
Argumentation Context Systems: A Framework

for Abstract Group Argumentation

Gerhard Brewka1 and Thomas Eiter2

1 Universität Leipzig, Augustusplatz 10-11, 04109 Leipzig, Germany
brewka@informatik.uni-leipzig.de

2 Vienna University of Technology, Favoritenstraße 9-11, A-1040 Vienna, Austria
eiter@kr.tuwien.ac.at

Abstract. We introduce a modular framework for distributed abstract
argumentation where the argumentation context, that is information
about preferences among arguments, values, validity, reasoning mode
(skeptical vs. credulous) and even the chosen semantics can be explicitly
represented. The framework consists of a collection of abstract argument
systems connected via mediators. Each mediator integrates information
coming from connected argument systems (thereby handling conflicts
within this information) and provides the context used in a particular ar-
gumentation module. The framework can be used in different directions;
e.g., for hierarchic argumentation as typically found in legal reasoning,
or to model group argumentation processes.

1 Introduction

In his seminal paper, Dung [10] introduced an abstract framework for argu-
mentation (sometimes referred to as calculus of opposition) which proved to
be extremely useful for analyzing various kinds of argumentation processes. His
approach gives a convincing account of how to select a set of “acceptable” argu-
ments out of a set of arguments which may attack each other.

Dung’s approach is monolithic in the sense that there are no means to struc-
ture a set of arguments any further. This is at odds with real world argumenta-
tion scenarios, be they informal as in everyday conversation, or institutionalized
as in the legal domain. In such scenarios, one typically finds meta-arguments,
i.e., arguments about other arguments, which can be clearly distinguished from
arguments about the domain at hand. Moreover, in multi-agent scenarios it is
often important to keep track of where certain arguments came from, who put
them forward, who opposed and the like.

For these reasons, our interest in this paper is on adding more structure to
formal models of argumentation. In doing so, we want to stick as much as possible
to the idea of abstract argumentation. However, instead of a single, unstructured
set of arguments we consider clearly distinguishable, distributed argumentation
modules and formalize ways in which they can possibly interact. This has several
benefits.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 44–57, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Argumentation Context Systems 45

1. Even in the single-agent case, the additional structure provided by argumenta-
tion modules gives a handle on complexity and diversity (e.g., in our framework
it will be possible for an agent to be skeptical in critical parts, credulous in
less critical ones);

2. a distributed framework provides a natural account of multi-agent argumenta-
tion scenarios including information flow and knowledge integration methods;

3. modules provide explicit means to model meta-argumentation where the ar-
guments in one module are about the arguments in another module; this leads
to more realistic accounts of, say, legal argumentation processes.

In the simplest multi-module situation, one module determines the context for
another. By a context we mean the available meta-information including, for
instance, arguments which should not be taken into account, preferences among
arguments, values, reasoning modes (skeptical vs. credulous), or even the seman-
tics to be used in a particular situation. However, we also want to be able to
capture more general situations where modules form complex hierarchies, and
even cycles where modules mutually influence each other. For these reasons, we
consider arbitrary directed graphs of modules.

As different “parent” modules in the graph can contribute to the context of a
single module, we face the difficulty that the context information may become
inconsistent. Each module is equipped with a mediator1 to deal with this issue.

To model the flow of information among argumentation modules, we use tech-
niques developed in the area of multi-context systems (MCSs), in particular
the systems devised by Giunchiglia and Serafini [14] and their extensions to
nonmonotonic MCSs [17,6]. An MCS describes the information available in a
number of contexts and specifies the information flow between them.2 So-called
bridge rules play a key role: they are used to provide input for a context based
on the beliefs held in other relevant contexts. Since different contexts may use
different representation languages, this may include “translating” information
from one language to another. In our case, the bridge rules are necessary to
transform abstract arguments accepted in one module into context statements
for a child module.

Our approach substantially generalizes a framework recently introduced by
Modgil [15]. His framework consists of a linear hierarchy of argument systems
(A1, . . . ,An) and allows preferences among arguments in Ai to be established
in Ai+1. Our approach is more general in at least two respects: (1) we provide
means for argumentation not only about preferences, but also about values, ac-
ceptability of arguments and attacks, and even reasoning mode and semantics,
and (2) we consider arbitrary directed graphs. Since our modules may have mul-
tiple parents, methods for information integration, as provided by our mediators,
become essential. In summary, our contribution in this paper is twofold:

• We introduce context-based argumentation (Sect. 4). Here statements in
a context language, which formally specify a context, allow us to control

1 Cf. Wiederhold’s [19] classic notion in information systems.
2 A context in an MCS is a local inference system. This is in contrast with the more

specific meaning of the term in this paper.

