
Contextual Argumentation in Ambient Intelligence

Antonis Bikakis and Grigoris Antoniou

Institute of Computer Science, FO.R.T.H., Vassilika Voutwn
P.O. Box 1385, GR 71110, Heraklion, Greece
{bikakis,antoniou}@ics.forth.gr

Abstract. The imperfect nature of context in Ambient Intelligence environments
and the special characteristics of the entities that possess and share the avail-
able context information render contextual reasoning a very challenging task.
Most current Ambient Intelligence systems have not successfully addressed these
challenges, as they rely on simplifying assumptions, such as perfect knowledge
of context, centralized context, and unbounded computational and communicat-
ing capabilities. This paper presents a knowledge representation model based
on the Multi-Context Systems paradigm, which represents ambient agents as
autonomous logic-based entities that exchange context information through map-
pings, and uses preference information to express their confidence in the imported
knowledge. On top of this model, we have developed an argumentation frame-
work that exploits context and preference information to resolve conflicts caused
by the interaction of ambient agents through mappings, and a distributed algo-
rithm for query evaluation.

1 Introduction

The study of Ambient Intelligence environments has introduced new research chal-
lenges in the field of Distributed Artificial Intelligence. These are mainly caused by the
imperfect nature of context and the special characteristics of the entities that possess and
share the available context information. [1] characterizes four types of imperfect con-
text: unknown, ambiguous, imprecise, and erroneous. The agents that operate in such
environments are expected to have different goals, experiences and perceptive capabil-
ities, limited computation capabilities, and use distinct vocabularies to describe their
context. Due to the highly dynamic and open nature of the environment and the unreli-
able wireless communications that are restricted by the range of transmitters, ambient
agents do not typically know a priori all other entities that are present at a specific time
instance nor can they communicate directly with all of them.

So far, Ambient Intelligence systems have not managed to efficiently handle these
challenges. As it has been already surveyed in [2], most of them follow classical rea-
soning approaches that assume perfect knowledge of context, failing to deal with cases
of missing, inaccurate or inconsistent context information. Regarding the distribution of
reasoning tasks, a common approach followed in most systems assumes the existence of
a central entity, which is responsible for collecting and reasoning with all the available
context information. However, Ambient Intelligence environments have much more de-
manding requirements. The dynamics of the network and the unreliable and restricted
wireless communications inevitably lead to the decentralization of reasoning tasks.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 30–43, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Contextual Argumentation in Ambient Intelligence 31

In this paper, we propose a totally distributed approach for contextual reasoning
in Ambient Intelligence. We model an ambient environment as a Multi-Context Sys-
tem, and ambient agents as autonomous logic-based entities that exchange information
through mapping rules and use preference information to evaluate imported knowledge.
Then we provide a semantic characterization of our approach using arguments. The use
of arguments is a natural choice in multi-agent systems and aims at a more formal and
abstract description of our approach. Conflicts that arise from the interaction of mutu-
ally inconsistent sources are captured through attacking arguments, and conflict resolu-
tion is achieved by ranking arguments according to a preference ordering. Finally, we
provide an operational model in the form of a distributed algorithm for query evaluation.
The algorithm has been implemented in Java and evaluated in a simulated P2P system,
and the results are available in [3]. Here, we focus more on its formal properties.

The rest of the paper is structured as follows. Section 2 presents background in-
formation and related work on contextual reasoning and preference-based argumenta-
tion systems. Section 3 presents the representation model, while section 4 describes its
argumentation semantics. Section 5 presents the distributed algorithm and studies its
properties. The last section summarizes the main results and discusses future work.

2 Background and Related Work

2.1 Multi-Context Systems

Since the seminal work of McCarthy [4] on context and contextual reasoning, two main
formalizations have been proposed to formalize context: the Propositional Logic of
Context (PLC [5]), and the Multi-Context Systems (MCS) introduced in [6], which later
became associated with the Local Model Semantics [7]. MCS have been argued to be
most adequate with respect to the three dimensions of contextual reasoning (partiality,
approximation, proximity) and shown to be technically more general than PLC [8]. A
MCS consists of a set of contexts and a set of inference rules (known as mapping rules)
that enable information flow between different contexts. A context can be thought of
as a logical theory - a set of axioms and inference rules - that models local knowledge.
Different contexts are expected to use different languages, and although each context
may be locally consistent, global consistency cannot be required or guaranteed.

