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Preface

This volume contains the proceedings of the 10th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR 2009), held during
September 14–18, 2009 in Potsdam, Germany.

LPNMR is a forum for exchanging ideas on declarative logic programming,
nonmonotonic reasoning and knowledge representation. The aim of the con-
ference is to facilitate interaction between researchers interested in the design
and implementation of logic-based programming languages and database sys-
tems, and researchers who work in the areas of knowledge representation and
nonmonotonic reasoning. LPNMR strives to encompass theoretical and experi-
mental studies that have led or will lead to the construction of practical systems
for declarative programming and knowledge representation.

The special theme of LPNMR 2009 was “Applications of Logic Program-
ming and Nonmonotonic Reasoning” in general and “Answer Set Programming
(ASP)” in particular. LPNMR 2009 aimed at providing a comprehensive survey
of the state of the art of ASP/LPNMR applications.

The special theme was reflected by dedicating an entire day of the conference
to applications. Apart from special sessions devoted to original and significant
ASP/LPNMR applications, we solicited contributions providing an overview of
existing successful applications of ASP/LPNMR systems. The presentations on
applications were accompanied by two panels, one on existing and another on
future applications of ASP/LPNMR.

The theme of the conference was also reflected in our invited talks given by:

– Armin Biere (Johannes Kepler University, Austria)
– Alexander Bockmayr (Freie Universität Berlin, Germany)
– Ilkka Niemelä (Helsinki University of Technology, Finland)

The conference was accompanied by several workshops and hosted the award
ceremony of the Second ASP Competition, run prior to the conference by Marc
Denecker’s research group at the University of Leuven, Belgium.

LPNMR 2009 received 75 submissions, of which 55 were technical, 8 original
applications, 9 system descriptions and 3 short papers. Out of these, we accepted
25 technical, 4 original applications, 10 system descriptions, and 13 short papers.
We additionally received 13 summaries of existing successful application papers,
which were handled by the Application Chair.

Finally, we would like to thank all members of the Program and Organizing
Committee as well as all further reviewers and people locally supporting the
organization of LPNMR 2009 at the University of Potsdam. A special thanks to
Yi Zhou for his help in checking the copyright forms.

July 2009 Fangzhen Lin
Torsten Schaub

Esra Erdem
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SAT, SMT and Applications

Armin Biere

Johannes Kepler University, Linz, Austria

Abstract. SAT solving has gained tremendous interest. On the prac-
tical side there have been considerable performance improvements, due
to new highly efficient algorithms, new heuristics, and optimized data
structures. There are new applications and reformulations of important
classical problems, mainly in the context of formal methods, where SAT
solving is also applied successfully in an industrial setting. These ap-
plications range from equivalence checking, configuration, over model
checking to test case generation. SAT is becoming one of the most im-
portant core technology in all these areas. Many applications actually use
Satisfiability Modulo Theory (SMT), which can be seen as an extension
of SAT solving. SMT has it roots in automated theorem proving. But it
heavily relies on SAT technology. We discuss some key technologies in
practical SAT solving, e.g. how to write a fast solver, some aspects in lift-
ing propositional SAT technology to richer domains, how competitions
can help to improve the state-of-the-art and finally touch on applications
in model checking, hardware and software verification.

References

1. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Com-
putation (JSAT) 4 (2008)

2. Biere, A.: Tutorial on model checking: Modelling and verification in computer sci-
ence. In: Horimoto, K., et al. (eds.) AB 2008. LNCS, vol. 5147, pp. 16–21. Springer,
Heidelberg (2008)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press, Amsterdam (2009)

4. Prasad, M., Biere, A., Gupta, A.: A survey on recent advances in SAT-based formal
verification. Software Tools for Technology Transfer (STTT) 7(2) (2005)

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Logic-Based Modeling in Systems Biology

Alexander Bockmayr

DFG-Research Center Matheon, FB Mathematik und Informatik,
Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany

Alexander.Bockmayr@fu-berlin.de

Abstract. Systems biology is a new interdisciplinary research field that
has received considerable attention in recent years. While traditional
molecular biology studies the various components of a biological system
(e.g. genes, RNAs, proteins) in isolation, systems biology aims to un-
derstand how these components interact in order to perform complex
biological functions.

A variety of mathematical and computational methods is currently
being used to model and analyze biological systems, ranging from con-
tinuous, stochastic, and discrete to various hybrid approaches.

In this talk, we focus on logic-based methods for systems biology, which
arise at two distinct levels. On the one hand, Boolean or multi-valued log-
ics provide a natural way to represent the structure of a regulatory bio-
logical network, which is given by positive and negative interactions (i.e.,
activation and inhibition) between its different components. On the other
hand, temporal logics (e.g. CTL or LTL) may be used to reason about the
dynamics of a biological system, represented by a state transition graph
or Kripke model.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, p. 2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Integrating Answer Set Programming and
Satisfiability Modulo Theories�

Ilkka Niemelä

Helsinki University of Technology TKK
Department of Information and Computer Science

P.O. Box 5400, FI-02015 TKK, Finland
Ilkka.Niemela@tkk.fi

Abstract. In this talk we consider the problem of integrating answer
set programming (ASP) and satisfiability modulo theories (SMT). We
discuss a characterization of stable models of logic programs based on
Clark’s completion and simple difference constraints. The characteriza-
tion leads to a method of translating a ground logic program to a linear
size theory in difference logic, i.e. propositional logic extended with dif-
ference constraints between two integer variables, such that stable mod-
els of the program correspond to satisfying assignments of the resulting
theory in difference logic. Many of the state-of-the-art SMT solvers sup-
port directly difference logic. This opens up interesting possibilities. On
one hand, any solver supporting difference logic can be used immediately
without modifications as an ASP solver for computing stable models of a
logic program by translating the program to a theory in difference logic.
On the other hand, SMT solvers typically support also other extensions
of propositional logic such as linear real and integer arithmetic, fixed-size
bit vectors, arrays, and uninterpreted functions. This suggests interest-
ing opportunities to extend ASP languages with such constraints and to
provide effective solver support for the extensions. Using the translation
an extended language including logic program rules and, for example,
linear real arithmetic can be translated to an extension of propositional
logic supported by current SMT solvers. We discuss the effectiveness
of state-of-the-art SMT solvers as ASP solvers and the possibilities of
developing extended ASP languages based on SMT solver technology.

� This work is financially supported by Academy of Finland under the project Methods
for Constructing and Solving Large Constraint Models (grant #122399).
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Abstract. This paper describes an exercise in the formalization of commonsense
with Answer Set Programming aimed at finding the answer to an interesting rid-
dle, whose solution is not obvious to many people. Solving the riddle requires a
considerable amount of commonsense knowledge and sophisticated knowledge
representation and reasoning techniques, including planning and adversarial rea-
soning. Most importantly, the riddle is difficult enough to make it unclear, at first
analysis, whether and how Answer Set Programming or other formalisms can be
used to solve it.

1 Introduction

This paper describes an exercise in the formalization of commonsense [1,2] with An-
swer Set Programming (ASP) [3], aimed at solving the riddle:

“A long, long time ago, two cowboys where fighting to marry the daughter of the OK
Corral rancher. The rancher, who liked neither of these two men to become his future
son-in-law, came up with a clever plan. A horse race would determine who would be
allowed his daughter’s hand. Both cowboys had to travel from Kansas City to the OK
Corral, and the one whose horse arrived LAST would be proclaimed the winner.

The two cowboys, realizing that this could become a very lengthy expedition, finally
decided to consult the Wise Mountain Man. They explained to him the situation, upon
which the Wise Mountain Man raised his cane and spoke four wise words. Relieved, the
two cowboys left his cabin: They were ready for the contest!

Which four wise words did the Wise Mountain Man speak?”
This riddle is interesting because it is easy to understand, but not trivial, and the solu-

tion is not obvious to many people. The story can be simplified in various ways without
losing the key points. The story is also entirely based upon commonsense knowledge.
The amount of knowledge that needs to be encoded is not large, which simplifies the
encoding; on the other hand, as we will see in the remainder of this paper, properly
dealing with the riddle requires various sophisticated capabilities, including modeling
direct and indirect effects of actions, encoding triggers, planning, dealing with defaults
and their exceptions, and concepts from multi-agent systems such as adversarial reason-
ing. The riddle is difficult enough to make it unclear, at first analysis, whether and how
ASP or other formalisms can be used to formalize the story and underlying reasoning.
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In the course of this paper we will discuss how the effects of the actions involved
in the story can be formalized and how to address the main issues of determining that
“this could be a lengthy expedition” and of answering the final question.

We begin with a brief introduction on ASP. Next, we show how the knowledge about
the riddle is encoded and how reasoning techniques can be used to solve the riddle.
Finally, we draw conclusions.

2 Background

ASP [3] is a programming paradigm based on language A-Prolog [4] and its extensions
[5,6,7]. In this paper we use the extension of A-Prolog called CR-Prolog [5], which al-
lows, among other things, simplified handling of exceptions, rare events. To save space,
we describe only the fragment of CR-Prolog that will be used in this paper.

Let Σ be a signature containing constant, function, and predicate symbols. Terms
and atoms are formed as usual. A literal is either an atom a or its strong (also called
classical or epistemic) negation ¬a.

A regular rule (rule, for short) is a statement of the form:

h1 ∨ . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are literals and not is the so-called default negation.1 The intuitive
meaning of a rule is that a reasoner, who believes {l1, . . . , lm} and has no reason to
believe {lm+1, . . . , ln}, must believe one of hi’s.

A consistency restoring rule (cr-rule) is a statement of the form:

h1 ∨ . . . ∨ hk
+← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are as before. The informal meaning of a cr-rule is that a reasoner,
who believes {l1, . . . , lm} and has no reason to believe {lm+1, . . . , ln}, may believe
one of hi’s, but only if strictly necessary, that is, only if no consistent set of beliefs can
be formed otherwise.

A program is a pair 〈Σ, Π〉, where Σ is a signature and Π is a set of rules and cr-
rules over Σ. Often we denote programs by just the second element of the pair, and let
the signature be defined implicitly.

Given a CR-Prolog program Π , we denote the set of its regular rules by Πr and the
set of its cr-rules by Πcr. By α(r) we denote the regular rule obtained from cr-rule r

by replacing the symbol
+← with ←. Given a set of cr-rules R, α(R) denotes the set

obtained by applying α to each cr-rule in R. The semantics of a CR-Prolog program is
defined in two steps.

Definition 1. Given a CR-Prolog program Π , a minimal (with respect to set-theoretic
inclusion) set R of cr-rules of Π , such that Πr ∪α(R) is consistent is called an abduc-
tive support of Π .

Definition 2. Given a CR-Prolog program Π , a set of literals A is an answer set of Π
if it is an answer set of the program Πr ∪ α(R) for some abductive support R of Π .

1 We also allow the use of SMODELS style choice rules, but omit their formal definition to save
space.
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To represent knowledge and reason about dynamic domains, we use ASP to encode
dynamic laws, state constraints and executability conditions [8]. The laws are written
directly in ASP, rather than represented using an action language [9], to save space and
to have a more uniform representation.

The key elements of the representation are as follows; we refer the readers to e.g.
[9] for more details. The evolution of a dynamic domain is viewed as a transition dia-
gram, which is encoded in a compact way by means of an action description consisting
of dynamic laws (describing the direct effects of actions), state constraints (describ-
ing the indirect effects), and executability conditions (stating when the actions can be
executed). Properties of interest, whose truth value changes over time, are represented
by fluents (e.g., on(block1, block2)). A state of the transition diagram is encoded as a
consistent and complete set of fluent literals (i.e., fluents and their negations). The truth
value of a fluent f is encoded by a statement of the form h(f, s), where s is an integer
denoting the step in the evolution of the domain, intuitively saying that f holds at step s.
The fact that f is false is denoted by ¬h(f, s). Occurrences of actions are traditionally
represented by expressions of the form o(a, s), saying that a occurs at step s.

3 Formalizing the Riddle

The next step is to encode the knowledge about the domain of the story. To focus on
the main issues, we abstract from several details and concentrate on the horse ride. The
objects of interest are the two competitors (a, b), the two horses (hrs(a), hrs(b)), and
locations start, finish, and en route. Horse ownership is described by relation owns,
defined by the rule owns(C, hrs(C)) ← competitor(C).

The fluents of interest and their informal meanings are:at(X, L), “competitor or horse
X is at location L”; riding(C, H), “competitor C is riding horse H”; crossed(X),
“competitor or horse X has crossed the finish line.”

The actions of interest are wait, move (the actor moves to the next location along the
race track), and cross (the actor crosses the finish line). Because this domain involves
multiple actors, we represent the occurrence of actions by a relation o(A, C, S), which
intuitively says that action A occurred, performed by competitor C, at step S.2

The formalization of action move deserves some discussion. Typically, it is difficult
to predict who will complete a race first, as many variables influence the result of a
race. To keep our formalization simple, we have chosen a rather coarse-grained model
of the movements from one location to the other. Because often one horse will be faster
than the other, we introduce a relation faster(H), which informally says that H is the
faster horse. This allows us to deal with both simple and more complex situations: when
it is known which horse is faster, we encode the information as a fact. When the infor-
mation is not available, we use the disjunction faster(hrs(a)) ∨ faster(hrs(b)).
Action move is formalized so that, when executed, the slower horse moves from loca-
tion start to en route and from en route to finish. The faster horse, instead, moves

2 This simple representation is justified because the domain does not include exogenous actions.
Otherwise, we would have to use a more sophisticated representation, such as specifying the
actor as an argument of the terms representing the actions.
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from start directly to finish.3 The direct effects of the actions can be formalized in
ASP as follows:4

– Action move:

% If competitor C is at start and riding the faster horse,
% action move takes him to the finish line.
h(at(C, finish), S + 1) ←

h(at(C, start), S),
h(riding(C, H), S),
faster(H),
o(move, C, S).

% If competitor C is at start and riding the slower horse,
% action move takes him to location “en route.”
h(at(C, en route), S + 1) ←

h(at(C, start), S),
h(riding(C, H), S),
not faster(H),
o(move, C, S).

% Performing move while “en route” takes the actor
% to the finish line.
h(at(C, finish), S + 1) ←

h(at(C, en route), S),
o(move, C, S).

% move cannot be executed while at the finish line.
← o(move, C, S), h(at(C, finish), S).

– Action cross:

% Action cross, at the finish line, causes the actor to
% cross the finish line.
h(crossed(C), S + 1) ←

o(cross, C, S),
h(at(C, finish), S).

% cross can only be executed at the finish line.
← o(cross, C, S), h(at(C, L), S), L �= finish.
% cross can be executed only once by each competitor.
← o(cross, C, S), h(crossed(C), S).

3 More refined modeling is possible, but is out of the scope of the present discussion. However,
we would like to mention the possibility of using the recent advances in integrating ASP and
constraint satisfaction [7] to introduce numerical distances, speed, and to take into account
parameters such as stamina in their computation.

4 Depending upon the context, executability conditions might be needed stating that each com-
petitor must be riding in order to perform the move or cross actions. Because the story as-
sumes that the competitors are riding at all times, we omit such executability conditions to
save space.
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No rules are needed for action wait, as it has no direct effects. The state constraints are:

– “Each competitor or horse can only be at one location at a time.”

¬h(at(X, L2), S) ←
h(at(X, L1), S),
L1 �= L2.

– “The competitor and the horse he is riding on are always at the same location.”

h(at(H, L), S) ←
h(at(C, L), S),
h(riding(C, H), S).

h(at(C, L), S) ←
h(at(H, L), S),
h(riding(C, H), S).

It is worth noting that, in this formalization, horses do not perform actions on their
own (that is, they are viewed as “vehicles”). Because of that, only the first of the
two rules above is really needed. However, the second rule makes the formalization
more general, as it allows one to apply it to cases when the horses can autonomously
decide to perform actions (e.g., the horse suddenly moves to the next location and
the rider is carried there as a side-effect).

– “Each competitor can only ride one horse at a time; each horse can only have one
rider at a time.”

¬h(riding(X, H2), S) ←
h(riding(X, H1), S),
H1 �= H2.

¬h(riding(C2, H), S) ←
h(riding(C1, H), S),
C1 �= C2.

– “The competitor and the horse he is riding on always cross the finish line together.”

h(crossed(H), S) ←
h(crossed(C), S),
h(riding(C, H), S).

h(crossed(C), S) ←
h(crossed(H), S),
h(riding(C, H), S).

As noted for the previous group of state constraints, only the first of these two
rules is strictly necessary, although the seconds increases the generality of the
formalization.
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The action description is completed by the law of inertia [10], in its usual ASP repre-
sentation (e.g. [9]):

h(F, S + 1) ← h(F, S), not ¬h(F, S + 1).

¬h(F, S + 1) ← ¬h(F, S), not h(F, S + 1).

4 Reasoning about the Riddle

Let us now see how action description AD, consisting of all of the rules from the pre-
vious section, is used to reason about the riddle.

The first task that we want to be able to perform is determining the winner of the race,
based upon the statement from the riddle “the one whose horse arrived LAST would be
proclaimed the winner.” In terms of the formalization developed so far, arriving last
means being the last to cross the finish line. Encoding the basic idea behind this notion
is not difficult, but attention must be paid to the special case of the two horses crossing
the finish line together. Commonsense seems to entail that, if the two horses cross the
line together, then they are both first. (One way to convince oneself about this is to
observe that the other option is to say that both horses arrived last. But talking about
“last” appears to imply that they have been preceded by some horse that arrived “first.”)
The corresponding definition of relations first to cross and last to cross is:5

% first to cross(H): horse H crossed the line first.
first to cross(H1) ←

h(crossed(H1), S2),
¬h(crossed(H2), S1),
S2 = S1 + 1,
horse(H2), H1 �= H2.

% last to cross(H): horse H crossed the line last.
last to cross(H1) ←

h(crossed(H1), S2),
¬h(crossed(H1), S1),
S2 = S1 + 1,
h(crossed(H2), S1), horse(H2), H1 �= H2.

Winners and losers can be determined from the previous relations and from horse own-
ership:

% C wins if his horse crosses the finish line last.
wins(C) ← owns(C, H), last to cross(H).

% C loses if his horse crosses the finish line first.
loses(C) ← owns(C, H), f irst to cross(H).

5 To save space, the definitions of these relations are given for the special case of a 2-competitor
race. Extending the definitions to the general case is not difficult, but requires some extra rules.
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Let W be the set consisting of the definitions of last to cross, first to cross, wins,
and loses. It is not difficult to check that, given suitable input about the initial state,
AD∪W entails intuitively correct conclusions. For example, let σ denote the intended
initial state of the riddle, where each competitor is at the start location, riding his horse:

h(at(a, start), 0). h(at(b, start), 0).

h(riding(C, H), 0) ←
owns(C, H),
not ¬h(riding(C, H), 0).

¬h(F, 0) ← not h(F, 0).

The rule about fluent riding captures the intuition that normally one competitor rides
his own horse, but there may be exceptions. Also notice that the last rule in σ encodes
the Closed World Assumption, and provides a compact way to specify the fluents that
are false in σ. Also, notice that it is not necessary to specify explicitly the location of
the horses, as that will be derived from the locations of their riders by state constraints
of AD. Assuming that a’s horse is the faster, let F a = {faster(hrs(a))}. Let also O0

denote the set {o(a, move, 0), o(b, move, 0)}. It is not difficult to see that σ ∪ F a ∪
O0 ∪ AD ∪ W entails:

{h(at(a, finish), 1), h(at(b, en route), 1)},

meaning that a is expected to arrive at the finish, and b at location “en route.” Similarly,
given

O1 =

⎧⎪⎪⎨
⎪⎪⎩

o(a, move, 0). o(b, move, 0).
o(a, wait, 1). o(b, move, 1).
o(a, wait, 2). o(b, cross, 2).
o(a, cross, 3).

the theory σ ∪ F a ∪ O1 ∪ AD ∪ W entails:

{h(at(a, finish), 1), h(at(b, finish), 2),
h(crossed(a), 4), h(crossed(b), 3),
last to cross(hrs(a)), f irst to cross(hrs(b)),
wins(a), loses(b)},

meaning that both competitors crossed the finish line, but b’s horse crossed it first, and
therefore b lost the race.

The next task of interest is to use the theory developed so far to determine that the
race “could become a very lengthy expedition.” Attention must be paid to the inter-
pretation of this sentence. Intuitively, the sentence refers to the fact that none of the
competitors might be able to end the race. However, this makes sense only if inter-
preted with commonsense. Of course sequences of actions exist that cause the race to
terminate. For example, one competitor could ride his horse as fast as he can to the
finish line and then cross, but that is likely to cause him to lose the race.



How Flexible Is Answer Set Programming? 11

We believe the correct interpretation of the sentence is that we need to check if the
two competitors acting rationally (i.e. selecting actions in order to achieve their own
goal) will ever complete the race. In the remainder of the discussion, we call this the
completion problem. Notice that, under the assumption of rational acting, no competitor
will just run as fast as he can to the finish line and cross it, without paying attention to
where the other competitor is.

In this paper, we will focus on addressing the completion problem from the point
of view of one of the competitors. That is, we are interested in the reasoning that one
competitor needs to perform to solve the problem. So, we will define a relation me, e.g.
me(a). In the remainder of the discussion, we refer to the competitor whose reasoning
we are examining as “our competitor,” while the other competitor is referred to as the
“adversary.”

The action selection performed by our competitor can be formalized using the well-
known ASP planning technique (e.g., [9]) based upon a generate-and-test approach,
encoded by the set Pme of rules:

me(a).

1{ o(A, C, S) : relevant(A) }1 ← me(C).
← not wins(C), me(C), selected goal(win).

relevant(wait). relevant(move). relevant(cross).

where the first rule informally states that the agent should consider performing any
action relevant to the task (and exactly one at a time), while the second rule says that
sequences of actions that do not lead our competitor to a win should be discarded (if
our competitor’s goal is indeed to win). Relation relevant allows one to specify which
actions are relevant to the task at hand, thus reducing the number of combinations that
the reasoner considers.

Our competitor also needs to reason about his adversary’s actions. For that purpose,
our competitor possesses a model of the adversary’s behavior,6 based upon the follow-
ing heuristics:

– Reach the finish line;

– At the finish line, if crossing would cause you to lose, then wait; otherwise cross.

– In all other cases, wait.

This model of the adversary’s behavior could be more sophisticated – for example,
it could include some level of non-determinism – but even such a simple model is
sufficient to solve the completion problem for this simple riddle. The heuristics are
encoded by the set Padv of triggers:7

6 The model here is hard-coded, but could be learned, e.g. [11,12].
7 A discussion on the use of triggers can be found in the Conclusions section.
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my adversary(C2) ← me(C1), C1 �= C2.

o(move, C, S) ←
my adversary(C),
¬h(at(C, finish line), S).

o(wait, C1, S) ←
my adversary(C1),
h(at(C1, f inish), S),
owns(C1, H1), crossing causes first(C1, H1, S).

o(cross, C1, S) ←
my adversary(C1),
h(at(C1, f inish), S),
¬h(crossed(C1), S),
owns(C1, H1), not crossing causes first(C1, H1, S).

crossing causes first(C1, H1, S) ←
h(at(C1, f inish), S),
h(riding(C1, H1), S),
¬h(crossed(C1), S), C1 �= C2, ¬h(crossed(C2), S).

¬o(A2, C, S) ←
my adversary(C),
o(A1, C, S),
A2 �= A1.

o(wait, C, S) ←
my adversary(C),
not ¬o(wait, C, S).

At the core of the above set of rules is the definition of relation crossing causes first
(C, H, S), which intuitively means that C’s crossing the finish line at S would cause
H to be the first horse to cross. Such a determination is made by ensuring that (1) C is
at the finish line, and thus can cross it; (2) C is riding H , and thus by crossing would
cause H to cross as well; and (3) no competitor has already crossed.

Now let us see how the theory developed so far can be used to reason about the
completion problem. Let P denote the set Pme ∪ Padv. It is not difficult to see that the
theory

σ ∪ F a ∪ AD ∪W ∪ P
is inconsistent. That is, a has no way of winning if his horse is faster. Let us now show
that the result does not depend upon the horse’s speed. Let F∨ denote the rule

faster(hrs(a)) ∨ faster(hrs(b)).

which informally says that it is not known which horse is faster. The theory

σ ∪ F∨ ∪ AD ∪ W ∪ P
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is still inconsistent. That is, a cannot win no matter whose horse is faster. Therefore,
because our competitor is acting rationally, he is not going to take part in the race.
Because the domain of the race is fully symmetrical, it is not difficult to see that b
cannot win either, and therefore we will refuse to take part in the race as well.

However, that is not exactly what the statement of the completion problem talks
about. The statement in fact seems to suggest that, were the competitors to take part in
the race (for example, because they hope for a mistake by the opponent), they would
not be able to complete the race. To model that, we allow our competitor to have two
goals with a preference relation among them: the goal to win, and the goal to at least
not lose, where the former is preferred to the second. The second goal formalizes the
strategy of waiting for a mistake by the adversary. To introduce the second goal and the
preference, we obtain P ′ from P by adding to it the rules:

selected goal(win) ←
not ¬selected goal(win).

¬selected goal(win) ←
selected goal(not lose).

← lose(C), me(C), selected goal(not lose).

selected goal(not lose) +← .

The first rule says that our competitor’s goal is to win, unless otherwise stated. The
second rule says that one exception to this is if the selected goal is to not lose. The
constraint says that, if the competitor’s goal is to not lose, all action selections causing
a loss must be discarded. The last rule says that our competitor may possibly decide to
select the goal to just not lose, but only if strictly necessary (i.e., if the goal of winning
cannot be currently achieved).

Now, it can be shown that the theory

σ ∪ F∨ ∪ AD ∪ W ∪ P ′

is consistent. One of its answer sets includes for example the atoms:

{faster(hrs(a)),
o(wait, a, 0), o(move, b, 0),
o(wait, a, 1), o(move, b, 1),
o(move, a, 2), o(wait, b, 2),
o(wait, a, 3), o(wait, b, 3),
o(wait, a, 4), o(wait, b, 4) }

which represent the possibility that, if a’s horse is faster, a and b will reach the finish
line and then wait there indefinitely. To confirm that the race will not be completed, let
us introduce a set of rules C containing the definition of completion, together with a
constraint that requires the race to be completed in any model of the underlying theory:

completed ← h(crossed(X), S).
← not completed.
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The first rule states that the race has been completed when one competitor has crossed
the finish line (the result of the race at that point is fully determined). Because the theory

σ ∪ F∨ ∪ AD ∪ W ∪ P ′ ∪ C

is inconsistent, we can conclude formally that, if the competitors act rationally, they
will not complete the race.

The last problem left to solve is answering the question “Which four wise words
did the Wise Mountain Man speak?” In terms of our formalization, we need to find
a modification of the theory developed so far that yields the completion of the race.
One possible approach is to revisit the conclusions that were taken for granted in the
development of the theory. Particularly interesting are the defaults used in the encoding.
Is it possible that solving the riddle lies in selecting appropriate exceptions to some
defaults?

The simple formalization given so far contains only one default, the rule for fluent
riding in σ:

h(riding(C, H), 0) ←
owns(C, H),
not ¬h(riding(C, H), 0).

To allow the reasoner to consider the possible exceptions to this default, we add a cr-rule
stating that a competitor may possibly ride the opponent’s horse, although that should
happen only if strictly necessary.

h(riding(C, H2), 0) +←
owns(C, H1),
horse(H2),
H1 �= H2.

We use a cr-rule to capture the intuition that the competitors will not normally switch
horses. Let σ′ be obtained from σ by adding the new cr-rule. It can be shown that the
theory8

σ′ ∪ F∨ ∪ AD ∪W ∪ P
is consistent and its unique answer set contains:

{faster(hrs(b)),
h(riding(a, hrs(b)), 0), h(riding(b, hrs(a)), 0),
o(move, a, 0), o(move, b, 0),
o(cross, a, 1), o(move, b, 1),
o(wait, a, 2), o(cross, b, 2),
o(wait, a, 3), o(wait, b, 3),
o(wait, a, 4), o(wait, b, 4) }

which encodes the answer that, if the competitors switch horses and the horse owned
by b is faster, then a can win by immediately reaching the finish line and crossing it.

8 The same answer is obtained by replacing P by P ′. However, doing that would require spec-
ifying preferences between the cr-rule just added and the cr-rule in P ′. To save space, we use
P to answer the final question of the riddle.
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In agreement with commonsense, a does not expect to win if the horse that b owns is
slower. On the other hand, it is not difficult to see that b will win in that case. That is,
the race will be completed no matter what.

The conclusion obtained here formally agrees with the accepted solution of the rid-
dle: “Take each other’s horse.”

5 Conclusions

In this paper we have described an exercise in the use of ASP for commonsense knowl-
edge representation and reasoning, aimed at formalizing and reasoning about an easy-
to-understand but non-trivial riddle. One reason why we have selected this particular
riddle, besides its high content of commonsense knowledge, is the fact that upon an
initial analysis, it was unclear whether and how ASP or other formalisms could be used
to solve it. Solving the riddle has required the combined use of some of the latest ASP
techniques, including using consistency restoring rules to allow the reasoner to select
alternative goals, and to consider exceptions to the defaults in the knowledge base as a
last resort, and has shown how ASP can be used for adversarial reasoning by employing
it to encode a model of the adversary’s behavior.

Another possible way of solving the riddle, not shown here for lack of space, con-
sists in introducing a switch horses action, made not relevant by default, but with the
possibility to use it if no solution can be found otherwise. Such action would be cooper-
ative, in the sense that both competitors would have to perform it together. However, as
with many actions of this type in a competitive environment, rationally acting competi-
tors are not always expected to agree to perform the action. An interesting continuation
of our exercise will consist of an accurate formalization of this solution to the riddle,
which we think may yield useful results in the formalization of sophisticated adver-
sarial reasoning. We think that this direction of research may benefit from the recent
application of CR-Prolog to the formalization of negotiation described in [13].

One last note should be made regarding the use of triggers to model the adversary’s
behavior. We hope the present paper has shown the usefulness of this technique and the
substantial simplicity of implementation using ASP. This technique has limits, however,
due to the fact that an a-priori model is not always available. Intuitively, it is possible
to use ASP to allow a competitor to “simulate” the opponent’s line of reasoning (e.g.,
by using choice rules). However, an accurate execution of this idea involves solving a
number of non-trivial technical issues. We plan to expand on this topic in a future paper.
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Abstract. CR-Prolog is an extension of A-Prolog, the knowledge representation
language at the core of the Answer Set Programming paradigm. CR-Prolog is
based on the introduction in A-Prolog of consistency-restoring rules (cr-rules for
short), and allows an elegant formalization of events or exceptions that are un-
likely, unusual, or undesired. The flexibility of the language has been extensively
demonstrated in the literature, with examples that include planning and diagnostic
reasoning. In this paper we hope to provide the technical means to further stimu-
late the study and use of CR-Prolog, by extending to CR-Prolog the Splitting Set
Theorem, one of the most useful theoretical results available for A-Prolog. The
availability of the Splitting Set Theorem for CR-Prolog is expected to simplify
significantly the proofs of the properties of CR-Prolog programs.

1 Introduction

In recent years, Answer Set Programming (ASP) [1,2,3], a declarative programming
paradigm with roots in the research on non-monotonic logic and on the semantics of
default negation of Prolog, has been shown to be a useful tool for knowledge repre-
sentation and reasoning (e.g., [4,5]). The underlying language, often called A-Prolog,
is expressive and has a well-understood methodology of representing defaults, causal
properties of actions and fluents, various types of incompleteness, etc. Over time, sev-
eral extensions of A-Prolog have been proposed, aimed at improving even further the
expressive power of the language.

One of these extensions, called CR-Prolog [6], is built around the introduction of
consistency-restoring rules (cr-rules for short). The intuitive idea behind cr-rules is that
they are normally not applied, even when their body is satisfied. They are only applied
if the regular program (i.e., the program consisting only of conventional A-Prolog rules)
is inconsistent. The language also allows the specification of a partial preference order
on cr-rules, intuitively regulating the application of cr-rules.

Among the most direct uses of cr-rules is an elegant encoding of events or exceptions
that are unlikely, unusual, or undesired (and preferences can be used to formalize the
relative likelihood of these events and exceptions).

The flexibility of CR-Prolog has been extensively demonstrated in the literature
[6,7,8,9,10], with examples including planning and diagnostic reasoning. For example,
in [6], cr-rules have been used to model exogenous actions that may occur unobserved
and cause malfunctioning in a physical system. In [10], instead, CR-Prolog has been
used to formalize negotiations.
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To further stimulate the study and use of CR-Prolog, theoretical tools are needed that
simplify the proofs of the properties of CR-Prolog programs. Arguably, one of the most
important such tools for A-Prolog is the Splitting Set Theorem [11]. Our goal in this
paper is to extend the Splitting Set Theorem to CR-Prolog programs.

This paper is organized as follows. In the next section, we introduce the syntax and
semantics of CR-Prolog. Section 3 gives key definitions and states various lemmas as
well as the main result of the paper. Section 4 discusses the importance of some con-
ditions involved in the definition of splitting set, and gives examples of the use of the
Splitting Set Theorem to split CR-Prolog programs. In Section 5 we talk about related
work and draw conclusions. Finally, in Section 6, we give proofs for the main results of
this paper.

2 Background

The syntax and semantics of ASP are defined as follows. Let Σ be a signature contain-
ing constant, function, and predicate symbols. Terms and atoms are formed as usual.
A literal is either an atom a or its strong (also called classical or epistemic) negation
¬a. The complement of an atom a is literal ¬a, while the complement of ¬a is a. The
complement of literal l is denoted by l. The sets of atoms and literals formed from Σ
are denoted by atoms(Σ) and lit(Σ), respectively.

A regular rule is a statement of the form:

[r] h1 OR h2 OR . . . OR hk ← l1, . . . , lm, not lm+1, . . . , not ln (1)

where r, called name, is a possibly compound term uniquely denoting the regular rule,
hi’s and li’s are literals and not is the so-called default negation. The intuitive meaning
of the regular rule is that a reasoner who believes {l1, . . . , lm} and has no reason to
believe {lm+1, . . . , ln}, must believe one of hi’s.

A consistency-restoring rule (or cr-rule) is a statement of the form:

[r] h1 OR h2 OR . . . OR hk
+← l1, . . . lm, not lm+1, . . . , not ln (2)

where r, hi’s, and li’s are as before. The intuitive reading of a cr-rule is that a reasoner
who believes {l1, . . . , lm} and has no reason to believe {lm+1, . . . , ln}, may possibly
believe one of hi’s. The implicit assumption is that this possibility is used as little as
possible, only when the reasoner cannot otherwise form a consistent set of beliefs. A
preference order on the use of cr-rules is expressed by means of the atoms of the form
prefer(r1, r2). Such an atom informally says that r2 should not be used unless there
is no way to obtain a consistent set of beliefs with r1. More details on preferences in
CR-Prolog can be found in [6,12,13].

By rule we mean a regular rule or a cr-rule. Given a rule ρ of the form
(1) or (2), we call {h1, . . . , hk} the head of the rule, denoted by head(ρ), and
{l1, . . . , lm, not lm+1, . . . , not ln} its body, denoted by body(ρ). Also, pos(ρ) denotes
{l1, . . . , lm}, neg(ρ) denotes {lm+1, . . . , ln}, name(ρ) denotes name r, and lit(ρ) de-
notes the set of all literals from ρ. When l ∈ lit(ρ), we say that l occurs in ρ.
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A program is a pair 〈Σ, Π〉, where Σ is a signature and Π is a set of rules over Σ.
Often we denote programs by just the second element of the pair, and let the signature
be defined implicitly. In that case, the signature of Π is denoted by Σ(Π).

In practice, variables are often allowed to occur in ASP programs. A rule contain-
ing variables (called a non-ground rule) is then viewed as a shorthand for the set of its
ground instances, obtained by replacing the variables in it by all of the possible ground
terms. Similarly, a non-ground program is viewed as a shorthand for the program con-
sisting of the ground instances of its rules.

Given a program Π , μ(Π) denotes the set of names of the rules from Π . In the
rest of the discussion, letter r (resp., ρ), possibly indexed, denotes the name of a rule
(resp., a rule). Given a set of rule names R, ρ(R, Π) denotes the set of rules from Π
whose name is in R. ρ(r, Π) is shorthand for ρ({r}, Π). To simplify notation, we allow
writing r ∈ Π to mean that a rule with name r is in Π . We extend the use of the other
set operations in a similar way. Also, given a program Π , head(r) and body(r) denote1

the corresponding parts of ρ(r, Π). Given a CR-Prolog program, Π , the regular part of
Π is the set of its regular rules, and is denoted by reg(Π). The set of cr-rules of Π is
denoted by cr(Π). Programs that do not contain cr-rules are legal ASP programs, and
their semantics is defined as usual. Next, we define the semantics of arbitrary CR-Prolog
programs. Let us begin by introducing some notation.

For every R ⊆ cr(Π), θ(R) denotes the set of regular rules obtained from R by

replacing every connective
+← with ←. Given a program Π and a set R of rule names,

θ(R) denotes the application of θ to the rules of Π whose name is in R.
A literal l is satisfied by a set of literals S (S |= l) if l ∈ S. An expression not l is

satisfied by S if l �∈ S. The body of a rule is satisfied by S if each element of the set is
satisfied by S. A set of literals S entails prefer∗(r1, r2) (S |= prefer∗(r1, r2)) if:

– S |= prefer(r1, r2), or
– S |= prefer(r1, r3) and S |= prefer∗(r3, r2).

The semantics of CR-Prolog is given in three steps.

Definition 1. Let S be a set of literals and R be a set of names of cr-rules from Π . The
pair V = 〈S, R〉 is a view of Π if:

1. S is an answer set2 of reg(Π) ∪ θ(R), and
2. for every r1, r2, if S |= prefer∗(r1, r2), then {r1, r2} �⊆ R, and
3. for every r in R, body(r) is satisfied by S.

We denote the elements of V by VS and VR respectively. The cr-rules in VR are said to
be applied. This definition of view differs from the one given in previous papers (e.g.,
[6,13]) in that set R here is a set of names of cr-rules rather than a set of cr-rules. The
change allows one to simplify the proofs of the theorems given later. Because of the
one-to-one correspondence between cr-rules and their names, the two definitions are
equivalent.

1 The notation can be made more precise by specifying Π as an argument, but in the present
paper Π will always be clear from the context.

2 We only consider consistent answer sets.
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For every pair of views of Π , V1 and V2, V1 dominates V2 if there exist r1 ∈ VR
1 ,

r2 ∈ VR
2 such that (VS

1 ∩ VS
2 ) |= prefer∗(r1, r2).

Definition 2. A view, V , is a candidate answer set of Π if, for every view V ′ of Π , V ′

does not dominate V .

Definition 3. A set of literals, S, is an answer set of Π if:

1. there exists a set R of names of cr-rules from Π such that 〈S, R〉 is a candidate
answer set of Π , and

2. for every candidate answer set 〈S′, R′〉 of Π , R′ �⊂ R.

3 Splitting Set Theorem

Proceeding along the lines of [11], we begin by introducing the notion of splitting set
for a CR-Prolog program, and then use this notion to state the main theorems.

A preference set for cr-rule r with respect to a set of literals S is the set

π(r, S) = {r′ | S |= prefer∗(r, r′) or S |= prefer∗(r′, r)}.

Given a program Π , the preference set of r with respect to the literals from the signature
of Π is denoted by π(r).

Definition 4. Literal l is relevant to cr-rule r (for short, l is r-relevant) if:

1. l occurs in r, or
2. l occurs in some rule where a literal relevant to r occurs, or
3. l is relevant to r, or
4. l = prefer(r, r′) or l = prefer(r′, r).

Definition 5. A splitting set for a program Π is a set U of literals from Σ(Π) such
that:

– for every rule r ∈ Π , if head(r) ∩ U �= ∅, then lit(r) ⊆ U ;
– for every cr-rule r ∈ Π , if some l ∈ U is relevant to r, then every r-relevant literal

belongs to U .

Observation 1. For programs that do not contain cr-rules, this definition of splitting
set coincides with the one given in [11].

Observation 2. For every program Π and splitting set U for Π , if l ∈ U is r-relevant
and r′ ∈ π(r), then every r′-relevant literal from Σ(Π) belongs to U .

We define the notions of bottom and partial evaluation of a program similarly to [11].
The bottom of a CR-Prolog program Π relative to splitting set U is denoted by bU (Π)
and consists of every rule ρ ∈ Π such that lit(ρ) ⊆ U . Given a program Π and a set R
of names of rules, bU (R) denotes the set of rule names in bU (ρ(R, Π)).

The partial evaluation of a CR-Prolog program Π w.r.t. splitting set U and set of
literals X , denoted by eU (Π, X), is obtained as follows:



Splitting a CR-Prolog Program 21

– For every rule ρ ∈ Π such that pos(ρ) ∩ U is part of X and neg(ρ) ∩ U is disjoint
from X , eU (Π, X) contains the rule ρ′ such that:

name(ρ′) = name(ρ), head(ρ′) = head(ρ),
pos(ρ′) = pos(ρ) \ U, neg(ρ′) = neg(ρ) \ U.

– For every other rule ρ ∈ Π , eU (Π, X) contains the rule ρ′ such that:

name(ρ′) = name(ρ), head(ρ′) = head(ρ),
pos(ρ′) = {⊥} ∪ pos(ρ) \ U, neg(ρ′) = neg(ρ) \ U.

Given Π , U , and X as above, and a set R of names of rules from Π , eU (R, X) denotes
the set of rule names in eU (ρ(R, Π), X).

Observation 3. For every program Π , splitting set U and set of literals X , eU (Π, X)
is equivalent to the similarly denoted set of rules defined in [11].

Observation 4. For every program Π , set R of names of rules from Π , splitting set U ,
and set of literals X , R = eU (R, X).

From Observations 1 and 3, and from the original Splitting Set Theorem [11], one can
easily prove the following statement.

Theorem 1 (Splitting Set Theorem from [11]). Let U be a splitting set for a program
Π that does not contain any cr-rule. A set S of literals is an answer set of Π if and only
if: (i) X is an answer set of bU (Π); (ii) Y is an answer set of eU (Π \ bU (Π), X); (iii)
S = X ∪ Y is consistent.

We are now ready to state the main results of this paper. Complete proofs can be found
in Section 6.

Lemma 1 (Splitting Set Lemma for Views). Let U be a splitting set for a program Π ,
S a set of literals, and R a set of names of cr-rules from Π . The pair 〈S, R〉 is a view
of Π if and only if:

– 〈X, bU (R)〉 is a view of bU (Π);
– 〈Y, R \ bU (R)〉 is a view of eU (Π \ bU (Π), X);
– S = X ∪ Y is consistent.

Lemma 2 (Splitting Set Lemma for Candidate Answer Sets). Let U be a splitting
set for a program Π . A pair 〈S, R〉 is a candidate answer set of Π if and only if:

– 〈X, bU (R)〉 is a candidate answer set of bU (Π);
– 〈Y, R \ bU (R)〉 is a candidate answer set of eU (Π \ bU (Π), X);
– S = X ∪ Y is consistent.

Theorem 2 (Splitting Set Theorem for CR-Prolog). Let U be a splitting set for a
program Π . A consistent set of literals S is an answer set of Π if and only if:

– X is an answer set of bU (Π);
– Y is an answer set of eU (Π \ bU (Π), X);
– S = X ∪ Y is consistent.
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4 Discussion

Now that the Splitting Set Theorem for CR-Prolog has been stated, in this section we
give examples of the application of the theorem and discuss the importance of the con-
ditions of Definition 4 upon which the definition of splitting set and the corresponding
theorem rely.

Let us begin by examining the role of the conditions of Definition 4.
Consider condition (3) of Definition 4. To see why the condition is needed, con-

sider the following program, P1 (as usual, rule names are omitted whenever possible to
simplify the notation):

[r1] q
+← not p.

s ← not q.

¬s.

It is not difficult to see that P1 has the unique answer set {q,¬s}, intuitively obtained
from the application of r1. Let us now consider set U1 = {q, p, s}. Notice that U1 sat-
isfies the definition of splitting set, as long as the condition under discussion is dropped
from Definition 4. The corresponding bU1(P1) is:

[r1] q
+← not p.

s ← not q.

bU1(P1) has a unique answer set, Xa
1 = {s}, obtained without applying r1. eU1(P1 \

bU1(P1), {s}) is:
¬s.

which has a unique answer set, Y a
1 = {¬s}. Notice that Xa

1 ∪ Y a
1 is inconsistent.

Because Xa
1 and Y a

1 are unique answer sets of the corresponding programs, it follows
that the answer set of P1 cannot be obtained from the any of the answer sets of bU1(P1)
and of the corresponding partial evaluation of P1. Hence, dropping condition (3) of
Definition 4 causes the splitting set theorem to no longer hold.

Very similar reasoning shows the importance of condition (2): just obtain P2 from
P1 by (i) replacing ¬s in P1 by t and (ii) adding a constraint ← t, s, and consider the
set U2 = {q, p}. Observe that, if the condition is dropped, then U2 is a splitting set for
P2, but the splitting set theorem does not hold.

Let us now focus on condition (4). Consider program P3:

[r1] q
+← not p.

[r2] s
+← not t.

prefer(r2, r1).

← not q.
← not s.
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Observe that P3 is inconsistent, the intuitive explanation being that r1 can only be used
if there is no way to use r2 to form a consistent set of beliefs, but the only way to
form such a consistent set would be to use r1 and r2 together. Now consider set U3 =
{q, p, prefer(r2, r1)}. The corresponding bU3(P3) is:

[r1] q
+← not p.

prefer(r2, r1).

← not q.

which has a unique answer set X3 = {q, prefer(r2, r1)}. The partial evaluation
eU3(P3 \ bU3(P3), X3) is:

[r2] s
+← not t.

← not s.

whose unique answer set is Y3 = {s}. If condition (4) is dropped from Definition 4,
then U3 is a splitting set for P3. However, the splitting set theorem does not hold, as P3
is inconsistent while X3 ∪ Y3 is consistent.

Let us now give a few examples of the use of the Splitting Set Theorem to finding
the answer sets of CR-Prolog programs. Consider program P4:

[r1] q
+← not a.

[r2] p
+← not t.

a OR b.
s ← not b.
← not q, b.
c OR d.
u ← z, not p.
z ← not u.

and the set U4 = {q, a, b, s}. It is not difficult to check the conditions and verify that U4
is a splitting set for P4. In particular, observe that U4 includes the r1-relevant literals,
and does not include the r2-relevant literals. bU4(P4) is:

[r1] q
+← not a.

a OR b.
s ← not b.
← not q, b.

Because P4 contains a single cr-rule, from the semantics of CR-Prolog it follows
that its answer sets are those of reg(bU4(P4)), if the program is consistent, and
those of reg(bU4(P4)) ∪ θ({r1}) otherwise. reg(bU4(P4)) has a unique answer set,
X4 = {a, s}, which is, then, also the answer set of bU4(P4). The partial evaluation
eU4(P4 \ bU4(P4), X4) is:

[r2] p
+← not t.

c OR d.
u ← z, not p.
z ← not u.
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Again, the program contains a single cr-rule. This time, reg(eU4(P4 \ bU4(P4), X4)) is
inconsistent. reg(eU4(P4\bU4(P4), X4))∪θ({r2}), on the other hand, has an answer set
Y4 = {p, c, z}, which is, then, also an answer set of eU4(P4 \ bU4(P4), X4). Therefore,
an answer set of P4 is

X4 ∪ Y4 = {a, s, p, c, z}.

Now the following modification of P4, P5:

[r1] q
+← not a.

[r2] p
+← not t.

a OR b.
s ← not b.
← not q, b.
c OR d ← v.
¬c ← not v.
u ← z, not p.
z ← not u.
v ← not w.

The goal of this modification is to show how rules, whose literals are not relevant to any
cr-rule, can be split. Let U5 be {q, a, b, s, v, w}. Notice that U5 is a splitting set for P5
even though v ∈ U5 and P5 contains the rule c OR d ← v. In fact, v is not relevant to
any cr-rule from P5, and thus c and d are not required to belong to U5. bU5(P5) is:

[r1] q
+← not a.

a OR b.
s ← not b.
← not q, b.
v ← not w.

which has an answer set X5 = {a, s, v}. eU5(P5 \ bU5(P5), X5) is:

[r2] p
+← not t.

c OR d.
¬c ← ⊥.
u ← z, not p.
z ← not u.

which has an answer set Y5 = {p, c, z}. Hence, an answer set of P5 is

X5 ∪ Y5 = {a, s, v, p, c, z}.

5 Related Work and Conclusions

Several papers have addressed the notion of splitting set and stated various versions
of splitting set theorems throughout the years. Notable examples are [11], with the
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original formulation of the Splitting Set Theorem for A-Prolog, [14], with a Splitting
Set Theorem for default theories, and [15] with a Splitting Set Theorem for epistemic
specifications.

In this paper we have defined a notion of splitting set for CR-Prolog programs, and
stated the corresponding Splitting Set Theorem. We hope that the availability of this
theoretical result will further stimulate the study and use of CR-Prolog, by making it
easier to prove the properties of the programs written in this language. As the reader
may have noticed, to hold for CR-Prolog programs (that include at least one cr-rule),
the Splitting Set Theorem requires substantially stronger conditions than the Splitting
Set Theorem for A-Prolog. We hope that future research will allow weakening the con-
ditions of the theorem given here, but we suspect that the need for stronger conditions
is strictly tied to the nature of cr-rules.

6 Proofs

Proof of Lemma 1. To be a view of a program, a pair 〈S, R〉 must satisfy all of the
requirements of Definition 1. Let us begin from item (1) of the definition. We must
show that S is an answer set of reg(Π) ∪ θ(R) if and only if:

– X is an answer set of reg(bU (Π)) ∪ θ(bU (R));
– Y is an answer set of reg(eU (Π \ bU (Π), X)) ∪ θ(R \ bU (R)).

From Theorem 1, S is an answer set of reg(Π) ∪ θ(R) iff:

– X is an answer set of

bU (reg(Π) ∪ θ(R)) =
bU (reg(Π)) ∪ bU (θ(R)) =
bU (reg(Π)) ∪ θ(bU (R)) =

reg(bU (Π)) ∪ θ(bU (R)).

– Y is an answer set of

eU ((reg(Π) ∪ θ(R)) \ bU (reg(Π) ∪ θ(R)), X) =
eU ((reg(Π) ∪ θ(R)) \ (reg(bU (Π)) ∪ θ(bU (R))), X) =
eU ((reg(Π) \ reg(bU (Π))) ∪ (θ(R) \ θ(bU (R))), X) =

eU (reg(Π \ bU (Π)) ∪ θ(R \ bU (R)), X) =
eU (reg(Π \ bU (Π)), X) ∪ eU (θ(R \ bU (R)), X) =
reg(eU (Π \ bU (Π), X)) ∪ θ(eU (R \ bU (R), X)) =

reg(eU (Π \ bU (Π), X)) ∪ θ(R \ bU (R)),

where the last transformation follows from Observation 4.
– S = X ∪ Y is consistent.
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This completes the proof for item (1) of the definition of view, and furthermore con-
cludes that S = X ∪ Y is consistent. Let us now consider item (2) of the definition of
view. We must show that

∀r1, r2 ∈ R, if S |= prefer∗(r1, r2), then {r1, r2} �⊆ R
iff

∀r1, r2 ∈ bU (R), if X |= prefer∗(r1, r2), then {r1, r2} �⊆ bU (R), and
∀r1, r2 ∈ R \ bU (R), if Y |= prefer∗(r1, r2), then {r1, r2} �⊆ R \ bU (R).

Left-to-right. The statement follows from the fact that X ⊆ S, Y ⊆ S, and bU (R) ⊆ R.

Right-to-left. Proceeding by contradiction, suppose that, for some r1, r2 ∈ R, S |=
prefer∗(r1, r2), but {r1, r2} ⊆ R. By definition of preference set, r2 ∈ π(r1). Let l
be some literal from head(r1). Obviously, either l ∈ U or l �∈ U .

Suppose l ∈ U . By the definition of splitting set, prefer(ri, rj) ∈ U for every ri, rj ∈
{r1} ∪ π(r1). Moreover, for every r′ ∈ π(r1) and every l′ ∈ head(r′), l′ belongs to U .
But r2 ∈ π(r1). Hence, X |= prefer∗(r1, r2) and {r1, r2} ⊆ bU (R). Contradiction.

Now suppose l �∈ U . With reasoning similar to the previous case, we can conclude that
prefer(ri, rj) ∈ U for every ri, rj ∈ {r1} ∪ π(r1). Moreover, for every r′ ∈ π(r1)
and every l′ ∈ head(r′), l′ belongs to U . Because r2 ∈ π(r1), Y |= prefer∗(r1, r2)
and {r1, r2} ⊆ R \ bU (R). Contradiction.

This completes the proof for item (2) of the definition of view. Let us now consider item
(3). We must prove that

∀r ∈ R, body(ρ(r, Π)) is satisfied by S
iff

∀r ∈ bU (R), body(ρ(r, bU (Π))) is satisfied by X , and
∀r ∈ R \ bU (R), body(ρ(r, eU (Π \ bU (Π), X))) is satisfied by Y.

Left-to-right. The claim follows from the following observations: (i) for every r ∈ R,
either r ∈ bU (R) or r ∈ R \ bU (R); (ii) body(ρ(r, eU (Π \ bU (Π), X))) is satisfied by
Y iff body(ρ(r, Π)) is satisfied by X ∪ Y = S.

Right-to-left. Again, observe that, for every r ∈ R, either r ∈ bU (R) or r ∈ R \ bU (R).

Suppose r ∈ bU (R). Because X ⊆ S, body(ρ(r, bU (Π))) is satisfied by S. Because
bU (Π) ⊆ Π , ρ(r, bU (Π)) = ρ(r, Π).

Suppose r ∈ R \ bU (R). The notion of partial evaluation is defined in such a way that,
if body(ρ(r, eU (Π \ bU (Π), X))) is satisfied by Y , then body(ρ(r, Π)) is satisfied by
X ∪ Y = S.

Proof of Lemma 2. From Lemma 1, it follows that 〈S, R〉 is a view of Π iff (i)
〈X, bU (R)〉 is a view of bU (Π), (ii) 〈Y, R \ bU (R)〉 is a view of eU (Π \ bU (Π), X),
and (iii) S = X ∪ Y is consistent. Therefore, we only need to prove that:

no view of Π dominates 〈S, R〉 (3)
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if and only if
no view of bU (Π) dominates 〈X, bU (R)〉, and (4)

no view of eU (Π \ bU (Π), X) dominates 〈Y, R \ bU (R)〉. (5)

Left-to-right. Let us prove that (3) implies (4). By contradiction, suppose that:

there exists a view V ′
X = 〈X ′, R′

X〉 of bU (Π) dominates VX = 〈X, bU (R)〉. (6)

Let (X ′
D, X ′

I) be the partition of X ′ such that X ′
D is the set of the literals from X ′

that are relevant to the cr-rules in bU (R) ∪ R′
X . Let (XD, XU ) be a similar partition

of X . From Definition 4, it is not difficult to see that 〈XI ∪ X ′
D, R′

X〉 is a view of
bU (Π). Moreover, given R′ = (R \ bU (R)) ∪ R′

X , 〈Y, R′ \ bU (R′)〉 is a view of
eU (Π \bU (Π), XI ∪X ′

D). By Lemma 1, 〈X ′∪Y, R′〉 is a view of Π . From hypothesis
(6), it follows that there exist r ∈ bU (R) ⊆ R and r′ ∈ bU (R′) ⊆ R′ such that
(X ∩ X ′) |= prefer∗(r′, r). But then 〈X ′ ∪ Y, R′〉 dominates 〈S, R〉. Contradiction.

Let us prove that (3) implies (5). By contradiction, suppose that there exists a view
V ′

Y = 〈Y ′, R′
Y 〉 of eU (Π \ bU (Π), X) that dominates VY = 〈Y, R \ bU (R)〉. That is,

there exist r ∈ R \ bU (R), r′ ∈ R′
Y such that (Y ∩ Y ′) |= prefer∗(r′, r). (7)

Let R′ be R′
Y ∪ bU (R). By Lemma 1, 〈X ∪Y ′, R′〉 is a view of Π . From (7), it follows

that there exist r ∈ R, r′ ∈ R′ such that (Y ∩ Y ′) |= prefer∗(r′, r). Therefore,
〈X ∪ Y ′, R′〉 dominates 〈S, R〉. Contradiction.

Next, from (4) and (5), we prove (3). By contradiction, suppose that there exists a view
V ′ = 〈S′, R′〉 of Π that dominates V = 〈S, R〉. That is, there exist r ∈ R, r′ ∈ R′ such
that (S∩S′) |= prefer∗(r′, r). There are two cases: head(r′) ⊆ U and head(r′) ⊆ U .

Case 1: head(r′) ⊆ U . From Lemma 1 it follows that 〈S ∩ U, bU (R)〉 is a view of
bU (Π). Similarly, 〈S′ ∩ U, bU (R′)〉 is a view of bU (Π). Because head(r′) ⊆ U , from
the definition of splitting set it follows that: (i) head(r) ⊆ U ; (ii) because (S ∩ S′) |=
prefer∗(r′, r), (S ∩S′∩U) |= prefer∗(r′, r) also holds. Therefore, 〈S′∩U, bU (R′)〉
dominates 〈S ∩ U, bU (R)〉. Contradiction.

Case 2: head(r′) ⊆ U . From Lemma 1 it follows that 〈S \ U, R \ bU (R)〉 is
a view of eU (Π \ bU (Π), S ∩ U). Similarly, 〈S′ \ U, R′ \ bU (R′)〉 is a view of
eU (Π \ bU (Π), S′ ∩ U). Because head(r′) ⊆ U , from the definition of splitting
set it follows that: (i) head(r) ⊆ U ; (ii) because (S ∩ S′) |= prefer∗(r′, r),
(S \ U) ∩ (S′ \ U) |= prefer∗(r′, r) also holds.

Consider now set Q′ ⊆ S′ \ U , consisting of all of the literals of S′ \ U that are
relevant to the cr-rules of R ∪ R′ \ bU (R ∪ R′). Also, let Q ⊆ S \ U be the set of all
of the literals of S \ U that are relevant to the cr-rules of R ∪ R′ \ bU (R ∪ R′), and
Q = S \ U \ Q. That is, Q is the set of literals from S \ U that are not relevant to any
cr-rule of R ∪ R′ \ bU (R ∪ R′).

From Definition 4, it is not difficult to conclude that 〈Q∪Q′, R′\bU (R′)〉 is a view of
eU (Π \ bU (Π), S∩U). Furthermore, (S \U)∩ (Q∪Q′) |= prefer∗(r′, r). Therefore,
〈Q ∪ Q′, R′ \ bU (R′)〉 dominates 〈S \ U, R \ bU (R)〉. Contradiction.
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Proof of Theorem 2. From the definition of answer set and Lemma 2, it follows that
there exists a set R of (names of) cr-rules from Π such that 〈S, R〉 is a candidate answer
set of Π if and only if:

– 〈X, bU (R)〉 is a candidate answer set of bU (Π);
– 〈Y, R \ bU (R)〉 is a candidate answer set of eU (Π \ bU (Π), X);
– S = X ∪ Y is consistent.

Therefore, we only need to prove that:

for every candidate answer set 〈S′, R′〉 of Π , R′ �⊂ R (8)

if and only if

for every candidate answer set 〈S′
X , R′

X〉 of bU (Π), R′
X �⊂ bU (R), and (9)

for every candidate answer set 〈S′
Y , R′

Y 〉 of eU (Π \ bU (Π), X),
R′

Y �⊂ R \ bU (R). (10)

Let us prove that (8) implies (9). By contradiction, suppose that, for every candidate
answer set 〈S′, R′〉 of Π , R′ �⊂ R, but that there exists a candidate answer set 〈X ′, R′

X〉
of bU (Π) such that R′

X ⊂ bU (R). Let (X ′
D, X ′

I) be the partition of X ′ such that X ′
D

is the set of the literals from X ′ that are relevant to the cr-rules in R′
X ∪ bU (R). Let

(XD, XU ) be a similar partition of X and X∼ = XI ∪ X ′
D. From Definition 4, it is

not difficult to prove that 〈X∼, R′
X〉 is a candidate answer set of bU (Π). Furthermore,

eU (Π \ bU (Π), X) = eU (Π \ bU (Π), X∼). Hence, 〈Y, R \ bU (R)〉 is a candidate
answer set of eU (Π \ bU (Π), X∼).

Notice that R \ bU (R) = (R′
X ∪ (R \ bU (R))) \ bU (R′

X), and that bU (R′
X) =

bU (R′
X ∪ (R \ bU (R))). Therefore, 〈Y, R \ bU (R)〉 = 〈Y, (R′

X ∪ (R \ bU (R))) \
bU (R′

X ∪ (R \ bU (R)))〉, which allows us to conclude that 〈Y, (R′
X ∪ (R \ bU (R))) \

bU (R′
X ∪ (R \ bU (R)))〉 is a candidate answer set of eU (Π \ bU (Π), X∼). By Lemma

2, 〈X∼ ∪Y, R′
X ∪ (R \ bU (R))〉 is a candidate answer set of Π . Because R′

X ⊂ bU (R)
by hypothesis, R′

X ∪(R\bU (R)) ⊂ R, which contradicts the assumption that, for every
candidate answer set 〈S′, R′〉 of Π , R′ �⊂ R.

Let us now prove that (8) implies (10). By contradiction, suppose that, for every
candidate answer set 〈S′, R′〉 of Π , R′ �⊂ R, but that there exists a candidate answer set
〈Y ′, R′

Y 〉 of eU (Π \bU (Π), X) such that R′
Y ⊂ R\bU(R). Because R′

Y ⊂ R\bU (R),
from Lemma 2 we conclude that 〈X ∪ Y ′, bU (R) ∪ R′

Y 〉 is a candidate answer set of
Π , and that bU (R)∪R′

Y ⊂ R. But the hypothesis was that, for every candidate answer
set 〈S′, R′〉 of Π , R′ �⊂ R. Contradiction.

Let us now prove that (9) and (10) imply (8). By contradiction, suppose that, for
every candidate answer set 〈S′

X , R′
X〉 of bU (Π), R′

X �⊂ bU (R), and, for every candidate
answer set 〈S′

Y , R′
Y 〉 of eU (Π \ bU (Π), X), R′

Y �⊂ R \ bU (R), but that there exists a
candidate answer set 〈S′, R′〉 of Π such that R′ ⊂ R. By Lemma 2, (i) 〈S′∩U, bU (R′)〉
is a candidate answer set of bU (Π), and 〈S′ \U, R′ \ bU (R′)〉 is a candidate answer set
of eU (Π \ bU (Π), S′ ∩ U). Notice that, because R′ ⊂ R, either bU (R′) ⊂ bU (R) or
R′ \ bU (R′) ⊂ R \ bU (R).
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Case 1: bU (R′) ⊂ bU (R). It follows that 〈S′ ∩ U, bU (R′)〉 is a candidate answer set of
bU (Π) such that bU (R′) ⊂ bU (R). Contradiction.

Case 2: R′ \ bU (R′) ⊂ R \ bU (R). Let X ′ = S′ ∩ U , and (X ′
I , X

′
D) be the par-

tition of X ′ such that X ′
D consists of all of the literals of X that are relevant to the

cr-rules in bU (R′) ∪ bU (R). Let (XI , XD) be a similar partition of X . From Defini-
tion 4, it is not difficult to prove that 〈S′ \ U, R′ \ bU (R′)〉 is a candidate answer set of
eU (Π \bU (Π), XI ∪X ′

D). Moreover, eU (Π \bU (Π), XI ∪X ′
D) = eU (Π \bU (Π), X).

Therefore, 〈S′ \ U, R′ \ bU (R′)〉 is a candidate answer set of eU (Π \ bU (Π), X), and
R′\bU(R′) ⊂ R\bU (R). This violates the assumption that, for every candidate answer
set 〈S′

Y , R′
Y 〉 of eU (Π \ bU (Π), X), R′

Y �⊂ R \ bU (R). Contradiction.
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Abstract. The imperfect nature of context in Ambient Intelligence environments
and the special characteristics of the entities that possess and share the avail-
able context information render contextual reasoning a very challenging task.
Most current Ambient Intelligence systems have not successfully addressed these
challenges, as they rely on simplifying assumptions, such as perfect knowledge
of context, centralized context, and unbounded computational and communicat-
ing capabilities. This paper presents a knowledge representation model based
on the Multi-Context Systems paradigm, which represents ambient agents as
autonomous logic-based entities that exchange context information through map-
pings, and uses preference information to express their confidence in the imported
knowledge. On top of this model, we have developed an argumentation frame-
work that exploits context and preference information to resolve conflicts caused
by the interaction of ambient agents through mappings, and a distributed algo-
rithm for query evaluation.

1 Introduction

The study of Ambient Intelligence environments has introduced new research chal-
lenges in the field of Distributed Artificial Intelligence. These are mainly caused by the
imperfect nature of context and the special characteristics of the entities that possess and
share the available context information. [1] characterizes four types of imperfect con-
text: unknown, ambiguous, imprecise, and erroneous. The agents that operate in such
environments are expected to have different goals, experiences and perceptive capabil-
ities, limited computation capabilities, and use distinct vocabularies to describe their
context. Due to the highly dynamic and open nature of the environment and the unreli-
able wireless communications that are restricted by the range of transmitters, ambient
agents do not typically know a priori all other entities that are present at a specific time
instance nor can they communicate directly with all of them.

So far, Ambient Intelligence systems have not managed to efficiently handle these
challenges. As it has been already surveyed in [2], most of them follow classical rea-
soning approaches that assume perfect knowledge of context, failing to deal with cases
of missing, inaccurate or inconsistent context information. Regarding the distribution of
reasoning tasks, a common approach followed in most systems assumes the existence of
a central entity, which is responsible for collecting and reasoning with all the available
context information. However, Ambient Intelligence environments have much more de-
manding requirements. The dynamics of the network and the unreliable and restricted
wireless communications inevitably lead to the decentralization of reasoning tasks.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 30–43, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we propose a totally distributed approach for contextual reasoning
in Ambient Intelligence. We model an ambient environment as a Multi-Context Sys-
tem, and ambient agents as autonomous logic-based entities that exchange information
through mapping rules and use preference information to evaluate imported knowledge.
Then we provide a semantic characterization of our approach using arguments. The use
of arguments is a natural choice in multi-agent systems and aims at a more formal and
abstract description of our approach. Conflicts that arise from the interaction of mutu-
ally inconsistent sources are captured through attacking arguments, and conflict resolu-
tion is achieved by ranking arguments according to a preference ordering. Finally, we
provide an operational model in the form of a distributed algorithm for query evaluation.
The algorithm has been implemented in Java and evaluated in a simulated P2P system,
and the results are available in [3]. Here, we focus more on its formal properties.

The rest of the paper is structured as follows. Section 2 presents background in-
formation and related work on contextual reasoning and preference-based argumenta-
tion systems. Section 3 presents the representation model, while section 4 describes its
argumentation semantics. Section 5 presents the distributed algorithm and studies its
properties. The last section summarizes the main results and discusses future work.

2 Background and Related Work

2.1 Multi-Context Systems

Since the seminal work of McCarthy [4] on context and contextual reasoning, two main
formalizations have been proposed to formalize context: the Propositional Logic of
Context (PLC [5]), and the Multi-Context Systems (MCS) introduced in [6], which later
became associated with the Local Model Semantics [7]. MCS have been argued to be
most adequate with respect to the three dimensions of contextual reasoning (partiality,
approximation, proximity) and shown to be technically more general than PLC [8]. A
MCS consists of a set of contexts and a set of inference rules (known as mapping rules)
that enable information flow between different contexts. A context can be thought of
as a logical theory - a set of axioms and inference rules - that models local knowledge.
Different contexts are expected to use different languages, and although each context
may be locally consistent, global consistency cannot be required or guaranteed.

The MCS paradigm has been the basis of two recent studies that were the first to de-
ploy non-monotonic features in contextual reasoning: (a) the non-monotonic rule-based
MCS framework [9], which supports default negation in the mapping rules allowing to
reason based on the absence of context information; and (b) the multi-context variant
of Default Logic (ConDL [10]), which additionally handles the problem of mutually in-
consistent information provided by two or more different sources using default mapping
rules. However, ConDL does not provide ways to model the quality of imported context
information, nor preference between different information sources, leaving the conflicts
that arise in such cases unresolved. The use of Multi-Context Systems as a means of
specifying and implementing agent architectures has been recently proposed in [11],
which proposes breaking the logical description of an agent into a set of contexts, each
of which represents a different component of the architecture, and the interactions be-
tween these components are specified by means of bridge rules between the contexts.
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Here, we follow a different approach; a context does not actually represent a logical
component of an agent, but rather the viewpoint of each different agent in the system.

Peer data managements systems can be viewed as special cases of MCS, as they con-
sist of autonomous logic-based entities (peers) that exchange local information using
bridge rules. Two prominent recent works that handle the problem of peers providing
mutually inconsistent information are: (a) the approach of [12], which is based on non-
monotonic epistemic logic; and (b) the propositional P2P Inference System of [13].
A major limitation of both approaches is that conflicts are not actually resolved using
some external preference information; they are rather isolated. Our approach enables
resolving such conflicts using a preference ordering on the information sources. Build-
ing on the work of [13], [14] proposed an argumentation framework and algorithms for
inconsistency resolution in P2P systems using a preference relation on system peers.
However, their assumptions of a single global language and a global preference relation
are in contrast with the dimension of perspective in MCS. In our approach, each agent
uses its own vocabulary to describe its context and defines its own preference ordering.

2.2 Preference-Based Argumentation Systems

Argumentation systems constitute a way to formalize non-monotonic reasoning, viz.
as the construction and comparison of arguments for and against certain conclusions.
A central notion in such systems is that of acceptability of arguments. In general,
to determine whether an argument is acceptable, it must be compared to its counter-
arguments; namely, those arguments that support opposite or conflicting conclusions.
In preference-based argumentation systems, this comparison is enabled by a preference
relation, which is either implicitly derived from elements of the underlying theory, or is
explicitly defined on the set of arguments. Such systems can be classified into four cat-
egories. In the first category, which includes the works of [15] and [16], the preference
relation takes into account the internal structure of arguments, and arguments are com-
pared in terms of specifity. The second category includes systems in which preferences
among arguments are derived from a priority relation on the rules in the underlying
theory (e.g. [17,18]). In Value Based Argumentation Frameworks, the preference order-
ing on the set of arguments is derived from a preference ordering over the values that
they promote (e.g. [19,20]). Finally, the abstract argumentation frameworks proposed
by Amgoud and her colleagues ([21,22]) assume that preferences among arguments are
induced by a preference relation defined on the underlying belief base.

Our argumentation framework is an extension of the framework of Governatori et al.
[18], which is based on the grounded semantics of Dung’s abstract argumentation
framework [23] to provide an argumentative characterization of Defeasible Logic. In
our framework, preferences are derived both from the structure of arguments - argu-
ments that use local rules are considered stronger than those that use mapping rules -
and from a preference ordering on the information sources (contexts). Our approach
also shares common ideas with [21], which first introduced the notion of contextual
preferences (in the form of several pre-orderings on the belief base), to take into ac-
count preferences that depend upon a particular context. The main differences are that
in our case, these orderings are applied to the contexts themselves rather than directly
to a set of arguments, and that we use a distributed underlying knowledge base.
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3 Representation Model

We model a Multi-Context System C as a collection of distributed context theories Ci:
A context is defined as a tuple of the form (Vi, Ri, Ti), where Vi is the vocabulary used
by Ci, Ri is a set of rules, and Ti is a preference ordering on C.

Vi is a set of positive and negative literals. If qi is a literal in Vi, ∼ qi denotes the
complementary literal, which is also in Vi. If qi is a positive literal p then ∼ qi is ¬p;
and if qi is ¬p, then ∼ qi is p. We assume that each context uses a distinct vocabulary.

Ri consists of two sets of rules: the set of local rules and the set of mapping rules.
The body of a local rule is a conjunction of local literals (literals that are contained in
Vi), while its head contains a local literal:

rl
i : a1

i , a
2
i , ...a

n−1
i → an

i

Local rules express local knowledge and are interpreted in the classical sense: whenever
the literals in the body of the rule are consequences of the local theory, then so is the
literal in the head of the rule. Local rules with empty body denote factual knowledge.

Mapping rules associate local literals with literals from the vocabularies of other
contexts (foreign literals). The body of each such rule is a conjunction of local and
foreign literals, while its head contains a single local literal:

rm
i : a1

i , a
2
j , ...a

n−1
k ⇒ an

i

rm
i associates local literals of Ci (e.g. a1

i ) with local literals of Cj (a2
j ), Ck (an−1

k ) and
possibly other contexts. an

i is a local literal of the theory that has defined rm
i (Ci).

Finally, each context Ci defines a total preference ordering Ti on C to express its
confidence in the knowledge it imports from other contexts. This is of the form:

Ti = [Ck, Cl, ..., Cn]

According to Ti, Ck is preferred by Ci to Cl if Ck precedes Cl in Ti. The total prefer-
ence ordering enables resolving all potential conflicts that may arise from the interaction
of contexts through their mapping rules.

Example. Consider the following scenario. Dr. Amber has configured his mobile phone
to decide whether it should ring based on his preferences and context. He has the fol-
lowing preferences: His mobile phone should ring in case of an incoming call (in call)
if it is in normal mode (normal) and he is not giving a course lecture (lecture). Dr.
Amber is currently located in ’RA201’ university classroom. It is class time, but he has
just finished with a lecture and remains in the classroom reading his emails on his lap-
top. The mobile phone receives an incoming call, and it is in normal mode. The local
knowledge of the mobile phone (C1), which includes information about the mode of
the phone and incoming calls, is encoded in the following local rules.

rl
11 : in call1, normal1,¬lecture1 → ring1

rl
12 :→ in call1

rl
13 :→ normal1
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In case the mobile phone cannot reach a decision based on its local knowledge, it im-
ports knowledge from other ambient agents. In this case, to determine whether Dr. Am-
ber is giving a lecture, it connects through the university wireless network with Dr.
Amber’s laptop (C2), a localization service (C3) and the classroom manager (C4, a sta-
tionary computer installed in ’RA201’), and imports information about Dr. Amber’s
scheduled events, location, and the classroom state through mapping rules rm

14 and rm
15.

rm
14 : classtime2, location RA2013 ⇒ lecture1

rm
15 : ¬class activity4 ⇒ ¬lecture1

The local context knowledge of the laptop, the localization service, and the classroom
manager is expressed in rules rl

21, rl
31 and rl

41 − rl
42 respectively. The classroom man-

ager infers whether there is active class activity, based on the number of people detected
in the classroom (detected) by a person detection service.

rl
21 :→ classtime2

rl
31 :→ location RA2013

rl
41 :→ detected(1)4

rl
42 : detected(1)4 → ¬class activity4

The mobile phone is configured to give highest priority to information imported by the
classroom manager and lowest priority to information imported by the laptop. This is
encoded in preference ordering T1 = [C4, C3, C2].

This example characterizes the type of applications, in which each ambient agent is
aware of the type of knowledge that each of the other agents that it communicates with
possesses, and has predefined how part of this knowledge relates to its local knowledge.

4 Argumentation Semantics

The argumentation framework that we propose uses arguments of local range, in the
sense that each one is made of rules derived from a single context. Arguments made by
different contexts are interrelated in the Support Relation through mapping rules. The
Support Relation contains triples that represent proof trees for literals in the system.
Each proof tree is made of rules of the context that the literal in its root is defined by.
In case a proof tree contains mapping rules, for the respective triple to be contained in
the Support Relation, similar triples for the foreign literals in the proof tree must have
already been obtained. We should also note that, for sake of simplicity, we assume that
there are no loops in the local context theories, and thus proof trees are finite. Loops
in the local knowledge bases can be easily detected and removed without needing to
interact with other agents. However, even if there are no loops in the local theories, the
global knowledge base may contain loops caused by mapping rules.

Let C = {Ci} be a MCS. The Support Relation of C (SRC) is the set of all triples
of the form (Ci, PTpi , pi), where Ci ∈ C, pi ∈ Vi, and PTpi is the proof tree for pi

based on the set of local and mapping rules of Ci. PTpi is a tree with nodes labeled by
literals such that the root is labeled by pi, and for every node with label q:

1. If q ∈ Vi and a1, ..., an label the children of q then
– If ∀ai ∈ {a1, ..., an}: ai ∈ Vi then there is a local rule ri ∈ Ci with body

a1, ..., an and head q
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– If ∃aj ∈ {a1, ..., an} such that aj /∈ Vi then there is a mapping rule ri ∈ Ci

with body a1, ..., an and head q

2. If q ∈ Vj �= Vi, then this is a leaf node of the tree and there is a triple of the form
(Cj , PTq, q) in SRC

3. The arcs in a proof tree are labeled by the rules used to obtain them.

An argument A for a literal pi is a triple (Ci, PTpi , pi) in SRC . Any literal labeling a
node of PTpi is called a conclusion of A. However, when we refer to the conclusion of
A, we refer to the literal labeling the root of PTpi (pi). We write r ∈ A to denote that
rule r is used in the proof tree of A. A (proper) subargument of A is every argument
with a proof tree that is (proper) subtree of the proof tree of A.

Based on the literals used in their proof trees, arguments are classified to local and
mapping arguments. An argument A with conclusion pi ∈ Vi is a local argument of Ci

if its proof tree contains only local literals of Ci (literals that are contained in Vi). Oth-
erwise, A is a mapping argument of Ci. We denote as ArgsCi the set of all arguments
of Ci, while ArgsC is the set of all arguments in C: ArgsC =

⋃
ArgsCi .

The derivation of local logical consequences in Ci is based on its local arguments.
Actually, the conclusions of all local arguments in ArgsCi are logical consequences
of Ci. Distributed logical consequences are derived from a combination of local and
mapping arguments in ArgsC . In this case, we should also consider conflicts between
competing rules, which are modeled as attacks between arguments, and preference or-
derings, which are used in our framework to rank mapping arguments.

The rank of a literal p in context Ci (denoted as R(p, Ci)) equals 0 if p ∈ Vi. If
p ∈ Vj �= Vi, then R(p, Ci) equals the rank of Cj in Ti. The rank of an argument A in
Ci (denoted as R(A, Ci)) equals the maximum between the ranks in Ci of the literals
contained in A. It is obvious that for any three arguments A1, A2, A3: If R(A1, Ci) ≤
R(A2, Ci) and R(A2, Ci) ≤ R(A3, Ci), then R(A1, Ci) ≤ R(A3, Ci); namely the
preference relation < on ArgsC , which is build according to ordering Ti, is transitive.

The definitions of attack and defeat apply only for mapping arguments. An argument
A attacks a mapping argument B at pi, if pi is a conclusion of B, ∼ pi is a conclusion of
A, and the subargument of B with conclusion pi is not a local argument. An argument
A defeats an argument B at pi, if A attacks B at pi, and for the subarguments of A, A′

with conclusion ∼ pi, and of B, B′ with conclusion pi: R(A′, Ci) ≤ R(B′, Ci).
To link arguments through the mapping rules that they contain, we introduce in our

framework the notion of argumentation line. An argumentation line AL for a literal pi

is a sequence of arguments in ArgsC , constructed in steps as follows:

– In the first step add in AL one argument for pi.
– In each next step, for each distinct literal qj labeling a leaf node of the proof trees

of the arguments added in the previous step, add one argument with conclusion qj ;
the addition should not violate the following restriction.

– An argument B with conclusion qj can be added in AL only if AL does not already
contain a different argument D with conclusion qj .

The argument for pi added in the first step is called the head argument of AL. If the
number of steps required to build AL is finite, then AL is a finite argumentation line.
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Infinite argumentation lines imply loops in the global knowledge base. Arguments con-
tained in infinite lines participate in attacks against counter-arguments but may not be
used to support the conclusion of their argumentation lines.

The notion of supported argument is meant to indicate when an argument may have
an active role in proving or preventing the derivation of a conclusion. An argument A
is supported by a set of arguments S if: (a) every proper subargument of A is in S; and
(b) there is a finite argumentation line AL with head A, such that every argument in
AL − {A} is in S.

A mapping argument A is undercut by a set of arguments S if for every argumenta-
tion line AL with head A, there is an argument B, such that B is supported by S, and
B defeats a proper subargument of A or an argument in AL − {A}. That an argument
A is undercut by a set of arguments S means that we can show that some premises of
A cannot be proved if we accept the arguments in S.

An argument A is acceptable w.r.t a set of arguments S if:

1. A is a local argument; or
2. A is supported by S and every argument defeating A is undercut by S

Intuitively, that an argument A is acceptable w.r.t. S means that if we accept the argu-
ments in S as valid arguments, then we feel compelled to accept A as valid. Based on
the concept of acceptable arguments, we define justified arguments and justified literals.
JC

i is defined as follows:

– JC
0 = ∅;

– JC
i+1 = {A ∈ ArgsC | A is acceptable w.r.t. JC

i }

The set of justified arguments in a MCS C is JArgsC =
⋃∞

i=1 JC
i . A literal pi is jus-

tified if it is the conclusion of an argument in JArgsC . That an argument A is justified
means that it resists every reasonable refutation. That a literal pi is justified, it actually
means that it is a logical consequence of C.

Finally, we also introduce the notion of rejected arguments and rejected literals for
the characterization of conclusions that do not derive from C. An argument A is rejected
by sets of arguments S, T when:

1. A is not a local argument, and either
2. (a) a proper subargument of A is in S; or

(b) A is defeated by an argument supported by T ; or
(c) for every argumentation line AL with head A there exists an argument A′ ∈

AL − {A}, such that either a subargument of A′ is in S; or A′ is defeated by
an argument supported by T

That an argument is rejected by sets of arguments S and T means that either it is sup-
ported by arguments in S, which can be thought of as the set of already rejected ar-
guments, or it cannot overcome an attack from an argument supported by T , which
can be thought of as the set of justified arguments. Based on the definition of rejected
arguments, we define RC

i as follows:

– RC
0 = ∅;

– RC
i+1 = {A ∈ ArgsC | A is rejected by RC

i , JArgsC}
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The set of rejected arguments in a MCS C is RArgsC =
⋃∞

i=1 RC
i . A literal pi is

rejected if there is no argument in ArgsC − RArgsC with conclusion pi. That a literal
is rejected means that we are able to prove that it is not a logical consequence of C.

Example (continued). Given the MCS C of the example, in call1, normal1,
classtime2, location RA2013, detected(1)4, and ¬class activity4 are justified in C,
since they are supported by local arguments; all these arguments are in JC

i for every i.
The argument A={¬class activity4 ⇒ ¬lecture1} is supported by JC

1 , as there is an
argument for ¬class activity4 in JC

1 . Moreover, it is not defeated by attacking argu-
ment B={classtime2, location RA2013 ⇒ lecture1}, as B has higher rank than A
in C1. Hence, A is in J2, and ¬lecture1 is justified in C. Argument D for ring1, which
is derived from the arguments for in call1, normal1 and ¬lecture1 (A) and rule rl

11, is
supported by JC

2 and not defeated by attacking argument B. Therefore, D is justified,
and ring1 is justified in C.

Lemmata 1-3 describe some formal properties of the framework. Their proofs are
available at: www.csd.uoc.gr/∼bikakis/thesis.pdf. Lemma 1 refers to the monotonicity
in JC

i and RC
i (T ), while Lemma 2 represents the fact that no argument is both ”be-

lieved” and ”disbelieved”.

Lemma 1. The sequences JC
i and RC

i (T ) are monotonically increasing.

Lemma 2. In a Multi-Context System C, no literal is both justified and rejected.

If consistency is assumed in the local rules of a context theory (two complementary
conclusions may not be derived as local consequences of a context theory), then using
Lemma 2, it is easy to prove that the entire framework is consistent (Lemma 3).

Lemma 3. If the set of justified arguments in C, JArgsC , contains two arguments with
complementary conclusions, then both are local arguments of the same context.

5 Distributed Query Evaluation

P2P DR is a distributed algorithm for query evaluation that implements the proposed
argumentation framework. The specific problem that it deals with is: Given a MCS C,
and a query about literal pi issued to context Ci, compute the truth value of pi. For an
arbitrary literal pi, P2P DR returns one of the following values: (a) true; indicating
that pi is justified in C; (b) false; indicating that pi is rejected in C; or (c) undefined;
indicating that pi is neither justified nor rejected in C.

5.1 Algorithm Description

P2P DR proceeds in four main steps. In the first step (lines 1-8), P2P DR deter-
mines whether pi or its negation ∼ pi, are consequences of the local rules of Ci, using
local alg (described later in this section). If local alg computes true as an answer for
pi or ∼ pi, P2P DR returns true / false respectively as an answer for pi and terminates.

In step 2 (lines 9-12), P2P DR calls Support (described later in this section) to de-
termine whether there are applicable and unblocked rules with head pi. We call appli-
cable those rules that for all literals in their body P2P DR has computed true as their
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truth value, while unblocked are the rules that for all literals in their body P2P DR
has computed either true or undefined as their truth values. Support returns two data
structures for pi: (a) the Supportive Set of pi (SSpi), which is the set of foreign literals
used in the most preferred (according to Ti) chain of applicable rules for pi ; and (b)
the Blocking Set of pi (BSpi), which is the set of foreign literals used in the most pre-
ferred chain of unblocked rules for pi. If there is no unblocked rule for pi (BSpi = ∅),
P2P DR returns false as an answer and terminates. Similarly, in step 3 (lines 13-14),
P2P DR calls Support to compute the respective constructs for ∼ pi (SS∼pi ,BS∼pi).

In the last step (lines 15-24), P2P DR uses the constructs computed in the previous
steps and preference ordering Ti to compute the answer for pi. In case there is no
unblocked rule for ∼ pi (BS∼pi = ∅), or SSpi is computed by Stronger (described
later in this section) to be stronger than BS∼pi , P2P DR returns Anspi =true. That
SSpi is stronger than BSpi means that the chains of applicable rules for pi involve
information from more preferred contexts to those that are involved in the chains of
unblocked rules for ∼ pi. If there is at least one applicable rule for ∼ pi, and BSpi is
not stronger than SS∼pi , P2P DR returns false. In any other case, it returns undefined.