46 G. Brewka and T. Eiter

argumentation processes by determining their semantics, reasoning modal-
ity, and arguments.
• Based on it, we develop argumentation context systems (ACS), which are

composed of argumentation modules and mediators (Sect. 5) in a graph
structure. A mediator collects context information for a module based on
the arguments accepted by its parent modules. It then applies a consistency
handling method, possibly based on preference information regarding its
parents, to select a consistent subset of the context statements.

Both context-based argumentation and ACSs are generic and can be instantiated
in various ways (we consider several of them).

2 Background

Abstract argumentation. We assume some familiarity with Dung-style ab-
stract argumentation [10] and just recall the essential definitions. An argumen-
tation framework is a pair A = (AR, attacks) where AR is a set of arguments,
and attacks is a binary relation on AR (used in infix in prose). An argument
a ∈ AR is acceptable with respect to a set S of arguments, if each argument
b ∈ AR that attacks a is attacked by some b′ ∈ S. A set S of arguments is
conflict-free, if there are no arguments a, b ∈ S such that a attacks b, and S is
admissible, if in addition each argument in S is acceptable wrt. S.

Dung defined three different semantics for A = (AR, attacks):

– A preferred extension of A is a maximal (wrt. ⊆) admissible set of A.
– A stable extension of A is a conflict-free set of arguments S which attacks

each argument not belonging to S.
– The grounded extension of A is the least fixpoint of the operator FA : 2AR →

2AR where FA(S) = {a ∈ AR | a is acceptable wrt. S}.
The unique grounded extension is a subset of the intersection of all preferred
extensions, and each stable extension is a preferred extension, but not vice versa.
While the grounded and some preferred extension are guaranteed to exist, Amay
have no stable extension.3

A preference based argumentation framework (PAF) P = (AR, C,≥) [1,8] is
based on a relation C representing logical conflicts between arguments AR and
a reflexive, transitive preference relation ≥ on AR for expressing that arguments
are stronger than others; as usual, the associated strict preference > is given by
a >b iff a≥ b and b �≥ a. The PAF P induces an ordinary argumentation frame-
work AP = (AR, attacks) where attacks = {(a, b)∈C | b �>a}. The grounded,
preferred, and stable extensions of P are then the respective extensions of AP .

Value based argumentation frameworks (VAFs) [2,3] derive preferences among
arguments from the values they promote. An audience specific4 VAF
3 We confine the discussion here to Dung’s original semantics. Recent proposals like

semi-stable [7] and ideal [11] semantics can be easily integrated in our framework.
4 We omit discussing audiences; in our framework, they are best modeled by modules.

Argumentation Context Systems 47

V =(AR, attacks , V, val, valprefs)
extends an ordinary argumentation framework (AR, attacks) with a non-empty
set of values V , a function val : AR→ V , and a strict preference relation valprefs
on V ; argument a is preferred over b whenever (val(a), val(b)) ∈ valprefs . The
preferences are then treated as in Amgoud & Cayrol’s approach.

Inconsistency handling. Let F = (F1, . . . , Fn) be a sequence of sets of formu-
las. We will use 4 different methods to generate a consistent subset of F1∪. . .∪Fn

from F : a skeptical method sub� which goes back to [5] and uses a partial pref-
erence order � on the sets Fi, together with its skeptical variant subsk,�′ , and
a majority-based method maj, together with its skeptical variant majsk. The
former methods are used to integrate information in cases where some parent
modules are more important than others, the latter in peer-to-peer situations
where voting is more appropriate. As here the technical details are of minor
relevance, we leave them for a longer version of the paper.

Multi-context systems. Such systems model, in the tradition of [14] and their
nonmonotonic extensions [17,6], the information flow between different reasoning
modules (called contexts) using so-called bridge rules, which may refer to other
modules in their bodies. For our purposes, we only need to consider rules referring
to a single other module that is implicitly given. Therefore, our bridge rules will
look like ordinary logic programming rules of the form:

s← p1, . . . , pj ,not pj+1, . . . ,not pm (1)

where the head s is a context expression (defined in the Sect. 4) and the body
literals are arguments pi (possibly negated with not) from a parent argumen-
tation framework.

