
	Job
	Interface

	Implementation
	Tailor and Minion
	Model
	Scheduling
	Visualization

	Results
	Modeling
	Execution
	Throughput

	References

	Solving Nurse Rostering Problems Using Soft Global Constraints
	Introduction
	Nurse Rostering Problems
	An Overview of NRPs
	Example: A 3-Shifts NRP

	Soft Global Constraints
	Principles
	Relaxation of gcc
	Relaxation of {\tt Regular}

	Modelling a 3-Shifts NRP
	Variables and Domains
	Capacity Constraints
	Sequence Constraints

	Interaction between Global Constraints
	Motivating Example
	regularCount Constraint
	$Cost-regularCount$ Constraint

	Variable Neighborhood Search
	Experimental Results
	Conclusion
	References

	Online Selection of Quorum Systems for RAMBO Reconfiguration
	Introduction
	The RAMBO System and Configuration Selection
	Modeling the RAMBO Configuration Selection
	The CP Model
	An Hybrid CBLS/CP Master-Slave Algorithm
	Parallel Composition
	Experimental Results
	Conclusion
	References

	A Hybrid Constraint Model for the Routing and Wavelength Assignment Problem
	Introduction
	Related Work
	Solution Approach
	Problem Decomposition
	Resource Allocation MIP Model
	Graph Coloring Model

	Handling Infeasibility
	Clique Detection
	Explanation

	Extension to Multigraphs
	Experimental Results
	Fixed Network Structure
	Increasing Number of Demands
	Random Networks

	Future Work
	Conclusion
	References

	Research Track Papers
	Memoisation for Constraint-Based Local Search
	Introduction and Background
	Memoising MSO Penalties Using Signatures
	Evaluation
	Conclusion
	References

	On the Structure of Industrial SAT Instances
	Introduction
	Analysis of Industrial SAT Instances
	Methodological Background
	Results of the Analysis

	Instantiating Variables in Industrial Instances
	Formulas during SAT Solvers Search
	Conclusions
	References

	A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms
	Introduction
	Existing Approaches
	Our Approach

	A Gender-Based Genetic Algorithm
	Related Work
	Gender-Specific Selection Pressure
	Variable Trees
	A Gender-Based Genetic Algorithm

	Automatic Solver Configuration
	Numerical Results
	Gender Separation for Solver Configuration
	Effect of Parameter Tree Structure
	GGA vs. ParamILS

	Conclusion
	References

	Filtering Numerical CSPs Using Well-Constrained Subsystems
	Introduction
	Background
	Box-k Partial Consistency
	Benefits of Box-k-Consistency
	Achieving Box-k-Consistency in Well-Constrained Subsystems of Equations

	Contraction Algorithm Using Well-Constrained Subsystems as Global Constraints
	The Box-k Revise Procedure
	The S-kB-Revise Variant
	Reuse of the Local Tree (Procedure UpdateLocalTree)
	Lazy Handling of a Leaf (Procedure ProcessLeaf?)
	Properties of the Revise Procedure

	Multidimensional Splitting
	Experiments
	Experiments on Decomposed Benchmarks
	Experiments on Structured Systems
	Benefits of Sophisticated Features

	Conclusion
	References

	Minimising Decision Tree Size as Combinatorial Optimisation
	Introduction
	Background
	A SAT-Based Encoding
	A CP Model
	Variables
	Constraint Program
	Inference
	Symmetry Breaking
	Search

	Hybrid CP and LP Model
	Experimental Results
	The Scalability of the SAT Encoding
	 The CP Model
	Improving the CP Model Using LP

	Related Work
	Conclusion
	References

	Hull Consistency under Monotonicity
	Introduction
	Notations and Definitions

	Main Result
	A First Experiment
	Conclusion
	References

	A Constraint on the Number of Distinct Vectors with Application to Localization
	Introduction
	Application Context
	Outline of the SLAM Problem
	Basic Constraint Model
	Introducing Detections
	Our Contribution

	The Number of Distinct Vectors Constraint
	Operational Complexity
	Rectangle Graphs and Clique Partitions
	Building a Rectangle Graph from a Cubic Planar Graph
	Reduction from Cubic Planar Vertex Cover