The MCS paradigm has been the basis of two recent studies that were the first to de-
ploy non-monotonic features in contextual reasoning: (a) the non-monotonic rule-based
MCS framework [9], which supports default negation in the mapping rules allowing to
reason based on the absence of context information; and (b) the multi-context variant
of Default Logic (ConDL [10]), which additionally handles the problem of mutually in-
consistent information provided by two or more different sources using default mapping
rules. However, ConDL does not provide ways to model the quality of imported context
information, nor preference between different information sources, leaving the conflicts
that arise in such cases unresolved. The use of Multi-Context Systems as a means of
specifying and implementing agent architectures has been recently proposed in [11],
which proposes breaking the logical description of an agent into a set of contexts, each
of which represents a different component of the architecture, and the interactions be-
tween these components are specified by means of bridge rules between the contexts.

32 A. Bikakis and G. Antoniou

Here, we follow a different approach; a context does not actually represent a logical
component of an agent, but rather the viewpoint of each different agent in the system.

Peer data managements systems can be viewed as special cases of MCS, as they con-
sist of autonomous logic-based entities (peers) that exchange local information using
bridge rules. Two prominent recent works that handle the problem of peers providing
mutually inconsistent information are: (a) the approach of [12], which is based on non-
monotonic epistemic logic; and (b) the propositional P2P Inference System of [13].
A major limitation of both approaches is that conflicts are not actually resolved using
some external preference information; they are rather isolated. Our approach enables
resolving such conflicts using a preference ordering on the information sources. Build-
ing on the work of [13], [14] proposed an argumentation framework and algorithms for
inconsistency resolution in P2P systems using a preference relation on system peers.
However, their assumptions of a single global language and a global preference relation
are in contrast with the dimension of perspective in MCS. In our approach, each agent
uses its own vocabulary to describe its context and defines its own preference ordering.

2.2 Preference-Based Argumentation Systems

Argumentation systems constitute a way to formalize non-monotonic reasoning, viz.
as the construction and comparison of arguments for and against certain conclusions.
A central notion in such systems is that of acceptability of arguments. In general,
to determine whether an argument is acceptable, it must be compared to its counter-
arguments; namely, those arguments that support opposite or conflicting conclusions.
In preference-based argumentation systems, this comparison is enabled by a preference
relation, which is either implicitly derived from elements of the underlying theory, or is
explicitly defined on the set of arguments. Such systems can be classified into four cat-
egories. In the first category, which includes the works of [15] and [16], the preference
relation takes into account the internal structure of arguments, and arguments are com-
pared in terms of specifity. The second category includes systems in which preferences
among arguments are derived from a priority relation on the rules in the underlying
theory (e.g. [17,18]). In Value Based Argumentation Frameworks, the preference order-
ing on the set of arguments is derived from a preference ordering over the values that
they promote (e.g. [19,20]). Finally, the abstract argumentation frameworks proposed
by Amgoud and her colleagues ([21,22]) assume that preferences among arguments are
induced by a preference relation defined on the underlying belief base.

Our argumentation framework is an extension of the framework of Governatori et al.
[18], which is based on the grounded semantics of Dung’s abstract argumentation
framework [23] to provide an argumentative characterization of Defeasible Logic. In
our framework, preferences are derived both from the structure of arguments - argu-
ments that use local rules are considered stronger than those that use mapping rules -
and from a preference ordering on the information sources (contexts). Our approach
also shares common ideas with [21], which first introduced the notion of contextual
preferences (in the form of several pre-orderings on the belief base), to take into ac-
count preferences that depend upon a particular context. The main differences are that
in our case, these orderings are applied to the contexts themselves rather than directly
to a set of arguments, and that we use a distributed underlying knowledge base.

Contextual Argumentation in Ambient Intelligence 33

3 Representation Model

We model a Multi-Context System C as a collection of distributed context theories Ci:
A context is defined as a tuple of the form (Vi, Ri, Ti), where Vi is the vocabulary used
by Ci, Ri is a set of rules, and Ti is a preference ordering on C.

Vi is a set of positive and negative literals. If qi is a literal in Vi, ∼ qi denotes the
complementary literal, which is also in Vi. If qi is a positive literal p then ∼ qi is ¬p;
and if qi is ¬p, then ∼ qi is p. We assume that each context uses a distinct vocabulary.

Ri consists of two sets of rules: the set of local rules and the set of mapping rules.
The body of a local rule is a conjunction of local literals (literals that are contained in
Vi), while its head contains a local literal:

rl
i : a1

i , a
2
i , ...a

n−1
i → an

i

Local rules express local knowledge and are interpreted in the classical sense: whenever
the literals in the body of the rule are consequences of the local theory, then so is the
literal in the head of the rule. Local rules with empty body denote factual knowledge.

Mapping rules associate local literals with literals from the vocabularies of other
contexts (foreign literals). The body of each such rule is a conjunction of local and
foreign literals, while its head contains a single local literal:

rm
i : a1

i , a
2
j , ...a

n−1
k ⇒ an

i

rm
i associates local literals of Ci (e.g. a1

i) with local literals of Cj (a2
j), Ck (an−1

k) and
possibly other contexts. an

i is a local literal of the theory that has defined rm
i (Ci).