The context that is called to evaluate the query for pi (Ci) returns through Anspi

the truth value for pi. SSpi and BSpi are returned to the querying context (C0) only
if the two contexts (C0 and Ci) are actually the same context. Otherwise, the empty
set is assigned to both SSpi and BSpi and returned to C0. In this way, the size of the
messages exchanged between different contexts is kept small. Histpi is a structure used
by Support to detect loops in the global knowledge base. The algorithm parameters are:

– pi: the queried literal (input)
– C0: the context that issues the query (input)
– Ci: the context that defines pi (input)
– Histpi : the list of pending queries ([p1, ..., pi]) (input)
– Ti: the preference ordering of Ci (input)
– SSpi : a set of foreign literals of Ci denoting the Supportive Set of pi (output)
– BSpi : a set of foreign literals of Ci denoting the Blocking Set of pi (output)
– Anspi : the answer returned for pi (output)

P2P DR(pi, C0, Ci, Histpi , Ti, SSpi , BSpi , Anspi)
1: call local alg(pi, localAnspi)
2: if localAnspi = true then
3: Anspi ← true, SSpi ← ∅, BSpi ← ∅
4: terminate
5: call local alg(∼ pi, localAns∼pi)
6: if localAns∼pi = true then
7: Anspi ← false, SSpi ← ∅, BSpi ← ∅
8: terminate
9: call Support(pi, Histpi , Ti, SSpi , BSpi )

10: if BSpi = ∅ then
11: Anspi ← false, SSpi ← ∅, BSpi ← ∅
12: terminate
13: Hist∼pi ← (Histpi − {pi}) ∪ {∼ pi}
14: call Support(∼ pi, Hist∼pi , Ti, SS∼pi , BS∼pi )
15: if SSpi �= ∅ and (BS∼ pi = ∅ or Stronger(SSpi , BS∼pi , Ti) = SSpi ) then
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16: Anspi ← true
17: if C0 �= Ci then
18: SSpi ← ∅, BSpi ← ∅
19: else if SS∼pi �= ∅ and Stronger(BSpi , SS∼pi , Ti) �= BSpi then
20: Anspi ← false, SSpi ← ∅, BSpi ← ∅
21: else
22: Anspi ← undefined
23: if C0 �= Ci then
24: SSpi ← ∅, BSpi ← ∅

local alg is called by P2P DR to determine whether the truth value of the queried
literal can be derived from the local rules of a context.

local alg(pi, localAnspi)
1: for all ri ∈ Rs[pi] do
2: for all bi ∈ body(ri) do
3: call local alg(bi, localAnsbi)
4: if for all bi: localAnsbi = true then
5: localAnspi ← true
6: terminate
7: localAnspi ← false

Support is called by P2P DR to compute SSpi and BSpi . To compute these struc-
tures, it checks the applicability of the rules with head pi, using the truth values of the
literals in their body, as these are evaluated by P2P DR. To avoid loops, before calling
P2P DR, it checks if the same query has been issued before during the running call of
P2P DR. For each applicable rule ri, Support builds its Supportive Set, SSri; this is
the union of the set of foreign literals contained in the body of ri with the Supportive
Sets of the local literals contained in the body of the rule. Similarly, for each unblocked
rule ri, it computes its Blocking Set BSri using the Blocking Sets of its body literals.
Support computes the Supportive Set of pi, SSpi , as the strongest rule Supportive Set
SSri ; and its Blocking Set, BSpi , as the strongest rule Blocking Set BSri , using the
Stronger function. The parameters of Support are:

– pi: the queried literal (input)
– Histpi : the list of pending queries ([p1, ..., pi]) (input)
– Ti: the preference ordering of Ci (input)
– SSpi : the Supportive Set of pi (output)
– BSpi : the Blocking Set of pi (output)

Support(pi, Histpi, Ti, SSpi , BSpi)
1: for all ri ∈ R[pi] do
2: cycle(ri) ← false
3: SSri ← ∅, BSri ← ∅
4: for all bt ∈ body(ri) do
5: if bt ∈ Histpi then
6: cycle(ri) ← true
7: BSri ← BSri ∪ {dt} {dt ≡ bt if bt /∈ Vi; otherwise dt is the first foreign literal

of Ci added in Histpi after bt}
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8: else
9: Histbt ← Histpi ∪ {bt}

10: call P2P DR(bt, Ci, Ct, Histbt , Tt, SSbt , BSbt , Ansbt)
11: if Ansbt = false then
12: stop and check the next rule
13: else if Ansbt = undefined or cycle(ri) = true then
14: cycle(ri) ← true
15: if bt /∈ Vi then
16: BSri ← BSri ∪ {bt}
17: else
18: BSri ← BSri ∪ BSbt

19: else
20: if bt /∈ Vi then
21: BSri ← BSri ∪ {bt}
22: SSri ← SSri ∪ {bt}
23: else
24: BSri ← BSri ∪ BSbt

25: SSri ← SSri ∪ SSbt

26: if BSpi = ∅ or Stronger(BSri , BSpi , Ti) = BSri then
27: BSpi ← BSri

28: if cycle(ri) = false then
29: if SSpi = ∅ or Stronger(SSri , SSpi , Ti) = SSri then
30: SSpi ← SSri

Stronger(A, B, Ti) returns the strongest between two sets of literals, A and B, ac-
cording to preference ordering Ti. A literal ak is preferred to literal bj , if Ck precedes
Cl in Ti. The strength of a set is determined by the the least preferred literal in this set.

Stronger(A, B, Ti)
1: if ∃bj ∈ B: ∀ak ∈ A: Ck has lower rank than Cj in Ti then
2: Stronger = A
3: else if ∃ak ∈ A: ∀bj ∈ B: Cj has lower rank than Ck in Ti then
4: Stronger = B
5: else
6: Stronger = None

Example (continued). Given a query about ring1, P2P DR proceeds as follows. It
fails to compute an answer based on C1’s local theory, and uses rules rm

14 and rm
15 to

compute an answer for ¬lecture1. Using the local rules of C2, C3 and C4, it computes
positive answers for classtime2, location RA2013 and ¬class activity4 respectively,
determines that both rm

14 and rm
15 are applicable, and computes their Supportive Sets:

SSrm
14

= {class2,location RA2013} and SSrm
15

= {¬class activity4}. As C4 precedes
C2 in T1, P2P DR determines that SSrm

15
is stronger, computes a positive answer for

¬lecture1, and eventually (using rule rl
11) returns a positive answer (true) for ring1.

5.2 Properties of the Algorithm

Below, we describe formal properties of P2P DR regarding its termination, soundness
and completeness w.r.t. the argumentation framework and complexity. The proofs for
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the following propositions are available at www.csd.uoc.gr/∼bikakis/thesis.pdf. Propo-
sition 1 is a consequence of the cycle detection process within the algorithm.

Proposition 1. The algorithm is guaranteed to terminate returning one of the values
true, false and undefined as an answer for the queried literal.

Proposition 2 associates the answers produced by P2P DR with the concepts of justi-
fied and rejected literals.

Proposition 2. For a Multi-Context System C and a literal pi in C, P2P DR returns:

1. Anspi = true iff pi is justified in C
2. Anspi = false iff pi is rejected in C
3. Anspi = undefined iff pi is neither justified nor rejected in C

Propositions 3 and 4 are consequences of two states that we retain for each context,
which keep track of the results for all incoming and outgoing queries. The worst case
that both propositions refer to is when all rules of Ci contain either pi (the queried
literal) or ∼ pi in their head and all system literals in their bodies.

Proposition 3. The total number of messages exchanged between the system contexts
for the evaluation of a query is, in the worst case, O(n ×

∑
P (n, k)), where n stands

for the total number of literals in the system,
∑

expresses the sum over k = 0, 1, ..., n,
and P (n, k) stands for the number of permutations with length k of n elements. In case,
there are no loops in the global knowledge base, the number of messages is polynomial
to the size of the global knowledge base.

Proposition 4. The number of operations imposed by one call of P2P DR for the
evaluation of a query for literal pi is, in the worst case, proportional to the number of
rules in Ci, and to the total number of literals in the system.

6 Conclusion

This paper proposes a totally distributed approach for contextual reasoning in Ambi-
ent Intelligence, based on representing context knowledge of ambient agents as context
theories in a Multi-Context System, and reasoning with the available knowledge us-
ing arguments. Using a total preference ordering on the system contexts, our approach
enables resolving all conflicts that arise from the interaction of contexts through their
mappings. The paper also presents a distributed algorithm for query evaluation that
implements the proposed argumentation framework, and studies its formal properties.

Our ongoing work involves: (a) studying alternative methods for conflict resolu-
tion, which differ in the way that agents evaluate the imported context information; (b)
adding non-monotonic features to the local context theories to support uncertainty in
the local context knowledge; (c) extending our approach to support overlapping vocab-
ularies, which will enable different contexts to use elements of common vocabularies
(e.g. URIs); and (d) implementing real-world applications of our approach in Ambient
Intelligence environments.
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Abstract. We introduce a modular framework for distributed abstract
argumentation where the argumentation context, that is information
about preferences among arguments, values, validity, reasoning mode
(skeptical vs. credulous) and even the chosen semantics can be explicitly
represented. The framework consists of a collection of abstract argument
systems connected via mediators. Each mediator integrates information
coming from connected argument systems (thereby handling conflicts
within this information) and provides the context used in a particular ar-
gumentation module. The framework can be used in different directions;
e.g., for hierarchic argumentation as typically found in legal reasoning,
or to model group argumentation processes.

1 Introduction

In his seminal paper, Dung [10] introduced an abstract framework for argu-
mentation (sometimes referred to as calculus of opposition) which proved to
be extremely useful for analyzing various kinds of argumentation processes. His
approach gives a convincing account of how to select a set of “acceptable” argu-
ments out of a set of arguments which may attack each other.

Dung’s approach is monolithic in the sense that there are no means to struc-
ture a set of arguments any further. This is at odds with real world argumenta-
tion scenarios, be they informal as in everyday conversation, or institutionalized
as in the legal domain. In such scenarios, one typically finds meta-arguments,
i.e., arguments about other arguments, which can be clearly distinguished from
arguments about the domain at hand. Moreover, in multi-agent scenarios it is
often important to keep track of where certain arguments came from, who put
them forward, who opposed and the like.

For these reasons, our interest in this paper is on adding more structure to
formal models of argumentation. In doing so, we want to stick as much as possible
to the idea of abstract argumentation. However, instead of a single, unstructured
set of arguments we consider clearly distinguishable, distributed argumentation
modules and formalize ways in which they can possibly interact. This has several
benefits.
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1. Even in the single-agent case, the additional structure provided by argumenta-
tion modules gives a handle on complexity and diversity (e.g., in our framework
it will be possible for an agent to be skeptical in critical parts, credulous in
less critical ones);

2. a distributed framework provides a natural account of multi-agent argumenta-
tion scenarios including information flow and knowledge integration methods;

3. modules provide explicit means to model meta-argumentation where the ar-
guments in one module are about the arguments in another module; this leads
to more realistic accounts of, say, legal argumentation processes.

In the simplest multi-module situation, one module determines the context for
another. By a context we mean the available meta-information including, for
instance, arguments which should not be taken into account, preferences among
arguments, values, reasoning modes (skeptical vs. credulous), or even the seman-
tics to be used in a particular situation. However, we also want to be able to
capture more general situations where modules form complex hierarchies, and
even cycles where modules mutually influence each other. For these reasons, we
consider arbitrary directed graphs of modules.

As different “parent” modules in the graph can contribute to the context of a
single module, we face the difficulty that the context information may become
inconsistent. Each module is equipped with a mediator1 to deal with this issue.

To model the flow of information among argumentation modules, we use tech-
niques developed in the area of multi-context systems (MCSs), in particular
the systems devised by Giunchiglia and Serafini [14] and their extensions to
nonmonotonic MCSs [17,6]. An MCS describes the information available in a
number of contexts and specifies the information flow between them.2 So-called
bridge rules play a key role: they are used to provide input for a context based
on the beliefs held in other relevant contexts. Since different contexts may use
different representation languages, this may include “translating” information
from one language to another. In our case, the bridge rules are necessary to
transform abstract arguments accepted in one module into context statements
for a child module.

Our approach substantially generalizes a framework recently introduced by
Modgil [15]. His framework consists of a linear hierarchy of argument systems
(A1, . . . ,An) and allows preferences among arguments in Ai to be established
in Ai+1. Our approach is more general in at least two respects: (1) we provide
means for argumentation not only about preferences, but also about values, ac-
ceptability of arguments and attacks, and even reasoning mode and semantics,
and (2) we consider arbitrary directed graphs. Since our modules may have mul-
tiple parents, methods for information integration, as provided by our mediators,
become essential. In summary, our contribution in this paper is twofold:

• We introduce context-based argumentation (Sect. 4). Here statements in
a context language, which formally specify a context, allow us to control

1 Cf. Wiederhold’s [19] classic notion in information systems.
2 A context in an MCS is a local inference system. This is in contrast with the more

specific meaning of the term in this paper.
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argumentation processes by determining their semantics, reasoning modal-
ity, and arguments.

• Based on it, we develop argumentation context systems (ACS), which are
composed of argumentation modules and mediators (Sect. 5) in a graph
structure. A mediator collects context information for a module based on
the arguments accepted by its parent modules. It then applies a consistency
handling method, possibly based on preference information regarding its
parents, to select a consistent subset of the context statements.

Both context-based argumentation and ACSs are generic and can be instantiated
in various ways (we consider several of them).

2 Background

Abstract argumentation. We assume some familiarity with Dung-style ab-
stract argumentation [10] and just recall the essential definitions. An argumen-
tation framework is a pair A = (AR, attacks) where AR is a set of arguments,
and attacks is a binary relation on AR (used in infix in prose). An argument
a ∈ AR is acceptable with respect to a set S of arguments, if each argument
b ∈ AR that attacks a is attacked by some b′ ∈ S. A set S of arguments is
conflict-free, if there are no arguments a, b ∈ S such that a attacks b, and S is
admissible, if in addition each argument in S is acceptable wrt. S.

Dung defined three different semantics for A = (AR, attacks):

– A preferred extension of A is a maximal (wrt. ⊆) admissible set of A.
– A stable extension of A is a conflict-free set of arguments S which attacks

each argument not belonging to S.
– The grounded extension of A is the least fixpoint of the operator FA : 2AR →

2AR where FA(S) = {a ∈ AR | a is acceptable wrt. S}.

The unique grounded extension is a subset of the intersection of all preferred
extensions, and each stable extension is a preferred extension, but not vice versa.
While the grounded and some preferred extension are guaranteed to exist, A may
have no stable extension.3

A preference based argumentation framework (PAF) P = (AR, C,≥) [1,8] is
based on a relation C representing logical conflicts between arguments AR and
a reflexive, transitive preference relation ≥ on AR for expressing that arguments
are stronger than others; as usual, the associated strict preference > is given by
a >b iff a≥ b and b �≥ a. The PAF P induces an ordinary argumentation frame-
work AP = (AR, attacks) where attacks = {(a, b)∈C | b �>a}. The grounded,
preferred, and stable extensions of P are then the respective extensions of AP .

Value based argumentation frameworks (VAFs) [2,3] derive preferences among
arguments from the values they promote. An audience specific4 VAF
3 We confine the discussion here to Dung’s original semantics. Recent proposals like

semi-stable [7] and ideal [11] semantics can be easily integrated in our framework.
4 We omit discussing audiences; in our framework, they are best modeled by modules.
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V =(AR, attacks , V, val, valprefs)
extends an ordinary argumentation framework (AR, attacks) with a non-empty
set of values V , a function val : AR → V , and a strict preference relation valprefs
on V ; argument a is preferred over b whenever (val(a), val(b)) ∈ valprefs . The
preferences are then treated as in Amgoud & Cayrol’s approach.

Inconsistency handling. Let F = (F1, . . . , Fn) be a sequence of sets of formu-
las. We will use 4 different methods to generate a consistent subset of F1∪. . .∪Fn

from F : a skeptical method sub� which goes back to [5] and uses a partial pref-
erence order � on the sets Fi, together with its skeptical variant subsk,�′ , and
a majority-based method maj, together with its skeptical variant majsk. The
former methods are used to integrate information in cases where some parent
modules are more important than others, the latter in peer-to-peer situations
where voting is more appropriate. As here the technical details are of minor
relevance, we leave them for a longer version of the paper.

Multi-context systems. Such systems model, in the tradition of [14] and their
nonmonotonic extensions [17,6], the information flow between different reasoning
modules (called contexts) using so-called bridge rules, which may refer to other
modules in their bodies. For our purposes, we only need to consider rules referring
to a single other module that is implicitly given. Therefore, our bridge rules will
look like ordinary logic programming rules of the form:

s ← p1, . . . , pj ,not pj+1, . . . ,not pm (1)

where the head s is a context expression (defined in the Sect. 4) and the body
literals are arguments pi (possibly negated with not ) from a parent argumen-
tation framework.

3 Motivating Examples

Legal reasoning. Different proof standards determine which arguments are ac-
ceptable depending on the type of a trial: beyond reasonable doubt for criminal
trials; preponderance of evidence for civil trials (we omit scintilla of evidence
for simplicity). Consider a situation where a judge J has to decide which of the
arguments put forward by a prosecutor P are acceptable. Assume also that crim-
inal trials require grounded reasoning, whereas less skeptical reasoning methods
may be acceptable in civil trials.5

The arguments and attacks put forward by P form an argumentation frame-
work A = ({a1, . . . , an}, attacks). The judge has information about which of P ’s
arguments are doubtful and the type of a trial. Using arguments dti, bdi and dri

for ai is doubtful, beyond reasonable doubt and disregarded, respectively, the
judge’s argumentation framework may look as in Fig. 1, where crl means crimi-
nal trial and civ civil trial (arcs are according to attacks).6 Optional arguments
represent information the judge may or may not have are in blue.
5 A similar example was discussed in [21].
6 For simplicity, names of abstract arguments in M2 reflect their intended meaning.
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dt1
bd1

dr1

dt2
bd2

dr2

dt3
bd3

dr3

civ
crl

Fig. 1. The judge’s argumentation framework for n = 3

The outcome of J ’s argumentation determines how P can argue, and sets a
context for P ; a language for representing contexts will be defined in the next
section. As for now, let arg(ai) state that ai is invalid for P , and that sem(grnd)
fixes the semantics for P ’s argumentation framework to grounded semantics.

However, to build this context, we need to transform the relevant abstract
arguments accepted by J into adequate context expressions for P that invalidate
unusable arguments, pick the right semantics, etc. This is achieved by a mediator,
which uses the following bridge rules i ∈ {1, . . . , n}:

{ arg(ai) ← dri, sem(grnd) ← not civ }.
Not all arguments of J need to be “visible” for P . Privacy issues (e.g. hiding or
summarizing arguments) can be modeled by choosing adequate bridge rules.

The example involving judge, prosecutor and mediator is clearly simplistic and
one might ask why the two argumentation frameworks are not simply merged
into one. There are the following aspects, though: (1) It is non-obvious how,
for instance, a statement fixing a particular semantics could be eliminated this
way. (2) Even if we could compile a single argumentation framework out of
the example, the distinction between arguments and meta-arguments and their
origin would be blurred. (3) Most importantly, the framework we develop aims at
capturing much more complex scenarios where such compilations appear neither
doable nor fruitful. We now briefly discuss such a scenario.

Conference reviewing. Consider the paper review process for a modern AI
conference. This process can typically be characterized as follows

– There is a hierarchy consisting of a PC chair, several area chairs, many
reviewers, and even more authors.

– The PC chair determines the review criteria, acceptance rates etc.
– Area chairs make sure reviewers make fair judgements and eliminate unjus-

tified arguments from their reviews.
– Authors give feedback on the preliminary reviews of their papers. Informa-

tion flow is thus cyclic.
– Reviewers exchange arguments in a peer-to-peer discussion.
– Area chairs generate a consistent recommendation out of the final reviews.
– PC chair takes recommendations as input for final decision.
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What we see here is a complex argumentation scenario including hierarchic (the
PC chair setting criteria) as well as peer-to-peer (the reviewers discussing the
same paper) forms of argumentation in groups. It is also evident that information
flow is cyclic: even the authors nowadays are able to feed arguments back into
higher levels of the reviewing hierarchy.

Examples like this call for a flexible framework allowing for cyclic structures
encompassing a variety of information integration methods. Exactly this kind of
framework is what we are going to develop in the rest of the paper.

4 Context-Based Argumentation

We now give a simple language for representing context and define what it
means for a set of arguments to be acceptable for an argumentation framework
A given a context C. In the context language, we want to specify various as-
pects, including: a) preferences among arguments; b) values and value orderings;
c) validity/invalidity of specific arguments; d) addition/deletion of attack rela-
tionships among arguments; e) a reasoning mode (sceptical vs. credulous); and
f) an argumentation semantics (stable, preferred, grounded).

Definition 1. A context expression for a set of arguments AR and a set of
values V has one of the following forms (a, b ∈ AR; v, v′ ∈ V ):

arg(a) / arg(a) a is a valid / invalid argument
att(a, b) / att(a, b) (a, b) is a valid / invalid attack
a > b a is strictly preferred to b
val(a, v) the value of a is v
v > v′ value v is strictly better than v′

mode(r) the reasoning mode is r ∈ {skep, cred}
sem(s) the chosen semantics is s ∈ {grnd , pref , stab}

A context C is a set of context expressions (for given AR and V ).

The preference and value expressions together define a preference order on ar-
guments as follows:

Definition 2. For a context C, the preference order >C induced by C is the
smallest transitive relation such that a >C b if either (i) a > b ∈ C or
(ii) val(a, v1) ∈ C, val(b, v2) ∈ C, and (v1, v2) is in the transitive closure of
{(v, v′) | v >v′ ∈C}.

A context C is consistent, if the following conditions hold:

1. >C is a strict partial order,
2. for no a both arg(a) ∈ C and arg(a) ∈ C,
3. for no (a, b) both att(a, b) ∈ C and att(a, b) ∈ C,
4. C contains at most one expression of the form mode(r); the same holds for

sem(s) and for val(a, v), for each a.
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Now we define the semantics of a consistent context. It acts as a modifier for
an argumentation framework A, which is evaluated under the argumentation
semantics and reasoning mode specified in the context.

Definition 3. Let A = (AR, attacks) be an argumentation framework, let V be a
set of values, and let C be a consistent context for AR and V . The C-modification
of A is the argumentation framework AC = (ARC , attacksC), where

– ARC = AR ∪ {def}, where def /∈ AR.
– attacksC is the smallest relation satisfying the following conditions:

1. if att(a, b) ∈ C, then (a, b) ∈ attacksC ,
2. if (a, b) ∈ attacks, att(a, b) /∈ C and b �>C a, then (a, b) ∈ attacksC ,
3. if arg(a)∈C or (arg(b)∈C ∧ (a, b)∈ attacksC) then (def, a)∈ attacksC .

The basic idea is that the new, non-attackable argument def defeats invalid
arguments as well as attackers of valid arguments. In this way, it is guaranteed
that (in)valid arguments will indeed be (in)valid, independently of the chosen
semantics. Moreover, the definition of attacksC guarantees that valid attacks are
taken into account while invalid ones are left out. It also ensures that preferences
among arguments are handled correctly, by disregarding any original attack (a, b)
where b is more preferred than a. The preferences among arguments may be
stated directly, or indirectly by the argument values and their preferences.

Example 1. Let A = ({a, b, c, d}, attacks) with attacks = {(a, b), (b, d), (d, b),
(b, c)}. Moreover, let C = {arg(a),val(b, v1),val(d, v2), v1 > v2, c > b}. We
obtain AC = ({a, b, c, d,def}, {(def, a), (a, b), (b, d)}).

Based on the C-modification, we define the sets of acceptable arguments. We
adopt credulous reasoning and preferred semantics by default, i.e., whenever
a context C contains no expression of the form mode(m) (resp., sem(s)), we
implicitly assume mode(cred)∈C (resp., sem(pref )∈C).

Definition 4. Let A = (AR, attacks) be an argumentation framework, let V be
a value set, and let C be a consistent context for AR and V such that sem(s)∈C,
mode(m)∈C. A set S ⊆AR is an acceptable C-extension for A, if either

– m = cred and S ∪ {def} is an s-extension7 of AC , or
– m = skep and S ∪ {def} is the intersection of all s-extensions of AC .

We call a context purely preferential (resp., purely value-based), if it contains be-
sides mode- and sem-statements only expressions of form a >b (resp., val(a,v)
or v >v′). The next proposition shows that our definition “does the right thing:”

Proposition 1. Suppose C, A and V are as in Definition 4. Then,

1. if C is purely preferential, the acceptable C-extensions of A coincide with
the s-extensions of the PAF P =(AR, attacks ,≥P), if the strict partial order
induced by ≥P coincides with >C .

7 s-extension means grounded, preferred, stable extension if s = grnd , pref , stab, resp.
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2. if C is purely value-based and AR = {a | val(a, v) ∈ C}, the accept-
able C-extensions of A coincide with the s-extensions of the VAF V =(AR,
attacks , V, val, valprefs) where val(a)= v iff val(a, v)∈C and (v, v′)∈
valprefs iff (v, v′) is in the transitive closure of {(v, v′) | v > v′ ∈ C}.

3. if arg(a) ∈ C (resp., arg(a) ∈ C) and S is an acceptable C-extension, then
a ∈ S (resp., a �∈ S).

5 Argumentation Context Systems

We now develop argumentation context systems (ACSs) as a flexible framework
for distributed argumentation, encompassing arbitrary directed graphs of argu-
mentation modules. Such modules M=(A, Med) consist of a Dung-style argu-
ment framework A and a mediator Med, which determines a context C for A.
To this end, it translates arguments accepted by M’s parents (i.e., its direct an-
cestor modules) into context expressions using bridge rules and combines them
with local context information. To ensure consistency of C, the mediator uses a
consistency handling method that resolves any inconsistency between the local
and the parent information (multiple parents are possible). Figure 2 shows the
structure of an example ACS. The module M1 has the single parent M3, and
Med1 receives input from A3; we say Med1 is based on A3. The module M2 has
the parents M3 and M4, and Med2 is based on A3 and A4.

5.1 Mediators

We now define precisely what we mean by a mediator.

Definition 5. Let A1,A2, . . . ,Ak, k ≥ 1, be argumentation frameworks. A me-
diator for A = A1 based on A2, . . . ,Ak is a tuple

Med = (E1, R2, . . . , Rk, choice)
where

– E1 is a set of context expressions for A;
– Ri, 2 ≤ i ≤ k, is a set of rules of form (1) where s is a context expression

for A and p1, . . . , pm are arguments in Ai (bridge rules for A based on Ai);

M1

M3

M2

M4

Med3 Med4

Med1 Med2

A1 A2

A3 A4

Fig. 2. Example argumentation context system F = {(Ai, Medi) | 1 ≤ i ≤ 4}
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– choice ∈ { sub�, subsk,�, maj, majsk}, where � is a strict partial order on
{1, . . . , k}.

Intuitively, the Ai, are from the parent modules Mi of M. The set E1 contains
context statements for A which the mediator itself considers adequate; it is
also used to provide the context for modules without parents. The bridge rules
determine the relevant context expressions for A based on arguments accepted
in Ai (i.e., in Mi). This overcomes the following problem: argumentation in
Dung-style systems is abstract, i.e., the content of arguments is not analyzed.
In order to use arguments of a parent module in determining the context for a
child module, this abstract view must be given up to some extent, as context
expressions must be associated with arguments of the parent modules.

The parameter choice fixes a inconsistency handling strategy. The order � is
used to prioritize context expressions from different modules. Index 1 is included
in the ordering; this makes it possible to specify whether statements in E1 can be
overridden by statements coming from parent modules or not. For the majority-
based inconsistency methods maj and majsk, the order is not needed since the
number of supporting modules is implicitly used as the preference criterion.
Other consistency methods than those considered can be easily integrated.

Given sets of accepted arguments for all parent modules of M, the mediator
defines the consistent acceptable contexts for its argument system A. There may
be more than one acceptable context.

Let Ri be a set of bridge rules for A based on Ai, and Si a set of arguments
of Ai. Ri(Si) is the set of context expressions

Ri(Si) = {h | h ← a1, . . . , aj ,not b1, . . . ,not bn ∈ Ri,
{a1, . . . , aj} ⊆ Si, {b1, . . . , bn} ∩ Si = ∅ },

Intuitively, Ri(Si) contains the context statements for A derivable through rules
in Ri given the arguments Si are accepted by Ai.

The sets E1, R2(S2), . . . , Rk(Sk) provide context information for A coming
from the mediator for A, respectively from the argument frameworks A2, . . . ,Ak

in the parent modules. This information is integrated into a consistent context
using the chosen consistency handling method.

Definition 6. Let Med = (E1, R2, . . . , Rk, choice) be a mediator for A based on
A2, . . . ,Ak. A context C for A is acceptable wrt. sets of arguments S2, . . . , Sk

of A2, . . . ,Ak, if C is a choice-preferred set for (E1, R2(S2), . . . , Rk(Sk)).

Example 2. Consider a mediator Med =(E1, R2, R3, sub�) based on argumen-
tation frameworks A2 and A3. Let E1 = {sem(grnd), v > v′} and 1�2� 3. Let
R2 = {arg(a1) ← b1, a2 >a3 ← b2} and R3 = { arg(a1) ← c1, val(a2, v

′) ← c2,
val(a3, v) ← c3 }. Suppose S2 = {b1, b2} is accepted in A2 and S3 = {c1, c2,
c3} in A3. We obtain R2(S2) = {arg(a1), a2 > a3} and R3(S3) = {arg(a1),
val(a2, v

′), val(a3, v)}. Note that E1 ∪R2(S2) is consistent. From the least pre-
ferred context information R3(S3), only val(a2, v

′) or val(a3, v) can be consis-
tently added to the more preferred context information. The acceptable contexts
are C1 = E1 ∪ R2(S2) ∪ {val(a2, v

′)} and C2 = E1 ∪ R2(S2) ∪ {val(a3, v)}.
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5.2 The Framework

We are now in a position to introduce our framework.

Definition 7. An module M = (A, Med) consists of an argument framework
A and a mediator Med for A (based on some argumentation frameworks).

An argument context system is a collection of modules that fulfills certain struc-
tural conditions.

Definition 8. An argumentation context system (ACS) is a set8

F = {M1, . . . ,Mn}
of modules Mi = (Ai, Medi), 1 ≤ i ≤ n, where Medi is based on argumentation
frameworks Ai1 , . . . ,Aiki

, {i1, . . . , iki} ⊆ {1, . . . , n} (self-containedness).

Self-containedness naturally induces the following graph and structural notion.

Definition 9. The module graph of an ACS F as in Definition 8 is the directed
graph G(F)= (F , E) where Mj → Mi is in E iff Aj is among the Ai1 , . . . ,Aiki

on which Medi is based. We call F hierarchic, if G(F) is acyclic.

We next define the acceptable states for our framework. Intuitively, such a state
consists of a context and a set of arguments for all modules Mi such that in each
case the chosen arguments form an acceptable set for Ai given the respective
context, and this context (determined by Medi) is acceptable with respect to
the argument sets chosen for the parent modules of Ai. More formally,

Definition 10. Let F = {M1, . . . ,Mn} be an ACS. A state of F is a function
S that assigns each Mi = (Ai, Medi) a pair S(Mi) = (Acci, Ci) of a subset
Acci of the arguments of Ai and a set Ci of context expressions for Ai.

A state S is acceptable, if (i) each Acci is an acceptable Ci-extension for
Ai, and (ii) each Ci is an acceptable context for Medi wrt. all Accj such that
Mj → Mi.

As stable semantics may be chosen for argumentation frameworks in modules,
clearly an acceptable state is not guaranteed to exist. However, non-existence
can arise even in absence of stable semantics and negation in bridge rules.

Example 3. Let F = (M1,M2) with modules Mi = (Ai, Medi), i = 1, 2, where

– A1 = ({a}, ∅), Med1 = ({sem(s1)}, {arg(a) ← b2}, c1);
– A2 = ({b1, b2}, {(b1, b2)}), Med2 = ({sem(s2)}, {arg(b1) ← a}, c2).

Note that G(F) is cyclic, as M1 → M2 and M2 → M1. Now for arbitrary s1,
c1 and s2, c2, no acceptable state exists: assume Acc1 = {a}. Using its single
bridge rule, Med2 will derive arg(b1), which is consistent with sem(s2) and will
belong to the context C2, regardless of the chosen consistency method c2. This,
8 For multiple occurrences of the same module, this is viewed as an indexed set.
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however, will lead to acceptance of b2 independently of the semantics s2, as the
only potential attacker of b2, namely b1, is invalid. Now, if b2 is in Acc2, then the
single bridge rule of Med1 invalidates argument a; hence, there is no acceptable
state with Acc1 = {a}.

The other option, namely Acc1 = ∅, also fails: now b1 is not invalidated in
M2 and thus defeats b2. As a consequence, Med1’s bridge rule does not fire and
there is no justification not to accept argument a in A1.

To guarantee existence of acceptable states, we need more conditions; for exam-
ple, excluding stable semantics and cycles between modules.

Proposition 2. Suppose F is a hierarchic ACS and that sem(stab) does not
occur in any mediator of F . Then F possesses at least one acceptable state.

Computing some acceptable state is still intractable in this setting, due to the
intractability of recognizing preferred extensions [9]. However,

Proposition 3. If F is a hierarchic ACS and all modules use grounded se-
mantics and either sub� or maj for choice, then some acceptable state of F is
computable in polynomial time.

Regarding the complexity in the general case, we note the following result.

Proposition 4. Deciding whether an arbitrary given ACS F has some accept-
able state is Σp

3 -complete.

Intuitively, an acceptable state can be guessed and verified in polynomial time
with the help of an Σp

2 oracle; note that the reasoning tasks in Definition 4
are all feasible polynomial time with an Σp

2 oracle. On the other hand, skeptical
inference from all preferred extensions is Πp

2 -complete [12], which in combination
with the module framework generates the Σp

3 -hardness. This can be shown by
a reduction from suitable quantified Booleans formulas, which uses no negation
in bridge rules and and an arbitrary inconsistency handling method choice .

Depending on the various parameters and the graph structure, the complexity
decreases. The complexity of C-extensions is dominated by the underlying ar-
gumentation framework, and in several situations, the mediator framework does
not increase complexity. A more detailed analysis is left for further work.

5.3 Relationship to EAFs

Modgil [16] recently introduced an interesting extension of argumentation frame-
works where arguments may not only attack other arguments, but also attacks.
An extended argumentation framework (EAF) E = (AR, attacks , D) adds to a
Dung-style argumentation framework (AR, attacks) a set D ⊆ AR × attacks of
attacks against attacks. Whenever (a1, (b, c)) ∈ D and (a2, (c, b)) ∈ D it is re-
quired that attacks contains both (a1, a2) and (a2, a1). S ⊆ AR is conflict free
iff for all a, b ∈ S: if (a, b) ∈ attacks , then (b, a) �∈ attacks and there is c ∈ S
such that (c, (a, b)) ∈ D. Argument a S-defeats b iff (a, b) ∈ attacks and, for no
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c ∈ S, (c, (a, b)) ∈ D. S is a stable extension of E iff S is conflict free and each
c ∈ AR \ S is S-defeated by some element of S. We refer to [16] for numerous
interesting applications of EAFs.

We can show that under stable semantics, any EAF E can be modeled as an
ACS F(E) that consists of a single module with self-feedback. In detail, we con-
struct F(E) = {M∗ }, where M∗ = (A∗, Med∗) such that A∗ = (AR, attacks)
and Med∗ = ({sem(stab),mode(cred)}, R, choice) is based on A∗, where

R = { att(a, b) ← c, b | (c, (a, b)) ∈ D, (b, a) �∈ attacks } ∪
{ att(a, b) ← c,not b | (c, (a, b)) ∈ D }.

and choice is arbitrary. The first type of rules in R handles conflict freeness,
while the second ensures that an argument can only be defeated by an attack
which is not successfully attacked.

Proposition 5. Let E be an EAF. Then, (i) for each acceptable state S of
F(E) with S(M∗) = (T, C), T is a stable extension of E, and (ii) for each stable
extension T of E, F(E) has some acceptable state S such that S(M∗) = (T, C).

The relationship under the other semantics is trickier; this is basically due to the
fact that Modgil and Dung have very different notions of argument acceptability.
A thorough investigation is an interesting topic for future work.

6 Related Work and Conclusion

We presented a flexible, modular framework for abstract argumentation. It builds
on existing proposals extending them in various respects: argumentation is based
on contexts described in a native language, integrating preference- and value-
based argumentation, direct (in)validation of arguments and attacks, and speci-
fication of reasoning mode and semantics. Context information is integrated by
a mediator. Arbitrary directed module graphs cover a wide range of applications
involving multi-agent meta-argumentation.

Models of meta- and hierarchic argumentation are not new. The approaches
by Modgil [15,16] were already discussed. Wooldridge, McBurney and Parsons
[20] develop a meta-level approach which shares motivation with our work, but
has different focus: a meta-level defines arguments, attacks, extensions etc. for
the lower level based on formal provability in its logic. In contrast, we take the
basic notions for granted and determine, at a generic level, how a module in
an arbitrary module graph influences argumentation in others by determining
its context. The many parameter combinations yield then a range of concrete
systems with different properties.

A framework for distributed argumentation was presented in [18], based on
defeasible argumentation as in [13], where a moderator integrates the argumen-
tation structures of a group of agents. In contrast, we stick to abstract argumen-
tation and allow for more general relationships between modules.

Our approach also differs from recent work by Binas and McIlraith [4] on
distributed query answering: while our mediators use “classical” preference based
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inconsistency methods to establish argumentation contexts, they use techniques
based on prioritized argumentation to define distributed entailment for graphs of
heterogeneous reasoners. Moreover, they focus on information integration rather
than meta-reasoning as we do.

Our framework specializes the multi-context systems of Brewka and Eiter [6]
by fixing Dung style argument systems as reasoning components. The use of
mediators to integrate meta-information and the context language to control
argumentation clearly goes beyond these systems.

Our future work includes an investigation of more expressive mediator lan-
guages (both in terms of constructs and bridge rules used), and a detailed study
of computational aspects, comprising complexity and implementation.

Acknowledgement. This work has been supported by the Austrian Science
Fund (FWF) project P20841 and the Vienna Science and Technology Fund
(WWTF) project ICT08-020.
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Abstract. To ensure a close relation between the answer sets of a program and
those of its ground version, some answer set solvers deal with variables by requir-
ing a safety condition on program rules. If we go beyond the syntax of disjunctive
programs, for instance by allowing rules with nested expressions, or perhaps even
arbitrary first-order formulas, new definitions of safety are required. In this pa-
per we consider a new concept of safety for formulas in quantified equilibrium
logic where answer sets can be defined for arbitrary first-order formulas. The new
concept captures and generalises two recently proposed safety definitions: that of
Lee, Lifschitz and Palla (2008) as well as that of Bria, Faber and Leone (2008).
We study the main metalogical properties of safe formulas.

1 Introduction

In answer set programming (ASP) more and more tools are being created to enable
a fuller use of first-order languages and logic. Recent developments include efforts to
extend the syntax of programs as well as to deal more directly with variables in a full,
first-order context. In several cases, assumptions such as standard names (SNA) are
being relaxed and issues involving programming in open domains are being addressed.

A stable model semantics for first-order structures and languages was defined in the
framework of equilibrium logic in [17,18,19]. As a logical basis the non-classical logic
of quantified here-and-there, QHT, is used (see also [15]). By expanding the language
to include new predicates, this logic can be embedded in classical first-order logic,
[20], and this permits an alternative but equivalent formulation of the concept of stable
model for first-order formulas, expressed in terms of classical, second-order logic [7].
The latter definition of answer set has been further studied in [11,12] where the basis of
a first-order programming language, RASPL-1, is described. An alternative approach
to a first-order ASP language is developed in [8].

Several implementations of ASP deal with variables by requiring a safety condition
on program rules. In the language of disjunctive LPs, this condition is usually expressed
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by saying that a rule is safe if any variable in the rule also appears in its positive body
– this condition will be referred here as DLP safety. Programs are safe if all their rules
are safe. The safety of a program ensures that its answer sets coincide with the answer
sets of its ground version and thus allows ASP systems to be based on computations at
the level of propositional logic which may include for example the use of SAT-solvers.

What if we go beyond the syntax of disjunctive programs? Adding negation in the
heads of program rules will not require a change in the definition of safety. But for
more far reaching language extensions, such as allowing rules with nested expressions,
or perhaps even arbitrary first-order formulas, new definitions of safety are required.
Again the desideratum is that safe programs should be in a certain sense reducible to
their ground versions, whether or not these can be compiled into an existing ASP-solver.

Recently, there have been two new extensions of the notion of safety to accommodate
different syntactic extensions of the ASP language in the first-order case. In [2], Bria,
Faber and Leone introduce an extension to a restricted variant of the language of pro-
grams with nested expressions (or nested programs, for short) [16]. The rules are called
normal form nested or NFN rules. The safety of such rules which will be referred here
as BFL-safety is designed to guarantee domain independence and permit their efficient
translation into the language of disjunctive programs. In this manner, NFN programs
can be compiled into the standard DLV system. A second example is the definition of
safety introduced by Lee, Lifschitz and Palla in [12] (we will call it here LLP-safety)
defined essentially for arbitrary first-order formulas in such a way that the stable model
of such a formula can be obtained by considering its ground version. It is also shown
that the stable models of safe formulas form a (first-order) definable class. Here the
motivation is not so much to compile safe programs into existing ASP languages, but
rather to find tractable, first-order extensions of the customary languages.1

On the face of it, the approach followed in [12] is much more general than that of [2]
and so we might expect that the safety of general formulas from [12] embraces also the
safe NFN rules of [2]. But this is not the case: safe NFN rules need not be safe formulas
in the sense of [12]. In fact, there are simple examples of formulas that would normally
be regarded as safe that fail to be so under the [12] definition. Consider the following
example.

p ← q(X) ∨ r (1)

This rule belongs to the syntactic class of programs with nested expressions as intro-
duced in [16], although (1) contains a variable, something not considered in that work.
Still, this rule is strongly equivalent to the conjunction of rules

p ← q(X) ; p ← r

and both are DLP safe (note that this is now a normal logic program) and so, they
are BFL-safe and LLP-safe as well. Therefore, it is reasonable to consider (1) as safe.
According to [12], however, for (1) to be safe, X must occur in some implication G →
H such that X belongs to what are called the restricted variables of G. In this case, the
only option for G is the rule body q(X) ∨ r whose set of restricted variables is empty,

1 Open answer set programming studies decidable language extensions via guarded fragments
rather than safety conditions,[8].
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implying that the rule is not safe. [2] also uses a similar concept of restricted variable
but only imposes restrictions on variables occurring in the head of the rule or within the
scope of negation; so according to this account, (1) is safe.

In this paper we propose a new concept of safety that, while defined for arbitrary first
order formulas, is strictly weaker than LLP-safety, while it captures BFL-safety when
restricted to the same syntactic class of NFN-programs.

Desiderata for safety. For our purposes there are three key desiderata associated with
safety that we should keep distinct. The first property is very simple and does not refer to
grounding. It says merely that a stable model should not contain unnamed individuals.
This condition is formally expressed by Theorem 1 below and is fulfilled by formu-
las that we call semi-safe. Secondly we have the property usually most associated with
safety. This is called domain independence and it does refer to grounding. It says that
grounding a program with respect to any superset of the program’s constants will not
change the class of stable models. This is satisfied by formulas that we call safe and
is expressed by Proposition 4 and Theorem 3. The third property, also satisfied by safe
formulas, is expressed in Theorem 4: it says that the class of stable models should be
first-order definable. This may be relevant for establishing properties such as interpo-
lation and for computational purposes, being exploited for instance by the method of
loop formulas.2

Let us consider some inherent limitations of a safety definition. Arbitrary theories
are, in general, not domain independent. Even simple normal rules like, for instance:

p ← not q(X) (2)

are not domain independent. To see why, take (2) plus the fact q(1). If we ground this
program on the domain {1} we get the stable model {q(1)}, but if we use the extended
domain {1, 2}, the only stable model becomes now {q(1), p}. Unfortunately, directly
checking domain independence of an arbitrary formula does not seem a trivial task. It
seems much more practical to find a (computationally) simple syntactic condition, like
safety, that suffices to guarantee domain independence. However, due to its syntactic
nature, a condition of this kind will just be sufficient but, most probably, not necessary.
For instance, while as we saw above, (2) cannot be considered safe under any definition,
if we consider the conjunction of (2) with the (variable-free) constraint:

⊥ ← q(1) (3)

the resulting program is domain independent. The reason is that (2) is strongly equiva-
lent to the formula (∃x ¬q(x)) → p whereas (3) is equivalent to ¬q(1) that, in its turn,
implies (∃x ¬q(x)) in QHT. This example shows that checking domain independence
may require considering semantic interrelations of the formula or program as a whole.
On the other hand, the fact that safety is sensitive to redundancies or that the safety
of a formula may vary under a strongly equivalent transformation is unavoidable. For
instance, the program consisting of (2) and the fact p is clearly domain independent, as
in the presence of p, (2) becomes redundant and can be removed.

2 Of course there are other definable classes of stable models, such as those determined by
formulas with a finite complete set of loops [13].
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As regards our methodology, it is important to note that in order to handle explicit
quantifiers and possible relaxations of the SNA it is indispensable to use a genuine first-
order (or higher-order) semantics. Our approach here will be to analyse safety from the
standpoint of (quantified) equilibrium logic in which a first-order definition of stable or
equilibrium model can be given in the logic QHT. One specific aim is to generalise
the safety concept from [12] so that rules such as (1), and indeed all the safe rules from
[2], can be correctly categorised as safe. At least as regards simplicity and intuitiveness,
we feel that our approach has some advantages over the methodology of [12] that uses
a mixture of QHT and classical second-order logic.3

2 Review of Quantified Equilibrium Logic and Answer Sets

In this paper we restrict attention to function-free languages with a single negation
symbol, ‘¬’, working with a quantified version of the logic here-and-there. In other
respects we follow the treatment of [19]. We consider first-order languages L = 〈C, P 〉
built over a set of constant symbols, C, and a set of predicate symbols, P . The sets
of L-formulas, L-sentences and atomic L-sentences are defined in the usual way. We
work here mainly with sentences. If D is a non-empty set, we denote by At(D, P ) the
set of ground atomic sentences of the language 〈D, P 〉. By an L-interpretation I over
a set D we mean a subset of At(D, P ). A classical L-structure can be regarded as a
tuple M = 〈(D, σ), I〉 where I is an L-interpretation over D and σ : C ∪ D → D is
a mapping, called the assignment, such that σ(d) = d for all d ∈ D. If D = C and
σ = id, M is an Herbrand structure.

A here-and-there L-structure with static domains, or QHT(L)-structure, is a tuple
M = 〈(D, σ), Ih, It〉 where 〈(D, σ), Ih〉 and 〈(D, σ), It〉 are classical L-structures
such that Ih ⊆ It. We can think of a here-and-there structure M as similar to a first-
order classical model, but having two parts, or components, h and t, that correspond to
two different points or “worlds”, ‘here’ and ‘there’, in the sense of Kripke semantics
for intuitionistic logic [6], where the worlds are ordered by h ≤ t. At each world
w ∈ {h, t} one verifies a set of atoms Iw in the expanded language for the domain D.
We call the model static, since, in contrast to, say, intuitionistic logic, the same domain
serves each of the worlds. Since h ≤ t, whatever is verified at h remains true at t. The
satisfaction relation for M is defined so as to reflect the two different components, so
we write M, w |= ϕ to denote that ϕ is true in M with respect to the w component.
The recursive definition of the satisfaction relation forces us to consider formulas from
〈C ∪ D, P 〉. Evidently we should require that an atomic sentence is true at w just in
case it belongs to the w-interpretation. Formally, if p(t1, . . . , tn) ∈ At(C ∪ D, P ) and
w ∈ {h, t} then

M, w |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ Iw.

M, w |= t = s iff σ(t) = σ(s)

Then |= is extended recursively as follows, conforming to the usual Kripke semantics
for intuitionistic logic given our assumptions about the two worlds h and t and the

3 For reasons of space, in the sequel some proofs have been shortened or omitted. For a more
detailed version, see http://www.ia.urjc.es/˜dpearce.

http://www.ia.urjc.es/~dpearce
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single domain D, see eg. [6]. We shall assume that L contains the constants � and ⊥
and regard ¬ϕ as an abbreviation for ϕ → ⊥.

– M, w |= �, M, w �|= ⊥
– M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ.
– M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ.
– M, t |= ϕ → ψ iff M, t �|= ϕ or M, t |= ψ.
– M, h |= ϕ → ψ iff M, t |= ϕ → ψ and M, h �|= ϕ or M, h |= ψ.
– M, t |= ∀xϕ(x) iff M, t |= ϕ(d) for all d ∈ D.
– M, h |= ∀xϕ(x) iff M, t |= ∀xϕ(x) and M, h |= ϕ(d) for all d ∈ D.
– M, w |= ∃xϕ(x) iff M, w |= ϕ(d) for some d ∈ D.

Truth of a sentence in a model is defined as follows: M |= ϕ iff M, w |= ϕ for each
w ∈ {h, t}. In a model M we also use the symbols H and T , possibly with subscripts,
to denote the interpretations Ih and It respectively; so, an L-structure may be written in
the form 〈U, H, T 〉, where U = (D, σ). A structure 〈U, H, T 〉 is called total if H = T ,
whence it is equivalent to a classical structure. We shall also make use of an equivalent
semantics based on many-valued logic; the reader is referred to [18].

The resulting logic is called Quantified Here-and-There Logic with static domains
and decidable equality, and denoted in [15] by SQHT=, where a complete axiomai-
sation can be found. In terms of satisfiability and validity this logic is equivalent to
the logic previously introduced in [18]. To simplify notation we drop the labels for
static domains and equality and refer to this logic simply as quantified here-and-there,
QHT. In the context of logic programs, the following often play a role. Let σ|C denote
the restriction of the assignment σ to constants in C. In the case of both classical and
QHT models, we say that the parameter names assumption (PNA) applies in case σ|C
is surjective, i.e., there are no unnamed individuals in D; the unique names assump-
tion (UNA) applies in case σ|C is injective; in case both the PNA and UNA apply, the
standard names assumption (SNA) applies, i.e. σ|C is a bijection. We will speak about
PNA-, UNA-, or SNA-models, respectively, depending on σ.

As in the propositional case, quantified equilibrium logic, or QEL, is based on a
suitable notion of minimal model.

Definition 1. Let ϕ be an L-sentence. An equilibrium model of ϕ is a total model M =
〈(D, σ), T, T 〉 of ϕ such that there is no model of ϕ of the form 〈(D, σ), H, T 〉 where
H is a proper subset of T .

2.1 Relation to Answer Sets

We assume the reader is familiar with the usual definitions of answer set based on
Herbrand models and ground programs, eg. [1]. Two variations of this semantics, the
open [8] and generalised open answer set [9] semantics, consider non-ground programs
and open domains, thereby relaxing the PNA.

For the present version of QEL the correspondence to answer sets can be summarised
as follows (see [18,19,3]). If ϕ is a universal sentence in L = 〈C, P 〉 (see §3 below), a
total QHT model 〈U, T, T 〉 of ϕ is an equilibrium model of ϕ iff 〈T, T 〉 is a proposi-
tional equilibrium model of the grounding of ϕ with respect to the universe U .
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By the usual convention, when Π is a logic program with variables we consider the
models of its universal closure expressed as a set of logical formulas. It follows that if Π
is a logic program (of any form), a total QHT model 〈U, T, T 〉 of Π is an equilibrium
model of Π iff it is a generalised open answer set of Π in the sense of [9]. If we assume
all models are UNA-models, we obtain the version of QEL found in [18]. There, the
following relation of QEL to (ordinary) answer sets for logic programs with variables
was established. If Π is a logic program, a total UNA-QHT model 〈U, T, T 〉 of Π is
an equilibrium model of Π iff it is an open answer set of Π .

[7] provides a new definition of stable model for arbitrary first-order formulas, defin-
ing the property of being a stable model syntactically via a second-order condition.
However [7] also shows that the new notion of stable model is equivalent to that of
equilibrium model defined here. In a sequel to this paper, [11] applies the new defini-
tion and makes the following refinements. The stable models of a formula are defined
as in [7] while the answer sets of a formula are those Herbrand models of the formula
that are stable in the sense of [7]. Using this new terminology, it follows that in gen-
eral stable models and equilibrium models coincide, while answer sets are equivalent to
SNA-QHT models that are equilibrium models.

3 Safety

We work with the same concept of restricted variable as used in [11,12]. To every
quantifier-free formula ϕ the set RV(ϕ) of its restricted variables is defined as follows:

– For atomic ϕ, if ϕ is an equality between two variables then RV(ϕ) = ∅; other-
wise, RV(ϕ) is the set of all variables occurring in ϕ;

– RV(⊥) = ∅;
– RV(ϕ1 ∧ ϕ2) = RV(ϕ1) ∪ RV(ϕ2);
– RV(ϕ1 ∨ ϕ2) = RV(ϕ1) ∩ RV(ϕ2);
– RV(ϕ1 → ϕ2) = ∅.

A sentence is said to be in prenex form if it has the following shape, for some n ≥ 0:

Q1x1 . . . Qnxnψ (4)

where Qi is ∀ or ∃ and ψ is quantifier-free. A sentence is said to be universal if it is in
prenex form and all quantifiers are universal. A universal theory is a set of universal sen-
tences. For QHT, normal forms such as prenex and Skolem forms were studied in [18].
In particular it is shown there that in quantified here-and-there logic every sentence is
logically equivalent to a sentence in prenex form. A similar observation regarding first-
order formulas under the new stable model semantics of [7] was made in [14]. Thus
from a logical point of view there is no loss of generality in defining safety for prenex
formulas.

3.1 Semi-safety

A variable assignment ξ in a universe (D, σ) is a mapping from the set of variables to
D. If ϕ ∈ L has free-variables, ϕξ is the closed formula obtained by replacing every
free variable x by ξ(x). On the other hand, in the following, if T ⊂ At(D, P ), we
denote by T |C the subset of T whose atoms contain terms only from σ(C).
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Lemma 1. Let ϕ be a quantifier-free formula and ξ a variable assignment in a universe
(D, σ). If 〈(D, σ), T |C , T 〉 |= ϕξ , then ξ(x) ∈ σ(C) for all x ∈ RV(ϕ).

As in [12], we define a concept of semi-safety of a prenex form sentence ϕ in terms
of the semi-safety of all its variable occurrences. Formally, this is done by defining
an operator NSS that collects the variables that have non-semi-safe occurrences in a
formula ϕ.

Definition 2 (NSS and semi-safety)

1. If ϕ is an atom, NSS(ϕ) is the set of variables in ϕ.
2. NSS(ϕ1 ∧ ϕ2) = NSS(ϕ1) ∪ NSS(ϕ2)
3. NSS(ϕ1 ∨ ϕ2) = NSS(ϕ1) ∪ NSS(ϕ2)
4. NSS(ϕ1 → ϕ2) = NSS(ϕ2) � RV(ϕ1).

A sentence ϕ is said to be semi-safe if NSS(ϕ) = ∅. ��

In other words, a variable x is semi-safe in ϕ if every occurrence is inside some subfor-
mula α → β such that, either x is restricted in α or x is semi-safe in β. This condition
of semi-safety is a relaxation of that of [12], where the implication α → β should
always satisfy that x is restricted in α. As a result, (1) is semi-safe, but it is not consid-
ered so under the definition in [12]. Similarly, our definition implies, for instance, that
any occurrence of a variable x in a negated subformula, ¬α(x), will be semi-safe – it
corresponds to an implication α(x) → ⊥ with no variables in the consequent. Other
examples of semi-safe formulas are, for instance:

¬p(x) → (q(x) → r(x)) (5)

p(x) ∨ q → ¬r(x) (6)

Note how in (6), x is not restricted in p(x) ∨ q but the consequent ¬r(x) is semi-safe
and thus the formula itself. On the contrary, the following formulas are not semi-safe:

p(x) ∨ q → r(x) (7)

¬¬p(x) ∧ ¬r(x) → q(x) (8)

Lemma 2. Let ϕ be a quantifier-free formula and ξ a variable assignment in (D, σ) s.t.
ξ(x) ∈ σ(C) for all x ∈ NSS(ϕ). If 〈(D, σ), T, T 〉 |= ϕξ , then 〈(D, σ), T |C , T 〉 |= ϕξ .

Proof. By induction over ψ = ϕξ. If ψ is atomic the result is trivial and the induction
step is also trivial for conjunctive and disjunctive formulas. So, let us assume that ϕ =
ϕ1 → ϕ2 where, by the induction hypothesis, ϕ2 is such that, if 〈(D, σ), T, T 〉 |= ϕξ

2

and ξ(x) ∈ σ(C) for all x ∈ NSS(ϕ2), then 〈(D, σ), T |C , T 〉 |= ϕξ
2. Assume

〈(D, σ), T, T 〉 |= ϕξ
1 → ϕξ

2 (9)

and ξ(x) ∈ σ(C) for all x ∈ NSS(ϕ1 → ϕ2). We must prove that

〈(D, σ), T |C , T 〉 |= ϕξ
1 → ϕξ

2. (10)
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First, suppose that 〈(D, σ), T |C , T 〉 �|= ϕξ
1. If 〈(D, σ), T |C , T 〉 |= ¬ϕξ

1 then clearly
〈(D, σ), T |C , T 〉 |= ϕξ

1 → ϕξ
2 and we are done. Otherwise, 〈(D, σ), T |C , T 〉 |= ¬¬ϕξ

1.
Then, by (9) 〈(D, σ), T |C , T 〉, t |= ϕξ

1 → ϕξ
2, and since 〈(D, σ), T |C , T 〉, h �|= ϕξ

1, (10)
follows. Suppose therefore that 〈(D, σ), T |C , T 〉 |= ϕξ

1, then 〈(D, σ), T, T 〉 |= ϕξ
1 and

thus
〈(D, σ), T, T 〉 |= ϕξ

2 (11)

On the other hand, if 〈(D, σ), T |C , T 〉 |= ϕξ
1, by Lemma 1, ξ(x) ∈ σ(C) for all x ∈

RV(ϕ1) and by hypothesis, ξ(x) ∈ σ(C) for all x ∈ NSS(ϕ1 → ϕ2); in particular, for
NSS(ϕ1 → ϕ2) ∪ RV(ϕ1) ⊇ NSS(ϕ2) we have:

ξ(x) ∈ σ(C) for all x ∈ NSS(ϕ2) (12)

By the ind. hyp., (11) and (12), we conclude that 〈(D, σ), T |C , T 〉 |= ϕξ
2. �

This lemma allows us to conclude the main property of semi-safe formulas: their equi-
librium models only refer to objects from the language.

Proposition 1. If ϕ is semi-safe, and 〈(D, σ), T, T 〉 |= ϕ, then 〈(D, σ), T |C , T 〉 |= ϕ.

Proof. (sketch) Assume the formula is in prenex form and proceed by induction over
the length of the prefix. �
Theorem 1. If ϕ is semi-safe, and 〈(D, σ), T, T 〉 is an equilibrium model of ϕ, then
T |C = T .

3.2 Safe Formulas

The concept of safety relies on semi-safety plus an additional condition on variable
occurrences that can be defined in terms of Kleene’s three-valued logic [10]. Given
a three-valued interpretation ν : At → {0, 1/2, 1}, we extend it to evaluate arbitrary
formulas ν(ϕ) as follows:

ν(ϕ ∧ ψ) = min(ν(ϕ), ν(ψ)) ν(⊥) = 0
ν(ϕ ∨ ψ) = max(ν(ϕ), ν(ψ)) ν(ϕ → ψ) = max(1 − ν(ϕ), ν(ψ))

from which we can derive ν(¬ϕ) = ν(ϕ → ⊥) = 1 − ν(ϕ) and ν(�) = ν(¬⊥) = 1.

Definition 3 (νx operator). Given any quantifier-free formula ϕ and any variable x,
we define the three-valued interpretation so that for any atom α, νx(α) = 0 if x occurs
in α and νx(α) = 1/2 otherwise.

Intuitively, νx(ϕ) fixes all atoms containing the variable x to 0 (falsity) leaving all
the rest undefined and then evaluates ϕ using Kleene’s three-valued operators, that
is nothing else but exploiting the defined values 1 (true) and 0 (false) as much as
possible. For instance, νx(p(x) → q(x)) would informally correspond to νx(0 →
0) = max(1 − 0, 0) = 1 whereas νx(p(x) ∨ r(y) → q(x)) = νx(0 ∨ 1/2 → 0) =
max(1 − max(0, 1/2), 0) = 1/2.

For the following definition, we need to recall the following terminology: a subex-
pression of a formula is said to be positive in it if the number of implications that contain
that subexpression in the antecedent is even, and negative if it is odd.
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Definition 4 (Weakly-restricted variable). An occurrence of a variable x in Qx ϕ is
weakly-restricted if it occurs in a subformula ψ of ϕ such that:

– Q = ∀, ψ is positive and νx(ψ) = 1
– Q = ∀, ψ is negative and νx(ψ) = 0
– Q = ∃, ψ is positive and νx(ψ) = 0
– Q = ∃, ψ is negative and νx(ψ) = 1

In all cases, we further say that ψ makes the ocurrence weakly restricted in ϕ.

Definition 5. A semi-safe sentence is said to be safe if all its positive occurrences of
universally quantified variables, and all its negative occurrences of existentially quan-
tified variables are weakly restricted.

For instance, the formula ϕ = ∀x(¬q(x) → (r ∨ ¬p(x))) is safe: the occurrence of
x in p(x) is negative, whereas the occurrence in q(x) is inside a positive subformula,
ϕ itself, for which x is weakly-restricted, since νx(ϕ) = ¬0 → (1/2 ∨ ¬0) = 1. The
occurrence of x in ¬q(x) is not restricted and as a consequence the formula is not LLP-
safe. The other aspect where Definition 5 is more general than LLP-safety results from
the fact that to be safe x can occur negatively in ϕ given Qi = ∀ or positively given
Qi = ∃. Another example of a safe formula is ∀x((¬¬p(x) ∧ q(x)) → r).

Lemma 3. Let ϕ(x) a prenex formula that has no free variables other than x. Let
〈(D, σ), H, T 〉 be a model such that T ⊂ At(σ(C), P ). Then:

1. If ∀xϕ(x) is safe: 〈(D, σ), H, T 〉 |= ∀xϕ(x) iff 〈(D, σ), H, T 〉 |=
∧

c∈C

ϕ(c).

2. If ∃xϕ(x) is safe: 〈(D, σ), H, T 〉 |= ∃xϕ(x) iff 〈(D, σ), H, T 〉 |=
∨

c∈C

ϕ(c).

Proof. (sketch) The proof makes use of the monotonic properties of the many-valued
assignments with respect to the positive and negative ocurrences of subformulas. �

4 Grounding

Let (D, σ) be a domain and D′ ⊆ D a finite subset; the grounding over D′ of a sentence
ϕ, denoted by GrD′(ϕ), is defined recursively: the operator does not modify ground
formulas, it propagates through propositional connectives and:

GrD′(∀xϕ(x)) =
∧

d∈D′
GrD′ϕ(d) GrD′(∃xϕ(x)) =

∨
d∈D′

GrD′ϕ(d)

The following property of grounding holds (cf [18] for a version for universal theories.)

Proposition 2. 〈(D, σ), H, T 〉 |= ϕ if and only if 〈(D, σ), H, T 〉 |= GrD(ϕ)

In particular, if we work with PNA-models (D = σ(C)), we can ground using the
initial constants, but we need the first-order semantics because with the mapping σ two
constants may denote the same element of the domain; then we would obtain:

〈(D, σ), H, T 〉 |= ϕ iff 〈(D, σ), H, T 〉 |= GrC(ϕ) (13)
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Lemma 4. If T ⊂ At(σ(C), P ) and there exists a ∈ D \ σ(C) then,

1. 〈(D, σ), H, T 〉 |= ∀xϕ(x) if and only if 〈(D, σ), H, T 〉 |=
∧

d∈σ(C)∪{a} ϕ(d)
2. 〈(D, σ), H, T 〉 |= ∃xϕ(x) if and only if 〈(D, σ), H, T 〉 |=

∨
d∈σ(C)∪{a} ϕ(d)

Proof. (sketch) If T ⊂ At(σ(C), P ), then the role of any object outside of σ(C) is the
same. So, we can choose just one element to represent all of them. �

Proposition 3. If T ⊂ At(σ(C), P ) and a ∈ D \ σ(C), then 〈(D, σ), H, T 〉 |= ϕ if
and only if 〈(D, σ), H, T 〉 |= GrC∪{a}(ϕ).

Theorem 2. Let ϕ be a safe prenex formula. Let 〈(D, σ), H, T 〉 be a model such that
T ⊂ At(σ(C), P ). Then:

〈(D, σ), H, T 〉 |= ϕ if and only if 〈(D, σ), H, T 〉 |= GrC(ϕ)

Proof. By induction on the length of the prefix. �

We can now show as promised the property that safe formulas satisfy domain inde-
pendence. The following is immediate from Theorems 1 and 2 and the definition of
equilibrium model.

Proposition 4. Let ϕ be a safe prenex formula, then: 〈(D, σ), T, T 〉 is an equilibrium
model of ϕ if and only if it is an equilibrium model of GrC(ϕ).

Here is an alternative formulation using language expansions.

Theorem 3. Let ϕ be a safe prenex formula. Suppose we expand the language L by
considering a set of constants C′ ⊃ C. A total QHT-model 〈(D, σ), T, T 〉 is an equi-
librium model of GrC′(ϕ) if an only if it is an equilibrium model of GrC(ϕ).

The concept of domain independence from [2] is obtained as a special case if we assume
that the unique name assumption applies.

5 Definability

An important property of safe formulas is that they form a definable class in first-order
logic.4 Let ϕ be a ground sentence and (α1, . . . , αn) the sequence of atoms in ϕ. If β =
(β1, . . . , βn) is another sequence of ground atoms, the formula ϕ[β] is built recursively:

– αi[β] = βi

– ⊥[β] = ⊥
– (ψ1 ∧ ψ2)[β] = ψ1[β] ∧ ψ2[β]
– (ψ1 ∨ ψ2)[β] = ψ1[β] ∨ ψ2[β]
– (ψ1 → ψ2)[β] = (ψ1[β] → ψ2[β]) ∧ (ϕ → ψ)
– (¬ψ)[β] = ¬ψ[β] ∧ ¬ψ

4 Shown for LLP-safety in [12]. An alternative approach to exhibiting definable classes of stable
models, using loop formulas, can be found in [13].
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Lemma 5. (i) Let ϕ be a ground sentence and α = (α1, . . . , αn) the sequence of atoms
in ϕ. Let u be a sequence (u1, . . . , un) such that, for every i, either ui = ⊥ or ui = αi

and there is some i such that ui = ⊥. (ii) Then 〈(D, σ), T, T 〉 is an equilibrium model
of ϕ if and only if T is a classical model of ϕ ∧ ¬

∨
u∈U

ϕ[u].

Satisfaction in classical logic can be encoded by satisfaction by total models in here-
and-there logic [20]; so we can characterise the classical models of the formula in the
previous lemma by the total models of a formula in QHT, as follows:

Corollary 1. Given statement (i) of Lemma 5, 〈(D, σ), T, T 〉 is an equilibrium model
of ϕ if and only if it is a QHT-model of

∧
1≤i≤n

(¬¬αi → αi) ∧ ϕ[¬¬α] ∧ ¬
∨
u∈U

ϕ[¬¬u]

As a consequence of this and Theorem 2 we obtain:

Theorem 4. For every safe sentence ϕ, there exists a ground formula ψ in the same
language such that 〈(D, σ), T, T 〉 is an equilibrium model of ϕ if and only if it is a
QHT-model of ψ.

6 Discussion and Relation to Other Concepts of Safety

As remarked in the introduction, one of our aims is to generalise the safety concept
of [11,12] and at the same time capture logic programs that are safe according to [2].
Although for reasons of space we cannot present here the full definition of LLP-safety
from [12], we explained after Definition 5 the main features of our concept that gener-
alise that of [12] (see also the examples discussed below). To verify the second objective
we need to consider the class of logic programs treated by Bria, Faber and Leone in [2].
These programs are called normal form nested, or NFN for short. They comprise rules
of a special form; in logical notation they are formulas that have the shape:

∧
1≤i≤m

Δi →
∨

≤i≤n

Γj (14)

where each Δi is a disjunction of literals and each Γj is a conjunction of atoms. A Δi

is called a basic disjunction and is said to be positive if it contains only positive literals
or atoms. In a rule r of form (14) the antecedent is called the body and the consequent
the head of the rule. According to [2] r is safe if each variable in its head literals and its
negative body literals is safe, where a variable x is said to be safe in r if if there exists
a positive basic disjunction Δi in the body of r such that x is a variable of α for every
atom α ∈ Δi. It is easy to check that the BFL-safe variables in r are weakly restricted
in r, therefore:

Proposition 5. All rules of an NFN program that are safe according to [2] are safe
formulas in the sense of Definition 5.
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Let us consider some examples showing that the safety concept introduced in Defini-
tion 5 is quite general and, in many cases, is better behaved with respect to strongly
equivalent transformations than other definitions presented before. There are more ex-
amples where our definition detects safe sentences that are not LLP-safe. Eg, while

¬¬p(x) → q (15)

is LLP-safe, once we add ¬r(x) to the body

¬¬p(x) ∧ ¬r(x) → q (16)

it becomes an LLP-unsafe sentence, whereas it still preserves safety under the current
definition. Notice that the new x occurs negatively in the body but it is “made safe” by
¬¬p(x) and the fact that x does not occur in the head. In fact, if the head becomes q(x)
like in (8), the formula is not domain independent and so is not LLP-safe nor safe under
our definition (in fact, as we saw, it is not even semi-safe).

The idea of modifying the definition of semi-safe formulas to check, as in [2], that
a variable is restricted only if occurs in the head, can also be applied to existentially
quantified formulas. For instance, this formula

∃x (¬¬(p(x) ∨ q)) (17)

should be safe. It is strongly equivalent to ¬∃x p(x) → q and this can be easily captured
by introducing an auxiliary predicate in a safe way as follows:

aux1 ← p(X)
q ← ¬aux1

In fact, (17) is safe. However, it is not even semi-safe according to the definition in [11]:
there is no implication containing x restricted in the antecedent.

7 Conclusion

We have presented a new concept of safety for general first-order formulas under stable
model semantics and hence for very general kinds of answer set programs. As a logical
formalism we have used quantified equilibrium logic based on the non-classical logic
of quantified here-and-there, QHT, in which equilibrium or stable models can be eas-
ily defined as minimal models and their logical properties readily studied. We showed
that the new concept of safety extends and generalises recent definitions of safety from
[12] and [2]. Unlike in [2], in our approach we do not have to make the unique name
assumption. We showed that safe formulas satisfy three main properties or criteria of
adequacy: their stable models do not contain unnamed individuals, they satisfy the con-
dition of domain independence, and they form a first-order definable class of structures.

A topic of ongoing work concerns program transformations. In a sequel to this paper
[5] we have begun to study classes of formulas whose safety is preserved under strong-
equivalence preserving program transformations (in particular from [4]). This work may
help to guide future improvements in the definition of a general safety concept, both
from theoretical and from computational standpoints.
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Abstract. The support for function symbols in logic programming under answer
set semantics allows to overcome some modeling limitations of traditional An-
swer Set Programming (ASP) systems, such as the inability of handling infinite
domains. On the other hand, admitting function symbols in ASP makes inference
undecidable in the general case. Lately, the research community is focusing on
finding proper subclasses for which decidability of inference is guaranteed. The
two major proposals, so far, are finitary programs and finitely-ground programs.
These two proposals are somehow complementary: indeed, the former is con-
ceived to allow decidable querying (by means of a top-down evaluation strategy),
while the latter supports the computability of answer-sets (by means of a bottom-
up evaluation strategy). One of the main advantages of finitely-ground programs
is that they can be ”directly” evaluated by current ASP systems, which are based
on a bottom-up computational model. However, there are also some interesting
programs which are suitable for top-down query evaluation; but do not fall in the
class of finitely-ground programs.

In this paper, we focus on disjunctive finitely-recursive positive (DFRP) pro-
grams. We present a proper adaptation of the magic-sets technique for DFRP
programs, which ensures query equivalence under both brave and cautious rea-
soning. We show that, if the input program is DFRP, then its magic-set rewriting
is guaranteed to be finitely ground. Thus, reasoning on DFRP programs turns out
to be decidable, and we provide an effective method for its computation on the
ASP system DLV.

1 Introduction

Disjunctive Logic Programming (DLP) under the answer set semantics, often referred
to as Answer Set Programming (ASP) [1,2,3,4,5], evolved significantly during the last
decade, and has been recognized as a convenient and powerful method for declarative
knowledge representation and reasoning. Lately, the ASP community has clearly per-
ceived the strong need to extend ASP by functions, and many relevant contributions
have been done in this direction [6,7,8,9,10,11,12,13]. Supporting function symbols al-
lows to overcome one of the major limitation of traditional ASP systems, i.e. the ability
of handling finite sets of constants only. On the other hand, admitting function symbols
in ASP makes the common inference tasks undecidable in the general case. The identi-
fication of expressive decidable classes of ASP programs with functions is therefore an
important task. Two relevant decidable classes, resulting from alternative approaches
(top-down vs bottom-up), are finitary programs [8] and finitely-ground programs [12].

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 71–86, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Finitary programs [8] is a class of logic programs that allows function symbols yet
preserving decidability of ground querying by imposing restrictions both on recursion
and on the number of potential sources of inconsistency. Recursion is restricted by re-
quiring each ground atom to depend on finitely many ground atoms; such programs
are called finitely recursive [13]. Moreover, potential sources of inconsistency are lim-
ited by requiring that the number of odd-cycles (cycles of recursive calls involving an
odd number of negative subgoals) is finite. Thanks to these two restrictions, consis-
tency checking and ground queries are decidable, provided that the atoms involved in
odd-cycles are supplied [14]; while non-ground queries are semi-decidable.

The class of finitely-ground (FG) programs [12], more recently proposed, can be
seen as a “dual” class of finitary programs. Indeed, while the latter is suitable for a
top-down evaluation, the former allows a bottom-up computation. Basically, for each
program P in this class, there exists a finite subset P ′ of its instantiation, called intel-
ligent instantiation, having precisely the same answer sets as P . Importantly, such a
subset P ′ is computable for FG programs. Both finitary programs and FG programs
can express any computable function, and preserve decidability for ground queries.1

However, answer sets and non-ground queries are computable on FG programs, while
they are not computable on finitary programs. Furthermore, the bottom-up nature of the
notion of FG programs allows an immediate implementation in ASP systems (as ASP
instantiators are based on a bottom-up computational model). Indeed, the DLV sys-
tem [15], for instance, has already been adapted to deal with FG program by extending
its instantiator [16].

Though membership to both the above mentioned classes is not decidable (semi-
decidable for FG programs), they are not comparable. In particular, the class of FG
programs does not include some programs for which ground querying can be computed
in a top-down fashion, like, in particular, or-free finitely-recursive positive programs.
Despite of its simplicity, this latter class includes many significative programs, such as
most of the standard predicates for lists manipulation. For instance, the following pro-
gram, performing the check for membership of an element in a list, is finitely recursive
and positive, yet not finitely ground.

member(X, [X|Y ]). member(X, [Y |Z]) :- member(X,Z).

In this paper, we shed some light on the relationships between finitely recursive and
FG programs, evidentiating a sort of “dual” behaviour of the two classes. We show
that a suitable magic-set rewriting transforms finitely recursive positive programs into
FG programs. In this way, we devise a strategy for the bottom-up evaluation of finitely-
recursive positive programs. Importantly, we effectively deal also with disjunctive
finitely-recursive positive programs, which were unknown to be decidable so far. In
summary, the paper focuses on disjunctive finitely-recursive positive programs (DFRP
programs) and queries, providing the following main contribution:

– We design a suitable adaptation of the magic-sets rewriting technique for disjunc-
tive programs with functions, which exploits the peculiarities of finitely recursive
programs.

1 For finitary programs, decidability requires that the atoms involved in odd-cycles are addition-
ally supplied in the input [14].
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– We show that our magic-sets rewriting RW (Q, P ) of a (ground) query Q on a
DFRP program P enjoys the following properties:
• for both brave and cautious reasoning, we have that P |= Q iff RW

(Q, P ) |= Q;
• if Q belongs to the herein defined class of finitely recursive queries on P , then

RW (Q, P ) is finitely ground.
• the size of RW (Q, P ) is linear in the size of the input program;

– We then show that both brave and cautious reasoning on DFRP programs are
decidable.

Importantly, we provide not only a theoretical decidability result for reasoning on DFRP
programs, but we also supply a concrete implementation method. Indeed, by applying
a light-weight magic-sets rewriting on the input program,2 any query on a DFRP pro-
gram can be evaluated by the ASP system DLV, or by any other system supporting FG
programs.

The remainder of the paper is structured as follows. Section 2 motivates our work
by means of few significative examples; for the sake of completeness, in Section 3 we
report some needed preliminaries; Section 4 illustrates our adaptation of the magic-sets
rewriting technique to the class of positive finitary programs; in Section 5 we present
a number of theoretical results about the rewritten programs; Section 6 analyzes some
related works, and, eventually, Section 7 draws our conclusions and depicts the future
work.

2 Motivation

In the or-free case, positive finitely-recursive programs might be seen as the simplest
subclass of finitary programs. As finitary programs, they enjoy all nice properties of
this class. In particular, consistency checking is decidable as well as reasoning with
ground queries (while reasoning is semi-decidable in case of non ground queries). Un-
fortunately, even if an or-free program P is finitely recursive, it is not suited for the
bottom-up evaluation for two main reasons:
1. A bottom-up evaluation of a finitely-recursive program would generate some new

terms at each iteration, thus iterating for ever.
Example 1. Consider the following program, defining the natural numbers:

nat(0). nat(s(X)) :- nat(X).

The program is positive and finitely recursive, so every ground query (such as for
instance nat(s(s(s(0))))?) can be answered in a top-down fashion; but its bottom-
up evaluation would iterate for ever, as, for any positive integer n, the n-th iteration
would derive the new atom nat(sn(0)).

2. Finitely-recursive programs do not enforce the range of a head variable to be re-
stricted by a body occurrence (i.e., “bottom-up” safety is not required). A bottom-
up evaluation of these “unsafe” rules would cause the derivation of non-ground

2 Note that a working translation module, actually not considering the peculiar optimization
techniques herein presented for finitely-recursive queries, is described in [17].
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facts, standing for infinite instances, which are not admissible by present grounding
algorithms.

Actually, in this paper we deal also with disjunctive finitely recursive programs, which
were not even known to be decidable so far, also in the positive case.

Example 2. Consider the following program, computing all the possible 2-coloring for
an infinite chain of nodes and defines coupled nodes as pairs of nodes which are suc-
cessive and share the same color. Simple programs like this could be easily adapted for
dealing with real problems.

color(X, b) ∨ color(X, g). coupled(X, next(X), C) :- color(X, C), color(next(X), C).
(1)

The program is positive and finitely recursive; nevertheless, a bottom-up evaluation is
unfortunately unfeasible: the first rule, indeed, represents an infinite set of atoms.

Example 3. The following program P2 defines the comparison operator ‘less than’ be-
tween two natural numbers (the function symbol s represents the successor of a natural
number):

lessThan(X,s(X)). lessThan(X,s(Y )) :- lessThan(X, Y ). (2)

In this case, bottom-up evaluation is unfeasible, both because of the first rule, and be-
cause of the infinite recursion in the second rule.

3 Preliminaries

This section reports the formal specification of the ASP language with function sym-
bols. The subclass of ASP programs herein considered are positive disjunctive logic
programs (i.e., negation is not allowed).

3.1 Syntax

A term is either a simple term or a functional term.3 A simple term is either a constant
or a variable. If t1 . . . tn are terms and f is a function symbol (functor) of arity n, then
f(t1, . . . , tn) is a functional term.

Each predicate p has a fixed arity k ≥ 0. If t1, . . . , tk are terms and p is a predicate
of arity k, then p(t1, . . . , tk) is an atom. An atom having p as predicate name is usually
referred as p(t).

A (positive) disjunctive rule r is of the form: α1 ∨ · · · ∨ αk :- β1, · · · , βn.,
where k > 0; α1, . . . , αk and β1, . . . , βn are atoms. The disjunction α1 ∨ · · · ∨ αk

is called head of r, while the conjunction β1, · · · , βn. is the body of r. We denote by
H(r) the set of the head atoms, by B(r) the set of body atoms; we refer to all atoms
occurring in a rule with Atoms(r) = H(r) ∪ B(r). A rule having precisely one head
atom (i.e., k = 1 and then |H(r)| = 1) is called a normal rule. If r is a normal rule

3 We will use traditional square-bracketed list constructors as shortcut for the representation of
lists by means of nested functional terms (see, for instance, [12]). The usage “à la prolog”, or
any different, is only a matter of syntactic sugar.
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with an empty body (i.e., n = 0 and then B(r) = ∅) we usually omit the “ :- ” sign; and
if it contains no variables, then it is referred to as a fact. An ASP program P is a finite
set of rules. A v-free program P is a program consisting of normal rules only.

Given a predicate p, a defining rule for p is a rule r such that some p(t) occurs
in H(r). If all defining rules of a predicate p are facts, then p is an EDB predicate;
otherwise p is an IDB predicate.4 The set of all facts of P is denoted by Facts(P );
the set of instances of all EDB predicates is denoted by EDB(P ). A program (a rule,
an atom, a term) is ground if it contains no variables. A query Q is a ground atom.5

3.2 Semantics

The most widely accepted semantics for ASP programs is based on the notion of answer-
set, proposed in [3] as a generalization of the concept of stable model [2].

Given a program P , the Herbrand universe of P , denoted by UP , consists of all
(ground) terms that can be built combining constants and functors appearing in P . The
Herbrand base of P , denoted by BP , is the set of all ground atoms obtainable from the
atoms of P by replacing variables with elements from UP .6 A substitution for a rule
r ∈ P is a mapping from the set of variables of r to the set UP of ground terms. A
ground instance of a rule r is obtained applying a substitution to r. Given a program P
the instantiation (grounding) grnd(P ) of P is defined as the set of all ground instances
of its rules. Given a ground program P , an interpretation I for P is a subset of BP .
An atom a is true w.r.t. I if a ∈ I; it is false otherwise. Given a ground rule r, we say
that r is satisfied w.r.t. I if some atom appearing in H(r) is true w.r.t. I or some atom
appearing in B(r) is false w.r.t. I . Given a ground program P , we say that I is a model
of P , iff all rules in grnd(P ) are satisfied w.r.t. I .

A model M of P is an answer set of P if it is minimal, i.e., there is no model N
for P such that N ⊂ M . The set of all answer sets for P is denoted by AS(P ). A
program P bravely entails (resp., cautiously entails) a query Q, denoted by P |=b Q
(resp., P |=c Q) if Q is true in some (resp., all) M ∈ AS(P ).

4 Magic Sets Rewriting of Finitely-Recursive Queries

In this Section we first give some basics on the magic-sets technique and provide the
definition of finitely-recursive queries; then, a suitable adaptation of the magic-sets
rewriting technique for programs with functions is presented, that allows a bottom-up
evaluation of such queries over positive programs.

4.1 The Magic-Sets Technique

The magic-sets method is a strategy for simulating the top-down evaluation of a query
by modifying the original program by means of additional rules, which narrow the

4 EDB and IDB stand for Extensional Database and Intensional Database, respectively.
5 Note that this definition of a query is not as restrictive as it may seem, as one can include

appropriate rules in the program for expressing unions of conjunctive queries (and more).
6 With no loss of generality, we assume that constants appearing in any query Q always appear

in P . Since we focus on query answering, this allows us to restrict to Herbrand universe/base.
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computation to what is relevant for answering the query. Intuitively, the goal of the
magic-sets method is to use the constants appearing in the query to reduce the size of
the instantiation by eliminating ‘a priori’ a number of ground instances of the rules
which cannot contribute to the (possible) derivation of the query goal.

We next provide a brief and informal description of the magic-sets rewriting tech-
nique, which has originally been defined in [18] for non-disjunctive Datalog (i.e., with
no function symbols) queries only, and afterwards many generalizations have been pro-
posed. The reader is referred to [19] for a detailed presentation.

The method is structured in four main phases which are informally illustrated below
by example, considering the query path(1, 5) on the following program:

path(X,Y ) :- edge(X,Y ). path(X,Y ) :- edge(X,Z), path(Z,Y ).

1. Adornment Step: The key idea is to materialize, by suitable adornments, binding
information for IDB predicates which would be propagated during a top-down com-
putation. Adornments are strings consisting of the letters b and f, denoting ‘bound’ and
‘free’ respectively, for each argument of an IDB predicate. First, adornments are cre-
ated for query predicates so that an argument occurring in the query is adorned with the
letter b if it is a constant, or with the letter f if it is a variable. The query adornments are
then used to propagate their information into the body of the rules defining it, simulating
a top-down evaluation. It is worth noting that adorning a rule may generate new adorned
predicates. Thus, the adornment step is repeated until all adorned predicates have been
processed, yielding the adorned program. Although a so-called “generalized” magic-
sets method has been defined in [20], for simplicity of presentation, we next adopt the
“basic” magic-sets method as defined in [18], in which binding information within a
rule comes only from the adornment of the head predicate, from EDB predicates in
the (positive) rule body, and from constants.

Example 4. Adorning the query path(1, 5) generates the adorned predicate pathbb

since both arguments are bound, and the adorned program is:

pathbb(X, Y ) :- edge(X,Y ). pathbb(X, Y ) :- edge(X,Z), pathbb(Z, Y ).

2. Generation Step: The adorned program is used to generate magic rules, which sim-
ulate the top-down evaluation scheme and single out the atoms which are relevant for
deriving the input query. Let the magic version magic(pα(t̄)) for an adorned atom pα(t̄)
be defined as the atom magic pα(t̄′), where t̄′ is obtained from t̄ by eliminating all ar-
guments corresponding to an f label in α, and where magic pα is a new predicate
symbol obtained by attaching the prefix ‘magic ’ to the predicate symbol pα. Then, for
each adorned atom A in the body of an adorned rule ra, a magic rule rm is generated
such that (i) the head of rm consists of magic(A), and (ii) the body of rm consists of
the magic version of the head atom of ra, followed by all the (EDB) atoms of ra which
can propagate the binding on A.