3 Motivating Examples

Legal reasoning. Different proof standards determine which arguments are ac-
ceptable depending on the type of a trial: beyond reasonable doubt for criminal
trials; preponderance of evidence for civil trials (we omit scintilla of evidence
for simplicity). Consider a situation where a judge J has to decide which of the
arguments put forward by a prosecutor P are acceptable. Assume also that crim-
inal trials require grounded reasoning, whereas less skeptical reasoning methods
may be acceptable in civil trials.5

The arguments and attacks put forward by P form an argumentation frame-
work A = ({a1, . . . , an}, attacks). The judge has information about which of P ’s
arguments are doubtful and the type of a trial. Using arguments dti, bdi and dri

for ai is doubtful, beyond reasonable doubt and disregarded, respectively, the
judge’s argumentation framework may look as in Fig. 1, where crl means crimi-
nal trial and civ civil trial (arcs are according to attacks).6 Optional arguments
represent information the judge may or may not have are in blue.
5 A similar example was discussed in [21].
6 For simplicity, names of abstract arguments in M2 reflect their intended meaning.

48 G. Brewka and T. Eiter

dt1
bd1

dr1

dt2
bd2

dr2

dt3
bd3

dr3

civ
crl

Fig. 1. The judge’s argumentation framework for n = 3

The outcome of J ’s argumentation determines how P can argue, and sets a
context for P ; a language for representing contexts will be defined in the next
section. As for now, let arg(ai) state that ai is invalid for P , and that sem(grnd)
fixes the semantics for P ’s argumentation framework to grounded semantics.

However, to build this context, we need to transform the relevant abstract
arguments accepted by J into adequate context expressions for P that invalidate
unusable arguments, pick the right semantics, etc. This is achieved by a mediator,
which uses the following bridge rules i ∈ {1, . . . , n}:

{ arg(ai)← dri, sem(grnd)← not civ }.
Not all arguments of J need to be “visible” for P . Privacy issues (e.g. hiding or
summarizing arguments) can be modeled by choosing adequate bridge rules.

The example involving judge, prosecutor and mediator is clearly simplistic and
one might ask why the two argumentation frameworks are not simply merged
into one. There are the following aspects, though: (1) It is non-obvious how,
for instance, a statement fixing a particular semantics could be eliminated this
way. (2) Even if we could compile a single argumentation framework out of
the example, the distinction between arguments and meta-arguments and their
origin would be blurred. (3) Most importantly, the framework we develop aims at
capturing much more complex scenarios where such compilations appear neither
doable nor fruitful. We now briefly discuss such a scenario.

Conference reviewing. Consider the paper review process for a modern AI
conference. This process can typically be characterized as follows

– There is a hierarchy consisting of a PC chair, several area chairs, many
reviewers, and even more authors.

– The PC chair determines the review criteria, acceptance rates etc.
– Area chairs make sure reviewers make fair judgements and eliminate unjus-

tified arguments from their reviews.
– Authors give feedback on the preliminary reviews of their papers. Informa-

tion flow is thus cyclic.
– Reviewers exchange arguments in a peer-to-peer discussion.
– Area chairs generate a consistent recommendation out of the final reviews.
– PC chair takes recommendations as input for final decision.

Argumentation Context Systems 49

What we see here is a complex argumentation scenario including hierarchic (the
PC chair setting criteria) as well as peer-to-peer (the reviewers discussing the
same paper) forms of argumentation in groups. It is also evident that information
flow is cyclic: even the authors nowadays are able to feed arguments back into
higher levels of the reviewing hierarchy.

Examples like this call for a flexible framework allowing for cyclic structures
encompassing a variety of information integration methods. Exactly this kind of
framework is what we are going to develop in the rest of the paper.

4 Context-Based Argumentation

We now give a simple language for representing context and define what it
means for a set of arguments to be acceptable for an argumentation framework
A given a context C. In the context language, we want to specify various as-
pects, including: a) preferences among arguments; b) values and value orderings;
c) validity/invalidity of specific arguments; d) addition/deletion of attack rela-
tionships among arguments; e) a reasoning mode (sceptical vs. credulous); and
f) an argumentation semantics (stable, preferred, grounded).