Finally, each context Ci defines a total preference ordering Ti on C to express its
confidence in the knowledge it imports from other contexts. This is of the form:

Ti = [Ck, Cl, ..., Cn]

According to Ti, Ck is preferred by Ci to Cl if Ck precedes Cl in Ti. The total prefer-
ence ordering enables resolving all potential conflicts that may arise from the interaction
of contexts through their mapping rules.

Example. Consider the following scenario. Dr. Amber has configured his mobile phone
to decide whether it should ring based on his preferences and context. He has the fol-
lowing preferences: His mobile phone should ring in case of an incoming call (in call)
if it is in normal mode (normal) and he is not giving a course lecture (lecture). Dr.
Amber is currently located in ’RA201’ university classroom. It is class time, but he has
just finished with a lecture and remains in the classroom reading his emails on his lap-
top. The mobile phone receives an incoming call, and it is in normal mode. The local
knowledge of the mobile phone (C1), which includes information about the mode of
the phone and incoming calls, is encoded in the following local rules.

rl
11 : in call1, normal1,¬lecture1 → ring1

rl
12 :→ in call1

rl
13 :→ normal1

34 A. Bikakis and G. Antoniou

In case the mobile phone cannot reach a decision based on its local knowledge, it im-
ports knowledge from other ambient agents. In this case, to determine whether Dr. Am-
ber is giving a lecture, it connects through the university wireless network with Dr.
Amber’s laptop (C2), a localization service (C3) and the classroom manager (C4, a sta-
tionary computer installed in ’RA201’), and imports information about Dr. Amber’s
scheduled events, location, and the classroom state through mapping rules rm

14 and rm
15.

rm
14 : classtime2, location RA2013 ⇒ lecture1

rm
15 : ¬class activity4 ⇒ ¬lecture1

The local context knowledge of the laptop, the localization service, and the classroom
manager is expressed in rules rl

21, rl
31 and rl

41 − rl
42 respectively. The classroom man-

ager infers whether there is active class activity, based on the number of people detected
in the classroom (detected) by a person detection service.

rl
21 :→ classtime2

rl
31 :→ location RA2013

rl
41 :→ detected(1)4

rl
42 : detected(1)4 → ¬class activity4

The mobile phone is configured to give highest priority to information imported by the
classroom manager and lowest priority to information imported by the laptop. This is
encoded in preference ordering T1 = [C4, C3, C2].

This example characterizes the type of applications, in which each ambient agent is
aware of the type of knowledge that each of the other agents that it communicates with
possesses, and has predefined how part of this knowledge relates to its local knowledge.

4 Argumentation Semantics

The argumentation framework that we propose uses arguments of local range, in the
sense that each one is made of rules derived from a single context. Arguments made by
different contexts are interrelated in the Support Relation through mapping rules. The
Support Relation contains triples that represent proof trees for literals in the system.
Each proof tree is made of rules of the context that the literal in its root is defined by.
In case a proof tree contains mapping rules, for the respective triple to be contained in
the Support Relation, similar triples for the foreign literals in the proof tree must have
already been obtained. We should also note that, for sake of simplicity, we assume that
there are no loops in the local context theories, and thus proof trees are finite. Loops
in the local knowledge bases can be easily detected and removed without needing to
interact with other agents. However, even if there are no loops in the local theories, the
global knowledge base may contain loops caused by mapping rules.

Let C = {Ci} be a MCS. The Support Relation of C (SRC) is the set of all triples
of the form (Ci, PTpi , pi), where Ci ∈ C, pi ∈ Vi, and PTpi is the proof tree for pi

based on the set of local and mapping rules of Ci. PTpi is a tree with nodes labeled by
literals such that the root is labeled by pi, and for every node with label q:

1. If q ∈ Vi and a1, ..., an label the children of q then
– If ∀ai ∈ {a1, ..., an}: ai ∈ Vi then there is a local rule ri ∈ Ci with body

a1, ..., an and head q

Contextual Argumentation in Ambient Intelligence 35

– If ∃aj ∈ {a1, ..., an} such that aj /∈ Vi then there is a mapping rule ri ∈ Ci

with body a1, ..., an and head q

2. If q ∈ Vj �= Vi, then this is a leaf node of the tree and there is a triple of the form
(Cj , PTq, q) in SRC

3. The arcs in a proof tree are labeled by the rules used to obtain them.

An argument A for a literal pi is a triple (Ci, PTpi , pi) in SRC . Any literal labeling a
node of PTpi is called a conclusion of A. However, when we refer to the conclusion of
A, we refer to the literal labeling the root of PTpi (pi). We write r ∈ A to denote that
rule r is used in the proof tree of A. A (proper) subargument of A is every argument
with a proof tree that is (proper) subtree of the proof tree of A.