3. Modification Step: The adorned rules are subsequently modified by including magic
atoms generated in Step 2 in the rule bodies, which limit the range of the head variables
avoiding the inference of facts which cannot contribute to deriving the query. The re-
sulting rules are called modified rules. Each adorned rule ra is modified as follows. Let
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H be the head atom of ra. Then, atom magic(H) is inserted in the body of the rule, and
the adornments of all non-magic predicates are stripped off.

4. Processing of the Query: Let the query goal be the adorned IDB atom gα. Then,
the magic version (also called magic seed) is produced as magic(gα) (see step 2 above).
For instance, in our example we generate magic pathbb(1, 5).

The complete rewritten program consists of the magic, modified, and query rules.

Example 5. The complete rewriting of our example program is:
magic pathbb(1, 5). magic pathbb(Z, Y ) :- magic pathbb(X, Y ), edge(X,Z).
path(X,Y ) :- magic pathbb(X, Y ), edge(X,Y ).
path(X,Y ) :- magic pathbb(X, Y ), edge(X,Z), path(Z, Y ).

The adorned rule pathbb(X, Y ) :- edge(X, Y ) does not produce any magic rule,
since it does not contain any adorned predicate in its body. Hence, we only gener-
ate magic pathbb(Z, Y ) :- magic pathbb(X, Y ), edge(X, Z). Moreover, the last two
rules above results from the modification of the adorned program in Example 4. In this
rewriting, magic pathbb(X, Y ) represents the start- and end-nodes of all potential sub-
paths of paths from 1 to 5. Therefore, when answering the query, only these sub-paths
will be actually considered in bottom-up computations.

4.2 Disjunctive Magic Sets

While dealing with disjunctive programs, bindings must be propagated also head-to-
head, in order to preserve soundness: if a predicate p is relevant for the query, and a
disjunctive rule r contains p(X) in the head, the binding from p(X) must be propagated
to the body atoms, and to the other head atoms of r as well; thus, in disjunctive rules
also head atoms must be all adorned. From now on, we refer to the proposal of [21]. The
technique therein presented take also into account the possible generation of multiple
rules from a disjunctive rule, due to the different adornments for the head predicates,
and that may affect the semantics of the program. The main differences w.r.t. the non-
disjunctive case concern the generation and modification steps. While generating the
magic rule from an adorned version of a disjunctive rule and a selected head atom a,
first a non-disjunctive intermediate rule is produced, by moving all head atoms different
from a into the body; then, the standard generation step described in Section 4.1 is
applied. Furthermore, while modifying a disjunctive rule a magic atom has to be added
to the body for each head atom.

Example 6. Let us consider the query Q = coupled(1, next(1), g)? on the program P1
of Example 2. After the adornment phase, all predicates, in this case, have a completely
bound adornment. We show now what happens for the disjunctive rule. The gener-
ation phase first produces two intermediate rules: colorbb(X, b) :- colorbb(X, g). and
colorbb(X, g) :- colorbb(X, b), that cause the two magic rules: magic colorbb(X, g) :-
magic colorbb(X, b). and magic colorbb(X, b) :- magic colorbb(X, g)., respectively.
Then, the modification phase causes the rule color(X, b)∨ color(X, g) :- magic
colorbb(X, b), magic colorbb(X, g).7 to be produced.

7 The adornments from non-magic predicates in modified rules are stripped-off in order to pre-
serve the semantics. See [21].



78 F. Calimeri et al.

The complete rewritten program consists of the generated and modified rules above,
plus what comes out from the query and the second rule (with no difference w.r.t. what
previously described for the normal case).

4.3 Finitely-Recursive Queries

We next provide the definition of finitely-recursive queries and programs.

Definition 1. Let P be a program. A ground atom a depends on ground atom b with a
1 degree (denoted by a �1 b) if there is some rule r ∈ grnd(P ) with a ∈ H(r) and
b ∈ Atoms(r). The “depends on” relation is reflexive and transitive. For any ground
atom a, a �0 a. If a �1 b, and b �i c, then a �i+1 c (a depends on c with a i + 1
degree). The degree of the dependencies is often omitted, hence simply saying that a
depends on b, if a �k b holds for some k ≥ 0.

Definition 2. Given a query Q on P , define
relAtoms(Q, P ) = {a ∈ BP : Q depends on a}
relRules(Q, P ) = {r ∈ grnd(P ) : r defines a for some a ∈ relAtoms(Q, P )}

Then: (i) a query Q is finitely recursive on P if relAtoms(Q, P ) is finite; (ii) a program
P is finitely recursive if every query on P is finitely recursive.

The sets relAtoms(Q, P ) and relRules(Q, P ) are called, respectively, the relevant
atoms and the relevant subprogram of P w.r.t. Q. It is worth noting that, if Q is finitely
recursive, then also its relevant subprogram is finite.

Example 7. Consider the following program:
lessThan(X, s(X)). lessThan(X,s(Y )) :- lessThan(X,Y ).
q(f(f(0))). q(X) :- q(f(X)).
r(X) ∨ t(X) :- lessThan(X, Y ), q(X).

The program is not finitely recursive (because of rule q(X) :- q(f(X)). Nevertheless,
one may have many finitely-recursive queries on it. All atoms like lessThan(c1, c2),
for instance, with c1 and c2 constant values, are examples of finitely-recursive queries.

4.4 Rewriting Algorithm

If we restrict our attention to finitely-recursive queries, some steps of the magic-sets
technique reported in Section 4.1 can be significantly simplified. In particular, the
adornment phase is no longer needed, given that the IDB predicates involved in the
query evaluation would have a completely bound adornment. Indeed, for a program P
and a finitely-recursive query Q:

• Q is ground, so it would have a completely bound adornment;
• since the relevant subprogram relRules(Q, P ) is supposed to be finitely recursive,

we can state that all rules involved in a top-down evaluation of the query:8

8 Indeed, function symbols make the universe infinite, and local variables in a rule would make
its head depend on an infinite number of other ground atoms. Local variables could obviously
appear in a function-free program, but this could be easily bottom-up evaluated.
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- cannot have local variables (i.e. variables appearing only in the body of the
rule);

- cannot have unbound head variables.

Thus, starting from a ground query, the only adorned predicates introduced are bounded
on all their variable, and adorned rules contain bound variables only.

In the generation step, it is no longer necessary to include any other atom in the body
of the generated magic rule, apart from the magic version of the considered head atom.
Again, this is due to the absence of local variables, so that all the needed bindings are
provided through the magic version of the head atom.

The algorithm MSFR in Figure 1 implements the magic-sets method for finitely-
recursive queries. Starting from a positive finitely-recursive program P and a ground
query Q, the algorithm outputs a program RW (Q, P ) consisting of a set of modified

Input: a program P and a finitely-recursive query Q = g(c̄)? on P
Output: the rewritten program RW (Q, P ).
Main Vars: S: stack of predicates to rewrite; Done: set of predicates;

modifiedRules(Q, P ),magicRules(Q, P ): set of rules;
begin

1. modifiedRules(Q, P ) := ∅; Done := ∅
2. magicRules(Q, P ) := {magic g(c̄).};
3. S.push(g);
4. while S �= ∅ do
5. u := S.pop();
6. if u /∈ Done then
7. Done := Done ∪ {u};
8. for each r ∈ P and for each u(t) ∈ H(r) defining u do
9. if B(r) �= ∅ or |H(r)| > 1 or V ars(r) �= ∅ then

// let r be u(t) ∨ v1(t1) ∨ . . . ∨ vm(tm) :- vm+1(tm+1), ..., vn(tn).
10. modr = {u(t) ∨ v1(t1) ∨ . . . ∨ vm(tm) :-

magic u(t), magic v1(t1), . . . , magic vm(tm), vm+1(tm+1), ..., vn(tn).};
11. if modr /∈ modifiedRules(Q, P ) then
12. modifiedRules(Q, P ) := modifiedRules(Q, P ) ∪ {modr};
13. for each vi : 1 <= i <= n and vi ∈ IDB(P ) do
14. magicRules(Q, P ) := magicRules(Q, P ) ∪

{magic vi(ti) :- magic u(t).};
15. S.push(vi);
16. end for
17. else
18. modifiedRules(Q, P ) := modifiedRules(Q, P ) ∪ r
19. end if
20. end for
21. end if
22. end while
23. RW (Q, P ):=magicRules(Q, P ) ∪ modifiedRules(Q, P );
24. return RW (Q, P );

end.

Fig. 1. Magic Sets rewriting algorithm for finitely-recursive queries



80 F. Calimeri et al.

and magic rules (denoted by modifiedRules and magicRules , respectively), which are
generated on a rule-by-rule basis.

A stack S stores all predicates that have still to be used for propagating the query
binding. At first, the set of magic rules is initialized with the magic version of the
query, and the query predicate is pushed on S. At each step, an element u is removed
from S; if u has not been already considered (the auxiliary variable Done checks this),
all the rules defining u are processed one-at-a-time. For each such rule r, let u(t) be the
occurrence of predicate u in H(r); if r features some variable, or if it has a non-empty
body, first a modified version is created; moreover, all other atoms in H(r) − {u}, if
some, and all IDB atoms in B(r), are pushed on the stack S, once a proper set of
magic rules, one per each such atoms, is generated. In case r is a fact, i.e., its body is
empty and there are no variables, it is added to the modifiedRules set as it is. Finally,
once all the predicates involved in the query evaluation have been processed (thus, S
is empty), the algorithm outputs the program RW (Q, P ) as the union of all modified
rules and generated magic rules.9 Some rewriting examples are reported next.

Example 8. Let us consider the finitely-recursive query Q = p(f(g(1))) on the follow-
ing program: p(1).p(f(X)) ∨ p(g(X)) :- p(X).

We will depict, step by step, the execution performed by the MSFR algorithm. After
the initialization of variables, the first magic rule deriving from the query is generated
(lines 1−2): magic p(f(g(1))). The predicate p is then pushed onto the stack S (line 3)
and the first iteration of the main loop (line 4) starts. The predicate p is extracted from S
and marked as done (lines 5 − 7). In this case, it is the only predicate to be considered.
All defining rules for p are then processed (lines 8 − 20). The first rule defining p is
a fact (p(1).): both conditions of line 9 are false (V ars(r) denotes the set of variables
occurring in r), so the rule is added to ModifiedRules (line 18) unchanged. The sec-
ond rule defining p is a recursive rule. It is worth noting that this rule will be processed
twice, because its head contains two occurrences of predicate p (namely, p(f(X)) and
p(g(X))). Thus, the first iteration (because of p(f(X))) causes the modified rule:

p(f(X)) ∨ p(g(X)) :-magic p(f(X)),magic p(g(X)), p(X).

to be added to the ModifiedRules set (lines 10 − 12). Then the magic rules below
are generated, one for p(g(X)) in the head, and one for p(X) in the body, and the p
predicate is pushed onto the stack S (lines 13 − 16):

magic p(g(X)) :- magic p(f(X)). magic p(X) :- magic p(f(X)).

Then, the second iteration (because of p(g(X))) would cause the same modified rule as
above, which thus is not added twice to ModifiedRules. The following magic rules
are generated, one for p(f(X)) in the head, and one for p(X) in the body, and the p
predicate is pushed onto the stack S (lines 13 − 16):

magic p(f(X)) :- magic p(g(X)). magic p(X) :- magic p(g(X)).

9 Note that duplicate rules could be generated. Some further cares might be taken in order to
prevent this, but this is out of the scope of this work; some examples of optimization methods
can be found in [21].
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Then, a second and a third iteration of the main loop start; both immediately ends, as
the predicate extracted from the stack S is the already considered predicate p.

Finally, S is found empty; no further iterations are needed, and the algorithm outputs
the following complete rewritten program P8=RW (Q, P ):

p(1). p(f(X)) ∨ p(g(X)) :- magic p(f(X)),magic p(g(X)), p(X).
magic p(f(g(1))).
magic p(g(X)) :- magic p(f(X)). magic p(X) :- magic p(f(X)).
magic p(f(X)) :- magic p(g(X)). magic p(X) :- magic p(g(X)).

Example 9. Considering the query Q9 = lessThan(s(s(0)), s(0))? on the program P2
of Example 3, the algorithm outputs the following rewritten program P3=RW (Q, P ):

magic lessThan(s(s(0)), s(0)).
magic lessThan(X,Y ) :- magic lessThan(X,s(Y )).
lessThan(X,s(X)) :- magic lessThan(X,s(X)).
lessThan(X,s(Y )) :- magic lessThan(X,s(Y )), lessThan(X, Y ).

(3)

5 Properties of Rewritten Programs

In this Section we report some relevant properties of the rewritten programs produced
by the algorithm described in Section 4.

Definition 3. Given a program P and a set M of ground atoms of the form magic a
(where a ∈ BP ), we denote by eval(P, M) the set of rules obtained from grnd(P ) as
follows: remove from grnd(P ) any rule r such that some atom magic a ∈ B(r) and
magic a /∈ M ; remove any atom of the form magic a from the body of the remaining
rules.

Lemma 1. Let Q be a query on a program P ; if Q is finitely recursive, then

a. magicRules(Q, P ) has a unique answer set Mmr;
b. {a(t) | magic a(t) ∈ Mmr} = relAtoms(Q, P );
c. Mmr is finite;
d. magicRules(Q, P ) is finitely ground;
e. eval(modifiedRules(Q, P ), Mmr) = relRules(Q, P ).

Proof. (Sketch)

a. magicRules(Q, P ) is positive and normal (∨-free), thus the statement follows.
b. Q is finitely recursive, thus relAtoms(Q, P ) can be seen as consisting of the fi-

nite union of finite subsets RAi(Q, P ), 0 ≤ i ≤ k, with RAi(Q, P ) containing
each atom a such that Q depends on a at degree i. Furthermore, since magicRules
(Q, P ) is positive and normal, any bottom-up application of the immediate conse-
quence operator TP [22] produces a subset of its unique answer set. The statement
can hence be proved by showing that the i-th application of TP(∅) on magicRules
(Q, P ) (denoted by T i

MP (∅)) derives all and only the atoms of the form magic ai

s.t. ai ∈ RAi(Q, P ).
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We prove this by induction. (Basis.) For i = 0, the only relevant atom is Q itself,
and T 0

MP (∅) = {magic Q}. (Induction.) Assume that the statement holds for i−1.
Then, we first prove that T i

MP (∅) derives all magic ai s.t. ai ∈ RAi(Q, P ). In-
deed, if an atom ai ∈ RAi(Q, P ), then there is some rule r ∈ grnd(P ) s.t. ai ∈
Atoms(r) and there is at least an atom ai−1 ∈ H(r) s.t. ai−1 ∈ RAi−1(Q, P ).
This implies that in grnd(magicRules(Q, P )) there exists a rule of the form
magic ai :- magic ai−1. By induction hypothesis, magic ai−1 has been derived
by T i−1

MP (∅), thus magic ai will be derived by T i
MP (∅). Analogous considera-

tions allow us to prove that T i
MP (∅) derives only atoms of the form magic ai s.t.

ai ∈ RAi(Q, P ).
c. Since Q is finitely recursive on P , then relAtoms(Q, P ) is finite, hence the state-

ment follows from point (b.).
d. As shown in the proof of (b.), the i-th application of TMP (∅) derives the atoms

of the form magic ai s.t. Q depends on ai at degree i. Since Q is finitely ground
on P , the number of these atoms is finite, and TMP (∅) converges finitely (hence,
magicRules(Q, P ) is finitely ground).

e. The statement easily follows from Definition 3 and from (b.). �

The next theorem points out a relationship between finitely-recursive queries and FG
programs [12]. For space constraints, we remind the reader to the aforementioned paper
for the definition of FG programs and their properties.

Theorem 1. Given a ground query Q on a program P , if Q is finitely recursive on P ,
then RW (Q, P ) is finitely ground.

Proof. (Sketch) The rewritten program RW (Q, P ) can be partitioned in two modules,
namely magicRules(Q, P ) and modifiedRules(Q, P ). Note that grnd(magicRules
(Q, P )) is a bottom for grnd(RW (Q, P )) in the sense of [23]. It follows that
eval(modifiedRules(Q, P ), Mmr) ⊆ grnd(RW (Q, P )), and it is finite from
Lemma 1, point (b.). The intelligent instantiation [12] finitely generates this program.
Hence, the statement follows. �

The next theorem provides query equivalence results for the rewritten programs.

Theorem 2. Given a ground query Q on a program P , if Q is finitely recursive on
P , then P |=b Q (resp., P |=c Q) if and only if RW (Q, P ) |=b Q (resp., RW
(Q, P ) |=c Q).

Proof. (Sketch) From Lemma 1, point (e.), we know that eval(modifiedRules(Q, P ),
Mmr) = relRules(Q, P ). Thus, we have that AS(RW (Q, P )) = AS(relRules
(Q, P )). On the other hand, relRules(Q, P ) is a bottom for P in the sense of [23]. P is
positive, has always at least one answer set, and each answer set of relRules(Q, P ) can
be extended to an answer set of P . Thus, if we take brave (resp., cautious) reasoning in
account, Q can appear in some (resp., all) M ∈ AS(P ) iff Q appears in some (resp., all)
answer sets in AS(relRules(Q, P )), which, in turn, coincides with AS(RW (Q, P )).

�
These results are quite relevant; they also imply that all nice properties of FG programs
hold for rewritten finitely-recursive queries too. This includes, in particular, bottom-up



Magic Sets for the Bottom-Up Evaluation of Finitely Recursive Programs 83

computability of answer sets, and hence full decidability of reasoning, as stated from
the next Corollary.

Corollary 1. Both cautious and brave reasoning on a DFRP program P are decidable.

Proof. Any query on a finitely-recursive program P is finitely recursive. Hence, the
result immediately follows from Theorem 1 above and Theorem 3 of [12]. �

Example 10. The intelligent instantiation of the program P3 of Example 9 is the
following:

magic lessThan(s(s(0)), s(0)).
magic lessThan(s(s(0)),0) :- magic lessThan(s(s(0)), s(0)).

It is finite; hence, as expected, the originating rewritten program is finitely ground. It
has the unique finite answer set {magic lessThan(s(s(0)), s(0)), magic lessThan
(s(s(0)), 0)}, which is easily computable, thus allowing to answer to the query Q9 of
Example 9 with ‘no’.

Next, we are going to prove a result about the efficiency of the rewriting algorithm. To
this aim, we need to introduce the definition of what we mean for size of a program.

Definition 4. Let P be a (non-ground) logic program. The size ‖t‖ of a term t is 1, if
the term is a constant or a variable; the size of a functional term f(t1, . . . , tn) is defined
as 1+ ‖t1‖+ . . . , ‖tn‖. The size of an atom is given by the sum of the size of its terms;
if the atom has arity 0, size is 1. The size of the program P , denoted by ‖P‖, is the
sum of the sizes of all atoms occurring in P . Note that, if the same atom occurs in two
different rules of P , it accounts for twice its size.

Example 11. The program P2 in Example 3 has size ‖P‖ = 8.

Theorem 3. Given a finitely-recursive query Q on a program P , the size of RW (Q, P )
is linear in the size of the input P and Q; that is ‖RW (Q, P )‖ = O(‖P‖ + ‖Q‖).

Proof. (Sketch) The program RW (Q, P ) is obtained as the union of the two sets of
rules modifiedRules(Q, P ) and magicRules(Q, P ).

In the worst case, the number of atoms in the first set is given by the number of atoms
in P plus as many atoms as the number of rules in P (at most one magic atom is added
for each rule in P ). So, ‖modifiedRules(Q, P )‖ is definitely equal to O(‖P‖).

Let us consider now the magicRules(Q, P ) program. For each IDB atom occurring
in the body of a rule in P , at most one magic rule with exactly two atoms is generated.
Then, in the worst case, the number of atoms in magicRules(Q, P ) is not greater than
2 · ‖P‖.

It is worth noting that, as far as the algorithm is defined, arities of all new predicates
are equal or less than the arities of original ones; furthermore, terms are left unchanged.
Thus, from the considerations above, the statement ‖RW (Q, P )‖ = O(‖P‖ + ‖Q‖)
immediately follows. �
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6 Related Works

There are many proposals for treating functional terms in ASP: ω-restricted pro-
grams [6], Finitary Programs [7,8], FDNC programs [9], FG programs [12], disjunc-
tive finitely-recursive programs [13], and the works in [10,11]. However, only the works
in [7,9,12,13] deal with disjunctive programs. In particular, the most related works to
our paper are [7,13], since they try to single-out classes of computable queries.

The work in [7] extends finitary programs to preserve decidability in case of disjunc-
tion. To this end, a condition on disjunctive heads is added to the original definition
of finitary programs [8]; while the concept of atoms dependencies remains unchanged
as in the or-free case. Conversely, in [13], the concept of finitely-recursive programs
has been redefined, taking into account head-to-head dependencies which are due to
disjunction (as we do in the present work).

Interestingly, the class of DFRP programs herein defined, which enjoys the decidabil-
ity of reasoning (as proved in Theorem 1), enlarges the positive subclass of disjunctive
finitary programs of [7]. Indeed, while all positive finitary programs trivially belong to
the class of DFRP programs, the above mentioned third condition is not guaranteed to
be fulfilled when negation is forbidden, as witnessed by the following program:

p(X) ∨ q(X) :- s(X). p(f(X)) :- q(X).
q(X) :- p(X). p(1).

Finitely-recursive programs, initially introduced in [8] as a super-class of finitary pro-
grams allowing function symbols and negation, has been redefined in [13], in order to
deal with disjunction. The authors provide a compactness property result for such pro-
grams and some interesting semi-decidability results for cautious ground querying, but
no decidability results about positive disjunctive programs. On the contrary, we focus on
decidability results for disjunctive finitely-recursive positive programs, also providing
an effective strategy for the actual computation of all ground reasoning tasks.

The introduction of functional terms (or similar constructs) have been studied in
several other fields, besides Logic Programming, such as deductive databases (see
LDL [24]); furthermore, studies on computable fragments of logic programs with func-
tions are also related to termination studies of SLD-resolution for Prolog programs (see
e.g. [25,26,27]).

Are also related to this work some papers about the magic-set technique [18,19,20],
for which different extensions and refinements have been proposed. Among the more
recent works, an adaptation for soft-stratifiable programs [28], the generalization to the
disjunctive case [21] and to Datalog with (possibly unstratified) negation [29] are worth
remembering.

7 Conclusions

We presented an adaptation of the magic-sets technique that allows query answering
over disjunctive finitely recursive positive programs also by means of standard bottom-
up techniques. This allows us to enrich the collection of logic programs with func-
tion symbols for which ground query answering can be performed by the current ASP
solvers.
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Future work will focus on overcoming the limitation of considering only ground
queries, by identifying the minimal set of variables required to be bound in order to
preserve decidability. Next step will then deal with negation.
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Abstract. Modular nonmonotonic logic programs (MLPs) under the answer-set
semantics have been recently introduced as an ASP formalism in which modules
can receive context-dependent input from other modules, while allowing (mutu-
ally) recursive module calls. This can be used for more succinct and natural prob-
lem representation at the price of an exponential increase of evaluation time. In
this paper, we aim at an efficient top-down evaluation of MLPs, considering only
calls to relevant module instances. To this end, we generalize the well-known
Splitting Theorem to the MLP setting and present notions of call stratification,
for which we determine sufficient conditions. Call-stratified MLPs allow to split
module instantiations into two parts, one for computing input of module calls,
and one for evaluating the calls themselves with subsequent computations. Based
on these results, we develop a top-down evaluation procedure that expands only
relevant module instantiations. Finally, we discuss syntactic conditions for its
exploitation.

1 Introduction

Modularity is an important element of high-level programming languages that has ben-
eficial effects on problem decomposition, which allows one to structure a program into
parts that solve subproblems appropriately. Its importance has also been recognized in
the area of logic programming (see [1] for a historic account), and in particular in An-
swer Set Programming (ASP), as witnessed by the early conception of Splitting Sets [2],
a generalization of the notion of stratification for program decomposition.

Since then, modularity aspects have been considered in several works, cf. [1, 3, 4,
5, 6, 7, 8], that aim at practicable formalisms for modular logic programming. The
approaches are classified into Programming-in-the-small, building on abstraction and
scoping mechanisms (e.g., generalized quantifiers [1], macros [5], and templates [6]
have been developed in ASP), and Programming-in-the-large, where compositional op-
erators serve the combination of separate and independent modules based on standard
semantics. A prominent representative of the latter in ASP is DLP-functions [3, 4].
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Recently, modular logic programs (MLPs) have been introduced in [9], which can
be viewed as a generalization of DLP-functions. They overcome a restriction of a pre-
liminary approach in [1], in which module calls must be acyclic (which prohibits the
use of recursion through modules), as well as anomalies of the semantics due to the
Gelfond-Lifschitz reduct, which is replaced by the FLP reduct [10]. The latter was also
used for the semantics of HEX-programs [11], a generalization of [1] to the HiLog set-
ting. However, both [1] and [11] defined models of a single module resp. program, and
no global semantics for a collection of modules resp. programs is evident.

As the semantics of MLPs is based on module instantiations (which takes possible
input values into account), a naive evaluation following the definition is—similar as
with grounding of ordinary ASP programs—infeasible in practice; in general, a mod-
ule may have double exponentially many instances. Towards implementation, efficient
evaluation strategies are thus essential, which are sensitive to (sub-)program classes that
do not require a simple guess-and-check procedure on the instantiation, but allow for a
guided model building process. Starting from the main module, instances of modules
may be created on demand as needed by module calls, focusing on relevant module
instances.

Restrictions on programs, like stratification of normal MLPs in [9], may be helpful in
this regard. However, the notion of stratification is very strict. It requires that all mod-
ule instances are stratified. Moreover, the fix-point semantics for stratified programs
given there is inherently bottom-up and only applies to normal programs, excluding a
large class of programs which exploit recursion in a common and natural way and are
evaluable top-down, even if they are not normal or unstratified in the sense of [9].

For illustration, consider the following example with an MLP consisting of three
modules, one is main and the other two are libraries. Each consists of a module name,
with (optional) formal input parameters, and a set of rules. One can inquiry a library
module for the extensions of its predicates, with input fed into the module via the in-
put parameters. This example exploits the mutual recursive calls between two library
modules to determine whether a set has even cardinality.

Example 1. Let P be an MLP consisting of three modules m1 = (P1, R1), m2 =
(P2[q2], R2), and m3 = (P3[q3], R3), where R1 = {q(a). q(b). ok ← P2[q].even .},

R2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q′2(X)∨q′2(Y ) ← q2(X), q2(Y ),
X �= Y.

skip2 ← q2(X), not q′2(X).
even ← not skip2.

even ← skip2, P3[q′2].odd .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, R3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q′3(X)∨q′3(Y ) ← q3(X), q3(Y ),
X �= Y.

skip3 ← q3(X), not q′3(X).
odd ← skip3, P2[q′3].even .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Intuitively, m1 calls m2 to check if the number of facts for predicate q is even. The
call to m2 ‘returns’ even , if either the input q2 to m2 is empty (as then skip2 is false),
or the call of m3 with q′2 resulting from q2 by randomly removing one element (then
skip2 is true) returns odd . Module m3 returns odd for input q3, if a call to R2 with q′3
analogously constructed from q3 returns even . In any answer set of P, ok is true.

This program is not normal, and shifting head disjunctions yields a program which is
not stratified as per [9]. However, along the mutual recursive chain of calls P3[q′2].odd ,
P2[q′3].even the inputs q′2 and q′3 gradually decrease until the base, i.e., the empty input,
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is reached. Taking such decreasing inputs of the relevant module calls into account, we
can evaluate MLPs efficiently along the relevant call graph using a finer grained notion
of stratification, tolerating also disjunctive or unstratified rules in modules.

Capturing this intuition formally and developing a suitable evaluation algorithm for
respective MLPs are the main contributions of this work, which are as follows:

• We develop appropriate notions of call stratification and input stratification for
MLPs, and generalize the well-known Splitting Theorem [2] to this setting. More-
over, we establish a sufficient condition to determine call (and input) stratification
at the schematic level, i.e., without the requirement to consider all module instanti-
ations (Section 3).

• By the previous results, module instances calling other modules can be locally split
into an input preparation part and a calling part. Based on this, a top-down evalua-
tion procedure is developed, expanding only relevant module instances (Section 4).

• Finally, we discuss syntactic conditions for its exploitation, outline a module rewrit-
ing technique for self-recursive modules, and consider related work (Section 5).

The envisaged programming style of call-stratified MLPs is to exploit the natural way
of specifying recursive problems with decreasing input. Applications emerge, e.g., in
temporal reasoning with an ontology of (partially ordered) time points, reasoning about
recurrent properties of sets, or games with ‘decreasing input’.

Modular ASP in which modules can be used in an unrestricted and natural way
for problem solving, including recursion, is an important requirement for the further
development of the ASP paradigm. In this paper, we contribute to this goal, providing
efficient evaluation techniques, which are essential for its realization.

2 Preliminaries

Modular logic programs (MLPs) [9] consist of modules as a way to structure nonmono-
tonic logic programs under answer set semantics [12]. Moreover, such modules allow
for input provided by other modules, and may call each other in a (mutually) recursive
way.

Syntax. We consider programs in a function-free first-order (Datalog) setting. Let V be
a vocabulary C, P , X , and M of mutually disjoint sets of constants, predicate, variable,
and module names, respectively, where each p ∈ P has a fixed arity n ≥ 0, and each
module name in M has a fixed associated list q = q1, . . . , qk (k ≥ 0) of predicate
names qi ∈ P (the formal input parameters). Unless stated otherwise, elements from X
(resp., C ∪ P) are denoted with first letter in upper case (resp., lower case).

Each t∈C∪X is a term. An ordinary atom (simply atom) has the form p(t1, . . . , tn),
where p ∈ P and t1, . . . , tn are terms; n ≥ 0 is its arity. A module atom has the
form P [p1, . . . , pk].o(t1, . . . , tl), where P ∈ M is a module name with associated q,
p1, . . . , pk is a list of predicate names pi ∈ P , called module input list, such that pi has
the arity of qi in q, and o ∈ P is a predicate name such that o(t1, . . . , tl) is an ordinary
atom. Intuitively, a module atom provides a way for deciding the truth value of a ground
atom o(c) in a program P depending on the extension of a set of input predicates.
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A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βm, notβm+1, . . . , notβn (k ≥ 1, m, n ≥ 0), (1)

where all αi are atoms and each βj is an ordinary or a module atom. We define H(r) =
{α1, . . . , αk} and B(r)=B+(r)∪B−(r), where B+(r)={β1, . . . , βm} and B−(r) =
{βm+1, . . . , βn}. If B(r) = ∅ and H(r) �= ∅, then r is a fact; r is ordinary, if it contains
only ordinary atoms. We denote by at(r) the set H(r) ∪ B(r).

We now formally define the syntax of modules and MLPs. A module is a pair m =
(P, R), where P ∈ M with associated input q, and R is a finite set of rules. It is either
a main module (then |q| = 0) or a library module, and is ordinary (resp., ground), iff
all rules in R are ordinary (ground). We refer with R(m) to the rule set of m, and omit
empty [] and () from (main) modules and module atoms if unambiguous.

A modular logic program (MLP) is a tuple P = (m1, . . . , mn), n ≥ 1, where all mi

are modules and at least one is a main module, where M = {P1, . . . , Pn}. P is ground,
iff each module is ground.

Example 2. For instance, the MLP in Example 1 consists of three modules P = (m1,
m2, m3) where m2 and m3 are library modules, and m1 is a (ground) main module.

Semantics. The semantics of MLPs is defined in terms of Herbrand interpretations and
grounding as customary in traditional logic programming and ASP.

The Herbrand base w.r.t. vocabulary V , HBV , is the set of all ground ordinary and
module atoms that can be built using C, P and M; if V is implicit from an MLP P, it is
the Herbrand base of P and denoted by HBP. The grounding of a rule r is the set gr(r)
of all ground instances of r w.r.t. C; the grounding of rule set R is gr(R) =

⋃
r∈R gr(r),

and the one of a module m, gr(m), is defined by replacing the rules in R(m) by
gr(R(m)); the grounding of an MLP P is gr(P), which is formed by grounding each
module mi of P. The semantics of an arbitrary MLP P is given in terms of gr(P).

Let S ⊆ HBP be any set of atoms. For any list of predicate names p = p1, . . . , pk

and q = q1, . . . , qk, we use the notation S|p = {pi(c) ∈ S | i ∈ {1, . . . , k} } and
S|qp = {qi(c) | pi(c) ∈ S, i ∈ {1, . . . , k} }.

For a P ∈ M with associated formal input q we say that P [S] is a value call with
input S, where S ⊆ HBP|q . Let VC (P) denote the set of all value calls P [S] with
some S (note that VC (P) is also used as index set). A rule base is an (indexed) tuple
R = (RP [S] | P [S] ∈ VC (P)) of sets of rules RP [S]. For a module mi = (Pi[qi], Ri)
from P, its instantiation with S ⊆ HBP|qi , is IP(Pi[S]) = Ri ∪ S. For an MLP P, its
instantiation is the rule base I(P) = (IP(Pi[S]) | Pi[S] ∈ VC (P)).

We next define (Herbrand) interpretations and models of MLPs.

Definition 1 (model). An interpretation M of an MLP P is an (indexed) tuple (Mi/S |
Pi[S] ∈ VC (P)), where all Mi/S ⊆ HBP contain only ordinary atoms. An interpre-
tation M of an MLP P is a model of

– a ground atom α ∈ HBP at Pi[S], denoted M, Pi[S] |= α, iff (i) α ∈ Mi/S when α
is ordinary, and (ii) o(c) ∈ Mk/((Mi/S)|qk

p ), when α = Pk[p].o(c) is a module atom;

– a ground rule r at Pi[S] (M, Pi[S] |= r), iff M, Pi[S] |= H(r) or M, Pi[S] �|= B(r),
where (i) M, Pi[S] |= H(r), iff M, Pi[S] |= α for some α ∈ H(r), and (ii) M, Pi[S] |=
B(r), iff M, Pi[S] |= α for all α ∈ B+(r) and M, Pi[S] �|= α for all α ∈ B−(r);
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– a set of ground rules R at Pi[S] (M, Pi[S] |= R) iff M, Pi[S] |= r for all r ∈ R;

– a ground rule base R (M |= R) iff M, Pi[S] |= RPi[S] for all Pi[S] ∈ VC (P).

Finally, M is a model of an MLP P, denoted M |= P, iff M |= I(P) in case P is
ground resp. M |= gr(P), if P is nonground. An MLP P is satisfiable, iff it has a
model.

For any interpretations M and M′ of P, we define M ≤ M′, iff Mi/S ⊆ M ′
i/S for

every Pi[S] ∈ VC (P), and M < M′, iff M �= M′ and M ≤ M′. A model M of P
(resp., a rule base R) is minimal, if P (resp., R) has no model M′ such that M′ < M.

We next proceed to define answer sets for MLPs. In order to focus on relevant mod-
ules, we introduce the formal notion of a call graph. Intuitively, a call graph represents
the relationship between module instantiations and potential module calls: nodes corre-
spond to instantiations and an edge indicates that there is a presumptive call from one
module instantiation to another. Labels on the edges distinguish different syntactical
calls. Given an interpretation, one can determine the actual calls as edges with labels
such that the respective predicates match in the interpretation of the corresponding mod-
ule instantiations. Edges satisfying this condition, their incident nodes, and the nodes
representing main modules constitute the relevant call graph.

Definition 2 (call graph). The call graph of an MLP P is a labeled digraph CGP =
(V, E, l) with vertex set V = VC (P) and an edge e from Pi[S] to Pk[T ] in E iff
Pk[p].o(t) occurs in R(mi); furthermore, e is labeled with an input list p, denoted
l(e). Given an interpretation M, the relevant call graph CGP(M) = (V ′, E′) of P
w.r.t. M is the subgraph of CGP where E′ contains all edges from Pi[S] to Pk[T ]
of CGP such that (Mi/S)|qk

l(e) = T , and V ′ contains all Pi[S] that are main module
instantiations or induced by E′; any such Pi[S] is called relevant w.r.t. M.

Example 3. Let in Example 1 Si
∅ = ∅, Si

a = {qi(a)}, Si
b = {qi(b)}, and Si

ab =
{qi(a), qi(b)}. Then VC (P) = {P1[∅], P2[S2

v ], P3[S3
w]}, where v, w ∈ {∅, a, b, ab},

and CGP has edges P1[∅]
q→ P2[S2

v ], P2[S2
v ]

q′
2→ P3[S3

w], and P3[S3
w]

q′
3→ P2[S2

v ].
For the interpretation M such that M1/∅ = {q(a), q(b), ok}, M2/S2

ab = {q2(a),
q2(b), q′2(a), skip2, even}, M2/∅ = {even}, and M3/S3

a = {q3(a), skip3, odd}, the
nodes of CGP(M) are P1[∅], P2[S2

ab], P2[∅], and P3[S3
a].

For answer sets of an MLP P, we use a reduct of the instantiated program as customary
in ASP. As P might have inconsistent module instantiations, compromising the exis-
tence of an answer set of P, we contextualize reducts and answer sets. We denote the
vertex and edge set of a graph G by V (G) and E(G), respectively.

Definition 3 (context-based reduct). A context for an interpretation M of an MLP P
is any set C ⊆ VC (P) such that V (CGP(M)) ⊆ C. The reduct of P at P [S] w.r.t. M
and C, denoted fP(P [S])M,C , is the rule set Igr(P)(P [S]) from which, if P [S] ∈ C,
all rules r such that M, P [S] �|= B(r) are removed. The reduct of P w.r.t. M and C is
fPM,C = (fP(P [S])M,C | P [S] ∈ VC (P)).

That is, outside C the module instantiations of P resp. gr(P) remain untouched, while
inside C the FLP-reduct [10] is applied.
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Definition 4 (answer set). Let M be an interpretation of a ground MLP P. Then M is
an answer set of P w.r.t. a context C for M, iff M is a minimal model of fPM,C .

Note that C is a parameter that allows to select a degree of overall-stability for answer
sets of P. The minimal context C = V (CGP(M)) is the relevant call graph of P. From
now on we consider this as the default context and omit C from notation.

Example 4. Recall M from Example 3. For every Pi[S] ∈ V (CGP(M)), Mi/S is
a ⊆-minimal set that satisfies fP(Pi[S])M. Thus, any such M is an answer set of P
iff for every Pk[T ] ∈ VC (P) \ V (CGP(M)), Mk/T is a ⊆-minimal set satisfying
IP(Pi[S]).

3 Splitting for Modular Nonmonotonic Logic Programs

We investigate splitting for MLPs at two different levels: the global (module instantia-
tion) level along the relevant call graph, and the local level (‘inside’ module instantia-
tions) w.r.t. the (instance) dependency graph. These two notions reveal a class of MLPs,
for which an efficient top-down algorithm can be developed for answer set computation.

3.1 Global Splitting for Call-Stratified MLPs

We start by introducing call stratified MLPs, whose module instantiations can be split
into different layers and evaluated in a stratified way.

Definition 5. Let M be an interpretation of an MLP P. We say that P is c-stratified
(call stratified) w.r.t. M iff cycles in CGP(M) contain only nodes of the form Pi[∅].

The intuition is to evaluate module instantiations of c-stratified MLPs in a particular
order along the call chain, such that potential ‘self-stabilizing’ effects of cycles have to
be taken into account only at the base, i.e., for module instantiations with empty input.

Example 5. Consider the MLP P and the interpretation M from Example 3. It is easily
verified that P is c-stratified w.r.t. M. One possible call chain for evaluation is

P1[∅]
q→ P2[{q(a), q(b)}] q′

2→ P3[{q′2(a)}] q′
3→ P2[∅] .

Definition 6. Let M be an interpretation of an MLP P and R be a rule set. We say
that Mi/S is an answer set of R relative to M, iff M is an answer set of the rule base
(RP [S] | P [S] ∈ VC (P)), where RPi[S] = R and RPj [T ] = Mj/T for i �= j or
S �= T .

In particular, Mi/S is an answer set of R = IP(Pi[S]) relative to M, if it is an answer
set of R while other instances are fixed by corresponding elements in M, i.e., all module
calls in R are fixed.

Example 6. Consider P from Example 1 and M from Example 3, then M2/S2
ab is an

answer set of IP(P2[S2
ab]) relative to M.
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Proposition 1. Let M be an interpretation of a c-stratified MLP P. Suppose that along
CGP(M), Mi/S is an answer set of IP(Pi[S]) relative to M for each Pi[S] ∈ V
(CGP(M)). If there is an answer set of P that coincides with M for every Pi[∅] on a
cycle in CGP(M), then P has an answer set that coincides with M on CGP(M).

Proposition 1 already indicates a top-down way to evaluate c-stratified MLPs. For a
concrete procedure, we need a notion of “local” splitting inside module instances, in-
troduced in the next section.

3.2 Local Splitting for Input and Call Stratified MLPs

Towards local splitting, we will first extend the notion of Splitting Sets [2] to MLPs.
Then, for pratical purposes, we are interested in splitting a module instance w.r.t. mod-
ule calls. To this end, we introduce a general and another specific notion of input split-
ting sets in Definition 7. Given a set R of ground rules and a list of predicate names
p = {p1, . . . , pk}, let def (p, R) = {p�(d) | ∃r ∈ R, p�(d) ∈ H(r), p� ∈ p}.

Definition 7 (splitting set). Let P be an MLP, R be a set of ground rules and α be a
ground module atom of form Pk[p].o(c).

(a) A splitting set of R is a set U ⊆ HBP s.t. (i) for any rule r ∈ R, if H(r) ∩ U �= ∅
then at(r) ⊂ U ; and (ii) if α ∈ U then def (p, R) ⊆ U .

(b) Let U be a splitting set of R. We say that U is an input splitting set of R for α, iff
α /∈ U and def (p, R) ⊆ U .

As usual, the bottom of a set of ground rules R w.r.t. a set of atoms A ⊆ HBP is
bA(R) = {r ∈ R | H(r) ∩ A �= ∅}.

Example 7. Consider P from Example 1 and P2[S2
ab] from Example 3. Let R be the in-

stantiation gr(IP(P2[S2
ab])). A possible splitting set for R is U = {q2(a), q2(b), q′2(a),

q′2(b), skip2}. Then the bottom bU (R) is

{q2(α). skip2 ← q2(α), not q′2(α). q′2(α)∨ q′2(β)← q2(α), q2(β) | α �= β ∈ {a, b}}.

Based on the extended notion of a Splitting Set, the Splitting Theorem [2] straightfor-
wardly applies to c-stratified MLPs.

Theorem 1. Let M be an interpretation of a c-stratified MLP P, R be the instantiation
gr(IP(Pi[S])) for Pi[S] ∈ VC (P), and let U be a splitting set for R. Then Mi/S is
an answer set of R relative to M iff it is an answer set of {R \ bU (R)} ∪ N , where N
is an answer set of bU (R) relative to M.

Example 8. Consider P from Example 1, M from Example 3, and R from Exam-
ple 7. An answer set of R is N = {q2(a), q2(b), q′2(a), skip2}. By updating R to
{R \ bU (R)} ∪ N , we obtain R′ = {q′2(a). q2(a). q2(b). skip2. even ←
skip2, P3[q′2].odd. even ← not skip2.}. Then M2/S2

ab is an answer set of R′ rela-
tive to M.

In the sequel, we single out a subclass of c-stratified MLPs, namely input and call
stratified (ic-stratified) MLPs, which guarantee that input splitting sets exist for their
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local splitting. We define the property of input stratification at two different levels of
the dependency graph: the schematic level and the instance level. Comparing these two
options, checking the property at the schematic level is easier, but is often too strong
and misses input stratification at the instance level.

In the remainder of the paper, we assume without loss of generality that each predi-
cate occurs in ordinary atoms of at most one module.

Let P be an MLP. The dependency graph of P is the digraph GP = (V, E). The
vertex set V contains all p ∈ P ∪ E , with p appearing somewhere in P, and E is the set
of module atoms in P. The edge set E is as follows:

Let r ∈ R(mi). There is a �-edge p →� q in GP, � ∈ {+,−,∨}, if either

(i) p(t1) ∈ H(r) and q(t2) ∈ B�(r),
(ii) p(t1), q(t2) ∈ H(r) and � = ∨, or

(iii) p(t1) ∈ H(r) and q is a module atom in B�(r).

Moreover, for α = Pj [p].o(t) ∈ B(r), the set E contains all edges

(iv) α →in q�, for every q� ∈ qj of Pj [qj ],
(v) α →m o, and

(vi) q� →b p�, where q� ∈ qj of Pj [qj ] and p� ∈ p of α.

This notion of dependency graph refines the one in [9] concerning the labels of arcs
(types of dependencies) and allows us to capture input stratification as follows:

Definition 8. An MLP P is si-stratified (input stratified at the schematic level), iff no
cycle in GP has in-edges.

For example, one can easily verify that the MLP in Example 1 is si-stratified.
For any module atoms α1, α2 ∈ E , we say that α1 locally depends on α2, if α1 �

α2, where � = →+ ∪ →− ∪ →∨ ∪ →in . For each module mi of a si-stratified MLP
P, we define a local labeling function ll i : V → N s.t. ll i(α1) > ll i(α2) if α1 � α2.

Instance stratification. Proceeding to finer grained level of instances, we define the
instance dependency graph GM

P = (IV , IE ) of P w.r.t. an interpretation M. The idea is
to distinguish different predicate names and module atoms in different module instances
by associating them with the corresponding value call. Hence, a node in IV is a pair
(p, Pi[S]) or (α, Pi[S]), where p (resp., α) is a predicate name (resp., module atom)
appearing in module mi, and S is the input for a value call Pi[S] ∈ VC (P).

GM
P has edges (i′)–(iv′) similar to (i)–(iv) in GP, except that appropriate value calls

are added to predicate names/module atoms; the real difference is made by edges (v′)
and (vi′); for a module atom of the form α = Pj [p].o(t) in R(mi), GM

P has edges

(v′) (α, Pi[S]) →m (o, Pi[(Mi/S)|qj
p ]); and

(vi′) (q�, Pj [(Mi/S)|qj
p ]) →b (p�, Pi[S]), where q� ∈ qj of Pj [qj ] and p� ∈ p of α.

Intuitively, these edges capture the relationship between a module atom and the corre-
sponding (ordinary) output atom, respectively between formal input parameters and ac-
tual input provided. Restricting to concrete applicable instances (Pj[(Mi/S)|qj

p ]), they
do not just schematically extend (v) and (vi).
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Definition 9. Let M be an interpretation of an MLP P. We say that P is i-stratified
w.r.t. M, iff cycles with in-edges in GM

P contain only nodes of the form (X, Pi[∅]).
Moreover, P is ic-stratified w.r.t. M iff it is both i-stratified and c-stratified w.r.t. M.

The following theorem shows that ic-stratification is sufficient for the existence of input
splitting sets for module atoms in relevant instances.

Theorem 2. Let M be an interpretation of an ic-stratified MLP P, Pi[S] be a value call
in V (CGP(M)), and let R = gr(IP(Pi[S])). Then, for every ground module atom α
occurring in R, there exists an input splitting set U of R for α.

Example 9. In Example 7, U is an input splitting set for P3[S3
a].odd. As P is c-stratified

w.r.t. M (cf. Example 5) and si-stratified, P is ic-stratified w.r.t. M. Thus, by Theo-
rem 2, all module atoms in grounded instances from V (CGP(M)) have input splitting
sets.

Naturally, si-stratification implies i-stratification, but not vice versa. However, the fol-
lowing condition identifies a case in which i-stratification holds at the instance level
while si-unstratification holds at the schematic level.

Definition 10. Consider a si-unstratified MLP P. If all cycles in GP which include an
in-edge also contain an m-edge, then we say that P is psi-unstratified.

Proposition 2. If an MLP P is c-stratified and psi-unstratified, then P is i-stratified
w.r.t. all interpretations M, hence ic-stratified.

Since ic-stratification (of an MLP P w.r.t. M) ensures that no cycle in GM
P has in-

edges, it yields intended local splits, where the input for any module atom is fully pre-
pared before this module atom is called. Extending the notion of local labeling to an
instance local labeling function ill i : IV → N s.t. ill i(α1, Pi[S]) > ill i(α2, Pi[S]) if
(α1, Pi[S]) � (α2, Pi[S]), one can exploit input splitting sets, starting with a module
atom α where ill i(α, Pi[S]) is smallest. For ic-stratified MLPs, such input splitting sets
consist of ordinary atoms only, hence respective answer sets can be computed in the
usual way. By iteration, this inspires an evaluation algorithm presented next.

4 Top-Down Evaluation Algorithm

A top-down evaluation procedure comp for building the answer sets of ic-stratified
MLPs along the call graph is shown in Algorithm 1. Intuitively, comp traverses the
relevant call graph from top to the base and back. In forward direction, it gradually
prepares input to each module call in a set R of rules, in the order given by the instance
local labeling function for R. When all calls are solved, R is rewritable to a set of
ordinary rules, and standard methods can be used to find the answer sets, which are fed
back to a calling instance, or returned as the result if we are at the top level.

The algorithm has several parameters: a current set of value calls C, a list of sets of
value calls path storing the recursion chain of value calls up to C, a partial interpretation
M for assembling a (partial stored) answer set, an indexed set A of split module atoms
(initially, all Mi/S and Ai/S are nil ), and a set AS for collecting answer sets. It uses
the following subroutines:
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Algorithm 1. comp(in: P, C, path,M,A, in/out: AS)
Input: MLP P, set of value calls C, list of sets of value calls path , partial model M,

indexed set of sets of module atoms A, set of answer sets AS
(a) if ∃Pi[S] ∈ C s.t. Pi[S] ∈ Cprev for some Cprev ∈ path then

if S �= ∅ for some Pi[S] ∈ C then return
repeat

C′ := tail(path) and remove the last element of path
if ∃Pj [T ] ∈ C′ s.t. T �= ∅ then return else C := C ∪ C′

until C′ = Cprev

R := rewrite(C,M,A)
if R is ordinary then

if path is empty then
(b) forall N ∈ ans(R) do AS :=AS ∪ {M 	 mlpize(N, C)}

else
C′ := tail(path) and remove the last element of path
forall Pi[S] ∈ C do Ai/S := fin
forall N ∈ ans(R) do comp(P, C′, path ,M 	 mlpize(N, C),A,AS)

else
(c) pick an α :=Pj [p].o(c) in R with smallest illR(α) and find splitting set U of R for α

forall Pi[S] ∈ C do if Ai/S = nil then Ai/S :={α} else Ai/S := Ai/S ∪ {α}
forall N ∈ ans(bU (R)) do

T := N |qj
p

if (Mj/T �= nil) ∧ (Aj/T = fin) then C′ := C and path ′ := path
else C′ :={Pj [T ]} and path ′ := append(path , C)

(d) comp(P, C′, path ′,M 	 mlpize(N, C),A,AS)

mlpize(N, C) : Convert a set of ordinary atoms N to a partial interpretation N (having
undefined components nil ), by projecting atoms in N to module instances Pi[S] ∈
C, removing module prefixes, and putting the result at position Ni/S in N.

ans(R) : Find the answer sets of a set of ordinary rules R.
rewrite(C,M,A) : For all Pi[S] ∈ C, put into a set R all rules in IP(Pi[S]), and

Mi/S as facts if not nil , prefixing every ordinary atom (appearing in a rule or fact)
with Pi[S]. Futhermore, replace each module atom α = Pj [p].o(t) in R, such that
α ∈ Ai/S, by o prefixed with Pj [T ], where T = (Mi/S)|qj

pi , and pi is p without
prefixes; moreover add any atoms from (Mj/T )|o prefixed by Pj [T ] to R.

The algorithm first checks if a value call Pi[S] ∈ C appears somewhere in path
(Step (a)). If yes, a cycle is present and all value calls along path until the first ap-
pearance of Pi[S] are joined into C. If a value call in this cycle has non-empty input,
then P is not ic-stratified for any completion of M, and comp simply returns. After
checking for (and processing) cycles, all instances in C are merged into R by the func-
tion rewrite.

If R is ordinary, meaning that all module atoms (if any) are solved, ans can be
applied to find answer sets of R. Now, if path is empty, then a main module is reached
and M can be completed by the answer sets of R and put into AS (Step (b)). Otherwise,
i.e., path is nonempty, comp marks all instances in C as finished, and goes back to the
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tail of path where a call to C was issued. In both cases, the algorithm uses an operator
� for combining two partial interpretations as follows: M � N = {Mi/S � Ni/S |
Pi[S] ∈ VC (P)}, where x � y = x ∪ y if x, y �= nil and x � nil = x, nil � x = x.

When R is not ordinary, comp splits R according to a module atom α with smallest
illR(α) in Step (c). If C = {Pi[S]}, then illR = ill i, otherwise it is a function compli-
ant with every ill i s.t. Pi[S] ∈ C. Then, comp adds α to A for all value calls in C, and
computes all answer sets of the bottom of R, which fully determine the input for α. If
the called instance Pj [T ] has already been fully evaluated, then a recursive call with the
current C and path yields a proper rewriting of α. Otherwise, the next, deeper level of
recursion is entered, keeping the chain of calls in path for coming back (Step (d)).

Example 10. Consider Algorithm 1 on P from Example 1 and 3. The call chain P1[∅] q→
P2[{q(a), q(b)}] q′2→ P3[{q′2(a)}] q′3→ P2[∅] q′2→ P3[∅] q′3→ P2[∅] will be reflected by the list
{P1[S1

∅ ]}, {P2[S2
a,b}, {P3[S3

a]}, {P2[S2
∅ ]}, {P3[S3

∅ ]} in path , and a current set of value
calls C = {P2[S2

∅ ]}. At this point, the last two elements of the path will be removed
and joined with C yielding C = {P2[S2

∅ ], P3[S3
∅ ]}. The rewriting R w.r.t. C is1

{
qi′
∅ (X) ∨ qi′

∅ (Y ) ← qi
∅(X), qi

∅(Y ), X �= Y. skipi
∅ ← qi

∅(X), not qi′
∅ (X). | i = 1, 2

even2
∅ ← skip2

∅, odd
3
∅. odd3

∅ ← skip3
∅, even2

∅. even2
∅ ← not skip2

∅.

}

The only answer set of R is {even2
∅}. On the way back, even2

v is toggled with odd3
w,

and at P1 the answer set {q1
∅(a), q1

∅(b), ok
1
∅} is built; comp adds a respective (partial)

interpretation M to AS , i.e., where M2/∅ = {even}, M3/∅ = ∅, etc., and M1/∅ =

{q(a), q(b), ok}. Following the chain P1[∅]
q→ P2[{q(a), q(b)}] q′

2→ P3[{q′2(b)}]
q′
3→

P2[∅] → · · · , comp finds another answer set of P.

The following proposition shows that comp works for ic-stratified answer sets.

Proposition 3. Suppose P is an MLP with single main module m1 = (P1[], R1). Set
AS = ∅, path = ε, M and A to have nil at all components. Then, comp(P, {P1[]},
path, M,A,AS) computes in AS all answer sets N of P s.t. P is ic-stratified w.r.t. N
(disregarding irrelevant module instances, i.e., Ni/S = nil iff Pi[S] /∈ V (CGP(N))).

This can be extended to P with multiple main modules. Compared to a simple guess-
and-check approach, comp can save a lot of effort as it just looks into the relevant part
of the call graph. Allowing non-ic-stratified answer sets, e.g., loops with non-empty S,
is a subject for further work.

5 Discussion

Determining c-stratification of an MLP P requires checking for cycles in the call graph,
which is rather expensive. In practice, it seems useful to perform a syntactic analysis
of the rules as a sound yet incomplete test that ic-stratification is given, and to exploit
information provided by the programmer.

In a simple form, the programmer makes an assertion for specific module calls that
when processing these calls recursively, inputs to module calls will always be fully

1 Rather than prefixes, we use superscripts and subscripts like for instances (cf. Example 3).
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prepared and no call with the same input (except at the base level) is issued. Ideally,
the assertion is made for all calls, as possible e.g. in the odd/even example or the Cyclic
Hanoi Tower example. While this may sound to put a burden on programmer, in fact
one tends quite often, especially for recursive applications, to drive the chain of calls
to a base case (e.g., instances with empty input). In such cases, the programmer can
confidently provide this information, which can tremendously improve performance.

If no assertions are provided by the programmer, a syntactic analysis might be helpful
to compare the inputs of a module call and the module specification. We discuss one
such case here. Consider a module atom Pj [p].o(t) in module mi = (Pi[qi], Ri). Let
q� and p� be corresponding predicate names in qi and p, respectively. Assume p� is
concluded from q� in one step, i.e., by a rule r where p�(X) ∈ H(r) and q�(X) ∈
B(r). Suppose that for all such rules, (i) q�(X) ∈ B+(r), (ii) �q�(Y ) ∈ B(r) | Y �=
X , and (iii) all variables not in X in r are safe. Then, all module atoms have the same
or smaller input compared to qi. If p� is concluded from q� through a chain of rules
r1, . . . , rm where p�(X) ∈ H(r1), q�(Y ) ∈ B(rm), then conditions similar to (i)-(iii)
must be respected by each ri, 1 ≤ i ≤ m, taking shared atoms between B+(ri) and
H(ri+1) into account.

Now when compared to a module instance, the input to calls in it is either (a) the
same or (b) smaller, the evaluation process can branch into handling these cases, and
program rewriting is applicable. For simplicity, we discuss this here for self-recursive
MLPs, i.e., module calls within module Pi (different from main) are always to Pi.

Rewrite self-recursive MLPs. For a call atom α = Pi[p].o(t) in Pi[qi], we can guess
whether case (a) applies; if so, we can replace α by o(t). The resulting rules contain
fewer module atoms (if none is left, they are ordinary and can be evaluated as usual). In
case (b), if P is psi-unstratified, we can apply Algorithm 1 (with ill i replaced by ll i) to
a rewritten program in which additional constraints ensure the decrease of the input.

More formally, let P = (m1, . . . , mn) where mi = (Pi[qi], Ri), i ∈ {1, . . . , n}.
Let α be as above and let noc and noc be two fresh predicate names. We define two
types of rewriting functions, ν and μ, as follows:

– Let νi(p(t)) = p(t), for each predicate p ∈ P , and νi(α) = o(t). For a rule r of
form (1), let νi(r) = α1 ∨ · · · ∨ αk ← noc, νi(β1), . . . , νi(βm), not νi(βm+1), . . . ,
not νi(βn). Then, ν(Ri) = {νi(r) | r ∈ Ri}.
– For a rule r, μ(r) adds noc to B(r), and μ(Ri) = {μ(r) | r ∈ Ri}.

Let rg be noc ∨ noc ← and let Eq i(α) and Con i(α) be the following sets of rules,
where q� and p� are corresponding predicate names in the formal input list qi of Pi[qi]
and the actual input list p of α:

Eq i(α) =
{

fail ← p�(X), not q�(X),noc, not fail .
fail ← q�(X), not p�(X),noc, not fail .

| 1 ≤ � ≤ |qi |
}

,

Coni(α) =

⎧⎨
⎩

fail ← p�(X), not q�(X),noc, not fail.
ok ← q�(X), not p�(X),noc.

fail ← noc, not ok , not fail .
| 1 ≤ � ≤ |qi |

⎫⎬
⎭ .

Let Eq i and Con i stand for the union of Eq i(α) and Con i(α) for all module atoms α
appearing in Ri, resp. For each module mi, let τ(mi) = ν(Ri)∪μ(Ri)∪{rg}∪Eqi ∪
Con i. Finally, let τ(P) = (τ(m1), . . . , τ(mn)).



Relevance-Driven Evaluation of Modular Nonmonotonic Logic Programs 99

Proposition 4. Let P be a psi-unstratified MLP P where the input to any module call
is either equal or strictly smaller compared to the input of the module instance issuing
the call. Then the answer sets of τ(P) correspond 1-1 to those of P.

The method can be extended to non-self recursive MLPs, where calls to different mod-
ules are allowed. Here, one needs to keep track of the module call chain, or assume an
ordering on the module names to determine input decrease; we omit the details.

Concerning complexity, using our algorithm suitably, answer-set existence of ic-
stratified MLPs is decidable in EXPSPACE, i.e., more efficiently than arbitrary MLPs
(2NEXPNP-complete [9]). Since already best practical algorithms for ordinary, call-
free programs (NEXPNP-complete) require exponential space, the algorithm has rea-
sonable resource bounds. A detailed complexity analysis is planned for the extended
paper.

6 Related Work and Conclusion

In the ASP context, several modular logic programming formalisms have been proposed
(cf. Introduction). We already mentioned the modular logic programs of [1] and DLP-
functions [3]. For the former, a rich taxonomy of notions of stratification was given
in [1]; however, they essentially address merely the module schema level, and no spe-
cific algorithms were described. For DLP-functions, Janhunen et al. [3, 4] developed a
Module Theorem which allows to compose the answer sets of multiple modules; how-
ever, no specific account of stratification was given in [3,4]. As MLPs can be viewed as
a generalization of DLP-Functions, our results may be transferred to the DLP context.

In an upcoming paper, Ferraris et al. present Symmetric Splitting [13] as a general-
ization of the Module Theorem [3,4] allowing to decompose also nonground programs
like MLPs do. Similar to [3, 4], this technique is only applicable to programs with no
positive cycles in the dependency graph. Studying the relationship between Symmetric
Splitting and our notions of stratification is an interesting subject for future work.

Several other issues remain for further work, including extensions and refinements
of the stratification approach. For example, while we have focused here on decreasing
inputs in terms of set inclusion, the extension of the method to other partial orderings
of inputs that have bounded decreasing chains is suggestive. This and investigating
complexity issues as well as implementation are on our agenda.
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Abstract. We study the complexity of consistency checking and query answer-
ing on incomplete databases for languages ranging from non-recursive Datalog to
disjunctive Datalog with negation under the stable model semantics. We consider
both possible and certain answers and both closed- and open-world interpreta-
tion of C-databases with and without conditions. By reduction to stable models
of logic programs we find that, under closed-world interpretation, adding nega-
tion to (disjunctive) Datalog does not increase the complexity of the considered
problems for C-databases, but certain answers for databases without conditions
are easier for Datalog without than with negation. Under open-world interpreta-
tion, adding negation to non-recursive Datalog already leads to undecidability,
but the complexity of certain answers for negation-free queries is the same as
under closed-world interpretation.

1 Introduction

In applications of relational databases a need often arises for representing incomplete
information [5], typically in the form of null values. For example, in data exchange
[8,17] anomalies in the semantics for solutions may arise if nulls are not treated with
care. In data integration [1,12,16] incomplete information arises when integrating dif-
ferent complete data sources using a global schema; a materialized view may be incom-
plete with respect to local sources and local sources may be incomplete with respect to
the global schema or constraints of other sources.

Null values in incomplete databases are represented using variables. A single data-
base represents several possible instances, called representations. In our treatment we
follow the landmark paper by Imieliński and Lipski [14], which considers both closed-
world and open-world interpretation of incomplete databases. In the former, represen-
tations are in direct correspondence with valuations of the variables; each tuple in a rep-
resentation is the valuation of a tuple in the database. In the latter, representations may
include additional tuples not originating from the database. In addition, local condi-
tions may be attached to tuples and a global condition to the database. Such incomplete
databases with conditions are called C-databases.

So far, most research on query answering has been concerned with first-order and
Datalog queries [25,3], and has focused mainly on data complexity. However, since
those landmark papers, the formal properties of more expressive query languages such
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as Datalog with disjunction [7] and (unstratified) negation with the accompanying Sta-
ble Model Semantics [9] (Datalog¬,∨) established themselves firmly as well-accepted
expressive Knowledge Representation languages. Sufficient reason for having a closer
look again at those query languages for incomplete databases and thus going beyond
PTime queries – queries that can be answered in polynomial time on complete databases
(e.g., stratified Datalog [2]).

We study the data and combined complexity of consistency, and possible and certain
answers for languages ranging from nonrecursive Datalog to Datalog¬,∨. We consider
both the open- and closed-world interpretation of C-databases with and without condi-
tions. Our main contributions are summarized as follows:
– We show that answering Datalog¬,∨ queries on incomplete databases under closed-
world interpretation can be reduced to common reasoning tasks in logic programming,
by an encoding of incomplete databases into logic programs.
– We present complete pictures of the data and combined complexity of consistency,
and possible and certain answers for languages ranging from non-recursive Datalog
to Datalog¬,∨, complementing earlier results [3,25] with combined complexity results
for (fragments of) stratified Datalog¬ queries and novel data and combined complex-
ity results for queries beyond PTime. The results for closed-world interpretation are
summarized in Table 1 on page 110, and for open-world interpretation in Table 2 on
page 111.
– Finally, we show that results about checking uniform and strong equivalence of que-
ries from the areas of complete databases and logic programming apply immediately to
the case of incomplete databases.

To the best of our knowledge, ours are the first results about answering Datalog
queries with disjunction and/or stable model negation on incomplete databases. Related
to Datalog¬ queries on incomplete databases are the techniques for consistent query
answering in data integration based under the local-as-view using Datalog¬ programs,
by Bertossi and Bravo [4]. The precise relationship with query answering on incomplete
databases is an open question.

Under open-world interpretation, adding negation leads to undecidability of consis-
tency and query answering, by undecidability of finite satisfiability in first-order logic
[22]. Under closed-world interpretation, for all query languages ranging from non-
recursive Datalog to Datalog¬, the data complexity of possible answers on databases
without conditions is NP-complete and of certain answers on C-databases it is coNP-
complete; for certain answers coNP-completeness holds additionally for Datalog∨ que-
ries. For positive queries these results also apply under open-world interpretation. This
shows that, for possible answers and for certain answers on general C-databases, there
is no computational justification for restricting oneself to PTime languages such as
Datalog and stratified Datalog¬.

In Section 2 we review incomplete databases and define Datalog¬,∨ queries. In Sec-
tion 3 we reduce query answering under closed-world interpretation to standard logic
programming reasoning tasks. We present our complexity analysis in Section 4. Finally,
we discuss related and future work in Sections 5 and 6.
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An extended version of this paper, which includes the proofs of Propositions 4, 7,
10, and 11, can be found online at:
http://www.debruijn.net/publications/sm-incomplete-db.pdf

2 Incomplete Databases and Queries

We consider C-databases, as defined by Imieliński and Lipski [14], and the Stable
Model Semantics for logic programs, as defined by Gelfond and Lifschitz [9].

Incomplete Databases. Let D be a countably infinite set of constants, called the do-
main, and let V be a finite set of variables, disjoint from D. A condition ψ is a formula
of the form ϕ1 ∨ · · · ∨ ϕm, where ϕj are conjunctions of equality atoms x = y and
inequality atoms x �= y, with x, y ∈ D ∪ V . A C-table (Conditional table) of arity n is
a finite subset of (D ∪ V)n such that a local condition φt is associated with each tuple
t in the relation. We sometimes omit φt if it is x = x.

A schema is a list T = R1, . . . , Rk of predicate symbols Ri each with an arity ni ≥
1. We assume a constant bound l on the arities. A C-database over T is a tuple T =
(T1, . . . , Tk) with associated condition ΦT, such that each Ti is a C-table with arity ni.
We write individual tuples (a1, . . . , ani) ∈ Ti as Ri(a1, . . . , ani); if Ri(a1, . . . , ani)
contains no variables, it is a fact. With preds(T) we denote the set {R1, . . . , Rk}. We
call a C-database condition-free if every condition is x = x. A complete database or
instance I is a variable- and condition-free C-database.

Validity of variable-free conditions is defined as follows: c1 = c1 is valid; c1 �= c2
is valid, for c1, c2 distinct constants; this extends to conditions in the natural way. A
valuation is a mapping σ : V ∪ D → D such that σ(c) = c, for every c ∈ D. This
extends to tuples and conditions in the natural way. For C-tables T and C-databases T
we define σ(T ) = {σ(t) | t ∈ T & σ(φt) is valid} and σ(T) = (σ(T1), . . . , σ(Tk)).
The closed-world interpretation (CWI) of a C-database T with arity (n1, . . . , nk) is
defined as:

rep(T) = {σ(T) | σ is a valuation such that σ(ΦT) is valid} (1)

The open-world interpretation (OWI) of T is defined as:

Rep(T) = {R ⊆ Dn1 × · · · × Dnk | ∃σ.σ(ΦT) is valid,

σ(T) ⊆ R, and R is finite} (2)

Lemma 1 (Implicit in [14]). Let T be a C-database. Then, rep(T) ⊆ Rep(T) and for
every I ∈ Rep(T) there is an I ′ ∈ rep(T) such that I ′ ⊆ I .

Datalog¬,∨ Queries. Atoms are of the form p(a1, . . . , an), where the ai’s are terms and
p is an n-ary predicate symbol, n ≥ 1. Positive literals are atoms α and negative literals
are negated atoms not α. A Datalog¬,∨ rule r is of the form:

h1 ∨ · · · ∨ hl ← b1 , . . . , bk (3)

http://www.debruijn.net/publications/sm-incomplete-db.pdf
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where the hi’s are atoms and the bj’s are literals, such that every variable in r occurs
in some positive bj . We call H(r) = {h1, . . . , hl} the head and B(r) = {b1, . . . , bk}
the body of r. If r contains no negation, then it is a Datalog∨ rule. If l = 1, then r is
a Datalog¬ rule. If r is both a Datalog∨ and Datalog¬ rule, then it is a Datalog rule.
A Datalog¬,∨ program P is a countable set of Datalog¬,∨ rules. Datalog¬, Datalog∨,
and Datalog programs are defined analogously.

The set of predicate symbols of P , denoted preds(P), is partitioned into sets of in-
tentional (int(P)) and extensional (ext(P)) predicates such that there is no p ∈ ext(P)
in the head of any r ∈ P . We assume that each variable occurs in at most one r ∈ P .

The dependency graph of P is a directed graph G(P) = 〈N, E〉: N = preds(P) and
E is the smallest set that includes an edge (p, q) ∈ preds(P)2 if there is an r ∈ P such
that p in some h ∈ H(r) and q in some b ∈ B(r); (p, q) is labeled negative if b is a
a negative literal. P is non-recursive if G(P) contains no cycles and stratified if G(P)
contains no cycles involving a negative edge. We use the prefixes nr- and st- for class
of non-recursive and stratified programs.

Given a set Δ ⊆ D, the grounding of P with respect to Δ, denoted grΔ(P), is
defined as the union of all substitutions of variables in P with elements of Δ.

Definition 1 (Queries). If X is a class of programs, then an X query Q with signature
(e1, . . . , en) → (o1, . . . , om) is a finite X program without constants and without empty
rule heads such that {e1, . . . , en} = ext(Q) are the input and {o1, . . . , om} ⊆ int(Q)
are the output predicates. Q is well-defined with respect to a database T if ext(Q) ⊆
preds(T).

We assume in the remainder that all queries are well-defined with respect to the database
under consideration; further, let Δ be a set of constants, P a program, I an instance,
and I a set of instances.

An interpretation M is a set of facts formed using predicate symbols in preds(P)
and constants Δ. Given a set of predicate symbols or constants Υ , with M |Υ we denote
the restriction of M to Υ .

If P is negation- and variable-free, M is a model of P if, for every r ∈ P , whenever
B(r) ⊆ M , H(r)∩M �= ∅. The reduct PM,Δ is obtained from grΔ(P) by (a) removing
every rule r ∈ grΔ(P) such that not b ∈ B(r) for some b ∈ M and (b) removing all
negative literals from the remaining rules.

M is a stable Δ-model of P with respect to I if M |ext(P ) = I|ext(P ), M is a model
of PM,Δ and there is no model M ′ of PM,Δ such that M ′|ext(P ) = M |ext(P ) and
M ′ � M . We leave out I if I = ∅ and Δ if Δ = D. We note that if Δ includes the
constants in I and P , then the stable Δ-models of P with respect to I are the same as
the stable models of P ∪ I .

Example 1. Let Δ = {a}. Consider the instance I = {p(a)} and the program P =
{q(x) ∨ r(x) ← p(x), not s(x)}. M = {p(a), q(a)} is a model of the reduct PM,Δ =
{q(a) ∨ r(a) ← p(a)} and a stable Δ-model of P with respect to I; the other stable
Δ-model is {p(a), r(a)}.

Definition 2 (Query Answers). Let I be an instance, I a set of instances, and Q a
Datalog¬,∨ query with signature (e1, . . . , en) → (o1, . . . , om).
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Q(I) = {(M |{o1}, . . . , M |{om}) | M is a stable model of Q with respect to I}

Q(I) =
⋃

{Q(I) | I ∈ I}

The closed-world interpretation of a query Q on a C-database T is written Q(rep(T))
and the open-world interpretation is written Q(Rep(T)).

3 Logic Programming Characterization of Queries under CWI

We reduce queries on incomplete databases under closed-world interpretation to logic
programs with negation. Specifically, we show that there is a polynomial embedding
of C-databases T into Datalog¬ programs PT such that the answers to a query Q on
T correspond with the stable models of Q ∪ PT with respect to the output predicates
(o1, . . . , om).

Recall that the domain D is infinite, and thus there may be infinitely many valuations
for a given variable in T. The following lemma shows we need to consider only a finite
subset.

Lemma 2 (Implicit in [3]). Let Q be a Datalog¬,∨ query, T a C-database, Δ ⊂ D
include the constants in T, and V the set of variables in T. Then there is a set of
constants Δ′ ⊂ D with cardinality |V | such that Δ ∩ Δ′ = ∅ and.

Q(rep(T))|Δ = {I|Δ | σ : V → Δ ∪ Δ′, I ∈ Q(σ(T)), and σ(ΦT) is valid}

Note that for given Q, T, Δ, and V , such a Δ′ is finite, since |V | is finite.

Definition 3. Let T be a C-database and Δ ⊂ D include constants in T. For each
tuple t = R(a) in T, with φt = ϕt,1 ∨· · · ∨ϕt,m, the program PT,Δ contains the rules

R(a) ← ϕ′
t,i , vx1 (x1 ), . . . , vxk

(xk ) (4)

for 1 ≤ i ≤ m, where ϕ′
t,i is obtained from ϕt,i by replacing ‘∧’ with ‘,’, and x1, . . . , xk

are the variables occurring in t or ϕt,i.
PT,Δ contains D(c) ← , for every c ∈ Δ ∪ Δ′, with Δ′ as in Lemma 2,

vx(z) ← not v′x(z), D(z) ← vx(z), vx(y), z �= y

v′x(z) ← not vx(z), D(z) ex ← vx(z)
← not ex

(5)

for every variable x in T. Finally, for ΦT = ϕT,1 ∨ · · · ∨ ϕT,l, PT,Δ contains

g ← ϕ′
T,i, vx1(x1), . . . , vxk

(xk) ← not g (6)

for 1 ≤ i ≤ l, where ϕ′
T,i is obtained from ϕT,i as before and x1, . . . , xk are the

variables in ϕT,i. PT,Δ contains no other rules.
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Note that equality and inequality can be straightforwardly axiomatized using Datalog¬

rules, such that PT,Δ is indeed a Datalog¬ program.
Intuitively, the rules (5) ensure the presence of an atom vx(c) in every stable model,

indicating that the variable x is assigned to c. The constraints ensure that there is such
a guess for each variable and this guess is unique. The rules (4) subsequently ensure
evaluating the conditions.

The following proposition establishes correspondence between the answers to Q on
rep(T) and the stable models of Q ∪ PT,Δ.

Proposition 1. Let Q be a query with signature (e1, . . . , en) → (o1, . . . , om) on a
C-database T and let Δ be a superset of the set of constants in T. Then,

Q(rep(T))|Δ = {(M |{o1}, . . . , M |{om}) | M is a stable model of Q ∪ PT,Δ}|Δ

Proof. One can verify that M is a stable model of PT,Δ iff M = σ(T) for a σ : V →
Δ ∪ Δ′ such that σ(ΦT) is valid. The proposition then straightforwardly follows from
the definition and Lemma 2. ��

Observe that the grounding of the program PT,Δ is in general exponential in the size
of T, Δ, since the size of the non-ground rules (4) depends on the size of T. However,
we will see in Proposition 5 that using an intelligent polynomial grounding, the stable
models of PT,Δ can be computed in time NP.

Example 2. Consider a C-database T with ternary table T describing the flights of a
plane on a particular day. T contains the tuples t1 = T (v , x1, y1) and t2 = T (i , x2, y2),
with variables x1, x2, y1, y2, indicating that the plane flies from v to a destination x1
with a pilot y1 and from i to x2 with y2. As mg and mc are the only pilots certified to
fly on i, t1 has associated condition x1 �= i ∨ y1 = mg ∨ y1 = mc and t2 has condition
y2 = mg ∨ y2 = mc. Additionally, a pilot may not fly two stretches, hence the global
condition y1 �= y2 ∧ x1 �= v ∧ x2 �= i.

Let Δ be the set of constants in T. Besides the guess rules (5), PT,Δ contains

T (v , x1, y1) ← x1 �= i, vx1(x1), vy1(y1) T (i , x2, y2) ← y2 = mg, vx2(x2), vy2(y2)
T (v , x1, y1) ← y1 = mg, vx1(x1), vy1(y1) T (i , x2, y2) ← y2 = mc, vx2(x2), vy2(y2)
T (v , x1, y1) ← y1 = mc, vx1(x1), vy1(y1)

g ← y1 �= y2, x1 �= v, x2 �= i, vy1(y1), vy2(y2), vx1(x1), vx2(x2) ← not g

Among the stable models of PT,Δ (restricted to preds(T)) are M1 = {T (v, i, mg),
T (i, v, mc)} and M2 = {T (v, i, mc), T (i, v, mg)}. One can verify that these indeed
correspond to elements of rep(T). Consider the Datalog¬ query Q

flying(x , y, z ) ← T (x , y, z )
flying(x , y, z ) ← T (x , u, z ),flying(u, y, z )
roundtrip(z ) ← flying(x , x , z )
stranded(x ) ← not roundtrip(z ),flying(x , y, z )

where flying is the transitive closure of the trips in T and the pilot is stranded if the
departure and final destination do not coincide. The output predicate is stranded .
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Consider the stable models M ′
1 and M ′

2 of Q ∪ PT,Δ, which are extensions of M1
and M2, respectively. Both M ′

1 and M ′
2 contain stranded(mg) and stranded(mc). How-

ever, Q ∪ PT,Δ also has the stable models {T (v, cx1 , cy1), T (i, v, mc), stranded(mc),
stranded(cy1)} and {T (v, cx1, cy1), T (i, v, mg), stranded(mg), stranded(cy1)}, and
so neither stranded(mg) nor stranded(mc) is included in every stable model.

4 Complexity Analysis

In this section we study the complexity of checking consistency (cons) and of query
answering, under the possible (poss) and certain (cert) answer semantics.

We consider two notions of complexity (cf. [23]): combined complexity is measured
in the combined size of the database and the query and data complexity is measured
in the size of the database – the query is considered fixed. We consider the following
decision problems. As inputs (in parentheses) we consider a set of facts A, a C-database
T, and a query Q.

cons(T, Q) question: is there an I ∈ Q(rep(T)) such that I �= ∅?
poss(A,T, Q) question: is there an I ∈ Q(rep(T)) such that A ⊆ I?
cert(A,T, Q) question: for all I ∈ Q(rep(T)), A ⊆ I?
consQ, possQ, and certQ are like the above except that Q is not part of the input.

We denote the consistency and certain answer problems under open-world interpre-
tation with the symbols Cons and Cert, respectively. Their definitions are obtained
from the above by replacing rep(·) with Rep(·). We do not consider possible answers
in the open-world case, since representations may include facts not justified by tuples
in the database.

With a problem Y (resp., Y Q) for a class X of queries, we mean the restriction of the
problem Y (resp., Y Q) such the queries Q in the input (resp., parameter) are in the class
X . We use the following notation for complexity classes: LSpace (logarithmic space),
PTime, NP, coNP, Σp

2 = NPNP, Πp
2 = coNPNP, PSpace, Exp (exponential time), NExp,

coNExp, NExpNP, and coNExpNP. See, e.g., [6, Section 3] for definitions.
We consider the closed-world interpretation in Section 4.1 and the open-world inter-

pretation in Section 4.2.

4.1 Complexity of Closed-World Interpretation

In order to give a full picture of the complexity, we repeat some results from literature
of query answering over incomplete databases in Proposition 2 and 3. Queries in these
propositions have no negation or only stratified negation such that a stable model se-
mantics coincides with the usual minimal model semantics as defined in the respective
literature. The following result is due to Abiteboul et al. [3].

Proposition 2 ([3]). The problem possQ is NP-complete and certQ is coNP-complete
for nr-Datalog, nr-Datalog¬, Datalog, and st-Datalog¬ queries.

In addition, Grahne [11] showed that when restricting local conditions φt to conjunc-
tions of equalities and the global condition ΦT to a conjunction of Horn clauses, the
problem certQ can be solved in PTime for Datalog queries.
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The hardness results in the following proposition follow from the hardness results for
the case of complete databases; see [6,7,26]. Observe that the complement of poss for
Datalog∨ queries is easily reduced to cert for stratified Datalog¬,∨ queries; Πp

2 (resp.,
coNExpNP)-hardness of certQ (resp., cert) for st-Datalog¬,∨ follows immediately from
Σp

2 (resp., NExpNP)-hardness of possQ (resp., poss) for Datalog∨ queries [7]. Observe
also that the problems poss and cert correspond for nr-Datalog queries on complete
databases; PSpace-hardness of cert was established by Vorobyov and Voronkov [26].

Proposition 3. The problem

– possQ is Σp
2 -hard for Datalog∨ queries,

– certQ is Πp
2 -hard for st-Datalog¬,∨ queries,

– poss and cert are PSpace-hard for nr-Datalog queries,
– poss is NExpNP-hard for Datalog∨ queries, and
– cert is coNExpNP-hard for st-Datalog¬,∨ queries.

We state our novel hardness result of combined complexity for Datalog in Proposition
4. Our novel membership results for queries beyond Datalog are in Propositions 5 and
6. The results are summarized in Table 1 on page 110.

Proposition 4. The problem poss is NExp-hard and cert is coNExp-hard for Datalog
queries.

Proof (Sketch). The proof is by an encoding of nondeterministic Turing machines that
run in exponential time into Datalog queries Q on C-databases T. Q, which has one
output predicate accept, encodes all possible transitions of the machine, using binary
coding for time points and positions on the tape. T encodes a guess for each time point
j. Conditions ensure that in a given representation, exactly one guess is made for each
time point. We have that accept(1) ∈ I for some (resp., all) I ∈ Q(rep(T)) iff some
(resp., all) run(s) of T are accepting. Consequently, poss is NExp-hard and cert is
coNExp-hard for Datalog queries.

The complete encoding can be found in the extended version. ��

We obtain the following membership results with the help of the reduction to logic
programs in Section 3 (see Proposition 1).

Proposition 5. The problem

– possQ is in NP and certQ is in coNP for Datalog¬ queries,
– possQ is in Σp

2 and certQ is in Πp
2 for Datalog¬,∨ queries,

– poss and cert are in PSpace for nr-Datalog¬ queries,
– poss is in NExp and cert is in coNExp for Datalog¬ queries, and
– poss is in NExpNPand cert is in coNExpNPfor Datalog¬,∨ queries.

Proof. Let T be a C-database, A a set of facts, Q a Datalog¬,∨ query, Δ the set of
constants occurring in T or A, V the set of variables in T, and PT,Δ the logic pro-
gram that encodes T (see Definition 3). Without loss of generality we assume that the
facts in A all involve output predicates of Q. By Proposition 1, poss(A,T, Q) (resp.,
cert(A,T, Q)) iff for some (resp, all) stable model(s) M of PT,Δ ∪ Q, A ⊆ M .
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Consider the following algorithm for computing the stable models of PT,Δ ∪ Q.
Observe that for each stable model M of PT,Δ ∪ Q it must hold, by the rules (5), that
(†) for each vxi , with xi ∈ V , there is exactly one vxi(txi) ∈ M .

1. Guess an interpretation M for PT,Δ ∪ Q such that (†) holds.
2. Check whether M is a minimal model of (grΔ∪Δ′(P ′

T,Δ ∪ Q))M , where P ′
T,Δ is

obtained from PT,Δ by replacing every vxi(xi) with vxi(txi).

The size of the guess M is clearly polynomial in T. The reduct (grΔ∪Δ′(P ′
T,Δ ∪Q))M

can be computed in time polynomial in the size of T (since every predicate has bounded
arity) and exponential in the combined size of T and Q. Then, checking whether M is
a minimal model of the reduct can be done in PTime if Q ∈ Datalog¬ and with an
NP oracle if Q ∈ Datalog¬,∨ (cf. [6]). The first, second, fourth, and fifth bullet follow
immediately.

Finally, if Q does not contain recursion, it is not necessary to consider the complete
grounding; the algorithm can consider the possible variable substitutions one at a time.
This requires polynomial space; the third bullet follows from the fact that nondetermin-
istic PSpace =PSpace. ��

For determining the complexity of the certain answer semantics for Datalog∨ queries
we exploit the fact that entailment from Datalog∨ programs corresponds to proposi-
tional consequence from its ground instantiation.

Proposition 6. The problem certQ is in coNP and the problem cert is in coNExp for
Datalog∨ queries.

Proof. We have that certQ(A,T) iff A ⊆ M for every I ∈ rep(T) and stable model
M of Q ∪ I , which is in turn equivalent to grΔ(Q ∪ I) |= A, where |= is propositional
consequence and Δ is the set of constants in I . The problem there is an I ∈ rep(T)
such that grΔ(Q ∪ I) �|= A can be decided as follows: (1) guess a valuation σ for the
variables in T and a propositional valuation γ for the atoms in grΔ(Q ∪ σ(T)) and (2)
check σ(T) ∈ rep(T), γ |= grΔ(Q ∪ σ(T)), and γ �|= A. Clearly, the algorithm runs
in NP in the size of T and in NExp in the combined size. It follows that certQ can be
decided in coNP and cert in coNExp. ��

We observe that poss can be straightforwardly reduced to cons, and vice versa.

Proposition 7. There exists an LSpace reduction from cons (resp., consQ) for a class
of queries X to poss (resp., possQ′

) for X , and vice versa.

Therefore, our results for consistency correspond with those for possible answers.
When considering C-databases without conditions (called V-databases in [14]),

Abiteboul et al. [3] showed that certQ is in PTime for Datalog, while possQ is NP-
complete for nr-Datalog queries and certQ is coNP-complete for nr-Datalog¬ queries.
We complement these results as follows.

