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Abstract. Several learning systems based on Inverse Entailment (IE)
have been proposed, some that compute single clause hypotheses, exem-
plified by Progol, and others that produce multiple clauses in response
to a single seed example. A common denominator of these systems is
a restricted hypothesis search space, within which each clause must in-
dividually explain some example E, or some member of an abductive
explanation for E. This paper proposes a new IE approach, called In-
duction on Failure (IoF), that generalises existing Horn clause learn-
ing systems by allowing the computation of hypotheses within a larger
search space, namely that of Connected Theories. A proof procedure for
IoF is proposed that generalises existing IE systems and also resolves
Yamamoto’s example. A prototype implementation is also described. Fi-
nally, a semantics is presented, called Connected Theory Generalisation,
which is proved to extend Kernel Set Subsumption and to include hy-
potheses constructed within this new IoF approach.

Keywords: Inductive Logic Programming, Inverse Entailment,
Abduction.

1 Introduction

Inductive Logic Programming (ILP) uses the expressive power of first-order logic
and the sound theoretical foundations of logic programming, to create a branch
of machine learning that seeks the construction of explanations for given exam-
ples relative to some background knowledge, in a form easily understood by the
user. Among ILP systems that perform best on practical applications are those
that use the Inverse Entailment (IE) approach to learn Horn theories [1,2,3,4].
These systems first construct a most specific hypothesis and then search through
formulas that subsume it. The restricted search space that IE defines contributes
to the efficiency of these systems. However, the assumptions made by current
Horn theory IE systems, regarding the number of clauses necessary to explain a
given example, mean that some hypotheses that correctly explain the observa-
tions are excluded.

The Progol systems [1,5] assume that every clause in a hypothesis H must in-
dividually explain at least one example E. This excludes hypotheses in which two
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or more clauses combine to explain some E, a situation particularly, though not
exclusively, relevant to non-observational learning. Consider, for example, the
observation E = {p(a, b)}, background knowledge B = {p(X, Y )← q(X), r(Y )}
and hypothesis H = {q(X)}∪{r(X)}. This H is outside the Progol search space.
A single clause that does explain some E may still be excluded, because the as-
sumption is applied at the ground level first. For example, if the background
clause above was in fact p(X, Y ) ← q(X), q(Y ), the clause H = q(X) explains
E. However, the ground explanation for p(a, b) is {q(a)}∪{q(b)} which contains
two clauses, meaning it and its subsuming hypothesis q(X) are not returned.
The HAIL [3] and ALECTO [4] systems allow a multiple clause explanation of a
single seed example, and do compute the hypotheses described so far. However,
the single clause assumption is only weakened in these systems, not removed
completely. Thus, for the previous example HAIL computes the ground unit
explanation Δ = {q(a), q(b)} by abduction, and generates one, and only one,
clause for each member of Δ. The next example shows that this approach also
excludes some correct explanations.

Example 1.

E1 = vehicle(focus)

B1 = {doors(focus, 5)} ∪ {car(X)← hatchback(X)}
H1 = {vehicle(X)← car(X)} ∪ {hatchback(X)← doors(X, 5)}

�
The abductive explanation Δ1 = {vehicle(focus)}, will constrain HAIL’s search
space to be the same as Progol’s for this example, including only single clauses
subsuming H ′

1 = vehicle(X)← doors(X, 5). The two-clause theory H1 is outside
this search, and cannot be computed by any of the ILP systems described.

Intuitively, one can see that H1 is a structured explanation for E1, and if the
observation set includes data on cars and hatchbacks then it will be preferred
to H ′

1 since it will cover examples with those predicates. This paper proposes a
new IE approach, within the setting of Horn clauses, that enables the automatic
computation of hypotheses such as H1, as well as those considered by existing
Horn ILP systems. This approach, called Induction on Failure (IoF), is based on
the notion of a Connected Theory. A Connected Theory contains clauses that
depend on one another, either directly or via clauses in the background knowl-
edge. IoF is designed to find hypotheses as generalisations of a most specific
Connected Theory, denoted T⊥. The semantics of Connected Theory Generali-
sation is presented in Sect. 3, and is shown to define a set of hypotheses that
extends those of Progol’s Bottom Generalisation (BG) and HAIL’s Kernel Set
Subsumption (KSS).