Based on the literals used in their proof trees, arguments are classified to local and
mapping arguments. An argument A with conclusion pi ∈ Vi is a local argument of Ci

if its proof tree contains only local literals of Ci (literals that are contained in Vi). Oth-
erwise, A is a mapping argument of Ci. We denote as ArgsCi the set of all arguments
of Ci, while ArgsC is the set of all arguments in C: ArgsC =

⋃
ArgsCi .

The derivation of local logical consequences in Ci is based on its local arguments.
Actually, the conclusions of all local arguments in ArgsCi are logical consequences
of Ci. Distributed logical consequences are derived from a combination of local and
mapping arguments in ArgsC . In this case, we should also consider conflicts between
competing rules, which are modeled as attacks between arguments, and preference or-
derings, which are used in our framework to rank mapping arguments.

The rank of a literal p in context Ci (denoted as R(p, Ci)) equals 0 if p ∈ Vi. If
p ∈ Vj �= Vi, then R(p, Ci) equals the rank of Cj in Ti. The rank of an argument A in
Ci (denoted as R(A, Ci)) equals the maximum between the ranks in Ci of the literals
contained in A. It is obvious that for any three arguments A1, A2, A3: If R(A1, Ci) ≤
R(A2, Ci) and R(A2, Ci) ≤ R(A3, Ci), then R(A1, Ci) ≤ R(A3, Ci); namely the
preference relation < on ArgsC , which is build according to ordering Ti, is transitive.

The definitions of attack and defeat apply only for mapping arguments. An argument
A attacks a mapping argument B at pi, if pi is a conclusion of B, ∼ pi is a conclusion of
A, and the subargument of B with conclusion pi is not a local argument. An argument
A defeats an argument B at pi, if A attacks B at pi, and for the subarguments of A, A′

with conclusion ∼ pi, and of B, B′ with conclusion pi: R(A′, Ci) ≤ R(B′, Ci).
To link arguments through the mapping rules that they contain, we introduce in our

framework the notion of argumentation line. An argumentation line AL for a literal pi

is a sequence of arguments in ArgsC , constructed in steps as follows:

– In the first step add in AL one argument for pi.
– In each next step, for each distinct literal qj labeling a leaf node of the proof trees

of the arguments added in the previous step, add one argument with conclusion qj ;
the addition should not violate the following restriction.

– An argument B with conclusion qj can be added in AL only if AL does not already
contain a different argument D with conclusion qj .

The argument for pi added in the first step is called the head argument of AL. If the
number of steps required to build AL is finite, then AL is a finite argumentation line.

36 A. Bikakis and G. Antoniou

Infinite argumentation lines imply loops in the global knowledge base. Arguments con-
tained in infinite lines participate in attacks against counter-arguments but may not be
used to support the conclusion of their argumentation lines.

The notion of supported argument is meant to indicate when an argument may have
an active role in proving or preventing the derivation of a conclusion. An argument A
is supported by a set of arguments S if: (a) every proper subargument of A is in S; and
(b) there is a finite argumentation line AL with head A, such that every argument in
AL − {A} is in S.

A mapping argument A is undercut by a set of arguments S if for every argumenta-
tion line AL with head A, there is an argument B, such that B is supported by S, and
B defeats a proper subargument of A or an argument in AL − {A}. That an argument
A is undercut by a set of arguments S means that we can show that some premises of
A cannot be proved if we accept the arguments in S.

An argument A is acceptable w.r.t a set of arguments S if:

1. A is a local argument; or
2. A is supported by S and every argument defeating A is undercut by S

Intuitively, that an argument A is acceptable w.r.t. S means that if we accept the argu-
ments in S as valid arguments, then we feel compelled to accept A as valid. Based on
the concept of acceptable arguments, we define justified arguments and justified literals.
JC

i is defined as follows:

– JC
0 = ∅;

– JC
i+1 = {A ∈ ArgsC | A is acceptable w.r.t. JC

i }
The set of justified arguments in a MCS C is JArgsC =

⋃∞
i=1 JC

i . A literal pi is jus-
tified if it is the conclusion of an argument in JArgsC . That an argument A is justified
means that it resists every reasonable refutation. That a literal pi is justified, it actually
means that it is a logical consequence of C.