Proposition 8. When considering C-databases without conditions, certQ is in LSpace
for nr-Datalog queries, cert is Exp-complete for Datalog queries, and poss is NExp-
complete for Datalog queries.
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Table 1. Complexity results for C-databases with/without conditions under closed-world
interpretation

consQ possQ certQ cons poss cert
nr-Datalog NP NP coNP/LSpace PSpace PSpace PSpace
nr-Datalog¬ NP NP coNP PSpace PSpace PSpace
Datalog NP NP coNP/P NExp NExp coNExp/Exp
st-Datalog¬ NP NP coNP NExp NExp coNExp
Datalog¬ NP NP coNP NExp NExp coNExp
Datalog∨ Σp

2 Σp
2 coNP NExpNP NExpNP coNExp

st-Datalog¬,∨ Σp
2 Σp

2 Πp
2 NExpNP NExpNP coNExpNP

Datalog¬,∨ Σp
2 Σp

2 Πp
2 NExpNP NExpNP coNExpNP

Proof. For deciding cert, variables in C-databases without conditions can be treated
as constants (Skolemization), and so the database can be treated as if it were a com-
plete database (implicit in [14,24]). Exp-completeness of cert for Datalog and mem-
bership in LSpace of certQ for nr-Datalog queries follows from the results for complete
databases.

By Proposition 6, poss is in NExp. Hardness is proved by a slight modification of
the proof of Proposition 4: the guess of the next computation step i at time point j is
performed using a single variable xj , which may or may not be valuated with a valid i.
This means that not all I ∈ Q(rep(T)) correspond to runs, but still T has an accepting
run iff there is an I ∈ Q(rep(T)) such that accept(1) ∈ I . ��

The further complexity results for V-databases are the same as for C-databases. We
note that the stated complexity results about V-databases apply even if variables may
not occur twice in the database. Such V-databases are called Codd databases in [14].

Table 1 summarizes the complexity results for consistency and query answering un-
der closed-world interpretation (CWI), both for databases with and without conditions
(separated by the ‘/’ symbol). Where the two cases correspond, only one complexity
class is written. The results in boldface are novel. Note that all results in the table, save
the LSpace result, are completeness results.

We can observe from the table that problems for query languages that are complete
for (the complement of) a nondeterministic complexity class when considering com-
plete databases (e.g., Datalog¬) do not increase in complexity when considering incom-
plete databases. So, for Datalog with disjunction and/or negation, answering queries on
incomplete databases is not harder than answering queries on complete databases.

All considered PTime query languages jump to NP (resp., coNP) when consider-
ing data complexity and queries on C-databases. However, differences arise when con-
sidering the size of the query: for example, the combined complexity of the Datalog
NExp-complete, whereas it is PSpace-complete for nr-Datalog.

Finally, we can observe that problems for queries on databases without conditions are
only easier than those with conditions when considering PTime queries without nega-
tion and even then only certain answers are easier; possible answers and consistency
are just as hard.
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Table 2. Complexity results for C-databases with/without conditions under open-world
interpretation

ConsQ CertQ Cons Cert
nr-Datalog NP/constant coNP/LSpace NP/LSpace PSpace
nr-Datalog¬ Undec. Undec. Undec. Undec.
Datalog NP/constant coNP/P NP/P coNExp/Exp
st-Datalog¬ Undec. Undec. Undec. Undec.
Datalog¬ Undec. Undec. Undec. Undec.
Datalog∨ NP/constant coNP Σp

2 coNExp
st-Datalog¬,∨ Undec. Undec. Undec. Undec.
Datalog¬,∨ Undec. Undec. Undec. Undec.

4.2 Complexity of Open-World Interpretation

For positive queries, certain answers under open-world interpretation (OWI) correspond
to certain answers under CWI, which is a straightforward consequence of Lemma 1.

Proposition 9. Let T be C-database, Q a Datalog∨ query, and A a set of facts. Then,
Cert(A,T, Q) iff cert(A,T, Q).

Checking Cons(T, Q) for consistent T (i.e., Rep(T) �= ∅) corresponds to checking
satisfiability of Q, which is known to be decidable for Q ∈ Datalog [2, Theorem
12.5.2]. Observe that databases without conditions are trivially consistent. We estab-
lish the complexity of ConsQ and Cons in the following two propositions.

Proposition 10. Satisfiability of Datalog queries is PTime-hard and satisfiability of
Datalog∨ queries is Σp

2 -hard.

Proposition 11. The problems ConsQ and Cons are NP-complete for nr-Datalog and
Datalog; ConsQ is NP-complete and Cons is in Σp

2 for Datalog∨ queries.
When considering C-databases without conditions, Cons is in LSpace for nr-Datalog
queries and in PTime for Datalog queries.

Adding negation to any of the considered query languages results in undecidability, by
the undecidability of finite satisfiability of nr-Datalog¬ queries [22]. Table 2 summa-
rizes the complexity results under OWI where “Undec.” is short for “Undecidable” and
“constant” means “decidable in constant time”. All results, save the two LSpace results,
are completeness results.

As can be seen from the table, checking consistency under OWI is often easier than
checking consistency under CWI. Intuitively, this is the case because under CWI one
needs to take the absence of tuples in the database into account.

5 Related Work

Variations on Query Languages. Reiter [18] devised an algorithm for evaluating
certain answers to queries on logical databases, which are essentially condition-free
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C-databases under CWI. The algorithm, based on relational algebra, is complete for
positive first-order queries (i.e., nr-Datalog) and for conjunctive queries extended with
negation in front of atomic formulas (i.e., a subsef of st-Datalog¬). We obtain sound
and complete reasoning for free by our translation of queries on C-databases to calcu-
lating the stable models of a logic program.

Rosati [19] considers condition- and variable-free databases under OWI and certain
answers for conjunctive queries and unions of conjunctive queries, as well as exten-
sions with inequality and negation. The data complexity of such queries is polynomial
as long as the queries are safe, but becomes undecidable when considering unions of
conjunctive queries extended with negation involving universally quantified variables.

We considered nr-Datalog, which generalize (unions of) conjunctive queries, but did
not (yet) consider extensions with inequality and restricted forms of negation. A topic
for future work is query answering on C-databases for such languages, both under CWI
and OWI.

Logic Programming with Open Domains. One traditionally assumes in Logic Program-
ming information regarding individuals is complete. Hence, the grounding of logic pro-
grams with the constants in the program. Approaches that allow for incomplete infor-
mation in that sense, e.g., where one does not need all relevant constants in the program
to deduce correct satisfiability results, are, the finite k-belief sets of [10,20,21] and its
generalization1, open answer sets [13]. Both deal with incomplete information by not
a priori assuming that all relevant constants are present in the program under consid-
eration. It is not clear what the exact relation with C-databases is; this is part of future
work.

Or-sets. An alternative way of representing incomplete information is through objects
with or-sets [15]. For example, a tuple (John, {30, 31}) indicates that John has age
30 or 31. This notion of incompleteness (which assumes closed-world interpretation)
is somewhat simpler than C-databases and could be simulated using disjunctions of
equality atoms. In [15], one shows that certain answers for existentially quantified con-
junctive first-order formulas are data complete for coNP. A result that conforms with
the coNP result for certQ with nr-Datalog queries in Table 1.

6 Outlook

We studied query languages ranging from nr-Datalog to Datalog¬,∨. Besides exten-
sions of positive query languages (including conjunctive queries) with inequality and
limited forms of negation (e.g., only in front of extensional predicates), in future work
we plan to consider integrity constraints, both as part of the query language, as is com-
mon in logic programming, and as part of the database. While under OWI adding in-
tegrity constraints to the database leads to undecidability already for very simple query
languages [19], query answering under integrity constraints for databases under CWI
is largely uncharted territory. We suspect that there are cases that are undecidable un-
der OWI, but solvable under CWI, because by Lemma 2 we need to consider only a

1 Both finite and infinite open answer sets are allowed.
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finite subset of rep(T). We note that Vardi [24] showed that checking integrity of an
incomplete database is often harder under CWI than under OWI.

Abiteboul and Duschka [1] argue that a materialized view (e.g., the result of data
integration) should be seen as an incomplete database, where the source predicates are
seen as incomplete. Indeed, viewing a global schema as a sound view – essentially
a condition- and variable-free incomplete database – is common in data integration
[12,16]. Considering variables and, possibly, also conditions in (materialized) global
views is a natural extension in this scenario; for example, local relations may have fewer
columns than global relations, requiring view definitions of the form ∃Y.v(X, Y, Z) ←
s(X, Z). In future work we intend to consider query answering using such views.

Acknowledgements. We thank the anonymous reviewers for useful comments and feed-
back. The work in this paper was partially supported by the European Commission
under the project ONTORULE (IST-2009-231875).
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Abstract. In answer-set programming (ASP), the main focus usually is on com-
puting answer sets which correspond to solutions to the problem represented by
a logic program. Simple reasoning over answer sets is sometimes supported by
ASP systems (usually in the form of computing brave or cautious consequences),
but slightly more involved reasoning problems require external postprocessing.
Generally speaking, it is often desirable to use (a subset of) brave or cautious
consequences of a program P1 as input to another program P2 in order to provide
the desired solutions to the problem to be solved. In practice, the evaluation of
the program P1 currently has to be decoupled from the evaluation of P2 using
an intermediate step which collects the desired consequences of P1 and provides
them as input to P2. In this work, we present a novel method for representing
such a procedure within a single program, and thus within the realm of ASP
itself. Our technique relies on rewriting P1 into a so-called manifold program,
which allows for accessing all desired consequences of P1 within a single an-
swer set. Then, this manifold program can be evaluated jointly with P2 avoiding
any intermediate computation step. For determining the consequences within the
manifold program we use weak constraints, which is strongly motivated by com-
plexity considerations. As an application, we present an encoding for computing
the ideal extension of an abstract argumentation framework.

1 Introduction

In the last decade, Answer Set Programming (ASP) [1,2], also known as A-Prolog [3,4],
has emerged as a declarative programming paradigm. ASP is well suited for modelling
and solving problems which involve common-sense reasoning, and has been fruitfully
applied to a wide variety of applications including diagnosis, data integration, config-
uration, and many others. Moreover, the efficiency of the latest tools for processing
ASP programs (so-called ASP solvers) reached a state that makes them applicable for
problems of practical importance [5]. The basic idea of ASP is to compute answer sets
(usually stable models) of a logic program from which the solutions of the problem
encoded by the program can be obtained.
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However, frequently one is interested not only in the solutions per se, but rather in
reasoning tasks that have to take some or even all solutions into account. As an exam-
ple, consider the problem of database repair, in which a given database instance does
not satisfy some of the constraints imposed in the database. One can attempt to mod-
ify the data in order to obtain a consistent database by changing as little as possible.
This will in general yield multiple possibilities and can be encoded conveniently using
ASP (see, e.g., [6]). However, usually one is not interested in the repairs themselves,
but in the data which is present in all repairs. For the ASP encoding, this means that
one is interested in the elements which occur in all answer sets; these are also known
as cautious consequences. Indeed, ASP systems provide special interfaces for comput-
ing cautious consequences by means of query answering. But sometimes one has to
do more, such as answering a complex query over the cautious consequences (not to
be confused with complex queries over answer sets). So far, ASP solvers provide no
support for such tasks. Instead, computations like this have to be done outside ASP
systems, which hampers usability and limits the potential of ASP.

In this work, we tackle this limitation by providing a technique, which transforms an
ASP program P into a manifold program MP which we use to identify all consequences
of a certain type1 within a single answer set. The main advantage of the manifold ap-
proach is that the resulting program can be extended by additional rules representing
a query over the brave (or cautious, definite) consequences of the original program P ,
thereby using ASP itself for this additional reasoning. In order to identify the conse-
quences, we use weak constraints [8], which are supported by the ASP-solver DLV [9].
Weak constraints have been introduced to prefer a certain subset of answer sets via pe-
nalization. Their use for computing consequences is justified by a complexity-theoretic
argument: One can show that computing consequences is complete for the complex-

ity classes FPNP
|| or FPΣP

2
|| (depending on the presence of disjunction), for which also

computing answer sets for programs with weak constraints is complete2, which means
that an equivalent compact ASP program without these extra constructs does not exist,
unless the polynomial hierarchy collapses. In principle, other preferential constructs
similar to weak constraints could be used as well for our purposes, as long as they meet
these complexity requirements.

We discuss two particular applications of the manifold approach. First, we specify
an encoding which decides the SAT-related unique minimal model problem, which is
closely related to closed-world reasoning [10]. The second problem stems from the
area of argumentation (cf. [11] for an overview) and concerns the computation of the
ideal extension [12] of an argumentation framework. For both problems we make use of
manifold programs of well-known encodings (computing all models of a CNF-formula

1 We consider here the well-known concepts of brave and cautious consequence, but also definite
consequence [7].

2 The first of these results is fairly easy to see, for the second, it was shown [8] that the related

decision problem is complete for the class ΘP
2 or ΘP

3 , from which the FPNP
|| and FPΣP

2
||

results can be obtained. Also note that frequently cited NP, ΣP
2 , and co-NP, ΠP

2 completeness
results hold for brave and cautious query answering, respectively, but not for computing brave
and cautious consequences.
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for the former application, computing all admissible extensions of an argumentation
framework for the latter) in order to compute consequences. Extensions by a few more
rules then directly provide the desired solutions, requiring little effort in total.

Organization and Main Results. After introducing the necessary background in the
next section, we

– introduce in Section 3 the concept of a manifold program for rewriting proposi-
tional programs in such a way that all brave (resp. cautious, definite) consequences
of the original program are collected into a single answer set;

– lift the results to the non-ground case (Section 4); and
– present applications for our technique in Section 5. In particular, we provide an

ASP encoding for computing the ideal extension of an argumentation framework.

The paper concludes with a brief discussion of related and further work.

2 Preliminaries

In this section, we review the basic syntax and semantics of ASP with weak constraints,
following [9], to which we refer for a more detailed definition.

An atom is an expression p(t1, . . .,tn), where p is a predicate of arity α(p) = n ≥ 0
and each ti is either a variable or a constant. A literal is either an atom a or its negation
not a. A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, and where a1, . . . , an, b1, . . . , bm are atoms.
The head of r is the set H(r) = {a1, . . . , an}, and the body of r is the set B(r) =

{b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B−(r) =
{bk+1, . . . , bm}. We will sometimes denote a rule r as H(r) :-B(r).

A weak constraint [8] is an expression wc of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]

where m ≥ k ≥ 0 and b1, . . . , bm are literals, while weight(wc) = w (the weight)
and l (the level) are positive integer constants or variables. For convenience, w and/or
l may be omitted and are set to 1 in this case. The sets B(wc), B+(wc), and B−(wc)
are defined as for rules. We will sometimes denote a weak constraint wc as :∼ B(wc).

A program P is a finite set of rules and weak constraints. Rules(P ) denotes the
set of rules and WC(P ) the set of weak constraints in P . wP

max and lPmax denote the
maximum weight and maximum level over WC(P ), respectively. A program (rule,
atom) is propositional or ground if it does not contain variables. A program is called
strong if WC(P ) = ∅, and weak otherwise.

For any program P , let UP be the set of all constants appearing in P (if no constant
appears in P , an arbitrary constant is added to UP ); let BP be the set of all ground
literals constructible from the predicate symbols appearing in P and the constants of
UP ; and let Ground(P ) be the set of rules and weak constraints obtained by applying,
to each rule and weak constraint in P all possible substitutions from the variables in
P to elements of UP . UP is usually called the Herbrand Universe of P and BP the
Herbrand Base of P .
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A ground rule r is satisfied by a set I of ground atoms iff H(r) ∩ I �= ∅ whenever
B+(r) ⊆ I and B−(r) ∩ I = ∅. I satisfies a ground program P , if each r ∈ P is
satisfied by I . For non-ground P , I satisfies P iff I satisfies Rules(Ground(P )). A
ground weak constraint wc is violated by I , iff B+(wc) ⊆ I and B−(wc)∩ I = ∅; it is
satisfied otherwise.

Following [13], a set I ⊆ BP of atoms is an answer set for a strong program P iff it
is a subset-minimal set that satisfies the reduct

P I = {H(r) :-B+(r) | I ∩ B−(r) = ∅, r ∈ Ground(P )}.

A set of atoms I ⊆ BP is an answer set for a weak program P iff I is an answer set
of Rules(P ) and HGround(P )(I) is minimal among all the answer sets of Rules(P ),
where the penalization function HP (I) for weak constraint violation of a ground pro-
gram P is defined as follows:

HP (I) =
∑lPmax

i=1

(
fP (i) ·

∑
w∈NP

i (I) weight(w)
)

fP (1) = 1, and
fP (n) = fP (n − 1) · |WC(P )| · wP

max + 1 for n > 1.

where NP
i (I) denotes the set of weak constraints of P in level i violated by I . For

any program P , we denote the set of its answer sets by AS(P ). In this paper, we use
only weak constraints with weight and level 1, for which HGround(P )(I) amounts to
the number of weak constraints violated in I .

A ground atom a is a brave (sometimes also called credulous or possible) conse-
quence of a program P , denoted P |=b a, if a ∈ A holds for at least one A ∈ AS(P ).
A ground atom a is a cautious (sometimes also called skeptical or certain) consequence
of a program P , denoted P |=c a, if a ∈ A holds for all A ∈ AS(P ). A ground atom
a is a definite consequence [7] of a program P , denoted P |=d a, if AS(P ) �= ∅ and
a ∈ A holds for all A ∈ AS(P ). The sets of all brave, cautious, definite consequences
of a program P are denoted as BC(P ), CC(P ), DC(P ), respectively.

3 Propositional Manifold Programs

In this section, we present a translation which essentially creates a copy of a given
strong propositional program for each of (resp. for a subset of) its atoms. Thus, we
require several copies of the alphabet used by the given program.

Definition 1. Given a set I of literals, a collection I of sets of literals, and an atom a,
define Ia = {pa | atom p ∈ I} ∪ {not pa | not p ∈ I} and Ia = {Ia | I ∈ I}.

The actual transformation to a manifold is given in the next definition. We copy a given
program P for each atom a in a given set S, whereby the transformation guarantees the
existence of an answer set by enabling the copies conditionally.

Definition 2. For a strong propositional program P and S ⊆ BP , define its manifold
as

P tr
S =

⋃
r∈P

{H(r)a :- {c} ∪ B(r)a | a ∈ S} ∪ {c :-not i ; i :-not c}.

We assume BP ∩ BP tr
S

= ∅, that is, all symbols in P tr
S are assumed to be fresh.
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Example 1. Consider Φ = {p ∨ q :- ; r :- p ; r :- q} for which AS(Φ) = {{p, r},
{q, r}}, BC(Φ) = {p, q, r} and CC(Φ) = DC(Φ) = {r}. When forming the manifold
for BΦ = {p, q, r}, we obtain

Φtr
BΦ

=

⎧⎨
⎩

pp ∨ qp :- c ; rp :- c, pp ; rp :- c, qp ; c :-not i ;
pq ∨ qq :- c ; rq :- c, pq ; rq :- c, qq ; i :-not c ;
pr ∨ qr :- c ; rr :- c, pr ; rr :- c, qr

⎫⎬
⎭

Note that given a strong program P and S ⊆ BP , the construction of P tr
S can be done in

polynomial time (w.r.t. the size of P ). The answer sets of the transformed program con-
sist of all combinations (of size |S|) of answer sets of the original program (augmented
by c) plus the special answer set {i} which we shall use to indicate inconsistency of P .

Proposition 1. For a strong propositional program P and a set S ⊆ BP , AS(P tr
S ) =

A ∪ {{i}}, where

A = {
|S|⋃
i=1

Ai ∪ {c} | 〈A1, . . . , A|S|〉 ∈
∏
a∈S

AS(P )a}.

Note that
∏

denotes the Cartesian product in Proposition 1.

Example 2. For Φ of Example 1, we obtain that AS(Φtr
BΦ

) consists of {i} plus (copies
of {q, r} are underlined for readability)

{c, pp, rp, pq, rq, pr, rr}, {c, qp, rp, pq, rq, pr, rr}, {c, pp, rp, qq, rq, pr, rr},
{c, pp, rp, pq, rq, qr, rr}, {c, qp, rp, qq, rq, pr, rr}, {c, qp, rp, pq, rq, qr, rr},
{c, pp, rp, qq, rq, qr, rr}, {c, qp, rp, qq, rq, qr, rr}.

Using this transformation, each answer set encodes an association of an atom with some
answer set of the original program. If an atom a is a brave consequence of the original
program, then a witnessing answer set exists, which contains the atom aa. The idea is
now to prefer those atom-answer set associations where the answer set is a witness.
We do this by means of weak constraints and penalize each association where the atom
is not in the associated answer set, that is, where aa is not in the answer set of the
transformed program. Doing this for each atom means that an optimal answer set will
not contain aa only if there is no answer set of the original program that contains a,
so each aa contained in an optimal answer set is a brave consequence of the original
program.

Definition 3. Given a strong propositional program P and S ⊆ BP , let

P bc
S = P tr

S ∪ {:∼ not aa | a ∈ S} ∪ {:∼ i}

Observe that all weak constraints are violated in the special answer set {i}, while in the
answer set {c} (which occurs if the original program has an empty answer set) all but
:∼ i are violated. The following result would also hold without :∼ i being included.

Proposition 2. Given a strong propositional program P and S ⊆ BP , for any A ∈
AS(P bc

S ), {a | aa ∈ A} = BC(P ) ∩ S.
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Example 3. For the program Φ as given Example 1, Φbc
BΦ

is given by Φtr
BΦ

∪ {:∼
not pp ; :∼ not qq ; :∼ not rr ; :∼ i}. We obtain that AS(Φbc

BΦ
) = {A1, A2},

where A1 = {c, pp, rp, qq, rq, pr, rr} and A2 = {c, pp, rp, qq, rq , qr, rr}, as these two
answer sets are the only ones that violate no weak constraint. We can observe that
{a | aa ∈ A1} = {a | aa ∈ A2} = {p, q, r} = BC(Φ).

Concerning cautious consequences, we first observe that if a program is inconsistent (in
the sense that it does not have any answer set), each atom is a cautious consequence. But
if P is inconsistent, then P tr

S will have only {i} as an answer set, so we will need to find
a suitable modification in order to deal with this in the correct way. In fact, we can use
a similar approach as for brave consequences, but penalize those associations where an
atom is contained in its associated answer set. Any optimal answer set will thus contain
aa for an atom only if a is contained in each answer set. If an answer set containing
i exists, it is augmented by all atoms aa, which also causes all weak constraints to be
violated.

Definition 4. Given a strong propositional program P and S ⊆ BP , let

P cc
S = P tr

S ∪ {:∼ aa | a ∈ S} ∪ {aa :- i | a ∈ S} ∪ {:∼ i}

As for P bc
S , the following result also holds without including :∼ i.

Proposition 3. Given a strong propositional program P and S ⊆ BP , for any A ∈
AS(P cc

S ), {a | aa ∈ A} = CC(P ) ∩ S.

Example 4. Recall program Φ from Example 1. We have Φcc
BΦ

= Φtr
BΦ

∪ {:∼ pp ; :∼
qq ; :∼ rr ; pp :- i ; qq :- i ; rr :- i ; :∼ i}. We obtain that AS(Φcc

BΦ
) = {A3, A4},

where A3 = {c, qp, rp, pq, rq, pr, rr} and A4 = {c, qp, rp, pq, rq , qr, rr}, as these two
answer sets are the only ones that violate only one weak constraint, namely :∼ rr . We
observe that {a | aa ∈ A3} = {a | aa ∈ A4} = {r} = CC(Φ).

We next consider the notion of definite consequences. Different to cautious conse-
quences, we do not add the annotated atoms to the answer set containing i. However,
this answer set should never be among the optimal ones unless it is the only one. There-
fore we inflate it by new atoms ia, all of which incur a penalty. This guarantees that this
answer set will incur a higher penalty (|BP | + 1) than any other (≤ |BP |).

Definition 5. Given a strong propositional program P and S ⊆ BP , let

P dc
S = P tr

S ∪ {:∼ aa; ia :- i; :∼ ia | a ∈ S} ∪ {:∼ i}

Proposition 4. Given a strong propositional program P and S ⊆ BP , for any A ∈
AS(P dc

S ), {a | aa ∈ A} = DC(P ) ∩ S.

Example 5. Recall program Φ from Example 1. We have Φdc
BΦ

= Φtr
BΦ

∪ {:∼ pp ; :∼
qq ; :∼ rr ; ip :- i ; iq :- i ; ir :- i :∼ ip ; :∼ iq ; :∼ ir ; :∼ i}. As in
Example 4, A3 and A4 are the only ones that violate only one weak constraint, namely
:∼ rr, and thus are the answer sets of Φdc

BΦ
.



Manifold Answer-Set Programs for Meta-reasoning 121

Obviously, one can compute all brave, cautious, or definite consequences of a program
by choosing S = BP . We also note that the programs from Definitions 3, 4 and 5 yield
multiple answer sets. However each of these yields the same atoms aa, so it is sufficient
to compute one of these. The programs could be extended in order to admit only one
answer set by suitably penalizing all atoms ab (a �= b). To avoid interference with the
weak constraints already used, these additional weak constraints would have to pertain
to a different level.

4 Non-ground Manifold Programs

We now generalize the techniques introduced in Section 3 to non-ground strong pro-
grams. In principle, one could annotate each predicate (rather than atom as in Sec-
tion 3) with ground atoms of a subset of the Herbrand Base. However, one can also
move the annotations to the non-ground level: For example, instead of annotating a
rule p(X, Y ) :- q(X, Y ) by the set {r(a), r(b)} yielding pr(a)(X, Y ) :- qr(a)(X, Y )
and pr(b)(X, Y ) :- qr(b)(X, Y ) we will annotate using only the predicate r and ex-
tend the arguments of p, yielding the compact rule dr

p(X, Y, Z) :- dr
q(X, Y, Z) (we

use predicate symbols dr
p and dr

q rather than pr and qr just for pointing out the dif-
ference between annotation by predicates versus annotation by ground atoms). In this
particular example we have assumed that the program is to be annotated by all ground
instances of r(Z); we will use this assumption also in the following for simplifying
the presentation. In practice, one can clearly add atoms to the rule body for restrict-
ing the instances of the predicate by which we annotate, in the example this would
yield pr(X, Y, Z) :- qr(X, Y, Z), dom(Z) where the predicate dom should be defined
appropriately. In the following, recall that α(p) denotes the arity of a predicate p.

Definition 6. Given an atom a = p(t1, . . . , tn) and a predicate q, let atr
q be the atom

dq
p(t1, . . . , tn, X1, . . . , Xα(q)) where X1, . . . , Xα(q) are fresh variables and dq

p is a new
predicate symbol with α(dq

p) = α(p)+α(q). Furthermore, given a set L of literals, and
a predicate q, let Ltr

q be {atr
q | atom a ∈ L} ∪ {not atr

q | not a ∈ L}.

Note that we assume that even though the variables X1, . . . , Xα(q) are fresh, they will
be the same for each atr

q . One could define similar notions also for partially ground
atoms or for sets of atoms characterized by a collection of defining rules, from which
we refrain here for the ease of presentation. We define the manifold program in analogy
to Definition 2, the only difference being the different way of annotating.

Definition 7. Given a strong program P and a set S of predicates, define its manifold
as

P tr
S =

⋃
r∈P

{H(r)tr
q :- {c} ∪ B(r)tr

q | q ∈ S} ∪ {c :-not i ; i :-not c}.

Example 6. Consider program Ψ = {p(X) ∨ q(X) :- r(X); ; r(a) :- ; r(b) :- } for
which AS(Ψ) = {{p(a), p(b), r(a), r(b)}, {p(a), q(b), r(a), r(b)}, {q(a), p(b), r(a),
r(b)}, {q(a), q(b), r(a), r(b)}}. Hence, BC(Ψ) = {p(a), p(b), q(a), q(b), r(a), r(b)}
and CC(Ψ) = DC(Ψ) = {r(a), r(b)}. Forming the manifold for S = {p}, we obtain
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Ψ tr
S =

{
dp

p(X, X1) ∨ dp
q(X, X1) :- dp

r(X, X1), c ;
dp

r(a, X1) :- c ; dp
r(b, X1) :- c ; c :- not i ; i :- not c

}

AS(Ψ tr
S ) consists of {i} plus 16 answer sets, corresponding to all combinations of the

4 answer sets in AS(Ψ).

Now we are able to generalize the encodings for brave, cautious, and definite conse-
quences. These definitions are direct extensions of Definitions 3, 4, and 5, the differ-
ences are only due to the non-ground annotations. In particular, the diagonalization
atoms aa should now be written as dp

p(X1, . . . , Xα(p), X1, . . . , Xα(p)) which represent
the set of ground instances of p(X1, . . . , Xα(p)), each annotated by itself. So, a weak
constraint :∼ dp

p(X1, . . . , Xα(p), X1, . . . , Xα(p)) gives rise to {:∼ dp
p(c1, . . . , cα(p),

c1, . . . , cα(p)) | c1, . . . , cα(p) ∈ U} where U is the Herbrand base of the program in
question, that is one weak constraint for each ground instance annotated by itself.

Definition 8. Given a strong program P and a set S of predicate symbols, let

P bc
S = P tr

S ∪ {:∼ not Δq | q ∈ S} ∪ {:∼ i}
P cc

S = P tr
S ∪ {:∼ Δq; Δq :- i | q ∈ S} ∪ {:∼ i}

P dc
S = P tr

S ∪ {:∼ Δq; Iq :- i; :∼ Iq | q ∈ S} ∪ {:∼ i}

where Δq = dq
q(X1, . . . , Xα(q), X1, . . . , Xα(q)) and Iq = iq(X1, . . . , Xα(q)).

Proposition 5. Given a strong program P and a set S of predicates, for an arbitrary
A ∈ AS(P bc

S ), (resp., A ∈ AS(P cc
S ), A ∈ AS(P dc

S )), the set {p(c1, . . . , cα(p)) |
dp

p(c1, . . . , cα(p), c1, . . . , cα(p)) ∈ A} is the set of brave (resp., cautious, definite) con-
sequences of P with a predicate in S.

Example 7. Consider again Ψ and S = {p} from Example 6. We obtain Ψ bc
S = Ψ tr

S ∪
{:∼ not dp

p(X1, X1) ; :∼ i} and we can check that AS(Ψ bc
S ) consists of the sets

R∪{dp
p(a, a), dp

p(b, b), dp
q(a, b), dp

q(b, a)}, R∪{dp
p(a, a), dp

p(b, b), dp
p(a, b), dp

q(b, a)},
R∪{dp

p(a, a), dp
p(b, b), d

p
q(a, b), dp

p(b, a)}, R∪{dp
p(a, a), dp

p(b, b), d
p
p(b, a), dp

p(b, a)};

where R = {dp
r(a, a), dp

r(a, b), dp
r(b, a), dp

r(b, b)}. For each A of these answer sets we
obtain {p(t) | dp

p(t, t) ∈ A} = {p(a), p(b)} which corresponds exactly to the brave
consequences of Ψ with a predicate of S = {p}.

For cautious consequences, Ψ cc
S = Ψ tr

S ∪{:∼ dp
p(X1, X1) ; dp

p(X1, X1) :- i ; :∼ i}
and we can check that AS(Ψ cc

S ) consists of the sets

R∪{dp
q(a, a), dp

q(b, b), dp
q(a, b), dp

q(b, a)}, R∪{dp
q(a, a), dp

q(b, b), dp
p(a, b), dp

q(b, a)},
R∪{dp

q(a, a), dp
q(b, b), d

p
q(a, b), dp

p(b, a)}, R∪{dp
q(a, a), dp

q(b, b), d
p
p(b, a), dp

p(b, a)};

where R = {dp
r(a, a), dp

r(a, b), dp
r(b, a), dp

r(b, b)}. For each A of these answer sets we
obtain {p(t) | dp

p(t, t) ∈ A} = ∅ and indeed there are no cautious consequences of Ψ
with a predicate of S = {p}.

Finally, for definite consequences, Ψdc
S = Ψ tr

S ∪{:∼ dp
p(X1, X1) ; ip(X1) :- i ; :∼

ip(X1) ; :∼ i}. It is easy to see that AS(Ψdc
S ) = AS(Ψ cc

S ) and so {p(t) | dp
p(t, t) ∈

A} = ∅ for each answer set A of Ψdc
S , and indeed there is also no definite consequence

of Ψ with a predicate of S = {p}.
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These definitions exploit the fact that the semantics of non-ground programs is defined
via their grounding with respect to their Herbrand Universe. So the fresh variables in-
troduced in the manifold will give rise to one copy of a rule for each ground atom.

In practice, ASP systems usually require rules to be safe, that is, that each variable
occurs (also) in the positive body. The manifold for a set of predicates may therefore
contain unsafe rules (because of the fresh variables). But this can be repaired by adding
a domain atom domq(X1, . . . , Xm) to a rule which is to be annotated with q. This
predicate can in turn be defined by a rule domq(X1, . . . , Xm) :-u(X1), . . . , u(Xm)
where u is defined using {u(c) | c ∈ UP }. One can also provide smarter definitions for
domq by using a relaxation of the definition for q.

We also observe that ground atoms that are contained in all answer sets of a pro-
gram need not be annotated in the manifold. Note that these are essentially the cautious
consequences of a program and therefore determining all of those automatically before
rewriting does not make sense. But for some atoms this property can be determined
only by the structure of the program. For instance, facts will be in all answer sets. In
the sequel we will not annotate extensional atoms (those defined only by facts) in order
to obtain more concise programs. One could also go further and omit the annotation of
atoms which are defined using nondisjunctive stratified programs.

As an example, we present an ASP encoding for boolean satisfiability and then cre-
ate its manifold program for resolving the following problem: Given a propositional
formula in CNF ϕ, compute all atoms which are true in all models of ϕ. We provide a
fixed program which takes a representation of ϕ as facts as input. To apply our method
we first require a program whose answer sets are in a one-to-one correspondence to the
models of ϕ. To start with, we fix the representation of CNFs. Let ϕ (over atoms A) be
of the form

∧n
i=1 ci. Then, Dϕ = {at(a) | a ∈ A} ∪ {cl(i) | 1 ≤ i ≤ n} ∪ {pos(a, i) |

atom a occurs positively in ci} ∪ {neg(a, i) | atom a occurs negatively in ci}. We con-
struct program SAT as the set of the following rules.

true(X) :-not false(X), at(X); false(X) :-not true(X), at(X);
ok (C) :- true(X), pos(C, X); ok (C) :- false(X), neg(C, X); :-not ok (C), cl(C).

It can be checked that the answer sets of SAT∪Dϕ are in a one-to-one correspondence
to the models (over A) of ϕ. In particular, for any model I ⊆ A of ϕ there exists an
answer set M of SAT ∪ Dϕ such that I = {a | true(a) ∈ M}. We now consider
SATcc

{true} which consists of the following rules.

dtrue
true(X, Y ) :- c, not dtrue

false(X, Y ), at(X); c :- not i; i :- not c;
dtrue
false(X, Y ) :- c, not dtrue

true(X, Y ), at(X); :- c, not dtrue
ok (C, Y ), cl(C);

dtrue
ok (C, Y ) :- c, dtrue

true(X, Y ), pos(C, X); :∼ dtrue
true(X, X); :∼ i;

dtrue
ok (C, Y ) :- c, dtrue

false(X, Y ), neg(C, X); dtrue
true(X, X) :- i.

Given Proposition 5, it is easy to see that, given some answer set A of SATcc
{true}∪Dϕ,

{a | dtrue
true(a, a) ∈ A} is precisely the set of atoms which are true in all models of ϕ.
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5 Applications

In this section, we put our technique to work and show how to use meta-reasoning over
answer sets for two application scenarios. The first one is a well-known problem from
propositional logic, and we will reuse the example from above. The second example
takes a bit more background, but presents a novel method to compute ideal extensions
for argumentation frameworks.

5.1 The Unique Minimal Model Problem

As a first example, we show how to encode the problem of deciding whether a given
propositional formula ϕ has a unique minimal model. This problem is known to be
in ΘP

2 and to be co-NP-hard (the exact complexity is an open problem). Let I be the
intersection of all models of ϕ. Then ϕ has a unique minimal model iff I is also a
model of ϕ. We thus use our example from the previous section, and define the pro-
gram UNIQUE as SATcc

{true} augmented by rules ok (C) :-dtrue
true(X, X), pos(C, X);

ok(C) :- not dtrue
true(X, X), neg(C, X); :- not ok(C), cl(C).

Theorem 1. For any CNF formula ϕ, it holds that ϕ has a unique minimal model, if
and only if program UNIQUE ∪ Dϕ has at least one answer set.

A slight adaption of this encoding allows us to formalize CWA-reasoning [10] over a
propositional knowledge base ϕ, since the atoms a in ϕ, for which the corresponding
atoms dtrue

true(a, a) are not contained in an answer set of SATcc
{true} ∪ Dϕ, are exactly

those which are added negated to ϕ for CWA-reasoning.

5.2 Computing the Ideal Extension

Our second example is from the area of argumentation, where the problem of computing
the ideal extension [12] of an abstract argumentation framework was recently shown
to be complete for FPNP

|| in [14]. Thus, this task cannot be compactly encoded via
normal programs (under usual complexity theoretic assumptions). On the other hand,
the complexity shows that employing disjunction is not necessary, if one instead uses
weak constraints. We first give the basic definitions following [15].

Definition 9. An argumentation framework (AF) is a pair F = (A, R) where A ⊆ U
is a set of arguments and R ⊆ A × A. (a, b) ∈ R means that a attacks b. An argument
a ∈ A is defended by S ⊆ A (in F ) if, for each b ∈ A such that (b, a) ∈ R, there exists
a c ∈ S, such that (c, b) ∈ R. An argument a is admissible (in F ) w.r.t. a set S ⊆ A if
each b ∈ A which attacks a is defended by S.

Semantics for argumentation frameworks are given in terms of so-called extensions.
The next definitions introduce two such notions which also underly the concept of an
ideal extension.

Definition 10. Let F = (A, R) be an AF. A set S ⊆ A is said to be conflict-free (in
F ), if there are no a, b ∈ S, such that (a, b) ∈ R. A set S is an admissible extension of
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F , if S is conflict-free in F and each a ∈ S is admissible in F w.r.t. S. The collection
of admissible extensions is denoted by adm(F ). An admissible extension S of F is a
preferred extension of F , if for each T ∈ adm(F ), S �⊂ T . The collection of preferred
extensions of F is denoted by pref (F ).

Definition 11. Let F be an AF. A set S is called ideal for F , if S ∈ adm(F ) and
S ⊆

⋂
T∈pref (F ) T . A maximal (w.r.t. set-inclusion) ideal set of F is called an ideal

extension of F .

It was shown that for each AF F , a unique ideal extension exists. In [14], the following
algorithm to compute the ideal extension of an AF F = (A, R) is proposed. Let X−

F =
A \

⋃
S∈adm(F ) S and X+

F = {a ∈ A | ∀b, c : (b, a), (a, c) ∈ R ⇒ b, c ∈ X−
F } \ X−

F ,

and define an AF F ∗ = (X+
F ∪X−

F , R∗) where R∗ = R∩{(a, b), (b, a) | a ∈ X+
F , b ∈

X−
F }. F ∗ is a bipartite AF in the sense that R∗ is a bipartite graph.

Proposition 6 ([14]). The ideal extension of AF F is given by
⋃

S∈adm(F∗)(S ∩ X+
F ).

The set of all admissible atoms for a bipartite AF F can be computed in polynomial time
using Algorithm 1 of [16]. This is basically a fixpoint iteration identifying arguments
in X+

F that cannot be in an admissible extension: First, arguments in X0 = X+
F are

excluded, which are attacked by unattacked arguments (which are necessarily in X−
F ),

yielding X1. Now, arguments in X−
F may be unattacked by X1, and all arguments in

X1 attacked by such newly unattacked arguments should be excluded. This process is
iterated until either no arguments are left or no more argument can be excluded. There
may be at most |X+

F | iterations in this process.
We exploit this technique to formulate an ASP-encoding IDEAL. We first report a

program the answer sets of which characterize admissible extensions. Then, we use the
brave manifold of this program in order to determine all arguments contained in some
admissible extension. Finally, we extend this manifold program in order to identify F ∗

and to simulate Algorithm 1 of [16].
The argumentation frameworks will be given to IDEAL as sets of input facts. Given

an AF F = (A, R), let DF = {a(x) | x ∈ A} ∪ {r(x, y) | (x, y) ∈ R}. Program
ADM, given by the rules below, computes admissible extensions (cf. [17,18]):

in(X) :-not out(X), a(X); out(X) :-not in(X), a(X); def(X) :- in(Y ), r(Y, X);
:- in(X), in(Y ), r(X, Y ); :- in(X), r(Y, X), not def(Y ).

Indeed one can show that, given an AF F , the answer sets of ADM∪DF are in a one-to-
one correspondence to the admissible extensions of F via the in(·) predicate. In order
to determine the brave consequences of ADM for predicate in, we form ADMbc

{in}, and
extend it by collecting all brave consequences of ADM ∪ DF in predicate in(·), from
which we can determine X−

F (represented by in−(·)), X+
F (represented by in+(·), using

auxiliary predicate not in+(·)), and R∗ (represented by q(·, ·)).

in(X) :- din
in(X,X); in−(X) :- a(X), not in(X); in+(X) :- in(X), not not in+(X);

not in+(X) :- in(Y ), r(X,Y ); not in+(X) :- in(Y ), r(Y ,X);
q(X,Y ) :- r(X,Y ), in+(X), in−(Y ); q(X,Y ) :- r(X,Y ), in−(X), in+(Y ).
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In order to simulate Algorithm 1 of [16], we use the elements in X+
F for marking the

iteration steps. To this end, we use an arbitrary order < on ASP constants (all ASP
systems provide such a predefined order) and define successor, infimum and supremum
among the constants representing X+

F w.r.t. the order <.

nsucc(X,Z) :- in+(X), in+(Y ), in+(Z), X<Y, Y <Z;
succ(X, Y ) :- in+(X), in+(Y ), X<Y, not nsucc(X, Y );

ninf(Y ) :- in+(X), in+(Y ), X<Y ; nsup(X) :- in+(X), in+(Y ), X<Y ;
inf(X) :- in+(X), not ninf(X); sup(X) :- in+(X), not nsup(X).

We now use this to iteratively determine arguments that are not in the ideal extension,
using nid(·, ·), where the first argument is the iteration step. In the first iteration (iden-
tified by the infimum) all arguments in X+

F which are attacked by an unattacked argu-
ment are collected. In subsequent iterations, all arguments from the previous steps are
included and augmented by arguments that are attacked by an argument not attacked
by arguments in X+

F that were not yet excluded in the previous iteration. Finally, ar-
guments in the ideal extension are those that are not excluded from X+

F in the final
iteration (identified by the supremum).

att0(X) :- q(Y ,X); atti(J,Z) :- q(Y ,Z), in+(Y ), not nid(J,Y ), in+(J);
ideal(X) :- in+(X), sup(I), not nid(I,X); nid(I,Y ) :- succ(J,I), nid(J,Y );
nid(I,Y ) :- inf(I), q(Z,Y ), in+(Y ), not att0(Z);
nid(I,Y ) :- succ(J,I), q(Z,Y ), in+(Y ), not atti(J,Z).

If we put ADMbc
{in} and all of these additional rules together to form the program

IDEAL, we obtain the following result:

Theorem 2. Let F be an AF and A ∈ AS(IDEAL∪DF ). Then, the ideal extension of
F is given by {a | ideal(a) ∈ A}.

6 Conclusion

In this paper, we provided a novel method to rewrite ASP-programs in such a way that
reasoning over all answer sets of the original program can be formulated within the
same program. Our method exploits the well-known concept of weak constraints. We
illustrated the impact of our method by encoding the problems of (i) deciding whether
a propositional formula in CNF has a unique minimal model, and (ii) computing the
ideal extension of an argumentation framework. Known complexity results witness that
our encodings are adequate in the sense that efficient ASP encodings without weak
constraints or similar constructs are assumed to be infeasible.

The manifold program for cautious consequences is also closely related to the con-
cept of data disjunctions [19] (this paper also contains a detailed discussion about the
complexity class ΘP

2 and related classes for functional problems). Related work has
also been done in the area of default logic, where a method for reasoning within a
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single extension has been proposed [20]. That method uses set-variables which charac-
terize the set of generating defaults of the original extensions. Such an approach differs
considerably from ours as it encodes certain aspects of the semantics (which ours does
not), which puts it closer to meta-programming (cf. [21]).

As future work, we are interested in developing a suitable language for expressing
reasoning with brave, cautious and definite consequences, allowing also for mixing dif-
ferent reasoning modes. This language should serve as a platform for natural encodings

of problems in complexity classes ΘP
2 , ΘP

3 , FPNP
|| , and FPΣP

2
|| . Moreover, we intend

studying the use of alternative preferential constructs in place of weak constraints.
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Abstract. The logic FO(ID) uses ideas from the field of logic program-
ming to extend first order logic with non-monotone inductive definitions.
The goal of this paper is to extend Gentzen’s sequent calculus to obtain
a deductive inference method for FO(ID). The main difficulty in build-
ing such a proof system is the representation and inference of unfounded
sets. It turns out that we can represent unfounded sets by least fixpoint
expressions borrowed from stratified least fixpoint logic (SLFP), which is
a logic with a least fixpoint operator and characterizes the expressibility
of stratified logic programs. Therefore, in this paper, we integrate least
fixpoint expressions into FO(ID) and define the logic FO(ID,SLFP). We
investigate a sequent calculus for FO(ID,SLFP), which extends the se-
quent calculus for SLFP with inference rules for the inductive definitions
of FO(ID). We show that this proof system is sound with respect to a
slightly restricted fragment of FO(ID) and complete for a more restricted
fragment of FO(ID).

1 Introduction

Inductive definitions are common in mathematical practice. For instance, the
non-monotone inductive definition of the satisfaction relation |= can be found in
most textbooks on first order logic (FO). This prevalence of inductive definitions
indicates that these offer a natural and well-understood way of representing
knowledge. It is well-known that, in general, inductive definitions cannot be
expressed in first order logic.

It turns out, however, that certain knowledge representation logics do allow
a natural and uniform formalization of the most common forms of inductive
definitions. The authors of [6,7] pointed out that semantical studies in the area
of logic programming might contribute to a better understanding of such gen-
eralized forms of induction. In particular, it was argued that the well-founded
semantics of logic programming [19] extends monotone induction and formal-
izes induction over well-founded sets and iterated induction. The language of
FO(ID) uses the well-founded semantics to extend classical first order logic with
a new “inductive definition” primitive. In the resulting formalism, all kinds of
definitions regularly found in mathematical practice – e.g., monotone inductive
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definitions, non-monotone inductive definitions over a well-ordered set, and it-
erated inductive definitions – can be represented in a uniform way. Moreover,
this representation neatly coincides with the form such definitions would take in
a mathematical text. For instance, in FO(ID) the transitive closure of a graph
can be defined as:

{
∀x, y T ransCl(x, y) ← Edge(x, y)

∀x, y T ransCl(x, y) ← (∃zT ransCl(x, z) ∧ TransCl(z, y))

}
.

However, FO(ID) is able to handle more than only mathematical concepts. In-
deed, inductive definitions are also crucial in declarative Knowledge Representa-
tion. Not only non-inductive definitions are frequent in common-sense reasoning
as argued in [2], also inductive definitions are. For instance, in [8], it was shown
that situation calculus can be given a natural representation as an iterated in-
ductive definition. The resulting theory is able to correctly handle tricky issues
such as recursive ramifications, and is in fact, to the best of our knowledge, the
most general representation of this calculus to date. It thus appears that FO(ID)
has very strong links to several KR-paradigms.

As for every formal logical system, the development of deductive inference
methods is an important research topic. For instance, it is well-known that de-
ductive reasoning is a distinguished feature of Description Logics. However, be-
cause FO(ID) is not even semi-decidable, it is clear that a sound and complete
proof system for FO(ID) cannot exist. As such, we will have to investigate deduc-
tive systems for FO(ID) and the subclasses of FO(ID) for which these systems
are complete.

The initial motivation for the research of this paper is to extend Gentzen’s
sequent calculus LK [12,18] to obtain a proof system for FO(ID). We intended
to build a sequent calculus for FO(ID) which is sound in general and complete
for a useful subclass of FO(ID). The main challenge in building such a calculus
is the representation and inference of unfounded sets [10]. In our approach to
this problem, we represent unfounded sets by least fixpoint expressions borrowed
from SLFP [5]. Compton described stratified least fixpoint logic (SLFP) in [5],
which is a logic with a least fixpoint operator and characterizes the expressibility
of stratified logic programs. He used sequent calculus to investigate deductive
inference method for SLFP and proved the soundness and completeness of such
a proof system. This work is an extension of the previous work in [14], which
presents a sequent calculus for the propositional fragment of FO(ID), to the first
order case.

In our deductive system, we use Compton’s inference system for SLFP. Our
strategy consists of two steps. The first is to integrate least fixpoint expressions
into FO(ID), leading to the logic FO(ID,SLFP). In the logic FO(ID,SLFP), we
then build a proof calculus, which extends Compton’s sequent calculus for SLFP
with inference rules for the inductive definitions of FO(ID). By restricting input
to FO(ID), this proof calculus yields a proof system for FO(ID) then. However,
in proofs of FO(ID) formulae, some inference rules may introduce least fixpoint
expressions, and thus, proofs may contain expressions of FO(ID,SLFP).
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The contributions of this paper can be summarized as follows: (a) We study a
deductive inference method for FO(ID) based on stratified least fixpoint logic by
defining the logic FO(ID,SLFP) and introducing a sequent calculus for
FO(ID,SLFP). (b) We show that the deductive system is sound for a slightly
restricted fragment of FO(ID,SLFP), where all definitions have to be total. Also,
we investigate a more restricted fragment of FO(ID) and show the completeness
result of the sequent calculus for FO(ID,SLFP) for this fragment.

This work is a step forward in the development of domain independent deduc-
tive reasoning for FO(ID). This form of inference is similar as that in Description
Logics or classical logic but differs from Answer Set Programming which imposes
Domain Closure. Our deductive calculus and the completeness result for a frag-
ment of FO(ID), can be viewed as a step in developing tools similar as in the field
of description logics. In a similar aim, a decidable guarded fragment of FO(ID)
was described recently in [20].

The structure of this paper is as follows. We introduce FO(ID,SLFP) in Sec-
tion 2. We present a deductive system for FO(ID,SLFP) in Section 3. The main
results of the soundness and completeness of the deductive system are presented
in Section 4. We finish with conclusions, related and future work.

2 Preliminaries

We start by defining the logic FO(ID,SLFP), which is the extension of FO with
both inductive definitions and stratified least fixpoint expressions.

2.1 Syntax of FO(ID,SLFP)

In this subsection, we present the syntax of FO(ID,SLFP), which is an integra-
tion of FO(ID) and SLFP.

We assume familiarity with classical logic. A vocabulary Σ consists of Σc and
Σv where Σc consists of (countable) predicate constants and function symbols
while Σv is a (countable) set of predicate variables. Object symbols and proposi-
tional symbols are 0-ary function symbols, respectively predicate symbols. Terms
and first order formulae (FO formulae) of Σ are defined as usual, and are built
inductively from object symbols, function symbols, predicate symbols and logi-
cal connectives and quantifiers. A predicate symbol P has a negative (positive)
occurrence in a formula F if P has an occurrence in the scope of an odd (even)
number of occurrences of the negation symbol ¬.

First, we introduce the notation of a definition. A definition over Σ is a set
of rules of the form ∀x̄(P (x̄) ← ϕ), where x̄ is a tuple of object variables over
Σc, P is a predicate constant over Σc and ϕ is an FO formula over Σc such
that all the free variables of ϕ occur in x̄. We call P (x̄) the head of the rule
and ϕ the body. The connective ← is called definitional implication and is to be
distinguished from material implication ⊃. A predicate appearing in the head
of a rule of a definition D is called a defined predicate of D, any other symbol
is called an open symbol of D. The set of defined predicates, respectively open
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symbols of D are denoted by Σd
D, respectively, Σo

D = Σ \Σd
D. Notice that there

are no predicate variables occurring in the definition D.
Now we are ready to define the formulae of FO(ID,SLFP).

Definition 1. An FO(ID,SLFP) formula over Σ is defined by the following in-
duction:

– If X is an n-ary predicate symbol (predicate constant or predicate variable)
and t1, . . . , tn are terms then X(t1, . . . , tn) is a formula.

– If D is a definition then D is a formula.
– If ψ is a formula containing no free predicate variables, then ¬ψ is a formula.
– If ϕ, ψ are formulae, then so are ϕ ∧ ψ and ϕ ∨ ψ.
– If ψ is a formula, then ∃xψ is a formula.
– If ψ is a formula containing no free predicate variables, then ∀xψ is a for-

mula.
– If ψ, θ1, . . . , θn are formulae containing no definitions, X1, . . . , Xn are predi-

cate variables, then [LFPX1(x̄1),...,Xn(x̄n)(θ1, . . . , θn)]ψ is a formula and
called a stratified least fixpoint expression.

Note that the subformulae ψ, θ1, . . . , θn of a stratified least fixpoint expression
[LFPX1(x̄1),...,Xn(x̄n)(θ1, . . . , θn)]ψ may not contain definitions, but may contain
stratified least fixpoint expressions. Indeed, nesting of stratified least fixpoint
expressions is allowed in FO(ID,SLFP), but nesting of definitions is not. All
subformulae ψ, θ1, . . . , θn of an unnested stratified least fixpoint expression con-
tain only positive occurrences of predicate variables.

Definition 2. Each occurrence of an object variable x in formulae ∃xϕ and ∀xϕ
is bound. All occurrences of variables x̄1, . . . , x̄n in the subformulae θ1, . . . , θn of
a stratified least fixpoint expression [LFPX1(x̄1),...,Xn(x̄n)(θ1, . . . , θn)]ψ are bound.
Each occurrence of a predicate variable Xi inside subformulae ψ, θ1, . . . , θn of a
stratified least fixpoint expression [LFPX1(x̄1),...,Xn(x̄n)(θ1, . . . , θn)]ψ is bound.
All other occurrences of an object or predicate variable is free. Let us denote
free(ϕ) the set of object and predicate variables with a free occurrence in ϕ.

An FO(ID,SLFP) sentence is a formula without free variables. An FO formula
is an FO(ID,SLFP) formula without definitions and stratified least fixpoint ex-
pressions. An FO(ID) formula is an FO(ID,SLFP) formula without stratified
least fixpoint expressions, and an SLFP formula is one without definitions. An
FO(ID,SLFP) theory is a set of FO(ID,SLFP) sentences.

2.2 Semantics of FO(ID,SLFP)

The semantics of FO(ID,SLFP) is an integration of the semantics of FO(ID) and
the semantics of SLFP.

The semantics of the FO(ID) is an integration of standard two-valued FO
semantics with the well-founded semantics of definitions. For technical reasons,
we introduce some concepts from three-valued logic. Consider the set of truth
values {t, f ,u}. The truth order ≤ on this set is induced by f ≤ u ≤ t; the
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precision order ≤p is induced by u ≤p f and u ≤p t. Define f−1 = t, u−1 = u
and t−1 = f .

Given a domain D, a value for an n-ary function symbol is a function from Dn

to D. A value for an n-ary predicate symbol is a function from Dn to {t, f ,u}.
A Σ-interpretation I consists of a domain DI , and a value σI for each symbol
σ ∈ Σ. A two-valued interpretation is one in which predicates have range {t, f}.
For each interpretation F for the function symbols of Σ, both truth and precision
order have a pointwize extension to an order on all Σ-interpretations extending
F . A domain atom of I is a tuple of a predicate P ∈ Σ and a tuple (a1, . . . , an) ∈
Dn; it will be denoted by P (a1, . . . , an), or more compactly, P (ā).

For a given Σ-interpretation I, symbol σ and a value v for σ, we denote by
I[σ/v] the Σ ∪ {σ}-interpretation, that assigns to all symbols the same value as
I, expect that σI[σ/v] = v. Likewise, for a domain atom P (ā) and a truth value
v ∈ {t, f ,u}, we define I[P (ā)/v] as the interpretation I ′ identical to I except
that P (ā)I′

= P I′
(ā) = v. Similarly, for any set U of domain atoms, I[U/v] is

identical to I except that all atoms in U have value v. When Σ′ ⊆ Σ, we denote
the restriction of a Σ-interpretation I to the symbols of Σ′ by I|Σ′ .

When all symbols of term t are interpreted in I, we define its value tI using
the standard induction. The truth value ϕI of an FO sentence ϕ in I is defined
by the standard induction on the subformula order.

We now define the semantics of definitions. Firstly, we generalize the well-
known concept of an unfounded set [19].

Definition 3. Given a definition D and a three-valued Σ-interpretation I, an
unfounded set of D in I is a non-empty set U of defined domain atoms such
that each P (ā) ∈ U is unknown in I and for each rule ∀x̄(P (x̄) ← ϕ(x̄)) ∈ D,
ϕ(ā)I[U/f ] = f .

The set of all unfounded sets of D in I is denoted by UD(I). The maximal
unfounded set of D in I is defined by

⋃
X∈UD(I) X .

Definition 4. [10] We define a well-founded induction of a definition D ex-
tending a Σo

D-interpretation IO as a sequence (Iξ)ξ≤α of three-valued
Σ-interpretations extending IO such that:

– for every defined predicate symbol P , P I0
is the constant function u,

– for each limit ordinal λ ≤ α, Iλ = lub≤p({Iξ | ξ < λ}), and
– for each ordinal ξ, Iξ+1 relates to Iξ in one of the following ways:

1. Iξ+1 := Iξ[P (ā)/t], for some domain atom P (ā), unknown in Iξ, such
that for some rule ∀x̄(P (x̄) ← ϕ(x̄)) ∈ D, ϕ(ā)Iξ

= t;
2. Iξ+1 := Iξ[U/f ], where U is an unfounded set of D in Iξ.

A well-founded induction is terminal if it can not be extended anymore.

It can be shown that each well-founded induction of D extending IO is strictly
increasing in precision and the limit of every terminal well-founded induction of
D extending IO is the well-founded model of D [10].
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For a given three-valued interpretation I and definition D, we define DI = t
if I is the well-founded model of D extending I|Σo

D
, and DI = f otherwise. We

are now ready to define the semantics of FO(ID). An interpretation I satisfies an
FO(ID) formula ϕ (is a model of ϕ) if I is two-valued and ϕI = t. As usual, this
is denoted by I |= ϕ. I satisfies an FO(ID) theory T if I satisfies every ϕ ∈ T .
Note that the semantics is two-valued. The restriction to consider only two-
valued well-founded models boils down to the requirement that a definition D
should be total, i.e., should define the truth of all defined domain atoms (see [9]).

Definition 5. A definition D is total if for each Σo
D-interpretation IO, the well-

founded model of D extending IO is two-valued.

We now give the semantics of stratified least fixpoint expressions (see [5]). Let
ϕ be the form of [LFPX1(x̄1),...,Xn(x̄n)(θ1, . . . , θn)]ψ. Let α be an assignment to
all variables in this expression other than X1, . . . , Xn, x̄1, . . . , x̄n. A structure A
satisfies ϕ in the assignment α if A satisfies ψ in α′, where α′ is identical to
α except it assigns the least relations to every Xi (1 ≤ i ≤ n) satisfying the
implications ∀x̄1(X1(x̄1) ⊃ θ1), . . . , ∀x̄n(Xn(x̄n) ⊃ θn).

3 The Deductive System for FO(ID,SLFP)

In this section, we present LFO(ID,SLFP), a proof system for FO(ID,SLFP)
based on Gentzen’s sequent calculus LK for first order logic [12,18].

First, we introduce some basic definitions and notations. Let capital Greek
letters Γ, Δ, . . . denote (possibly empty) multisets of FO(ID,SLFP) formulae.
Γ, Δ denotes Γ ∪ Δ and Γ, ϕ denotes Γ ∪ {ϕ}. By

∧
Γ , respectively

∨
Γ , we

denote the conjunction, respectively disjunction of all formulae in Γ . By ¬Γ ,
we denote the multiset obtained by taking the negation of each formula in Γ .
By Γ \ Δ, we denote the multiset obtained by deleting from Γ all occurrences
of formulae that occur in Δ. Given an FO(ID,SLFP) formula ϕ, by ϕ(x/t), we
denote the formula obtained by substituting all free occurrences of the object
variable x in ϕ by term t.

A sequent is an expression of the form Γ → Δ. Γ and Δ are respectively
called the antecedent and succedent of the sequent and each formula in Γ and
Δ is called a sequent formula. We will denote sequents by S, S1, . . .. A sequent
Γ → Δ is valid, denote by |= Γ → Δ, if every model of

∧
Γ satisfies some

formula in Δ. The sequent Γ → is equivalent to Γ → ⊥ and → Δ is equivalent
to � → Δ, where ⊥,� are logical constants denoting false and true, respectively.

An inference rule is an expression of the form
S1; . . . ; Sn

S
(n ≥ 0). Each Si

is called a premise of the inference rule, S is called consequence. Intuitively, an
inference rule means that S can be inferred, given that all S1, . . . , Sn are already
inferred.

The sequent calculus for SLFP, mentioned in [5], contains an infinitary infer-
ence rule for stratified least fixpoint expression with countably infinite number
of premises. In [5], it is shown that SLFP is not compact. It follows that we must
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have some sort of infinitary rule in any complete sequent calculus for SLFP. Such

infinitary rules are expressed in the form:
Γm → Δm (m ∈ ω)

Γ → Δ
.

The initial sequents, or axioms, of LFO(ID,SLFP) are the sequents of the
form

ϕ, Γ → Δ, ϕ or ⊥ → Δ or Γ → � or Γ → Δ, t = t

The inference rules for LFO(ID,SLFP) consists of the structural rules, logical
rules, equality rules, the stratified least fixpoint rules and definition rules. We
use the standard structural rules, logical rules and equality rules as given in
many sources (see e.g. [4]).

The inference rules for the stratified least fixpoint expressions follow those
in [5], which are of the form:

Stratified least fixpoint rules

left:
Γ, [LFPP1(x̄1),...,Pn(x̄n)(θ1, . . . , θn)]

m
ψ → Δ (m ∈ ω)

Γ, [LFPP1(x̄1),...,Pn(x̄n)(θ1, . . . , θn)]ψ → Δ
;

right:
Γ → Δ, [LFPP1(x̄1),...,Pn(x̄n)(θ1, . . . , θn)]

m
ψ

Γ → Δ, [LFPP1(x̄1),...,Pn(x̄n)(θ1, . . . , θn)]ψ

Notice that the left stratified least fixpoint rule is infinitary: it has countably
many premises while in the right stratified least fixpoint rule there is just one
premise: m is a fixed nonnegative integer.

To these rules we add the definition rules of LFO(ID,SLFP). The defini-
tion rules consist of the right definition rule, the left definition rule and the
definition introduction rule. The left definition rule, respectively, the right defi-
nition rule, can introduce the defined predicates in the antecedents, respectively,
in the succedents, of the sequents. The definition introduction rule can intro-
duce the total definitions in the succedents of the sequents. Without loss of
generality, we assume from now on that there is only one rule with the head
P (x̄) in a definition D for every P ∈ Σd

D. We refer to this rule as the rule
for P in D and denote it by ∀x̄(P (x̄) ← ϕP (x̄)). Indeed, any set of rules
{∀x̄(P (x̄) ← ϕ1), . . . , ∀x̄(P (x̄) ← ϕn)} can be transformed into a single rule
∀x̄(P (x̄) ← ϕ1 ∨ . . . ∨ ϕn).

The right definition rule allows inferring the truth of a defined atomic formula
from a definition D. It is closely related to the step (1) of Definition 4. Let D be
a definition and P a defined predicate of D. Then the right definition rule for P
is given as follows.

Right definition rule for P
Γ → Δ, ϕP (t̄)

D, Γ → Δ, P (t̄)
.

Example 1. Consider the definition D of the transitive closure of a directed graph
G as

{
∀x, y(T (x, y) ← G(x, y) ∨ ∃z(T (x, z) ∧ T (z, y)))

}
, Γ = {G(a, b), G(b, c)}

and Δ an empty set. The instance of the right definition rule for T (a, c) is
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G(a, b), G(b, c) → G(a, c) ∨ ∃z(T (a, z)∧ T (z, c))
D, G(a, b), G(b, c) → T (a, c)

.

The left definition rule allows inferring the falsity of defined atoms from a defi-
nition D and is therefore related to step (2) of Definition 4. We first introduce
some notations. Given a set U of predicate symbols, let U ′ be a set consisting of
new predicate symbol P ′ for every P ∈ U . The vocabulary Σ augmented with
these new symbols is denoted by Σ′. Given an FO formula ϕ, ϕ′ denotes the
formula obtained by replacing all positive occurrences of every P ∈ U in ϕ by
P ′. We call ϕ′ the renaming of ϕ with respect to U . By ¬ϕ′, we mean ¬(ϕ′).

Let D be a definition and U = {P1, . . . , Pn} a non-empty set of defined pred-
icates of D. Let ψ1(x̄1), . . . , ψn(x̄n) be n arbitrary FO formulae over Σ or strat-
ified least fixpoint expressions over Σ with x̄i as many fresh variables as the
arity of Pi(x̄i). Then the left definition rule for ({P1(x̄1) | ψ1(x̄1)}, . . . , {Pn(x̄n) |
ψn(x̄n)}) is given as follows.

Left definition rule for {Pi(x̄i) | ψi(x̄i)}i∈[1,n]

Γ, ∀x̄1(ψ1(x̄1) ⊃ ¬P ′
1(x̄1)), . . . ,∀x̄n(ψn(x̄n) ⊃ ¬P ′

n(x̄n)) → Δ,∀x̄1(ψ1(x̄1) ⊃ ¬ϕ′
P1

(x̄1))
...

Γ, ∀x̄1(ψ1(x̄1) ⊃ ¬P ′
1(x̄1)), . . . ,∀x̄n(ψn(x̄n) ⊃ ¬P ′

n(x̄n)) → Δ, ∀x̄n(ψn(x̄n) ⊃ ¬ϕ′
Pn

(x̄n))

D,Γ,∃x̄i(ψi(x̄i) ∧ Pi(x̄i)) → Δ

where Γ and Δ are multisets of FO(ID,SLFP) formulae over Σ and ϕ′
Pi

(x̄i) is
the renaming of ϕPi(x̄i) with respect to U .

Actually, in the left definition rule, the set of atoms {P1(x̄1) | ψ1(x̄1)} ∪ . . .∪
{Pn(x̄n) | ψn(x̄n)} is a symbolic representation of a candidate unfounded set
of D.

Example 2. Given the definition D of the transitive closure of a directed graph
G as

{
∀x, y(T (x, y) ← G(x, y) ∨ ∃z(T (x, z) ∧ T (z, y)))

}
, Γ = {¬∃xG(x, a)} and

Δ an empty set. The instance of the left definition rule for ({T (x, y) | y = a}) is
as follows:

¬∃xG(x, a), ∀x, y(y = a ⊃ ¬T ′(x, y)) →
∀x, y(y = a ⊃ ¬G(x, y) ∧ ¬∃z(T ′(x, z) ∧ T ′(z, y)))

D,¬∃xG(x, a), ∃x, y(y = a ∧ T (x, y)) → .

Notice that the set {T (x, y) | y = a} is the symbolic representation of a un-
founded set of D here.

The definition introduction rule allows inferring the truth of a total definition
from FO(ID,SLFP) formulae. We introduce some notations. Let D be a total
definition. Denote by PR a new defined predicate for each P ∈ Σd

D. Denote
by ΣR the vocabulary Σ ∪ {PR | P ∈ Σd

D}. Denote by DR the definition over
the new vocabulary ΣR obtained by replacing each occurrence of each defined
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predicate P in D by PR. Let Γ and Δ be multisets of FO(ID,SLFP) formulae
over Σ. The definition introduction rule for D is given as follows.

Definition introduction rule

Γ, DR → ∀x̄1(PR
1 (x̄1) ≡ P1(x̄1)), Δ; . . . ; Γ, DR → ∀x̄n(PR

n (x̄n) ≡ Pn(x̄n)), Δ
Γ → Δ, D

,

where P1, . . . , Pn are all defined predicates of D.

Example 3. Given a definition D =
{
∀x(P (x) ← P (x) ∧ O(x))

}
, Γ = {∀xO(x),

∀x¬P (x)} and Δ an empty set. The instance of the definition introduction rule
for D is as follows:

DR, ∀xO(x), ∀¬P (x) → ∀x(PR(x) ≡ P (x))
∀xO(x), ∀x¬P (x) → D

,

where DR =
{
∀x(PR(x) ← PR(x) ∧ O(x))

}
.

It is necessary to emphasize that the definition D in the definition introduc-
tion rule is required to be total. We will give an example to show that this
inference rule is not sound if D is not total. Actually, there are practically im-
portant syntactic classes of definitions which are known to be total, including
positive definitions, stratified definitions and definitions over a well-founded or-
der (see [9]).

We now come to the notion of an LFO(ID,SLFP)-proof for a sequent.

Definition 6. A proof in LFO(ID,SLFP) or LFO(ID,SLFP)-proof for a
sequent S, is a tree T of sequents with root S. Moreover, each leaf of T must be
an axiom and for each interior node S′ there exists an inference rule such that
S′ is the consequence of that inference rule while the children of S′ are precisely
the premises of that inference rule. T is called a proof tree for S. A sequent S
is called provable in LFO(ID,SLFP), or LFO(ID,SLFP)-provable, if there is
an LFO(ID,SLFP)-proof for it.

4 Main Results

In this section, we will present that the deductive system LFO(ID,SLFP) is
sound for a slightly restricted fragment of FO(ID,SLFP) and it is complete with
respect to a more restricted fragment of FO(ID,SLFP).

It is trivial to verify that all axioms of LFO(ID,SLFP) are valid and that the
structural and logical rules and the rules for equality are sound. The soundness
of the stratified least fixpoint rules can be shown analogously to that in [5].
Hence, only the soundness of the definition rules of LFO(ID,SLFP) must be
presented.

Lemma 1 (Soundness of the right definition rule). If |= Γ → Δ, ϕP (t̄)
then |= D, Γ → Δ, P (t̄).
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Lemma 2 (Soundness of the left definition rule). If |= Γ, ∀x̄1(ψ(x̄1) ⊃
¬P ′

1(x̄1)), . . . , ∀x̄n(ψn(x̄n) ⊃ ¬P ′
n(x̄n)) → Δ, ∀x̄i(ψi(x̄i) ⊃ ¬ϕ′

Pi
(x̄i)) for every

i ∈ [1, n], then |= D, Γ, ∃x̄i(ψi(x̄i) ∧ Pi(x̄i)) → Δ for all i ∈ [1, n].

Lemma 3 (Soundness of the definition introduction rule). Let D be a
total definition. If |= DR, Γ → Δ, ∀x̄(P (x̄) ≡ PR(x̄)) for every P ∈ Σd

D, then
|= Γ → Δ, D.

Note that the definition introduction rule is not sound if D is not total. We
illustrate it with an example.

Example 4. Given a definition D =
{
∀x(P (x) ← ¬P (x))

}
and Γ an empty set.

It is obvious that DR is non-total. Thus, |= DR → ∀x(PR(x) ≡ P (x)) but
�|=→ D, which shows that the definition introduction rule is not sound when D
is non-total.

By the fact that all inference rules in LFO(ID,SLFP) are sound if all definitions
occurring in them are total and a straightforward induction, the soundness of
LFO(ID,SLFP) can now be obtained.

Theorem 1 (Soundness of LFO(ID,SLFP)). If a sequent of Γ → Δ is
provable in LFO(ID,SLFP) and all definitions in Γ and Δ are total, then
|= Γ → Δ.

In the following, we present the completeness property of LFO(ID,SLFP) for
a fragment of FO(ID,SLFP). First, we define a special class of definitions.

Definition 7. A definition D is an S-definition if the body of each rule in D
satisfies the following conditions:

– it is in negation normal form (NNF).
– all occurrences of defined predicates in its subformula ∃xϕ are positive.
– all occurrences of defined predicates in its subformula ∀xϕ are negative.
– all occurrences of open predicates are in arbitrary ways.

Example 5. D =
{
∀x, y(T (x, y) ← G(x, y) ∨ ∃z(T (x, z) ∧ T (z, y)))

}
is an S-

definition. D =
{

∀x, y(T (x, y) ← G(x, y) ∨ ∃z(Q(x, z) ∧ ¬Q(z, y)))
∀x, y(T (x, y) ← ¬O(x, y) ∨ ∀z(¬T (x, z) ∨ T (z, y)))

}
is not an

S-definition because there is a positive occurrence of T in ∀z(¬T (x, z)∨T (z, y))
while there is a negative occurrence of Q in ∃z(Q(x, z) ∧ ¬Q(z, y)).

It is obvious that some familiar types of definitions such as non-recursive defini-
tions and positive definitions [9] are S-definitions. However, not all S-definitions
are total. For example, ∀x(P (x) ← ¬P (x)) is an S-definition but it is not total.

An SFO(ID,SLFP) formula is an FO(ID,SLFP) formula with the restriction
that all definitions occurring in it are S-definitions. SFO(ID,SLFP) is the com-
plete fragment of FO(ID,SLFP) with respect to LFO(ID,SLFP), as shown
later.

The maximal unfounded set of an S-definition can be represented by the
negation of stratified least fixpoint expressions, which is an important property
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of S-definitions and will be applied in the completeness proof. It is demonstrated
by the following proposition, where the notation of ϕ′

Pi
is same as that in the

left definition rule and ϕ′
Pi

(P ′
1/X1, . . . , P

′
m/Xm) denotes the formula obtained

by replacing every occurrence of every P ′
j (j ∈ [1, n]) in ϕ′

Pi
by Xj .

Proposition 1. Let D be an S-definition and (Iξ)ξ≤α a well-founded induction
of D. Let Iξ+1 = Iξ[U/f ] where U is the maximal unfounded set of D in Iξ.
Suppose that {P1, . . . , Pm} is the set of all defined predicates occurring in U .
Then {P1(x̄1) |
¬([LFPX1(x̄1),...,Xm(x̄m)(ϕ

′
P1

(P ′
1/X1, . . . , P

′
m/Xm), . . . , ϕ′

Pm
(P ′

1/X1, . . . , P
′
m/Xm))]X1(x̄1))}

∪ . . . ∪ {Pm(x̄1) |
¬([LFPX1(x̄1),...,Xm(x̄m)(ϕ

′
P1

(P ′
1/X1, . . . , P

′
m/Xm), . . . , ϕ′

Pm
(P ′

1/X1, . . . , P
′
m/Xm))]Xm(x̄m))}

is a symbolic representation of U .
We now turn to show the completeness of LFO(ID,SLFP) for SFO(ID,SLFP).
The proof is an extension of the direct style of completeness proof for Gentzen’s
LK as given in e.g. [4]. The structure of the completeness proof is then roughly
as follows:

1. Assume that Γ → Δ is not provable, construct from Γ → Δ a limit sequent
Γω → Δω , where Γω and Δω are infinite sets, such that no finite subsequent
of Γω → Δω is provable by using a uniform proof-search procedure, namely
schedule, on which every formula of FO(ID,SLFP) appears infinitely often.

2. Define an equivalence relation ∼ on the terms of Σ that essentially factors
out the equality formulae appearing in Γω and use Γω → Δω to construct a
partial Σ-interpretation Iω that interprets all symbols in Σ except all defined
predicates.

3. Prove that Γω \Πω → Δω \Υω is false in Iω , where Πω is the multiset of all
definitions appearing in Γω and Υω is the multiset of all definitions appearing
in Δω.

4. Use Iω to construct a model Mω and prove that Mω is the well-founded
model for every definition appearing in Γω and Mω is not the well-founded
model for every definition appearing in Δω .

5. It now follows from step 3 and step 4 that every finite subsequent of Γω → Δω

is false in Mω, including Γ → Δ, so Γ → Δ is not valid.

Steps 1,2,3 and the analogous version of step 5 also appears in standard com-
pleteness proof for first order logic. However, in our proof, the construction of
the limit sequent in step 1 must take into account of the stratified least fixpoint
rules. Applications of stratified least fixpoint rules must also be accounted for
in step 3. The new work in our proof goes into establishing that Mω defined in
step 4 is indeed a well-founded model for every definition appearing in Γω but
Mω is not a well-founded model for every definition appearing in Δω , where the
Proposition 1 is applied.

Theorem 2 (Completeness of SFO(ID,SLFP)). Let Γ, Δ be multisets of
SFO(ID,SLFP) formulae. If Γ → Δ is valid and all definitions occurring in Γ
and Δ are total, then Γ → Δ is provable in LFO(ID,SLFP).
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5 Conclusions, Related and Future Work

We present a deductive system for FO(ID) based on least fixpoint logic by intro-
ducing the logic FO(ID,SLFP) and extending Gentzen’s sequent calculus for first
order logic to the proof system LFO(ID,SLFP) for FO(ID,SLFP). The main
technical results are the soundness theorem of LFO(ID,SLFP) for a slightly re-
stricted fragment of FO(ID) and the completeness theorem of LFO(ID,SLFP)
for a more restricted fragment of FO(ID).

Related work is provided by Brotherston in [3]. He introduced the language
FOLID of first order logic with the schema for inductive definitions, which is
based upon Martin-Löf’s “ordinary production” [17] and developed a proof sys-
tem which is sound and complete with respect to a standard model in FOLID.
A similar work to Brotherston’s is studied by Hagiya and Sakurai in [13]. They
proposed to interpret a (stratified) logic program as iterated inductive definitions
of Martin-Löf and developed a proof theory which is sound with respect to the
perfect model, and hence, the well-founded semantics of logic programming. Ac-
tually, both the FOLID and the stratified logic programs as iterative definitions
can be generalized in FO(ID). A formal proof system based on tableau methods
for analyzing computation for Answer Set Programming (ASP) was given as well
by Gebser and Schaub [11]. As shown in [15], ASP is closely related to FO(ID).
Their approach furnishes declarative and fine-grained instruments for charac-
terizing operations as well as strategies of ASP-solvers and provides a uniform
proof-theoretic framework for analyzing and comparing different algorithms.

The first topic for future work is the development of tools to check the cor-
rectness of the outputs generated by FO(ID) model generators such as Min-
iSat(ID) [16]. Given an FO(ID) theory T and a finite domain D as input, a
model generator outputs a model for T with domain D or concludes that T is
unsatisfiable in D. In the former case, an independent model checker can be used
to check whether the output is indeed a model of T . However, when the model
generator concludes that T is unsatisfiable in D, it is less obvious how to check
the correctness of this answer. A similar problem arises in SAT, where certain
solvers can output a trace of a failed computation in the form of a resolution
proof [21]. An independent proof checker can then be used to check this formal
proof. For the future, we aim to study how to transform a trace of the compu-
tation of a model generator such as MiniSat(ID) into a proof of (a propositional
version of) our proof system. Model and proof checkers can be a great help
to detect bugs in model generators. Also we intend to develop semi-automated
and automated theorem proving systems for FO(ID) from the current deduc-
tive system for FO(ID) based on the least fixpoint logic, which may have more
applications and implementations.
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15. Mariën, M., Gilis, D., Denecker, M.: On the relation between ID-Logic and Answer
Set Programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 108–120. Springer, Heidelberg (2004)
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Abstract. Propositional satisfiability (SAT) solvers provide a promising com-
putational platform for logic programs under the stable model semantics. How-
ever, computing stable models of a logic program using a SAT solver presumes
translating the program into a set of clauses which is the input form accepted by
most SAT solvers. This leads to fairly complex super-linear translations. There
are, however, interesting extensions to plain clausal propositional representations
such as difference logic. A number of solvers have been developed for differ-
ence logic, in particular in the context of the satisfiability modulo theories (SMT)
framework, and the goal of the paper is to study whether such engines could be
harnessed to the computation of stable models for logic programs in an effective
way. To this end, we provide succinct translations from logic programs to theories
of difference logic and evaluate the potential of SMT solvers in the computation
of stable models using these translations and a selection of benchmarks.

1 Introduction

Normal logic programs, or just normal programs for short, form a simple yet attrac-
tive formalism for knowledge representation under the stable model semantics [1] and
the basis for solving search problems according to the answer set programming (ASP)
paradigm [2,3,4]. The fragment of normal logic programs is comprehensively supported
by the current ASP systems, such as SMODELS [5], DLV [6], and CLASP [7] which are
otherwise different when it comes to language extensions.

In addition to the native ASP systems listed above, a number of other systems have
been developed to exploit SAT solvers in the computation of stable models. The idea
is, of course, to benefit from the rapid development of SAT solvers. The basic approach
comprises of (i) computing Clark’s completion Comp(P ) [8] for an input program P ,
(ii) transforming Comp(P ) into conjunctive normal form, and (iii) invoking a SAT
solver to find a satisfying assignment for Comp(P ). However, such a procedure is
correct for only certain subclasses of normal programs, out of which tight [9] logic
programs are perhaps most well-known. For a tight programP , the sets of stable models
SM(P ), supported models SuppM(P ), and classical models of Comp(P ) coincide.1

� A preliminary version of this paper was presented at the Second International Workshop on
Logic and Search (LaSh 2008). This research has been partially funded by the Academy of
Finland under project #122399.

1 To this end, the completion Comp(P ) must be formed without new atoms.
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To deal with non-tight programs further constraints become necessary in addition
to Comp(P ). One possibility is to introduce loop formulas [10] on the fly to exclude
models of the completion which are not stable. As witnessed by the ASSAT system [10]
this strategy can be highly efficient. A drawback of the approach is that, at worst, the
number of loop formulas introduced by the solver can become exponential in program
length (denoted ‖P‖). Although the number of loop formulas often stays reasonably
low, e.g., when computing just one stable model, they can become a bottleneck when
finding all models—or proving their non-existence—is of interest. There is a follow-
up system CMODELS [11] which implements an improved ASP-SAT algorithm detailed
in [12]. As demonstrated therein, there are logic programs for which the number of
supported models is exponentially higher than that of stable models. Therefore, extra
bookkeeping is required in order to avoid repetitive disqualification of supported but
unstable models. An analogous problem is encountered when the task is to compute all
stable models for a logic program having an exponential number of stable models and
the recomputation of models should be avoided. To reduce space consumption when
searching for stable models, the implementation of ASP-SAT algorithm in CMODELS

attempts to identify and record small reasons for disqualifying models.
The translations from normal programs into propositional theories [13,14,15] pro-

vide a way to circumvent the worst-case behavior of the strategy based on loop for-
mulas. However, the translation from [13] does not yield a one-to-one correspondence
of models and the one from [14] is quadratic which makes it infeasible for larger pro-
gram instances. The latest proposal [15] exploits a characterization of stable models in
terms of level numberings—which lead to a translation with the size of the order of
‖P‖ × log2 |At(P )| where At(P ) is the set of atoms appearing in P . The implemen-
tation, the LP2SAT system, compared favorably with CMODELS especially when used
with RELSAT to compute all stable models for logic programs [15].

Recently, it has been shown that stable models of normal programs can be captured
in an extension of propositional logic, called difference logic, using an approach [16]
which is quite close to the level numbering technique in [15]. Difference logic [17] can
be seen as an instance of the satisfiability modulo theories (SMT) framework [18,19]
where propositional logic is extended by allowing simple linear constraints of the form
xi + k ≥ xj where xi, xj are integer variables and k is an integer constant. Such
linear constraints enable to express differences xj − xi ≤ k which are useful in vari-
ous applications. Moreover, efficient implementation techniques for difference logic are
emerging in the SMT framework [17,20].

The idea of the paper is to develop effective compact translations from logic programs
to difference logic based on results in [15,16]. The translations reduce stable model com-
putation to finding satisfying interpretations of difference logic theories. Hence, SAT
solvers for difference logic can be used for computing stable models without any modi-
fications. This provides a novel way of implementing stable model computation where it
is possible to exploit directly the rapidly improving SMT solver technology. Moreover,
the translations offer an interesting method for generating challenging benchmarks for
these solvers and can help to boost their development even further. We provide some
experimental results on the effectiveness of the approach using off-the-shelf solvers for
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difference logic. The results suggest that this approach can potentially lead to a very
competitive technique for stable model computation.

The rest of the paper is structured as follows. In the next section we explain briefly
the necessary basics of normal logic programs and difference logic. In Section 3 the
translations from logic programs to difference logic are explained. Section 4 provides
an experimental evaluation of the translations compared to state-of-the-art techniques
for computing stable models. The paper is concluded in Section 5.

2 Preliminaries

A propositional normal program P is a set of rules of the form

a ← b1, . . . , bn,∼c1, . . . ,∼cm (1)

where a, b1, . . . , bn, and c1, . . . , cm are propositional atoms, and ∼ denotes default
negation. In the sequel, propositional atoms are called just atoms for short. Intuitively
speaking, a rule r of the form (1) is applied as follows: the head atom H(r) = a can
be inferred by r if the positive body atoms in B+(r) = {b1, . . . , bn} are inferable by
the rules of the program, but not the negative body atoms in B−(r) = {c1, . . . , cm}.
We write B(r) for the entire body B+(r) ∪ {∼c | c ∈ B−(r)} of r. In addition, the
positive part r+ of a rule r is defined as H(r) ← B+(r) hence omitting negative body
conditions. A normal programP is called positive, if r = r+ holds for every rule r ∈ P .

To define the semantics of normal programs, we write At(P ) for the set of atoms
that appear in a program P . An interpretation I ⊆ At(P ) of P determines which
atoms a ∈ At(P ) are true (a ∈ I) and which atoms are false (a ∈ At(P ) \ I). A rule
r is satisfied in I , denoted by I |= r, iff I |= H(r) is implied by I |= B(r) where ∼ is
treated classically, i.e., I |= ∼ci iff I �|= ci. An interpretation I is a (classical) model
of P , denoted I |= P , iff I |= r for each r ∈ P . A model M |= P is a minimal model
of P iff there is no model M ′ |= P such that M ′ ⊂ M . In particular, every positive
normal program P has a unique minimal model, i.e., the least model LM(P ) of P .

The least model semantics can be extended to cover an arbitrary normal program
P [1] by reducing P into a positive program PM = {r+ | r ∈ P and M ∩ B−(r) = ∅}
with respect to any model candidate M ⊆ At(P ). In particular, an interpretation M ⊆
At(P ) is a stable model of P iff M = LM(PM ). The number of stable models can
vary in general and we write SM(P ) for the set of stable models of P .