The IoF approach computes the theory T⊥ via a recursive inductive proce-
dure. Where current Horn IE systems use a purely deductive saturation step
to generate the body of clauses, IoF considers body literals which initially lack
explanation, starting a new induction process for them. This recursive induction
has as base case the standard saturation process adopted by existing systems. A
full description of the IoF framework is given in Sect. 4.
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In Sect. 5 it is also shown, using a prototype implementation called Imparo,
that the proposed IoF approach is general enough to resolve Yamamoto’s counter
example to the completeness of IE [6], demonstrating its suitability for learning
mutually recursive programs. Section 2 gives the necessary background informa-
tion on ILP, and Sect. 6 describes related and future work.

2 Background

This section presents notation and terminologies used throughout the paper
and briefly reviews the ILP task, the IE principle and the methods of Bottom
Generalisation and Kernel Set Subsumption.

Notation and Terminology. All formulas are assumed to be constructed from
a first-order logic signature. A first-order clause is a finite disjunction of zero or
more literals A1∨. . .∨Am∨¬Am+1∨. . .∨¬An, which is assumed to be universally
quantified and will be written as the implication A1, . . . , Am ← Am+1, . . . , An. A
Horn clause is either the empty clause �, or a fact A, or a denial, ← A1, . . . , An,
or a definite clause A0 ← A1, . . . , An, where A0 is the head and A1, . . . , An is
the body of the clause. Capitalised identifiers denote meta variables. If C is a
Horn clause, then C+ is the set containing the head atom (if any) of C, and C−

is the set of body atoms of C. Moreover, given a set S = {C1, . . . , Cn} of Horn
clauses, S+ denotes C+

1 ∪ . . .∪C+
n and S− denotes C−

1 ∪ . . .∪C−
n . A theory is a

set of clauses. The symbol |= represents classical entailment. So, if S and T are
theories and C is a clause, S |= C means that C is satisfied in every model of
S, and S |= T means that S |= D for every D ∈ T . The term subsumption and
the symbol � refer to θ-subsumption. So, if C and D are clauses, C � D means
that the set of literals in Cθ is a (non-strict) subset of the set of literals in D
for some substitution θ, and if S and T are theories, S � T means that every
clause in T is subsumed by at least one clause in S. Throughout this paper the
term clause will refer to a Horn clause, unless otherwise stated.

Inductive Logic Programming. Inductive Logic Programming (ILP) is con-
cerned with the task of generalizing positive and negative examples with respect
to a background theory. Formally, given background theory B, positive examples
Epos and negative examples Eneg , the task of ILP is to compute a theory H ,
called a hypothesis, that satisfies the conditions B ∪ H |= Epos (posterior suf-
ficiency) and ∀x ∈ Eneg(B ∪H �|= x) (posterior satisfiability). The ILP task of
finding such an hypothesis H is called inductive generalisation. Standard precon-
ditions of an ILP task are prior necessity, for which the given background theory
must not already entail all the positive examples, B �|= Epos and prior satisfiabil-
ity, for which B must not entail any of the negative examples, ∀x ∈ Eneg(B �|= x).

Inverse Entailment. Various existing ILP systems build their approaches to
the ILP task upon the principle of Inverse Entailment (IE), which states that the
negation of every inductive hypothesis H for some example E may be deduced
from B and ¬E. That is to say B ∪ {¬E} |= ¬H . This relationship is used to
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derive a most specific hypothesis φ, as defined below, which allows the search
space for the inductive generalisation to be limited to those H satisfying H |= φ.

Definition 1 (Most Specific Hypothesis). Let B be a set of clauses and
E be a clause such that B �|= E. Then a set of clauses H is a most specific
hypothesis for E given B if and only if B ∪H |= E and there does not exist a
set H ′ of clauses such that B ∪H ′ |= E and H |= H ′ and H ′ �|= H.