Finally, we also introduce the notion of rejected arguments and rejected literals for
the characterization of conclusions that do not derive from C. An argument A is rejected
by sets of arguments S, T when:

1. A is not a local argument, and either
2. (a) a proper subargument of A is in S; or

(b) A is defeated by an argument supported by T ; or
(c) for every argumentation line AL with head A there exists an argument A′ ∈

AL − {A}, such that either a subargument of A′ is in S; or A′ is defeated by
an argument supported by T

That an argument is rejected by sets of arguments S and T means that either it is sup-
ported by arguments in S, which can be thought of as the set of already rejected ar-
guments, or it cannot overcome an attack from an argument supported by T , which
can be thought of as the set of justified arguments. Based on the definition of rejected
arguments, we define RC

i as follows:

– RC
0 = ∅;

– RC
i+1 = {A ∈ ArgsC | A is rejected by RC

i , JArgsC}

Contextual Argumentation in Ambient Intelligence 37

The set of rejected arguments in a MCS C is RArgsC =
⋃∞

i=1 RC
i . A literal pi is

rejected if there is no argument in ArgsC −RArgsC with conclusion pi. That a literal
is rejected means that we are able to prove that it is not a logical consequence of C.

Example (continued). Given the MCS C of the example, in call1, normal1,
classtime2, location RA2013, detected(1)4, and ¬class activity4 are justified in C,
since they are supported by local arguments; all these arguments are in JC

i for every i.
The argument A={¬class activity4 ⇒ ¬lecture1} is supported by JC

1 , as there is an
argument for ¬class activity4 in JC

1 . Moreover, it is not defeated by attacking argu-
ment B={classtime2, location RA2013 ⇒ lecture1}, as B has higher rank than A
in C1. Hence, A is in J2, and ¬lecture1 is justified in C. Argument D for ring1, which
is derived from the arguments for in call1, normal1 and ¬lecture1 (A) and rule rl

11, is
supported by JC

2 and not defeated by attacking argument B. Therefore, D is justified,
and ring1 is justified in C.

Lemmata 1-3 describe some formal properties of the framework. Their proofs are
available at: www.csd.uoc.gr/∼bikakis/thesis.pdf. Lemma 1 refers to the monotonicity
in JC

i and RC
i (T), while Lemma 2 represents the fact that no argument is both ”be-

lieved” and ”disbelieved”.

Lemma 1. The sequences JC
i and RC

i (T) are monotonically increasing.

Lemma 2. In a Multi-Context System C, no literal is both justified and rejected.

If consistency is assumed in the local rules of a context theory (two complementary
conclusions may not be derived as local consequences of a context theory), then using
Lemma 2, it is easy to prove that the entire framework is consistent (Lemma 3).

Lemma 3. If the set of justified arguments in C, JArgsC , contains two arguments with
complementary conclusions, then both are local arguments of the same context.

5 Distributed Query Evaluation

P2P DR is a distributed algorithm for query evaluation that implements the proposed
argumentation framework. The specific problem that it deals with is: Given a MCS C,
and a query about literal pi issued to context Ci, compute the truth value of pi. For an
arbitrary literal pi, P2P DR returns one of the following values: (a) true; indicating
that pi is justified in C; (b) false; indicating that pi is rejected in C; or (c) undefined;
indicating that pi is neither justified nor rejected in C.

5.1 Algorithm Description

P2P DR proceeds in four main steps. In the first step (lines 1-8), P2P DR deter-
mines whether pi or its negation ∼ pi, are consequences of the local rules of Ci, using
local alg (described later in this section). If local alg computes true as an answer for
pi or ∼ pi, P2P DR returns true / false respectively as an answer for pi and terminates.

In step 2 (lines 9-12), P2P DR calls Support (described later in this section) to de-
termine whether there are applicable and unblocked rules with head pi. We call appli-
cable those rules that for all literals in their body P2P DR has computed true as their

38 A. Bikakis and G. Antoniou

truth value, while unblocked are the rules that for all literals in their body P2P DR
has computed either true or undefined as their truth values. Support returns two data
structures for pi: (a) the Supportive Set of pi (SSpi), which is the set of foreign literals
used in the most preferred (according to Ti) chain of applicable rules for pi ; and (b)
the Blocking Set of pi (BSpi), which is the set of foreign literals used in the most pre-
ferred chain of unblocked rules for pi. If there is no unblocked rule for pi (BSpi = ∅),
P2P DR returns false as an answer and terminates. Similarly, in step 3 (lines 13-14),
P2P DR calls Support to compute the respective constructs for∼ pi (SS∼pi ,BS∼pi).