Definition 1. A context expression for a set of arguments AR and a set of
values V has one of the following forms (a, b ∈ AR; v, v′ ∈ V):

arg(a) / arg(a) a is a valid / invalid argument
att(a, b) / att(a, b) (a, b) is a valid / invalid attack
a > b a is strictly preferred to b
val(a, v) the value of a is v
v > v′ value v is strictly better than v′

mode(r) the reasoning mode is r ∈ {skep, cred}
sem(s) the chosen semantics is s ∈ {grnd , pref , stab}

A context C is a set of context expressions (for given AR and V).

The preference and value expressions together define a preference order on ar-
guments as follows:

Definition 2. For a context C, the preference order >C induced by C is the
smallest transitive relation such that a >C b if either (i) a > b ∈ C or
(ii) val(a, v1) ∈ C, val(b, v2) ∈ C, and (v1, v2) is in the transitive closure of
{(v, v′) | v >v′ ∈C}.
A context C is consistent, if the following conditions hold:

1. >C is a strict partial order,
2. for no a both arg(a) ∈ C and arg(a) ∈ C,
3. for no (a, b) both att(a, b) ∈ C and att(a, b) ∈ C,
4. C contains at most one expression of the form mode(r); the same holds for

sem(s) and for val(a, v), for each a.

50 G. Brewka and T. Eiter

Now we define the semantics of a consistent context. It acts as a modifier for
an argumentation framework A, which is evaluated under the argumentation
semantics and reasoning mode specified in the context.

Definition 3. Let A = (AR, attacks) be an argumentation framework, let V be a
set of values, and let C be a consistent context for AR and V . The C-modification
of A is the argumentation framework AC = (ARC , attacksC), where

– ARC = AR ∪ {def}, where def /∈ AR.
– attacksC is the smallest relation satisfying the following conditions:

1. if att(a, b) ∈ C, then (a, b) ∈ attacksC ,
2. if (a, b) ∈ attacks, att(a, b) /∈ C and b �>C a, then (a, b) ∈ attacksC ,
3. if arg(a)∈C or (arg(b)∈C ∧ (a, b)∈ attacksC) then (def, a)∈ attacksC .

The basic idea is that the new, non-attackable argument def defeats invalid
arguments as well as attackers of valid arguments. In this way, it is guaranteed
that (in)valid arguments will indeed be (in)valid, independently of the chosen
semantics. Moreover, the definition of attacksC guarantees that valid attacks are
taken into account while invalid ones are left out. It also ensures that preferences
among arguments are handled correctly, by disregarding any original attack (a, b)
where b is more preferred than a. The preferences among arguments may be
stated directly, or indirectly by the argument values and their preferences.

Example 1. Let A = ({a, b, c, d}, attacks) with attacks = {(a, b), (b, d), (d, b),
(b, c)}. Moreover, let C = {arg(a),val(b, v1),val(d, v2), v1 > v2, c > b}. We
obtain AC = ({a, b, c, d,def}, {(def, a), (a, b), (b, d)}).
Based on the C-modification, we define the sets of acceptable arguments. We
adopt credulous reasoning and preferred semantics by default, i.e., whenever
a context C contains no expression of the form mode(m) (resp., sem(s)), we
implicitly assume mode(cred)∈C (resp., sem(pref)∈C).

Definition 4. Let A = (AR, attacks) be an argumentation framework, let V be
a value set, and let C be a consistent context for AR and V such that sem(s)∈C,
mode(m)∈C. A set S⊆AR is an acceptable C-extension for A, if either

– m = cred and S ∪ {def} is an s-extension7 of AC , or
– m = skep and S ∪ {def} is the intersection of all s-extensions of AC .

We call a context purely preferential (resp., purely value-based), if it contains be-
sides mode- and sem-statements only expressions of form a >b (resp., val(a,v)
or v >v′). The next proposition shows that our definition “does the right thing:”

Proposition 1. Suppose C, A and V are as in Definition 4. Then,

1. if C is purely preferential, the acceptable C-extensions of A coincide with
the s-extensions of the PAF P =(AR, attacks ,≥P), if the strict partial order
induced by ≥P coincides with >C .

7 s-extension means grounded, preferred, stable extension if s = grnd , pref , stab, resp.