Systems such as Progol and Aleph [2] employ IE within the technique of Bot-
tom Generalisation. Bottom Generalisation computes a most specific hypothesis
⊥(B, E) called the Bottom Clause of B and E, as defined below. Since ⊥(B, E) is
a single clause, its negation is a set of (possibly skolemised) ground literals each
of which can be derived from B and ¬E. Any clause H which implies ⊥(B, E)
is said to be derivable by BG, as formalised in Definition 3.

Definition 2 (Bottom Clause [1]). Let B be a Horn theory and E a Horn
clause. Then ⊥(B, E), the Bottom Clause of B and E, is the disjunction of the
ground literals in the set {L | B ∪ {¬E} |= ¬L}.
Definition 3 (Bottom Generalisation [1]). Let B be a Horn theory and E a
Horn clause. A Horn clause H is said to be derivable from B and E by Bottom
Generalisation if and only if H |= ⊥(B, E).

The Progol system [1], implements Bottom Generalisation by means of Mode
Directed Inverse Entailment (MDIE), which computes a definite bottom clause
A0 ← A1, . . . , An based on ⊥(B, E). Ray et al. [3] showed that such a definite
bottom clause could be defined as a head atom A0 that, together with the
background knowledge, explains the head of the example clause (i.e. B∪{A0} |=
E+), and a set of body atoms {A1, . . . , An} that are directly derivable from the
background knowledge and the body of E (i.e. B∪E− |= Ai for each 1 ≤ i ≤ n).
Kernel Set Subsumption (defined below) extends this notion by defining a most
specific hypothesis K, the Kernel Set, that is a set of ground Horn clauses where
the set of head atoms of K explains the head of the example (B ∪K+ |= E+)
and the body atoms of K are directly derivable from the background knowledge
and E− (B ∪ E− |= K−).

Definition 4 (Kernel Set [3]). Let B be a Horn theory and E be a Horn
clause such that B �|= E. Then a ground Horn theory K = {C1, . . . , Ck} (k ≥ 1)
is a Kernel Set of B and E if and only if each clause Ci, 1 ≤ i ≤ k is given by
Ai

0 ← Ai
1, . . . , A

i
ni

, where B∪{A1
0, . . . , A

k
0} |= E+, and B∪E− |= {A1

1, . . . , A
k
nk
}.

Definition 5 (Kernel Set Subsumption [3]). Let B be a Horn theory and
E be a Horn clause such that B �|= E. A set of Horn clauses H is said to be
derivable from B and E by Kernel Set Subsumption, denoted B, E �KSS H, if
and only if there is a K such that K is a Kernel Set of B and E, and H � K.

Kernel Set Subsumption extends Bottom Generalisation since it has been shown
that all clauses that can be derived by BG can also be derived by KSS, and that
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some single clauses not found by BG are found by KSS [3]. Not only this, but KSS
allows theories to be derived from a single seed example, whereas BG is limited
to clauses. However, the nature of the Kernel Set imposes limits on the possible
theories that KSS can compute. The next section describes Connected Theory
Generalisation (CTG), a new semantic approach which further generalises KSS,
and computes a “more complete” set of hypotheses.

3 Connected Theory Generalisation

This section proposes a new semantic approach to ILP, called Connected Theory
Generalisation (CTG). This approach is based on the notion of a Connected
Theory, defined below, and is proved to extend the semantics of Kernel Set
Subsumption, which has been shown [3] to extend Bottom Generalisation [1].
The motivation is to extend the class of hypotheses learnable by Horn theory
ILP systems.

The Kernel Set extends the notion of a Bottom Clause by replacing the single
atom explanation of the given example, {A0}, with a set of atoms {A1

0, . . . , A
k
0}.