	A Very First Polytime Contractor
	Experimental Evaluation: The SLAM Problem
	Conclusion
	References

	Approximating Weighted Max-SAT Problems by Compensating for Relaxations
	Introduction
	Relaxing Max-SAT Problems
	Compensating for Relaxations
	Intuitions: A Simplified Case
	An Example
	Compensations and Their Properties
	Searching for Weights
	Knowledge Compilation

	Experiments
	Conclusion
	Proofs

	Confidence-Based Work Stealing in Parallel Constraint Programming
	Introduction
	Analysis of Work Allocation
	Adaptive Work Stealing
	Dynamically Updating Solution Density Estimates
	Confidence Model
	Algorithm

	Experimental Evaluation
	Conclusion
	References

	Minimizing the Maximum Number of Open Stacks by Customer Search
	Introduction
	Searching on Customers
	Improving the Search on Customers
	Definite Moves
	Better Moves
	Old Move
	Upperbound Heuristic
	Relaxation

	Experimental Evaluation
	Modelling Challenge Instances
	Harder Random Instances
	Relaxation

	Conclusion
	References

	Using Relaxations in Maximum Density Still Life
	Introduction
	Wastage Reformulation
	Closed form Upper Bound
	Finding Optimal Solutions
	Dynamic Relaxation as Lookahead
	Search Strategy

	Improving the Upper Bound
	Results
	Conclusion
	References

	Constraint-Based Graph Matching
	Introduction
	Graph Matching Problems
	Constraint-Based Modeling
	Constraints for Modeling Graph Matching Problems
	Modeling Graph Matching Problems by Means of Constraints
	Comet Prototype
	Experimental Results
	Subgraph Isomorphism Using a CP Solver
	Pattern Recognition Using a CP Solver
	Maximum Common Subgraph Using an LS Solver

	Conclusion
	References

	Constraint Representations and Structural Tractability
	Introduction
	Our Contribution

	Background and Definitions
	Key Results
	Unbounded Arity and Succinct Representations

	The Mixed Representation
	Place in the Hierarchy
	Bounded Interaction Width and Structural Tractability
	Conclusion
	References

	Asynchronous Inter-Level Forward-Checking for DisCSPs
	Introduction
	Background
	Distributed Constraint Satisfaction Problems
	Asynchronous Forward-Checking (AFC)

	Nogood-Based AFC
	Asynchronous Inter Level Forward-Checking
	Correctness Proofs
	Experimental Evaluation
	Other Related Work
	Conclusion
	References

	From Model-Checking to Temporal Logic Constraint Solving
	Introduction
	Quantifier-Free Computation Tree Logic QFCTL
	Syntax
	Semantics
	QFCTL Model-Checking Algorithm

	QFCTL Constraint Solving Algorithm
	Fixpoint Computation of Validity Domains

	QFCTL Formulae over a Metric Space D
	Continuous Valuation of QFCTL Formulae
	Parameter Optimization with Respect to a QFCTL Formula
	Robustness Estimation with Respect to QFCTL(Rlin) Specifications
	Implementation

	Applications in Systems Biology
	Context of Molecular Systems Biology
	Parameter Optimization with Respect to QFCTL(R_{lin}) Specifications

	Conclusion
	References

	Exploiting Problem Structure for Solution Counting
	Introduction
	Preliminaries
	Exact Solution Counting with BTD
	Approximate Solution Counting with ApproxBTD
	Experimental Results
	Conclusion
	References

	Solving a Location-Allocation Problem with Logic-Based Benders’ Decomposition
	Introduction
	Problem Definition and Existing Approaches
	A Logic-Based Benders' Decomposition Approach
	Computational Results
	Conclusion
	References

	Lazy Clause Generation Reengineered
	Introduction
	Background
	Propagation-Based Constraint Solvers
	SAT Solvers
	Original Lazy Clause Generation

	Lazy Clause Generation as a Finite Domain Solver
	The New Solver Architecture
	Encoding of Finite Domain Variables
	Propagator Implementation
	Global Propagators
	Extending the SAT Solver
	Search