In the last step (lines 15-24), P2P DR uses the constructs computed in the previous
steps and preference ordering Ti to compute the answer for pi. In case there is no
unblocked rule for ∼ pi (BS∼pi = ∅), or SSpi is computed by Stronger (described
later in this section) to be stronger than BS∼pi , P2P DR returns Anspi =true. That
SSpi is stronger than BSpi means that the chains of applicable rules for pi involve
information from more preferred contexts to those that are involved in the chains of
unblocked rules for ∼ pi. If there is at least one applicable rule for ∼ pi, and BSpi is
not stronger than SS∼pi , P2P DR returns false. In any other case, it returns undefined.

The context that is called to evaluate the query for pi (Ci) returns through Anspi

the truth value for pi. SSpi and BSpi are returned to the querying context (C0) only
if the two contexts (C0 and Ci) are actually the same context. Otherwise, the empty
set is assigned to both SSpi and BSpi and returned to C0. In this way, the size of the
messages exchanged between different contexts is kept small. Histpi is a structure used
by Support to detect loops in the global knowledge base. The algorithm parameters are:

– pi: the queried literal (input)
– C0: the context that issues the query (input)
– Ci: the context that defines pi (input)
– Histpi : the list of pending queries ([p1, ..., pi]) (input)
– Ti: the preference ordering of Ci (input)
– SSpi : a set of foreign literals of Ci denoting the Supportive Set of pi (output)
– BSpi : a set of foreign literals of Ci denoting the Blocking Set of pi (output)
– Anspi : the answer returned for pi (output)

P2P DR(pi, C0, Ci, Histpi , Ti, SSpi , BSpi , Anspi)
1: call local alg(pi, localAnspi)
2: if localAnspi = true then
3: Anspi ← true, SSpi ← ∅, BSpi ← ∅
4: terminate
5: call local alg(∼ pi, localAns∼pi)
6: if localAns∼pi = true then
7: Anspi ← false, SSpi ← ∅, BSpi ← ∅
8: terminate
9: call Support(pi, Histpi , Ti, SSpi , BSpi)

10: if BSpi = ∅ then
11: Anspi ← false, SSpi ← ∅, BSpi ← ∅
12: terminate
13: Hist∼pi ← (Histpi − {pi}) ∪ {∼ pi}
14: call Support(∼ pi, Hist∼pi , Ti, SS∼pi , BS∼pi)
15: if SSpi �= ∅ and (BS∼ pi = ∅ or Stronger(SSpi , BS∼pi , Ti) = SSpi) then

Contextual Argumentation in Ambient Intelligence 39

16: Anspi ← true
17: if C0 �= Ci then
18: SSpi ← ∅, BSpi ← ∅
19: else if SS∼pi �= ∅ and Stronger(BSpi , SS∼pi , Ti) �= BSpi then
20: Anspi ← false, SSpi ← ∅, BSpi ← ∅
21: else
22: Anspi ← undefined
23: if C0 �= Ci then
24: SSpi ← ∅, BSpi ← ∅

local alg is called by P2P DR to determine whether the truth value of the queried
literal can be derived from the local rules of a context.

local alg(pi, localAnspi)
1: for all ri ∈ Rs[pi] do
2: for all bi ∈ body(ri) do
3: call local alg(bi, localAnsbi)
4: if for all bi: localAnsbi = true then
5: localAnspi ← true
6: terminate
7: localAnspi ← false

Support is called by P2P DR to compute SSpi and BSpi . To compute these struc-
tures, it checks the applicability of the rules with head pi, using the truth values of the
literals in their body, as these are evaluated by P2P DR. To avoid loops, before calling
P2P DR, it checks if the same query has been issued before during the running call of
P2P DR. For each applicable rule ri, Support builds its Supportive Set, SSri; this is
the union of the set of foreign literals contained in the body of ri with the Supportive
Sets of the local literals contained in the body of the rule. Similarly, for each unblocked
rule ri, it computes its Blocking Set BSri using the Blocking Sets of its body literals.
Support computes the Supportive Set of pi, SSpi , as the strongest rule Supportive Set
SSri ; and its Blocking Set, BSpi , as the strongest rule Blocking Set BSri , using the
Stronger function. The parameters of Support are:

– pi: the queried literal (input)
– Histpi : the list of pending queries ([p1, ..., pi]) (input)
– Ti: the preference ordering of Ci (input)
– SSpi : the Supportive Set of pi (output)
– BSpi : the Blocking Set of pi (output)

Support(pi, Histpi, Ti, SSpi , BSpi)
1: for all ri ∈ R[pi] do
2: cycle(ri)← false
3: SSri ← ∅, BSri ← ∅
4: for all bt ∈ body(ri) do
5: if bt ∈ Histpi then
6: cycle(ri)← true
7: BSri ← BSri ∪ {dt} {dt ≡ bt if bt /∈ Vi; otherwise dt is the first foreign literal

of Ci added in Histpi after bt}

40 A. Bikakis and G. Antoniou

8: else
9: Histbt ← Histpi ∪ {bt}

10: call P2P DR(bt, Ci, Ct, Histbt , Tt, SSbt , BSbt , Ansbt)
11: if Ansbt = false then
12: stop and check the next rule
13: else if Ansbt = undefined or cycle(ri) = true then
14: cycle(ri)← true
15: if bt /∈ Vi then
16: BSri ← BSri ∪ {bt}
17: else
18: BSri ← BSri ∪BSbt