A Connected Theory extends the basic notion even further, not only generalising
the head of ⊥(B, E) to be a set of atoms, but also extending the set of body
atoms beyond those that are direct consequences of the background knowledge.
Intuitively, all body atoms in ⊥(B, E), a single clause, must be implied by B for
B∪{⊥(B, E)} to entail E. In a hypothesis which is a set of clauses this need not
be true for a given member of the set. The Kernel Set retains this restriction,
but, as explained below, it is relaxed in a Connected Theory leading to a wider
class of most specific hypotheses, and thus a larger search space.

In general, for a set T of ground Horn clauses to be a hypothesis for an example
E given background knowledge B, T must include a set T1 of root clauses whose
head atoms form an (abductive) explanation of the example E:

B ∪ T +
1 |= E .

If the body atoms of clauses in T1 are all implied by B (B |= T−
1 ), then T1 is a

hypothesis for E (B∪T1 |= E), and also a Kernel Set for B and E. On the other
hand, if some body atoms in T1 are not directly derivable from the background
knowledge, T1 is not an explanation for E. In this case, those body atoms in
T1 that are not consequences of B must themselves be explained. Such atoms
are referred to as secondary examples, and require that T contains a set T2 of
auxiliary clauses, in addition to T1. In the ground hypothesis shown for Example
1, the atom car(focus) is a secondary example, and is explained by the auxiliary
clause hatchback(focus) ← doors(focus, 5). By analogy with T1, the heads of
the T2 clauses must abductively explain the secondary examples:

B ∪ T +
2 |= T−

1 ,

and either T1∪T2 is now a hypothesis for E, or T2 contains secondary examples,
and T must include a further subset T3, etc. A ground hypothesis such as T is
called a Connected Theory for B and E, as formalised below.
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Definition 6 (Connected Theory). Let B be a Horn theory and E be a
ground Horn clause such that B �|= E. Let T1, . . . , Tn be n sets of ground Horn
clauses (n � 1), and let T = T1 ∪ . . . ∪ Tn. T is a Connected Theory for B and
E if and only if (i) B ∪ T +

1 |= E+, (ii) B ∪ E− ∪ T +
i+1 |= T−

i (1 � i < n), (iii)
B ∪ E− |= T−

n , and (iv) B ∪ T �|= �.

A set of Horn clauses which entails a Connected Theory is said to be derivable by
Connected Theory Generalisation, as formalised in Definition 7 below. Theorem
1 shows such a set of clauses to be a correct hypothesis.

Definition 7 (Connected Theory Generalisation). Let B be a Horn theory
and E be a ground Horn clause such that B �|= E. A set H of Horn clauses is
said to be derivable from B and E by Connected Theory Generalisation, denoted
B, E �CTG H, if and only if there is a T such that T is a Connected Theory for
B and E and H |= T .

Theorem 1 (Soundness of Connected Theory Generalisation). Let B
and H be Horn theories and E be a ground Horn clause such that B �|= E. If
B, E �CTG H then B ∪H |= E.

Proof. By Definitions 6 and 7, H entails some Connected Theory T for B and
E, and T comprises n subsets (n > 0) T1 . . . Tn, such that B ∪ T +

1 |= E+, and
B ∪ E− ∪ T +

i+1 |= T−
i (1 � i < n), and B ∪ E− |= T−

n . Since B ∪ E− |= T−
n ,

and T ∪ T−
n |= T +

n , then B ∪ E− ∪ T |= T +
n by transitivity of |=. Also, since

B ∪ E− ∪ T +
i+1 |= T−

i and T ∪ T−
i |= T +

i (1 � i < n), then B ∪ E− ∪ T |= T +
i

(1 � i < n), and since B ∪ T +
1 |= E+, then B ∪ E− ∪ T |= E+ or B ∪ T |= E.

Finally, since H |= T , B ∪H |= E. �
Thus Connected Theory Generalisation is a sound inductive learning method
for Horn theories. Theorem 2, below, shows that CTG extends Kernel Set Sub-
sumption, which itself has been shown to extend Bottom Generalisation [3].

Theorem 2 (CTG extends Kernel Set Subsumption). Let B be a Horn
theory and E be a Horn clause such that B �|= E. The set of hypotheses derivable
from B and E by Connected Theory Generalisation strictly includes the set of
hypotheses derivable from B and E by Kernel Set Subsumption.