The stable model semantics was preceded by an alternative semantics, namely the
one based on supported models [21]. A classical model M of a normal program P is a
supported model of P iff for every atom a ∈ M there is a rule r ∈ P such that H(r) = a
and M |= B(r). Inspired by this idea, we define for any program P and I ⊆ At(P ), the
set of supporting rules SuppR(P, I) = {r ∈ P | I |= B(r)}. As shown in [22], stable
models are also supported models, but not necessarily vice versa.

The positive dependency graph DG+(P ) of P is a pair 〈At(P ),≤〉 where b ≤ a
iff there is a rule r ∈ P such that H(r) = a and b ∈ B+(r). A strongly connected
component (SCC) of DG+(P ) is a non-empty and maximal subset S ⊆ At(P ) such
that a ≤∗ b and b ≤∗ a hold for each a, b ∈ S and the reflexive and transitive closure ≤∗

of ≤. The set of SCCs of DG+(P ) is denoted by SCC+(P ). The set of rules associated
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with a component S ∈ SCC+(P ) is DefP (S) = {r ∈ P | H(r) ∈ S}. The same
notation is also overloaded for single atoms by setting DefP (a) = DefP ({a}). The
component S ∈ SCC+(P ) associated with an atom a ∈ At(P ) is denoted by SCC(a).

The completion of a normal program P , denoted by Comp(P ), contains a formula
a ↔

∨
r∈DefP (a)(

∧
b∈B+(r) b ∧

∧
c∈B−(r) ¬c) for each atom a ∈ At(P )2. It is well-

known that the set of supported models SuppM(P ) coincides with the set of classical
models of Comp(P ), denoted by CM(Comp(P )).

Formulas of difference logic (see, e.g., [17]) combine atomic propositions and linear
constraints of the form xi+k ≥ xj where k is an arbitrary integer constant and xi, xj are
integer variables with propositional connectives (¬,∨,∧,→,↔). Hence, for instance,
(x1 + 2 ≥ x2) ↔ (p1 → ¬(x2 + 2 ≥ x1)) is a formula in difference logic. An
interpretation in difference logic assigns truth values to atomic propositions and integers
to integer variables. For example, an interpretation where p1 is false and both integer
variables x1 and x2 are given the value 1 satisfies the formula shown above.

As difference logic contains classical propositional logic as a special case, the satis-
fiability problem of deciding whether there is a satisfying interpretation for a formula in
difference logic is NP-hard. The problem is also NP-complete, and, for example, [17,20]
present SMT-based techniques for solving the satisfiability problem.

3 Translations

As suggested in Section 1, Clark’s completion [8] forms a basic step when a normal
logic program P is translated into a set of formulas in difference logic. For the com-
pletion we introduce a new atom for each rule body to make the rest of the translation
more compact. The resulting representation of Comp(P ) is denoted by CompN(P ) for
clarity. In order to define the contribution of each atom a ∈ At(P ) in CompN(P ), we
refer to the set of rules DefP (a) = {r1, . . . , rk} and introduce a new name bdi

a for
each rule ri involved. Each individual rule ri ∈ DefP (a) of the form (1) is encoded by
an equivalence (2) and the entire definition DefP (a) is captured by (3).

bdi
a ↔ b1 ∧ · · · ∧ bn ∧ ¬c1 ∧ · · · ∧ ¬cm (2)

a ↔ bd1
a ∨ · · · ∨ bdk

a (3)

Example 1. Consider a logic program P consisting of the following six rules:

1. a ← b, c. 3. c ← ∼d. 5. a ← d.
2. b ← a,∼d. 4. d ← ∼c. 6. b ← a,∼c.

Corresponding to the bodies of these rules, the theory CompN(P ) contains

bd1 ↔ b ∧ c, bd3 ↔ ¬d, bd5 ↔ d,
bd2 ↔ a ∧ ¬d, bd4 ↔ ¬c, bd6 ↔ a ∧ ¬c

in addition to equivalences (3) for the definitions of individual atoms:

a ↔ bd1 ∨ bd5, b ↔ bd2 ∨ bd6, c ↔ bd3, and d ↔ bd4.

2 As usual we treat a disjunction over the empty set as ⊥ and a conjunction as �.
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Due to new atoms bd1, . . . ,bd6, the models of the completion Comp(P ) are ob-
tained as projections of models of CompN(P ) over the original signature At(P ) =
{a, b, c, d}. For the program P given above, the classical models of CompN(P ) are
N1 = {a, b, c,bd1, bd2, bd3}, N2 = {c, bd3}, and N3 = {a, b, d, bd4, bd5, bd6}.
The respective members of CM(Comp(P )) are M1 = {a, b, c}, M2 = {c}, and
M3 = {a, b, d}. However, only the last two models are stable models of P . �

In addition to the completion CompN(P ) defined above, the translation involves rank-
ing constraints which characterize stable models using simple linear constraints of the
form allowed in difference logic. The approach captures stable models using mappings
from the atoms in a model to integers: a supported model of a program is stable exactly
when the model has such a mapping satisfying a set of simple linear constraints [16].
Such a mapping is called a level ranking in [16] and in this paper we call the corre-
sponding linear constrains weak ranking constraints enforcing the stability of the mod-
els obtained for the completion. In [16] it is shown that each stable model has a unique
level ranking if a further set of linear constraints, here called strong ranking constraints,
is added.

First we describe the translation TrwDIFF(P ) which extends CompN(P ) with weak
ranking constraints. Our encoding utilizes two new atoms exta and inta for each atom
a ∈ At(P ) having a non-trivial component SCC(a) in the graph SCC+(P ) satisfying
|SCC(a)| > 1. The idea is to classify rules in SuppR(DefP (a),M) given a supported
model M ⊆ At(P ) as a candidate for a stable model. Now TrwDIFF(P ) includes for
each such atom a the external and internal support formulas

exta ↔
∨

ri∈DefP (a), B+(ri)∩SCC(a)=∅
bdi

a (4)

inta ↔
∨

ri∈DefP (a), B+(ri)∩SCC(a) �=∅
[bdi

a ∧
∧

b∈B+(ri)∩SCC(a)

(xa − 1 ≥ xb)] (5)

where xa and xb are integer variables introduced for all atoms in SCC(a). The rela-
tionship of external and internal support is formalized by including, for each atom a
residing in a non-trivial component, formulas a → exta ∨ inta and ¬exta ∨ ¬inta.
In addition, we fix the value of the variable xa when the atom a has external support
by introducing an implication exta → (xa = z)3 if there is at least one defining rule
r ∈ DefP (a) such that B+(r)∩SCC(a) = ∅. The translation above is a slight extension
of that in [16] as it explicates the internal and external support and their relationship.

The weak ranking constraints require that there is an assignment of integers to the
variables xa for atoms a residing in non-trivial SCCs such that each such atom a true in
the model candidate M but lacking external support, has internal support. This means
that the variablexa is assigned an integer so that there is a rule r ∈ SuppR(DefP (a),M)
with B+(r) ∩ SCC(a) �= ∅ for which xa > xb holds for every b ∈ B+(r) ∩ SCC(a).
Such an assignment of integers to variables xa gives a weak level ranking for the atoms
a in the model candidate M and it can be shown that a supported model with such

3 Since xa = 0 is not directly expressible in pure difference logic, we use a special variable z
assumed to hold the value 0 and the shorthand (xa = z) for the formula (xa ≥ z)∧ (z ≥ xa).
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a ranking is guaranteed to be stable [16]. The net effect is the elimination of models
of the completion, i.e., supported models, which are not stable. Hence, weak ranking
constraints are sufficient whenever the goal is to compute only one stable model, or to
check the existence of stable models.

Example 2. The program P of Example 1 has only one non-trivial SCC, i.e., the com-
ponent SCC(a) = SCC(b) = {a, b}. The external and internal supports of a and b,
respectively, are captured by the following equivalences:

exta ↔ bd5, inta ↔ bd1 ∧ (xa − 1 ≥ xb),
extb ↔ ⊥, intb ↔ [bd2 ∧ (xb − 1 ≥ xa)] ∨ [bd6 ∧ (xb − 1 ≥ xa)].

Moreover, external and internal support are related in terms of formulas a → exta ∨
inta, ¬exta ∨¬inta, exta → (xa = z), b → extb ∨ intb, ¬extb ∨¬intb. There are two
kinds of models for the translation TrwDIFF(P ) introduced so far:

1. N2 = {c, bd3} together with arbitrary assignments to xa, xb, and z; and
2. N3 ∪ {exta, intb} = {a, b, d, bd4, bd5, bd6, exta, intb} augmented by any assign-

ments satisfying xa = z and xb > z.

In particular, the interpretation N1 = {a, b, c,bd1, bd2, bd3} given in Example 1 can-
not be extended to a model, as exta and extb must be false and, consequently, inta

and intb must be true. Hence, inequalities xa − 1 ≥ xb and xb − 1 ≥ xa have to be
simultaneously satisfied. But this is impossible—witnessing the instability of M1. �

As suggested by Example 2, weak ranking constraints do not guarantee the uniqueness
of models obtained, i.e., the same stable model can in principle be encountered a number
of times—which may effectively pre-empt the computation of all stable models, or
counting the number of stable models. In the sequel, we explore two variants of strong
ranking constraints. Roughly, the idea is to strengthen the constraint xa − 1 ≥ xb,
i.e., xa > xb used above, to xb + 1 = xa for some b. For an atom a in a non-trivial
SCC, the local strong ranking constraints include for every rule ri ∈ DefP (a) with
B+(ri) ∩ SCC(a) �= ∅ the formula (6) and the global strong ranking constraint is (7).

bdi
a →

∨
b∈B+(ri)∩SCC(a)

(xb + 1 ≥ xa) (6)

inta →
∨

ri∈DefP (a), B+(ri)∩SCC(a) �=∅
[bdi

a ∧
∨

b∈B+(ri)∩SCC(a)

(xb + 1 = xa)] (7)

In [16] the local version of the strong ranking constraints has been discussed but the
global version inspired by the level numbering characterization in [15] is novel.

Consider the case that we extend the translation TrwDIFF(P ) forcing weak ranking
constraints with local strong ranking constraints for each atom a residing in a non-
trivial SCC. Then the resulting assignment of numbers to the integer variables xa for
atoms a true in the supported model candidate satisfies an extra condition stating that
each rule for a whose body is satisfied by the model candidate has a positive body
literal whose ranking is at least that of a minus one. This is enough to force a unique
ranking for the atoms in the model candidate provided that the starting point of the
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ranking is fixed [16]. The global strong ranking constraints require that for such an
atom a there is a rule for a whose body is satisfied and it has a positive body literal
whose ranking is exactly that of a minus one. This also guarantees a unique ranking for
the atoms in the model candidate assuming that the lowest number used in the ranking
is fixed. Constraints arising from (6) and (7) are mutually compatible and give rise to
three further translations:

– Trwl
DIFF(P ) extends TrwDIFF(P ) with local strong ranking constraints,

– Trwg
DIFF(P ) extends it with global strong ranking constraints, and

– Trwlg
DIFF(P ) extends it with both local and global strong ranking constraints.

All these variants include ¬a → (xa = z) for atoms a involved in non-trivial SCCs to
prune extra models. Note that each translation Tr∗DIFF(P ) is linear in ‖P‖.

Example 3. For the program P of Example 1, the translation TrwDIFF(P ) was already
presented in Example 2. The local strong ranking constraints (6) are

bd1 → (xb + 1 ≥ xa) bd2 → (xa + 1 ≥ xb) bd6 → (xa + 1 ≥ xb)

whereas the global ones (7) become inta → [bd1 ∧ (xb + 1 = xa)] and intb → [bd2 ∧
(xa + 1 = xb)] ∨ [bd6 ∧ (xa + 1 = xb)]. In addition to these formulas, the translations
Trwl

DIFF(P ), Trwg
DIFF(P ), and Trwlg

DIFF(P ) include ¬a → (xa = z) and ¬b → (xb = z).
Regardless of the translation, the values of integer variables become unique up to the
value assigned to z. The first model, corresponding to M2 = {c}, is N2 = {c, bd3}
augmented by the values of xa, xb, and z so that xa = z = xb. The second model, an in-
carnation of M3 = {a, b, d}, is N3 ∪{exta, intb} = {a, b, d, bd4, bd5, bd6, exta, intb}
completed by the requirements xa = z and xb = z + 1 on variable values. �

4 Implementation and Experiments

In the following, we report our first experiments with a prototype implementation of the
translations Tr∗DIFF(·) described in Section 3. The main component is translator called
LP2DIFF (v. 1.19)4 which expects its input in the internal file format of the SMOD-
ELSsystem. In this paper, we assume that only basic rules of the format are used. The
output of LP2DIFF is in the QF_IDL format of the SMT library. The translations given
in Section 3 have been implemented in LP2DIFF with the following modifications. (i) If
an atom a has no defining rule, then ¬a is used instead of formula (3). (ii) If an atom
has a unique defining rule, then formulas (3) and (2) are replaced by a single equiva-
lence where the atom is used as the left hand side. (iii) In formulas (5) and (7) a new
atom is introduced for each disjunct in the main disjunction. (iv) Instead of the variable
z employed in Section 3 constant 0 is used directly because this is supported by the
QF_IDL format. Models of the resulting difference logic theory are searched for using
BCLT (v. 1.3),5 YICES (v. 1.0.21),6 and Z3 (v. 1.3)7 as back-ends. The last is only avail-
able as a Windows binary and hence it is run under Linux using WINEHQ (v. 1.1.15).

4 See asptools, smodels, and lp2sat at http://www.tcs.hut.fi/Software/
5 http://www.lsi.upc.edu/~oliveras/bclt-main.html
6 http://yices.csl.sri.com/
7 http://research.microsoft.com/projects/Z3/

asptools
smodels
lp2sat
http://www.tcs.hut.fi/Software/
http://www.lsi.upc.edu/~oliveras/bclt-main.html
http://yices.csl.sri.com/
http://research.microsoft.com/projects/Z3/
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Table 1. Unsatisfiable 3-coloring problems: median / minimum times (s)

Nodes 2001 4002 6003 8004

CLASP 1.2.1 0.2 / 0.2 0.6 / 0.5 0.9 / 0.9 1.3 / 1.3
CMODELS 3.79 0.7 / 0.7 1.5 / 1.5 2.4 / 2.4 3.3 / 3.3
LP2ATOMIC 1.14 1.5 / 1.3 2.9 / 2.8 4.5 / 4.5 6.3 / 6.2
SMODELS 2.34 0.6 / 0.6 1.3 / 1.3 2.1 / 2.0 2.8 / 2.8

LP2DIFF+BCLT 75.7 / 75.4 298.6 / 298.4 670.2 / 668.3 - / -
LP2DIFF+YICES 3.1 / 3.0 mem mem mem
LP2DIFF+Z3 6.9 / 6.8 18.2 / 17.8 33.0 / 32.3 52.5 / 51.5

Rules 67 837 135 887 203 881 271 931
Atoms 25 967 51 984 77 987 104 004

The goal of our experiments was to compare the performance of the resulting systems
with a number of reference systems, namely CLASP (v. 1.2.1)8 [7], CMODELS (v. 3.79)9

[11] with ZCHAFF (v. 2007.3.12)10 as a back-end, LP2ATOMIC (v. 1.14) with LP2SAT

(v. 1.13)[15] and MINISAT (v. 1.14)11 as back-ends, and SMODELS (v. 2.34) [5]. We
were obliged to exclude ASSAT [10] which turned out to be outdated for present-day
compilers. For fairness reasons, we use SMODELS (command line options-internal
and -nolookahead) with LP2ATOMIC and the three SMT solvers to simplify the in-
put program using the well-founded semantics. The symbol table is also compressed
using LPCAT (v. 1.14)before the actual translation.

Our first two benchmarks involve randomly generated planar graphs which were gen-
erated using PLANARand Stanford graph base. The first benchmark12 is about coloring
the nodes of a graph with n colors so that any two nodes connected by an edge are
colored with different colors. Finding such an n-coloring is known to be impossible for
planar graphs in general when n < 4. To formalize this problem, we used an encoding
from [4] based on a tight and normal logic program. For such programs, the transla-
tion produced by LP2DIFF is essentially the completion of the program and involving
no ranking constraints. Hence, this benchmark basically tests how effectively the plain
completion is handled by different solvers. Starting from a graph with 2001 nodes, we
increased the number of nodes by increments of 2001. Timings for n = 3 and graphs
of 2001–8004 nodes are collected in Table 1. For each number of nodes, nine random
planar graphs were generated and the respective ground logic programs produced by
LPARSEwere then randomly shuffled. We report the median and minimum CPU (user)
times in seconds as measured by the /usr/bin/time Linux system utility. As hard-
ware we used Intel Core2 1.86 Ghz CPUs with 2 GB of main memory. The measured
running times cover all processing steps after grounding each input program. Because
the instances are relatively big, simplification using SMODELS accounts for 0.9–3.8

8 http://www.cs.uni-potsdam.de/clasp/
9 http://www.cs.utexas.edu/users/tag/cmodels.html

10 http://www.princeton.edu/~chaff/zchaff.html
11 http://minisat.se/
12 All available at http://www.tcs.tkk.fi/Software/benchmarks/lpnmr09/

http://www.cs.uni-potsdam.de/clasp/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.princeton.edu/~chaff/zchaff.html
http://minisat.se/
http://www.tcs.tkk.fi/Software/benchmarks/lpnmr09/
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Table 2. Satisfiable 4-coloring problems: median / minimum times (s) / timeouts

Nodes 2501 3002 3503 4004

CLASP 1.2.1 544.8 / 84.1 /1 871.5 /270.3 /4 - / - /9 - / - /9
CMODELS 3.79 96.5 / 56.9 /0 168.2 / 36.8 /0 414.2 /264.2 /0 682.8 /421.2 /0
LP2ATOMIC 1.14 29.7 / 12.1 /0 78.3 / 62.6 /0 119.1 / 97.6 /0 238.7 /212.4 /0
SMODELS 2.34 156.8 /153.7 /0 232.8 /223.0 /0 324.7 /313.7 /0 380.6 /366.7 /0

LP2DIFF+BCLT 234.8 /234.3 /0 338.4 /337.5 /0 460.9 /458.1 /0 602.3 /601.3 /0
LP2DIFF+YICES 41.9 / 28.1 /0 mem mem mem
LP2DIFF+Z3 490.5 /464.4 /1 766.5 /702.5 /0 - / - /9 - / - /9

Rules 117 321 140 828 164 425 187 942
Atoms 37 474 44 981 52 506 60 015

Table 3. Hamiltonian cycle problems: median / minimum times (s) / timeouts

Nodes 40 60 80 100

CLASP 1.2.1 0.0 / 0.0 / 0 0.1 / 0.0 / 0 2.1 / 0.0 / 0 99.4 / 4.2 / 0
CMODELS 3.79 0.2 / 0.1 / 0 3.3 / 0.6 / 0 11.1 / 2.4 / 0 99.5 / 8.0 / 0
LP2ATOMIC 1.14 1.7 / 1.0 / 0 37.8 / 8.3 / 1 551.5 / 39.7 / 1 - / 726.2 / 8
SMODELS 2.34 0.6 / 0.1 / 0 - / 409.0 / 7 - / 133.3 / 8 - / - / 9

LP2DIFFw+BCLT 0.7 / 0.4 / 0 16.8 / 2.8 / 0 541.3 / 5.7 / 3 - / 20.0 / 6
LP2DIFFwl+BCLT 0.8 / 0.4 / 0 12.6 / 0.7 / 0 56.8 / 4.6 / 0 167.2 / 23.1 / 1
LP2DIFFwg+BCLT 0.9 / 0.4 / 0 9.0 / 1.3 / 0 78.5 / 1.5 / 0 895.2 / 73.6 / 4
LP2DIFFwlg+BCLT 0.6 / 0.4 / 0 5.9 / 1.3 / 0 74.0 / 6.0 / 0 - / 128.5 / 5

LP2DIFFw+YICES 0.5 / 0.1 / 0 14.3 / 2.6 / 1 68.8 / 11.8 / 2 - / 211.1 / 7
LP2DIFFwl+YICES 0.8 / 0.2 / 0 11.3 / 3.2 / 0 242.2 / 12.2 / 2 - / 627.6 / 8
LP2DIFFwg+YICES 0.9 / 0.1 / 0 32.7 / 3.3 / 1 - / 52.1 / 6 - / 195.5 / 5
LP2DIFFwlg+YICES 0.5 / 0.2 / 0 5.8 / 1.0 / 0 68.6 / 19.6 / 1 - / 177.4 / 5

LP2DIFFw+Z3 0.6 / 0.4 / 0 11.6 / 1.9 / 0 105.6 / 23.0 / 0 - / 164.5 / 6
LP2DIFFwl+Z3 0.5 / 0.4 / 0 8.3 / 2.8 / 0 97.3 / 17.4 / 0 - / 114.9 / 5
LP2DIFFwg+Z3 0.5 / 0.4 / 0 7.8 / 1.8 / 0 44.3 / 4.6 / 0 - / 687.4 / 8
LP2DIFFwlg+Z3 0.6 / 0.4 / 0 6.8 / 2.4 / 0 34.8 / 7.8 / 0 - / 89.4 / 5

Rules 2 747 4 377 5 901 7 647
Atoms 724 1 130 1 506 1 912

seconds of the run times reported for LP2ATOMIC and LP2DIFF. Due to timeouts, i.e.,
runs exceeding 900 seconds, certain entries remain undefined as indicated by dashes.
The “mem” keywords denote memory overflows. The results of Table 1 indicate that
our reference systems handle tight programs (resp. plain completion) very effectively in
this benchmark. The performance of SMT-based approaches, however, degrades much
faster and solvers require increasing amounts of memory.

We tried out also satisfiable problems instances generated by the number of colors
n = 4. The results are collected in Table 2 for graphs having 2501–4004 nodes. In
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Table 4. Hand-crafted Hamiltonian cycle problems: median / minimum times (s) / timeouts

Graph 2×p30.3 2×p30.4 4×p20.2 4×p20.3

CLASP 1.2.1 0.0 / 0.0 /0 13.3 / 10.6 /0 0.0 / 0.0 /0 0.0 / 0.0 /0
CMODELS 3.79 10.6 / 2.2 /0 307.6 / 68.4 /0 0.6 / 0.1 /0 1.3 / 1.0 /0
LP2ATOMIC 1.14 221.9 / 4.7 /0 - / - /9 84.7 / 15.3 /0 132.7 / 58.4 /0
SMODELS 2.34 - / - /9 - / - /9 0.4 / 0.2 /4 0.0 / 0.0 /0

LP2DIFFw+BCLT 2.8 / 1.4 /0 302.1 /148.7 /0 2.6 / 1.0 /0 6.3 / 5.3 /0
LP2DIFFwl+BCLT 3.0 / 0.6 /0 - /529.3 /6 2.8 / 1.1 /0 13.3 / 12.3 /0
LP2DIFFwg+BCLT 3.3 / 0.8 /0 - /663.2 /8 3.2 / 1.8 /0 15.5 / 14.2 /0
LP2DIFFwlg+BCLT 3.1 / 2.0 /0 - / - /9 3.6 / 1.4 /0 15.0 / 13.0 /0

LP2DIFFw+YICES 16.7 / 1.0 /0 49.5 / 29.9 /0 4.7 / 1.5 /0 2.8 / 1.2 /0
LP2DIFFwl+YICES 41.1 / 2.0 /0 53.5 / 36.0 /0 6.7 / 3.9 /0 2.5 / 1.3 /0
LP2DIFFwg+YICES 37.1 / 9.0 /0 52.4 / 35.4 /0 5.8 / 2.9 /0 3.5 / 1.9 /0
LP2DIFFwlg+YICES 48.4 / 4.6 /0 51.4 / 29.1 /0 5.4 / 2.3 /0 2.3 / 1.9 /0

LP2DIFFw+Z3 9.8 / 2.5 /0 82.2 / 38.6 /0 2.9 / 1.1 /0 3.4 / 1.7 /0
LP2DIFFwl+Z3 5.5 / 0.6 /0 252.4 /184.0 /0 16.2 / 1.3 /0 6.6 / 5.2 /0
LP2DIFFwg+Z3 6.5 / 0.7 /0 411.2 /278.2 /0 8.0 / 2.5 /0 6.9 / 5.8 /0
LP2DIFFwlg+Z3 2.7 / 1.0 /0 304.4 / 88.1 /0 12.2 / 2.1 /0 7.2 / 5.5 /0

Rules 3 981 4 027 4 665 4 749
Atoms 1 070 1 076 1 338 1 350

addition to median and minimum times spent on finding a coloring for 9 different graphs
of the size in question, we also report the number of timeouts. It is interesting that
the performance of native answer set solvers degrades remarkably when we shift from
unsatisfiable to satisfiable instances. Another observation from Tables 1 and 2 is that
SAT-based approaches, viz. CMODELS and LP2ATOMIC, are more efficient and robust
to handle plain completion than the three SMT solvers evaluated here.

For our second benchmark reported in Table 3 we chose the problem of finding
Hamiltonian circuits and a non-tight encoding taken from [4] to study the effects of
ranking constraints in particular. We tested the four variants of Tr∗DIFF(P ) from
Section 3 referred to by the superscripts w, wl, wg, and wlg, respectively, and imple-
mented in LP2DIFF (command line options -l and -g). Table 3 reports, similarly as
in the first benchmark, run times for finding one stable model for a randomly shuffled
ground normal program obtained using the non-tight encoding for nine random planar
graphs of 40–100 nodes, respectively. The results indicate that the performance obtained
with LP2DIFF and SMT solvers is not too far from other ASP solvers. We note that
all SMT solvers benefit from both local and global strong ranking constraints. Table 4
presents the data for both satisfiable (2×p30.3 and 4×p20.2) and unsatisfiable (2×p30.4
and 4×p20.3) instances based on hand-crafted graphs [10, Table 5]. The same non-tight
encoding is used but each ground instance is randomly shuffled for nine distinct runs.
For unsatisfiable instances, strong ranking constraints seem to slow down computations
systematically. On the other hand, the combination LP2DIFF+Z3 performs best on the
satisfiable instance 2×p30.3 in the presence of both local and global constraints.



152 T. Janhunen, I. Niemelä, and M. Sevalnev

Table 5. Random non-tight normal logic programs: median times (s)

Atoms 50 60
Instance u-b11 s-b14 u-b15 u-b16 u-b17 u-b9 u-b11 u-b12 u-b13 s-b19

CLASP 1.2.1 6.4 1.1 13.3 5.0 1.1 135.1 69.8 126.7 76.8 14.1
CMODELS 3.79 44.5 6.3 130.2 32.8 3.6 - - - - 22.2
LP2ATOMIC 1.14 156.1 28.6 290.0 117.5 23.5 - - - - 818.4
SMODELS 2.34 37.1 11.7 67.4 31.6 10.2 - 803.2 - 714.6 133.1

LP2DIFFw+BCLT 22.8 4.8 64.2 16.5 2.6 - - - - 174.3
LP2DIFFwl+BLCT 34.9 4.9 94.2 25.3 3.3 - - - - 196.2
LP2DIFFwg+BCLT 41.5 12.6 107.5 32.4 4.4 - - - - 193.8
LP2DIFFwlg+BCLT 48.1 13.2 121.1 34.0 5.0 - - - - 85.5

LP2DIFFw+YICES 8.3 1.5 16.0 6.4 1.3 265.9 97.1 227.1 110.0 25.4
LP2DIFFwl+YICES 11.3 3.9 21.7 8.5 1.7 396.3 142.9 275.0 171.0 34.3
LP2DIFFwg+YICES 13.4 2.5 25.0 9.7 1.9 380.0 171.5 491.8 318.3 58.4
LP2DIFFwlg+YICES 25.5 4.4 46.7 17.2 3.4 624.3 284.7 581.5 278.5 53.5

LP2DIFFw+Z3 61.8 25.0 99.9 44.1 10.2 - 453.0 - 492.2 121.2
LP2DIFFwl+Z3 62.7 15.4 115.3 44.1 11.4 - 513.4 - 597.1 237.5
LP2DIFFwg+Z3 80.8 38.3 134.2 56.1 13.4 - 668.7 - 678.1 221.2
LP2DIFFwlg+Z3 86.8 27.7 131.4 56.6 14.6 - 678.1 - 729.5 311.7

The third benchmark involved a number of randomly generated non-tight logic pro-
gram instances taken from the Asparagus collection13. Instances with 50 and 60 atoms
involve roughly 760 and 990 rules—creating only one strongly connected component
which encompasses all atoms. The results are collected in Table 5. Each instance was
randomly shuffled nine times to obtain nine distinct runs on each solver. The results
indicate that the satisfiable instances (s-b14 and s-b19) are the easiest for each number
of atoms. Overall, the systems CLASP and LP2DIFF+YICES show the best performance
for these benchmark instances, CLASP being circa 1.2–2.0 times faster. Moreover, all
SMT-based approaches seem to be at least as robust as the SAT-based ones.

Table 6 reports the results of a benchmark on Yoshio Murase’s hand-made instances
of the Sokoban game14. We translated the instances as sets of facts and used an encoding
of Sokoban by Tommi Syrjänen which employs recursive rules and requires an upper
bound on the number of steps in the solution. Table 6 shows results for two instances
(levels 2 and 9) with 16 as the minimal number of steps for a solution. Hence, instances
lev2-s16 and lev9-s16 have stable models but lev2-s15 and lev9-s15 not. The instance
lev2-s100 is a big one allowing for 100 steps. Since the problem encoding involves also
other SMODELS rule types, yet another translator LP2NORMALwas used to transform
each ground program into a normal one. The results indicate that our approach based
on difference logic (particularly when using Z3) compares favorably to the SAT based
approaches and scales very similarly to the native ASP solver CLASP.

13 See http://asparagus.cs.uni-potsdam.de/ for details.
14 http://www.sourcecode.se/sokoban/levtext.php?file=Handmade.slc

http://asparagus.cs.uni-potsdam.de/
http://www.sourcecode.se/sokoban/levtext.php?file=Handmade.slc
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Table 6. Sokoban instances: median / minimum times (s)

Instance lev2-s15 lev2-s16 lev2-s100 lev9-s15 lev9-s16

CLASP 1.2.1 0.4 / 0.3 0.5 / 0.3 93.4 / 4.6 149.6 /108.8 22.5 / 4.9
CMODELS 3.79 82.6 / 26.6 53.4 / 25.0 - / - - / - 452.0 /103.9
LP2ATOMIC 1.14 32.3 / 19.8 27.2 / 13.9 - / - - / - - / -
SMODELS 2.34 - / - - /491.1 - / - - / - - / -

LP2DIFFw+BCLT 5.0 / 4.6 6.3 / 5.5 777.2 /682.0 - /783.0 896.8 /302.7
LP2DIFFwl+BLCT 12.4 / 11.3 14.4 / 13.6 - / - 392.0 /346.0 457.9 /280.0
LP2DIFFwg+BCLT 14.0 / 12.3 16.5 / 15.9 - / - 464.1 /395.0 505.5 /366.1
LP2DIFFwlg+BCLT 13.7 / 12.2 17.9 / 17.1 - / - 447.5 /332.7 471.7 /262.7

LP2DIFFw+YICES 1.4 / 1.1 1.6 / 1.0 - / - 439.9 /335.8 356.4 / 26.4
LP2DIFFwl+YICES 1.6 / 1.3 1.9 / 1.5 573.4 /353.1 499.9 /438.6 420.7 /136.9
LP2DIFFwg+YICES 1.7 / 1.4 1.9 / 1.4 - / - 605.1 /551.0 143.5 / 65.9
LP2DIFFwlg+YICES 1.8 / 1.5 2.0 / 1.5 595.1 /422.3 520.0 /427.0 187.5 / 52.6

LP2DIFFw+Z3 3.0 / 2.1 2.7 / 2.2 157.4 /103.8 493.3 /381.6 371.3 /101.8
LP2DIFFwl+Z3 3.6 / 3.1 4.1 / 1.9 194.1 /128.5 590.4 /422.6 340.9 / 67.4
LP2DIFFwg+Z3 3.8 / 3.2 4.1 / 3.5 202.5 /120.3 524.3 /494.1 316.5 / 70.1
LP2DIFFwlg+Z3 4.0 / 3.1 4.3 / 2.6 161.2 /118.0 545.0 /461.0 239.8 /113.3

Rules 7 110 7 629 51 225 18 047 19 396
Atoms 5 137 5 475 33 867 11 450 12 207

5 Conclusions

SAT solver technology has been advancing significantly and provides a very promising
computational platform for implementing also ASP systems. Recently, increasingly ef-
ficient extensions to the basic clausal SAT solvers have been developed, in particular
in the SMT framework. The goal of the paper is to develop compact translations from
logic programs to difference logic, where SMT-based solver technology is advancing
steadily. Based on the results in [15,16] we present a collection of translations providing
a tight connection between logic programs and difference logic. The translations en-
able one to map any normal program to a theory in difference logic without substantial
blow-up in size so that any solver for difference logic can be used for computing stable
models without modifications. This is different from translations to SAT where either
the solver has to be modified and extended to allow a dynamic translation where clauses
are added on the fly or where the translations are of super-linear size. On the other hand,
the translations offer an interesting method for generating challenging benchmarks for
these solvers and can help to boost their development. Our experimental results indicate
that with the translations even the current SMT solver technology shows performance
which is close to that of state-of-the-art ASP solvers. Given the large amount effort
put into developing SMT solvers15 there is potential that the translations devised herein
provide a basis of a cutting-edge technology for implementing ASP systems.

15 See, e.g., the SMT competition website at http://www.smtcomp.org/

http://www.smtcomp.org/
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Abstract. We develop a module-based framework for constraint modeling where
it is possible to combine different constraint modeling languages and exploit their
strengths in a flexible way. In the framework a constraint model consists of mod-
ules with clear input/output interfaces. When combining modules, apart from
the interface, a module is a black box whose internals are invisible to the out-
side world. Inside a module a chosen constraint language (approaches such as
CP, ASP, SAT, and MIP) can be used. This leads to a clear modular semantics
where the overall semantics of the whole constraint model is obtained from the
semantics of individual modules. The framework supports multi-language mod-
eling without the need to develop a complicated joint semantics and enables the
use of alternative semantical underpinnings such as default negation and classical
negation in the same model. Furthermore, computational aspects of the frame-
work are considered and, in particular, possibilities of benefiting from the known
module structure in solving constraint models are studied.

1 Introduction

There are several constraint-based approaches to solving combinatorial search and op-
timization problems: constraint programming (CP), answer set programming (ASP),
mixed integer programming (MIP), linear programming (LP), propositional satisfiabil-
ity checking (SAT) and its extension to satisfiability modulo theories (SMT). Each has
its particular strengths: for example, CP systems support global constraints, ASP re-
cursive definitions and default negation, MIP constraints on real-valued variables, and
SAT efficient solver technology. In larger applications it is often necessary to exploit
the strengths of several languages and to reuse and combine available components. For
example, in scheduling problems involving a large amount data and constraints, multi-
language modeling can be very useful (as also exemplified in this paper in Sect. 5).

In this work we develop a module-based framework for modeling complex prob-
lems with constraints using a combination of different modeling languages. Rather than
taking one language as a basis and extending it, we develop a framework for multi-
language modeling where different languages are treated on equal terms. The starting
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point is to use modules with clear input/output (I/O) interfaces. When combining mod-
ules, apart from the interface, a module is a black box whose internals are invisible to
the outside world. Inside a module a chosen constraint language (for example, CP, ASP,
MIP) with its normal semantics can be used. In this way a clear modular semantics is
obtained: the overall semantics of the whole constraint model (consisting of modules)
is obtained by “composing” the semantics of individual modules.

We see substantial advantages of this approach for modeling. The clear module inter-
faces enable support for multi-language modeling without the need to develop a compli-
cated joint semantics capturing arbitrary combinations of special constraints available
in different languages. It is also possible to use alternative semantical underpinnings
such as default negation and classical negation in the same model. The module-based
approach brings the benefits of modular programming to developing constraints models
and enables to create libraries to enhance module reuse. It also improves elaboration
tolerance and facilitates maintaining and updating a constraint model. Moreover, ex-
tending the approach with further languages is conceptually straightforward.

Computational aspects of the framework are also promising. Module interfaces and
separation of inputs and outputs can be exploited in decision methods, for example, with
more top-down solution techniques where the overall output of the constraint model can
be used to identify the relevant parts of the model. The module-based approach allows
optimizing the computational efficiency of a model in a structured way: a module can
be replaced by another (more optimized) version without altering the solutions of the
model as long as the I/O relation of the module is not changed. Similarly, the framework
supports modular testing, validation, and debugging of constraint models.

This module-based framework for multi-language modeling seems to be a novel ap-
proach. Several approaches to adding modularity to ASP languages [1,2,3,4] have been
proposed. However, in these approaches modular multi-language modeling is not directly
supported (although the combination of propositional ASP and SAT modules is studied
in [5]). A large number of extended modeling languages have also been previously pro-
posed. On one hand, ASP languages have been extended with constraints or other ex-
ternally defined relations (see, e.g., [6,7,8,9,10,11]). On the other hand, Prolog systems
have been extended with ASP features [12,13,14]. Extended modeling languages have
been developed also for constraint programming, including ESRA [15], ESSENCE [16],
and Zinc [17]. However, none of the approaches supports modular multi-language mod-
eling where different languages are treated on equal terms. Instead, they can all be seen
as extensions of a given basic language with features from other languages.

The rest of this paper is organized as follows. As preliminaries, we first give a generic
definition of constraints and related notation (Sect. 2). Then constraint modules, the ba-
sic building blocks of module systems, are introduced (Sect. 3). The language of mod-
ule systems, based on composing constraint modules, is discussed in Sect. 4. Then, in
Sect. 5 we discuss how the framework can be instantiated in practice: A larger applica-
tion is considered in order to illustrate the issues arising in using a multi-language mod-
eling approach, and the required language interface for constructing a multi-language
module system is sketched. Before conclusions (Sect. 7), computational aspects, and
especially, possibilities of benefiting from the explicit modular constraint model de-
scription when solving such a model are highlighted (Sect. 6).
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2 Constraints

In this section we give necessary definitions and notation related to the generic concept
of constraints applied in this work. These serve as basic building blocks for constraint
modules which are then combined to form complex constraint models.

Let X be a set of variables. For each variable x ∈ X , we associate a set of values
D(x), called the domain of x. Given a set X ⊆ X of variables, an assignment over X
is a function

τ : X →
⋃

x∈X

D(x),

which maps variables in X to values in their domains. A constraint C over a set of
variables X is characterized by a set Solutions(C) of assignments over X , called the
satisfying assignments of C. We denote by Vars(C) the set X of variables.

It is important to notice that, since the satisfying assignments solely characterize the
constraint, this generic way of describing constraints does not specify how a constraint
should be implemented, i.e., the modeling language and semantics used for realizing
the constraint declaratively remain unspecified.

Example 1. Let C be a constraint over a set of Boolean variables {a, b}, i.e., D(a) =
D(b) = {t, f}, characterized by Solutions(C) = {τ1, τ2}, where τ1 = {a �→ t, b �→ f}
and τ2 = {a �→ f, b �→ t}. Now, C can be implemented, for example, as a normal logic
program {a ← ∼b. b ← ∼a} or as a disjunctive logic program {a ∨ b ←} in ASP, or
as a conjunctive normal form (CNF) formula {a ∨ ¬b,¬a ∨ b} in SAT.

Given an assignment τ and a set of variables X , the projection πX(τ) of τ on X is
the assignment that maps each variable x ∈ X for which τ(x) is defined to τ(x). For
instance, the projection π{a}(τ1) for τ1 from Example 1 is the assignment π{a}(τ1) =
{a �→ t} over the set {a}.

Given a constraint C, and an assignment τ over a set X of variables, the restriction
C[τ ] of C to τ is characterized by

Solutions(C[τ ]) = {τ ′ ∈ Solutions(C) | πVars(C)∩X(τ ′) = πVars(C)∩X(τ)}.

For instance, let τ3 = {b �→ f} be an assignment over {b}. Now, the restriction
C[τ3] of C from Example 1 is a constraint characterized by {τ1} ⊆ Solutions(C), i.e.,
Solutions(C[τ3]) = {τ1}.

Given two constraints C and C′, an assignment τ over Vars(C) is compatible with an
assignment τ ′ over Vars(C′) if πVars(C)∩Vars(C′)(τ) = πVars(C)∩Vars(C′)(τ ′). The union
τ ∪ τ ′ of two compatible assignments, τ and τ ′ over X and X ′, respectively, is the
assignment over X ∪X ′ mapping each x ∈ X to τ(x) and each x ∈ X ′ \X to τ ′(x).

Example 2. Let C′ be a constraint over a set of Boolean variables {b, c} characterized
by Solutions(C′) = {τ ′} such that τ ′ = {b �→ f, c �→ f}. Consider C from Example 1.
The assignment τ1 is compatible with τ ′, because {a, b} ∩ {b, c} = {b} and τ1(b) =
f = τ ′(b). On the other hand, τ2 is not compatible with τ ′, because τ2(b) = t �= τ ′(b).
The union τ1 ∪ τ ′ = {a �→ t, b �→ f, c �→ f} is an assignment over the set {a, b, c}.
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3 Constraint Modules

The view to constructing complex constraint models proposed in this work is based on
expressing such models as module systems. Module systems are built from constraint
modules which are combined together in a controlled fashion. In this section we in-
troduce the generic concept of a constraint module. Constraint modules are based on
a chosen constraint, with the addition of an explicit I/O interface. Our definition for a
constraint module is generic in the sense that it does not insist on a specific implementa-
tion of the constraint on the declarative level. The aim here is to allow implementing the
constraint using different declarative languages, offering the implementer of a module
the possibility to choose the constraint language and the semantics.

Definition 1. A constraint module M is a triple 〈C, I,O〉, where C is a constraint, and
I and O, with I ∩ O = ∅, define the I/O interface of M:

– I ⊆ Vars(C) is the input specification of M, and
– O ⊆ Vars(C) is the output specification of M.

A module M is thus a constraint with a fixed I/O interface. In analogy to the characteri-
zation of a constraint, a module M = 〈C, I,O〉 is characterized by a set Solutions(M)
of assignments over I ∪ O called the satisfying assignments of the module. Given a
constraint module M = 〈C, I,O〉 and an assignment τI over I, the set of consistent
outputs of M w.r.t. τI is

SolutionOut(M, τI) := {πO(τ) | τ ∈ Solutions(C[τI ])}.

The satisfying assignments of a module are obtained by considering all possible input
assignments.

Definition 2. Given a constraint module M = 〈C, I,O〉, the set Solutions(M) of sat-
isfying assignments of M is the union of the sets {τI ∪τO | τO ∈ SolutionOut(M, τI)}
for all assignments τI over I.

Those variables in Vars(C) which are not in I ∪ O are local to M; the assignments in
Solutions(M) do not assign values to them. Notice that the possibility of local variables
enables encapsulation and information hiding. A module offers through its I/O interface
to the user a black-box implementation of a specific constraint. The idea behind this
abstract way of defining a module is that, looking from the outside of a module when
using the module as a part of a constraint model, the user is interested in the input-
output relationship, i.e., the functionality of the module. This can be highlighted by
making explicit the conditions under which two modules are considered equivalent.

Definition 3. Two constraint modules, M1 = 〈C1, I1,O1〉 and M2 = 〈C2, I2,O2〉,
are equivalent, denoted by M1 ≡ M2, if and only if I1 = I2, O1 = O2, and
Solutions(M1) = Solutions(M2).

Example 3. Consider M = 〈C, {a}, {b}〉, where a and b are Boolean variables, and let
Solutions(M) = {τ1, τ2} where τ1 = {a �→ t, b �→ f} and τ2 = {a �→ f, b �→ t}.
Since τ1 and τ2 are the same as in Example 1, M can be implemented using any of the
implementations of the constraint described in Example 1.
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Moreover, the set of variables used in implementing C is not limited to {a, b}. For
instance, a logic program module [4] 〈P, I,O〉 = 〈{c ← ∼a. b ← c}, {a}, {b}〉 is
an implementation of C such that Solutions(C) = {τ3, τ4} where τ3 = {a �→ t, b �→
f, c �→ f} and τ4 = {a �→ f, b �→ t, c �→ t}.1 Now, there are two possible assign-
ments over {a}. If τI = {a �→ t} we obtain SolutionOut(M, τI) = {π{b}(τ3)} since
Solutions(C[τI ]) = {τ3} as τ3(a) = τI(a) = t. For the other possible input assign-
ment τ ′I = {a �→ f}, we obtain SolutionOut(M, τ ′I) = {π{b}(τ4)}. Finally, notice that
τI ∪ π{b}(τ3) = τ1 and τ ′I ∪ π{b}(τ4) = τ2. Thus, Solutions(M) = {τ1, τ2}.

4 Module Systems

In this section we discuss how larger module systems are built from individual con-
straint modules. The idea is that module systems are constructed by connecting smaller
module systems through the I/O interfaces offered by such systems. In other words, in
analogy to constraint modules, a module system has an I/O interface, and constraint
modules are seen as primitive module systems. We will start by introducing a formal
language for expressing such systems and then introduce the semantics for module sys-
tems which are well-formed.

Definition 4 (The language of module systems)
1. A constraint module M = 〈C, I,O〉 is a module system with Input(M) = I and

Output(M) = O.
2. If M is a module system and X a set of variables, then πX(M) is a module system

with Input(πX(M)) = Input(M) and Output(πX(M)) = Output(M) ∩X .
3. If M and M′ are module systems, then (M �M′) is a module system with

Input(M1 �M2) = Input(M1) ∪ (Input(M2) \ Output(M1)) and
Output(M1 �M2) = Output(M1) ∪ Output(M2).

Notice that Definition 4 is purely syntactical. Our next goal is to define the semantics
for more complex module systems as we have already defined the sets of satisfying
assignments for individual constraint modules. This is achieved by formalizing the se-
mantics of the two operators: intuitively, projection πX offers a way of filtering the
output of a module system, whereas composition � is used for merging two module
systems into one. We start by defining the conditions under which two module systems
are composable and independent.

Definition 5 (Composable and independent module systems). Two module systems
M1 and M2 are composable if Output(M1)∩Output(M2) = ∅. Module system M1
is independent from module system M2 if Input(M1) ∩ Output(M2) = ∅.

Composability is used to ensure that if two module systems interfere with each others’
output, they cannot be put together. Independence allows us to ensure that two modules
are not in cyclic dependency. Notice that the independence of M1 from M2 does not
imply that M2 is independent from M1.

1 Notice that unlike other formalisms mentioned so far, the logic program modules in [4] already
facilitate I/O interfaces, and their semantics differs from the standard stable model semantics
since input variables have a classical interpretation.
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Definition 6 (Module composition). Given two composable module systems M1 and
M2, their composition M1 �M2 is defined if and only if M1 is independent from M2.
The set of satisfying assignments of M1 �M2, Solutions(M1 �M2), is

{(τ1∪τ2) | τ1 ∈ Solutions(M1), τ2 ∈ Solutions(M2), and τ2 is compatible with τ1}.

Example 4. Let M = 〈C, {a}, {n}〉 and M′ = 〈C′, {n}, {m}〉 be constraint modules
where a is a Boolean variable, D(n) = D(m) = {1, 2, 3}, Solutions(M) = {τ1}, and
Solutions(M′) = {τ2, τ3} where τ1 = {a �→ f, n �→ 3}, τ2 = {n �→ 1,m �→ 1},
and τ3 = {n �→ 3,m �→ 2}. Since M is independent from M′, their composition
M �M′ is defined. Notice that n ∈ Output(M)∩ Input(M′) provides the connection
between M and M′, i.e., n ∈ Output(M) is the input for M′ because n ∈ Input(M′).
Furthermore, Input(M�M′) = {a}, Output(M�M′) = {n,m}, and Solutions(M�
M′) = {τ1 ∪ τ3}, because τ1 is not compatible with τ2 and τ1 is compatible with τ3.

As a special case, the empty module E is a constraint module such that Input(E) =
Output(E) = ∅ and Solutions(E) = {τe}, where τe is the empty assignment. Given any
module system M, both E �M and M � E are defined, and E �M ≡ M � E ≡ M.

Definition 7 (Projecting output of a module system). Given a module system M
and set of variables O, the module system πO(M) is defined if and only if O ⊆
Output(M). The set of satisfying assignments of πO(M), Solutions(πO(M)), is

{πO∪Input(M)(τ) | τ ∈ Solutions(M)}.

Example 5. Consider the module system M �M′ from Example 4 and assume that we
are not interested in the values assigned to n. Thus, we consider the projection Mπ =
π{m}(M�M′). Now Input(Mπ) = {a}, Output(Mπ)={m}, and Solutions(Mπ)=
{τπ} where τπ = π{a,m}(τ1 ∪ τ3) = {a �→ f,m �→ 2}.

We are interested in so called well-formed module systems that respect the conditions
for applying � (independence) and πX (projection is focused on output).

Definition 8 (Well-formed module system). A module system is well-formed if each
composition and projection operation is defined in the sense of Definitions 6 and 7.

Determining whether an arbitrary module system is well-formed consists of a syntactic
check on the compositionality and compatibility of the I/O interfaces (�) and subset
relation (π). From now on we use the term module system to refer to a well-formed
module system. The graph formed by taking into account the input-output dependencies
of parts of a module system is directed and acyclic, and is referred to as the module
dependency graph. More precisely, the module dependency graph of a given module
system M has the set of constraint modules appearing in M as the set of vertices.
There is a edge from a constraint module M1 to module M2 if and only if at least
one output variable of M1 is an input variable of M2. Notice that the acyclicity comes
from that fact that recursive definitions can be stated only inside individual modules.

By definition, the semantics of a well-formed module system is compositional: com-
patible solutions for individual parts form a solution for the whole system and a solution
for the module system gives solutions for the individual parts.
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Remark 1. Operators for � and πX provide flexible ways for building complex mod-
ule systems. Additional operators useful in practice can be defined as combinations of
these basic operators. For instance, by combining composition with projection we ob-
tain M1 � M2 defined as πOutput(M2)(M1 � M2). One could also be interested in a
non-deterministic choice of solutions for M1 and M2 (denoted M1 ∪ M2) or com-
mon solutions for M1 and M2 (denoted M1 ∩M2). In order to define M1 ∪M2 and
M1 ∩ M2, we cannot assume that M1 and M2 are composable. However, even these
operators can be expressed in terms of composition and projection using an additional
renaming scheme for variables.

5 Module Systems in Practice

We now outline how the framework for module systems developed in the previous sec-
tion can be instantiated in practice. First, we consider a demanding application to illus-
trate the issues arising in using a multi-language modeling approach. Then we sketch
the required language interface for constructing a multi-language module system.

5.1 Modular Representation for the Timetabling Domain

For illustrating multi-language modeling, we describe components involved in a modu-
lar constraint model for university timetabling, variants of which have previously been
formalized in SAT, CP, and ASP [18,19]. Designing a feasible weekly schedule for
events related to courses in a university curriculum is a challenging task. The problem
is not just about allocation time and space resources; the interdependencies of courses
and the respective events give rise to a rich body of constraints. For modeling, one
needs to express the mutual exclusion of events as regards, e.g., placing any two events
in the same lecture hall at the same time. A straightforward representation of such a con-
straint with clauses or rules may require quadratic space. In contrast, a concise encoding
can be obtained with global constraints such as all-different or cumulative constraints
typically supported by constraint programming systems. On the other hand, there are
features which are cumbersome to describe in CP. For example, exceptions like the tem-
porary unavailability of a particular lecture hall in a timetable are easy to represent with
non-monotonic rules such as those used in ASP. Moreover, rules provide a flexible way
of defining new relations on the basis of existing ones.

The structure of a modular constraint model for the university timetabling domain
is given in Fig. 1. The two ASP modules at the bottom define relations specific to
a particular problem instance. The first module, eventData, defines which events are
involved in the problem. The second, resourcesData, formalizes the time and space re-
sources available for scheduling. An individual resource is conceptualized as a pair
〈r, s〉 where r is a room and s is a session. The ASP module on top of these two
modules, dataViews, defines a number of subsidiary relations, such as ROOM(r) (avail-
able rooms) and LECTURER(l) (involved lecturers), on the basis of the relations pro-
vided by modules eventData and resourcesData. The relations MAXEVENT(n) and
MAXRESOURCE(m) hold (only) for the numbers of events n and resources m, respec-
tively. After suitable type conversions (represented by the circles in Fig. 1), these two
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eventData resourcesData

event

dataViews

lecturer
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...

... ...
maxResource

intint

testAllocation
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resourceOf

occurs ...

session day
roomCapacity

resource

Main

maxEvent
room

Rel(int,int)

Fig. 1. Example of a Module System

size parameters serve as input for the CP module
allDifferent whose purpose is to assign different
resources (represented by integers in the range
1 . . .m) to all events (represented by an array of
integers indexed by 1 . . . n). Through such a con-
version, a constraint library implementation of
allDifferent which works only on integer-valued
variables can be directly used. The resulting ar-
ray of assignments of integers, RESOURCEOF, is
then converted to a relation for events e and re-
sources r and the ASP module allocation is used
to restore the representation of resources as inte-
gers back to pairs of rooms and sessions. The out-
come relation OCCURS(e, r, s) denotes the fact
that an event e takes place in room r during ses-
sion s. The topmost module testAllocation en-
sures that the given allocation of resources to
events, i.e., the relation OCCURS(e, r, s) meets
further criteria of interest. For instance, one could
insist on the property that sessions related with
a particular lecture hall are always reserved in a
contiguous manner, i.e., no gaps are allowed be-
tween reservations in the respective schedule.

5.2 Language Interface for Combining Constraint Modules

Referring to the theory developed in Sect. 3 and 4, we distinguish two types of module
declarations. An individual constraint module is written in a particular constraint lan-
guage accompanied by an appropriate I/O interface specification. The language of each
constraint module is declared using an identifier “SAT”, “ASP”, “CP”, etc. A module
system is effectively a definition of the interconnections between submodules encapsu-
lated by it. Since module systems are not confined to a particular constraint language
the identifier “SYSTEM” is used. In addition, simple type converters are declared when
needed, as outlined above.

In practice, a module system is not described as an expression (recall Definition 4)
using explicitly composition and projection operators. Instead, it is very useful to give
primitive constraint module descriptions as schemata which can be reused by instanti-
ating them with appropriate input and output variables. To support this we follow an ap-
proach which handles module instantiation and composition simultaneously. Modules
are instantiated using a declaration [outputlist]= modulename(inputlist);

where modulename is the name of the module being instantiated, and inputlist
and outputlist are the lists of input and output variables, respectively. This al-
lows for writing a module composition M1 � M2 as suitable module instantiations:
[x1, x2, . . .] = M1(. . .); [. . .] = M2(x1, x2, . . .); where appropriate output vari-
ables of M1 are used as input variables of M2. A module system is described as a
sequence M1;M2; . . . ;Mn; of such instantiation declarations which is acyclic, i.e.,
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#module ASP dataViews
(Rel(int, string, string, int, string, int) event,
Rel(int, string, int) resource,
Rel(int) session,
Rel(string,int) roomCapacity)

[Rel(int) maxEvent,
Rel(int) maxResource,
Rel(string) room,
Rel(string) lecturer]

% Determine problem dimensions
eventId(I) :- event(I,CC,T,D,L,C).
maxEvent(I) :- eventId(I), not eventId(I+1).
resourceId(I) :- resource(I,R,S).
maxResource(I) :- resourceId(I), not resourceId(I+1).

% Rooms and personnel
room(R) :- resource(I,R,S).
lecturer(L) :- event(I,CC,l,D,L,C), L!=noname.

...

#endmodule

#module SYSTEM main()

% Data (problem instance)
[event] = eventData();
[day,session,resource,roomCapacity] =
resourcesData();

% Different views of data
[maxEvent, maxResource, room, lecturer] =
dataViews(event,resource,session,roomCapacity);

% Allocating resources
[resourceOf] =
allDifferent(indexOfTrueElement(maxEvent),

indexOfTrueElement(maxResource));

% Recover rooms and sessions from resources
[occurs] = allocation(resource,

arrayToRel(resourceOf));

% Checking the feasibility allocation
[] = testAllocation(occurs);

#solve[occurs]

#endmodule

Fig. 2. Examples of a constraint module and a module system as illustrated in Fig. 1

output variables of Mi cannot be used as input variables for any Mj , j ≤ i. This guar-
antees that the set of declarations can be seen as a well-formed composition M′

1�(M′
2�

(. . . �M′
n) . . .) where M′

is are the corresponding instantiated constraint modules. The
projection operator is handled implicitly in the instantiation of modules. For the top
level of a module system we provide an explicit projection operator as the #solve[·]
directive for defining the actual output variables of the whole module system.

A simplified example of a constraint module and a module system is given in Fig. 2.
Each module description begins with a header line. The keyword “#module” is fol-
lowed by (i) the language identifier, e.g., SAT, ASP, CP, or SYSTEM, (ii) the name of the
module, and (iii) the specification of input and output variables enclosed in parenthe-
ses “(...)” and brackets “[...]”, respectively. The types of variables are declared
using elementary types (int, string, . . . ) and type constructors such as Rel.2 Lo-
cal variables (if any) and their types are declared with lines that begin with the keyword
#type. A module description ends with a line designated by a keyword#endmodule.
The module instantiation declarations need to be well-typed, i.e., the given input and
output variables must conform to the module interfaces. The top-level module is distin-
guished by the reserved name main and the #solve directive for defining the output
variables of the whole module system can be used only there.

6 Computational Aspects and Benefits of the Modular Approach

In this section we consider computational aspects related to module systems. First we
analyze how certain computational properties of individual constraint modules are re-
lated to those of more complex module systems. Then we show how the structure of a

2 Description of a complete typing mechanism is beyond the scope of this paper. For now, we
aim at type specifications which allow for static type checking.
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module system can be exploited when one is interested in finding a satisfying assign-
ment for a subset of the output variables of the module system.

We describe computational properties of a constraint module under the terms check-
able, solvable, and finite output for fixed input, defined as follows.

Definition 9. A constraint module M = 〈C, I,O〉
– is checkable if and only if given any assignment τ over the variables in I ∪ O, it

can be decided whether τ ∈ Solutions(M);
– is solvable if and only if there is a computable function that, given any assignment τ

over the variables in I, returns an assignment in SolutionOut(M, τ) if one exists,
and reports unsatisfiability otherwise; and

– has FOFI (finite output for fixed input) if and only if (i) the set SolutionOut(M, τ)
is finite for any assignment τ over the variables in I, and (ii) there is a com-
putable function that, given any assignment τ over the variables in I, outputs
SolutionOut(M, τ).

In general, a constraint module which has FOFI is both checkable and solvable. How-
ever, a solvable (checkable, respectively) module is not necessarily checkable (solvable,
respectively).

The knowledge about a specific property for M and M′ is not necessarily enough
to guarantee that the property holds for a module system obtained using M and M′.
Clearly, if M and M′ are checkable, then M � M′ is checkable, too. Solvability
of M and M′ does not, however, imply that M � M′ is solvable. For instance, let
M = 〈C, ∅, {a}〉 and M′ = 〈C′, {a}, {b}〉 be solvable constraint modules such that
Solutions(M) = {{a �→ 1}, {a �→ 2}}, Solutions(M′) = {{a �→ 2, b �→ 2}},
and M � M′ is defined. Assume that the computable function for M always returns
τ = {a �→ 1}. Now, SolutionOut(M′, τ) = ∅, and which leads us to think that
Solutions(M � M′) = ∅. But this is in contradiction with Solutions(M � M′) =
{{a �→ 2, b �→ 2}}. If we in addition assume that M and M′ have the FOFI property,
then M �M′ is solvable and, moreover, has the FOFI property.

For projection, the situation is slightly different. If M is a checkable constraint
module, then πO(M) is not necessarily checkable for O ⊂ Output(M). Given τ
over Input(M) ∪ O ⊂ Input(M) ∪ Output(M), we cannot decide whether τ ∈
Solutions(πO(M)) as we do not know the assignment for variables in Output(M)\O.
If, in addition, M is solvable, then using the projection τ ′ of τ to Input(M) we can
compute τ ′′ ∈ SolutionOut(M, τ ′) and the projection of τ ′′ to O. Thus πO(M) is
solvable.

Proposition 1. Let M and M′ be constraint modules s.t. M � M′ is defined, and
O ⊆ Output(M). If M and M′ are checkable, M�M′ is checkable. If M is solvable,
πO(M) is solvable. If M and M′ have FOFI, M �M′ and πO(M) have FOFI.

Based on the concepts of total module systems and don’t care variables, the cone-of-
influence of a system is intuitively the part of the system that may influence the values of
output variables of interest. We will define the cone-of-influence reduction for module
systems which can be used in disregarding parts of a module system in the case we are
only interested in the values assigned to a subset of the output of the system.
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Definition 10. A constraint module M is total if SolutionOut(M, τ) �= ∅ for all as-
signments τ over Input(M).

If M1 and M2 are total module systems such that M1 �M2 is defined, then M1 �M2
is total. Furthermore πO(M) is total for any total M and O ⊆ Output(M).

Seen as a black-box entity, testing totality from the outside is hard even on the level
of constraint modules. However, if the declarative implementation of the module is
known, there are easy-to-test syntactic conditions guaranteeing totality. For example,
in Boolean circuit satisfiability, we know that if no gate of a circuit is constrained to
a specific truth value, any module implemented by such a Boolean circuit is total. In
practice, when implementing reusable modules for inclusion in a module library, the
totality of a module could be explicitly declared in the module interface specification.

Definition 11. Given a constraint module M, x ∈ Input(M), and y ∈ Output(M),
we say that x is a M-don’t care w.r.t. y, if for any assignment τ over Input(M) \ {x},

{π{y}(τ ′) |τ ′∈SolutionOut(M, τ ∪ τ1)}={π{y}(τ ′) |τ ′∈SolutionOut(M, τ ∪ τ2)}
for all pairs of assignments τ1, τ2 for x.

As in the case of totality, in general checking whether a given input variable is a don’t
care is hard when constraint modules are seen as black-box entities. But again, if the
declarative implementation of the module is known, there are easy-to-test syntactic con-
ditions which guarantee that a variable is a don’t care. For example, if a CNF formula
can be split into two disjoint components, i.e., sets of clauses which do not share vari-
ables. A similar check can be done, e.g., for ASP programs and CSP instances.

In addition to totality and don’t cares, we use the concept of relevant I/O variables.
Let CM(M) denote the set of constraint modules appearing in a module system M.
For instance, if M = πO(M1 �M2) then CM(M) = {M1,M2}.

Definition 12. Given a module system M and O ⊆ Output(M), the set of relevant I/O
variables in M w.r.t. O, denoted by Rel(M,O), is the smallest set S ⊇ O of variables
that fulfills the following conditions:

– Input(M′) ⊆ S for each non-total M′ ∈ CM(M).
– If y ∈ S, then for each total M′ ∈ CM(M) such that y ∈ Output(M′),

{x ∈ Input(M′) | x is not M′-don’t care w.r.t. y} ⊆ S.

The cone-of-influence reduction allows the parts not belonging to the cone-of-influence
to be neglected when solving the constraint model.

Definition 13. Given a module system M and a set X of variables, the module system
reduction M|X is defined as follows.

– If M is a constraint module, then

M|X =
{
E (the empty module) , if Output(M) ∩X = ∅ and M is total
M , otherwise.

– If M is of the form M1 �M2, then M|X = (M1|X �M2|X).
– If M is of the form πO(M′), then M|X = πOutput(M′|X)∩O(M′|X).

Given a module system M and a set of variables O, the cone-of-influence reduction of
M w.r.t. O is the module system M|Rel(M,O).
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For finding a satisfying assignment for O ⊆ Output(M) of a module system M, one
needs to consider only the subsystem M|Rel(M,O) of M.
Proposition 2. Given a module system M and a set of variables O ⊆ Output(M),
then {πO(τ) | τ ∈ Solutions(M)} = {πO(τ) | τ ∈ Solutions(M|Rel(M,O))}.

Example 6. Consider the module system M = (M1 � M2) � (M3 � M4) illustrated
in Fig. 3. Thus, Input(M) = {a, b, c} and Output(M) = {d, e, f, g}. The constraint
module M2 represented with gray in Fig. 3 is not total, while the other constraint mod-
ules in CM(M), i.e., M1, M3, and M4, are total. Assume that, in addition, it is known
that e and f are M4-don’t cares w.r.t. g. Assume that we are only interested in finding
a satisfying assignment for O = {g}. By Proposition 2 we can exploit the cone-of-
influence reduction. The set of relevant I/O variables Rel(M,O) = X = {a, b, c, d, g}
because O ⊆ Rel(M,O), Input(M2) ⊆ Rel(M,O), d is not M4-don’t care w.r.t.
g ∈ Output(M4), and a and b are not M1-don’t cares w.r.t. d ∈ Output(M1). Using
the set of relevant I/O variables, the cone-of-influence re-
duction of M w.r.t. O is

M|Rel(M,O) = (M1 �M2)|X � (M3 �M4)|X
= (M1|X �M2|X) � (M3|X �M4|X)
= (M1 �M2) � (E �M4)
= (M1 �M2) �M4.

M2

d f g e

f

d e

M3

M4

M1

b ca

Fig. 3. A module system
7 Conclusions

We develop a generic framework for module-based constraint modeling using multiple
modeling languages within the same model. In the framework, constraint models are
constructed as module systems which are composed of constraint modules each hav-
ing an explicit input/output interface specification. This approach has many interesting
properties. First of all, individual constraint modules can be implemented using a con-
straint language most suitable for modeling the constraint in question. The approach
paves the way for reusable constraint module libraries and also allows for multiple
modelers to implement parts of a constraint model in parallel. Our framework supports
modular multi-language modeling by treating different constraint languages on equal
terms whereas previous approaches can be seen as extensions of a given basic language
with features from other languages. The modular construction of constraint models as
module systems yields in itself a structured view to the model which can be exploited
when solving the model. We describe a system-level cone-of-influence reduction, which
allows parts of the module system to be disregarded when solving a constraint model,
without the need to consider properties specific to the constraint languages employed
in implementing the individual constraint modules.

For further work, we see a number of possible approaches to solving constraint mod-
els expressed using the multi-language framework. In a hybrid system individual con-
straint modules (or parts of the module system modeled using the same constraint lan-
guage) are solved using language-specific solvers which have to interact in order to
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compute solutions to the whole constraint model. In a translation-based approach all
parts of the model are mapped into a single constraint language for which highly effi-
cient off-the-shelf solvers are available. For example, there is interesting recent work
on bit-blasting more general CP models into SAT [20]. Another interesting paradigm
is the extension of SAT to Satisfiability Module Theories (SMT), into which e.g. sta-
ble model computation can be very compactly encoded [21]. Additionally, the modular
structure of module systems poses interesting research topics such as harnessing the I/O
interfaces in developing novel decision heuristics and devising techniques to instantiate
and ground module schemata lazily.
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Abstract. Several learning systems based on Inverse Entailment (IE)
have been proposed, some that compute single clause hypotheses, exem-
plified by Progol, and others that produce multiple clauses in response
to a single seed example. A common denominator of these systems is
a restricted hypothesis search space, within which each clause must in-
dividually explain some example E, or some member of an abductive
explanation for E. This paper proposes a new IE approach, called In-
duction on Failure (IoF), that generalises existing Horn clause learn-
ing systems by allowing the computation of hypotheses within a larger
search space, namely that of Connected Theories. A proof procedure for
IoF is proposed that generalises existing IE systems and also resolves
Yamamoto’s example. A prototype implementation is also described. Fi-
nally, a semantics is presented, called Connected Theory Generalisation,
which is proved to extend Kernel Set Subsumption and to include hy-
potheses constructed within this new IoF approach.

Keywords: Inductive Logic Programming, Inverse Entailment,
Abduction.

1 Introduction

Inductive Logic Programming (ILP) uses the expressive power of first-order logic
and the sound theoretical foundations of logic programming, to create a branch
of machine learning that seeks the construction of explanations for given exam-
ples relative to some background knowledge, in a form easily understood by the
user. Among ILP systems that perform best on practical applications are those
that use the Inverse Entailment (IE) approach to learn Horn theories [1,2,3,4].
These systems first construct a most specific hypothesis and then search through
formulas that subsume it. The restricted search space that IE defines contributes
to the efficiency of these systems. However, the assumptions made by current
Horn theory IE systems, regarding the number of clauses necessary to explain a
given example, mean that some hypotheses that correctly explain the observa-
tions are excluded.

The Progol systems [1,5] assume that every clause in a hypothesis H must in-
dividually explain at least one example E. This excludes hypotheses in which two
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or more clauses combine to explain some E, a situation particularly, though not
exclusively, relevant to non-observational learning. Consider, for example, the
observation E = {p(a, b)}, background knowledge B = {p(X,Y ) ← q(X), r(Y )}
and hypothesis H = {q(X)}∪{r(X)}. This H is outside the Progol search space.
A single clause that does explain some E may still be excluded, because the as-
sumption is applied at the ground level first. For example, if the background
clause above was in fact p(X,Y ) ← q(X), q(Y ), the clause H = q(X) explains
E. However, the ground explanation for p(a, b) is {q(a)}∪{q(b)} which contains
two clauses, meaning it and its subsuming hypothesis q(X) are not returned.
The HAIL [3] and ALECTO [4] systems allow a multiple clause explanation of a
single seed example, and do compute the hypotheses described so far. However,
the single clause assumption is only weakened in these systems, not removed
completely. Thus, for the previous example HAIL computes the ground unit
explanation Δ = {q(a), q(b)} by abduction, and generates one, and only one,
clause for each member of Δ. The next example shows that this approach also
excludes some correct explanations.

Example 1.

E1 = vehicle(focus)

B1 = {doors(focus, 5)} ∪ {car(X) ← hatchback(X)}

H1 = {vehicle(X) ← car(X)} ∪ {hatchback(X) ← doors(X, 5)}
�

The abductive explanation Δ1 = {vehicle(focus)}, will constrain HAIL’s search
space to be the same as Progol’s for this example, including only single clauses
subsuming H ′

1 = vehicle(X) ← doors(X, 5). The two-clause theory H1 is outside
this search, and cannot be computed by any of the ILP systems described.

Intuitively, one can see that H1 is a structured explanation for E1, and if the
observation set includes data on cars and hatchbacks then it will be preferred
to H ′

1 since it will cover examples with those predicates. This paper proposes a
new IE approach, within the setting of Horn clauses, that enables the automatic
computation of hypotheses such as H1, as well as those considered by existing
Horn ILP systems. This approach, called Induction on Failure (IoF), is based on
the notion of a Connected Theory. A Connected Theory contains clauses that
depend on one another, either directly or via clauses in the background knowl-
edge. IoF is designed to find hypotheses as generalisations of a most specific
Connected Theory, denoted T⊥. The semantics of Connected Theory Generali-
sation is presented in Sect. 3, and is shown to define a set of hypotheses that
extends those of Progol’s Bottom Generalisation (BG) and HAIL’s Kernel Set
Subsumption (KSS).

The IoF approach computes the theory T⊥ via a recursive inductive proce-
dure. Where current Horn IE systems use a purely deductive saturation step
to generate the body of clauses, IoF considers body literals which initially lack
explanation, starting a new induction process for them. This recursive induction
has as base case the standard saturation process adopted by existing systems. A
full description of the IoF framework is given in Sect. 4.



Induction on Failure: Learning Connected Horn Theories 171

In Sect. 5 it is also shown, using a prototype implementation called Imparo,
that the proposed IoF approach is general enough to resolve Yamamoto’s counter
example to the completeness of IE [6], demonstrating its suitability for learning
mutually recursive programs. Section 2 gives the necessary background informa-
tion on ILP, and Sect. 6 describes related and future work.

2 Background

This section presents notation and terminologies used throughout the paper
and briefly reviews the ILP task, the IE principle and the methods of Bottom
Generalisation and Kernel Set Subsumption.

Notation and Terminology. All formulas are assumed to be constructed from
a first-order logic signature. A first-order clause is a finite disjunction of zero or
more literals A1∨. . .∨Am∨¬Am+1∨. . .∨¬An, which is assumed to be universally
quantified and will be written as the implication A1, . . . , Am ← Am+1, . . . , An. A
Horn clause is either the empty clause �, or a fact A, or a denial, ← A1, . . . , An,
or a definite clause A0 ← A1, . . . , An, where A0 is the head and A1, . . . , An is
the body of the clause. Capitalised identifiers denote meta variables. If C is a
Horn clause, then C+ is the set containing the head atom (if any) of C, and C−

is the set of body atoms of C. Moreover, given a set S = {C1, . . . , Cn} of Horn
clauses, S+ denotes C+

1 ∪ . . .∪C+
n and S− denotes C−

1 ∪ . . .∪C−
n . A theory is a

set of clauses. The symbol |= represents classical entailment. So, if S and T are
theories and C is a clause, S |= C means that C is satisfied in every model of
S, and S |= T means that S |= D for every D ∈ T . The term subsumption and
the symbol � refer to θ-subsumption. So, if C and D are clauses, C � D means
that the set of literals in Cθ is a (non-strict) subset of the set of literals in D
for some substitution θ, and if S and T are theories, S � T means that every
clause in T is subsumed by at least one clause in S. Throughout this paper the
term clause will refer to a Horn clause, unless otherwise stated.

Inductive Logic Programming. Inductive Logic Programming (ILP) is con-
cerned with the task of generalizing positive and negative examples with respect
to a background theory. Formally, given background theory B, positive examples
Epos and negative examples Eneg , the task of ILP is to compute a theory H ,
called a hypothesis, that satisfies the conditions B ∪ H |= Epos (posterior suf-
ficiency) and ∀x ∈ Eneg(B ∪ H �|= x) (posterior satisfiability). The ILP task of
finding such an hypothesis H is called inductive generalisation. Standard precon-
ditions of an ILP task are prior necessity, for which the given background theory
must not already entail all the positive examples, B �|= Epos and prior satisfiabil-
ity, for which B must not entail any of the negative examples, ∀x ∈ Eneg(B �|= x).

Inverse Entailment. Various existing ILP systems build their approaches to
the ILP task upon the principle of Inverse Entailment (IE), which states that the
negation of every inductive hypothesis H for some example E may be deduced
from B and ¬E. That is to say B ∪ {¬E} |= ¬H . This relationship is used to
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derive a most specific hypothesis φ, as defined below, which allows the search
space for the inductive generalisation to be limited to those H satisfying H |= φ.

Definition 1 (Most Specific Hypothesis). Let B be a set of clauses and
E be a clause such that B �|= E. Then a set of clauses H is a most specific
hypothesis for E given B if and only if B ∪ H |= E and there does not exist a
set H ′ of clauses such that B ∪H ′ |= E and H |= H ′ and H ′ �|= H.

Systems such as Progol and Aleph [2] employ IE within the technique of Bot-
tom Generalisation. Bottom Generalisation computes a most specific hypothesis
⊥(B,E) called the Bottom Clause of B and E, as defined below. Since ⊥(B,E) is
a single clause, its negation is a set of (possibly skolemised) ground literals each
of which can be derived from B and ¬E. Any clause H which implies ⊥(B,E)
is said to be derivable by BG, as formalised in Definition 3.

Definition 2 (Bottom Clause [1]). Let B be a Horn theory and E a Horn
clause. Then ⊥(B,E), the Bottom Clause of B and E, is the disjunction of the
ground literals in the set {L | B ∪ {¬E} |= ¬L}.

Definition 3 (Bottom Generalisation [1]). Let B be a Horn theory and E a
Horn clause. A Horn clause H is said to be derivable from B and E by Bottom
Generalisation if and only if H |= ⊥(B,E).

The Progol system [1], implements Bottom Generalisation by means of Mode
Directed Inverse Entailment (MDIE), which computes a definite bottom clause
A0 ← A1, . . . , An based on ⊥(B,E). Ray et al. [3] showed that such a definite
bottom clause could be defined as a head atom A0 that, together with the
background knowledge, explains the head of the example clause (i.e. B∪{A0} |=
E+), and a set of body atoms {A1, . . . , An} that are directly derivable from the
background knowledge and the body of E (i.e. B∪E− |= Ai for each 1 ≤ i ≤ n).
Kernel Set Subsumption (defined below) extends this notion by defining a most
specific hypothesis K, the Kernel Set, that is a set of ground Horn clauses where
the set of head atoms of K explains the head of the example (B ∪ K+ |= E+)
and the body atoms of K are directly derivable from the background knowledge
and E− (B ∪ E− |= K−).

Definition 4 (Kernel Set [3]). Let B be a Horn theory and E be a Horn
clause such that B �|= E. Then a ground Horn theory K = {C1, . . . , Ck} (k ≥ 1)
is a Kernel Set of B and E if and only if each clause Ci, 1 ≤ i ≤ k is given by
Ai

0 ← Ai
1, . . . , A

i
ni

, where B∪{A1
0, . . . , A

k
0} |= E+, and B∪E− |= {A1

1, . . . , A
k
nk

}.

Definition 5 (Kernel Set Subsumption [3]). Let B be a Horn theory and
E be a Horn clause such that B �|= E. A set of Horn clauses H is said to be
derivable from B and E by Kernel Set Subsumption, denoted B,E �KSS H, if
and only if there is a K such that K is a Kernel Set of B and E, and H � K.

Kernel Set Subsumption extends Bottom Generalisation since it has been shown
that all clauses that can be derived by BG can also be derived by KSS, and that
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some single clauses not found by BG are found by KSS [3]. Not only this, but KSS
allows theories to be derived from a single seed example, whereas BG is limited
to clauses. However, the nature of the Kernel Set imposes limits on the possible
theories that KSS can compute. The next section describes Connected Theory
Generalisation (CTG), a new semantic approach which further generalises KSS,
and computes a “more complete” set of hypotheses.

3 Connected Theory Generalisation

This section proposes a new semantic approach to ILP, called Connected Theory
Generalisation (CTG). This approach is based on the notion of a Connected
Theory, defined below, and is proved to extend the semantics of Kernel Set
Subsumption, which has been shown [3] to extend Bottom Generalisation [1].
The motivation is to extend the class of hypotheses learnable by Horn theory
ILP systems.

The Kernel Set extends the notion of a Bottom Clause by replacing the single
atom explanation of the given example, {A0}, with a set of atoms {A1

0, . . . , A
k
0}.

A Connected Theory extends the basic notion even further, not only generalising
the head of ⊥(B,E) to be a set of atoms, but also extending the set of body
atoms beyond those that are direct consequences of the background knowledge.
Intuitively, all body atoms in ⊥(B,E), a single clause, must be implied by B for
B∪{⊥(B,E)} to entail E. In a hypothesis which is a set of clauses this need not
be true for a given member of the set. The Kernel Set retains this restriction,
but, as explained below, it is relaxed in a Connected Theory leading to a wider
class of most specific hypotheses, and thus a larger search space.

In general, for a set T of ground Horn clauses to be a hypothesis for an example
E given background knowledge B, T must include a set T1 of root clauses whose
head atoms form an (abductive) explanation of the example E:

B ∪ T+
1 |= E .

If the body atoms of clauses in T1 are all implied by B (B |= T−
1 ), then T1 is a

hypothesis for E (B∪T1 |= E), and also a Kernel Set for B and E. On the other
hand, if some body atoms in T1 are not directly derivable from the background
knowledge, T1 is not an explanation for E. In this case, those body atoms in
T1 that are not consequences of B must themselves be explained. Such atoms
are referred to as secondary examples, and require that T contains a set T2 of
auxiliary clauses, in addition to T1. In the ground hypothesis shown for Example
1, the atom car(focus) is a secondary example, and is explained by the auxiliary
clause hatchback(focus) ← doors(focus, 5). By analogy with T1, the heads of
the T2 clauses must abductively explain the secondary examples:

B ∪ T+
2 |= T−

1 ,

and either T1 ∪T2 is now a hypothesis for E, or T2 contains secondary examples,
and T must include a further subset T3, etc. A ground hypothesis such as T is
called a Connected Theory for B and E, as formalised below.
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Definition 6 (Connected Theory). Let B be a Horn theory and E be a
ground Horn clause such that B �|= E. Let T1, . . . , Tn be n sets of ground Horn
clauses (n � 1), and let T = T1 ∪ . . . ∪ Tn. T is a Connected Theory for B and
E if and only if (i) B ∪ T+

1 |= E+, (ii) B ∪ E− ∪ T+
i+1 |= T−

i (1 � i < n), (iii)
B ∪ E− |= T−

n , and (iv) B ∪ T �|= �.

A set of Horn clauses which entails a Connected Theory is said to be derivable by
Connected Theory Generalisation, as formalised in Definition 7 below. Theorem
1 shows such a set of clauses to be a correct hypothesis.

Definition 7 (Connected Theory Generalisation). Let B be a Horn theory
and E be a ground Horn clause such that B �|= E. A set H of Horn clauses is
said to be derivable from B and E by Connected Theory Generalisation, denoted
B,E �CTG H, if and only if there is a T such that T is a Connected Theory for
B and E and H |= T .

Theorem 1 (Soundness of Connected Theory Generalisation). Let B
and H be Horn theories and E be a ground Horn clause such that B �|= E. If
B,E �CTG H then B ∪H |= E.

Proof. By Definitions 6 and 7, H entails some Connected Theory T for B and
E, and T comprises n subsets (n > 0) T1 . . . Tn, such that B ∪ T+

1 |= E+, and
B ∪ E− ∪ T+

i+1 |= T−
i (1 � i < n), and B ∪ E− |= T−

n . Since B ∪ E− |= T−
n ,

and T ∪ T−
n |= T+

n , then B ∪ E− ∪ T |= T+
n by transitivity of |=. Also, since

B ∪ E− ∪ T+
i+1 |= T−

i and T ∪ T−
i |= T+

i (1 � i < n), then B ∪ E− ∪ T |= T+
i

(1 � i < n), and since B ∪ T+
1 |= E+, then B ∪ E− ∪ T |= E+ or B ∪ T |= E.

Finally, since H |= T , B ∪H |= E. ��

Thus Connected Theory Generalisation is a sound inductive learning method
for Horn theories. Theorem 2, below, shows that CTG extends Kernel Set Sub-
sumption, which itself has been shown to extend Bottom Generalisation [3].

Theorem 2 (CTG extends Kernel Set Subsumption). Let B be a Horn
theory and E be a Horn clause such that B �|= E. The set of hypotheses derivable
from B and E by Connected Theory Generalisation strictly includes the set of
hypotheses derivable from B and E by Kernel Set Subsumption.

Proof. The proof is in two parts. First it is shown that all hypotheses derivable by
KSS are derivable by CTG. Then it is shown, by means of a counter example, that
some hypotheses derivable by CTG are not derivable by KSS. Part (i). Assume
B,E �KSS H where H is a set of Horn clauses. Then H subsumes some Kernel
Set K of B and E. By Definition 4, K is a set of clauses {Aj

0 ← Aj
1, . . . , A

j
nj
, 1 ≤

j ≤ k}, for some k, where B ∪ {A1
0, . . . , A

k
0} |= E+ and B ∪ E− |= Aj

i , for
1 ≤ i ≤ nj , and 1 ≤ j ≤ k. Therefore B,E �CTG H with the Connected Theory
T = {Aj

0 ← Aj
1, . . . , A

j
nj
, 1 ≤ j ≤ k}. Hence B,E �KSS H only if B,E �CTG H .

Part (ii). Let p/1 and q/1 be predicates, let a and b be constants, let B =
{q(a) ← p(b)} ∪ {q(b)} and let E = p(a). The hypothesis H = {p(X) ← q(X)}
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is not derivable by KSS since it does not θ-subsume K = {p(a) ← q(b)}, but H
is derivable by CTG as it subsumes T = {p(a) ← q(a), q(b)} ∪ {p(b) ← q(b)}.
Hence B,E �CTG H does not imply B,E �KSS H . ��

As with both the Bottom Clause and Kernel Set, restricting a Connected Theory
to Horn clause logic results in several alternative most specific hypotheses. If the
Bottom Clause and the Kernel (the non-Horn formula underpinning the Kernel
Set) are represented thus:

⊥(B,E) = A1
0 ∨ . . . ∨Am

0 ← A1 ∧ . . . ∧An ;
Ker = Δ1 ∨ . . . ∨Δm ← A1 ∧ . . . ∧An ;

then alternative definite Bottom Clauses ⊥i (resp. Kernel Sets K) can be seen
to comprise one of the atoms (resp. conjunctions of atoms) on the left of the
implication, together with all the atoms to the right. All alternative most specific
Connected Theories are captured by the equivalent formula

T⊥ = S1 ∨ . . . ∨ Sm ← A1 ∧ . . . ∧An ,

where each Si is an alternative set of Horn clauses that, together with the
background knowledge, explains E+ (B ∪ Si |= E+, 1 ≤ i ≤ m) and where each
Ai is entailed by the background knowledge and E− (B ∪E− |= Ai, 1 ≤ i ≤ n).
This reflects the fact that the alternative most specific Connected Theories differ
in their body atoms as well as their heads, as illustrated by Example 2.

Example 2. Find a Horn theory that explains E2, given background knowledge
B2. Hypothesis clauses may have x, u, v or w in the head, and p, a or b in the
body.

E2 = x B2 = {a ← u, v} ∪ {b ← v, w} ∪ {p} �

There are five alternative most specific hypotheses T⊥ for B2 and E2 as shown in
Table 1. The simplest, Theory 1, is the Kernel Set. Each of the other theories in
the table is also a most specific hypothesis by virtue of the inclusion of different
secondary examples, and auxiliary clauses to explain them.

Since none of the different T⊥ imply one another, each is the bottom element
of a separate implication lattice that, taken together, form the full search space
for the inductive problem. Depending on the amount of underlying structure in
the data (in the case of the example, whether u, v or w have also been observed),
generalisation of any of the alternative T⊥ could yield the preferred hypothesis.

Table 1. All possible most specific connected theories for B2 and E2

Theory 1 2 3 4 5

T⊥ x ← p
x ← p, a
u ← p
v ← p

x ← p, b
v ← p
w ← p

x ← p, a, b
u ← p, b
v ← p
w ← p

x ← p, a, b
u ← p
v ← p
w ← p, a
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4 Induction on Failure

This section describes the IoF proof procedure for computing Connected Theo-
ries. The key features of the procedure are the inclusion of secondary examples
in the saturation phase, and their recursive inductive explanation.