19: else
20: if bt /∈ Vi then
21: BSri ← BSri ∪ {bt}
22: SSri ← SSri ∪ {bt}
23: else
24: BSri ← BSri ∪BSbt

25: SSri ← SSri ∪ SSbt

26: if BSpi = ∅ or Stronger(BSri , BSpi , Ti) = BSri then
27: BSpi ← BSri

28: if cycle(ri) = false then
29: if SSpi = ∅ or Stronger(SSri , SSpi , Ti) = SSri then
30: SSpi ← SSri

Stronger(A, B, Ti) returns the strongest between two sets of literals, A and B, ac-
cording to preference ordering Ti. A literal ak is preferred to literal bj , if Ck precedes
Cl in Ti. The strength of a set is determined by the the least preferred literal in this set.

Stronger(A, B, Ti)
1: if ∃bj ∈ B: ∀ak ∈ A: Ck has lower rank than Cj in Ti then
2: Stronger = A
3: else if ∃ak ∈ A: ∀bj ∈ B: Cj has lower rank than Ck in Ti then
4: Stronger = B
5: else
6: Stronger = None

Example (continued). Given a query about ring1, P2P DR proceeds as follows. It
fails to compute an answer based on C1’s local theory, and uses rules rm

14 and rm
15 to

compute an answer for ¬lecture1. Using the local rules of C2, C3 and C4, it computes
positive answers for classtime2, location RA2013 and¬class activity4 respectively,
determines that both rm

14 and rm
15 are applicable, and computes their Supportive Sets:

SSrm
14

= {class2,location RA2013} and SSrm
15

= {¬class activity4}. As C4 precedes
C2 in T1, P2P DR determines that SSrm

15
is stronger, computes a positive answer for

¬lecture1, and eventually (using rule rl
11) returns a positive answer (true) for ring1.

5.2 Properties of the Algorithm

Below, we describe formal properties of P2P DR regarding its termination, soundness
and completeness w.r.t. the argumentation framework and complexity. The proofs for

Contextual Argumentation in Ambient Intelligence 41

the following propositions are available at www.csd.uoc.gr/∼bikakis/thesis.pdf. Propo-
sition 1 is a consequence of the cycle detection process within the algorithm.

Proposition 1. The algorithm is guaranteed to terminate returning one of the values
true, false and undefined as an answer for the queried literal.

Proposition 2 associates the answers produced by P2P DR with the concepts of justi-
fied and rejected literals.

Proposition 2. For a Multi-Context System C and a literal pi in C, P2P DR returns:

1. Anspi = true iff pi is justified in C
2. Anspi = false iff pi is rejected in C
3. Anspi = undefined iff pi is neither justified nor rejected in C

Propositions 3 and 4 are consequences of two states that we retain for each context,
which keep track of the results for all incoming and outgoing queries. The worst case
that both propositions refer to is when all rules of Ci contain either pi (the queried
literal) or ∼ pi in their head and all system literals in their bodies.

Proposition 3. The total number of messages exchanged between the system contexts
for the evaluation of a query is, in the worst case, O(n × ∑

P (n, k)), where n stands
for the total number of literals in the system,

∑
expresses the sum over k = 0, 1, ..., n,

and P (n, k) stands for the number of permutations with length k of n elements. In case,
there are no loops in the global knowledge base, the number of messages is polynomial
to the size of the global knowledge base.

Proposition 4. The number of operations imposed by one call of P2P DR for the
evaluation of a query for literal pi is, in the worst case, proportional to the number of
rules in Ci, and to the total number of literals in the system.

6 Conclusion

This paper proposes a totally distributed approach for contextual reasoning in Ambi-
ent Intelligence, based on representing context knowledge of ambient agents as context
theories in a Multi-Context System, and reasoning with the available knowledge us-
ing arguments. Using a total preference ordering on the system contexts, our approach
enables resolving all conflicts that arise from the interaction of contexts through their
mappings. The paper also presents a distributed algorithm for query evaluation that
implements the proposed argumentation framework, and studies its formal properties.

Our ongoing work involves: (a) studying alternative methods for conflict resolu-
tion, which differ in the way that agents evaluate the imported context information; (b)
adding non-monotonic features to the local context theories to support uncertainty in
the local context knowledge; (c) extending our approach to support overlapping vocab-
ularies, which will enable different contexts to use elements of common vocabularies
(e.g. URIs); and (d) implementing real-world applications of our approach in Ambient
Intelligence environments.