Proof. The proof is in two parts. First it is shown that all hypotheses derivable by
KSS are derivable by CTG. Then it is shown, by means of a counter example, that
some hypotheses derivable by CTG are not derivable by KSS. Part (i). Assume
B, E �KSS H where H is a set of Horn clauses. Then H subsumes some Kernel
Set K of B and E. By Definition 4, K is a set of clauses {Aj

0 ← Aj
1, . . . , A

j
nj

, 1 ≤
j ≤ k}, for some k, where B ∪ {A1

0, . . . , A
k
0} |= E+ and B ∪ E− |= Aj

i , for
1 ≤ i ≤ nj , and 1 ≤ j ≤ k. Therefore B, E �CTG H with the Connected Theory
T = {Aj

0 ← Aj
1, . . . , A

j
nj

, 1 ≤ j ≤ k}. Hence B, E �KSS H only if B, E �CTG H .
Part (ii). Let p/1 and q/1 be predicates, let a and b be constants, let B =
{q(a) ← p(b)} ∪ {q(b)} and let E = p(a). The hypothesis H = {p(X)← q(X)}
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is not derivable by KSS since it does not θ-subsume K = {p(a)← q(b)}, but H
is derivable by CTG as it subsumes T = {p(a) ← q(a), q(b)} ∪ {p(b) ← q(b)}.
Hence B, E �CTG H does not imply B, E �KSS H . �

As with both the Bottom Clause and Kernel Set, restricting a Connected Theory
to Horn clause logic results in several alternative most specific hypotheses. If the
Bottom Clause and the Kernel (the non-Horn formula underpinning the Kernel
Set) are represented thus:

⊥(B, E) = A1
0 ∨ . . . ∨Am

0 ← A1 ∧ . . . ∧An ;
Ker = Δ1 ∨ . . . ∨Δm ← A1 ∧ . . . ∧An ;

then alternative definite Bottom Clauses ⊥i (resp. Kernel Sets K) can be seen
to comprise one of the atoms (resp. conjunctions of atoms) on the left of the
implication, together with all the atoms to the right. All alternative most specific
Connected Theories are captured by the equivalent formula

T⊥ = S1 ∨ . . . ∨ Sm ← A1 ∧ . . . ∧An ,

where each Si is an alternative set of Horn clauses that, together with the
background knowledge, explains E+ (B ∪ Si |= E+, 1 ≤ i ≤ m) and where each
Ai is entailed by the background knowledge and E− (B ∪E− |= Ai, 1 ≤ i ≤ n).
This reflects the fact that the alternative most specific Connected Theories differ
in their body atoms as well as their heads, as illustrated by Example 2.

Example 2. Find a Horn theory that explains E2, given background knowledge
B2. Hypothesis clauses may have x, u, v or w in the head, and p, a or b in the
body.

E2 = x B2 = {a← u, v} ∪ {b← v, w} ∪ {p} �

There are five alternative most specific hypotheses T⊥ for B2 and E2 as shown in
Table 1. The simplest, Theory 1, is the Kernel Set. Each of the other theories in
the table is also a most specific hypothesis by virtue of the inclusion of different
secondary examples, and auxiliary clauses to explain them.

Since none of the different T⊥ imply one another, each is the bottom element
of a separate implication lattice that, taken together, form the full search space
for the inductive problem. Depending on the amount of underlying structure in
the data (in the case of the example, whether u, v or w have also been observed),
generalisation of any of the alternative T⊥ could yield the preferred hypothesis.

Table 1. All possible most specific connected theories for B2 and E2

Theory 1 2 3 4 5

T⊥ x← p
x← p, a
u← p
v ← p

x← p, b
v ← p
w← p

x← p, a, b
u← p, b
v ← p
w← p

x← p, a, b
u← p
v ← p
w ← p, a
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4 Induction on Failure

This section describes the IoF proof procedure for computing Connected Theo-
ries. The key features of the procedure are the inclusion of secondary examples
in the saturation phase, and their recursive inductive explanation.