	Experiments
	Arithmetic Puzzles
	Constrained Path Covering Problem
	Radiation
	Open Shop Scheduling Problem
	Hoist Scheduling
	Quasi-Group Completion

	Conclusion
	References

	The Proper Treatment of Undefinedness in Constraint Languages
	Introduction
	A Simple Constraint Language
	The Semantics of E
	Semantics 1: A Three-Valued Kleene Semantics
	Semantics 2: A Three-Valued Strict Semantics
	Semantics 3: A Two-Valued Relational Semantics
	Comparison of the Semantics

	Transforming Constraints in E
	Transformations for the Relational Semantics
	Transformations for the Strict Semantics
	Transformations for the Kleene Semantics

	Solving the Transformed Models
	Conclusion
	References

	Search Spaces for Min-Perturbation Repair
	Introduction
	Search Spaces for Minimal Perturbation Repair
	Experimental Comparison of MPRP Algorithms for the VMRP
	Related Work
	Conclusions
	References

	Snake Lex: An Alternative to Double Lex
	Introduction
	Background
	In Search of an Alternative Canonical Ordering
	Snake Lex
	Experimental Results
	Discussion
	References

	Closing the Open Shop: Contradicting Conventional Wisdom
	Introduction
	Constraint Models
	Experimental Section
	Open Shop Scheduling
	Job Shop Scheduling

	Conclusion
	References

	Reasoning about Optimal Collections of Solutions
	Introduction
	Preliminaries
	Optimal Collections of Solutions
	An MDD-Based Approach to Computing Optimal Collections
	An MDD-Friendly CSP Encoding
	Constructing a k-MDD
	Optimization over k-MDDs

	Improvements over k-MDD Optimization
	Implicit Optimization
	Approximate Node-Limited Optimization

	Applications and Extensions
	Empirical Evaluation
	Scalability for Real-World Configuration Problems
	Comparison between Exact and Approximate Optimization
	Comparison against CSP Search Approach

	Related Work
	Conclusion
	References

	Constraints of Difference and Equality: A Complete Taxonomic Characterisation
	Introduction
	Background
	Taxonomy
	The Complexity of Bounds Consistency on ${\sc SoftAllEqual}_G^{min}$
	A Filtering Method for ${\sc SoftAllEqual}_G^{min}$
	Conclusion
	References

	Synthesizing Filtering Algorithms for Global Chance-Constraints
	Introduction
	Formal Background
	Satisfying Policy Trees
	Scenario-Based Approach to Solve SCSPs
	Generic Filtering Algorithms
	Theoretical Properties
	Filtering Algorithms

	Computational Experience
	Related Works
	Conclusions
	References

	An Interpolation Method for CLP Traversal
	Introduction
	Related Work

	The Basic Idea
	With Infeasible Sequences
	Loops

	CLP Preliminaries
	The Algorithm
	Serial Constraint Replacement
	Sequences Ending in a False or Target Goal
	Sequences Ending in a Subsumed Goal
	Propagating Interpolants

	Experimental Evaluation
	Array Bounds Verification by Constraint Deletion
	Resource Bound Verification by Constraint Deletion and Slackening

	References

	Same-Relation Constraints
	Motivation
	Theory Background
	Clique Same-Relation
	Complexity of Achieving GAC
	Restriction on the Size of Domain

	Bipartite Same-Relation
	Complexity of Achieving GAC

	DAG Same-Relation
	Complexity of Achieving GAC

	Grid Same-Relation
	Decomposing Same Relation Constraints
	Decomposing CSR
	Decomposing BSR

	Experiments
	Conclusions and Future Work
	References

	Dialectic Search
	Introduction
	Dialectic Search
	A Meta-heuristic Inspired by Philosophy
	Dialectic Search

	Constraint Satisfaction
	Costas Arrays
	Magic Squares

	Continuous Optimization
	Constrained Optimization – Set Covering
	Conclusion
	References

	Restricted Global Grammar Constraints
	Introduction
	Background
	Simple Context-Free Grammars
	Linear Context-Free Grammars
	The {\sc EditDistance} Constraint
	Conclusions
	References