Argumentation Context Systems 51

2. if C is purely value-based and AR = {a | val(a, v) ∈ C}, the accept-
able C-extensions of A coincide with the s-extensions of the VAF V =(AR,
attacks , V, val, valprefs) where val(a)= v iff val(a, v)∈C and (v, v′)∈
valprefs iff (v, v′) is in the transitive closure of {(v, v′) | v > v′ ∈ C}.

3. if arg(a) ∈ C (resp., arg(a) ∈ C) and S is an acceptable C-extension, then
a ∈ S (resp., a �∈ S).

5 Argumentation Context Systems

We now develop argumentation context systems (ACSs) as a flexible framework
for distributed argumentation, encompassing arbitrary directed graphs of argu-
mentation modules. Such modules M=(A, Med) consist of a Dung-style argu-
ment framework A and a mediator Med, which determines a context C for A.
To this end, it translates arguments accepted byM’s parents (i.e., its direct an-
cestor modules) into context expressions using bridge rules and combines them
with local context information. To ensure consistency of C, the mediator uses a
consistency handling method that resolves any inconsistency between the local
and the parent information (multiple parents are possible). Figure 2 shows the
structure of an example ACS. The module M1 has the single parent M3, and
Med1 receives input from A3; we say Med1 is based on A3. The moduleM2 has
the parentsM3 andM4, and Med2 is based on A3 and A4.

5.1 Mediators

We now define precisely what we mean by a mediator.

Definition 5. Let A1,A2, . . . ,Ak, k ≥ 1, be argumentation frameworks. A me-
diator for A = A1 based on A2, . . . ,Ak is a tuple

Med = (E1, R2, . . . , Rk, choice)
where

– E1 is a set of context expressions for A;
– Ri, 2 ≤ i ≤ k, is a set of rules of form (1) where s is a context expression

for A and p1, . . . , pm are arguments in Ai (bridge rules for A based on Ai);

M1

M3

M2

M4

Med3 Med4

Med1 Med2

A1 A2

A3 A4

Fig. 2. Example argumentation context system F = {(Ai, Medi) | 1 ≤ i ≤ 4}

52 G. Brewka and T. Eiter

– choice ∈ { sub�, subsk,�, maj, majsk}, where � is a strict partial order on
{1, . . . , k}.

Intuitively, the Ai, are from the parent modulesMi ofM. The set E1 contains
context statements for A which the mediator itself considers adequate; it is
also used to provide the context for modules without parents. The bridge rules
determine the relevant context expressions for A based on arguments accepted
in Ai (i.e., in Mi). This overcomes the following problem: argumentation in
Dung-style systems is abstract, i.e., the content of arguments is not analyzed.
In order to use arguments of a parent module in determining the context for a
child module, this abstract view must be given up to some extent, as context
expressions must be associated with arguments of the parent modules.

The parameter choice fixes a inconsistency handling strategy. The order � is
used to prioritize context expressions from different modules. Index 1 is included
in the ordering; this makes it possible to specify whether statements in E1 can be
overridden by statements coming from parent modules or not. For the majority-
based inconsistency methods maj and majsk, the order is not needed since the
number of supporting modules is implicitly used as the preference criterion.
Other consistency methods than those considered can be easily integrated.

Given sets of accepted arguments for all parent modules ofM, the mediator
defines the consistent acceptable contexts for its argument system A. There may
be more than one acceptable context.

Let Ri be a set of bridge rules for A based on Ai, and Si a set of arguments
of Ai. Ri(Si) is the set of context expressions

Ri(Si) = {h | h← a1, . . . , aj ,not b1, . . . ,not bn ∈ Ri,
{a1, . . . , aj} ⊆ Si, {b1, . . . , bn} ∩ Si = ∅ },

Intuitively, Ri(Si) contains the context statements for A derivable through rules
in Ri given the arguments Si are accepted by Ai.

The sets E1, R2(S2), . . . , Rk(Sk) provide context information for A coming
from the mediator for A, respectively from the argument frameworks A2, . . . ,Ak

in the parent modules. This information is integrated into a consistent context
using the chosen consistency handling method.

Definition 6. Let Med = (E1, R2, . . . , Rk, choice) be a mediator for A based on
A2, . . . ,Ak. A context C for A is acceptable wrt. sets of arguments S2, . . . , Sk

of A2, . . . ,Ak, if C is a choice-preferred set for (E1, R2(S2), . . . , Rk(Sk)).