The top level covering loop is shown in Fig. 1. The initial set of examples is
divided into positive examples, Epos, which should be provable from the theory at
the end of Cover, and negative examples, Eneg which should not. The hypothesis
language is defined by sets of head (Mh) and body (Mb) mode declarations as
defined in [1] and briefly explained below. Mh, which is translated into a set A
of abducible atoms, Mb and Eneg are constant for a given application, and so
global to all procedures. The cover loop proceeds by selecting a seed example
E ∈ Epos, and generating a hypothesis H to explain it. H is added to B and all
members of Epos implied, or “covered”, by the new program are removed from
the set. The loop continues until Epos is empty.

The goal←E is queried against the background program in Abduce, based on
the Kakas and Mancarella (KM) abductive procedure [7], collecting any ground
atoms that are needed to refute it into the set Δ, which is thus an abductive
explanation for E. The members of Δ will form the heads of the root clauses.
These head atoms are “saturated” by adding body atoms to them, forming
T⊥, a most specific Connected Theory for B and E. The Saturate algorithm
is shown in Fig. 2. As explained in Sect. 3, in general there are multiple T⊥,
each alternative being computed using a restricted set of abducibles Aaux ⊆ A.
The final step in computing H is to search the lattice of sets of clauses which
subsume T⊥. The Search procedure returns the preferred H according to criteria
appropriate to the particular learning task. A common criterion is to select the
most compressive hypothesis, the H with the highest ratio of positive examples
covered to number of literals in the hypothesis, which does not cover negative
examples. The final H chosen for a given seed example E is the one with the
best measure across the entire search space defined by all T⊥.

Begin Cover
given B, Epos

let A = Initialise(Mh)
while Epos �= ∅

select a seed example E ∈ Epos

let H = {E}
for each Δ = Abduce(E,B, A)

for each T⊥ = Saturate(Δ, ∅, {E}, Epos ∪Δ, B, Aaux), where Aaux ⊆ A
H = Search(T⊥, B, Epos, H)

B = B ∪H
Epos = Epos − {ex ∈ Epos | B |= ex}

End Cover

Fig. 1. The Cover loop algorithm
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Begin Saturate
1 given Δ, Sat, Esec, Abd, B, Aaux

2 let T⊥ = ∅
3 for each α ∈ Δ and α �∈ Sat:
4 let R = α
5 A′

aux = Aaux − {α}
6 for each β ∈Mb:
7 replace all placeholders in β with input terms or fresh variables
8 for each (θ, Δβ) = C-Abduce(β,B, A′

aux, Abd) and βθ �∈ Esec

10 R = R ∨ ¬βθ
11 if Δβ �= ∅
12 E′

sec = Esec ∪ {βθ}
13 Abd = Abd ∪Δβ

14 T⊥ = T⊥ ∪ Saturate(Δβ, Sat, E′
sec, Abd, B,A′

aux)
15 T⊥ = T⊥ ∪ {R}
16 Sat = Sat ∪ {α}
17 return T⊥

End Saturate

Fig. 2. The Saturate algorithm

The inputs to a call to Saturate are the set Δ of ground atoms to be saturated,
the set Sat of ground atoms already saturated, the set Esec of secondary exam-
ples in the current branch of the computation, the set Abd of atoms abduced so
far, B and Aaux. The output is a most specific Connected Theory T⊥.

Figure 3 shows a tree depiction of the Saturate computation which generates
Theory 4 in Example 2:

T⊥ = {x← a, b, p} ∪ {u← b, p} ∪ {v ← p} ∪ {w← p} .