	Conflict Resolution
	Introduction
	Preliminaries
	Fourier-Motzkin Elimination
	Conflict Resolution
	The Conflict Resolution Algorithm
	Conflict Resolution and the Fourier-Motzkin Method
	Extensions
	Implementation
	Experimental Results
	Related Work
	Conclusions
	References

	Propagator Groups
	Introduction
	Constraint Programming
	Groups
	Model
	Implementation
	Evaluation

	Controlling Propagation Order
	Debugging
	Optimal Propagation Ordering

	Controlling Propagator Interaction
	General Reification
	Constructive Disjunction

	Conclusions
	References

	Efficient Generic Search Heuristics within the EMBP Framework
	Introduction
	Expectation-Maximization Belief Propagation
	EMBP Framework
	EMBP General Update Rule
	Computing EMBP: A Tradeoff between Accuracy and Complexity

	EMBP and Local Consistency
	EMBP-a for the {\tt alldifferent} Constraint
	EMBP-Lsup

	EMBP and Global Consistency
	Experiments
	Discussion
	Conclusion and Open Issues
	References

	Failed Value Consistencies for Constraint Satisfaction
	Introduction
	Technical Background
	Consistencies Based on Failed Values
	Algorithms for FVC and AFVC
	Substitutability and Usual Consistencies
	A Hierarchy of Consistencies
	Preliminary Experimental Results
	Conclusion
	References

	A Precedence Constraint Posting Approach for the RCPSP with Time Lags and Variable Durations
	Introduction
	Problem Definition
	PCP: Background and Related Work
	Description of the Approach
	The Time Model
	Search Strategy

	Experimental Results
	Conclusion
	References

	SOGgy Constraints: Soft Open Global Constraints
	Introduction
	Open Constraints
	Contractibility of Soft Constraints
	Decomposition-Based Violation Measures
	Edit-Based Violation Measures
	Graph Property-Based Violation Measures
	Other Violation Measures

	Propagator
	Conclusions
	References

	Exploiting Problem Decomposition in Multi-objective Constraint Optimization
	Introduction
	Background
	Mono-objective Constraint Optimization Problems
	AND/OR Search Trees for COP
	Multi-objective Constraint Optimization Problems

	Weighted AND/OR Search Trees for MO-COP
	Multi-objective AND/OR Branch-and-Bound Search
	Heuristic Lower Bounds on Partial Solution Trees
	The Branch-and-Bound Algorithm
	Partitioning-Based Lower Bound Heuristics

	Experiments
	Conclusion
	References

	Search Space Extraction
	Introduction
	Background
	Principles of Search Space Extraction
	Extraction of Visited Search Space
	The Unvisited Search Space
	Maintaining the Unvisited Search Space

	Extraction of Unsatisfiable Cores
	Experimental Results
	Conclusions and Future Work
	References

	Coalition Structure Generation Utilizing Compact Characteristic Function Representations
	Introduction
	Model
	CSG Using MC-Nets
	CSG Using Synergy Coalition Groups
	CSG in Multi-issue Domain
	Evaluation and Discussion
	Conclusion

	Compiling All Possible Conflicts of a CSP
	Introduction
	Preliminaries
	Prime Implicates and Explanations
	Domain Consequences
	Computation
	Generation
	Algorithm
	Complexity

	Experimental Study
	Related Work
	Conclusions
	References

	On the Power of Clause-Learning SAT Solvers with Restarts
	Introduction
	Preliminaries
	Proof Systems

	Modern Clause-Learning SAT Solvers as a Proof System
	Modern Clause-Learning SAT Solvers
	Clause-Learning Schemes
	Non-determinism in CLR
	CLR as a Proof System

	Ingredients for the Main Result
	Main Result
	Example

	Related Work
	Conclusions and Discussion
	Proofs

	Slice Encoding for Constraint-Based Planning
	Introduction
	The CNT Framework
	An Illustrative Example
	Horizon Variables
	Time References and Timelines
	Static and Dynamic Variables
	Static and Dynamic Constraints
	Constraint Networks on Timelines (CNTs)
	Assignments, Solutions, Consistency, and Optimality
	Comparison with Other Modeling Frameworks