The top level covering loop is shown in Fig. 1. The initial set of examples is
divided into positive examples, Epos, which should be provable from the theory at
the end of Cover, and negative examples, Eneg which should not. The hypothesis
language is defined by sets of head (Mh) and body (Mb) mode declarations as
defined in [1] and briefly explained below. Mh, which is translated into a set A
of abducible atoms, Mb and Eneg are constant for a given application, and so
global to all procedures. The cover loop proceeds by selecting a seed example
E ∈ Epos, and generating a hypothesis H to explain it. H is added to B and all
members of Epos implied, or “covered”, by the new program are removed from
the set. The loop continues until Epos is empty.

The goal ←E is queried against the background program in Abduce, based on
the Kakas and Mancarella (KM) abductive procedure [7], collecting any ground
atoms that are needed to refute it into the set Δ, which is thus an abductive
explanation for E. The members of Δ will form the heads of the root clauses.
These head atoms are “saturated” by adding body atoms to them, forming
T⊥, a most specific Connected Theory for B and E. The Saturate algorithm
is shown in Fig. 2. As explained in Sect. 3, in general there are multiple T⊥,
each alternative being computed using a restricted set of abducibles Aaux ⊆ A.
The final step in computing H is to search the lattice of sets of clauses which
subsume T⊥. The Search procedure returns the preferred H according to criteria
appropriate to the particular learning task. A common criterion is to select the
most compressive hypothesis, the H with the highest ratio of positive examples
covered to number of literals in the hypothesis, which does not cover negative
examples. The final H chosen for a given seed example E is the one with the
best measure across the entire search space defined by all T⊥.

Begin Cover
given B, Epos

let A = Initialise(Mh)
while Epos �= ∅

select a seed example E ∈ Epos

let H = {E}
for each Δ = Abduce(E,B, A)

for each T⊥ = Saturate(Δ, ∅, {E}, Epos ∪ Δ, B, Aaux), where Aaux ⊆ A
H = Search(T⊥, B, Epos, H)

B = B ∪ H
Epos = Epos − {ex ∈ Epos | B |= ex}

End Cover

Fig. 1. The Cover loop algorithm
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Begin Saturate
1 given Δ, Sat, Esec, Abd, B, Aaux

2 let T⊥ = ∅
3 for each α ∈ Δ and α �∈ Sat:
4 let R = α
5 A′

aux = Aaux − {α}
6 for each β ∈ Mb:
7 replace all placeholders in β with input terms or fresh variables
8 for each (θ, Δβ) = C-Abduce(β,B, A′

aux, Abd) and βθ �∈ Esec

10 R = R ∨ ¬βθ
11 if Δβ �= ∅
12 E′

sec = Esec ∪ {βθ}
13 Abd = Abd ∪ Δβ

14 T⊥ = T⊥ ∪ Saturate(Δβ, Sat, E′
sec, Abd, B,A′

aux)
15 T⊥ = T⊥ ∪ {R}
16 Sat = Sat ∪ {α}
17 return T⊥

End Saturate

Fig. 2. The Saturate algorithm

The inputs to a call to Saturate are the set Δ of ground atoms to be saturated,
the set Sat of ground atoms already saturated, the set Esec of secondary exam-
ples in the current branch of the computation, the set Abd of atoms abduced so
far, B and Aaux. The output is a most specific Connected Theory T⊥.

Figure 3 shows a tree depiction of the Saturate computation which generates
Theory 4 in Example 2:

T⊥ = {x ← a, b, p} ∪ {u ← b, p} ∪ {v ← p} ∪ {w ← p} .

Fig. 3. A tree depiction of the saturation of Δ = {x} in Example 2. The branch
containing the node v, and connected to a with a dotted edge, is pruned and does not
form part of T⊥.
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Thin edges connect clause heads (parent nodes) to their body atoms (children).
Bold edges connect secondary examples (parent) to clauses which explain them
(subtrees). In this example the abductive explanation for the seed, x, is Δ = {x}.
Each atom α ∈ Δ becomes the head of a new root clause R (line 4), unless it has
already been saturated (line 3) in some previous iteration. Saturate proceeds
to look for body atoms for each α that are compatible with Mb. In a first-order
case each body mode declaration β is instantiated with relevant input terms
(line 7) to produce a ground (if all placeholders are inputs), or partially ground
atom. This atom is now queried against the background program by C-Abduce,
which extends the KM procedure by checking “global consistency” with Eneg

and Abd. If successful C-Abduce instantiates β with substitution θ, and returns
a (possibly empty) set Δβ of abduced atoms.

In Fig. 3 the first body atom for x to be proved by C-Abduce is a, with
Δa = {u, v}. Since Δa is not empty, a is a secondary example, requiring its
own T⊥ explanation. This new auxiliary hypothesis is induced via a recursive
call to Saturate with input Δ = {u, v}. This is the fundamental feature of the
Induction on Failure procedure. Standard saturation procedures, using deduction
rather than abduction to generate the body of clauses, would fail to prove atoms
such as a and terminate. Induction on Failure instead induces new rules to
explain a.

The tree also demonstrates how the procedure efficiently produces a theory
which is consistent with the background knowledge and example. Two pruning
steps are used. Firstly, the condition βθ �∈ Esec (line 8) prevents a secondary ex-
ample appearing twice in the same branch of the tree. This, for instance allowing
a to be a child of u, v or w in the figure, would correspond to the secondary
example forming part of its own explanation, meaning T⊥ would no longer be
a correct hypothesis. The check eliminates such cyclic definitions. If the set of
possible body atoms is finite, this check also guarantees that all branches of the
tree terminate. Secondly, the condition α �∈ Sat (line 3) prevents clauses being
generated twice in different parts of the tree. So, even though v is part of the
explanation for a in the example, the figure shows that the computation pro-
ceeds to generate the tree in a depth first manner, and a v clause is first added
under b. The loop check prevents this clause being regenerated when complet-
ing the explanation of a and the second v node, shown with a dotted line, is
pruned. Consequently, an abduced (head) atom can appear only once in the
entire tree.

5 Imparo

Imparo, a prototype implementation of the IoF procedure, has been written in
Sictus Prolog. A general-to-specific search of the hypothesis space bounded by
the theory consisting of the empty clause, {�} and the ground T⊥ theories is
carried out using a branch and bound algorithm, similar to that of Aleph [2].
Coverage of each theory searched is tested using OLDT (tabled) resolution [8]
to ensure that queries with a finite set of solutions will terminate.
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As an illustration of the execution of the system, the result of applying Imparo
to Yamamoto’s main example in [6] is presented. This example is used in [6] to
highlight the incompleteness of Bottom Generalisation for finding single clause
hypotheses, since the clause odd(s(X)) ← even(X) cannot be derived by BG.

Example 3 (Yamamoto). 1

B3 =
j

even(s(X)) :- odd(X)
even(0)

ff
∪

j
nat(0)
nat(s(X)) :- nat(X)

ff

E3 = odd(s3(0)), Epos = {odd(s5(0))}, Eneg = {odd(0), odd(s2(0))}

M3 = {modeh(∗, odd(+nat)),modeb(∗, even(+nat)),modeb(∗, +nat = s(−nat)))}

�
The s/1 function is handled by adding the +nat = s(−nat) declaration to Mb,
which generates equality body literals. Imparo returns the following output:

The seed example is odd(s(s(s(0))))

New most specific explanation:

---------------------------------

odd(A):-A=s(B),even(B),B=s(C),C=s(D),even(D)

odd(A):-A=s(B),even(B)

---------------------------------

Searching generalisations...

...

The most successful hypothesis is:

---------------------------------

odd(A):-A=s(B),even(B)

---------------------------------

19 nodes searched. Time taken: 0.21 seconds.

The most specific hypothesis generated by Imparo contains two ground clauses:
{

odd(s3(0)) ← s3(0) = s(s2(0)), even(s2(0)), s2(0) = s(s1(0)), s1(0) = s(0), even(0)
odd(s1(0)) ← s1(0) = s(0), even(0)

}

computed from the seed example odd(s3(0)). Saturation of the abductive expla-
nation Δ1 = {odd(s3(0))} yields five body literals including even(0) which can be
proved directly from the background knowledge, and even(s2(0)) which is a sec-
ondary example. The other possible even/1 literals, even(s3(0)) and even(s(0))
are inconsistent with the negative examples. The explanation of even(s2(0))
is Δ2 = {odd(s(0))}. Saturation of Δ2 produces no secondary examples and so
computation of T⊥ terminates. Distinct variables replace each ground term in T⊥
in the program output. The single clause theory {odd(A) ← A= s(B), even(B)}
1 Epos and Eneg do not form part of Yamamoto’s formulation of the example. They

are added here only to guide the search towards choosing odd(s(X)) ← even(X) as
the preferred hypothesis (the simplest clause with full coverage of the examples).
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is returned by the search, which is equivalent to H3 = odd(s(X)) ← even(X),
in which the equality has been “flattened”.

H3 cannot be derived by BG or KSS as it does not imply the bottom clause
(and kernel set) odd(s3(0)) ← even(0). However, H3 does imply both clauses
in T⊥, and can be learned by Imparo. This example demonstrates the extended
search space of IoF, and its suitability to mutually recursive learning tasks.

6 Related Work and Conclusion

This section relates the IoF approach to other existing IE approaches, focus-
ing mainly on those that generalise the search space beyond that of Bottom
Generalization, and summarises the contribution of this paper.

The HAIL (Hybrid Abductive Inductive Learning) proof procedure [3] is a
multiple clause IE learning approach that implements the KSS semantics de-
scribed in Sects. 2 and 3. CTG extends KSS as shown by Theorem 2.

The method of CF-Induction described by Inoue in [9] is a full clausal conse-
quence finding approach, with a semantics based on characteristic clauses. The
characteristic clauses, Carc(S,P), of a program S are those that are implied
by S and not subsumed by any other such clause. P is a so-called production
field and specifies language bias. A hypothesis H is derivable by CF-Induction
if Carc(B ∧ ¬E,P) |= CC(B,E) and H |= ¬CC(B,E). So, the bridge formula
CC(B,E) is equivalent to a (negated) most specific hypothesis, and is in fact a
set of ground instances of clauses in Carc(B∧¬E,P). CF-Induction is complete
for full clause hypotheses. Yamamoto and Fronhöfer also report a complete mul-
tiple clause IE method in full clausal logic [10]. This approach is based on residue
hypotheses. A residue hypothesis Res(T ) for a ground theory T is obtained by
deleting all tautological clauses from T . The procedure described in [10] gener-
ates a most specific hypothesis by taking some subset S of the ground instances
of B∪{¬E} and computing Res(S). Since CF-Induction and the Residue method
are complete for full clausal theories they are also complete for Horn theories,
and so are capable of learning Connected Theories, if appropriate selection of
their bridge formulas is made. In IoF, abduction is used to guide selection of the
connected clauses. It is also the authors’ conjecture that the IoF procedure is
complete for Horn theories, with respect to the CTG semantics. Further investi-
gation is required to formally relate the properties and performance of IoF and
these full clausal systems.

In summary, this paper has proposed the notion of a Connected Theory as
a new type of bridge formula for inverse entailment in Horn programs. A proof
procedure, Induction on Failure, has been described which computes most spe-
cific Connected Theories via a recursive abductive algorithm. The semantics
of Connected Theory Generalisation has been shown to be more complete for
single clause hypotheses than the Bottom Generalisation of Progol, and more
complete for multiple clause hypotheses than the Kernel Set Subsumption of
HAIL. Further work on Induction on Failure will include characterisation of the
completeness of the procedure, and the extension of the approach to compute
normal program hypotheses.
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Abstract. Several proposals of the semantics of aggregates are based on
different extensions of the stable model semantics, which makes it diffi-
cult to compare them. In this note, building upon a reductive approach
to designing aggregates, we provide reformulations of some existing se-
mantics in terms of propositional formulas, which help us compare the
semantics and understand their properties in terms of their propositional
formula representations. We also present a generalization of semantics of
aggregates without involving grounding, and define loop formulas for
programs with aggregates guided by the reductive approach.

1 Introduction

Defining a reasonable semantics of aggregates under the stable model semantics
has turned out to be a non-trivial task. An obvious “reductive” approach to
understand an aggregate as shorthand for a nested expression [1] in the form
of disjunctions over conjunctions leads to unintuitive results. For instance, one
would expect {p(0), p(1)} to be the only answer set of the following program.

p(1) p(0) ← sum〈{x : p(x)}〉 = 1.

Assuming that the domain is {0, 1}, one may try to identify sum〈{x : p(x)}〉 = 1
with the disjunction over two “solutions,”—one in which only p(1) is true, and
the other in which both p(0) and p(1) are true. However, the resulting program

p(1) p(0) ← (p(0), p(1)) ; (not p(0), p(1))

has no answer sets.1

The difficulty led to several interesting extensions of the stable model seman-
tics to account for aggregates, such as an extended definition of the reduct [2],
an extension of TP operator with “conditional satisfaction” [3], and an extension
of the standard approximating operator ΦP to Φaggr

P [4]. On the other hand, a
few reasonable “reductive” semantics of aggregates were also developed. In [4]
1 Dropping negative literals in forming each conjunct does not work either. For in-

stance, consider p(1) ← sum〈{x : p(x)}〉 �= 1, which intuitively has no answer sets,
but its translation, assuming that the domain is {1}, results in p(1) ← �.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 182–195, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and [5], the authors defined translations of aggregates into nested expressions,
which are somewhat complex than the naive approach above. In [6], instead of
translating into nested expressions, Ferraris proposed to identify an aggregate
with conjunctions of implications under his extension of the answer set seman-
tics for arbitrary propositional formulas. The extended semantics is essentially
a reformulation of the equilibrium logic [7], and was generalized to arbitrary
first-order formulas in [8].

While most semantics agree on monotone and anti-monotone aggregates, they
have subtle differences in understanding arbitrary aggregates. For example, the
following program Π1

p(2) ← not sum〈{x : p(x)}〉 < 2
p(−1) ← sum〈{x : p(x)}〉 ≥ 0
p(1) ← p(−1) .

has no answer sets according to [3,4], one answer set {p(−1), p(1)} according
to [2], and two answer sets {p(−1), p(1)} and {p(−1), p(1), p(2)} according to [6].

In this paper we make further developments on the reductive approach. We
note that the semantics by Pelov, Denecker and Bruynooghe [4] and the se-
mantics by Ferraris [6] are closely related to each other in terms of propositional
formula representations of aggregates, yielding a few interesting alternative char-
acterizations. Furthermore we show that the semantics by Faber, Leone and
Pfeifer [2] can also be reformulated in terms of propositional formulas. Such
uniform characterization helps us compare the semantics and understand their
properties by turning to their propositional formula representations. We define
loop formulas for programs with aggregates guided by the reductive approach;
such loop formulas contain aggregates, and when these aggregates are turned
into corresponding propositional formulas, the resulting formulas are the same
as the loop formulas as defined in [9] for the propositional theory corresponding
to the program with aggregates.

2 Background
2.1 Answer Sets of First-Order Formulas

We review the definition of an answer set from [8]. Let p be a list of predicate
constants p1, . . . , pn, and let u be a list of predicate variables u1, . . . , un. By
u ≤ p we denote the conjunction of the formulas ∀x(ui(x) → pi(x)) for all
i = 1, . . . n where x is a list of distinct object variables of the same length as the
arity of pi, and by u < p we denote (u ≤ p) ∧ ¬(p ≤ u).

For any first-order sentence F , SM[F ] stands for the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)), (1)

where p is the list p1, . . . , pn of all predicate constants occurring in F , u is a list
u1, . . . , un of distinct predicate variables, and F ∗(u) is defined recursively:

– pi(t1, . . . , tm)∗ = ui(t1, . . . , tm);
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– (t1 = t2)∗ = (t1 = t2); − ⊥∗ = ⊥;
– (F �G)∗ = (F ∗ �G∗), where � ∈ {∧,∨};
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (QxF )∗ = QxF ∗, where Q ∈ {∀, ∃}.

(There is no clause for negation here, ¬F is treated as shorthand for F → ⊥.)
Let σ(F ) be the signature consisting of the object, function and predicate

constants occurring in F . According to [8], an interpretation of σ(F ) that satisfies
SM[F ] is called a stable model of F . If F contains at least one object constant,
an Herbrand stable model of F is called an answer set of F . The answer sets
of a logic program Π are defined as the answer sets of the FOL-representation
of Π (i.e., the conjunction of the universal closure of implications corresponding
to the rules).

Ferraris et al. [8] shows that this definition, if restricted to the syntax of
traditional logic programs, is equivalent to the traditional definition of an answer
set based on grounding and the reduct [10], and, if restricted to the syntax of
arbitrary propositional formulas, is equivalent to the definition of an answer set
given by Ferraris [6].

2.2 Syntax of a Program with Aggregates

An aggregate function is any function that maps multisets of objects into num-
bers, such as count, sum, times, min and max. For this paper we assume that all
numbers are integers. The domain of an aggregate function is defined as usual.
For instance, sum, times, min and max are defined for multisets of numbers;
min and max do not allow the empty set in their domains.

An aggregate expression is of the form

op〈{x : F (x)}〉 � b (2)

where

– op is a symbol for an aggregate function op;
– x is a nonempty list of distinct object variables;
– F (x) is an arbitrary quantifier-free formula;
– � is a symbol for a binary relation over integers, such as ≤, ≥, <, >, =, �=;
– b is an integer constant.

A rule (with aggregates) is an expression of the form

A1 ; . . . ; Al ← E1, . . . , Em,not Em+1, . . . ,not En (3)

(l ≥ 0; n ≥ m ≥ 0), where each Ai is an atomic formula (possibly containing
equality) and each Ei is an atomic formula or an aggregate expression. A program
(with aggregates) is a finite set of rules.

Throughout this paper, unless otherwise noted (e.g., Section 4.1), we assume
that the program contains no function constants of positive arity. We do not
consider symbols op and � as part of the signature.
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We say that an occurrence of a variable v in a rule (3) is bound if the occur-
rence is in an aggregate expression (2) such that v is in x; otherwise it is free.
We say that v is free in the rule if some occurrence of v is free in it. Given a
program Π , by σ(Π) we mean the signature consisting of object and predicate
constants that occur in Π . By Ground(Π) we denote the program without free
variables that is obtained from Π by replacing every free occurrence of variables
with every object constant from σ(Π) in all possible ways.

2.3 Review: FLP Semantics

The FLP semantics [2] is based on an alternative definition of the reduct and the
notion of satisfaction extended to aggregate expressions. Let Π be a program
such that σ(Π) contains at least one object constant.2 We consider Herbrand
interpretations of σ(Π) only. Consider any aggregate expression (2) occurring
in Ground(Π) and any Herbrand interpretation I of σ(Π). Let SI be the multiset
consisting of all c[1] (i.e., the first element of c) in the Herbrand universe where

– c is a list of object constants of σ(Π) whose length is the same as the length
of x, and

– I satisfies F (c).

A set I of ground atoms of σ(Π) satisfies the aggregate expression if SI is in the
domain of op, and op(SI) � b. 3

The FLP reduct of Π relative to I is obtained from Ground(Π) by removing
every rule whose body is not satisfied by I. Set I is an FLP answer set of Π if
it is minimal among the sets of atoms that satisfy the FLP reduct of Π relative
to I. For example, in program Π1 (Section 1), the FLP reduct of Π1 relative
to {p(−1), p(1)} contains the last two rules only. Set {p(−1), p(1)} is minimal
among the sets of atoms that satisfy the reduct, and thus is an FLP answer set
of Π1. One can check that this is the only FLP answer set.

2.4 Review: Ferraris Semantics

The Ferraris semantics [6] can be extended to allow variables as follows.

Notation. Given a multiset of object constants {{c1, . . . , cn}},
op〈{{c1, . . . , cn}}〉 � b

if
– b is an integer constant,
– multiset {{c1, . . . , cn}} is in the domain of op, and
– op({{c1, . . . , cn}}) � b.

op〈{{c1, . . . , cn}}〉 �� b if it is not the case that op〈{{c1, . . . , cn}}〉 � b.
Let E = op〈{x : F (x)}〉 � b be an aggregate expression occurring in

Ground(Π), let OΠ(E) be the set of all lists of object constants of σ(Π) whose
2 The syntax in [2] requires F (x) to be a conjunction of atoms.
3 By an atom we mean a non-equality atomic formula of the form p(t1, . . . , tn).
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length is the same as the length of x , and let CΠ(E) be the set of all subsets C
of OΠ(E) such that op〈{{c[1] : c ∈ C}}〉 �� b. For instance, in program Π1 (Sec-
tion 1), for E1 = sum〈{x : p(x)}〉 < 2, set OΠ1(E1) is {−1, 1, 2}, and CΠ1(E1)
is {{2}, {1, 2}, {−1, 1, 2}}. Similarly, for E2 = sum〈{x : p(x)}〉 ≥ 0, set CΠ1(E2)
is {{−1}}.

By FerΠ(E) we denote∧
C∈CΠ (E)

( ∧
c∈C

F (c) →
∨

c∈OΠ (E)\C
F (c)

)
. (4)

For instance, FerΠ1(E1) is

(p(2) → p(−1) ∨ p(1)) ∧ (p(1) ∧ p(2) → p(−1)) ∧ (p(−1) ∧ p(1) ∧ p(2) → ⊥) .

By Fer(Π) we denote the propositional formula obtained from Ground(Π) by
replacing every aggregate expression E in it by FerΠ(E). The Ferraris answer
sets of Π are defined as the answer sets of Fer(Π) in the sense of Section 2.1.
For example, the Ferraris answer sets of Π1 are the answer sets of the following
formula Fer(Π1):4

(¬[(p(2)→p(−1)∨p(1)) ∧ (p(1)∧p(2)→p(−1))∧ (p(−1)∧p(1)∧p(2)→⊥)] → p(2))
∧ ([p(−1)→p(1)∨p(2)] → p(−1))
∧ (p(−1) → p(1)) .

(5)
This formula has two answer sets: {p(−1), p(1)} and {p(−1), p(1), p(2)}.

2.5 Review: SPT-PDB Semantics

Son and Pontelli [5] presented two equivalent definitions of aggregates, one in
terms of “unfolding” into nested expressions, and the other in terms of “condi-
tional satisfaction.” The latter notion was simplified by Son, Pontelli and Tu [3].
Lemma 6 from [5] shows that these definitions are equivalent to the definition
by Pelov, Denecker and Bruynooghe [4], which is in terms of translation into
nested expressions. Thus we group them together and review only the last one.5

Under the SPT-PDB semantics, an aggregate can be identified with a nested
expression in the form of disjunctions over conjunctions, but unlike the naive
attempt given in the introduction, it involves the notion of a “(maximal) local
power set.”

Given a set A of some sets, a pair 〈B, T 〉 where B, T ∈ A and B ⊆ T is called
a local power set (LPS) of A if every S such that B ⊆ S ⊆ T belongs to A
as well. A local power set is called maximal if there is no other local power set
〈B′, T ′〉 of A such that B′ ⊆ B and T ⊆ T ′.

The SPT-PDB semantics eliminates the negation in front of an aggregate ex-
pression using an equivalent transformation. Let Pos(Π) be a program obtained
from Π by replacing not Ei in each rule (3) where Ei = op〈{x : F (x)}〉 � b
with op〈{x : F (x)}〉 ≺ b (≺ is the symbol for the relation complementary to �).
4 We underline the parts of a formula that correspond to aggregates.
5 We ignore some differences in the syntax, and allow disjunctions in the head.
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Clearly, Pos(Π) contains no negation in front of aggregate expressions. For in-
stance, the first rule of Pos(Π1) is

p(2) ← sum〈{x : p(x)}〉 ≥ 2.

Let E = op〈{x : F (x)}〉 � b be an aggregate expression occurring in
Ground(Pos(Π)), let HUΠ be the set of all ground atoms that can be con-
structed from σ(Π). Let IΠ(E) be the set of all Herbrand interpretations I of
σ(Π) such that I |= E (satisfaction as defined in Section 2.3). For instance, in
Example Π1, HUΠ1 is {p(−1), p(1), p(2)}, and, for E1 = sum〈{x : p(x)}〉 ≥ 2,
IΠ1(E1) is {{p(2)}, {p(1), p(2)}, {p(−1), p(1), p(2)}}, and IΠ1(E2) is

{∅, {p(1)}, {p(2)}, {p(−1), p(1)}, {p(−1), p(2)}, {p(1), p(2)}, {p(−1), p(1), p(2)}}.

The maximal local power sets of IΠ1(E1) are

〈{p(2)}, {p(1), p(2)}〉, 〈{p(1), p(2)}, {p(−1), p(1), p(2)}〉,

and the maximal local power sets of IΠ1(E2) are

〈∅, {p(1), p(2)}〉, 〈{p(1)}, {p(−1), p(1), p(2)}〉, 〈{p(2)}, {p(−1), p(1), p(2)}〉.

For any aggregate expression E occurring in Ground(Pos(Π)), by SPT-PDBΠ

(E) we denote

∨
〈B,T 〉 is a maximal LPS of IΠ(E)

( ∧
A∈B

A ∧
∧

A∈HUΠ\T

¬A
)
. (6)

For instance, SPT-PDBΠ1(E1) is (p(2) ∧ ¬p(−1)) ∨ (p(1) ∧ p(2)).
By SPT-PDB(Π) we denote the propositional formula obtained from Ground

(Pos(Π)) by replacing all aggregate expressions E in it by SPT-PDBΠ(E). The
SPT-PDB answer sets of Π are defined as the answer sets of SPT-PDB(Π) in
the sense of Section 2.1. For example, Π1 has no SPT-PDB answer sets, and
neither does the following formula SPT-PDB(Π1):

([(p(2) ∧ ¬p(−1)) ∨ (p(1) ∧ p(2))] → p(2))
∧ ([¬p(−1) ∨ p(1) ∨ p(2)] → p(−1))
∧ (p(−1) → p(1)) .

(7)

3 Comparison of the Semantics of Aggregates

3.1 A Reformulation of Ferraris Semantics

The propositional formula representation of an aggregate according to the Fer-
raris semantics can be written in a more compact way by considering maximal
local power sets as in the SPT-PDB semantics.
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For an aggregate expression that contains no free variables, by MLPS-FerΠ(E)
we denote ∧

〈B,T 〉 is a maximal LPS of CΠ(E)

( ∧
c∈B

F (c) →
∨

c∈OΠ (E)\T

F (c)
)
. (8)

One can prove that formulas (4) and (8) are strongly equivalent [11] to each
other, which provides another characterization of Ferraris answer sets. We define
MLPS-Ferraris answer sets of Π same as the Ferraris answer sets of Π except
that we refer to (8) in place of (4). The following proposition follows from the
strong equivalence between (4) and (8).

Proposition 1. The MLPS-Ferraris answer sets of Π are precisely the Ferraris
answer sets of Π.

For example, in program Π1, the maximal local power sets of CΠ1(E1) are
〈{2}, {1, 2}〉, 〈{1, 2}, {−1, 1, 2}〉. The maximal local power set of CΠ1(E2) is
〈{−1}, {−1}〉. Formula (5) is strongly equivalent to this shorter formula

(¬[(p(2)→p(−1)) ∧ (p(1)∧p(2)→⊥)] → p(2))
∧ ([p(−1)→p(1)∨p(2)] → p(−1))
∧ (p(−1) → p(1)) .

3.2 A Reformulation of FLP Semantics

The FLP semantics can also be defined by reduction to propositional formulas.
For an aggregate expression E that contains no free variables, let IΠ(E) be the
set of all Herbrand interpretations I of σ(Π) such that I �|= E (as defined in
Section 2.3). Clearly IΠ(E) and IΠ(E) partition HUΠ . By FLPΠ(E) we denote

∧
I∈IΠ (E)

( ∧
A∈I

A →
∨

A∈HUΠ\I

A
)
. (9)

As with the SPT-PDB semantics, before turning a program to the propositional
formula representation for the FLP semantics, we eliminate the negation in front
of an aggregate expression using an equivalent transformation. By FLP(Π) we
denote the propositional formula obtained from Ground(Pos(Π)) by replacing
all aggregate expressions E in it by FLPΠ(E) (Recall the definition of Pos(Π)
in Section 2.5).

Proposition 2. For any program Π, the FLP answer sets of Π (Section 2.3)
are precisely the answer sets of FLP(Π).

For example, in program Π1, IΠ1(E1) is {∅, {p(−1)}, {p(1)}, {p(−1), p(1)},
{p(−1), p(2)}} and IΠ1(E2) is {{p(−1)}}, so that FLP(Π1) is

([(p(−1)∨p(1)∨p(2)) ∧ (p(−1)→p(1)∨p(2)) ∧ (p(1)→p(−1)∨p(2))
∧(p(−1)∧p(1)→p(2)) ∧ (p(−1)∧p(2)→p(1))] → p(2))

∧ ([p(−1)→p(1)∨p(2)] → p(−1))
∧ (p(−1) → p(1)) .
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Similar to (8), formula FLP(Π) can also be simplified using the notion of max-
imal local power sets, which provides yet another characterization of the FLP se-
mantics. We call the resulting propositional formula representation
MLPS-FLP(Π).

Lemma 1. Formula (9) is strongly equivalent to∧
〈B,T 〉 is a maximal LPS of IΠ(E)

( ∧
A∈B

A →
∨

A∈HUΠ\T

A
)
. (10)

For example, FLP(Π1) has the same answer sets as the following MLPS-FLP
(Π1):

([p(2) ∧ (p(−1)→p(1))]→p(2)) ∧ ([p(−1)→p(1)∨p(2)]→p(−1)) ∧ (p(−1)→p(1)) .
(11)

3.3 A Reformulation of SPT-PDB Semantics

Consider the following formula modified from (9) by simply eliminating impli-
cations in favor of negations and disjunctions as in classical logic:∧

I∈IΠ (E)

( ∨
A∈I

¬A ∨
∨

A∈HUΠ\I

A
)
. (12)

Formulas (12) and (9) are classically equivalent to each other, but not strongly
equivalent. However, interestingly, (12) is strongly equivalent to (6), which in
turn provides a simple reformulation of the SPT-PDB semantics, without in-
volving the notion of local power sets. We define modified FLP answer sets of Π
same as in Section 3.2 except that we refer to (12) in place of (9).

Proposition 3. For any program Π, the modified FLP answer sets of Π are
precisely the SPT-PDB answer sets of Π.

For instance, the SPT-PDB answer sets of Π1 are the same as the answer sets
of the following formula:

([(p(−1)∨p(1)∨p(2)) ∧ (¬p(−1)∨p(1)∨p(2)) ∧ (¬p(1)∨p(−1)∨p(2))
∧(¬p(−1)∨¬p(1)∨p(2)) ∧ (¬p(−1)∨¬p(2)∨p(1))] → p(2))

∧ ([¬p(−1)∨p(1)∨p(2)] → p(−1))
∧ (p(−1) → p(1)) .

(13)

Similar to the Ferraris and the FLP semantics, considering maximal local power
sets can yield shorter propositional formula representation as the following
lemma tells.

Lemma 2. Formula (12) is strongly equivalent to∧
〈B,T 〉 is a maximal LPS of IΠ(E)

( ∨
A∈B

¬A ∨
∨

A∈HUΠ\T

A
)
. (14)

Again note the similarity between (14) and (10). They are classically equivalent
to each other, but not strongly equivalent.
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3.4 Relationship between the Semantics

The characterizations of each semantics in terms of the uniform framework of
propositional formulas give new insights into their relationships. Note that for
any aggregate expression E, formulas SPT-PDBΠ(E), FLPΠ(E), FerΠ(E) are
classically equivalent to each other, but not strongly equivalent.

It is not difficult to check that for any aggregate expression E occurring in
Ground(Pos(Π)), formula SPT-PDBΠ(E) entails FLPΠ(E) under the logic of
Here-and-There, but not the other way around. Using this fact, we can prove
the following.

Proposition 4. [5, Theorem 2] Every SPT-PDB answer set of Π is an FLP
answer set of Π.

For program Π1, its only FLP answer set is a Ferraris answer set. Indeed, such
relationship holds if the program is “semi-positive.” We call a program semi-
positive if, for every aggregate expression (2) occurring in it, F (x) is a quantifier-
free formula that contains no implications (this, in particular, means that there
are no negations since we treat ¬G as shorthand for G → ⊥). For example, Π1
is semi-positive.

Proposition 5. For any semi-positive program Π, every FLP answer set of Π
is a Ferraris answer set of Π.

However, the relationship does not hold for arbitrary programs. For instance,
the following non-semi-positive program

p(a) ← count〈{x : ¬¬p(x) ∨ q(x)}〉 �= 1
q(b) ← p(a)
p(a) ← q(b)

has no Ferraris answer sets while it has only one FLP answer set {p(a), q(b)}.
The following proposition is a slight extension of Theorem 3 from [6], which

describes a class of programs whose FLP answer sets coincide with Ferraris
answer sets.

Proposition 6. For any semi-positive program Π, the FLP answer sets of Π
are precisely the Ferraris answer sets of Pos(Π).

4 Generalized Definition of Aggregates

4.1 Syntax and Semantics of Aggregate Formulas

In this section we provide a general definition of a stable model that applies
to arbitrary “aggregate formulas” in the style of the definition in Section 2.1,
by extending the notion F ∗ to aggregate expressions in a way similar to other
connectives and using the extended notion of satisfaction as in the FLP semantics
(Section 2.3).
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We allow the signature to contain any function constants of positive arity, and
allow b in aggregate expression (2) to be any term. We define aggregate formulas
as an extension of first-order formulas by treating aggregate expressions as a
base case in addition to (standard) atomic formulas (including equality) and
⊥ (falsity). In other words, aggregate formulas are constructed from atomic
formulas and aggregate expressions using connectives and quantifiers as in first-
order logic. For instance,

(sum〈{x : p(x)}〉 ≥ 1 ∨ ∃y q(y)) → r(x)

is an aggregate formula.
We say that an occurrence of a variable v in an aggregate formula H is bound

if the occurrence is in a part of H of the form {x : F (x)} where v is in x, or in a
part of H of the form QvG. Otherwise it is free. We say that v is free in H if H
contains a free occurrence of v. An aggregate sentence is an aggregate formula
with no free variables.

The definition of an interpretation is the same as in first-order logic. Consider
an interpretation I of a first-order signature σ that may contain any function
constants of positive arity. By σ|I| we mean the signature obtained from σ by
adding distinct new object constants d∗, called names, for all d in the universe
of I. We identify an interpretation I of σ with its extension to σ|I| defined by
I(d∗) = d.

The notion of satisfaction in first-order logic is extended to aggregate sen-
tences, similar to the definition given in Section 2.3. The integer constants and
built-in symbols, such as +, −, ≤, ≥ are evaluated in the standard way, and we
consider only those “standard” interpretations.6 Let I be an interpretation of
signature σ. Consider any aggregate expression (2) that has no free variables.
Let SI be the multiset consisting of all d[1] in the universe of I where

– d∗ is a list of object names of σ|I| whose length is the same as the length
of x, and

– I satisfies F (d∗).

An interpretation I satisfies the aggregate expression if SI is in the domain of op,
and op(SI) � bI .

For any aggregate sentence F , expression SM[F ] stands for (1) where F ∗(u)
is extended to aggregate expressions as

– (op〈{x : F (x)}〉 � b)∗ = (op〈{x : F ∗(x)}〉 � b) ∧ (op〈{x : F (x)}〉 � b).

By a stable model of F we mean a model of SM[F ] (under the extended notion
of satisfaction).

6 For instance, we assume that, when x or y is not an integer, x ≤ y evaluates to false,
and x + y has an arbitrary value according to the interpretation.
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4.2 Programs with Aggregates as a Special Case

The AF-representation (“Aggregate Formula representation”) of (3) is the uni-
versal closure of the aggregate formula

E1 ∧ · · · ∧ Em ∧ ¬Em+1 ∧ · · · ∧ ¬En → A1 ∨ · · · ∨Al. (15)

The AF-representation of Π is the conjunction of the AF-representation of its
rules.

The stable models ofΠ are defined as the stable models of the AF-representation
ofΠ . The following proposition shows that this definition is a proper generalization
of the Ferraris semantics.

Proposition 7. Let Π be a program that contains no function constants of pos-
itive arity and let F be its AF-representation. The Herbrand stable models of F
whose signature is σ(Π) are precisely the Ferraris answer sets of Π.

5 Loop Formulas for Programs with Aggregates

Let us identify rule (3) with
A ← B,C,N (16)

where A = {A1, . . . , Al}, B is the set of all atoms (i.e., non-equality atomic
formulas) from {E1, . . . , Em}, C is the set of all aggregate expressions from
{E1, . . . , Em} and N is the set of the remaining expressions in the body. We
assume that the rules contain no free variables and no function constants of
positive arity and that F (x) in every aggregate expression (2) is a conjunction
of atoms. Following [12], for any aggregate expression E = op〈{x : F (x)}〉 � b
and any finite set Y of ground atoms, formula NFESE(Y ) is defined as the
conjunction of

op〈{x : F (x) ∧
∧

pi(t) occurs in F (x)
pi(t′)∈Y

t �= t′}〉 � b

and E. For instance, in Example Π1, formula NFESE2({p(−1), p(1)}) is

sum〈{x : p(x) ∧ x �=−1 ∧ x �=1}〉 ≥ 0 ∧ sum〈{x : p(x)}〉 ≥ 0 .

For any finite set Y of expressions, by Y ∧ and Y ∨ we denote the conjunction
and, respectively, disjunction of the elements of Y . We define the external support
formula of Y for Π , denoted by ESΠ(Y ), as the disjunction of

B∧ ∧
∧

E∈C

NFESE(Y ) ∧N∧ ∧ ¬(A \ Y )∨

for all rules (3) in Π such that A ∩ Y �= ∅ and B ∩ Y = ∅. The (conjunctive)
aggregate loop formula of Y for Π is the aggregate formula

Y ∧ → ESΠ(Y ) . (17)
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This definition extends the definition of a loop formula given in [13], which is
limited to programs with monotone aggregates.

For instance, if Y is {p(−1), p(1)}, the loop formula of Y for Π1 is

p(−1) ∧ p(1) → (sum〈{x : p(x) ∧ x �=−1 ∧ x �=1}〉 ≥ 0) ∧ sum〈{x : p(x)}〉 ≥ 0 .

The PL representation of (17) is the propositional formula obtained from (17) by
replacing all occurrences of aggregate expressions E in it with MLPS-FerΠ(E).

The Ferraris dependency graph of Π is the directed graph such that

– its vertices are the ground atoms of σ(Π);
– for every rule (16) in Ground(Π), it has edges from each element of A to p(t)

• if p(t) is an element of B, or
• if there are an aggregate expression (2) in C, a maximal local power

set 〈B′, T 〉 of CΠ((2)) and an element c in OΠ((2)) \ T such that p(t)
belongs to F (c).

It is not difficult to check that the Ferraris dependency graph of Π according
to this definition is the same as the dependency graph of the propositional for-
mula MLPS-Fer(Π) according to [9]. A loop is a nonempty set L of ground
atoms of σ(Π) such that the subgraph of the dependency graph of Π induced
by L is strongly connected. Again, L is a loop of Π according to this definition iff
it is a loop of MLPS-Fer(Π) according to [9].7 For example, Π1 has four loops:
{p(−1)}, {p(1)}, {p(2)}, {p(−1), p(1)}.

Proposition 8. For any set X of ground atoms of σ(Π) that satisfies Π, the
following conditions are equivalent to each other.

(a) X is a Ferraris answer set of Π;
(b) for every loop Y of Π, X satisfies the aggregate loop formula of Y for Π;
(c) for every loop Y of Π, X satisfies the PL representation of the aggregate

loop formula of Y for Π;
(d) for every loop Y of MLPS-Fer(Π) according to [9], X satisfies the loop

formula of Y for MLPS-Fer(Π) according to [9].

This result can be extended to the general case when F (x) in an aggregate
expression (2) is an arbitrary quantifier-free formula, by using the notion of
NFESF that is defined in [12]. The definition of external support formula above
is closely related to the definition of unfounded sets under the FLP semantics
given in [14]. Indeed, one can define loop formulas and loops under the FLP
semantics in a similar way based on the reductive approach.

You and Liu [15] presented the definition of loop formulas under the SPT-
PDB semantics. We note that a set of ground atoms is a loop of Π according to
their definition iff it is a loop of SPT-PDB(Π) according to [9]. The same can
be said about loop formulas.
7 Note that Fer(Π) may contain redundant loops not present in MLPS-Fer(Π). For

example, consider p(1) ← sum〈{x : p(x)}〉 ≥ 1 p(−1) ← p(1) .
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6 Conclusion

The paper presented several reformulations of the semantics of aggregates in
terms of propositional formulas. The resulting formulas are classically equivalent
to each other but not strongly equivalent, which results in different semantics.
The reformulations give us insights into each of the semantics in terms of the
underlying general language. Guided by the reduction, we defined the loop for-
mulas of a program with aggregates, which result in the same as loop formulas
of the corresponding propositional formula representation.

The reductive approach led us to the general semantics of aggregates presented
in Section 4, which extends the definition of a stable model of a first-order
formula to an aggregate formula, using a notion of satisfaction extended from
the one used in the FLP semantics. The new semantics is more general than that
of RASPL-1 [16] in that it allows arbitrary aggregates and non-Herbrand stable
models, along with built-in functions. On the other hand, it is not fully reductive;
it requires the notion of satisfaction be extended to aggregate expressions, while
a counting aggregate expression in RASPL-1 was defined as an abbreviation for
a first-order formula.

Acknowledgements. We are grateful to Vladimir Lifschitz and Tran Cao Son
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on this paper. This work was partially supported by the National Science Foun-
dation under Grant IIS-0839821.
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Abstract. The natural way to use Answer Set Programming (ASP) to
represent knowledge in Artificial Intelligence or to solve a Constraint
Satisfaction Problem is to elaborate a first order logic program with
default negation. In a preliminary step this program, with variables, is
translated in an equivalent propositional one by a first tool: the grounder.
Then, the propositional program is given to a second tool: the solver. This
last one computes (if they exist) one or many answer sets (models) of the
program, each answer set encoding one solution of the initial problem.
Until today, almost all ASP systems apply this two steps computation.

In this work, our major contribution is to introduce a new approach
of answer set computing that escapes the preliminary phase of rule in-
stantiation by integrating it in the search process. Our methodology ap-
plies a forward chaining of first order rules that are grounded on the fly
by means of previously produced constants. We have implemented this
strategy in our new ASP solver ASPeRiX. The first benefit of our work is
to avoid the bottleneck of instantiation phase arising for some problems
because of the huge amount of memory needed to ground all rules of a
program, even if these rules are not really useful in certain cases. The
second benefit is to make the treatment of function symbols easier and
without syntactic restriction provided that rules are safe.

1 Introduction

Answer Set Programming (ASP) is a very convenient paradigm to represent
knowledge in Artificial Intelligence (AI) and to encode Constraint Satisfaction
Problems (CSP). It has its roots in non monotonic reasoning and logic pro-
gramming and has led to a lot of works since the seminal paper [9]. But, be-
yond its ability to formalize various problems from AI or CSP, ASP is also
became a very interesting way to practically solve them since some efficient
solvers are available. In few words, if someone wants to use ASP to solve an
issue, and whatever is the variant of ASP that he uses, he has to write a logic
program in a purely declarative manner in such a way that the stable models
(also called answer sets) of the program represent the solutions of his original
problem (see [1,18] for more details). Usually, the program contains different kind
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of rules. The simplest ones are facts as bird(tweety) ← . , edge(4, 10) ← ., repre-
senting data of the particular problem. Some ones are about background knowl-
edge as path(X,Y ) ← edge(X,Z), path(Z, Y ). expressing a well-know property
about path in a graph for instance. Some others can be non monotonic, as
fly(X) ← bird(X), not penguin(X)., for reasoning with incomplete knowledge.
In other cases, especially for CSP, default negation is also used to encode al-
ternative potential solutions of a problem as red(X) ← v(X), not blue(X). and
blue(X) ← v(X), not red(X)., expressing the two exclusive possibilities to color
a vertex in a graph. Last but not least, special headless rules are used to rep-
resent constraints of the problem to solve as ← edge(X,Y ), red(X), red(Y ). in
order to not color with red two vertices linked by an edge.

Depending which solver is used to compute the answer sets of the program,
one can also use some particular atoms for (in)equalities and simple arithmetic
calculus. Other constructions using aggregates functions, cardinality constraints,
weights, . . . are also possible but they are out of the scope of this work in which
we restrict our attention to original stable model semantics [9]. In fact, with
these above examples we want to point out that knowledge representation in
ASP is done by means of first order rules. But, from a theoretical point of view,
the models of such a first order program are those of its ground instantiation
with respect to its Herbrand universe. So, from a practical point of view, every
available ASP solver begins its work by an instantiation phase in order to obtain
a propositional program. After this first phase, called grounding, the solver starts
the real phase of answer set computation by dealing with a finite, but sometimes
huge, propositional program.

Let us note that there exists some more or less recent works [11,4,5,15] dealing
with first order non monotonic logic programs. These works establish some re-
lations between stable model semantics and constraints systems or second order
logic or circumscription but are not really concerned by the explicit computation
of answer sets. On our side, the aim of our present work is to propose a new
approach of answer set computation that escapes this preliminary grounding
phase by integrating it in the search process. In Sect. 2 we recall the theoretical
backgrounds about ASP necessary to the comprehension of our work. In Sect. 3
we present our new approach of answer set computation that is first order rule
oriented. In Sect. 4 we point out some positive consequences of our methodol-
ogy. Mainly, the huge amount of memory needed during the usual pregrounding
phase for certain problems can now be avoided and function symbols can be
used inside rule predicates very easily. We conclude in Sect. 5 by citing some
new perspectives for ASP as a result of our innovative approach.

2 ASP Backgrounds

A normal logic program is a set of rules like

c ← a1, . . . , an, not b1, . . . , not bm. n ≥ 0,m ≥ 0 (1)

where c, a1, . . . , an, b1, . . . , bm are ground atoms. For a rule r (or by exten-
sion for a rule set), we note head(r) = c its head, body+(r) = {a1, . . . , an}



198 C. Lefèvre and P. Nicolas

its positive body, body−(r) = {b1, . . . , bm} its negative body and body(r) =
body+(r)∪body−(r). When the negative body of a rule is not empty we say that
this rule is non-monotonic. The Gelfond-Lifschitz reduct of a program P by an
atom set X is the program PX = {head(r) ← body+(r). | body−(r) ∩ X = ∅}.
Since it has no default negation, such a program is definite and then it has
a unique minimal Herbrand model denoted with Cn(P ). By definition, an an-
swer set (originally called a stable model [9]) of P is an atom set S such that
S = Cn(PS). For instance the program {a ← not b., b ← not a.} has two answer
sets {a} and {b}. Special headless rules, called constraints, are admitted and con-
sidered equivalent to rules like bug ← . . . , not bug. where bug is a new symbol ap-
pearing nowhere else. For instance, the program {a ← not b., b ← not a.,← a.}
has one, and only one, answer set {b}.

As presented in our introduction, in many cases a problem is encoded in ASP
with a logic program P containing rules with variables that we call first order
rules. More formally, these rules are of type (1) where ai’s and bj’s are non
ground atoms, like p(X, 3, f(Y )), built from an n-ary predicate, constants, vari-
ables and function symbols. Since answer set definition is given for propositional
programs, P has to be seen as an intensional version of the propositional program
ground(P ) defined as follows. Given a rule r, ground(r) is the set of all fully in-
stantiated rules that can be obtained by substituting every variable in r by every
constant of the Herbrand universe of P and then, ground(P ) =

⋃
r∈P ground(r).

Example 1. The program P1 is a shorthand for the program ground(P1).

P1 =

⎧⎨
⎩

n(1) ← ., n(2) ← .,
a(X) ← n(X), not b(X).,
b(X) ← n(X), not a(X).

⎫⎬
⎭ ground(P1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n(1) ← ., n(2) ← .,
a(1) ← n(1), not b(1).,
b(1) ← n(1), not a(1).,
a(2) ← n(2), not b(2).,
b(2) ← n(2), not a(2).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ground(P1) has four answer sets {a(1), a(2), n(1), n(2)}, {a(1), b(2), n(1), n(2)},
{a(2), b(1), n(1), n(2)} and {b(1), b(2), n(1), n(2)} that are considered as the an-
swer sets of P1.

Until today, almost all systems available to compute the answer sets of a program
follow the architecture described in Fig. 1. For the grounder box we can cite
Lparse [21] and Gringo [8], and for the solver box Clasp [7] and Smodels [20]. A
particular family of solvers are Assat [14], Cmodels [10] and Pbmodels [17], since
they transform the answer set computation problem into a (pseudo) boolean
model computation problem and use a (pseudo) SAT solver as an internal black
box. In the system DLV [13], symbolized in Fig. 1 by the dash-line rectangle, the
grounder ([3] describes a parallel version) is incorporated as an internal function.

The main goal of each grounding system is to generate all propositional rules
that can be relevant for a solver and only these ones, while preserving answer
sets of the original program. But, whatever the methodology is, the grounding
phase is firstly and fully processed before computing the answer sets. In the
next section, we present our alternative approach that integrates this grounding
phase into the search of model.
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Fig. 1. Architecture of answer set computation

3 A First Order Rule Based Approach

We first present the characterization of answer sets for ground normal logic
programs based on an abstract notion of computation proposed in [16]. A com-
putation is a sequence of atom sets starting with the empty set. At each step,
the heads of some applicable rules (see Definition 2 below) w.r.t. actual state are
added. When no more atom can be added, one must check that the rules that
have been fired are still applicable.

Definition 1. (from [16]) Let P be a normal logic program. A computation for
P is a sequence 〈Xi〉∞i=0 of atom sets that satisfies the following conditions :

– X0 = ∅
– (Revision) ∀i ≥ 1, Xi ⊆ TP (Xi−1)
– (Persistence of beliefs) ∀i ≥ 1, Xi−1 ⊆ Xi

– (Convergence) X∞ =
⋃∞

i=0 Xi = TP (X∞)
– (Persistence of reasons) ∀i ≥ 1, ∀a ∈ Xi\Xi−1, ∃ra ∈ P s.t. head(ra) = a,

and ∀j ≥ i− 1, body+(ra) ⊆ Xj , body
−(ra) ∩Xj = ∅

where TP (X) = {a | ∃r ∈ P, head(r) = a, body+(r) ⊆ X, body−(r) ∩X = ∅}

Theorem 1. (from [16]) Let P be a normal logic program and X be an atom
set. Then, X is an answer set of P iff there is a computation 〈Xi〉∞i=0 for P such
that X∞ = X.

This computation is fundamentally based on a forward chaining of rules by means
of operator TP . It builds incrementally the answer set of the program and does
not require the whole set of ground atoms since the beginning of the process.
So, it is well suited to deal directly with first order rules by instantiating them
during the computation and that is what we introduce in the following.

The only syntactic restriction required by our methodology is that every rule
of a program must be safe. That is, all variables occurring in the head and
all variables occurring in the negative body of a rule occur also in its positive
body. Moreover, every constraint (ie : headless rule) is considered given with the
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particular head ⊥ and is also safe. For the moment we do not consider function
symbols but their use will be described in Sect. 4.

A partial interpretation for a program P is a pair 〈IN,OUT 〉 of disjoint atom
sets included in the Herbrand base of P . Intuitively, all atoms in IN belong
to a seeking answer set and all atoms in OUT do not. If I1 = 〈A1, B1〉 and
I2 = 〈A2, B2〉 are partial interpretations, I1 ⊆ I2 iff A1 ⊆ A2 ∧B1 ⊆ B2.

Definition 2. Let r be a ground rule and I = 〈IN,OUT 〉 a partial interpreta-
tion. We say

– r is supported w.r.t. I when body+(r) ⊆ IN ,
– r is unsupported w.r.t. I when body+(r) ∩OUT �= ∅
– r is blocked w.r.t. I when body−(r) ∩ IN �= ∅,
– r is unblocked w.r.t. I when body−(r) ⊆ OUT ,
– r is applicable w.r.t. I when r is supported and not blocked1

The approach of answer set computation that we introduce here is a particu-
lar class of computations (Definition 1), obtained by restricting the principle
of revision that originally enables to fire any subset of the supported and not
blocked rules at each step. In our strategy, we follow a forward chaining that
instantiates and applies one unique rule at each iteration. Our revision principle
distinguishes two kinds of inference: a monotonic step of propagation and a non
monotonic step of choice. The two functions defined below realize in the same
time the grounding and the selection of the rule to apply at each step.

Definition 3. Let P be a set of first order rules, 〈IN,OUT 〉 be a partial inter-
pretation and R be a set of ground rules.

– γpro is a non deterministic function selecting one supported monotonic rule
or one supported and unblocked non monotonic rule γpro(P, IN,OUT,R) in
ground(P ) \R, or returns false if no such a rule exists.

– γcho is a non deterministic function selecting one supported and not blocked
non monotonic rule γcho(P, IN,OUT,R) in ground(P )\R, or returns false
if no such a rule exists.

To avoid any confusion, we insist on the fact that the set ground(P ), mentioned
in the above definition, is never explicitly given. It is in accordance with the
principal aim of our work that is to avoid its extensive construction. The two
functions γpro and γcho select and ground first order rules of P with proposi-
tional atoms occurring in IN and OUT in order to return a new (not already
occurring in R) fully ground rule. Because of the safety constraint on rules this
full grounding is always possible.

We give below the whole definition of an ASPeRiX computation2 that we char-
acterize as a sequence of partial interpretations instead of atom sets as in [16].

1 The negation of blocked, not blocked, is different from unblocked.
2 ASPeRiX is the name of the solver that we have developed following this principle

(see Sect. 4).
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Definition 4. Let P be a first order normal logic program. An ASPeRiX compu-
tation for P is a sequence 〈Xi〉∞i=0 of partial interpretations Xi = 〈INi, OUTi〉
that satisfies the following conditions :

– X0 = 〈∅, {⊥}〉,
– (Revision) ∀i ≥ 1, Xi = 〈INi−1 ∪ {head(ri)}, OUTi−1〉

for some rule ri = γpro(P, INi−1, OUTi−1,
⋃i−1

k=1{rk}) if it exists
else, Xi = 〈INi−1 ∪ {head(ri)}, OUTi−1 ∪ body−(ri)〉
for some rule ri = γcho(P, INi−1, OUTi−1,

⋃i−1
k=1{rk}) if it exists

else, Xi = Xi−1,
– (Persistence of beliefs) ∀i ≥ 1, Xi−1 ⊆ Xi,
– (Convergence) IN∞ =

⋃∞
i=0 INi = TP (IN∞),

– (Persistence of reasons) ∀i ≥ 1, ∀a ∈ INi\INi−1, ∃ra ∈ ground(P ) s.t.
head(ra) = a, and ∀j ≥ i− 1, body+(ra) ⊆ INj, body

−(ra) ∩ INj = ∅.

Theorem 2. Let P be a normal logic program and A be an atom set. Then, A
is an answer set of P iff there is an ASPeRiX computation 〈Xi〉∞i=0 for P such
that IN∞ = A.

Proof. (sketch) By restricting our attention to the sequence 〈INi〉∞i=0, it is easy to
verify that an ASPeRiX computation is a computation and thus, by Theorem 1,
converges to an answer set. For the other direction, every answer set can be
mapped into a computation by Theorem 1. On its turn, this computation can
be mapped into an ASPeRiX computation because persistence of reasons allows
us to build a set {ra | a ∈ X∞} that can be ordered in such a way that it
corresponds to the successive application of rules in an ASPeRiX computation. �

Note that in order to respect the revision principle of an ASPeRiX computa-
tion every sequence of partial interpretations must be generated by using the

������������������
R ∪ {r0}) R ∪ {r0})

(P ∪ {⊥ ← body−(r0)}, 〈IN, OUT 〉,(P, 〈IN ∪ {head(r0)}, OUT ∪ body−(r0)〉,

repeated application of γpro(P, IN, OUT,R)

(P, 〈∅, {⊥}〉, ∅)

(P, 〈IN, OUT 〉, R)

r0 = γcho(P, IN, OUT, R)

apply r0 not apply r0

Fig. 2. Overview of the search procedure
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propagation inference based on γpro as long as possible before to use the choice
function γcho in order to apply a non monotonic rule. Then, because of the non
determinism of γcho, the natural implementation of our approach leads to a usual
search procedure that has to decide to apply or not every rule chosen by γcho.
This strategy is illustrated in Fig. 2 in which we can see that persistence of
reasons is ensured by adding to OUT all ground atoms from the negative body
of the non monotonic rule chosen to be applied. On the other branch, where the
rule is not applied, the translation of its negative body into a new constraint
ensures that it becomes impossible to find later an answer set in which this rule
is not blocked.

Algorithm 1. Algorithm for a first order rule-based answer set computing
Function Solve(PR, PK , IN, OUT, CR);
repeat // propagation phase

r0 ← γpro(PR ∪ PK , IN, OUT, CR);
if r0 then

IN ← IN ∪ {head(r0)};
CR ← CR ∪ {r0};

until ¬r0;
if IN ∩ OUT �= ∅ then // contradiction detected

return false;
else

r0 ← γcho(PR, IN, OUT, CR);
if ¬r0 then

if γcho(PK , IN, OUT, ∅) then // constraint non satisfied
return false;

else// an answer set is found
return IN ;

else//choice point
stop ← solve(PR, PK , IN ∪{head(r0)}, OUT ∪ body−(r0), CR∪ {r0});
if ¬stop then

stop ← solve(PR, PK ∪ {⊥ ← body−(r0)}, IN, OUT, CR ∪ {r0});
return stop ;

Our search procedure of answer set computing for a program P is detailed in
Algorithm 1 that must be called by solve(PR, PK , ∅, {⊥}, ∅), knowing that
PK = {r ∈ P | head(r) = ⊥} (the constraint set) and PR = P \ PK . CR (for
chosen rules) is the set of ground rules built by γpro and γcho all along the search.
In the propagation phase we treat equally the constraints and the rules in PR.
By this way, if a constraint is selected by γpro, then it is applied and ⊥ is added
in IN . Since ⊥ is also in OUT a contradiction is detected and the algorithm
returns false. On its side γcho restricts its attention to rules in PR firstly. But, if
no new non monotonic rule is found, then it tries to find an applicable constraint
(again, it is the grounding of a first order constraint). If it is the case, then the
convergence principle is not respected (⊥ can never be added to IN) and the
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current partial interpretation can not be an ASPeRiX computation. Thus the
algorithm returns false. Otherwise, no constraint is violated and then an answer
set is returned. Even if our algorithm describes the computation of one answer
set (or no one if the program is inconsistent) it can easily be extended to the
computation of an arbitrary number of (or all) answer sets of P .

4 Benefits of a First Order Rule Based Computation

Following Algorithm 1, we have implemented in C++ a new solver called ASPeRiX
available at http://www.info.univ-angers.fr/pub/claire/asperix. The na-
me has been chosen to draw attention to rules (R) and variables (X) since our
system is able to deal with rules with variables by grounding them just as it
applies them. We have to mention that there exists another ASP system named
GASP [19], and up to our knowledge it is the only one, that realizes the grounding
of the program during the search of an answer set3. GASP is an implementation
in Prolog and Constraint Logic Programming over finite domains of the notion
of computation (see Definition 1). Its strategy is formally presented as a com-
putation of well founded consequences. But its implementation uses a variant
of the propagation operator TP that is close to ours. GASP supports cardinality
constraints while ASPeRiX does not, on the other hand GASP does not accept
functional terms.

A deep description of ASPeRiX is out of the scope of this paper and some
details about its main features and a partial evaluation of its performances are
given in [12]. In the following we focus on some peculiarities of ASPeRiX that
we consider as improvements for the ASP community. When we report some
results about other ASP systems, we take into account the two steps of ASP
computation (grounding and solving) and versions of systems used are: Gringo
2.0.3+ Clasp 1.2.1 (or their combination Clingo) , Lparse 1.1.1+ Smodels
2.32 , DLV Oct 11 2007 and GASP (june 2009).

First, we can cite that since each grounder has its own strategy, it imposes
some particular syntactical restrictions about the occurrences of variables in
rules. For Lparse the program has to be ω-restricted [22], for Gringo it has
to be λ-restricted [8] and for DLV and GASP only safe rules are required. This
point is not a theoretical one because if a problem is encoded following the
syntax of a grounder, then it is also possible to encode it respecting the syntax
of another grounder4. But, in practice, it leads to some difficulties to compare
the efficiency of solvers because various encoding of a same problem can induce
various sizes of the search space. Moreover, if we want to disseminate the ASP
paradigm over various domains of applications, to encourage the development of
portable ASP libraries and to promote the interoperability of systems, there is a
need for the less restrictive language. For the encoding of a practical knowledge
3 Iclingo [6] realizes an incremental grounding of programs that are parametrized by

the size of the solution but it does not escape the grounding/solving separation.
4 Recall that we restrict our attention to ”classical” normal logic programs without

aggregate functions or cardinality constraints.

http://www.info.univ-angers.fr/pub/claire/asperix
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representation or constraint satisfaction problem the constraint of safety is not
seen as a drawback and is currently admitted. Since ASPeRiX requires only the
safety of the program, we can say that our system is as general as possible.

But, for us, the main drawback of the preliminary grounding phase is that it
leads to a lot of useless and counter-intuitive work in some situations.

Example 2. Let N be an integer. From, the following program

P2 =

⎧⎨
⎩

a ← not b., p(1) ← ., . . . , p(N) ← .,
b ← not a., ., pa(X) ← a, p(X)., aa(X,Y ) ← pa(X), pa(Y ).,
← a., pb(X) ← b, p(X)., bb(X, Y ) ← pb(X), pb(Y ).

⎫⎬
⎭

DLV, Gringo and Lparse5 generate about 2 ×N2 ground rules.

Because of the constraint ← a. that eliminates from the possible solutions every
atom set containing a, it is easy to see that all N ground rules with a positive
body containing a, like pa( ) ← a, p( )., are useless since they can never con-
tribute to generate an answer set of P2. And then, the N2 rules with head aa( , )
are useless too. In defense of the actual grounders, their inability to eliminate
these particular rules is not surprising since the reason justifying this elimination
is the consequence of a reasoning taking into account the stable model seman-
tics. If we refer to Fig. 1 it is clear that this task is relevant to the solver box
and not to the grounder box. Thus, if we want to limit as much as possible the
number of rules and atoms to deal with, we have to not separate grounding and
answer set computing as we propose in our methodology. The Table 1 gives few
experimental results illustrating that ASPeRiX is the most efficient system for
the computation of one stable model of P2.

Table 1. Experimental results for P2

Lparse+Smodels DLV Clingo GASP ASPeRiX

N = 200 time in sec 5.4 2 1.8 3 0.7
memory in MB 30 64 28 46 7

N = 400 time in sec 21.3 10.5 11.7 14.4 2.6
memory in MB 100 240 103 54 19

N = 600 time in sec 48 29 42 40 6.6
memory in MB 220 523 223 68 37

With respect to the efficiency of our new approach we mention that ASPeRiX
appears to be the fastest ASP system to compute the unique stable model of
a stratified program. It is known that for this class of programs, the compu-
tation of the stable model can be done polynomialy with a bottom-up greedy
algorithm. This is exactly how does our system by using only the propagation
step via γpro and generating no choice point since γcho is never used (see Fig. 2).
This is achieved through a dependency graph on first order rules that allows
5 For Lparse, p(X) and p(Y ) must be inserted in the two last rules in order to respect

the ω-restricted condition.
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to treat all non monotonic rules as monotonic ones if the program is stratified.
This property is also exploited very efficiently by ASPeRiX for locally stratified
programs (details can be found in [12]).

Another important improvement of our methodology that integrates ground-
ing of rules into their forward chaining is that it allows to manage functions in a
very natural and easy way. The inherent difficulty with arithmetic in particular
and functions in general in the framework of ASP is that it makes the Herbrand
universe infinite in whole generality. Furthermore, various syntactic restrictions
have already been exhibited and ASP solvers are able to deal with some re-
stricted versions of functions. The reader will find in [2] many details about the
treatment of functions in ASP and the introduction of a new class of programs
with functions, for which answer set computation is always possible. This work
has led to the system DLV-complex [2] that is an extension of DLV and certainly
the most advanced ASP system available today to deal with functions in ASP.

But, once again, a lot of the difficulties arising with functions become from the
fact that the pregrounding of the program is required for traditional ASP solvers.
A very fast growing of the memory usage is much more possible than without
function symbols. With our approach since we generate the Herbrand universe
as we need we just have to fix an a priori limit on the biggest admissible integer
and the maximum number of nested function symbols (DLV-complex does the
same to deal with non finitely-ground programs [2]). By this way, our Theorem 2
is still valid since the computation always ends.

In Example 3 we give the simplest normal logic program that we can write with
respect to the accepted language of ASPeRiX in order to compute the Fibonacci
number Fk for a given k and not compute the sequence beyond this limit. Let
us recall that F0 = 0, F1 = 1 and ∀i > 0, Fi+2 = Fi + Fi+1.

Example 3. With the following program

P3 =

⎧⎪⎪⎨
⎪⎪⎩

fibo(0, 0) ← ., tocomputefibo(10) ← .
fibo(1, 1) ← .,
fibo(N + 2, F1 + F ) ← fibo(N, F ), fibo(N + 1, F1),

tocomputefibo(K), K > N + 1.

⎫⎪⎪⎬
⎪⎪⎭

ASPeRiX returns a stable model containing fibo(10, 55) representing F10 = 55.

Let us remark that this schema of recursive rule is not allowed by grounders
Lparse and Gringo since the program is neither ω nor λ-restricted. For these
systems, we need to modify the recursive rule as

fibo(N2, F2) ← p(N), p(F ), p(F1), f ibo(N,F ), N1 = N + 1, f ibo(N1, F1),
tocomputefibo(K),K > N1, N2 = N1 + 1, F2 = F1 + F.

and adding p(0) ← ., . . . p(2000) ← . for instance if we want to limit the possible
used numbers to the interval 0, . . . , 2000. This syntactic constraint is very strong
in context of arithmetic, since the predicate p enumerates a lot of useless numbers
when the computation of the Fibonacci sequence needs only few ones. By a direct
consequence, the pregrounding becomes very hard to do since a huge number of
atoms are unnecessarily generated. For instance, to compute F10, Clingo needs
more than 2 minutes and Lparse does not find the solution after 30 minutes of
CPU time and both systems consume more than 1 GB of memory. On its side
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ASPeRiX computes immediately F46 = 1836311903 the biggest value that it is
possible to compute under its limit of 231 and DLV-complex does the same even
if its limit is F44 = 701408733. GASP, with a slight syntactic adaptation, can
compute F21 = 10946. This example illustrates that only the condition of safety
for rules is admissible if we want to introduce non trivial arithmetic calculus in
ASP. It is also an illustration that our approach is naturally well adapted to this
kind of computation. The difference with DLV-complex is that the calculus are
made only when they are necessary.

ASPeRiX is also able to manage symbolic functions occurring in rules like
p(X) ← p(f(X)). or p(f(X)) ← p(X). indifferently. The following commented
program P4 illustrates the use of symbolic functions by extending Example 3. It
encodes a kind of generic system to compute every recursive arithmetic functions.

Example 4. From the following program

P4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

% definition of fibonacci
value(fibo(0), 0) ← ., value(fibo(1), 1) ← .
value(fibo(N + 2), R + R1) ← value(fibo(N), R), value(fibo(N + 1), R1),

not ok(fibo(N + 1)).,
% the values to compute for Fibonacci
tocompute(fibo(20)) ← ., tocompute(fibo(10)) ← .,
% and the non maximum values to compute
nmaxtocompute(fibo(N1)) ← tocompute(fibo(N1)),

tocompute(fibo(N2)), N2 > N1.,

% definition of exponentiation
value(expo(X,0), 1) ← tocompute(expo(X,N)).,
value(expo(X,N + 1), R ∗ X) ← value(expo(X,N), R), not ok(expo(X,N)).,
% the values to compute for exponentiation
tocompute(expo(2,10)) ← ., tocompute(expo(2,15)) ← .,
tocompute(expo(4,10)) ← .
% and the non maximum values to compute
nmaxtocompute(expo(X,N1)) ← tocompute(expo(X,N1)),

tocompute(expo(X,N2)), N2 > N1.,

% the limit of computation for each recursive function Phi
maxtocompute(Phi) ← tocompute(Phi), not nmaxtocompute(Phi).
% to detect when all necessary computations are done for one function Phi
ok(Phi) ← maxtocompute(Phi), value(Phi, R).,
% to collect the results
result(C,R) ← tocompute(C), value(C,R).,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ASPeRiX and also DLV-complex return (among some others) the atoms:
result(fibo(10), 55) result(fibo(20), 6765)
result(expo(2, 10), 1024) result(expo(2, 15), 32768) result(expo(4, 10), 1048576)
representing all the wanted calculus.

To end, we mention that the treatment of symbolic lists is also possible with
our system by means of terms like l( , l(. . . , l( , nil) . . .)). But, because of the
particular importance of lists in logic programming we think that a dedicated
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treatment of them is required as in DLV-complex. This point is not yet imple-
mented in ASPeRiX but it poses no theoretical difficulties with respect to our
general algorithm.

5 Conclusion

In this work, we have elaborated a new approach of answer set computation that
escapes the preliminary phase of grounding. Our methodology deals with first
order rules following a forward chaining with grounding process realized on the
fly and has been implemented in a new ASP solver ASPeRiX.

One direct consequence of our new approach is that the use of symbolic func-
tions in general and arithmetic calculus in particular inside ASP is greatly fa-
cilitated. Another point is that our methodology allows very good performances
for definite, stratified and almost stratified programs. Again, we have shown
that our approach escapes the bottleneck of pregrounding phase that is the only
difficulty for some classes of programs.

With our present work, we wanted also to emphasize on the P (Programming)
of ASP. Indeed, we think that we do not have to forget that ASP is in the field
of Logic Programming, and not only SAT or CSP. Many application domains of
ASP, let us cite only the web semantic, use rules that are chained ones with the
others when this is not always the case for a program encoding a CSP. For this
category of programs, we think that our approach may be of great interest.

Furthermore, computing the answer sets of a program is a fundamental goal
but not an exclusive one. Debugging a program, controlling its behavior, intro-
ducing in it some features coming from other programming languages may be of
great interest for ASP. We think that our methodology of answer set computing,
guided by the rules of the program, is the good starting point towards these new
goals.
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Abstract. We propose a framework that brings together two major forms of de-
fault reasoning in Artificial Intelligence: default property classification in static
domains, and default property persistence in temporal domains. Emphasis in this
work is placed on the qualification problem, central when dealing with default
reasoning, and in any attempt to integrate different forms of such reasoning.

Our framework can be viewed as offering a semantics to two natural problems:
(i) that of employing default static knowledge in a temporal setting, and (ii) the dual
one of temporally projecting and dynamically updating default static knowledge.

The proposed integration is introduced through a series of example domains,
and is then formalized through argumentation. The semantics follows a pragmatic
approach. At each time-point, an agent predicts the next state of affairs. As long
as this is consistent with the available observations, the agent continues to reason
forward. In case some of the observations cannot be explained without appealing
to some exogenous reason, the agent revisits and revises its past assumptions.

We conclude with some formal results, including an algorithm for computing
complete admissible argument sets, and a proof of elaboration tolerance, in the
sense that additional knowledge can be gracefully accommodated in any domain.

1 Introduction

An important aspect of intelligence is the ability to reason, and draw conclusions about
properties of one’s environment that are not directly visible. In the area of logic-based
reasoning, it is assumed that such conclusions are drawn by applying some knowledge
base comprised of logic rules. To account for the inherent barrier of representing all
possible knowledge for any but the simplest domains, default logic rules can be used
in a knowledge base, so that conclusions are still drawn in the absence of sufficient
information, but can be retracted in the presence of evidence to the contrary.

Two major forms of default reasoning have been extensively studied on their own
in Artificial Intelligence, but have rarely been addressed in the same formalism. These
are default property classification as applied to inheritance systems [1,2], and default
persistence central to temporal reasoning in theories of Reasoning about Actions and
Change (RAC) [3,4,5]. Here we consider the question [6]: How can a formalism synthe-
size the reasoning encompassed within each of these two forms of default reasoning?

Central to these two (and indeed all) forms of default reasoning is the qualification
problem: default conclusions are qualified by information that can block the application
of the default inference. One aspect of the qualification problem is to express, within
the theory, the knowledge required to properly qualify and block the default inference

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 209–222, 2009.
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under exceptional situations. This endogenous form of qualification is implicit in the
theory, driven by auxiliary observations that enable the known qualifying information
to be applied. For example, known exceptional classes in the case of default property
inheritance, or known action laws (and their ramifications) in the case of default persis-
tence, qualify, respectively, the static and temporal forms of default reasoning.

Completely representing, within a given theory, the qualification knowledge is im-
practical and indeed undesirable, as we want to jump to default conclusions based on
a minimal set of information available. We, therefore, also need to allow for default
conclusions to be qualified unexpectedly from observed information that is directly (or
explicitly) contrary to them. In this exogenous form of qualification, the theory itself
cannot account for the qualification of the default conclusion, but our observations tell
us explicitly that this is so and we attribute the qualification to some unknown reason.

Recent work [7,8] has shown the importance for RAC theories to properly account
for these two forms of qualification, so that exogenous qualification is employed only
when observations cannot be accounted for by endogenous qualification of default per-
sistence and the causal laws. When integrating default static and temporal theories, this
means that we need to ensure that the two theories properly qualify each other endoge-
nously, so that the genuine cases of exogenous qualification can be correctly recognized.

The mutual qualification of the default static and temporal theories can be understood
in two dual ways: On the one hand, temporal reasoning is extended to include default
static knowledge, which acts as a global, but defeasible, constraint that qualifies the
temporal evolution of a domain. On the other hand, default static reasoning is extended
to a temporal setting, where persistence, the effects of actions, and observations across
the time-line can qualify the default laws that are used for reasoning.

In particular, we study how four different types of information present in such an in-
tegrated framework interact with, and can qualify, each other: (i) information generated
by default persistence of fluents, (ii) action laws that can qualify default persistence,
(iii) default static laws of fluent relationships that can qualify these action laws, and
(iv) observations that can (exogenously) qualify any of these types of information. This
hierarchy of information comes full circle, as the bottom layer of default persistence of
observations (which carry the primary role of qualification) can, also, qualify the static
theory. Hence, in our proposed integrated framework, temporal projection with the ob-
servations help to determine the admissible states of the default static theory. In turn,
admissible states qualify the actions laws and the temporal projection they generate.

The semantics of the proposed integration is motivated and introduced through a se-
ries of example domains in Section 2, and formalized through an argumentation-based
framework in Section 3. The framework follows a pragmatic approach. An agent holds
certain beliefs about the state of the world at a certain time-point, executes some actions,
and possibly makes some observations. It then predicts the next state of the world, by
devising an admissible argument set, taking into account all the pieces of knowledge
at its disposal, and resolving conflicts based on the strength of the corresponding argu-
ments. If an admissible argument set that agrees with all available observations is found,
the agent assumes that the computed state is the actual state of the world, and moves
forward, repeating the process at the next time-point. This is repeated until the state
predicted by the agent based solely on its knowledge, and without appealing to some
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persistence

causal change

static knowledge

observations

persistence persistence persistence

causal change causal change causal change

static knowledge static knowledge static knowledge

observations observations

static knowledge

persistence

causal change

(a) (b) (c) (d) (e) (f)

Fig. 1. Solutions to the knowledge qualification problem. Arrows point from the knowledge type
that qualifies to the knowledge type being qualified. Root nodes in the graphs correspond to strict
knowledge, and internal nodes correspond to default knowledge (qualified by its parent nodes).

exogenous reason, is in conflict with the observations. In such a case, the agent revisits
its past assumptions, and revises them so as to resolve conflicts with the observations.

We establish some formal results in Section 4. From a computational point of view,
we provide an algorithm that is guaranteed to compute a complete admissible argument
set. From an epistemological point of view, we show that domains interpreted under
our proposed semantics are elaboration tolerant, in the sense that they can be extended
with, and gracefully accommodate, arbitrary pieces of knowledge. In particular, the
semantics enjoys a free-will property, so called because an agent may choose to execute
any action, without this causing an inconsistency and compromising its ability to reason.
We conclude in Section 5, where we briefly discuss related and future work.

2 Knowledge Qualification

Through a series of examples, we present in this section the issues that arise when
examining the qualification of knowledge, and place in context the various problems
and solutions considered so far. We remark that we generally use the term qualification
in a broader sense than that used in the context of Reasoning about Actions and Change.

For illustration purposes, we employ the syntax of the action description language
ME [7] for temporal domain descriptions, and a pseudo-syntax based on that of propo-
sitional logic for representing static theories describing default or strict domain con-
straints. Strict static knowledge is represented in classical propositional logic. Default
static knowledge is represented in terms of default rules of the form “φ � ψ”, where
φ, ψ are propositional formulas. In this pseudo-syntax we specify the relative strength
between two default rules by statements of the form “rule (i) overrides rule (j)”. For-
mulas which contain variables are a shorthand representation of all formulas obtained
by substituting the variables over an appropriate finite domain of constants.

We do not reproduce here the formal syntax for these theories. In particular, the
formal semantics of our approach, given in the next section, will not depend on the
specific form of the static theories, and different frameworks such as Default Logic [2]
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or argumentation [9] can be used. For the example domains in this section, it is sufficient
for the reader to use the informal reading of the static theories for their semantics.

2.1 Past Investigations of Knowledge Qualification

One of the first knowledge qualification problems formally studied in Artificial Intelli-
gence relates to the Frame Problem (see, e.g., [5]) of how the causal change properly
qualifies the default persistence; see Fig. 1(a). In the archetypical Yale Shooting Prob-
lem domain [3], a turkey named Fred is initially alive, and one asks whether it is still
alive after loading a gun, waiting for some time, and then shooting Fred. The lapse of
time cannot cause the gun to become unloaded. Default persistence is qualified only by
known events and known causal laws linked to these events.

The consideration of richer domains gave rise to the Ramification Problem (see, e.g.,
[10]) of how indirect action effects are generated and qualify persistence; see Fig. 1(b).
Static knowledge expressing relationships between different properties (i.e., domain
constraints) was introduced to encode indirect effects. In early solutions to the Ramifi-
cation Problem a direct action effect would cause this static knowledge to be violated,
unless a minimal set of indirect effects were also assumed in order to maintain con-
sistency [10,11]. Thus, given the static knowledge that “dead birds do not walk”, the
shooting action that causes Fred to be dead would also indirectly cause Fred to stop
walking, thus qualifying the persistence of Fred walking.

Subsequent work examined default causal knowledge, bringing to focus the Qual-
ification Problem (see, e.g., [8]) of how such default causal knowledge is qualified
by domain constraints; see Fig. 1(c). In some solutions to the Qualification Problem,
static knowledge within the domain description was identified as the knowledge that
endogenously qualified causal knowledge, as opposed to as an aid to causal knowledge
in qualifying persistence [7]. The Ramification Problem was now addressed by the ex-
plicit addition of causal laws, and the development of a richer semantics to account for
their interaction. A typical domain is shown below.

Shoot(x) causesFiredAt(x)
FiredAt(x) causes¬Alive(x)
¬Alive(x) causes¬Walks(x)
Alive(Fred) holds-at1
Walks(Fred) holds-at1
Shoot(Fred) occurs-at2

static theory:

¬(¬Alive(x) and Walks(x))
¬(GunBroken and FiredAt(x))

Fix a model implying “GunBroken holds-at1”. Then we reason that the static the-
ory (of domain constraints) qualifies the direct effect of the action “Shoot(Fred)” on
“FiredAt(Fred)”, and hence it also prevents the indirect effect “¬Walks(Fred)” from be-
ing triggered. Thus, the default persistence of Fred walking is not qualified, and Fred
keeps walking. If, on the other hand, a model implies “¬GunBrokenholds-at1”, then
no causal law is qualified by the static theory. Note that the effect “¬Alive(Fred)” is
not qualified despite the observation “Walks(Fred)holds-at1”; the causal knowledge
“¬Alive(Fred) causes¬Walks(Fred)” provides an escape route to this qualification.
Hence, the default persistence of “Walks(Fred)” is qualified, and Fred is not walking
after time-point 2. Models derived according to either of the cases are valid.
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Perhaps the next natural step was realizing that observations after causal change,
also, qualify the latter when the two are in conflict, a problem known as the Exogenous
Qualification Problem (see, e.g., [7]); see Fig. 1(d). Consider, for example, the last do-
main extended by the observation “¬FiredAt(Fred) holds-at4”. Even though the ef-
fect of the “Shoot(Fred)” is not, as we have seen, necessarily qualified by the static the-
ory alone, the explicit observation that the action’s direct effect is not produced leads us
to conclude that it was necessarily qualified. The interaction with the endogenous qual-
ification of the causal laws by the static theory comes from the fact that “GunBroken”
together with the static theory qualifies the action law, and provides, thus, an explana-
tion of the observed action failure. So, if we wish to minimize the unknown exogenous
cases of qualification, we would conclude that “GunBroken” holds, as this is the only
known way to endogenously account for the observed failure.

Independently of the study of qualification in a temporal setting, another qualification
problem was examined in the context of Default Static Theories [2] that consider how
observed facts qualify default static knowledge; see Fig. 1(f). In the typical domain,
represented below, one asks whether a bird named Tweety has the ability to fly, when
the only extra given knowledge is that Tweety is a bird.

Bird(Tweety)

static theory:

(1) Penguin(x) � ¬CanFly(x)
(2) Penguin(x) → Bird(x)
(3) Bird(x) � CanFly(x)
rule (1) overrides rule (3)

In the absence of any explicit information on whether Tweety has the ability to fly, the
theory predicts “CanFly(Tweety)”. Once extended with the fact “Penguin(Tweety)”,
however, “CanFly(Tweety)” is retracted. The same retraction happens if instead of the
fact “Penguin(Tweety)”, the fact “¬CanFly(Tweety)” is added. In either case the static
theory is qualified, and yields to explicit facts or stronger evidence to the contrary.

2.2 Putting Fred and Tweety in the Same Scene

In this paper we investigate how temporal domains can incorporate default static the-
ories, or dually, how static theories should be revised when interpreted in a temporal
setting, in the presence of default persistence, default causal change, and observations.
The technical challenge lies in understanding how the four types of domain knowledge,
three of which may now be default, interact and qualify each other; see Fig. 1(e).

We view observations as part of the non-defeasible part in default static theories, thus
primarily taking the role of qualifying the static knowledge, which then in turn will qual-
ify the causal knowledge as described above. Due to the temporal aspect of a domain,
however, a point-wise interpretation of observations as facts in the default static theory
is insufficient, even in domains with no causal laws and, thus, strict persistence. Con-
sider a temporal domain with the observations “Penguin(Tweety) holds-at1” and
“Bird(Tweety) holds-at4”, and a static theory as in the Tweety example above. By
viewing each time-point in isolation, we can conclude that “CanFly(Tweety)” holds only
at time-point 4, but not at time-point 1. This cannot be extended into a temporal model
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without violating the (strict) persistence. Rather, “Penguin(Tweety) holds-at1”
should persist everywhere, as if “Penguin(Tweety)” were observed at every time-point.
This persistence, then, qualifies the static theory at every time-point, and implies that
“¬CanFly(Tweety)”. Analogously, if the observation “CanFly(Tweety) holds-at7”
is included in the domain, the observation persists everywhere and qualifies the default
conclusion of the static theory that the penguin Tweety cannot fly.

Assume, now, that observations and persistence have appropriately qualified the
static theory at each time-point T , so that the theory’s default extensions (models) de-
termine the set of admissible states at T . Through these sets of admissible states, the
qualified static knowledge then qualifies the change that the temporal part of the theory
attempts to generate through its causal knowledge. Given a time point T , it is natural
that causal knowledge will be qualified by admissible states as determined immediately
after T . This type of qualification is illustrated in the next example domain.

ClapHands causesNoise
Noise causesFly(x)
Noise causes¬Noise
Spell(x) causesCanFly(x)
Penguin(Tweety) holds-at1
ClapHands occurs-at3
Spell(Tweety) occurs-at5
ClapHands occurs-at7

static theory:

(1) Penguin(x) � ¬CanFly(x)
(2) Penguin(x) → Bird(x)
(3) Bird(x) � CanFly(x)
rule (1) overrides rule (3)
(4) ¬CanFly(x) → ¬Fly(x)

The persistence of “Penguin(Tweety) holds-at1” implies that “¬CanFly(Tweety)”
holds in each set of admissible states up to time-point 5. In particular, this conclusion
holds immediately after “ClapHands occurs-at3”, and qualifies through the static
theory the causal generation of “Fly(Tweety)” by the action “ClapHands”.

This domain illustrates also a new aspect of the qualification problem. Intuitively,
we expect “Spell(Tweety) occurs-at5” to override the static theory’s default con-
clusion “¬CanFly(Tweety)” from holding at time-points following time-point 5. Note,
however, that up to now we have assumed that the default static theory is stronger than
the causal knowledge, and that it qualifies any change implied by the latter. But this
is not the case now, since we wish to specify that some causal information is stronger
than the default static theory. How, then, can we ensure that the causal generation of
“CanFly(Tweety)” by “Spell(Tweety)” will not be qualified in this particular case?

This requirement can be accommodated by interpreting the particular causal law of
interest “Spell(x) causesCanFly(x)” as a default rule in the static theory, and giving it
priority over other default rules of the static theory with the contrary conclusion.1 This
interpretation need not be explicated. It suffices to mark strong causal laws as such, and
then let their effects qualify the static theory, much in the same way that observations
and persistence do. Because of this qualification, then, “CanFly(Tweety)” will hold in
the set of admissible states associated with the time-point immediately following the
occurrence of the action “Spell(Tweety)”, allowing the action’s effect to come about
and override the static theory’s usual default conclusion that “¬CanFly(Tweety)”.

1 We remind the reader that our goal here is not to provide semantics for static theories, and that
using an informal reading in all presented example domains suffices for their semantics.
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Such strong actions2 (like “Spell(x)”) take the world out of the normal default state
of affairs (where penguins cannot fly) into an exceptional, from the point of view of the
static theory, state (where Tweety, a penguin, can fly). The rest of the default conclu-
sions of the static theory still apply in this exceptional state (following time-point 5),
conditioned on the exception (that Tweety can fly) that the strong action has brought
about. This exception holds by persistence until some later action occurrence (e.g.,
“UndoSpell(Tweety)”) brings the world back into its normal state. In our domain, the
second occurrence of “ClapHands” is while in an exceptional state; thus, the causal
change is not qualified, and Tweety (a penguin able to fly) flies after time-point 7.