Fig. 3. A tree depiction of the saturation of Δ = {x} in Example 2. The branch
containing the node v, and connected to a with a dotted edge, is pruned and does not
form part of T⊥.
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Thin edges connect clause heads (parent nodes) to their body atoms (children).
Bold edges connect secondary examples (parent) to clauses which explain them
(subtrees). In this example the abductive explanation for the seed, x, is Δ = {x}.
Each atom α ∈ Δ becomes the head of a new root clause R (line 4), unless it has
already been saturated (line 3) in some previous iteration. Saturate proceeds
to look for body atoms for each α that are compatible with Mb. In a first-order
case each body mode declaration β is instantiated with relevant input terms
(line 7) to produce a ground (if all placeholders are inputs), or partially ground
atom. This atom is now queried against the background program by C-Abduce,
which extends the KM procedure by checking “global consistency” with Eneg

and Abd. If successful C-Abduce instantiates β with substitution θ, and returns
a (possibly empty) set Δβ of abduced atoms.

In Fig. 3 the first body atom for x to be proved by C-Abduce is a, with
Δa = {u, v}. Since Δa is not empty, a is a secondary example, requiring its
own T⊥ explanation. This new auxiliary hypothesis is induced via a recursive
call to Saturate with input Δ = {u, v}. This is the fundamental feature of the
Induction on Failure procedure. Standard saturation procedures, using deduction
rather than abduction to generate the body of clauses, would fail to prove atoms
such as a and terminate. Induction on Failure instead induces new rules to
explain a.

The tree also demonstrates how the procedure efficiently produces a theory
which is consistent with the background knowledge and example. Two pruning
steps are used. Firstly, the condition βθ �∈ Esec (line 8) prevents a secondary ex-
ample appearing twice in the same branch of the tree. This, for instance allowing
a to be a child of u, v or w in the figure, would correspond to the secondary
example forming part of its own explanation, meaning T⊥ would no longer be
a correct hypothesis. The check eliminates such cyclic definitions. If the set of
possible body atoms is finite, this check also guarantees that all branches of the
tree terminate. Secondly, the condition α �∈ Sat (line 3) prevents clauses being
generated twice in different parts of the tree. So, even though v is part of the
explanation for a in the example, the figure shows that the computation pro-
ceeds to generate the tree in a depth first manner, and a v clause is first added
under b. The loop check prevents this clause being regenerated when complet-
ing the explanation of a and the second v node, shown with a dotted line, is
pruned. Consequently, an abduced (head) atom can appear only once in the
entire tree.

5 Imparo

Imparo, a prototype implementation of the IoF procedure, has been written in
Sictus Prolog. A general-to-specific search of the hypothesis space bounded by
the theory consisting of the empty clause, {�} and the ground T⊥ theories is
carried out using a branch and bound algorithm, similar to that of Aleph [2].
Coverage of each theory searched is tested using OLDT (tabled) resolution [8]
to ensure that queries with a finite set of solutions will terminate.



Induction on Failure: Learning Connected Horn Theories 179

As an illustration of the execution of the system, the result of applying Imparo
to Yamamoto’s main example in [6] is presented. This example is used in [6] to
highlight the incompleteness of Bottom Generalisation for finding single clause
hypotheses, since the clause odd(s(X))← even(X) cannot be derived by BG.

Example 3 (Yamamoto). 1

B3 =

j
even(s(X)) :- odd(X)
even(0)

ff
∪

j
nat(0)
nat(s(X)) :- nat(X)

ff

E3 = odd(s3(0)), Epos = {odd(s5(0))}, Eneg = {odd(0), odd(s2(0))}
M3 = {modeh(∗, odd(+nat)),modeb(∗, even(+nat)),modeb(∗, +nat = s(−nat)))}

�
The s/1 function is handled by adding the +nat = s(−nat) declaration to Mb,
which generates equality body literals. Imparo returns the following output:

The seed example is odd(s(s(s(0))))

New most specific explanation:

---------------------------------

odd(A):-A=s(B),even(B),B=s(C),C=s(D),even(D)

odd(A):-A=s(B),even(B)

---------------------------------

Searching generalisations...

...

The most successful hypothesis is:

---------------------------------

odd(A):-A=s(B),even(B)

---------------------------------

19 nodes searched. Time taken: 0.21 seconds.