Example 2. Consider a mediator Med =(E1, R2, R3, sub�) based on argumen-
tation frameworks A2 and A3. Let E1 = {sem(grnd), v > v′} and 1�2� 3. Let
R2 = {arg(a1)← b1, a2 >a3 ← b2} and R3 = { arg(a1) ← c1, val(a2, v

′) ← c2,
val(a3, v) ← c3 }. Suppose S2 = {b1, b2} is accepted in A2 and S3 = {c1, c2,
c3} in A3. We obtain R2(S2) = {arg(a1), a2 > a3} and R3(S3) = {arg(a1),
val(a2, v

′), val(a3, v)}. Note that E1 ∪R2(S2) is consistent. From the least pre-
ferred context information R3(S3), only val(a2, v

′) or val(a3, v) can be consis-
tently added to the more preferred context information. The acceptable contexts
are C1 = E1 ∪R2(S2) ∪ {val(a2, v

′)} and C2 = E1 ∪R2(S2) ∪ {val(a3, v)}.

Argumentation Context Systems 53

5.2 The Framework

We are now in a position to introduce our framework.

Definition 7. An module M = (A, Med) consists of an argument framework
A and a mediator Med for A (based on some argumentation frameworks).

An argument context system is a collection of modules that fulfills certain struc-
tural conditions.

Definition 8. An argumentation context system (ACS) is a set8

F = {M1, . . . ,Mn}
of modules Mi = (Ai, Medi), 1 ≤ i ≤ n, where Medi is based on argumentation
frameworks Ai1 , . . . ,Aiki

, {i1, . . . , iki} ⊆ {1, . . . , n} (self-containedness).

Self-containedness naturally induces the following graph and structural notion.

Definition 9. The module graph of an ACS F as in Definition 8 is the directed
graph G(F)= (F , E) whereMj →Mi is in E iff Aj is among the Ai1 , . . . ,Aiki

on which Medi is based. We call F hierarchic, if G(F) is acyclic.

We next define the acceptable states for our framework. Intuitively, such a state
consists of a context and a set of arguments for all modulesMi such that in each
case the chosen arguments form an acceptable set for Ai given the respective
context, and this context (determined by Medi) is acceptable with respect to
the argument sets chosen for the parent modules of Ai. More formally,

Definition 10. Let F = {M1, . . . ,Mn} be an ACS. A state of F is a function
S that assigns each Mi = (Ai, Medi) a pair S(Mi) = (Acci, Ci) of a subset
Acci of the arguments of Ai and a set Ci of context expressions for Ai.

A state S is acceptable, if (i) each Acci is an acceptable Ci-extension for
Ai, and (ii) each Ci is an acceptable context for Medi wrt. all Accj such that
Mj →Mi.

As stable semantics may be chosen for argumentation frameworks in modules,
clearly an acceptable state is not guaranteed to exist. However, non-existence
can arise even in absence of stable semantics and negation in bridge rules.

Example 3. Let F = (M1,M2) with modulesMi = (Ai, Medi), i = 1, 2, where

– A1 = ({a}, ∅), Med1 = ({sem(s1)}, {arg(a)← b2}, c1);
– A2 = ({b1, b2}, {(b1, b2)}), Med2 = ({sem(s2)}, {arg(b1)← a}, c2).

Note that G(F) is cyclic, as M1 →M2 and M2 →M1. Now for arbitrary s1,
c1 and s2, c2, no acceptable state exists: assume Acc1 = {a}. Using its single
bridge rule, Med2 will derive arg(b1), which is consistent with sem(s2) and will
belong to the context C2, regardless of the chosen consistency method c2. This,
8 For multiple occurrences of the same module, this is viewed as an indexed set.

54 G. Brewka and T. Eiter

however, will lead to acceptance of b2 independently of the semantics s2, as the
only potential attacker of b2, namely b1, is invalid. Now, if b2 is in Acc2, then the
single bridge rule of Med1 invalidates argument a; hence, there is no acceptable
state with Acc1 = {a}.

The other option, namely Acc1 = ∅, also fails: now b1 is not invalidated in
M2 and thus defeats b2. As a consequence, Med1’s bridge rule does not fire and
there is no justification not to accept argument a in A1.

To guarantee existence of acceptable states, we need more conditions; for exam-
ple, excluding stable semantics and cycles between modules.