Consider now replacing “Spell(Tweety) occurs-at5” in the domain above with
the observation “Fly(Tweety) holds-at5”. By persistence, this observation qualifies
the static theory so that “Fly(Tweety)” holds in each set of admissible states at time-
points strictly after 3. This does not hold for time-points up to and including time-point
3, since the occurrence of the action “ClapHands” at time-point 3 can now account
for the change from “¬Fly(Tweety)” by qualifying its persistence, as the static theory
does not now qualify “ClapHands occurs-at3”. Note that the interpretation of the
observation “Fly(Tweety) holds-at5” is that Tweety flies for some exogenous reason
(e.g., it is on a plane), and thus it is not known how the static theory is qualified, but
only that it is somehow exogenously qualified. If an action at time-point 6 were to cause
Tweety to stop flying, then this would release the static theory’s default conclusion that
penguins do not fly, so that the subsequent action “ClapHands occurs-at7” would
be qualified by the static theory, and would not cause Tweety to fly again.

A somewhat orthogonal question to the one of when causal knowledge is qualified
by the static theory, is how this qualification happens. Consider the Fred meets Tweety
domain [6] below, and assume we wish to know whether Fred is alive after firing at it.
One concludes that Fred is dead from time-point 2 onwards, and also that Tweety is
flying. What happens, however, if one were to observe “¬Fly(Tweety) holds-at4”?
Could one still conclude that Fred is dead? Interestingly enough, the answer depends
on why Tweety would not fly after Fred would be shot! The observation by itself does
not explain why the causal laws that would normally cause Tweety to fly did not do so.

Shoot(x) causesFiredAt(x)
FiredAt(x) causes¬Alive(x)
Shoot(x) causesNoise
Noise causesFly(x)
Noise causes¬Noise
Alive(Fred) holds-at1
Turkey(Fred) holds-at1
Bird(Tweety) holds-at1
Shoot(Fred) occurs-at2

static theory:

(1) Penguin(x) or Turkey(x) � ¬CanFly(x)
(2) Penguin(x) or Turkey(x) → Bird(x)
(3) Bird(x) � CanFly(x)
rule (1) overrides rule (3)
(4) ¬CanFly(x) → ¬Fly(x)

An endogenous explanation would be that Tweety is a penguin, and “Fly(Tweety)” is
qualified from being caused. An exogenous explanation would be that Tweety could
not fly due to exceptional circumstances (e.g., an injury). In either case, we would

2 The set of strong actions is domain-dependent, and it is the domain designer’s task to identify
them and to mark them as such in the domain provided to an agent for reasoning.
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presumably conclude that Fred is dead. However, Tweety might not have flown because
the shooting action failed to cause a noise, or even because the action failed altogether.
Different conclusions on Fred’s status might be reached depending on the explanation.

3 Argumentation Semantics

Motivated by the discussion in Section 2, we propose in this section a formal semantics
for the qualification problem in the context of integrating default static and temporal
theories. Argumentation offers a natural framework for this purpose, as it allows the
easy specification of different types of knowledge as arguments, and the specification of
their relative strengths as preferences imposed over these arguments. This, in turn, pro-
vides a clean formalization for the non-monotonic nature of knowledge qualification.
A list of numerous non-monotonic logics that have been (re-) formulated in terms of
argumentation, and a discussion of how argumentation offers a uniform formalism for
understanding non-monotonic reasoning, can be found in [12] and references therein.

We emphasize that our proposed semantics does not hinge on any particular syntax or
semantics used in the previous and this section for illustration purposes. In particular,
we take a black-box approach to the syntax and semantics of default static theories,
and assume simply that we have access to their models, without concerning ourselves
with how these models are derived. For the temporal part of our semantics, we follow
a pragmatic approach. We first focus on defining how an agent can reason from what
holds in the current state of affairs to what will hold in the subsequent one. We discuss
later how this single-step approach can be extended across the entire time-line.

We assume a time structure defined over the non-negative integers. Fix a positive
integer T , and a state of affairs E that is believed to hold at time-point T − 1. Given a
domain D expressed in some syntax, and interpreted according to some semantics, one
derives a set of arguments of what holds at time-point T . Again, we take a black-box
approach here, and do not concern ourselves with how these arguments are derived.

Definition 1. Denote by UD,E,T the argument universe for domain D at time-point T
given state E . UD,E,T comprises stat, and arguments of the form argm(L), namely
assm(L), pers(L), ngen(L), sgen(L), exog(L), as determined by the causal, static,
and narrative parts of the given domain D, and assuming the state E holds at T − 1.

Assumption arguments assm(L) are necessary only at time-point 0, where, in fact, they
can be thought of as a special case of generation arguments. Beyond this, assumptions
are useful only for ease of presentation, and perhaps from a computational point of view
in abstracting the past by postulating that something holds without a proof. Persistence
arguments pers(L) exist exactly if L holds in the current state of affairs E .

Normal generation arguments ngen(L) exist when causal change is triggered by
some action occurrence, associated with a set of causal laws.3 These normal generation

3 As already illustrated in Section 2, certain RAC frameworks follow the approach that direct
action effects may trigger other indirect effects. For ease of presentation, we do not make this
distinction here, and focus on the more fundamental problem of how action effects (direct
and indirect alike) interact with other pieces of knowledge. We note, however, that conditional
arguments could be introduced so as to properly accommodate for indirect effects.
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arguments are assumed to be qualified by the static theory; intuitively, we think of static
theory as a compiled form of normal causal knowledge. Strong generation arguments
sgen(L) are similar to normal generation arguments, but they exist when the action
effects are produced through strong causal laws, as these are defined in a domain. These
strong generation arguments do not yield to the static theory, but, rather, override it.

Exogenous arguments exog(L) exist when L is observed to hold at time-point T .
Observations in a domain do not capture causal or static knowledge explaining why the
environment reaches a particular state. Instead, they postulate that something holds for
reasons exogenous to the causal and static theory. As such, observations are linked to
the exogenous arguments of our framework in a one-to-one correspondence.

The static argument stat serves to indicate that the static theory is to be taken into
account. This may give rise to additional conclusions, but also opens up the possibility
for some of these conclusions to be questioned in lieu of stronger counter-arguments.

The relative strengths of various types of knowledge are captured by imposing pref-
erences between the corresponding arguments; see Definition 2. As expected, assump-
tions are qualified by every other type of knowledge, while observations (i.e., exogenous
reasons) qualify all other types of knowledge. The static theory qualifies normal causal
change, but it is qualified by strong causal change, persistence, and observations. Fi-
nally, persistence is qualified by causal change. We have made the working assumption
that strong causal change is incomparable in strength to normal causal change; that is,
their only difference is with respect to the static theory. This assumption is retractable,
and does not affect any of the definitions or results that follow in any important way.

Definition 2. Define a preference relation � between pairs of arguments, so that for
every literal L, the arguments on the left are preferred over those on the top in the table:

stat assm(L) ngen(L) pers(L) sgen(L) exog(L)
stat � �

assm(L)
ngen(L) � �
pers(L) � �
sgen(L) � � �
exog(L) � � � � �

Since the static theory is qualified by other pieces of knowledge, we need to assume
that the static theory is associated with a revision mechanism. Following our black-box
approach, we make no assumptions on what this mechanism is, beyond its existence.

Definition 3 (Dynamic Revision of Static Theory). It is assumed that there exists a
fixed revision function rev(·, ·) that given a static theory and a set of literals, revises
the static theory so that it entails all literals in the set. Given an argument set A ⊆
UD,E,T , define Q(A) 	 {L | exog(L) ∈ A or sgen(L) ∈ A or pers(L) ∈ A}. The
associated static theory SD,A of an argument set A ⊆ UD,E,T under a domain D with
a static theory SD , is defined to be rev(SD,Q(A)).

Those types of knowledge in an argument set that are preferred over the static theory are
captured by Q(A), and are used to qualify the static theory. This revised static theory
is then used to draw conclusions and possibly qualify other types of knowledge.
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Definition 4 (Argument Set Entailment and Completeness). An argument set A ⊆
UD,E,T entails a literal L, denoted A |= L, if either argm(L) ∈ A, or stat ∈ A and
L holds in all those models of SD,A that are consistent with every literal G such that
argm(G) ∈ A. An argument set A ⊆ UD,E,T minimally entails a literal L if A |= L
and there exists no argument set A′ ⊂ A such that A′ |= L.

An argument set A ⊆ UD,E,T is complete for a fluent F if either A |= F or A |= F .
An argument set A ⊆ UD,E,T is complete if A is complete for every fluent. A complete
argument set A ⊆ UD,E,T entails a state E ′ if A entails every literal in E ′.

Definitions for attacks and admissibility are given next, in a manner that closely follows
corresponding definitions in the literature (see, e.g., [13]). We emphasize this point,
since it allows one to use existing and well-studied argumentation frameworks, and
exploit computational models that have been developed for those (see, e.g., [12]).

Definition 5 (Attacking Relation). An argument set A1 ⊆ UD,E,T attacks an argu-
ment set A2 ⊆ UD,E,T (on the literal L) if A1 |= L and A2 |= L, and there exist
argument sets Am

1 ⊆ A1 and Am
2 ⊆ A2 such that the following conditions hold:

(i) Am
1 minimally entails L and Am

2 minimally entails L;
(ii) if an argument in Am

2 is preferred over an argument in Am
1 , then an argument in

Am
1 is preferred over an argument in Am

2 .

Definition 6 (Admissibility). An argument set A ⊆ UD,E,T is admissible if the follow-
ing conditions hold:

(i) A does not attack itself;
(ii) A attacks every argument set A′ ⊆ UD,E,T that attacks A.

We now have the necessary machinery to formalize the integration of default static and
temporal theories for the single time-step case. For a domain D, an agent starts with
a state E at time-point T − 1, and a set of available arguments UD,E,T , and constructs
a complete admissible argument set A ⊆ UD,E,T . In turn, A entails a state that —
according to the information available to the agent — is the state of affairs at time-point
T . It is straightforward to extend this to multiple time-steps, where the prediction from
a time-step serves as input to the next time-step. For convenience, and without loss of
generality, we assume that there are no observations or causal effects at time-point 0.

Definition 7 (Pre-Models). An interpretation M of a domain D is a total mapping
from time-points to states, so that for every time-point T ≥ 0, M(T ) denotes the state
associated with T . A pre-model M of a domain D supported by a mapping α is an
interpretation of D such that M(0) is a model of SD , and for every time-point T > 0,
there is a complete admissible argument set α(T ) ⊆ UD,M(T−1),T that entails M(T ).

Recall that argument sets may contain exogenous arguments. Intuitively, these are used
when the reason for which something holds is unknown, yet it is known that it does hold,
since it was observed so. Appealing to such exogenous reasons should be minimized
across the set of all argument sets used to construct a temporal model.
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Definition 8 (Models). A model M of a domain D is a pre-model of D supported
by some α, such that there exists no pre-model M′ of D supported by some α′ that
point-wise contains a subset of the exogenous arguments contained in α.

In accordance to our pragmatic point of view, we propose that models of a domain be
computed through a combination of forward and backward reasoning steps. Although
it is beyond the scope of this work to devise a full computational procedure for the
developed semantics, we briefly discuss how such a procedure would look like.

Initially the agent reasons forward, starting from some state at time-point 0, and
computing the states at time-point 1, time-point 2, and so on. Whenever it executes an
action, or makes an observation, it also reasons forward to compute the state of its envi-
ronment at the next time-point. As long as the argument sets used in this reasoning pro-
cess contain no exogenous arguments, the corresponding computed states are assumed
to be part of some model (since point-wise they trivially minimize the use of exogenous
arguments). If when computing the state at some time-point T , the need arises for an
argument set to use exogenous arguments, then the agent enters the backward reasoning
phase. It revisits the state at time-point T − 1, and examines what assumptions it has
to change so that the state at T can be computed without appealing to exogenous argu-
ments. In the process of doing so, the need may arise to employ exogenous arguments
for the argument set that entails the state at time-point T − 1. If this is the case, the
agent revisits the state at time-point T − 2, and so on, going backwards possibly until
time-point 0. Once the exogenous arguments are eliminated, or some minimal use of
exogenous arguments is found to be necessary, the forward reasoning resumes.

4 Formal Results

We now discuss some formal properties of our proposed formalism. An algorithm for
constructing complete admissible arguments sets is first presented and shown correct.

Given UD,E,T , construct the argument set A according to the following steps:

(1) Set A := ∅, and set L to be the set of all literals.
(2) While there is L ∈ L s.t. pers(L) ∈ UD,E,T , and exog(L), sgen(L), ngen(L) �∈

UD,E,T , set A := A ∪ {pers(L)}, and set L := L \
{
L
}

.
(3) While there is L ∈ L s.t. sgen(L) ∈ UD,E,T and exog(L) �∈ UD,E,T , set A :=

A ∪ {sgen(L)}, and set L := L \
{
L
}

.
(4) While there is L ∈ L s.t. exog(L) ∈ UD,E,T , set A := A ∪ {exog(L)}, and set

L := L \
{
L
}

.
(5) Set A := A ∪ {stat}.
(6) While there is L ∈ L s.t. pers(L) ∈ UD,E,T , and both A |= L and there exists

Am ⊆ A that minimally entails L, set A := A∪{pers(L)}, and set L := L\
{
L
}

.
(7) While there is L ∈ L s.t. ngen(L) ∈ UD,E,T , and either A �|= L or there exists no

Am ⊆ A that minimally entails L, set A := A∪{ngen(L)}, and set L := L\
{
L
}

.
(8) Return A, and terminate.
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Theorem 1 (Correctness of Construction). For every domain D, time-point T , and
state E , the algorithm above returns a complete admissible argument set A ⊆ UD,E,T .

Proof (sketch). Consider an argument set A′ ⊆ UD,E,T such that for every literal L it
holds that: (i) if sgen(L) ∈ UD,E,T , then pers(L) �∈ A′; and (ii) if exog(L) ∈ UD,E,T ,
then sgen(L), pers(L) �∈ A′. By case analysis it can be shown that for every argument
argm(G) ∈ A′, either argm(G) ∈ A, or A attacks A′ on literal G. It follows that if A
does not defend an attack from A′, then A′ ⊆ A, which leads to a contradiction.

The case of arbitrary argument sets can be reduced to the special case considered
above. Overall, then, A is admissible. The completeness of A follows easily. ��

We now continue to establish an elaboration tolerance property: every domain has a
model, as long as its static theory is not inconsistent to begin with.

Theorem 2 (Guaranteed Consistency of Domains). For every domain D, and every
state E that is a model of SD , there exists a model M of D such that M(0) = E .

Proof (sketch). Theorem 1 immediately implies the existence of pre-models with the
claimed property. This, then, implies the existence of a pre-model that minimizes the
exogenous arguments, and is, thus, a model of the domain. ��

As a special type of elaboration tolerance, we show that our formalism enjoys a free-will
property: an agent may attempt to execute any sequence of actions in the future, without
requiring revision of any of its beliefs about the past. The need for such a property in
the context of Reasoning about Actions and Change has been argued in [7].

Theorem 3 (Free-Will Property of Reasoning). Consider any two domains D1,D2
for which the following conditions hold: (i) neither domain has observations at time-
points after T0, and (ii) the domains differ only on the occurrences of actions whose
effects are brought about at time-points after T0. For every model M1 of D1 there
exists a model M2 of D2 such that for every time-point T ≤ T0, M1(T ) = M2(T ).

Proof (sketch). Let M1 be a pre-model of D1 supported by α1, and let M2 be a pre-
model of D2 supported by α2. By Theorem 1, it can be shown that α2 can be chosen
so that for every time-point T ≤ T0, α1(T ) = α2(T ). Since there are no observa-
tions at time-points after T0, it follows that for every time-point T > T0, neither α1(T )
nor α2(T ) contain any exogenous argument. Since M1 minimizes the exogenous argu-
ments, so does M2. Thus, M2 is a model of D2. ��

Recall that one of the problems for which our proposed integration offers semantics is
that of how to temporally project and dynamically update a static theory. We conclude
this section by briefly reiterating the stance that our framework takes on this problem.

The original static theory SD is determined solely by a given domain D. Since ini-
tially, at time-point 0, no temporal information (i.e., observations or causal effects) is
present, this original static theory need not be revised. Indeed, according to our seman-
tics (cf. Definition 7), the state of affairs at time-point 0 is consistent exactly with this
original static theory SD . As time progresses, however, observations and causal effects
(from strong causal laws) become available. This information needs to be respected,
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even if it is not consistent with the original static theory SD . Additionally, if something
holds in a past state E and is not caused to stop, its persistence needs, also, to be re-
spected. According to our semantics (cf. Definition 3), all these pieces of information
are taken into account to construct the revised static theory SD,A for some A ⊆ UD,E,T ;
the state of affairs at time-point T is consistent exactly with this revised static theory.
Note further that since temporal knowledge might be non-deterministic (e.g., due to
non-deterministic causal effects, or due to conflicting observations at the same time-
point), so might be the revision of the static theory. Indeed, the choice of the argument
set A corresponds to a choice of one of the possible temporal evolutions of the world,
and this, then, determines the revised static theory SD,A that corresponds to this choice.

5 Concluding Remarks

We have proposed an integrated formalism for reasoning with both default static and
default causal knowledge, two problems that have been extensively studied in isolation
from each other. The semantics was developed through argumentation, and follows a
pragmatic point of view that we feel is appropriate for use in real-world settings.

Our agenda for future research includes investigation of scenarios where it is appro-
priate for static knowledge to generate extra (rather than block) causal change, when the
former qualifies the latter. We would also like to develop a full-fledged computational
procedure, along the lines already discussed in the preceding sections.

Beyond the work that introduced the problem and discussed some early ideas [6], we
are not aware of other previous work that explicitly addresses the problem of integrating
default static and temporal reasoning. However, much work has been done on the use
of default reasoning in inferring causal change. Of particular note in the context of
the qualification problem are [14,8]. An interesting approach to distinguishing between
default and non-default causal rules in the context of the Language C+ is given in [15].
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Abstract. We consider random logic programs with two-literal rules
and study their properties. In particular, we obtain results on the proba-
bility that random “sparse” and “dense” programs with two-literal rules
have answer sets. We study experimentally how hard it is to compute
answer sets of such programs. For programs that are constraint-free and
purely negative we show that the easy-hard-easy pattern emerges. We
provide arguments to explain that behavior. We also show that the hard-
ness of programs from the hard region grows quickly with the number of
atoms. Our results point to the importance of purely negative constraint-
free programs for the development of ASP solvers.

1 Introduction

The availability of a simple model of a random CNF theory was one of the
enabling factors behind the development of fast satisfiability testing programs
— SAT solvers. The model constrains the length of each clause to a fixed integer,
say k, and classifies k-CNF theories according to their density, that is, the ratio
of the number of clauses to the number of atoms. k-CNF theories with low
densities have few clauses relative to the number of atoms. Thus, most of them
have many solutions, and solutions are easy to find. k-CNF theories with high
densities have many clauses relative to the number of atoms. Thus, most of
them are unsatisfiable. Moreover, due to the abundance of clauses, proofs of
contradiction are easy to find. As theories in low- and high-density regions are
“easy,” they played essentially no role in the development of SAT solvers.

There is, however, a narrow range of densities “in between,” called the phase
transition, where random k-CNF theories change rapidly from most being satis-
fiable to most being unsatisfiable. Somewhere in that narrow range is a value d
such that random k-CNF theories with density d are satisfiable with the proba-
bility 1/2. The problem of determining that value has received much attention.
For instance, for 3-CNF theories, the phase-transition density was found exper-
imentally to be about 4.25 [1]. A paper by Achlioptas discusses recent progress
on the problem, including some lower and upper bounds on the phase transition
value [2]. A key property of 3-CNF theories from the phase transition region
is that they are hard.1 Thus, we have the easy-hard-easy difficulty pattern as

1 It should be noted that the low- and high-density regions also contain challenging
theories, but they are relatively rare [4]).

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 223–235, 2009.
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the function of density. Moreover, deciding satisfiability of programs from the
hard region is very hard indeed! Designing solvers that could solve random un-
satisfiable 3-CNF theories with 700 atoms generated from the phase-transition
region was one of grand challenges for SAT research posed by Selman, Kautz
and McAllester [3]. It resulted in major advances in SAT solver technology.

As in the case of the SAT research, work on random logic programs is likely
to lead to new insights into the properties of answer sets of programs, and lead
to advances in ASP solvers — software for computing them. Yet, the question
of models of random logic programs has received little attention so far, with the
work of Zhao and Lin [5] being a notable exception. Our objective is to propose
a model of simple random logic programs and investigate its properties.

As in SAT, we consider random programs with rules of the same length. For
the present study, we further restrict our attention to programs with two-literal
rules. These programs are simple, which facilitates theoretical studies. But de-
spite their simplicity, they are of considerable interest. First, every problem in
NP can be reduced in polynomial time to the problem of deciding the existence of
an answer set of a program of that type [6]. Second, many problems of interest
have a simple encoding in terms of such programs [7]. We study experimen-
tally and analytically properties of programs with two-literal rules. We obtain
results on the probability that random programs with two-literal rules, both
“sparse” and “dense,” have answer sets. We study experimentally how hard it is
to compute answer sets of such programs. We show that for programs that are
constraint-free and purely negative the easy-hard-easy pattern emerges. We give
arguments to explain that phenomenon, and show that the hardness of programs
from the hard region grows quickly with the number of atoms. Our results point
to the importance of constraint-free purely negative programs for the develop-
ment of ASP solvers, as they can serve as useful benchmarks when developing
good search heuristics. However, unlike in the case of SAT, depending on the
parameters of the model, we either do not observe the phase transition or, when
we do, it is gradual not sudden.

Even relatively small programs from the hard region are very hard for the
current generation of ASP solvers. Interestingly, that observation may also have
implications for the design of SAT solvers. If P is a purely negative program,
answer sets of P are models of its completion comp(P ), a certain propositional
theory [8]. For programs with two-literal rules the completion is (essentially) a
CNF theory. Our experiments showed that these theories are very hard for the
present-day SAT solvers, despite the fact that most of their clauses are binary.

2 Preliminaries

Logic programs consist of rules, that is, of expressions of the form

a ← b1, . . . , bm,not c1, . . . ,not cn (1)

and
← b1, . . . , bm,not c1, . . . ,not cn, (2)
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where a, bi and cj are atoms. Rules (1) are called definite, and rules (2) —
constraints. A rule is proper if no atom occurs in it more than once. A rule is
k-regular if it consists of k literals (that is, it is a definite rule with k− 1 literals
in the body, or a constraint with k literals in the body).

If r is a rule of type (1) or (2), the expression b1, . . . , bm,not c1, . . . ,not cn

(understood as the conjunction of its literals) is the body of r. We denote it by
bd(r). The set of atoms {b1, . . . , bm} is the positive body of r, denoted bd+(r),
and the set of atoms {c1, . . . , cn} is the negative body of r, denoted bd−(r).
In addition, the head of r, hd(r), is defined as a, if r is of type (1), and as
⊥, otherwise. A program P is constraint-free if it contains no constraints. A
program P is purely negative if for every non-constraint rule r ∈ P , bd+(r) = ∅.

A set of atoms M is an answer set of a program P if it is the least model
of the reduct of P with respect to M , that is, the program PM obtained by
removing from P every rule r such that M ∩ bd−(r) �= ∅, and by removing all
literals of the form not c from all other rules of P .

Computing answer sets of propositional logic programs is the basic reasoning
task of answer-set programming, and fast programs that can do that, known as
answer-set programming solvers (ASP solvers, for short) have been developed in
the recent years [9,10,11,12,13].

3 2-Regular Programs

We assume a fixed set of atoms At = {a1, a2, . . .}. There are five types of 2-
regular rules: a ← not b; a ← b; ← not a,not b; ← a,not b; ← a, b. Accord-
ingly, we define five classes of programs, mR−

n , mR+
n , mC−

n , mC±
n , and mC+

n ,
with atoms from Atn = {a1, . . . , an} and consisting of m proper rules of each of
these types, respectively. Without the reference to m, the notation refers to all
programs with n atoms of the corresponding type (for instance, R+

n stands for
the class of all programs over Atn consisting of proper rules of the form a ← b).

The maximum value of m for which mR−
n , mR+

n and mC±
n are not empty is

n(n− 1). The maximum value of m for which mC−
n and mC+

n are not empty is
n(n−1)/2. Let 0 ≤ m1,m2, c2 ≤ n(n−1) and 0 ≤ c1, c3 ≤ n(n−1)/2 be integers.
By [m1R

− + m2R
+ + c1C

− + c2C
± + c3C

+]n we denote the class of programs
P that are unions of programs from the corresponding classes. We refer to these
programs as components of P . If any of the integers mi and ci is 0, we omit
the corresponding term from the notation. When we do not specify the numbers
of rules, we allow any programs from the corresponding classes. For instance,
[R− + R+ + C− + C± + C+]n stands for the class of all proper programs with
atoms from Atn.

Given integers n and m, it is easy to generate uniformly at random programs
from each class mR−

n , mR+
n , mC−

n , mC±
n , and mC+

n . For instance, a random
program from mR−

n can be viewed as the result of a process in which we start
with the empty program on the set of atoms Atn and then, in each step, we
add a randomly generated proper rule of the form a ← not b, with repeating
rules discarded, until m rules are generated. This approach generalizes easily
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to programs from other classes we consider, in particular, to programs from
[m1R

− + m2R
+ + c1C

− + c2C
± + c3C

+]n. Our goal is to study properties of
such random programs.

We start with a general observation. If P ∈ [m2R
+ + c1C

− + c2C
± + c3C

+]n
(m1 = 0), then either P has no answer sets (if c1 �= 0) or, otherwise, ∅ is a unique
answer set of P . Thus, in order to obtain interesting classes of programs, we must
have m1 > 0. In other words, programs from R−

n (proper purely negative and
constraint-free) play a key role.

4 The Probability of a Program to Have an Answer Set

We study first the probability that a random program in the class [m1R
− +

m2R
++c1C

−+c2C
±+c3C

+]n has an answer set. In several places we use results
from random graph theory [14,15]. To this end, we exploit graphs associated with
programs. Namely, with a program P ∈ [R−+R++C±]n we associate a directed
graph D(P ) with the vertex set Atn, in which a is connected to b with a directed
edge (a, b) if b ← not a, b ← a or ← b,not a is a rule of P . For P ∈ [R− +R+]n,
the graph D(P ) is known as the dependency graph of a program. Similarly, with
a program P ∈ [R− + R+ + C− +C± +C+]n we associate an undirected graph
G(P ) with the vertex set Atn, in which a is connected to b with an undirected
edge {a, b} if a and b appear together in a rule of P . If P ∈ [R− + R+ + C±]n,
then D(P ) may have fewer edges than P has rules (the rules a ← not b, a ← b
and ← b,not a determine the same edge). A similar observation holds for G(P ).

These graphs contain much information about the underlying programs. For
instance, it is well known that if P ∈ [R−+R+]n and D(P ) has no cycles then P
has a unique answer set. Similarly, if P ∈ [m1R

−+m2R
++c1C

−+c2C
±+c3C

+]n
and M is an answer set of P then M is an independent set in the graph G(P1),
where P1 is the component of P from m1R

−
n .

We denote by AS+ the class of all programs over At that have answer sets.
We write Prob(P ∈ AS+) for the probability that a random graph P from one
of the classes defined above has an answer set. That probability depends on n
(technically, it also depends on the numbers of rules of particular types but,
whenever it is so, the relevant numbers are themselves expressed as functions
of n). We are interested in understanding the behavior of Prob(P ∈ AS+) for
random programs P from the class [R− + R+ + C− + C± + C+]n (or one of its
subclasses). More specifically, we will investigate Prob(P ∈ AS+) as n grows to
infinity. If Prob(P ∈ AS+) → 1 as n → ∞, we say that P asymptotically almost
surely, or a.a.s for short, has answer sets. If Prob(P ∈ AS+) → 0 as n → ∞, we
say that P a.a.s. has no answer sets.

To ground our results in some intuitions, we first consider the probability that
a program from mR−

150 has an answer set as a function of the density d = m/150
(or equivalently, the number of edges m). The graphs, shown in Figure 1, were
obtained experimentally. For each value of d, we generated 1000 graphs from the
set mR−

150, where m = 150d. The graph on the left shows the behavior of the
probability across the entire range of d. The graph on the right shows in more
detail the behavior for small densities.
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Fig. 1. The probability that a graph from mR−
150 (m = 150d) has an answer set, as a

function of d

The graphs show that the probability is close to 1 for very small densities,
then drops rapidly. After reaching a low point (around 0.6, in this case), it starts
getting larger again and, eventually, reaches 1. We also note that the rate of
drop is faster than the rate of ascent. We will now present theoretical results
that quantify some of these observations. Our results concern the two extremes:
programs of low density and graphs of high density.

We start with programs of low density and assume first that they do not have
constraints. In this case, the results do not depend on whether or not we allow
positive rules.

Theorem 1. If m1 + m2 = o(n) and P ∈ [m1R
− + m2R

+]n, then P a.a.s has
a unique answer set.

Proof. (Sketch) Let P be a random program from [m1R
−+m2R

+]n. The directed
graph D(P ) can be viewed as a random directed graph with n vertices, and
m′ = o(n) edges (m′ ≤ m, as different rules in P may map onto the same
edge). Thus, D(P ) a.a.s. has no directed cycles (the claim can be derived from
the property of random undirected graphs: a random undirected graph with n
vertices and o(n) edges a.a.s. has no cycles [15]). It follows that P a.a.s. has a
unique answer set. �

If there are constraints in the program, the situation changes. Even a single
constraint of the form ← not a,not b renders a sparse random program incon-
sistent.

Corollary 1. If c1 ≥ 1, m1 + m2 = o(n), and P is a random program from
[m1R

− + m2R
+ + c1C

−]n, then P a.a.s. has no answer sets.

Proof. Let P be a random program from [m1R
− +m2R

+ + c1C
−]n. Then, P =

P1 ∪ P2, where P1 is a random program from [m1R
− + m2R

+]n and P2 is a
random program from c1C

−
n . By Theorem 1, P1 a.s.s. has a unique answer set,

say M . Since P1 has o(n) non-constraint rules, |M | = o(n). The probability that
a randomly selected constraint of the form ← not a,not b is violated by M is
given by the probability that {a, b} ∩ M = ∅. That probability is

(
n−o(n)

2

)
/
(
n
2

)
and it converges to 1 as n → ∞. Thus, the assertion follows. �
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If we exclude such constraints then there again is a small initial interval of
densities, for which random programs are consistent with high probability.

Corollary 2. If c1 = 0, c2+c3 ≥ 1, (m1+m2)c2 = o(n), (m1+m2)2c3 = o(n2),
and P is a random program from [m1R

−+m2R
++c2C

±+c3C
+]n, then P a.a.s.

has an answer set.

Proof. (Sketch) Let P be a random program from [m1R
− + m2R

+ + c2C
± +

c3C
+]n. Thus, P = P1 ∪ P2 ∪ P3, where P1, P2 and P3 are random programs

from [m1R
− + m2R

+]n, c2C±
n and c3C

+
n , respectively. Since c2 > 0 or c3 > 0,

m1 + m2 = o(n). By Theorem 1, P1 a.a.s. has a unique answer set, say M .
Moreover, the size of M is at most m1 + m2. Under the assumptions of the
corollary, one can show that a.a.s. each constraint ← a,not b in P2 has no
atoms in M , and a.a.s. each constraint ← a, b in P3 has at most one atom in
M . Thus, a.a.s. programs P2 and P3 are satisfied by M . Consequently, P a.a.s.
has M as its unique answer set of P . �

We move on to programs of high density. Our first result concerns programs
from R−

n (proper, purely negative and constraint-free programs with n atoms).

Theorem 2. Let 0 < c < 1 be a constant. For every fixed x, a random program
from mR−

n , where m =  cN + x
√

c(c− 1)N! and N = n(n − 1), a.a.s. has an
answer set.

Proof. (Sketch) To show the assertion, it is enough prove that a random directed
graph with n vertices and m edges, where m is as in the statement of the theorem,
a.a.s. has a kernel. It is known [16] that a.a.s. a random directed graph with n
nodes drawn from the binomial model (edges are selected independently of each
other and with the same probability c) has a kernel. Moreover, one can show
that if m′ > m, m′ = m + O(n), and Gm and Gm′ are random directed graphs
with n nodes, and m and m′ edges, respectively, then Prob(Gm has a kernel) ≤
Prob(Gm′ has a kernel) + o(1). That property can be used instead of convexity
in Theorem 2(ii) [14], which allows us to transform properties of graphs from
the binomial model into properties of graphs from the uniform model that we
are considering. Thus, the assertion follows. �

Theorem 2 concerns only a narrow class of dense programs, its applicability
being limited by the specific number of rules programs are to have (m =  cN +
x
√

c(c− 1)N!, where N = n(n − 1)). It also does not apply to “very” dense
graphs with m = n2 − o(n2) rules. However, based on that theorem and on
experimental results (Figure 1), we conjecture that for every c > 0, a program
from mR−

n , where m ≥ cn2, a.a.s. has an answer set.
We will now consider the effect of adding positive rules (rules of the form

a ← b) and constraints. In fact, as soon as we have just slightly more than
n logn positive rules in a random program that program a.a.s. has no answer
sets.

Theorem 3. For every ε > 0, if m1 ≥ 1, m2 ≥ (1 + ε)n logn, and P is a
random program from [m1R

− + m2R
+ + c1C

− + c2C
± + c3C

+]n, then P a.a.s.
has no answer sets.
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Proof. Let P ∈ [m1R
− +m2R

+ + c1C
− + c2C

± + c3C
+]n, where m1 ≥ 1. Also,

let P2 be the component of P from m2R
+. If D(P2) contains a Hamiltonian

cycle, then P has no answer sets. Indeed, ∅ is not an answer set due to the rule
of the form a ← not b that is present in P . Thus, if P has an answer set, say
M , then M �= ∅. Clearly, PM contains P2. By the assumption on D(P2), the
least model of PM contains all atoms in Atn. Thus, M = Atn. But then, PM

contains no atoms (all its rules are either from P2 or are constraints of the form
← a, b) and so, the least model of PM is ∅, a contradiction. Clearly, there is
a precise correspondence between programs from m2R

+ and random directed
graphs with n nodes and m edges (no loops). The assertion follows now from
the result that states that a random directed graph with n nodes and at least
(1 + ε)n logn edges a.a.s. has a Hamiltonian cycle [14]. �

The presence of sufficiently many constraints of the form ← a, b or ← a,not b
also eliminates answer sets. To see that, we recall that if M is an answer set of a
program P = P1 ∪P2, where P1 ∈ R−

n and P2 ∈ [R+ +C−+C±+C+]n, then M
is the complement of an independent set in G(P1). The following property will
be useful. For every real c > 0 there is a real d > 0 such that a.a.s. a graph with
n vertices and m ≥ cn2 edges has no independent set with more than d logn
elements [14]. Thus, we get the following result that provides a lower bound on
the size of an answer set in a dense random logic program.

Theorem 4. For every real c > 0, there is a real d > 0 such that a.a.s. the
complement of every answer set of a random program P = P1 ∪ P2, where P1 ∈
mR−

n , P2 ∈ [R+ + C− + C± + C+]n and m ≥ cn2, has size at most d logn.

We now consider the effect of constraints of the form ← a, b on the existence
of answer sets in programs with many purely negative rules. Intuitively, even a
small number of such constraints should suffice to “kill” all answer sets. Indeed,
according to Theorem 4, these answer sets are large and contain “almost all”
atoms. Formalizing this intuition, we get the following result.

Theorem 5. For every c > 0 there is d > 0 such that if m1 ≥ cn2, c3 ≥ d logn+
1, and P is a random program from [m1R

− + m2R
+ + c1C

− + c2C
± + c3C

+]n,
then P a.a.s. has no answer sets.

Constraints of the form ← a,not b do not have such a dramatic effect. However,
a still relatively small number of such constraints a.a.s. eliminates all answer sets.

Theorem 6. For every c > 0, and for every ε > 0, if m1 ≥ cn2, c2 ≥ n1+ε, and
P is a random program form [m1R

− + m2R
+ + c1C

− + c2C
± + c3C

+]n, then
a.a.s. P has no answer sets.

Proof. We set N = n(n − 1) and Ni = i(n − i). Let X ⊆ Atn consist of n − i
elements, where 0 < i < n. We will first compute the probability that in a
random directed graph with the set of vertices Atn and with m edges, there is
no edge starting in X and ending in X . That probability is given by

(
N−Ni

m

)
/
(
N
m

)
.

One can show that it can be bounded from above by (1 − Ni/N)m. It follows
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that the probability that at least one X ⊆ Atn such that 0 < |X | ≤ k has that
property is bounded by

∑k
i=1

(
n
i

)
(1 − Ni/N)m. Let d > 0 be a constant. One

can show that for every ε > 0, if k ≤ d log n and m ≥ n1+ε, then
∑k

i=1

(
n
i

)
(1 −

Ni/N)m → 0 as n → ∞. Let us interpret that result in terms of programs.
Let d be a constant such that the complement of every answer set in a random
program P from [m1R

−+m2R
++c1C

−+c2C
±+c3C

+]n has size at most d logn
(such d exists by Theorem 4) and let ε be any fixed positive real. Let Q be the
component from c2C

±
n of P . Then D(Q) has at least n1+ε edges. Thus, a.a.s. for

every set X such that 1 ≤ |X | ≤ d logn, there is an edge (a, b) in D(P ) that
originates in X and ends in X . Such edge corresponds to a constraint ← b,not a
in Q. Clearly, this constraint is violated by X . Thus, a.a.s. P has no non-empty
answer sets. Since X = Atn is not an answer set either (the reduct of P wrt Atn

contains no atoms and so, it is inconsistent or its least model is empty), a.a.s. P
has no answer sets. �

The case of constraints ← not a,not b is less interesting. Large answer sets
(having at least n−d logn atoms) that arise for programs with dense component
from R−

n typically satisfy them and to “kill” all answer sets of such programs
with high probability almost all constraints ← not a,not b must be present.

5 Hardness of Programs

We will now study the hardness of programs from [m1R
− + m2R

+ + c1C
− +

c2C
± + c3C

+]n for ASP solvers. The bulk of our experimental results concern
programs in the class R−

n . It turns out these programs (for appropriately chosen
density) are especially challenging.

Unless stated otherwise, our experiments separate programs that have an-
swer sets (are consistent) from those that do not (are inconsistent). For each
experiment we generate a sample of instances of programs of each of these two
types. In the previous section we provided evidence that programs in mR−

n ,
where m ≥ cn2 (cf. Figure 1 and Theorem 2), a.a.s. have an answer set. There-
fore, when experimenting with inconsistent programs, we restrict the number of
rules in a program to values for which inconsistent programs appear with prob-
ability sufficiently larger than 0 (about 0.05) to allow for building samples of
inconsistent programs of sizes large enough to justify drawing conclusions from
experiments (typically 100 programs per sample).

In experiments, we used smodels (with lookahead) [9] and clasp [10]. We took
the average number of choice points as reported by these systems as the measure
of the hardness of a family of programs.

Our first observation is that as we increase m, programs from mR−
n show

the easy-hard-easy pattern. That is, low-density programs are easy for the two
solvers. When m grows, programs get harder. Then, at some point, they start
getting easier again. We illustrate that behavior in Figure 2 below. The two
graphs show separately the results for consistent and inconsistent programs from
the classes mR−

100. Each figure shows together the results (average number of
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Fig. 2. Average number of choice points for consistent (graph (a)) and inconsistent
(graph(b)) programs with 150 atoms; smodels (scale on the right) and clasp (scale
on the left). The x-axis represents the density. Sample sizes are 500 for consistent
programs, and 100 for inconsistent programs.

choice points) for smodels (the scale on the right) and clasp (the scale on the
left). The x-axis shows the density, that is, the ratio of the number of rules to
the number of atoms in a program. We stress that the scales differ. Thus, the
figures are not meant to compare the performance of smodels and clasp. But
they do show that for each solver a similar easy-hard-easy pattern emerges, and
that the features of the pattern are remarkably similar for the two solvers.

We obtained the same type of a pattern in our experiments with programs
with 125, 175 and 200 atoms. However, we observed some minor deviations from
that pattern for smodels (but not for clasp) for programs with 100 atoms. Given
our results for n ≥ 125, it seems plausible that the irregular behavior arises only
for some smaller numbers of atoms.

We used the term hard region above somewhat informally. To make that con-
cept more precise, we define it now as the maximum interval [u, v] such that for
every density d ∈ [u, v] the average number of choice points is at least 90% of
the maximum (peak) average number of choice points. Table 1 shows the hard
regions, the density for which the number of choice points reaches the maximum,
and the number of choice points at the peak location for consistent and inconsis-
tent instances with n = 125, 150, 175 and 200 atoms. The key observations are:
(1) the location of the hard region does not seem to depend much on the solver;
it is centered around the density of 19 for consistent programs, and 22 for incon-
sistent ones, (2) inconsistent programs are significantly harder than consistent
ones, (3) the peak of hardness is not sharp or, in other words, the hard region
extends over a sizable range of densities, and (4) the hardness of programs in
the hard region grows very quickly.

We conclude with arguments to explain the presence of the easy-hard-easy
pattern we observed for programs in the class R−

n . First, we note that programs
in mR−, where m = o(n), a.a.s. are stratified (Theorem 1). Computing answer
sets for such programs is easy. As the density (the number of rules) grows,
cycles in the graph D(P ) start appearing (that happens roughly when a program
has as many rules as atoms). Initially, there are few cycles and the increase in
hardness is slow. At some point, however, there are enough cycles in D(P ) to
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Table 1. Hard region, peak location, and the number of choice points at the peak
location for consistent and inconsistent programs. Results for clasp and smodels.

Inconsistent programs
clasp smodels

n hard region peak choice points hard region peak choice points
at peak at peak

125 [17.5 − 27] 22 5261 [17.5 − 24] 21 388
150 [18 − 27] 23 18639 [19 − 31] 24.5 1184
175 [18.5 − 27.5] 22 59704 [17.5 − 23.5] 20.5 3582
200 [18 − 28] 22 189576 [18 − 26] 22.5 14407

Consistent programs
125 [15.5 − 21.5] 17.5 1231 [16 − 25] 20 130
150 [16 − 23] 17.5 4033 [16 − 29.5] 20 308
175 [18.5 − 21.5] 20 14230 [17.5 − 21.5] 20 1110
200 [17.5 − 23] 19.5 43345 [18.5 − 24.5] 19.5 4232

make computing answer sets of P hard. To explain why the task gets easier
again, we note the following property of binary trees.

Proposition 1. Let T be a binary tree with m leaves, the height n, and with
the number of left edges on any path from the root to a leaf bounded by k. Then
m ≤ 2k

(
n
k

)
.

Proof: Let S(n, k) be the maximum number of leaves in such a tree. Then S(n, k)
is given by the recursive formula S(n, k) = S(n − 1, k) + S(n − 1, k − 1), for
n ≥ k + 1 and k ≥ 1, with the initial conditions S(n, 0) = 1 and S(n, n) = 2n,
for n ≥ 0. The assertion can now be proved by an easy induction. ��
We denote by S the class of complete solvers with the following three prop-
erties: (1) they compute answer sets (or determine that no answer set exists)
by generating a sequence of partial assignments so that if an answer set exists
then it occurs among the generated assignments; (2) they use boolean constraint
propagation to force truth assignments on unassigned atoms and trigger back-
tracking if contradictions are found; and (3) the generated assignments can be
represented by a binary tree, whose nodes are atoms, and where the left (right)
edge leaving an atoms corresponds to assigning that atom false (true). This class
of solvers includes in particular solvers that use chronological backtracking, as
well as those that perform backjumping (we note that in that latter case, some
nodes corresponding to decision atoms may have only one child).

Proposition 2. Let P ∈ R−
n be such that the maximum size of an independent

set in G(P ) equals β. Then, the number of assignments generated by any solver
in the class S is O((2n)β+1).

Proof: The tree representing the space of assignments generated by a solver from
S for P has height at most n and at most β+1 left edges on every path. Indeed,
if there are ever β + 1 left edges on a path in the tree, then β + 1 atoms are set
to false. Atoms in that set do not form an independent set in G(P ), and so for
some two of them, say a and b, the rule a ← not b is in P . Boolean propagation
forces a or b to be true, while both of these atoms are false. Thus, a backtrack
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will occur (the current path will not be extended). The assertion follows now by
Proposition 1, as

(
n
k

)
≤ nk. ��

We noted earlier that when m ≥ cn2, β = O(log n). Thus, when m ≥ cn2, the
size of the search space is bounded by nO(1)2O(log2 n), which is asymptotically
much smaller than O(2n). Furthermore, with m getting closer to n(n−1), β gets
even smaller and so, the search space gets smaller, too.

Finally, we note (due to space limits, we do not discuss these results in detail)
that adding even a small number of positive rules or constraints to programs
from mR−

n generally makes the resulting programs easier. These results suggest
that from the perspective of benchmarking and insights into search heuristics,
proper purely negative constraint-free programs are especially important.

6 Benchmarks for SAT Solvers

Deciding whether a logic program has an answer set is in the class NP. Thus,
there are polynomial-time methods to reduce the task of computing stable mod-
els of a program to that of computing models of a CNF theory. Unfortunately,
all known reductions lead to theories whose size is superlinear with respect to
that of the original program [17].

However, linear-size reductions exist for programs that are tight [18]. Namely,
answer sets of a tight program P are precisely models of the Clark’s completion
of P [8]. Purely negative programs are tight. In particular, programs in R−

n are
tight. Moreover, if P ∈ R−

n , then the completion of P has especially simple
form. It can be written as the collection of the following clauses: (1) a∨ b, where
a ← not b ∈ P , and (2) ¬a ∨ ¬b1 ∨ . . . ∨ ¬bk, where a ← not bi, 1 ≤ i ≤ k, are
all rules in P with a as the head.

Theories of that type obtained from programs form R−
n , constitute an in-

teresting class of benchmarks for SAT solvers. They are simple in that most
of their clauses consist of two literals and all other clauses are disjunctions of
atoms. Moreover, as the density grows, there is no phase transition, unlike in
the case of the standard model. Instead, we observe the familiar easy-hard-easy
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Fig. 3. Easy-hard-easy pattern shown by minisat [19] on the completions of programs
from mR−n, where n = 150, satisfiable theories in graph (a), inconsistent ones in
graph (b)
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property, with the hard region correlated well with the one we observed for clasp
and smodels (Figure 3).

7 Discussion

We proposed and considered a model of random logic programs with fixed-length
rules. We focused on the case of proper programs with two-literal rules. Our
model is parameterized by the number of atoms and five integers that specify the
numbers of rules of each possible type. Due to its simplicity, the model lends itself
to theoretical investigations. To the best of our knowledge, our paper provides
first non-trivial theoretical results on the properties of random programs. Our
experimental results show that while simple, the model allows us to generate
relatively small programs that are hard for the current ASP solvers. Computing
answer sets of proper purely negative constraint-free programs with 600 atoms
generated from the hard region seems to be infeasible at present. We also noted
that completions of hard programs from our model are challenging benchmarks
for SAT solvers. One of the main outcomes of our paper is the emergence of
proper purely negative constraint-free programs as the core class for generating
benchmarks and a key to theoretical studies of properties of random programs.

The model we proposed for the case of two-literal rules can be generalized to
programs consisting of k ≥ 3 rules. We believe that most properties we identified
in this paper generalize, too. In particular, our preliminary experiments show the
same easy-hard-easy pattern for proper purely negative constraint-free programs
with three-literal rules. Moreover, programs from the hard region are harder than
hard-region two literal ones.

There are several differences between our work and that of Zhao and Lin [5].
First, we consider the fixed rule-length model (and more narrowly, only the case
of two-literal programs). Second, we can specify in our model the composition
of programs in terms of the numbers of rules of particular types. That facilitates
studies of the effect these rules have when added to the “core” consisting of
proper purely negative constraint-free programs. Third, we focus on, what we
believe, is the key class of random logic programs — the class of programs that
are proper purely negative and constraint-free. Despite these differences, one of
specializations of our model (that allows for constraints) is quite closely related
to Zhao and Lin model and shows similar properties. We also note that the first
and the last of the issues discussed above differentiate our approach from an
unpublished work by Wong, Schlipf and Truszczyński [20].

Finally, we note that for the class R−
n , as well as for several other classes of

programs we can define in our framework, we do not observe the phase transition.
That is, unlike in SAT, increasing the density (the number of rules) does not
result in a sudden transition from consistent to inconsistent programs. In fact
there is no density for which programs are a.a.s inconsistent. We believe it is
due to the nonmonotonicity of the semantics of answer sets. For some classes
of programs, namely those with sufficiently many constraints, a transition from
consistent to inconsistent programs can be observed (Zhao and Lin’s model shows
such transition, too). However, the transition is relatively slow.
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6. Marek, W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38, 588–619
(1991)

7. Huang, G.S., Jia, X., Liau, C.J., You, J.H.: Two-literal logic programs and satis-
fiability representation of stable models: a comparison. In: Cohen, R., Spencer, B.
(eds.) Canadian AI 2002. LNCS (LNAI), vol. 2338, pp. 119–131. Springer, Heidel-
berg (2002)

8. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and data
bases, pp. 293–322. Plenum Press, New York (1978)
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vol. 2923, pp. 346–350. Springer, Heidelberg (2004)

14. Bollobás, B.: Random Graphs. Academic Press, London (1985)
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Abstract. This paper studies answer set programming (ASP) in the generalized
context of soft constraints and optimization criteria. In analogy to the well-known
Max-SAT problem of maximum satisfiability of propositional formulas, we intro-
duce the problems of unweighted and weighted Max-ASP. Given a normal logic
program P , in Max-ASP the goal is to find so called optimal Max-ASP models,
which minimize the total cost of unsatisfied rules in P and are at the same time
answer sets for the set of satisfied rules in P . Inference rules for Max-ASP are
developed, resulting in a complete branch-and-bound algorithm for finding opti-
mal models for weighted Max-ASP instances. Differences between the Max-ASP
problem and earlier proposed related concepts in the context of ASP are also dis-
cussed. Furthermore, translations between Max-ASP and Max-SAT are studied.

1 Introduction

Answer set programming (ASP) is a well-studied declarative programming paradigm
that has proven to be an effective approach to knowledge representation and reasoning
in various hard combinatorial problem domains. The task of answer set solvers is to
find answer sets of ASP programs, representing solutions to the underlying decision
problem instance at hand. However, it can often be the case that the problem instance
has no solutions since it may be over-constrained. While answer set solvers can in this
case prove the non-existence of answer sets, instead of a simple ”no” answer, a ”near-
solution” would be of interest, i.e., an interpretation that is optimal with respect to a
specific minimization or maximization criterion, such as the number of unsatisfied rules
in the program. For example, in debugging ASP programs (see e.g. [1] and references
therein), such an interpretation, or optimal solution, could give hints to the reasons for
the non-existence of answer sets through a minimal set of unsatisfied rules.

In the field of Boolean satisfiability (SAT), which has close connections to ASP es-
pecially from the viewpoint of solver technology, interest in methods for solving the
Max-SAT problem (the optimization variant (or generalization) of SAT) has risen es-
pecially during recent years [2,3,4]. Motivation for Max-SAT, where the interest is in
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optimal truth assignments with respect to the number of unsatisfied clauses, and es-
pecially its weighted variant, comes from the possibilities of expressing and solving
various optimization and probabilistic reasoning tasks via (weighted) Max-SAT.

In this paper, we study the problem analogous to Max-SAT for normal logic pro-
grams under the stable model semantics, namely Max-ASP, or maximum satisfiability of
answer set programs. In other words, given a normal logic program and integer weights
for each rule in the program, in weighted Max-ASP the goal is to find optimal Max-ASP
models that minimize the total cost (sum of weights) of unsatisfied rules in the program
and are at the same time a stable model for remaining (satisfied) rules of the program.

Our contributions are many-fold. In addition to considering basic properties of (op-
timal) Max-ASP models, we develop various inference (or transformation) rules for
reasoning about the optimal cost of Max-ASP instances. Based on the transformation
rules, we present a complete branch-and-bound algorithm for determining the optimal
cost and an associated optimal model for any Max-ASP instance, also in the weighted
case. In fact, the algorithm can be viewed as a generalization of complete search meth-
ods proposed for ASP, as some of the presented transformation rules are in a sense gen-
eralizations of tableau rules [5] for ASP inference applied in ASP solvers. We also study
the relation between Max-ASP and Max-SAT with translations which preserve the so-
lutions between the problems. Furthermore, we discuss differences between Max-ASP
and other generalizations [6,7,8,9] of answer sets/answer set programs which have a
similar flavor. For example, in contrast to Max-ASP, often costs are assigned on literals
instead of rules, penalizing the inclusion or exclusion of specific atoms in an answer set
of the program at hand, and often answer sets for the whole program are still sought.

This paper is organized as follows. After necessary concepts related to ASP (Sect. 2),
we define the Max-ASP problem and discuss properties of optimal Max-ASP models
(Sect. 3). We then (Sect. 4) define various transformation rules which preserve the cost
of all Max-ASP models and present a complete algorithm for determining the opti-
mal cost of any weighted Max-ASP instance. Before conclusions, translations between
Max-ASP and Max-SAT (Sect. 5), and the question of how earlier proposed related
concepts can be expressed in Max-ASP (Sect. 6), are considered.

2 Preliminaries

We consider normal logic programs (NLPs) in the propositional case. A normal logic
program Π consists of a finite set of rules of the form

r : h ← a1, . . . , an,∼b1, . . . ,∼bm, (1)

where h, ai’s, and bj’s are propositional atoms. A rule r consists of a head, head(r) =
h, and a body, body(r) = {a1, . . . , an,∼b1, . . . ,∼bm}. The symbol “∼” denotes de-
fault negation. A default literal is an atom a, or its default negation ∼a. The set of
atoms occurring in a program Π is atom(Π), and dlits(Π) = {a,∼a | a ∈ atom(Π)}
is the set of default literals in Π . We use the shorthands L+ = {a | a ∈ L} and
L− = {a | ∼a ∈ L} for a set L of default literals. Furthermore, we define body(Π) =⋃

r∈Π{body(r)}, and def(a,Π) = {r ∈ Π | head(r) = a}.
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In ASP, we are interested in stable models [10] (or answer sets) of a program Π . An
interpretation M ⊆ atom(Π) defines which atoms of Π are true (a ∈ M ) and which
are false (a �∈ M ). An interpretation M ⊆ atom(Π) satisfies a set L of literals, denoted
M |= L, if and only if L+ ⊆ M and L− ∩ M = ∅; and M satisfies a rule r ∈ Π ,
denoted M |= r, if and only if M |= body(r) implies head(r) ∈ M . An interpretation
M ⊆ atom(Π) is a (classical) model of Π , denoted by M |= Π , if and only if M |= r
for each rule r ∈ Π . A model M of a program Π is a stable model of Π if and only
if there is no model M ′ ⊂ M of ΠM , where ΠM = {head(r) ← body(r)+ | r ∈
Π and body(r)− ∩M = ∅} is called the Gelfond-Lifschitz reduct of Π with respect to
M . The set of stable models of Π is denoted by SM(Π).

Additional concepts relevant in this work are related to loops. The positive depen-
dency graph of Π , denoted by Dep+(Π), is a directed graph with atom(Π) and {〈b, a〉 |
∃r ∈ Π such that b = head(r) and a ∈ body(r)+} as the sets of vertices and edges,
respectively. A non-empty set L ⊆ atom(Π) is a loop in Dep+(Π) if for any a, b ∈ L
there is a path of non-zero length from a to b in Dep+(Π) such that all vertices in the
path are in L; loop(Π) denotes the set of all loops in Dep+(Π). The set of external
bodies of a loop L in Π is

ebΠ(L) = {body(r) | r ∈ Π, head(r) ∈ L, body(r)+ ∩ L = ∅}.

3 Max-ASP

As a central starting point of this work, in this section we define unweighted and
weighted Max-ASP and discuss some interesting properties of Max-ASP models.

Definition 1. Given a NLP Π , an interpretation M ⊆ atom(Π) is a Max-ASP model
for Π , if M is a stable model for some subset-maximal Π ′ ⊆ Π (there is no Π ′′ ⊃ Π ′

such that M ∈ SM(Π ′′)). The cost of M is |Π \Π ′|. A Max-ASP model is optimal if it
has minimum cost over all Max-ASP models for Π .

In this work we are especially interested in finding optimal Max-ASP models. We de-
note the set of all optimal Max-ASP models of a NLP Π by MaxSM(Π).

Example 1. Consider Π = {a ← ∼b. b ← ∼c. c ← ∼a}. Now SM(Π) = ∅, but M =
{a} is a Max-ASP model for Π , since M ∈ SM(Π ′) for Π ′ = {a ← ∼b. c ← ∼a}.
The cost of M is |{b ← ∼c}| = 1. Also ∅ (cost 3), {b} (cost 1), and {c} (cost 1) are
Max-ASP models of Π . Thus MaxSM(Π) = {{a}, {b}, {c}} since ∅ is not optimal.

Notice that Max-ASP models have the following basic properties:

1. Every NLP Π has a Max-ASP model; at least ∅ ⊆ Π trivially has a stable model.
2. If M is a Max-ASP model for Π such that M ∈ SM(Π ′) for subset-maximal

Π ′ ⊆ Π , then M �|= r for all r ∈ Π \Π ′.
3. The sets of optimal Max-ASP models and stable models for Π coincide if and only

if Π has a stable model, i.e., MaxSM(Π) = SM(Π) if and only if SM(Π) �= ∅.
4. If M ∈ MaxSM(Π) such that M ∈ SM(Π ′) for subset-maximal Π ′ ⊆ Π , then

SM(Π ′′) = ∅ for all Π ′′ ⊃ Π ′.
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3.1 Weighted Max-ASP

In analogy with weighted Max-SAT, Max-ASP allows for a natural extension to the
weighted case where the rules can be weighted with integer costs.

Definition 2. A weighted normal logic program is a pair P = 〈Π,W 〉, where Π is a
NLP and W : Π → N is a function that associates a nonnegative integer (a weight)
with each rule in Π .

We use the notation introduced in Section 2 in analogous way for weighted NLPs, e.g.,
atom(P) = atom(Π) for P = 〈Π,W 〉.

The concept of a weighted Max-ASP model is then naturally defined as follows.

Definition 3. Given a weighted NLP P = 〈Π,W 〉, a Max-ASP model M for Π is a
(weighted) Max-ASP model for P . The cost of a Max-ASP model M which is a stable
model for subset-maximal Π ′ ⊆ Π is ∑

r∈Π\Π′
W (r).

A Max-ASP model is optimal if it has minimum cost over all Max-ASP models for P .

We denote by MaxSM(P) the set of all optimal (weighted) Max-ASP models of P .
Notationally, we represent a weighted NLP P = 〈Π,W 〉 as a set of pairs

{(r;w) | r ∈ Π and w = W (r)}.

Example 2. Consider P ={(a ←∼b; 5), (b ←∼a; 5), (c ← a, b; 1), (d ←∼c,∼d; 1)}.
Now, SM(P) = ∅, as the first two rules choose either a or b to be true, while the last
rule requires that c is true. But to satisfy this, both a and b need to be true. The weights
assigned for the rules imply that the mutual exclusion of a and b is more important than
satisfaction of the constraint for c. Thus, MaxSM(P) = {{a}, {b}} which both have
cost 1, as the rule d ← ∼c,∼d is not satisfied. Notice that there is no Max-ASP model
for P such that c is true, because no subset of the rules in P has such a stable model.

It is worth noticing that the properties of unweighted Max-ASP models discussed in
Section 3 also hold in the weighted case.

The weighted variant of Max-ASP is in fact more expressive than the unweighted
case. Namely, the decision problems of determining whether a (weighted) NLP has an
optimal (weighted) Max-ASP model of cost less than a given value is in PNP[ log n] and
PNP for the unweighted and weighted case, respectively1. This is due to similar results
for the well-known Max-SAT and weighted Max-SAT problems [11].

4 Branch-and-Bound for Max-ASP

In this section we present a branch-and-bound algorithm for finding the cost of an opti-
mal Max-ASP model of a weighted NLP P . The algorithm applies a set of equivalence-
preserving transformation rules. For presenting these transformations and the branch-
and-bound algorithm, we start with some additional notation.

1 The unweighted case can be decided in deterministic polynomial time using logarithmic num-
ber of calls to an NP-oracle, while a linear number of calls are required for the weighted case.
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We will assume that an explicit proper upper bound � is known for the cost of an
optimal Max-ASP model for a weighted NLP P = 〈Π,W 〉. This is in analogy with [3],
where a similar approach is applied in the context of Max-SAT. Notice that any value
larger than the sum of the weights of all the rules of a program gives such an upper
bound �. Given a weighted NLP P = 〈Π,W 〉, an upper bound �, and an interpretation
M ⊆ atom(P), the cost of M in P , denoted by cost(M,P ,�), is c =

∑
r∈Π\Π′ W (r)

if M ∈ SM(Π ′) for subset maximal Π ′ ⊆ Π such that c < �, and � otherwise.
Furthermore, M is a Max-ASP model for P if cost(M,P ,�) < �, and M is optimal
if it has minimum cost over all Max-ASP models for P .

For a given upper bound �, all rules which have weight w > � must necessarily
be satisfied. Thus, such rules can be interpreted as hard, whereas rules with a weight
less than � are soft. Without loss of generality, we can limit all the costs to the interval
[0 . . .�] and define w1 ⊕ w2 = min(w1 + w2,�). Finally, we use the symbol � to
denote falsity, i.e., a rule that is always unsatisfied. Thus, if (�, w) ∈ P , then the cost
of any Max-ASP model for P is at least w, and if w = �, then P is unsatisfiable, i.e.,
has no Max-ASP models.

Remark 1. By setting � = 1, the problem of finding a Max-ASP model for a weighted
NLP P = 〈Π,W 〉 reduces to the problem of finding a stable model for Π .

Next, we will present the transformation rules which form a central part of our branch-
and-bound algorithm for weighted Max-ASP.

4.1 Equivalence-Preserving Transformations

For presenting transformations preserving Max-ASP models, we begin by defining
when two weighted NLPs are equivalent.

Definition 4. Weighted NLPs P1 and P2 with a common upper bound � are equivalent,
denoted by 〈P1,�〉 ≡ 〈P2,�〉, if

1. atom(P1) = atom(P2), and
2. cost(M,P1,�) = cost(M,P2,�) for all M ⊆ atom(P1) = atom(P2).

Notice that in order P1 and P2 to be equivalent they need to have the same upper bound.
Furthermore, notice that it is not sufficient that MaxSM(P1) = MaxSM(P2) holds, but
in addition, the cost of each interpretation has to be the same.

Remark 2. With � = 1, i.e., when a stable model is sought, the relation ≡ turns out to
be the same as ordinary or weak equivalence, which requires that P1 and P2 have the
same set of stable models. Notice that the additional condition atom(P1) = atom(P2)
can always be satisfied, e.g., by adding rules of the form a ← a.

Given weighted NLPs P , P1 ⊆ P , and P2, we use P1 ≡P P2 as a shorthand for

〈P ,�〉 ≡ 〈(P \ P1) ∪ P2,�〉.

Finally, we use shorthands (a;w) and (∼a;w) where a ∈ atom(Π) for weighted lit-
erals; and (B;w) and (∼B;w) where B ∈ body(Π) for weighted bodies and their
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complements which can appear in a weighted NLP P = 〈Π,W 〉. These shorthands are
easily presented with weighted rules, e.g., ({l1, . . . , ln};w) is a shorthand for weighted
rules (f ← ∼f,∼l;w) and (l ← l1, . . . , ln;�); and (∼{l1, . . . , ln};w) for (f ←
∼f, l;w) and (l ← l1, . . . , ln;�), where f and l do not appear in atom(Π).

First we present transformation rules for aggregation, hardening, and lower-bounding.

Proposition 1. Let P = 〈Π,W 〉 be a weighted NLP with an upper bound �. If ψ
is a rule r ∈ Π (only in Items 1 and 2), a default literal l ∈ dlits(Π), or a body
B ∈ body(Π) or its complement ∼B, then the following equivalences hold:

1. Aggregation: {(ψ;w1), (ψ;w2)} ≡P {(ψ;w1 ⊕ w2)}
2. Hardening: {(ψ;w1), (�;w2)} ≡P {(ψ;�), (�;w2)}, if w1 ⊕ w2 = �
3. Lower-bounding: {(ψ;�), (∼ψ;w)} ≡P {(ψ;�), (�;w)}

The hardening rule allows one to identify rules that are equivalent to hard counterparts:
the violation of (ψ;w1) has cost �. The lower-bounding rule makes the lower bound
implied by the violation of a hard constraint explicit. The proof of Proposition 1 is
omitted due to space constraints.

The next transformations are for inference between bodies and literals in the bodies.

Proposition 2. Let P = 〈Π,W 〉 be a weighted NLP, � an upper bound, l and l′ literals
in dlits(Π), and B ∈ body(Π). The following equivalences hold:

4. Forward true body (FTB): {(l;�) | l ∈ B} ≡P {(l;�) | l ∈ B} ∪ {(B;�)}
5. Backward false body (BFB):

{(∼B;�)} ∪ {(l;�) | l ∈ B \ {l′}}
≡P {(∼B;�)} ∪ {(l;�) | l ∈ B \ {l′}} ∪ {(∼l′;�)}

6. Forward false body (FFB): {(∼l;�)} ≡P {(∼l;�), (∼B;�)}, if l ∈ B
7. Backward true body (BTB): {(B;�)} ≡P {(B;�), (l;�))}, if l ∈ B

All these transformation rules require the constraints involved be hard, and this way
a body is interpreted as a conjunction of its default literals. Without going into further
details, we note that the correctness of these transformations follows from the similarity
with sound ASP inference rules for normal logic programs presented in [5].

Finally, we have transformations relating head atoms with the rules defining them.

Proposition 3. Let P = 〈Π,W 〉 be a weighted NLP and � an upper bound. The fol-
lowing equivalences hold:

8. Forward true atom (FTA):
{(B;�), (h ← B;w)} ≡P {(B;�), (h ← B; 0), (h;w)}

9. Backward false atom (BFA):
{(∼h;�), (h ← B;w)} ≡P {(∼h;�), (h ← B; 0), (∼B;w)}

10. Forward false atom (FFA):

{(∼B;�) | B ∈ body(def(h,Π))}
≡P {(∼B;�) | B ∈ body(def(h,Π))} ∪ {(∼h;�)}
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11. Forward loop (FL): Let h ∈ L and L ∈ loop(Π). Then

{(∼B;�) | B ∈ ebΠ(L)} ≡P {(∼B;�) | B ∈ ebΠ(L)} ∪ {(∼h;�)}
12. Backward true atom (BTA):

{(∼B;�) | B ∈ body(def(h,Π)) \ {B′}} ∪ {(h;�)}
≡P {(∼B;�) | B ∈ body(def(h,Π)) \ {B′}} ∪ {(h;�), (B′;�)}

For understanding these transformations, we note that since a Max-ASP model needs
to be a stable model for some subset of rules, only hard constraints are inferred in
FFA, FL, and BTA. On the other hand, the “soft” transformation rules FTA and BFA
correspond to satisfaction of rules (the cost of a Max-ASP model M comes from the
rules r such that M �|= r). Moreover, the precise form of FTA and BFA is related to
the global nature of FFA, FL, and BTA. Instead of removing the rule in question when
applying FTA or BFA, we change its cost to zero. There is no cost involved if a rule
with zero cost is unsatisfied, but nevertheless, the effect of such rules needs to be taken
into account when applying FFA, FL, and BTA. We now consider the correctness of the
transformation rules FTA and FFA in more detail. The other cases are similar.

FTA: Let

P = P ′ ∪ {(B;�), (h ← B;w)} and P ′′ = P ′ ∪ {(B;�)}, (h ← B; 0), (h;w),

and consider arbitrary M ⊆ atom(P). If M �|= B, then cost(M,P ,�) = � and
cost(M,P ′′,�) = �. If M |= B, then M �|= h ← B if and only if h �∈ M . Thus,
either {(h ← B;w)} and {(h;w), (h ← B; 0)} are both satisfied in M , or neither
of them is satisfied, and cost(M,P ,�) = cost(M,P ′′,�).

FFA: Let

P = 〈Π,W 〉 = P ′ ∪ {(∼B;�) | B ∈ body(def(h,Π))} and

P ′′ = P ′ ∪ {(∼B;�) | B ∈ body(def(h,Π))} ∪ {(∼h;�)},

and consider arbitrary M ⊆ atom(P). If h �∈ M , then it holds that cost(M,P ′′,
�) = cost(M,P ,�). If h ∈ M , then cost(M,P ′′,�) = �. Assume that cost
(M,P ,�) < �. Then there is Π ′ ⊆ Π such that M = SM(Π ′). However, M �|=
B for all B ∈ body(def(h,Π)). This implies that there can be no rule r in Π ′

such that head(r) = h and M |= body(r), and furthermore, h �∈ M . This is a
contradiction, and thus, cost(M,P ,�) = �.

4.2 Branch-and-Bound

We are now ready to introduce a depth-first branch-and-bound algorithm which, given a
weighted NLP P and a cost upper bound �, determines the cost of the optimal weighted
Max-ASP models of P given that the optimal cost is less than �. The method, pre-
sented as Algorithm 1, applies the equivalence-preserving transformations introduced
in Propositions 1, 2, and 3 in PROPAGATE(P ,�) (Line 1). After applying the transfor-
mations, the algorithm makes choices by case analysis on (l;�), where l ∈ dlits(P),
such that (l;�) �∈ P (represented by the choice heuristic SELECTLITERAL(P) on
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Algorithm 1. MAXASP(P ,�)
1. P := PROPAGATE(P ,�)
2. if (�,�) ∈ P then return �
3. if ∀a ∈ atom(P) either (a;�) ∈ P or (∼a;�) ∈ P then

3a. if (�, w) ∈ P then return w
3b. else return 0

4. l := SELECTLITERAL(P)
5. v := MAXASP(P ∪ {(l;�)},�)
6. v := MAXASP(P ∪ {(∼l; v)}, v)
7. return v

Line 4). This leads to a complete search for determining the cost of Max-ASP models
of weight less than �. The algorithm can also easily be modified to also return an opti-
mal model in addition to its cost (as demonstrated in Example 3). If there are no models
with cost less than �, the algorithm returns � (Line 2). Recall that the lower-bounding
rule guarantees that {(a;�), (∼a;�)} ⊆ P is impossible.

While a formal correctness proof is omitted here, the correctness is based on the fact
that, once (a;�) ∈ P or (∼a;�) ∈ P for all a ∈ atom(P) (Line 2), the transformation
rules are complete in the sense that they assure that the lower bound can not be tightened
further. Since the transformation rules also guarantee that the current weighted NLP
remains equivalent to the original one, the current lower bound is the optimal cost.

The following example illustrates a run of the algorithm.

Example 3. Consider P = {(b ← a; 1), (a ← b; 2), (a ← ∼c; 3)} with � = 7.
We start with PROPAGATE(P ,�). Since atom c has no defining rules, we can apply
FFA and obtain P ∪ {(∼c;�)}. We continue by applying FTB and FTA and get P1 =
{(b ← a; 1), (a ← b; 2), (a ← ∼c; 0), (∼c;�), ({∼c};�), (a; 3)}. None of the
transformation rules is applicable to P1, and the stopping criteria on Line 2 and Line 3
do not hold. Thus we make a choice. Let SELECTLITERAL(P) return ∼a.

– We add (∼a;�) to P1 and after propagation using FFB, lower-bounding, FFA, and
FFB, we obtain

P2 = {(b ← a; 1), (a ← b; 2), (a ← ∼c; 0), (∼c;�), ({∼c};�),
(∼a;�), (∼{a};�), (�; 3), (∼b;�), (∼{b};�)}.

No further propagation is applicable, and the condition on Line 3 holds. Now,
{a ∈ atom(P) | (a;�) ∈ P2} = ∅ and cost(∅,P ,�) = cost(∅,P2,�) = 3.
Furthermore, ∅ is a (not necessarily optimal) Max-ASP model for P2, and thus also
for P . We set � = 3 and continue the search by backtracking.

– After adding (a;�) toP1, we get {(b ← a; 0), (a ← b; 2), (a ← ∼c; 0), (∼c;�),
({∼c};�), (a;�), ({a};�), (b; 1)} by application of aggregation, FTB, and FTA.
Let SELECTLITERAL(P) return b. After the use of aggregation and FTB we have

P3 = {(b ← a; 0), (a ← b; 0), (a ← ∼c; 0), (∼c;�), ({∼c};�), (a;�),
({a};�), (b; �), ({b};�)}.
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Now, M = {a, b} = {a ∈ atom(P) | (a;�) ∈ P3} and cost(M,P ,�) =
cost(M,P3,�) = 0. Thus we have found an optimal Max-ASP model, which in
this case is a stable model for the NLP.

Remark 3. In the case � = 1, the transformation rules in Propositions 2 and 3 re-
semble closely inference rules in tableau calculi for ASP proposed in [5]. In fact, Al-
gorithm 1 can be viewed as a generalization of complete search methods proposed
for ASP, as some of the presented transformation rules are generalizations of tableau
rules [5]. However, for compactness we have intentionally left out additional trans-
formation rules (related to well-founded sets and loops) which would generalize their
counterparts in [5].

5 From Max-ASP to Max-SAT

In this section we analyze the relationship between Max-ASP and Max-SAT, giving
solution-preserving translations between these problems. For this we first briefly go
through necessary concepts related to Max-SAT.

Let X be a set of Boolean variables. Associated with every variable x ∈ X there
are two literals, the positive literal, denoted by x, and the negative literal, denoted by x̄.
A clause is a disjunction of distinct literals. We view a clause as a finite set of literals
and a CNF formula as a finite set of clauses. A truth assignment τ associates a truth
value τ(x) ∈ {false, true} with each variable x ∈ X . A truth assignment satisfies a
CNF formula if and only if it satisfies every clause in it. A clause is satisfied if and only
if it contains at least one satisfied literal, where a literal x (x̄, respectively) is satisfied
if τ(x) = true (τ(x) = false, respectively). A CNF formula is satisfiable if there is a
truth assignment that satisfies it, and unsatisfiable otherwise.

A weighted CNF formula is a pair W = 〈C,W 〉, where C is a CNF formula and
W : C → N is a function that associates a nonnegative integer with each clause in C.

Definition 5. Given a weighted CNF formula W = 〈C,W 〉, an upper bound �, and a
truth assignment τ for C, the cost of τ in W , denoted by cost(τ,W ,�), is the sum of
weights of the clauses not satisfied by τ . If cost(τ,W ,�) < �, τ is a Max-SAT model
for W , and τ is optimal if it has minimum cost over all Max-SAT models for W .

5.1 Max-ASP as Max-SAT

The translation from Max-ASP to Max-SAT is based on a typical translation from ASP
to SAT, i.e., Clark’s completion [12,13] with loop formulas [14]. In the following, we
assume without loss of generality that ri �= rj for all rules ri, rj ∈ Π in a weighted
NLP P = 〈Π,W 〉. Furthermore, we use shorthands as follows: if l is a default literal,
i.e., a or ∼a, then xl = xa if l = a, and xl = x̄a if l = ∼a.

Definition 6. Given a weighted NLP P = 〈Π,W 〉 with an upper bound �, the trans-
lation MaxSAT(P ,�) consists of the following weighted clauses:
1. For each a ∈ atom(Π):

({xa, x̄B1};w1), . . . , ({xa, x̄Bm};wm) and ({xB1 , . . . , xBm , x̄a};�),
where Bi = body(ri) and wi = W (ri) for each ri ∈ def(a,Π).
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2. For each B = {l1, . . . , ln} ∈ body(Π):
({xl1 , x̄B};�), . . . , ({xln , x̄B};�), and ({xB, x̄l1 , . . . , x̄ln};�).

3. For each L ∈ loop(Π) and each a ∈ L:
({xB1 , . . . , xBm , x̄a};�) where ebΠ(L) = {B1, . . . , Bm}.

There is a bijective correspondence between the Max-ASP models of P and Max-SAT
models of its translation MaxSAT(P ,�).

Theorem 1. Given a weighted NLP P = 〈Π,W 〉, an upper bound �, and a Max-ASP
model M for P with cost w < �, the truth assignment

τ(x) =

⎧⎨
⎩

true, if x = xa for a ∈ atom(Π) and a ∈ M,
true, if x = xB for B ∈ body(Π) and M |= B,
false, otherwise.

is a Max-SAT model for MaxSAT(P ,�) with cost w.

Proof. Let M be a Max-ASP model for P = 〈Π,W 〉 with cost w, τ defined as in
Definition 6, and Π ′ ⊆ Π subset-maximal such that M ∈ SM(Π ′).

Consider first the clauses in Item 2 of Definition 6. Assume that clause ({xl, x̄B};�)
is not satisfied by τ , i.e., τ(xl) = false and τ(xB) = true. But then M �|= l and M |= B
which leads to contradiction as l ∈ B. Similarly, τ satisfies all clauses of the form
({xB, x̄l1 , . . . , x̄ln};�); and furthermore, τ satisfies all clauses in Item 2.

Next, notice that the hard clauses in Item 3 are effectively the loop formulas of Π in
clausal form [14]. Assume now that there is a clause ({xB1 , . . . , xBm , x̄a};�) that τ
does not satisfy, i.e, τ(xBi ) = false for all i and τ(xa) = true. Thus M �|= B for all
B ∈ ebΠ(L) and there is a ∈ M ∩ L. Since a ∈ M and M = LM((Π ′)M ), there is a
rule r ∈ (Π ′)M such that a = head(r) and M |= body(r). Moreover, body(r)∩L �= ∅,
since M �|= B for all B ∈ ebΠ(L). Thus there is b ∈ body(r) ∩ L ∩ M . Continuing
this process, one notices that M |= L and moreover, L ∈ loop(Π ′). Since Π ′ ⊆ Π ,
also ebΠ′(L) ⊆ ebΠ(L). Therefore M �|= B for all B ∈ ebΠ′(L), and there is a loop
formula of Π ′ not satisfied in M . This is a contradiction to M ∈ SM(Π ′), since a
stable model of a program must satisfy all its loop formulas [14]. Thus, τ satisfies all
the clauses in Item 3.

As regards the weighted clauses in Item 1, we notice that if a ∈ M , then there is
a rule a ← B ∈ def(a,Π ′) ⊆ def(a,Π) such that M |= B, i.e., τ(xa) = true and
τ(xB) = true for some B ∈ body(def(a,Π)). Thus τ satisfies all weighted clauses
in Item 1. On the other hand, if a �∈ M , then we notice that M �|= body(r) for all
r ∈ def(a,Π) ∩ Π ′ and M |= body(r) for all r ∈ def(a,Π) \ Π ′. The cost of
clauses related to def(a,Π) which τ does not satisfy is the same as the cost of rules
r ∈ def(a,Π) such that M �|= r. Thus, the overall cost of violated clauses is exactly
the cost of rules in Π \Π ′. �

Remark 4. Note that if � = 1, all clauses are hard, and MaxSAT(P ,�) is a clausal
form of Clark’s completion of P with loop formulas of P . Thus, M ∈ SM(P) if and
only if τ satisfies MaxSAT(P , 1) [14].

Theorem 2. Given a weighted NLP P = 〈Π,W 〉, an upper bound �, and a Max-SAT
model τ with cost w < � for MaxSAT(P ,�), the interpretation
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{a ∈ atom(Π) | τ(xa) = true}

is a Max-ASP model for P with cost w.

Proof. Assume that τ is a Max-SAT model for MaxSAT(P ,�) with cost w < �, and
M = {a ∈ atom(Π) | τ(xa) = true}. Define Π ′ = {r ∈ Π | M |= r} and
P ′ = 〈Π ′,W ′〉 such that W ′(r) = W (r) for all r ∈ Π ′.

Let us consider MaxSAT(P ′, 1). Since w < �, the clauses in Item 2 of Definition
6 of MaxSAT(P ,�) force that τ(xB) = true if and only if τ(xl) = true for all l ∈
B. Furthermore, since body(Π ′) ⊆ body(Π), τ satisfies all the clauses in Item 2 of
MaxSAT(P ′, 1) as well.

Consider arbitrary a ∈ atom(Π). If a ∈ M , i.e., τ(xa) = true, then def(a,Π ′) =
def(a,Π). Then MaxSAT(P ′, 1) contains the same clauses related to def(a,Π ′) as
MaxSAT(P ,�), and furthermore, τ satisfies all these clauses. If a �∈ M , i.e., τ(xa) =
false, then for all r ∈ def(a,Π ′) it holds that M �|= body(r). Thus τ satisfies all clauses
related to def(a,Π ′).

Consider an arbitrary L ∈ loop(Π ′) ⊆ loop(Π). If ebΠ′ (L) = ebΠ(L), then τ
satisfies all clauses in Item 3 of MaxSAT(P ′, 1). Assume ebΠ′ (L) ⊂ ebΠ(L) and con-
sider arbitrary a ∈ L. If a �∈ M , i.e., τ(xa) = false, then τ satisfies the clause in Item
3 related to a. If a ∈ M , i.e., τ(xa) = true, then there is B ∈ body(def(a,Π ′)) such
that τ(xB) = true, i.e., M |= B, since τ satisfies the clause ({xB1 , . . . , xBm , x̄a};�)
for {B1, . . . , Bm} = body(def(a,Π ′)). If B ∈ ebΠ′(L) then τ satisfies all clauses in
Item 3 related to L. If B �∈ ebΠ′ (L), then B ∩ L �= ∅, and thus M |= B implies that
there is a′ ∈ L ∩M , i.e., τ(xa′ ) = true. Again, there must be B′ ∈ body(def(a′, Π ′))
such that τ(xB′ ) = true, i.e., M |= B′. If B′ ∈ ebΠ′(L), we are done as τ satisfies
all clauses in Item 3 related L. Assume now that τ(xB) = false for all B ∈ ebΠ′ (L).
Continuing the process we notice that a ∈ M for all a ∈ L. Since τ satisfies the clauses
in Item 3 of MaxSAT(P ,�) there is B ∈ ebΠ(L) \ ebΠ′ (L) such that τ(xB) = true.
Thus, there is r ∈ Π \ Π ′ such that B = body(r) and head(r) ∈ L. Since r �∈ Π ′, it
holds that head(r) �∈ M . This is in contradiction with L ⊆ M , and therefore τ satisfies
all clauses in Item 3 of MaxSAT(P ′, 1).

Now, τ is a Max-SAT model for MaxSAT(P ′, 1) with cost 0, i.e., M is a stable
model of Π ′. Finally, note that the sum of the weights of the rules in Π \Π ′ is w. �

5.2 Max-SAT as Max-ASP

There is a natural linear-size translation from CNF formulas to NLPs so that there is a
bijective correspondence between the satisfying truth assignments of any CNF formula
and stable models of its translation [15]. We give a generalization of the translation to
establish a similar correspondence between Max-SAT and Max-ASP. If l is a literal,
i.e., variable x or its negation x̄, then ∼al = ax if l = x̄ and ∼al = ∼ax if l = x. We
assume without loss of generality that Ci �= Cj for all clauses Ci, Cj ∈ C in a weighted
CNF formula W = 〈C,W 〉.

Definition 7. Given a weighted CNF formula W = 〈C,W 〉 with an upper bound �,
the translation MaxASP(W ,�) consists of the following weighted rules:
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1. For each clause Ci = {l1, . . . , ln} ∈ C:
(fi ← ∼fi,∼al1, . . . ,∼aln ;wi), where wi = W (Ci).

2. For each variable x in C: (âx ← ∼ax;�), and (ax ← ∼âx;�).

Theorem 3. Let W = 〈C,W 〉 be a weighted CNF formula, and � an upper bound.

– If τ is a Max-SAT model for W with cost w < �, then

{ax | τ(x) = true} ∪ {âx | τ(x) = false}

is a Max-ASP model for MaxASP(W ,�) with cost w.

– If M is a Max-ASP model for MaxASP(W ,�) with cost w < �, then

τ(x) =
{

true, if ax ∈ M, and
false, if âx ∈ M.

is a Max-SAT model for W with cost w.

6 Related Approaches in ASP

In this section we discuss the similarities and differences of Max-ASP and some exten-
sions of stable models most closely related to Max-ASP models.

Simons et al. [7] consider an extended ASP language including cardinality and choice
rules and, especially, optimize statements. An optimize statement is a minimize state-
ment or its dual, a maximize statement. A minimize statement is of the form MINIMIZE

(a1 = wa1 , . . . , an = wan ,∼b1 = wb1 , . . . ,∼bm = wbm) where ai’s and bj’s are
atoms. First, recall that several optimize statements can be encoded into a single one
with suitable weights [7]. Now, given a program Π and a minimize statement, the goal
is to find a stable model M for Π such that

∑
ai∈M wai +

∑
bi �∈M wbi is minimized.

For an NLP Π , we can view this optimization problem as a weighted NLP P where all
the rules from Π are hard, and in addition, there are soft constraints (f ← ∼f, ai;wai)
for each 1 ≤ i ≤ n and (f ← ∼f,∼bi;wbi) for each 1 ≤ i ≤ m.

Buccafurri et al. [6] consider strong and weak constraints in disjunctive Datalog
programs. A strong constraint is of the form ← a1, . . . , an,∼b1, . . . ,∼bm which can
be viewed as a rule f ← ∼f, a1, . . . , an,∼b1, . . . ,∼bm. Thus, a stable model must
necessarily satisfy all the strong, i.e., hard constraints. A weak constraint is of the form
⇐ a1, . . . , an,∼b1, . . . ,∼bm, and it is possible to set different priorities for weak con-
straints. The goal is to minimize the number of unsatisfied weak constraints according
to their priorities. In the case of NLPs, weak constraints can be represented in a natural
way in Max-ASP by using weights for expressing priorities.

On the other hand, while (weighted) Max-ASP can be expressed with NLPs and
either minimize statements or weak constraints (all three problems have the same com-
plexity), we do not see an immediate and natural way of encoding Max-ASP in the
other two formalisms.