42 A. Bikakis and G. Antoniou

References

1. Henricksen, K., Indulska, J.: Modelling and Using Imperfect Context Information. In: Pro-
ceedings of PERCOMW 2004, Washington, DC, USA, pp. 33–37. IEEE Computer Society,
Los Alamitos (2004)

2. Bikakis, A., Patkos, T., Antoniou, G., Plexousakis, D.: A Survey of Semantics-based
Approaches for Context Reasoning in Ambient Intelligence. In: Constructing Ambient Intel-
ligence. Communications in Computer and Information Science, pp. 14–23. Springer, Hei-
delberg (2008)

3. Bikakis, A., Antoniou, G., Hassapis, P.: Alternative Strategies for Conflict Resolution in
Multi-Context Systems. In: Proceedings of the 5th IFIP Conference on Artificial Intelligence
Applications and Innovations (AIAI 2009). Springer, Heidelberg (2009)

4. McCarthy, J.: Generality in Artificial Intelligence. Communications of the ACM 30(12),
1030–1035 (1987)

5. Buvac, S., Mason, I.A.: Propositional Logic of Context. In: AAAI, pp. 412–419 (1993)
6. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do without

modal logics. Artificial Intelligence 65(1) (1994)
7. Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reason-

ing=locality+compatibility. Artificial Intelligence 127(2), 221–259 (2001)
8. Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. Artificial Intelli-

gence 155(1-2), 41–67 (2004)
9. Roelofsen, F., Serafini, L.: Minimal and Absent Information in Contexts. In: IJCAI, pp. 558–

563 (2005)
10. Brewka, G., Roelofsen, F., Serafini, L.: Contextual Default Reasoning. In: IJCAI, pp. 268–

273 (2007)
11. Sabater, J., Sierra, C., Parsons, S., Jennings, N.R.: Engineering Executable Agents

using Multi-context Systems. Journal of Logic and Computation 12(3), 413–442
(2002)

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Inconsistency toler-
ance in P2P data integration: An epistemic logic approach. In: Bierman, G., Koch, C. (eds.)
DBPL 2005. LNCS, vol. 3774, pp. 90–105. Springer, Heidelberg (2005)

13. Chatalic, P., Nguyen, G.H., Rousset, M.C.: Reasoning with Inconsistencies in Propositional
Peer-to-Peer Inference Systems. In: ECAI, pp. 352–356 (2006)

14. Binas, A., Sheila, A.: Peer-to-Peer Query Answering with Inconsistent Knowledge. In: KR,
pp. 329–339 (2008)

15. Simari, G.R., Loui, R.P.: A Mathematical Treatment of Defeasible Reasoning and its Imple-
mentation. Artificial Intelligence 53(2-3), 125–157 (1992)

16. Stolzenburg, F., Garcı́a, A.J., Chesñevar, C.I., Simari, G.R.: Computing Generalized Speci-
ficity. Journal of Applied Non-Classical Logics 13(1), 87–113 (2003)

17. Prakken, H., Sartor, G.: Argument-Based Extended Logic Programming with Defeasible Pri-
orities. Journal of Applied Non-Classical Logics 7(1) (1997)

18. Governatori, G., Maher, M.J., Billington, D., Antoniou, G.: Argumentation Semantics for
Defeasible Logics. Journal of Logic and Computation 14(5), 675–702 (2004)

19. Bench-Capon, T.: Persuasion in Practical Argument Using Value-based Argumentation
Frameworks. Journal of Logic and Computation 13, 429–448 (2003)

20. Kaci, S., van der Torre, L.: Preference-based argumentation: Arguments support-
ing multiple values. Internation Journal of Approximate Reasoning 48(3), 730–751
(2008)

Contextual Argumentation in Ambient Intelligence 43

21. Amgoud, L., Parsons, S., Perrussel, L.: An Argumentation Framework based on contextual
Preferences. In: International Conference on Formal and Applied and Practical Reasoning
(FAPR 2000), pp. 59–67 (2000)

22. Amgoud, L., Cayrol, C.: A Reasoning Model Based on the Production of Accept-
able Arguments. Annals of Mathematic and Artificial Intelligence 34(1-3), 197–215
(2002)

23. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357
(1995)

	Contextual Argumentation in Ambient Intelligence
	Introduction
	Background and Related Work
	Multi-Context Systems
	Preference-Based Argumentation Systems

	Representation Model
	Argumentation Semantics
	Distributed Query Evaluation
	Algorithm Description
	Properties of the Algorithm

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