	Slice CSP Encoding of Stationary Constraints
	Stationary Dynamic Constraints
	Slice Encoding of Stationary CNTs
	Extension to Other Constraints

	Reasoning and Searching on a Slice CSP Encoding
	Experiments
	Conclusion
	References

	Evolving Parameterised Policies for Stochastic Constraint Programming
	Introduction
	Evolving Parameterised Policies
	Experiments
	Related Work
	Conclusion
	References

	Maintaining State in Propagation Solvers
	Introduction
	Propagation Solvers
	A Hybrid System
	Local versus Global State
	Variable Domains
	Dependencies
	Propagators and Propagator State
	Summary

	Related Work
	Conclusion
	References

	Cost-Driven Interactive CSP with Constraint Relaxation
	Introduction
	Cost-Driven Interactive CSP
	Interactive Relaxation Algorithm Template
	CICSP in Functional Test Generation
	Address Generation Problem
	Solution Approaches

	Concluding Remarks
	References

	Weakly Monotonic Propagators
	Introduction
	Preliminaries
	Weakly Monotonic Propagators
	Search
	Case Study: Propagating circuit
	Conclusion
	References

	Constraint-Based Optimal Testing Using DNNF Graphs
	Introduction
	Background
	Distinguishing Tests
	Optimal Distinguishing Tests
	Deterministic DNNF

	ODT Computation Using a d-DNNF Graph
	Encoding the ODT Problem as Single d-DNNF Graph
	Computation of (t t t t) Based on DNNF Graph G
	Upper Bounds for Partial Test Vectors
	ODT Computation

	Experimental Evaluation
	Conclusion and Future Work
	References

	Why {\tt Cumulative} Decomposition Is Not as Bad as It Sounds
	Introduction
	Lazy Clause Generation
	Finite Domain Propagation
	SAT Solving
	Lazy Clause Generation

	Modelling the Cumulative Resource Constraint
	Time-Resource Decomposition
	Task-Resource Decomposition
	Explanations

	Resource-Constrained Project Scheduling Problems
	Search Using Serial Scheduling Generation
	Search Using Variable State Independent Decaying Sum
	Hybrid Search Strategies

	Experiments
	Results on J30 and BL Instances
	Results on J60, J90 and J120

	Conclusion
	References

	On Decomposing Knapsack Constraintsfor Length-Lex Bounds Consistency
	Introduction
	Length-Lex Bounds Consistency
	Decomposing Knapsack Constraints
	Knapsack Decomposition in Theory
	Knapsack Decomposition in Practice

	Conclusion
	References

	Realtime Online Solving of Quantified CSPs
	Introduction
	Background
	Realtime Online Solving of QCSP
	Constraint Propagation
	Lookahead and Heuristics

	Experiments: Random Binary QCSPs
	Modeling Online Bin Packing
	Type 1 Problems
	Type 2 Problems

	Experiments: Online Bin Packing
	Conclusions and Future Work
	References

	Constraint-Based Local Search for the Automatic Generation of Architectural Tests
	Background and Motivation
	Generating Diverse Solutions
	Conditional Variables
	Modeling and Solving the ATGP Problem
	Experimental Results
	Conclusion
	References

	Edge Finding Filtering Algorithm for Discrete Cumulative Resources in $O(kn log n)$
	Introduction
	Basic Notation
	Earliest Completion Time, Energy Envelope
	Cumulative Θ-Tree

	Relation ``Ends before End''
	Edge Finding: Detection Rule
	Detection Algorithm
	Computation of (Θ, Λ)
	Improving Detection

	Time Bound Adjustment
	Relation with Standard Edge Finding
	Optional Activities
	Experimental Results
	Conclusions
	References

	Evaluation of Length-Lex Set Variables
	Introduction
	The Length-Lex Representation of Set Variables
	Pushing Length-Lex Ordering into Binary Constraints
	$pred_X$ for Length-Lex Intervals
	$pred_X$ for PF-Interval

	Dual Modeling for Length-Lex Set Variables
	Experimental Evaluation
	Conclusion
	References

	The Complexity of Valued Constraint Models
	Introduction
	Background
	Boolean Optimisation Problems
	Modelling in the VCSP Framework
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