Proposition 2. Suppose F is a hierarchic ACS and that sem(stab) does not
occur in any mediator of F . Then F possesses at least one acceptable state.

Computing some acceptable state is still intractable in this setting, due to the
intractability of recognizing preferred extensions [9]. However,

Proposition 3. If F is a hierarchic ACS and all modules use grounded se-
mantics and either sub� or maj for choice, then some acceptable state of F is
computable in polynomial time.

Regarding the complexity in the general case, we note the following result.

Proposition 4. Deciding whether an arbitrary given ACS F has some accept-
able state is Σp

3 -complete.

Intuitively, an acceptable state can be guessed and verified in polynomial time
with the help of an Σp

2 oracle; note that the reasoning tasks in Definition 4
are all feasible polynomial time with an Σp

2 oracle. On the other hand, skeptical
inference from all preferred extensions is Πp

2 -complete [12], which in combination
with the module framework generates the Σp

3 -hardness. This can be shown by
a reduction from suitable quantified Booleans formulas, which uses no negation
in bridge rules and and an arbitrary inconsistency handling method choice .

Depending on the various parameters and the graph structure, the complexity
decreases. The complexity of C-extensions is dominated by the underlying ar-
gumentation framework, and in several situations, the mediator framework does
not increase complexity. A more detailed analysis is left for further work.

5.3 Relationship to EAFs

Modgil [16] recently introduced an interesting extension of argumentation frame-
works where arguments may not only attack other arguments, but also attacks.
An extended argumentation framework (EAF) E = (AR, attacks , D) adds to a
Dung-style argumentation framework (AR, attacks) a set D ⊆ AR × attacks of
attacks against attacks. Whenever (a1, (b, c)) ∈ D and (a2, (c, b)) ∈ D it is re-
quired that attacks contains both (a1, a2) and (a2, a1). S ⊆ AR is conflict free
iff for all a, b ∈ S: if (a, b) ∈ attacks , then (b, a) �∈ attacks and there is c ∈ S
such that (c, (a, b)) ∈ D. Argument a S-defeats b iff (a, b) ∈ attacks and, for no

Argumentation Context Systems 55

c ∈ S, (c, (a, b)) ∈ D. S is a stable extension of E iff S is conflict free and each
c ∈ AR \ S is S-defeated by some element of S. We refer to [16] for numerous
interesting applications of EAFs.

We can show that under stable semantics, any EAF E can be modeled as an
ACS F(E) that consists of a single module with self-feedback. In detail, we con-
struct F(E) = {M∗ }, where M∗ = (A∗, Med∗) such that A∗ = (AR, attacks)
and Med∗ = ({sem(stab),mode(cred)}, R, choice) is based on A∗, where

R = { att(a, b)← c, b | (c, (a, b)) ∈ D, (b, a) �∈ attacks } ∪
{ att(a, b)← c,not b | (c, (a, b)) ∈ D }.

and choice is arbitrary. The first type of rules in R handles conflict freeness,
while the second ensures that an argument can only be defeated by an attack
which is not successfully attacked.

Proposition 5. Let E be an EAF. Then, (i) for each acceptable state S of
F(E) with S(M∗) = (T, C), T is a stable extension of E, and (ii) for each stable
extension T of E, F(E) has some acceptable state S such that S(M∗) = (T, C).

The relationship under the other semantics is trickier; this is basically due to the
fact that Modgil and Dung have very different notions of argument acceptability.
A thorough investigation is an interesting topic for future work.

6 Related Work and Conclusion

We presented a flexible, modular framework for abstract argumentation. It builds
on existing proposals extending them in various respects: argumentation is based
on contexts described in a native language, integrating preference- and value-
based argumentation, direct (in)validation of arguments and attacks, and speci-
fication of reasoning mode and semantics. Context information is integrated by
a mediator. Arbitrary directed module graphs cover a wide range of applications
involving multi-agent meta-argumentation.

Models of meta- and hierarchic argumentation are not new. The approaches
by Modgil [15,16] were already discussed. Wooldridge, McBurney and Parsons
[20] develop a meta-level approach which shares motivation with our work, but
has different focus: a meta-level defines arguments, attacks, extensions etc. for
the lower level based on formal provability in its logic. In contrast, we take the
basic notions for granted and determine, at a generic level, how a module in
an arbitrary module graph influences argumentation in others by determining
its context. The many parameter combinations yield then a range of concrete
systems with different properties.