The most specific hypothesis generated by Imparo contains two ground clauses:
{

odd(s3(0))← s3(0) = s(s2(0)), even(s2(0)), s2(0) = s(s1(0)), s1(0) = s(0), even(0)
odd(s1(0))← s1(0) = s(0), even(0)

}

computed from the seed example odd(s3(0)). Saturation of the abductive expla-
nation Δ1 = {odd(s3(0))} yields five body literals including even(0) which can be
proved directly from the background knowledge, and even(s2(0)) which is a sec-
ondary example. The other possible even/1 literals, even(s3(0)) and even(s(0))
are inconsistent with the negative examples. The explanation of even(s2(0))
is Δ2 = {odd(s(0))}. Saturation of Δ2 produces no secondary examples and so
computation of T⊥ terminates. Distinct variables replace each ground term in T⊥
in the program output. The single clause theory {odd(A)← A= s(B), even(B)}
1 Epos and Eneg do not form part of Yamamoto’s formulation of the example. They

are added here only to guide the search towards choosing odd(s(X))← even(X) as
the preferred hypothesis (the simplest clause with full coverage of the examples).
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is returned by the search, which is equivalent to H3 = odd(s(X)) ← even(X),
in which the equality has been “flattened”.

H3 cannot be derived by BG or KSS as it does not imply the bottom clause
(and kernel set) odd(s3(0)) ← even(0). However, H3 does imply both clauses
in T⊥, and can be learned by Imparo. This example demonstrates the extended
search space of IoF, and its suitability to mutually recursive learning tasks.

6 Related Work and Conclusion

This section relates the IoF approach to other existing IE approaches, focus-
ing mainly on those that generalise the search space beyond that of Bottom
Generalization, and summarises the contribution of this paper.

The HAIL (Hybrid Abductive Inductive Learning) proof procedure [3] is a
multiple clause IE learning approach that implements the KSS semantics de-
scribed in Sects. 2 and 3. CTG extends KSS as shown by Theorem 2.

The method of CF-Induction described by Inoue in [9] is a full clausal conse-
quence finding approach, with a semantics based on characteristic clauses. The
characteristic clauses, Carc(S,P), of a program S are those that are implied
by S and not subsumed by any other such clause. P is a so-called production
field and specifies language bias. A hypothesis H is derivable by CF-Induction
if Carc(B ∧ ¬E,P) |= CC(B, E) and H |= ¬CC(B, E). So, the bridge formula
CC(B, E) is equivalent to a (negated) most specific hypothesis, and is in fact a
set of ground instances of clauses in Carc(B∧¬E,P). CF-Induction is complete
for full clause hypotheses. Yamamoto and Fronhöfer also report a complete mul-
tiple clause IE method in full clausal logic [10]. This approach is based on residue
hypotheses. A residue hypothesis Res(T ) for a ground theory T is obtained by
deleting all tautological clauses from T . The procedure described in [10] gener-
ates a most specific hypothesis by taking some subset S of the ground instances
of B∪{¬E} and computing Res(S). Since CF-Induction and the Residue method
are complete for full clausal theories they are also complete for Horn theories,
and so are capable of learning Connected Theories, if appropriate selection of
their bridge formulas is made. In IoF, abduction is used to guide selection of the
connected clauses. It is also the authors’ conjecture that the IoF procedure is
complete for Horn theories, with respect to the CTG semantics. Further investi-
gation is required to formally relate the properties and performance of IoF and
these full clausal systems.

In summary, this paper has proposed the notion of a Connected Theory as
a new type of bridge formula for inverse entailment in Horn programs. A proof
procedure, Induction on Failure, has been described which computes most spe-
cific Connected Theories via a recursive abductive algorithm. The semantics
of Connected Theory Generalisation has been shown to be more complete for
single clause hypotheses than the Bottom Generalisation of Progol, and more
complete for multiple clause hypotheses than the Kernel Set Subsumption of
HAIL. Further work on Induction on Failure will include characterisation of the
completeness of the procedure, and the extension of the approach to compute
normal program hypotheses.
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