A framework for distributed argumentation was presented in [18], based on
defeasible argumentation as in [13], where a moderator integrates the argumen-
tation structures of a group of agents. In contrast, we stick to abstract argumen-
tation and allow for more general relationships between modules.

Our approach also differs from recent work by Binas and McIlraith [4] on
distributed query answering: while our mediators use “classical” preference based

56 G. Brewka and T. Eiter

inconsistency methods to establish argumentation contexts, they use techniques
based on prioritized argumentation to define distributed entailment for graphs of
heterogeneous reasoners. Moreover, they focus on information integration rather
than meta-reasoning as we do.

Our framework specializes the multi-context systems of Brewka and Eiter [6]
by fixing Dung style argument systems as reasoning components. The use of
mediators to integrate meta-information and the context language to control
argumentation clearly goes beyond these systems.

Our future work includes an investigation of more expressive mediator lan-
guages (both in terms of constructs and bridge rules used), and a detailed study
of computational aspects, comprising complexity and implementation.

Acknowledgement. This work has been supported by the Austrian Science
Fund (FWF) project P20841 and the Vienna Science and Technology Fund
(WWTF) project ICT08-020.

References

1. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based
argumentation. In: Proc. Fourteenth Conference on Uncertainty in Artificial Intel-
ligence, UAI 1998, pp. 1–7 (1998)

2. Bench-Capon, T.J.M.: Value-based argumentation frameworks. In: Proc. 9th Inter-
national Workshop on Non-Monotonic Reasoning, NMR 2002, Toulouse, France,
pp. 443–454 (2002)

3. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. J. Log. Comput. 13(3), 429–448 (2003)

4. Binas, A., McIlraith, S.: Peer-to-peer query answering with inconsistent knowledge.
In: Proc. 11th International Conference on Principles of Knowledge Representation
and Reasoning, KR 2008, Sydney, Australia, pp. 329–339 (2008)

5. Brewka, G.: Preferred subtheories: An extended logical framework for default rea-
soning. In: Proc. IJCAI 1989, pp. 1043–1048 (1989)

6. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: Proc. AAAI 2007, pp. 385–390 (2007)

7. Caminada, M.: Semi-stable semantics. In: Proc. Computational Models of Argu-
ment, COMMA 2006, pp. 121–130 (2006)

8. Dimopoulos, Y., Moraitis, P., Amgoud, L.: Theoretical and computational proper-
ties of preference-based argumentation. In: Proc. ECAI 2008, Patras, Greece, pp.
463–467 (2008)

9. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and
default theories. Theor. Comput. Sci. 170(1-2), 209–244 (1996)

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

11. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation.
Artif. Intell. 171(10-15), 642–674 (2007)

12. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif.
Intell. 141(1/2), 187–203 (2002)

Argumentation Context Systems 57

13. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: An argumentative ap-
proach. TPLP 4(1-2), 95–138 (2004)

14. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do
without modal logics. Artificial Intelligence 65(1), 29–70 (1994)

15. Modgil, S.: Hierarchical argumentation. In: Fisher, M., van der Hoek, W., Konev,
B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 319–332. Springer,
Heidelberg (2006)

16. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell.
(2007) (to appear)

17. Roelofsen, F., Serafini, L.: Minimal and absent information in contexts. In: Proc.
IJCAI 2005, pp. 558–563 (2005)

18. Thimm, M., Kern-Isberner, G.: A distributed argumentation framework using
defeasible logic programming. In: Proc. Computational Models of Argument,
COMMA 2008, pp. 381–392 (2008)

19. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE
Computer 25(3), 38–49 (1992)

20. Wooldridge, M., McBurney, P., Parsons, S.: On the meta-logic of arguments. In:
Proc. AAMAS 2005, pp. 560–567 (2005)

21. Wyner, A.Z., Bench-Capon, T.J.M.: Modelling judicial context in argumentation
frameworks. In: Proceedings COMMA 2008, pp. 417–428 (2008)

	Argumentation Context Systems: A Framework for Abstract Group Argumentation
	Introduction
	Background
	Motivating Examples
	Context-Based Argumentation
	Argumentation Context Systems
	Mediators
	The Framework
	Relationship to EAFs

	Related Work and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