Gebser et al. [9] introduce ι-stable models, which have similar properties as (un-
weighted) Max-ASP models. An interpretation M ⊆ atom(Π) is a ι-stable model for
NLP Π , if M = LM(Π ′

∅) for some subset maximal Π ′ ⊆ Π such that body+(Π ′) ⊆
LM(Π ′

∅) and body−(Π ′) ∩ LM(Π ′
∅) = ∅. It is worth noticing that a ι-stable model
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M of Π is a stable model of Π if and only if M |= Π , and the same applies to Max-
ASP models. It is straightforward to see that a ι-stable model M for Π is a Max-ASP
model for Π . However, ι-stable models are not necessarily optimal Max-ASP models.
For instance, Π1 = {a ← ∼d. b ← ∼e. c ← a, b. e ← ∼a} [9] has two ι-stable
models, namely {e}, and {a, b, c}. Now, SM(Π1) = {{a, b, c}} and {e} is not optimal.
On the other hand, a Max-ASP model of a NLP is not necessarily a ι-stable model. For
instance, consider Π2 = {a ← ∼c. a ← b, c. b ← a. b ← c. c ← a, b} from [9, Ex-
ample 6.3]. Now, MaxSM(Π2) = {∅, {a}, {a, b}} which each have cost one. However,
{a, b} is the unique ι-stable model of Π2.

7 Conclusions

We study the unweighted and weighted Max-ASP problems from several different an-
gles. Most importantly, we develop sound transformation rules for Max-ASP inference,
based on which we present a complete algorithm for computing optimal weighted Max-
ASP models. Translations between Max-ASP and Max-SAT are also developed, in ad-
dition to relating Max-ASP to related concepts in ASP.

Our branch-and-bound algorithm builds ground for implementations for Max-ASP
search. We find that the study of inference and search methods, including study of
additional transformation rules as well as solver development, for (weighted) Max-
ASP could prove a fruitful direction for further study. Additionally, we aim to study
translation-based approaches for solving Max-ASP as, e.g., Max-SAT, so that the al-
ready developed Max-SAT solvers can be exploited in analogy to SAT-based approaches
to ASP such as [14].
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Abstract. Problems arising from the revision of propositional knowledge bases
have been intensively studied for two decades. Many different approaches to re-
vision have thus been suggested, with the ones by Dalal or Satoh being two of
the most fundamental ones. As is well known, most computational tasks in this
area are intractable. Therefore, in practical applications, one requires sufficient
conditions under which revision problems become efficiently solvable. In this
paper, we identify such tractable fragments for the reasoning and the enumer-
ation problem exploiting the notion of treewidth. More specifically, we present
new algorithms based on dynamic programming for these problems in Dalal’s
setting and a tractability proof using Courcelle’s Theorem for Satoh’s approach.

1 Introduction

Since knowledge is continually evolving, there is a constant need to be able to revise a
knowledge base as new information is received. In this paper, we restrict ourselves to
propositional knowledge bases, i.e., they are given by propositional formulae. Problems
arising from the revision of knowledge bases (referred to as belief revision) have been
intensively studied for two decades. Formally, the problem of belief revision is usually
specified as follows: Given a knowledge base (i.e., a formula) α and a formula β, find a
revised knowledge base α ◦ β, such that β is true in all models of α ◦ β and the change
compared to the models of α is minimal. The following problems are of great interest:

– Reasoning. Given formulae α, β, and γ, decide if α ◦ β |= γ holds.
– Enumeration. Given formulae α and β, compute the models of α ◦ β.

Several realizations for ◦ have been proposed in the literature and desired properties
are formulated by the famous AGM-Postulates [1], or in terms of propositional logic
and finite knowledge bases, by Katsuno and Mendelzon [2]. Two of the most fun-
damental approaches are due to Dalal [3] and Satoh [4]. Complexity results for the
reasoning problem w.r.t. different ◦ operators are provided in [5] including Θ2P - and
Π2P -completeness for Dalal’s, respectively Satoh’s, operator.

An interesting approach to dealing with intractable problems is parameterized com-
plexity theory. In fact, hard problems can become tractable if some problem parame-
ter is bounded by a fixed constant. Such problems are called fixed-parameter tractable.
One important parameter is treewidth, which measures the “tree-likeness” of a graph or,
more generally, of a structure. By using a seminal result due to Courcelle [6], several
fixed-parameter tractability (FPT) results in the area of AI and KR have been recently
proven [7]. The goal of this work is to obtain tractability results also for belief revision.

� This work was supported by the Austrian Science Fund (FWF), project P20704-N18.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 250–263, 2009.
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Courcelle’s Theorem states that any property of finite structures, that is definable in
monadic second-order logic (MSO), becomes tractable over structures with bounded
treewidth. In this work, we show FPT for the reasoning problem with Satoh’s operator
◦S by giving an MSO definition of this problem, i.e., defining the property “α◦Sβ |= γ”
of a structure representing formulae α, β, and γ. In order to prove an analogous result
for Dalal’s operator, we have to make use of an extension [8] of Courcelle’s Theorem.

The proof of Courcelle’s Theorem and its extension in [8] is “constructive”: It works
by transforming the MSO evaluation problem into a tree language recognition prob-
lem, which is then solved via a finite tree automaton (FTA). However, the “algorithms”
resulting from such an MSO-to-FTA transformation are usually not practical due to ex-
cessively large constants. Consequently, Niedermeier states that MSO “is a very elegant
and powerful tool for quickly deciding about FPT, but it is far from any efficient imple-
mentation” [9]. We therefore present a novel algorithm for the reasoning problem with
Dalal’s operator ◦D. This algorithm is based on dynamic programming and builds upon
an algorithm of [10] for the #SAT problem (i.e., the problem of counting all models
of a given propositional formula). Moreover, we extend our reasoning algorithm to an
algorithm for the enumeration problem of “◦D”. As far as the complexity is concerned,
our algorithms work in linear time for the reasoning problem and with linear delay (i.e.,
the time needed for computing the first model and for any further model of α ◦D β).
Due to lack of space, we only present such dedicated algorithms for Dalal’s approach
(Satoh’s approach can be handled by a similar dynamic programming algorithm, which
will be included in the full version of this paper).

Results. Our main contributions are as follows.
– A novel algorithm based on dynamic programming for deciding α ◦D β |= γ in

linear time provided that the treewidth of the formulae α, β, and γ is bounded by a
constant (for a formal definition of treewidth, see Section 2).

– An extension of the algorithm for the reasoning problem, such that also the set of
all models of α ◦D β is computed. In paticular, our algorithm works with linear
delay if the formulae α and β have bounded treewidth.

– We show that the property “α◦Sβ |= γ” is definable in MSO and that “α◦Dβ |= γ”
can be defined in the extension of MSO from [8]. In case of ◦S we thus establish
FPT w.r.t. the treewidth of the reasoning problem. In case of ◦D we thus get an
alternative proof of FPT, which follows of course also from our dedicated algorithm
via dynamic programming.

2 Background

Throughout the paper, we assume a universeU of propositional atoms. A literal is either
an atom a or a negated atom a. For a set A of atoms, A = {a : a ∈ A}. Clauses are
sets of literals. An interpretation (or assignment) I is a set of atoms and we define, for
a clause c and O ⊆ U , ModO(c) = {I ⊆ O : (I ∪ (O \ I)) ∩ c �= ∅}. For a set C
of clauses, ModO(C) =

⋂
c∈C ModO(c). For O = U , we write Mod(C) instead of

ModO(C) for the set of classical models of C. By At(C) we denote the set of atoms
occurring in C. In what follows, we use the term formula to refer to a set of clauses. As
usual, α |= β iff each model of formula α is also a model of formula β.

Revision Operators. The approaches of revision we deal with here rely on so-called
model-based change operators. Such operators usually utilize a model distance MΔM ′
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which yields the set of atoms differently assigned in interpretations M and M ′, i.e. in
our notation,MΔM ′ = (M \M ′)∪(M ′\M). Assuming that α is consistent (we tacitly
make this assumption throughout the paper), the operators due to Satoh [4] (“◦S”), and
respectively, Dalal [3] (“◦D”), can be defined as follows:

Mod(α ◦S β) = {J ∈ Mod(β) : ∃I ∈ Mod(α) s.t. IΔJ ∈ Δmin(α, β)};
Mod(α ◦D β) = {J ∈ Mod(β) : ∃I ∈ Mod(α) s.t. |IΔJ | = |Δ|min(α, β)};

where we use Δmin(α, β) = min⊆({IΔJ : I ∈ Mod(α), J ∈ Mod(β)}) with
min⊆ selecting elements which are minimal w.r.t. set inclusion, and |Δ|min(α, β) =
min({|IΔJ | : I ∈ Mod(α), J ∈ Mod(β)}.

Subsequently, we refer to a revision scenario as either a pair of formulae α, β (in
case of the enumeration problem) or a triple α, β, γ (in case of the reasoning problem).
For revision scenarios, we assume unless stated otherwise, that the universe U is given
by the set of atoms occurring in the involved formulae. In particular, we thus have that
Mod(α ◦ β) with ◦ ∈ {◦S, ◦D} refers to a set of models over At(α ∪ β) (resp. over
At(α ∪ β ∪ γ) in the context of a reasoning problem).

As shown in [5], given formulaeα, β, γ, decidingα◦Sβ |= γ is Π2P-complete while
deciding α ◦D β |= γ is Θ2P-complete. For both results, hardness holds even in case γ
is a single atom.

Tree Decomposition and Treewidth. A tree decomposition of a graph G = (V,E) is
a pair (T, χ), where T is a tree and χ maps each node n of T (we use n ∈ T as a
shorthand below) to a bag χ(n) ⊆ V , such that (1) for each v ∈ V , there is an n ∈ T ,
s.t. v ∈ χ(n); (2) for each (v, w) ∈ E, there is an n ∈ T , s.t. v, w ∈ χ(n); (3) for each
n1, n2, n3 ∈ T , s.t. n2 lies on the path from n1 to n3, χ(n1) ∩ χ(n3) ⊆ χ(n2) holds.

A tree decomposition (T, χ) is normalized (or nice) [11], if (1) each n ∈ T has ≤ 2
children; (2) for each n ∈ T with two children n1, n2, χ(n) = χ(n1) = χ(n2); and (3)
for each n ∈ T with one child n′, χ(n) and χ(n′) differ in exactly one element.

The width of a tree decomposition is defined as the cardinality of its largest bag χ(n)
minus one. It is known that every tree decomposition can be normalized in linear time
without increasing the width [11]. The treewidth of a graph G, denoted as tw(G), is the
minimum width over all tree decompositions of G. For arbitrary but fixed w ≥ 1, it is
feasible in linear time to decide if a graph has treewidth ≤ w and, if so, to compute a
tree decomposition of width w, see [12].

Tree Decompositions for Revision Scenarios. To build tree decompositions for revision
scenarios (α, β, γ), we use incidence graphs1 over Γ = α ∪ β ∪ γ. Thus, for formulae
α, β, γ, such a graph G is given by vertices Γ ∪At(Γ ) and has as edges all pairs (a, c)
with an atom a appearing in a clause c of Γ . In case of normalized tree decompositions,
we distinguish between six types of nodes: atom introduction (AI), clause introduction
(CI), atom removal (AR), clause removal (CR), branch (B), and leaf (L) nodes. The first
four types will be often augmented with the element e (either an atom or clauses) which
is removed or added compared to the bag of the child node.

Example 1. Figure 1 shows the revision scenario A ◦ B, which is used as a running
example throughout the paper. Since the models of these formulae are Mod(A) =
{{x}} and Mod(B) = {{}, {x, y, z}}, it is easy to verify, that |Δ|min(A,B) = 1 and

1 See [10] for justifications why incidence graphs are favorable over other types of graphs.
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n1: {z}

n2: {z,c3}

n3: {z,c3,c5}

n4: {z,c5}

n5: {z,c5,c6}

n6: {c5,c6}

n7: {c4,c5,c6}

n8: {c4,c5,c6}

n9: {c4,c5}

n10: {x,c4,c5}

n11: {x,c4}

n12: {x,c1,c4}

n13: {x,c1}

n14: {x}

n15: {c4,c5,c6}

n16: {c4,c6}

n17: {y,c4,c6}

n18: {y,c6}

n19: {y,c2,c6}

n20: {y,c2}

n21: {y}

T :
A = c1 ∧ c2 ∧ c3

B = c4 ∧ c5 ∧ c6

c1 = x
c2 = ¬y
c3 = ¬z
c4 = (x ∨ ¬y)
c5 = (¬x ∨ z)
c6 = (y ∨ ¬z)

c1

c2

c3

x

y

z

c4

c5

c6

G:

Fig. 1. Revision scenario A ◦ B; incidence graph G; and normalized tree decomposition T of G

Δmin(A,B) = {{x}, {y, z}}. Hence, Mod(A ◦D B) = {{}} and Mod(A ◦S B) =
{{}, {x, y, z}}. Figure 1 also shows the incidence graph G of this scenario, together
with a normalized tree decomposition T of G having width 2. Actually, G cannot have
a tree decomposition of width < 2, since only trees have treewidth = 1 and G con-
tains cycles. Hence, the tree decomposition in Figure 1 is in fact optimal and we have
tw(G) = 2. Examples for node types are n21 as (L) node, n20 as (c2-CI) node, n16 as
(y-AR) node, n7 as (B) node, n6 as (c4-CR) node, and n5 as (z-AI) node. $

3 Applying Courcelle’s Theorem

An important tool for establishing FPT of a decision problem is Courcelle’s Theo-
rem [6], stating that any property of finite structures definable in monadic second-order
logic (MSO) becomes tractable (in fact, even linear), if the treewidth of the structures
is bounded by a constant. This result was extended to counting problems as well as
extremum problems [8]. We recall that MSO extends first-order logic by the use of set
variables (denoted by upper case letters), which range over sets of domain elements.

In order to show the FPT of the aforementioned belief revision problems using Cour-
celle’s Theorem, we first have to define how the problem instances can be modeled
as finite structures. Let formulae α, β, γ be given by a structure A with signature
σ = {atom(·), clauseα(·), clauseβ(·), clauseγ(·), pos(·, ·),neg(·, ·)}. A has domain
A = Γ ∪ At(Γ ), where Γ = α ∪ β ∪ γ. Moreover, for each relation symbol in σ, a re-
lation over A is contained in A with the following intended meaning: atom designates
the set of atoms, clauseα, clauseβ and clauseγ denote the set of clauses of α, β and
γ respectively. Furthermore pos(a, c) denotes that atom a occurs positively in clause c.
Negative literals are described by neg(a, c). The treewidth of a structure A is defined as
the treewidth of the graph that we get by taking the set of domain elements (in our case,
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A = Γ ∪ At(Γ )) as vertices and by considering two vertices (i.e., domain elements)
as adjacent if these domain elements jointly occur in some tuple of the structure, i.e.,
the edges of this graph are of the form (a, c) where either pos(a, c) or neg(a, c) is con-
tained in the structure. Hence, the treewidth of A is precisely the treewidth defined via
the incidence graph of Γ as described in the previous section.

Models of a formula ϕ can then be stated by the MSO property (see also [7]):

modϕ(I) ≡ ∀x[x ∈ I → atom(x)] ∧
∀c[clauseϕ(c) → ∃a((pos(a, c) ∧ a ∈ I) ∨ (neg(a, c) ∧ a �∈ I))].

Towards an MSO-encoding for α ◦S β we define three more helper formulae. The first
one yields all models J of β together with the possible differences to models of α. The
other two characterize valid triples IΔJ = K , respectively proper subsets X ⊂ Y .

modDα,β(J,K) ≡ modβ(J) ∧ ∃I[modα(I) ∧ diff (I , J ,K )],
diff (I , J ,K ) ≡ ∀a[a ∈ K ↔ ((a ∈ I ∧ a �∈ J) ∨ (a �∈ I ∧ a ∈ J))],

sub(X,Y ) ≡ ∀a(a ∈ X → a ∈ Y ) ∧ ∃b(b ∈ Y ∧ b �∈ X).

We put things together to characterize the models of α ◦S β:

revS
α,β(J ) ≡ ∃K[modDα,β(J,K) ∧ ∀J ′∀K ′(sub(K ′,K) → ¬modDα,β(J ′,K ′))].

It is now easy to see that the MSO formula ∀J(revS
α,β(J ) → Modγ(J )) characterizes

the reasoning problem α ◦S β |= γ for Satoh’s revision operator. We thus obtain via
Courcelle’s Theorem the following result.

Theorem 1. The reasoning problem α ◦S β |= γ is fixed-parameter linear w.r.t. the
treewidth, i.e., it is solvable in time O(f(w) · ‖α ∪ β ∪ γ‖), where f is a function
depending only on the treewidth w of the revision scenario (α, β, γ).

For Dalal’s operator, we require additional machinery. Following the notation of [8], a
model of Mod(α ◦D β) can be described by a linear extended monadic second-order
extremum problem minmodDα,β(J,K) |K|, where modDα,β(J,K) is the MSO-formula
given above in the MSO-characterization of Satoh’s revision operator. By using the
extension of Courcelle’s Theorem of [8], we thus get the following FPT result.

Theorem 2. Assuming unit cost for arithmetic operations, the reasoning problem α◦D

β |= γ is fixed-parameter linear w.r.t. the treewidth, i.e., it is solvable in time O(f(w) ·
‖α ∪ β ∪ γ‖), where f is a function depending only on the treewidth w of (α, β, γ).

Proof. The key observation is that α ◦D β |= γ holds if and only if |Δ|min(α, β ∧γ) <
|Δ|min(α, β∧¬γ). Moreover, both expressions |Δ|min(α, β∧γ) and |Δ|min(α, β∧¬γ)
can be characterized by linear extended MSO extremum problems. By Theorem 5.6 of
[8], those can be evaluated in linear time if we assume unit cost for arithmetic operations
and if the treewidth of α ∪ β ∪ γ is bounded by a fixed constant. ��

4 The Dynamic Programming Approach for ◦D

In this section, we show how the theoretical results from Section 3 can be put to prac-
tice by dynamic programming. Due to the space restrictions we discuss here only the
realization for the Dalal-revision operator ◦D in detail.
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We start with an algorithm to decide α◦D β |= γ. The very idea of such an algorithm
is to associate certain objects (so-called bag assignments) to each node n of a tree
decomposition for this problem, such that certain information about the subproblem
represented by the subtree rooted at n remains available. Consequently, results for the
entire problem can be read off the root of the tree decomposition.

We then make use of our algorithm also for the enumeration problem. Hereby, we
traverse the tree decomposition a second time, but starting from the root, where we
already have identified certain objects which will allow us to compute the models of the
revised knowledge base. However, to guarantee that the enumeration does not provide
duplicate models, some additional adjustments in the data structure will be necessary.

4.1 Reasoning Problem

For the problem α ◦D β |= γ, we restrict ourselves here to scenarios where γ is a single
atom occurring in At(α ∪ β) in order to keep the presentation simple. In what follows,
we fix T = (T, χ) to be a normalized tree decomposition of the incidence graph for
α∪β. We refer to the root node of T as nroot , and we require that the bags of nroot and
of all leaf nodes of T do not contain any clauses. Such a tree decomposition is easily
obtained from a normalized one by suitably adding (CI)- and (CR)-nodes. Additionally,
we require that γ appears in χ(nroot). Finally, we assume α∩β = ∅ holds, thus for any
clause c ∈ α∪β, its origin o(c) is either α or β. Also recall that we fix U = At(α∪β).

For a node n ∈ T , we denote by Tn the subtree of T rooted at n. For a set S of
elements (either atoms or clauses), n|S is a shorthand for χ(n) ∩ S; moreover, n↓S is
defined as

⋃
m∈Tn

m|S , and n⇓S abbreviates n↓S \ n|S .

Definition 1. A tuple ϑ = (n,Mα,Mβ , C), where n ∈ T , Mα,Mβ ⊆ n|U , and C ⊆
n|α∪β is called a bag assignment (for node n).

Bag assignments for a node n implicitly talk about interpretations over n↓U . The fol-
lowing definition makes this more precise.

Definition 2. For a bag assignment ϑ = (n,Mα,Mβ , C) and ϕ ∈ {α, β}, define

Eϕ(ϑ) =
{
K ⊆ n↓U : K \ (n⇓U ) = Mϕ;

(C ∩ ϕ) ∪ (n⇓ϕ) = {c ∈ n↓ϕ : K ∈ Modn↓U (c)}
}
.

In other words, we associate with a bag assignment (n,Mα,Mβ, C) all interpretations
K that extend Mα in such a way, that all clauses from α appearing in C and in bags
below node n are satisfied. The same is done for β. Bag assignments for which such
extended interpretations exist for both α and β are of particular interest for us.

Definition 3. A bag assignments ϑ is called bag model iff Eα(ϑ) �= ∅ �= Eβ(ϑ).

We next rephrase the main features of the definition of ◦D in terms of bag models and
then show that bag models for the root node capture ◦D as expected.

Definition 4. For any bag model ϑ = (n,Mα,Mβ, C), define

δ(ϑ) = min
{
|IαΔIβ | : Iα ∈ Eα(ϑ), Iβ ∈ Eβ(ϑ)

}
; and

E(ϑ) =
{
Iβ ∈ Eβ(ϑ) : ∃Iα ∈ Eα(ϑ), |IαΔIβ | = δ(ϑ)

}
.
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Theorem 3. Let Θ be the set of all bag models ϑ for nroot , such that no bag model ϑ′

for nroot with δ(ϑ′) < δ(ϑ) exists. Then, Mod(α ◦D β) =
⋃

ϑ∈Θ E(ϑ).

Proof. (⊆): Let J ∈ Mod(α ◦D β). Hence, J ∈ Mod(β) and there exists an I ∈
Mod(α), such that |IΔJ | = |Δ|min(α, β) = k. Consider ϑ = (nroot ,Mα,Mβ, ∅)
where Mα = nroot |I and Mβ = nroot |J . Since we assumed that no clauses are stored
in χ(nroot) and nroot ↓U= U , J ∈ Mod(β) yields that J ∈ Modn↓U (c) holds for
each c ∈ nroot ↓β= nroot ⇓β . The same argumentation applies to I and α. Hence,
I ∈ Eα(ϑ), J ∈ Eβ(ϑ), and thus ϑ is a bag-model. To show ϑ ∈ Θ, it remains to show
that no other ϑ′ ∈ Θ exists with δ(ϑ′) < δ(ϑ) ≤ k. Towards a contradiction, suppose
such a ϑ′ = (nroot ,M

′
α,M

′
β , C

′) exists. By definition, then there exists an I ′α ∈ Eα(ϑ′)
and an I ′β ∈ Eβ(ϑ′) with |I ′αΔI ′β | = δ(ϑ′). Let ϕ ∈ {α, β}. By definition of Eϕ(·),
we obtain I ′ϕ ∈ Modnroot↓U ((C′ ∩ ϕ) ∪ (nroot ⇓ϕ)). Again C′ = ∅ by our assumption
for nroot , and thus nroot ⇓ϕ= ϕ. We also know U = nroot↓U . I ′ϕ ∈ Mod(ϕ) follows.
Hence, we have found models I ′α, I

′
β for α, and resp. β, such that |I ′αΔI ′β | < k. A

contradiction to our assumption that |Δ|min(α, β) = k. The other direction holds by
essentially the same arguments. ��

We now put our concept of bag models to work also below the root node. Our goal is to
characterize bag models ϑ without an explicit computation of Eϕ(ϑ). To this end, first
note that bag models for leaf nodes n are easily built from all pairs of interpretations
over the atoms in the bag χ(n); also recall that we assumed that no clause is in χ(n).
Thus, formally, the set of all bag models for a leaf node n is given by {(n,M,N, ∅) :
M,N ⊆ n|U}. For each such bag model ϑ = (n,M,N, ∅), δ(ϑ) = |MΔN | is clear.
Next, we define a relation ≺T between bag assignments, such that all bag models of a
node are accordingly linked to bag models of the child(ren) node(s). We thus can propa-
gate, starting from the leaves, bag models upwards the tree decomposition. Afterwards,
we will show how δ(ϑ) can be treated accordingly.

Definition 5. For bag assignments ϑ = (n,Mα,Mβ, C) and ϑ′ = (n′,M ′
α,M

′
β, C

′),
we have ϑ′ ≺T ϑ iff n has a single child n′, and the following properties are satisfied,
depending on the node type of n:

1. (c-CR): Mα = M ′
α, Mβ = M ′

β , C = C′ \ {c}, c ∈ C′;
2. (c-CI): Mα = M ′

α, Mβ = M ′
β , and C = C′ ∪ {c} if Mo(c) ∈ Modn|U (c); and

C = C′ otherwise;
3. (a-AR): Mα = M ′

α \ {a}, Mβ = M ′
β \ {a}, C = C′;

4. (a-AI): one of the following cases applies
– Mα = M ′

α ∪ {a}, N = M ′
β ∪ {a}, C = C′ ∪ {c ∈ n|α∪β : a ∈ c};

– Mα = M ′
α∪{a},Mβ = M ′

β , C = C′∪{c ∈ n|α : a ∈ c}∪{d ∈ n|β : a ∈ d};
– Mα = M ′

α, Mβ = M ′
β∪{a}, C = C′∪{c ∈ n|α : a ∈ c}∪{d ∈ n|β : a ∈ d};

– Mα = M ′
α, Mβ = M ′

β , C = C′ ∪ {c ∈ n|α∪β : a ∈ c}.

For branch nodes, we extend (with slight abuse of notation) ≺T to a ternary relation.

Definition 6. For bag assignments ϑ = (n,Mα,Mβ, C), ϑ′ = (n′,M ′
α,M

′
β, C

′) and
ϑ′′ = (n′′,M ′′

α ,M
′′
β , C

′′), we have (ϑ′, ϑ′′) ≺T ϑ iff n has two children n′, n′′, Mα =
M ′

α = M ′′
α , Mβ = M ′

β = M ′′
β , and C = C′ ∪ C′′.
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Lemma 1. Let ϑ, ϑ′, ϑ′′ be bag assignments, such that ϑ′ ≺T ϑ (resp. (ϑ′, ϑ′′) ≺T ϑ).
Then, ϑ is a bag model iff ϑ′ is a bag model (resp. both ϑ′ and ϑ′′ are bag models).

Proof. For the proof, one has to distinguish between the node types. Here, we only
show the case where ϑ is a bag assignment for a (c-CI) node n with child m. In this
case, ϑ′ ≺T ϑ holds exactly for assignments of the form ϑ = (n,Mα,Mβ, C) and
ϑ′ = (m,Mα,Mβ, C

′), where C = C′ ∪ {c} if c appears in ϕ ∈ {α, β} and Mϕ is a
partial model of c (i.e., Mϕ ∈ Modn|U (c)); and C = C′ otherwise. Consider the case
c ∈ α (the other case is symmetric). We show Eα(ϑ) = Eα(ϑ′) and Eβ(ϑ) = Eβ(ϑ′).
The assertion then follows. There is only room to sketch a proof for Eα(ϑ) = Eα(ϑ′).

We have V = n↓U= m↓U , W = n⇓U= m⇓U . It is sufficient to show (C ∩ α) ∪
n⇓α= {d ∈ n↓α : K ∈ ModV (d)} iff (C′∩α)∪m⇓α= {d ∈ m↓α : K ∈ ModV (d)}
for each K ⊆ V s.t. K \ W = Mα. Fix such a K and note that n ⇓α= m ⇓α. One
can show (C ∩ α) = {d ∈ n|α : K ∈ ModV (d)} iff (C′ ∩ α) = {d ∈ m|α : K ∈
ModV (d)} by observing that K ∈ ModV (c) iff Mα ∈ Modn|U (c). ��

Next, we define recursively a number assigned to bag models n and show that this
number in fact matches the minimal distance δ(ϑ) defined above.

Definition 7. Let ϑ = (n,Mα,Mβ, C) be a bag model. We define

ρ(ϑ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|MαΔMβ | if n is a leaf node
ρ(ϑ′) if n is type (CI) or (CR); and ϑ′ ≺T ϑ
min

{
ρ(ϑ′) : ϑ′ ≺T ϑ

}
if n is type (AR)

min
{
ρ(ϑ′) : ϑ′ ≺T ϑ

}
if n is type (a-AI) and a ∈ Mα iff a ∈ Mβ

min
{
ρ(ϑ′) : ϑ′ ≺T ϑ

}
+ 1 if n is type (a-AI) and a /∈ Mα iff a ∈ Mβ

min
{
ϑ′×ϑ′′ : (ϑ′, ϑ′′) ≺T ϑ

}
if n is type (B)

where ϑ′ × ϑ′′ stands for ρ(ϑ′) + ρ(ϑ′′) − |MαΔMβ|.

Lemma 2. For any bag model ϑ, δ(ϑ) = ρ(ϑ).

Example 2. In Fig. 2, we list all bag models ϑ of the tree decomposition from Exam-
ple 1 together with values ρ(ϑ). For instance, leaf node n21 has bag models for all pairs
of interpretations over {y}. If we go upwards the tree, we observe that bag models for
n19 additionally contain clauses from {c2, c6} satisfied by the respective assignments.
In the next node n18 only those bag models survive where c2 was contained, since n18
is a (c2-CR) node. Due to space restrictions, we cannot discuss all steps in detail. Note
that for the root, the bag model ϑ = (n1, ∅, ∅, ∅) is the one with minimal ρ(ϑ). It can be
checked that E(ϑ) = {{}} as expected (recall that Mod(α ◦D β) = {{}}). $

Theorem 4. Assuming unit cost for arithmetic operations, α ◦D β |= γ can be decided
in time O(f(w) · ‖α ∪ β‖), where f is a function depending only on the treewidth w of
(α, β).

Proof. Lemma 1 suggests the following algorithm: first, we establish the bag models
ϑ for leaf nodes together with their value for δ(ϑ) = ρ(ϑ); then we compute all re-
maining bag models via ≺T in a bottom-up manner, and keep track of δ(·) using the
definition of ρ, which is indeed feasible thanks to Lemma 2. As soon as we have the



258 R. Pichler, S. Rümmele, and S. Woltran

(n1, ∅, z, ∅): 2 (n5, z, z, c5c6): 1 (n8, ∅, ∅, c4): 0 (n15, ∅, ∅, c6): 1
(n1, ∅, ∅, ∅): 1 (n5, z, z, c5): 0 (n8, ∅, ∅, c5): 1 (n15, ∅, ∅, c4): 0
(n2, z, z, ∅): 1 (n5, z, ∅, c6): 1 (n9, ∅, ∅, c4): 0 (n16, ∅, ∅, c6): 1
(n2, z, ∅, ∅): 2 (n5, z, ∅, c5c6): 2 (n9, ∅, ∅, c5): 1 (n16, ∅, ∅, c4): 0

(n2, ∅, z, c3): 2 (n5, ∅, z, c5c6): 2 (n10, x, x, c4): 0 (n17, ∅, y, c6): 1
(n2, ∅, ∅, c3): 1 (n5, ∅, z, c5): 1 (n10, x, ∅, c5): 1 (n17, ∅, ∅, c4): 0
(n3, z, z, c5): 1 (n5, ∅, ∅, c6): 0 (n11, x, x, c4): 0 (n18, ∅, y, c6): 1
(n3, z, ∅, ∅): 1 (n5, ∅, ∅, c5c6): 1 (n11, x, ∅, ∅): 1 (n18, ∅, ∅, ∅): 0

(n3, z, ∅, c5): 2 (n6, ∅, ∅, c6): 1 (n12, x, x, c1c4): 0 (n19, y, y, c6): 0
(n3, ∅, z, c5c3): 2 (n6, ∅, ∅, ∅): 0 (n12, x, ∅, c1): 1 (n19, y, ∅, ∅): 1

(n3, ∅, ∅, c3): 0 (n6, ∅, ∅, c5): 1 (n12, ∅, x, c4): 1 (n19, ∅, y, c2c6): 1
(n3, ∅, ∅, c5c3): 1 (n7, ∅, ∅, c4c6): 1 (n12, ∅, ∅, ∅): 0 (n19, ∅, ∅, c2): 0

(n4, z, z, c5): 1 (n7, ∅, ∅, c5c6): 2 (n13, x, x, c1): 0 (n20, y, y, ∅): 0
(n4, z, ∅, ∅): 1 (n7, ∅, ∅, c4): 0 (n13, x, ∅, c1): 1 (n20, y, ∅, ∅): 1

(n4, z, ∅, c5): 2 (n7, ∅, ∅, c4c5): 1 (n13, ∅, x, ∅): 1 (n20, ∅, y, c2): 1
(n4, ∅, z, c5): 2 (n13, ∅, ∅, ∅): 0 (n20, ∅, ∅, c2): 0
(n4, ∅, ∅, ∅): 0 (n14, x, x, ∅) 0 (n21, y, y, ∅): 0

(n4, ∅, ∅, c5): 1 (n14, x, ∅, ∅) 1 (n21, y, ∅, ∅): 1
(n14, ∅, x, ∅) 1 (n21, ∅, y, ∅): 1
(n14, ∅, ∅, ∅) 0 (n21, ∅, ∅, ∅): 0

Fig. 2. All bag models for the tree decomposition from Example 1

bag models for the root node together with their δ-values we know that bag models in
Θ as defined in Theorem 3 characterize the models of α ◦D β. Due to our assumption
that γ is just a single atom occurring in χ(nroot), it remains to check whether for each
(nroot ,Mα,Mβ, C) ∈ Θ, γ ∈ Mβ holds.

The effort needed for processing a leaf node as well as the transition from child to
parent nodes only depends on the treewidth but not on ‖α ∪ β‖. The size of T is linear
bounded by the size of α∪β, thus the desired time bound for our algorithm follows. ��

4.2 Enumeration Problem

Our reasoning algorithm from Section 4.1 gathers the following information along the
bottom-up traversal of T : (1) all bag models ϑ = (n,Mα,Mβ, C) for all nodes n in T ,
(2) the minimal distance δ(ϑ) between the models Iα ∈ Eα(ϑ) and Iβ ∈ Eβ(ϑ), and (3)
the relation ≺T indicating which bag model(s) ϑ′ at the child node n′ (resp. at the two
child nodes n′ and n′′) give rise to which bag model ϑ at a node n in T . In principle,
this is all the information needed to enumerate the models in α ◦D β by starting with
the bag models ϑ in Θ from Theorem 3 (i.e., the bag models ϑ at the root node nroot ,
s.t. no other bag model ϑ′ at nroot with smaller value of δ(·) exists) and determining
E(ϑ) for every ϑ ∈ Θ by traversing T in top-down direction following the ≺T relation
in reversed direction. However, such an enumeration algorithm faces two problems:

(1) In Definition 7 (with ρ(ϑ) = δ(ϑ), by Lemma 2) we computed the minimum
value attainable by ρ(ϑ) over all possible bag models ϑ′ (resp. pairs (ϑ′, ϑ′′)) with
ϑ′ ≺T ϑ (resp. (ϑ′, ϑ′′) ≺T ϑ). Hence, when we now follow the ≺T relation in the
reversed direction, we have to make sure that, from any ϑ, we only continue with bag
models ϑ′ (resp. with pairs (ϑ′, ϑ′′)) that actually lead to the minimal value of ρ(ϑ).
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(2) For distinct bag models ϑ, ϑ′ for any node n, E(ϑ) ∩ E(ϑ′) = ∅ is not guar-
anteed. More precisely, suppose that two bag models ϑ = (n,Mα,Mβ, C) and ϑ′ =
(n,M ′

α,M
′
β, C

′) fulfill the condition Mβ = M ′
β . Then it may well happen that some

model Iβ is contained both in Eβ(ϑ) and Eβ(ϑ′), s.t. Iβ has minimal distance δ(ϑ) from
some Iα ∈ Eα(ϑ) and also minimal distance δ(ϑ′) from some I ′α ∈ Eα(ϑ′). However,
for our enumeration algorithm we want to avoid the computation of duplicates since
this would, in general, destroy the linear time upper bound on the delay.

The first problem is dealt with below by restricting the relation ≺T to a subset 'T
of ≺T . For the second problem, we shall extend the relation 'T on bag models to a
relation on sets of bag models. We start with the definition 'T on bag models. Let us
introduce some additional notation first: We identify the components of a bag assign-
ment ϑ = (n,Mα,Mβ, C) as ϑnode = n; ϑα = Mα; ϑβ = Mβ; and ϑclause = C. If
Θ is a set of bag assignments, s.t. ϑβ is identical for all ϑ ∈ Θ, then we write Θβ to
denote ϑβ for any ϑ ∈ Θ. Finally, we write E(Θ) as a short-hand for

⋃
ϑ∈Θ E(ϑ).

Definition 8. Let ϑ, ϑ′, and optionally, ϑ′′ be bag models, s.t. ϑ′
node (and, optionally,

also ϑ′′
node ) is a child of n = ϑnode . We define ϑ′ 'T ϑ (resp. (ϑ′, ϑ′′) 'T ϑ) iff

ϑ′ ≺T ϑ (resp. (ϑ′, ϑ′′) ≺T ϑ) and one of the following conditions is fulfilled:

(i) n is of type (CI) or (CR);
(ii) n is of type (AR) and δ(ϑ) = δ(ϑ′);
(iii) n is of type (a-AI), a ∈ ϑα iff a ∈ ϑβ , and δ(ϑ) = δ(ϑ′);
(iv) n is of type (a-AI), a �∈ ϑα iff a ∈ ϑβ , and δ(ϑ) = δ(ϑ′) + 1; or
(v) n is of type (B) and δ(ϑ) = δ(ϑ′) + δ(ϑ′′) − |ϑαΔϑβ |.

We now extend 'T from a relation on bag models to a relation on sets Θ of bag models
ϑ (with identical component ϑβ). By slight abuse, we reuse the same symbol 'T .

Definition 9. Let Θ �= ∅ a set of bag models for n ∈ T , s.t. for all ϑ, ϑ′ ∈ Θ, ϑβ = ϑ′
β .

(i) Suppose that n is either of type (CI), (CR) or of type (a-AI) with a �∈ Θβ . Then we
define Θ′ 'T Θ for Θ′ = {ϑ′ : ϑ′

β = Θβ and ϑ′ 'T ϑ for some ϑ ∈ Θ}.
(ii) Suppose that n is of type (a-AI) with a ∈ Θβ . Then we define Θ′ 'T Θ for

Θ′ = {ϑ′ : ϑ′
β = Θβ \ {a} and ϑ′ 'T ϑ for some ϑ ∈ Θ}.

(iii) Suppose that n is of type (a-AR). Then we define Θ′
1 'T Θ and Θ′

2 'T Θ for
Θ′

1 = {ϑ′ : ϑ′
β = Θβ and ϑ′ 'T ϑ for some ϑ ∈ Θ} and Θ′

2 = {ϑ′ : ϑ′
β =

Θβ ∪ {a} and ϑ′ 'T ϑ for some ϑ ∈ Θ}.
(iv) Suppose that n is of type (B). Then we define Θ′ 'T Θ for Θ′ = {ϑ′ : ∃ϑ′′ with

(ϑ′, ϑ′′) 'T ϑ for some ϑ ∈ Θ}.
Moreover, for every Θ̂ ⊆ Θ′ with Θ′ 'T Θ, we define (Θ̂, Θ′′) 'T Θ, where
Θ′′ = {ϑ′′ : ∃ϑ ∈ Θ and ∃ϑ′ ∈ Θ̂ with (ϑ′, ϑ′′) 'T ϑ}.

The following lemma states that every model in E(Θ) at node n can be computed via
E(Θ′) (and optionally E(Θ′′)) at the child node(s) of n and, conversely, that every
element in E(Θ′) (and optionally E(Θ′′)) can indeed be extended to a model of E(Θ).

Lemma 3. Let n ∈ T and Θ be a non-empty set of bag models for n, s.t. for all
ϑ, ϑ′ ∈ Θ, ϑβ = ϑ′

β . Then the following properties hold:
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(i) Suppose n is of type (CI), (CR), (AR), or of type (a-AI), s.t. a �∈ Θβ . Then I ∈
E(Θ) iff I ∈ E(Θ′), s.t. Θ′ 'T Θ.

(ii) Suppose n is of type (a-AI), s.t. a �∈ Θβ . Then I ∈ E(Θ) iff (I \ {a}) ∈ E(Θ′),
s.t. Θ′ 'T Θ.

(iii) Suppose n is of type (B). Then I ∈ E(Θ) iff I = I ′ ∪ I ′′ for some I ′ ∈ E(Θ̂) and
I ′′ ∈ E(Θ′′), where Θ̂ ⊆ Θ′, Θ′ 'T Θ, and (Θ̂, Θ′′) 'T Θ.

For our enumeration algorithm, we start at the root node of T and first partition the
relevant bag models ϑ according to ϑβ . Formally, let Θ be the set of all bag models
ϑ for nroot , such that no bag model ϑ′ for nroot with δ(ϑ′) < δ(ϑ) exists. Then we
partition Θ into Θ1, . . . , Θn, such that for each ϑ, ϑ′ ∈ Θi, ϑβ = ϑ′

β , and for each
ϑ ∈ Θi, ϑ′ ∈ Θj with i �= j, ϑβ �= ϑ′

β . Clearly, the sets E(Θi) are pairwise disjoint.
Hence, no duplicates will be computed when we compute E(Θ1), . . . , E(Θn) separately.

Given a set Θ of bag models, we compute E(Θ) by implementing an appropriate
iterator for every node n in T . The iterator provides functions open, get current, and
get next. In addition, other functions like close (to deallocate state information) are
needed which we do not discuss here.

The open function. The open function serves to initialize the state information at each
node of a given subtree of T . For instance, it is convenient (in particular, for branch
nodes) to store in a Boolean flag first whether get next() has not yet been called since
the initialization with the call of function open. Moreover, for an (AR) node, there can
exist two sets Θ1 and Θ2 with Θi 'T Θ. We have to store in the state of the (AR)
node, which one of these two sets is currently being processed at the child node.

The open function takes as input a set Θ of bag models ϑ with identical ϑβ and
recursively calls open(Θ′) with Θ′ 'T Θ. If the current node is of type (CI), (CR), or
(AI), then Θ′ is unique. Likewise, Θ′ is unique for the first child of a branch node. In
case of an (AR) node, Θ′ corresponds to Θ1 from Definition 9, case (iii), provided that it
is non-empty. Otherwise, Θ′ = Θ2 is chosen. The children of a branch node are treated
asymmetrically by the 'T -relation and, hence, also by the open function. In the first
place, we only compute Θ′ with Θ′ 'T Θ for the first child of every branch node. As
we shall explain below, the function get next() computes the set of assignments E(Θ),
returning one such assignment per call. For branch nodes, we thus compute for the first
child the set E(Θ′) with Θ′ 'T Θ. For each assignment I ′ thus returned, get next()
also yields Γ ′ = {ϑ̂ : I ′ ∈ E(ϑ̂)} ⊆ Θ′. Then the subtree rooted at the second child
node is processed with Θ′′, s.t. (Γ ′, Θ′′) 'T Θ. Hence, for every assignment I ′, we
have to compute Θ′′ (which is uniquely determined by Γ ′ and Θ) and call open(Θ′′),
before we can retrieve the assignments I ′′ in E(Θ′′) with get next().

The get next and get current function. Suppose that a node n in T has been initialized
by a call of open(Θ) with ϑnode = n for every ϑ ∈ Θ. Then we can call get next() for
this node in order to retrieve the first resp. the next assignment I in E(Θ). In addition
to the assignment I , the get next function also provides a set Γ ⊆ Θ as output, s.t.
Γ = {ϑ̂ : I ∈ E(ϑ̂)}. As we have already seen, this set Γ of bag assignments is
needed when we encounter a branch node on our way back to the root, in order to
determine the set Θ′′ for the second child. The get current function is called (for the
first child of a branch node) to retrieve once again the result from the previous call to
get next. If no next assignment exists, then get next returns the value “Done”.
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Function get next for a branch node n with child nodes n′, n′′

Let Θ be the input parameter of the previous call of function open
if first then

first = False;
(I ′, Γ ′) = n′.get next();
Let Θ′′ s.t. (Γ ′, Θ′′) �T Θ;
n′′.open(Θ′′)
(I ′′, Γ ′′) = n′′.get next()

else
(I ′, Γ ′) = n′.get current()
(I ′′, Γ ′′) = n′′.get next()
if (I ′′, Γ ′′) = undefined (i.e., the call of n′′.get next() returned “Done”) then

(I ′, Γ ′) = n′.get next();
if (I ′, Γ ′) = undefined (i.e., the call of n′.get next() returned “Done”) then

return “Done”
endif
Let Θ′′ s.t. (Γ ′, Θ′′) �T Θ;
n′′.open(Θ′′)
(I ′′, Γ ′′) = n′′.get next()

endif
endif
return (I ′ ∪ I ′′, {ϑ ∈ Θ : ∃γ′ ∈ Γ ′ and ∃γ′′ ∈ Γ ′′, s.t. (γ′, γ′′) �T ϑ})

Fig. 3. Function get next() for a branch node

In order to compute the first resp. next assignment I , we traverse T downwards by
recursive calls of get next() until the leaves are reached. In the leaves, we start with
the assignment I = Θβ and also set Γ = Θ. This assignment I and the set Γ are now
updated on the way back to the root. The only modifications to I are in fact done when
we are at an (a-AI) node or at a (B) node. For (AI) nodes, we add a in case a is added
to the respective Θβ . For (B) nodes, we set I = I ′ ∪ I ′′, where I ′ (resp. I ′′) is the
assignment returned by the call of get next() for the first (resp. second) child node. In
Figure 3 we give the pseudo-code of the get next function in case of a branch node. For
the remaining node types, the implementation of get next is even simpler.

Theorem 5. Given formulae α and β, the models in Mod(α ◦D β) can be computed
with delay O(f(w) · |α ∪ β|), where f is a function depending only on the treewidth w
of (α, β).

Proof. By our definition of 'T on sets and by Lemma 3, we can be sure that (1) every
assignment in Mod(α ◦D β) is eventually computed by our iterator-based implemen-
tation via recursive calls of get next and (2) no assignment is computed twice. Indeed,
our set-based definition of the 'T -relation groups together bag models ϑ with identical
ϑβ and, for any bag models ϑ′ with ϑβ �= ϑ′

β , we trivially have E(ϑ) ∩ E(ϑ′) = ∅.
As far as the complexity is concerned, note that the recursive calls of the open func-

tion come down to a top-down traversal of T . (In fact, by the asymmetric treatment
of the children of a branch node, open is only called for the nodes along the left-most
path in T .) Similarly, each call of get next and get current leads to a single traversal of
the subtree below the current node n. The work actually carried out inside each call is
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independent of the size of T . Hence, in total, we end up with a time bound that is linear
in the size of T and, hence, in the size of α and β. ��

5 Conclusion

The quest for (fixed-parameter) tractability has been pursued in many areas of KR and
AI. However, in the context of belief revision, very few activities have been undertaken
in this direction – apart from the work of Darwiche [13], which relies on compilation
techniques. To the best of our knowledge, neither Courcelle’s Theorem [6] (or one of
its extensions as [8]) nor dynamic programming approaches (along the lines of tree
decompositions) have been applied to belief revision problems, so far. For other KR
formalisms though such approaches already proved to be successful (see, e.g., [7,14]).

In this work, we have identified new tractable classes of revision problems with re-
spect to two of the most fundamental approaches [3,4]. Moreover, we provided novel
dynamic programming algorithms for Dalal’s revision operator [3] (i.e. for the problem
of deciding α ◦D β |= γ, and enumerating the models of α ◦D β) which run in linear
time (resp. with linear delay) if the treewidth of the revision scenario is bounded.

Future work includes to apply the methods used in this paper also to update operators.
The approach due to Winslett [15], for instance, can be shown tractable by “plain”
MSO, while the approach due to Forbus [16] is less accessible to such techniques since
the concept of cardinality is “hidden” in the characterization (see, e.g. [17] for further
discussions on this problem). Another direction of research is to apply our methods to
approaches for iterated belief revision. This however calls for the additional requirement
that the outcome of a single revision step has to be of bounded treewidth as well. It is
an interesting research question of its own how to ensure such a property.
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Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 601–612. Springer,
Heidelberg (2008)



Casting Away Disjunction and Negation under a
Generalisation of Strong Equivalence with Projection�

Jörg Pührer and Hans Tompits

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Vienna, Austria
{puehrer,tompits}@kr.tuwien.ac.at

Abstract. In answer-set programming (ASP), many notions of program equiva-
lence have been introduced and formally analysed. A particular line of research
in this direction aims at studying conditions under which certain syntactic con-
structs can be eliminated from programs preserving some given equivalence rela-
tion. In this paper, we continue this endeavour introducing novel conditions under
which disjunction and negation can be eliminated from answer-set programs un-
der relativised strong equivalence with projection. This notion is a generalisation
of the usual strong-equivalence relation, as introduced by Lifschitz, Pearce, and
Valverde, by allowing parametrisable context and output alphabets, which is an
important feature in view of practical programming techniques like the use of lo-
cal variables and modules. We provide model-theoretic conditions that hold for a
disjunctive logic program P precisely when there is a program Q, equivalent to
P under our considered notion, such that Q is either positive, normal, or Horn,
respectively. Moreover, we outline how such a Q, called a casting of P , can be
obtained, and consider complexity issues.

1 Introduction

An important area of research in answer-set programming (ASP) is devoted to the study
of different notions of program equivalence. This particular field emerged with the sem-
inal paper on strong equivalence by Lifschitz, Pearce, and Valverde [1]. In contrast to
ordinary equivalence, which holds whenever two programs have the same answer sets,
strong equivalence holds whenever two programs are ordinarily equivalent in every con-
text. More formally, two programsP and Q are strongly equivalent iff, for every context
program R, P ∪R and Q ∪R are ordinarily equivalent.

Strong equivalence circumvents a particular weakness of ordinary equivalence, viz.
that the latter fails to yield a replacement property similar to the one of classical logic.
That is to say, under ordinary equivalence, given a program P , replacing some subpro-
gram Q ⊆ P by an equivalent program R may yield an overall program (P \ Q) ∪ R
which is not equivalent to P . Clearly, this is undesirable as far as modular programming
and program optimisation is concerned. Strong equivalence does allow subprogram re-
placements, basically by definition, yet it is too restrictive for some purposes. In par-
ticular, strong equivalence does not take standard programming techniques like the use
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of local variables into account, which are ignored in the final output. Thus, it does not
admit the projection of answer sets to a set of designated output letters.

A generalisation of strong equivalence taking this aspect into account is relativised
strong equivalence with projection, defined as a special instance of a general frame-
work for defining parameterised program-correspondence notions in ASP [2]. Rela-
tivised strong equivalence with projection extends the usual strong-equivalence relation
via two parameters: one parameter specifies the alphabet of the context set and the other
the alphabet of the output atoms. Thus, it is possible to specify an input alphabet and an
output alphabet, allowing to view programs as black boxes computing some task with
respect to a defined input/output behaviour. We note that if no projection is performed
(i.e., if the output alphabet coincides with the overall program alphabet), then we arrive
at the notion of relativised strong equivalence, first studied by Woltran [3].

In this paper, we are interested in the question whether a given disjunctive logic pro-
gram P can be replaced by a program Q that is from a syntactically simpler class than
P preserving relativised strong equivalence with projection (we refer to Q as a casting
of P ). In particular, we are interested in the questions whether a given program can be
casted (i) to a program without disjunctions, (ii) to a program without negations, and
(iii) to a program without both disjunctions and negations. In other words, we consider
the question whether a program can be replaced (preserving relativised strong equiva-
lence with projection) by a normal, positive, or Horn program, respectively. Our results
follow a line of research dealing with analogous questions studied previously for or-
dinary, strong, and uniform equivalence [4,5] as well as for hyperequivalence [6], but
they are the first in this direction to take the issue of projection into account.

The main results of our paper are the following. First of all, we introduce model-
theoretic conditions which are necessary and sufficient for having positive answers of
our casting questions. For each casting question, we actually provide two different con-
ditions: one in terms of minimal certificates [2], and one in terms of relativised SE-
models [3]. These concepts are the model-theoretic structures underlying relativised
strong equivalence with and without projection, respectively, i.e., two programs are
equivalent in one of these senses iff they have the same associated structures. Interest-
ingly, our characterisations show that (i) in case the elimination of disjunction is possi-
ble, there is always a casting of the given program P just over the atoms atm(P ) of P ,
(ii) in case the elimination of both disjunction and negation is possible, a casting just
over atm(P ) intersected with the input and output alphabet exists, while (iii) in case the
elimination of negation is possible, a casting may introduce new atoms. Secondly, we
provide upper complexity bounds for checking our casting questions. It turns out that
the complexity of these tasks is not higher than the complexity of checking relativised
strong equivalence with projection, which lies on the fourth level of the polynomial
hierarchy. Thirdly, we outline how a casting can be obtained, in case a casting exists.

2 Preliminaries

Syntax and Semantics of Answer-Set Programs. We deal with finite propositional dis-
junctive logic programs containing rules (over a set At of atoms) of form

a1 ∨ · · · ∨ al ← b1, . . . , bm,not bm+1, . . . ,not bn,
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where l ≥ 0, n ≥ m ≥ 0, all ai, bj are from At , and not denotes default negation.
A rule r as above is normal, if l ≤ 1; positive, if m = n; a constraint, if l = 0 and
m + n > 0; and Horn if it is positive and normal. We define the head of r as H(r)
= {a1, . . . , al} and the body of r as B(r) = {b1, . . . , bm,not bm+1, . . . , not bn}. Fur-
thermore, we also define B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}. A dis-
junctive logic program (over At), or simply a program, is a finite set of rules (over At).
A program P is normal (resp., positive, Horn) if every rule in P is normal (resp., pos-
itive, Horn). We use N, P, and H to refer to the classes of normal, positive, and Horn
programs, respectively. Finally, atm(P ) denotes the set of all atoms occurring in P .

Let I be an interpretation, i.e., a set of atoms. I satisfies a rule r, symbolically I |= r,
iff I ∩ H(r) �= ∅ whenever B+(r) ⊆ I and I ∩ B−(r) = ∅ jointly hold. I is a model
of a program P , symbolically I |= P , iff I |= r, for all r ∈ P . I is an answer set [7] of
P iff I is a minimal model of P I , where

P I = {H(r) ← B+(r) | r ∈ P, B−(r) ∩ I = ∅}

is the reduct of P relative to I . The set of all answer sets of P is denoted by AS(P ).

Strong Equivalence and its Generalisations. Next, we introduce basic equivalence no-
tions relevant for our purposes and provide model-theoretic characterisations for them.
All of the equivalence notions discussed are special instances of a general framework for
specifying parameterised program correspondence relations between answer-set pro-
grams [2].

We begin with strong equivalence, originally introduced by Lifschitz, Pearce, and
Valverde [1]: Two programs, P and Q, are strongly equivalent, symbolically P ≡s Q,
iff AS(P ∪R) = AS(Q ∪R), for any programR (which is also referred to as a context
program). Interestingly, strong equivalence corresponds to equivalence in the logic of
here-and-there [8], HT, which, from a semantical point of view, is intuitionistic logic
restricted to two worlds, “here” and “there”. More specifically, two programs, viewed
as logical theories, are strongly equivalent iff they have the same models in HT [1].
Emerging from this observation, Turner [9] characterised strong equivalence in terms
of SE-models which directly correspond to models in HT: By an SE-interpretation we
understand a pair (X,Y ) of interpretations X,Y ⊆ At such that X ⊆ Y . If X = Y ,
then (X,Y ) is total, otherwise (X,Y ) is non-total. In view of HT, the first component
of an SE-interpretation is identified with the world “here”, whilst the second component
refers to the world “there”. An SE-interpretation (X,Y ) is an SE-model of a program P
over At if Y |= P and X |= PY . The set of all SE-models of P is denoted by SE (P ).
It then holds that two programs P and Q are strongly equivalent iff SE (P ) = SE (Q).
By limiting the context programs to be defined over particular alphabets only, we arrive
at the notion of relativised strong equivalence [3]. Formally, given an alphabet A ⊆ At ,
programsP and Q over At are strongly equivalent relative to A, symbolically P ≡A

s Q,
iff AS(P ∪R) = AS(Q ∪R), for any program R over A. Model-theoretically, strong
equivalence relative to A is captured in terms of A-SE-models: an SE-interpretation
(X,Y ) is an A-SE-model of a program P over At if (i) Y |= P , (ii) for all Y ′ ⊂ Y
with Y ′ ∩A = Y ∩A, it holds that Y ′ �|= PY , and (iii) if X ⊂ Y , there is an X ′ ⊂ Y
with X ′ ∩A = X such that X ′ |= PY . The set of all A-SE-models of P is denoted by
SEA(P ). For programs P and Q, it holds that P ≡A

s Q iff SEA(P ) = SEA(Q).
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A set S of SE-interpretations is A-complete if, for all (X,Y ) ∈ S with X ⊂ Y , it
holds that (Y, Y ) ∈ S and X ⊂ (Y ∩A), and, for all (X,Y ), (Z,Z) ∈ S with Y ⊂ Z , it
holds that (X ∩A,Z) ∈ S. Note that SEA(P ) is A-complete for every program P and,
conversely, for every A-complete set S of SE-interpretations, there exists a program Q
with SEA(Q) = S.

A further relaxation of strong equivalence is relativised strong equivalence with pro-
jection [2]: Given sets A,O ⊆ At , two programs P and Q over At are strongly equiva-
lent relative to A under projection to O, or 〈A,O〉-equivalent, symbolically P ≡A

|O Q,
iff, for any program R over A, it holds that {I ∩O | I ∈ AS(P ∪R)} = {I ∩O | I ∈
AS(Q ∪R)}. For better readability, let us write I|O for I ∩ O, for an interpretation I
and an alphabet O, and define S|O = {I|O | I ∈ S} for a set of interpretations. Then,
we have that P ≡A

|O Q iff AS(P ∪R)|O = AS(Q ∪R)|O, for any program R over A.
Clearly, relativised strong equivalence with projection includes strong equivalence

and relativised strong equivalence as special cases. Indeed, for all programs P,Q over
At , P ≡s Q iff P ≡At

|At
Q, and P ≡A

s Q iff P ≡A
|At

Q. Certainly, we also have P ≡s Q

iff P ≡At
s Q.

In the spirit of the model-theoretic characterisations above, 〈A,O〉-equivalence can
be characterised as follows [2]: Let A,O ⊆ At be sets of atoms. A certificate structure
is a pair (Ξ, Y ), where Ξ is a set of interpretations and Y is an interpretation. For a
programP over At , a certificate structure (Ξ, Y ) is an 〈A,O〉-certificate of P if there is
some (Y ′, Y ′) ∈ SEA(P ) with Y = Y ′|A∪O and Ξ = {X | (X,Y ′) ∈ SEA(P ), X ⊂
Y ′}. An 〈A,O〉-certificate (Ξ, Y ) of P is minimal if, for any 〈A,O〉-certificate (Ξ ′, Y )
of P , Ξ ′ ⊆ Ξ implies Ξ ′ = Ξ . By CA,O(P ) we denote the set of all 〈A,O〉-certificates
of P , and C m

A,O(P ) stands for the set of all minimal 〈A,O〉-certificates of P . Then, for
two programs P and Q, P ≡A

|O Q holds iff C m
A,O(P ) = C m

A,O(Q).
For our later purposes, we need to characterise minimal 〈A,O〉-certificates directly

in terms of A-SE-models. To this end, we introduce the following notion:

Definition 1. Let A,O ⊆ At be sets of atoms, S a set of SE-interpretations over At ,
and (X,Y ) ∈ S. Then, (X,Y ) is 〈A,O〉-optimal in S if there is no (Y ′, Y ′) ∈ S with
Y |A∪O = Y ′|A∪O and {U | (U, Y ′) ∈ S, U ⊂ Y ′} ⊂ {U | (U, Y ) ∈ S, U ⊂ Y }.

We then have the following property:

Theorem 1. Let A,O ⊆ At be sets of atoms and P a program over At . Then, (Ξ, Y ) ∈
C m

A,O(P ) iff there is some (Y ′, Y ′) that is 〈A,O〉-optimal in SEA(P ) with Y ′|A∪O =
Y and Ξ = {X | (X,Y ′) ∈ SEA(P ), X ⊂ Y ′}.

3 Main Results

In this section, we present necessary and sufficient conditions such that for a given dis-
junctive logic program P over At and given sets A,O ⊆ At , there is a program Q
which is 〈A,O〉-equivalent to P , where Q is either normal, positive, or Horn. We call
such a Q, if it exists, an 〈A,O〉-C-casting of P , for C ∈ {N, P,H}, referring to the nor-
mal, positive, or Horn case, respectively, or simply a casting of P if no ambiguity arises.
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r1 : b ← p,not c r5 : p ∨ j ← b,not d r9 : v ← j ,not c, not d
r2 : b ← p,not d r6 : p ← j ,not c,not d r10 : c ← j ,not d ,not v
r3 : b ← j ,not c r7 : p ← v r11 : d ← j ,not c, not v
r4 : b ← j ,not d r8 : ← p, d

Fig. 1. Program Pex

In each case, we present two kinds of model-theoretic conditions—one based on certifi-
cate structures and one on SE-interpretations. As well, we approach our conditions by
first addressing the case of relativised strong equivalence without projection, which can
be directly obtained from previous results about casting under hyperequivalence [6].

We start with presenting a typical scenario for our casting questions, serving as a
running example for our subsequent elaborations.

Example 1. Consider a party-attendance problem for determining who will attend a
party based on given preferences and constraints of potential party guests. Assume the
following circumstances: Our friend Betty only attends if Peter or Mary-Jane does and
if there is no need to dance or no cheesy music playing. If Betty comes, in case there
is no dancing, she will bring Peter or Mary-Jane along. As Peter needs to talk to Mary-
Jane, he will definitely attend if Mary-Jane comes and there is neither dancing nor
cheesy music playing. He also comes if there is only vegetarian food, but as he hates
dancing he is not coming if dancing is required. Mary-Jane is a party-tiger and a die-
hard vegetarian, well-known to force people to either dance, listen to cheesy music, or
eat only vegetarian meals.

Program Pex in Fig. 1 is an encoding of this information, where atoms b, p, and
j represent the attendance of Betty, Peter, or Mary-Jane, respectively, and d , v , and
c indicate dancing, vegetarian food, or cheesy music at the party. Note that Pex is
understood as representing partial information only, since we expect further preferences
and constraints from Betty, Peter, or Mary-Jane concerning their attendance. Thus, Pex

will later be joined with further rules containing atoms from A = {b, p, j}.
As discussed below, no program Q exists not involving disjunction or negation that

is strongly equivalent to Pex , even when context programs are built from atoms in A
only. However, assume we are only interested in who attends the party but we do not
care about which party activities take place. Then, we do not mind if the answer sets
of a casting disagree with those of Pex on atoms in {d , v , c}. Hence, we are interested
whether there is a casting Q of Pex under relativised strong equivalence under projec-
tion. Our model-theoretic properties presented later on allow to answer this question.

3.1 Normal Logic Programs

For getting an intuition of the mechanisms that underlie our characterisations, it is help-
ful to deliberate how the syntactic class of a program influences its SE-models. Consider
a normal program P . Then, for any interpretation Y , the reduct PY is a Horn program.
Since the models of a Horn program are closed under intersection, it follows that for all
SE-models (X1, Y ), (X2, Y ) of P , (X1 ∩ X2, Y ) must also be an SE-model of P , as
both X1 |= PY and X2 |= PY holds. Following Eiter et al. [5], let us call a collection S
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of SE-interpretations closed under here-intersection if (X1, Y ) ∈ S and (X2, Y ) ∈ S
implies (X1 ∩X2, Y ) ∈ S. So, our above argument shows that the set of all SE-models
of a normal program is closed under here-intersection. Consequently, if, for a DLP P ,
there is some strongly equivalent normal program Q, then SE (P ) must be closed under
here-intersection. However, as shown by Eiter et al. [5], closure under here-intersection
is also a sufficient condition to guarantee the existence of a normal program Q be-
ing strongly equivalent to a given DLP P . Interestingly, this characterisation holds for
strong equivalence relative to A as well, but using A-SE-models instead of SE-models.

Proposition 1 ([6]). Given a set A ⊆ At of atoms and a program P over At , a normal
program Q over At exists with P ≡A

s Q iff SEA(P ) is closed under here-intersection.

Example 2. Consider the program Pex from Example 1 and A = {b, p, j}. Then,1

SEA(Pex ) = {(∅, ∅), (∅, bp), (bp, bp), (∅, bjc), (bjc, bjc), (∅, bjd), (b, bjd),
(bjd , bjd), (∅, bpjv), (bp, bpjv), (bpjv , bpjv), (∅, bpjc),
(bp, bpjc), (bj , bpjc), (bpjc, bpjc)}.

As (bp, bpjc), (bj , bpjc) ∈ SEA(Pex ) but (b, bpjc) /∈ SEA(Pex ), SEA(Pex ) is not
closed under here-intersection. Hence, there is no normal program Q with Pex ≡A

s Q.

Turning to the case of relativised strong equivalence with projection, we now define our
key properties for casting to normal programs—first for certificate structures and then
for SE-interpretations.

Definition 2. Let A,O ⊆ At be sets of atoms. Then, a set S of certificate structures is
〈A,O〉N,c-compliant if, for every (Ξ, Y ) ∈ S , Ξ is closed under intersection.

Definition 3. Let A,O ⊆ At be sets of atoms. Then, a set S of SE-interpretations is
〈A,O〉N,s-compliant if the set of 〈A,O〉-optimal SE-interpretations in S is closed under
here-intersection.

Consider a normal program P . Since, in view of Proposition 1, for every (X1, Y ),
(X2, Y ) ∈ SEA(P ), we have that (X1∩X2, Y ) ∈ SEA(P ), and, by Definition 1, either
all or none of (X1, Y ), (X2, Y ), and (X1 ∩ X2, Y ) are 〈A,O〉-optimal in SEA(P ), it
follows that SEA(P ) is 〈A,O〉N,s-compliant. Hence, if a DLP P is 〈A,O〉-equivalent to
a normal program Q, SEA(P ) must be 〈A,O〉N,s-compliant. As the next result shows,
the converse also holds, as well as similar relations for 〈A,O〉N,c-compliance.

Theorem 2. Let A,O ⊆ At be sets of atoms and P a program over At . Then, the
following statements are equivalent:

1. C m
A,O(P ) is 〈A,O〉N,c-compliant;

2. SEA(P ) is 〈A,O〉N,s-compliant;
3. a normal program Q over At ∪ At ′ exists for some universe At ′ with P ≡A

|O Q;

4. a normal program Q over atm(P ) exists such that P ≡A
|O Q.

1 For brevity, in what follows, we omit braces and commas for interpretations, i.e., we write,
e.g., bp instead of {b, p}.



270 J. Pührer and H. Tompits

Note that if a casting exists, then there is a casting Q that is built just of atoms from the
input program P . Indeed, it is sufficient to remove all A-SE-models from SEA(P ) that
are not 〈A,O〉-optimal in order to construct the set S of A-SE-models of Q. We will
see later on that for other casting questions a solution can be found only at the expense
of introducing new atoms into the casting.

Example 3. The minimal 〈A,O〉-certificates of our running example Pex for A = O =
{b, p, j} are given by C m

A,O(Pex ) = {(∅, ∅), ({∅}, bp), ({∅}, bj ), ({∅, bp}, bpj )}. As
∅, {∅}, and {∅, bp} are closed under intersection, C m

A,O(Pex ) is 〈A,O〉N,c-compliant.
Hence, there exists a normal program being 〈A,O〉-equivalent to Pex . For instance, the
following program is one in question:2

Q = {b ← p; b ← j ; j ← c; p ← b,not c; p ← b,not j ; p ← j ,not c;
c ← b,not p; c ← j ,not p; v ← j ,not c}.

3.2 Positive Logic Programs

A positive program P satisfies P = P I , for any interpretation I . Hence, if (X,Y ) ∈
SE (P ), then (X,X) ∈ SE (P ) as well, since X |= P trivially implies X |= P I . This
motivates the following definition: A set S of SE-interpretations for which (X,Y ) ∈ S
implies (X,X) ∈ S is called here-total. Considering strong equivalence relative to A,
here-totality of A-SE-models does not make sense, as the here-component of an A-SE-
model is not a model of the program but only a projection of a model. Hence, we need
to adapt the property as follows: A set S of SE-interpretations is A-here-total if, for all
(X,Y ) ∈ S with X ⊂ Y , some (X ′, X ′) ∈ S exists with X ′|A = X and X ′ ⊂ Y .

Proposition 2 ([6]). Let A ⊆ At be a set of atoms and P a program over At . Then,
there is a positive program Q over At such that P ≡A

s Q iff SEA(P ) is A-here-total.

Example 4. Consider again our running example. Since (b, bjd) ∈ SEA(Pex ), for A =
{b, p, j}, but there is no (X ′, X ′) ∈ SEA(Pex ) with X ′|A = {b}, SEA(Pex ) is not
A-here-total. Hence, there is no positive program Q with Pex ≡A

s Q.

We continue with the characterising conditions for casting to positive programs.

Definition 4. Let A,O ⊆ At be sets of atoms. Then, a set S of certificate structures
is 〈A,O〉P,c-compliant if, for every X ∈ Ξ where (Ξ, Y ) ∈ C m

A,O(P ), there is some
(Ξ ′, X ′) ∈ C m

A,O(P ) such that X ′|O ⊆ Y |O , X ′|A = X , and Ξ ′ ⊆ Ξ .

Definition 5. Let A,O ⊆ At be sets of atoms. Then, a set S of SE-interpretations is
〈A,O〉P,s-compliant if, for every (X,Y ) which is 〈A,O〉-optimal in S with X ⊂ Y ,
there is some (X ′, X ′) ∈ S with X ′|O ⊆ Y |O, X ′|A = X , and (V,X ′) ∈ S with
V ⊂ X ′ implies (V, Y ) ∈ S.

Intuitively, the implication in the last part of the above condition—which does not have
a pendant in the definition of A-here-totality—ensuresA-completeness of someA-here-
total variant S′ of S that amounts to the set of A-SE-models of the desired casting.

Theorem 3. Let A,O ⊆ At be sets of atoms and P a program over At . Then, the
following statements are equivalent:

2 Section 4 contains a description how to construct a casting.
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1. C m
A,O(P ) is 〈A,O〉P,c-compliant;

2. SEA(P ) is 〈A,O〉P,s-compliant;
3. a positive program Q over At ∪ At ′ exists with P ≡A

|O Q, for some universe At ′.

Example 5. It can be checked that C m
A,O(Pex ) is 〈A,O〉P,c-compliant for A = O =

{b, p, j} and hence there is a positive program being 〈A,O〉-equivalent to Pex , e.g.,
Q = {p ∨ c ← b; b ← c;b ← p; b ← j ; j ← c}.

In contrast to Example 5, where Q contains only atoms from Pex , unlike in the case of
normal programs, building an 〈A,O〉-equivalent positive program might require atoms
not occurring in the original program. The following program illustrates this point.

Example 6. Consider program P over At = {a, b, c, h}, given by the following rules:

a ← not b,not c; a ← not h; h ← not a,not c;
b ← not a,not c; b ← not h; h ← not b,not c.

For A = {a, b, c} and O = ∅, we obtain C m
A,O(P ) = {(∅, a), (∅, b), (∅, ab), ({a, ab},

abc)}. Although, C m
A,O(P ) is 〈A,O〉P,c-compliant, it can be shown that no 〈A,O〉-

equivalent positive program exists containing only atoms from At .

3.3 Horn Programs

Horn programs are both normal and positive. However, it is not sufficient to combine
the criteria of casting to normal and positive programs in order to obtain a characterisa-
tion for Horn programs. The reason is that the elimination of disjunction may introduce
negation and vice versa. As stated earlier, the classical models of Horn theories are
intersection closed. In terms of SE-models of such a program, this means that the there-
components occurring in the SE-models, being the models of the program, are closed
under intersection [4]. In analogy to closure under here-intersection, this property is
called closure under there-intersection. More formally, a set S of SE-interpretations
is closed under there-intersection iff, whenever (X,X) ∈ S and (Y, Y ) ∈ S, then
(X ∩ Y,X ∩ Y ) ∈ S. For a program P , a strongly equivalent Horn program Q exists
iff SE (P ) is here-total and closed under there-intersection [4]. Note that closure un-
der here-intersection follows automatically from these two conditions. For relativised
strong equivalence, similar to here-totality for the positive case, closure under there-
intersection has to be adapted with respect to the context alphabet: A set S of SE-inter-
pretations is A-closed under there-intersection if, for all (X,X), (Y, Y ) ∈ S, there is
some (Z,Z) ∈ S with Z ⊆ (X ∩ Y ) and Z|A = (X ∩ Y )|A.

Proposition 3 ([6]). Let A ⊆ At be a set of atoms and P a program over At . Then,
there exists a Horn program Q over At such that P ≡A

s Q iff SEA(P ) is A-here-total
and A-closed under there-intersection.

The restriction of A-closure under there-intersection in interplay with A-completeness
imposes an interesting side effect on the A-SE-models of Horn programs.

Theorem 4. Let A,O ⊆ At be sets of atoms and Q a Horn program over At . Then,
(Z1, Z1), (Z2, Z2) ∈ SEA(Q) with Z1|A = Z2|A only if Z1 = Z2.
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As a consequence of that, all A-SE-models of Q are 〈A,O〉-optimal ones, since for
some (X,Y ) ∈ SEA(Q) it holds that (Y, Y ) ∈ SEA(Q), and hence, by Theorem 4,
there cannot be any (Y ′, Y ′) ∈ SEA(Q) with Y ′ �= Y and Y ′|A∪O = Y |A∪O , which
is a requirement for violation of 〈A,O〉-optimality. Due to this restriction on the A-SE-
models, in contrast to the case of positive programs, we do not need additional atoms
for building a Horn casting Q, if one exists for some given program P . Indeed, Q can
be built from atoms in atm(P )|A∪O only.

We obtain the following conditions for casting to Horn programs:

Definition 6. Let A,O ⊆ At be sets of atoms. Then, a set S of certificate structures is
〈A,O〉H,c-compliant if

(i) for all (Ξ, Y ) ∈ S and all X ∈ Ξ there is some (Ξ ′, X ′) ∈ S such that X ′ ⊂ Y
and X ′|A = X ,

(ii) for all (Ξ1, Y1), (Ξ2, Y2) ∈ S there is some (Ξ ′, Z) ∈ S with Z ⊆ (Y1 ∩ Y2)
and Z|A = (Y1 ∩ Y2)|A, and

(iii) for all (ΞY , Y ), (ΞZ , Z) ∈ S with Y ⊆ Z it holds that ΞY ⊆ ΞZ . Moreover, if
Y �= Z , then Y |A ∈ ΞZ .

Definition 7. Let A,O ⊆ At be sets of atoms. Then, a set S of SE-interpretations is
〈A,O〉H,s-compliant if

(i) for every (X,Y ) which is 〈A,O〉-optimal in S with X ⊂ Y , some (X ′, X ′) ∈ S
exists such that X ′|O ⊆ Y |O and X ′|A = X ,

(ii) for all (Y1, Y1), (Y2, Y2) which are 〈A,O〉-optimal in S, some (Z,Z) ∈ S exists
with Z|O ⊆ (Y1 ∩ Y2)|O and Z|A = (Y1 ∩ Y2)|A, and

(iii) for all (X,Y ), (Z,Z) which are are 〈A,O〉-optimal in S such that X ⊂ Y and
Y |A∪O ⊆ ZA∪O, (X,Z) ∈ S holds. Moreover, if Y �= Z , then (Y |A, Z) ∈ S.

The individual Subproperties (i), (ii), and (iii) directly correspond to the equally la-
belled ones from Definition 6. In both definitions, (i) and (ii) are the pendants of A-
here-totality and A-closure under there-intersection for 〈A,O〉-equivalence, respec-
tively. Note that (i) differs from 〈A,O〉P,s-compliance in not having a subcondition
for A-completeness. Instead, Subproperty (iii) corresponds to A-completeness of the
〈A,O〉-optimal SE-interpretations in S.

Theorem 5. Let A,O ⊆ At be sets of atoms and P a program over At . Then, the
following statements are equivalent:

1. C m
A,O(P ) is 〈A,O〉H,c-compliant;

2. SEA(P ) is 〈A,O〉H,s-compliant;
3. a Horn program Q over At ∪ At ′ exists, for some universe At ′, with P ≡A

|O Q;

4. a Horn program Q over atm(P )|A∪O exists such that P ≡A
|O Q.

Example 7. As we have seen, C m
A,O(Pex ) is 〈A,O〉N,c-compliant and 〈A,O〉P,c-com-

pliant for A = O = {b, p, j}. However, it turns out that C m
A,O(Pex ) is not 〈A,O〉H,c-

compliant. Indeed, Condition (ii) of Definition 6 is violated as ({∅}, bp), ({∅}, bj ) ∈
C m

A,O(Pex ) but there is no (Ξ,Z) ∈ C m
A,O(Pex ) with Z ⊆ {b} and Z|A = {b}. This
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means that, for preserving 〈A,O〉-equivalence, we can remove disjunctions from Pex

only by introducing negation and vice versa.
However, if we are not interested in who attends the party but whether we have to

bear vegetarian food, dancing, or cheesy music, we can obtain a Horn program corre-
sponding to Pex : If we set A′ = O′ = {v , d , c}, we expect only input programs that
mention party activities and we are only interested in output related to them. The mini-
mal 〈A′, O′〉-certificates of Pex are given by C m

A′,O′(Pex ) = {(∅, ∅), ({∅}, d), ({∅}, v),
({∅}, c), ({∅, v , c}, vc), ({∅, d , c}, dc)}. All conditions of Definition 6 apply, there-
fore C m

A′,O′(Pex ) is 〈A′, O′〉H,c-compliant. An example of a Horn program 〈A′, O′〉-
equivalent to Pex is Q = {c ← v , d ;← d , v , c}.

3.4 Computational Complexity

We finally discuss the complexity of our casting questions. While checking strong
equivalence is coNP-complete [10], deciding relativised strong equivalence and hyper-
equivalence is alreadyΠP

2 -complete [11,12]. Checking whether, for a given programP ,
a hyperequivalent casting exists is ΠP

2 -complete for normal castings and ΠP
3 -complete

for positive castings. Furthermore, for the case of Horn programs, the problem lies in
ΠP

3 [6]. Although testing relativised strong equivalence with projection is presumably
harder, viz. ΠP

4 -complete [2], the next result shows that casting under this equivalence
notion does not yield an additional source of complexity:

Theorem 6. Given a program P over At and A,O ⊆ At , deciding whether SEA(P )
is 〈A,O〉C,s-compliant, for C ∈ {N,P,H}, is in ΠP

4 , as is deciding whether C m
A,O(P )

is 〈A,O〉C,c-compliant.

The major source of complexity is checking 〈A,O〉-optimality. Important for establish-
ing the upper complexity bound is the observation that checking 〈A,O〉-optimality is
not required in the consequent of any of the (sub)conditions of 〈A,O〉C,s-compliance.

4 Proof Outline of Main Results

We briefly outline how Theorems 2, 3, and 5 can be shown, thereby providing methods
for constructing castings. First of all, from the definitions of an A-SE-model, a minimal
〈A,O〉-certificate, and 〈A,O〉-optimality, the following lemma can be shown:

Lemma 1. For any program P over At , any A,O ⊆ At , and any C ∈ {N,P,H},
C m

A,O(P ) is 〈A,O〉C,c-compliant iff SEA(P ) is 〈A,O〉C,s-compliant.

The general proof schema, then, proceeds by showing, for a given program P over At
and C ∈ {N,P,H} that

1. if P has a casting Q ∈ C over some At ′ ⊇ At , then C m
A,O(P ) is 〈A,O〉C,c-compli-

ant, and
2. if C m

A,O(P ) is 〈A,O〉C,c-compliant, then there exists a casting Q ∈ C over some
At ′′, where (i) At ′′ = atm(P ) for C = N, (ii) At ′′ ⊇ At for C = P, and (iii) At ′′ =
atm(P )|A∪O for C = H.
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Showing Item 1 can be reduced to showing that for every program Q′ ∈ C it holds
that C m

A,O(Q′) is 〈A,O〉C,c-compliant. Hence, given a casting Q ∈ C of P , C m
A,O(Q) is

〈A,O〉C,c-compliant and, in view of C m
A,O(P ) = C m

A,O(Q), so is C m
A,O(P ).

For proving Item 2, we devised algorithms that allow for obtaining a casting Q ∈ C
over At ′′ whenever C m

A,O(P ) is 〈A,O〉C,c-compliant. These involve three transforma-
tions, which have the following properties:

(i) fCA,O maps a program P over At to fCA,O(P ) = SEA(Q), where Q is a pro-

gram over At ′′ such that Q ∈ C, providing SEA(P ) is 〈A,O〉C,s-compliant. Fur-
thermore, (X,Y ) is 〈A,O〉-optimal in SEA(P ) iff (X,Y ) is 〈A,O〉-optimal in
fCA,O(P ).

(ii) cCA maps a set S of SE-interpretations over At ′′ to cCA(S) = SE (Q), where Q is a
program over At ′′ such that Q ∈ C and SEA(Q) = S. If such a Q does not exist,
then cCA is undefined.

(iii) pC maps a set S of SE-interpretations over At ′′ into pC(S) = Q, where Q is a
program over At ′′ such that Q ∈ C and SE (Q) = S. If such a Q does not exist,
then cCA is undefined.

Given a programP for which SEA(P ) is 〈A,O〉C,s-compliant, a casting Q ofP is given
by Q = pC(cCA(fCA,O(P ))). Indeed, by the properties of fCA,O, the set of 〈A,O〉-optimal
A-SE-models of P coincides with the set of 〈A,O〉-optimal elements in fCA,O(P ). But,

again by construction of fCA,O, there exists some Q′ ∈ C such that SEA(Q′) = fCA,O(P ).
Hence, cCA(fCA,O(P )) is defined and cCA(fCA,O(P )) = SE (Q′′), for some Q′′ ∈ C such

that SEA(Q′′) = fCA,O(P ). By the latter condition, we obtain in turn that pC is defined
and pC(cCA(fCA,O(P ))) = Q, where Q is a program such that Q ∈ C and SE(Q) =
cCA(fCA,O(P )). Now, since cCA(fCA,O(P )) = SE (Q′′), we have that SE (Q) = SE (Q′′),
and thus SEA(Q) = SEA(Q′′). But SEA(Q′′) = fCA,O(P ), so SEA(Q) = fCA,O(P ).
Consequently, the set of 〈A,O〉-optimal A-SE-models of P coincides with the set of
〈A,O〉-optimal elements of Q. Therefore, by Theorem 1, it follows that P and Q have
the same minimal 〈A,O〉-certificates, and thus P ≡A

|O Q.

The specific definitions of the above functions are as follows: cCA and pC are functions
defined in previous work about casting under hyperequivalence [6]. Specifically, cNA, cPA,
and cHA are the completion transformations for normal, positive, and Horn programs,
respectively [6, Definitions 4,7, and 9], while pN, pP, and pH are the functions given by
the adaptions in that work of the technique of canonical programs [2]. The functions
fCA,O, for C = {N,P,H} are novel, however, and are briefly discussed in what follows.
To begin with, fNA,O and fHA,O are defined as follows:

fNA,O(P ) = {(X,Y ) | (X,Y ) is 〈A,O〉-optimal in SEA(P )};
fHA,O(P ) = {(X |A∪O, Y |A∪O) | (X,Y ) is 〈A,O〉-optimal in SEA(P )}.

The transformations reflect the fact that a normal casting can be build from atoms in P
only and a Horn casting from atoms that occur in atm(P )|A∪O only.

Obtaining the transformation fPA,O(P ) for positive castings requires a more sophisti-
cated approach, however, for which we first need to build a rooted forest FA,O(P ) from
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the A-SE-models of P as an auxiliary structure. The nodes are triples (h, Y,Ξ), where h
is an atom, unique for every node, that is from a set At ′ of auxiliary atoms not occurring
in At , Y is an interpretation, and Ξ is a set of interpretations. Each node corresponds to
an 〈A,O〉-certificate of the casting Q to build, and each root node to a minimal 〈A,O〉-
certificate of P . The intuition is to preserve the minimal 〈A,O〉-certificates of P , for
retaining 〈A,O〉-equivalence to P , and add missing (non-minimal) 〈A,O〉-certificates
of Q that ensure A-here-totality of the A-SE-models of Q in order for Q to be a pos-
itive program. Roughly, for every (X,Y ) ∈ fPA,O(P ) with X ⊂ Y that is built from
a node N , a descendant of N guarantees that there is some (X ′, X ′) ∈ fPA,O(P ) with
X ′|A = X and X ′ ⊂ Y , as required by A-here-totality. F〈A,O〉(P ) is obtained by the
following algorithm, which starts with F〈A,O〉(P ) being empty:

1. For every (Y, Y ) that is 〈A,O〉-optimal in SEA(P ), add (h, Y,Ξ) as a root node
of F〈A,O〉(P ), where h ∈ At ′ is not occurring elsewhere in F〈A,O〉(P ) and Ξ =
{X | (X,Y ) ∈ SEA(P ), X ⊂ Y }.

2. While there is a leaf node (h, Y,Ξ) such that Ξ �= ∅ do:
– for each X ∈ Ξ , find some (U,U) that is 〈A,O〉-optimal in SEA(P ),3 where

U |A = X , U |O ⊆ Y |O , and (V, U) ∈ SEA(P ) with V ⊂ U implies V ∈ Ξ ,
and add (h′, U |A∪O, Ξ ′) as child node of (h, Y,Ξ), where h ∈ At ′ does not
occur elsewhere in F〈A,O〉(P ) and Ξ ′ = {V | (V, U) ∈ SEA(P ), V ⊂ U}.

Having F〈A,O〉(P ) built, we then obtain fP〈A,O〉(P ) as follows:

fP〈A,O〉(P ) = {(Y ′, Y ′) |N = (h, Y,Ξ) is a node of F〈A,O〉(P ), Y ′ = Y ∪ {h}∪
{h′ | (h′, Z,Ξ ′) is ancestor or descendant of N}}∪

{(X,Y ′) |N = (h, Y,Ξ) is a node of F〈A,O〉(P ), X ∈ Ξ, Y ′ = Y ∪
{h} ∪ {h′ | (h′, Z,Ξ ′) is ancestor or descendant of N}}.

When creating fPA,O(P ) from FA,O(P ), atoms from At ′ are added in a way such that A-
completeness of the A-SE-models of Q is ensured, by making Y1 and Y2 incomparable
for all (X,Y1), (X,Y2) ∈ SEA(Q) which are not associated to nodes on the same path
in the forest. Nodes along the same path cannot violate A-completeness per se.

5 Discussion

We provided necessary and sufficient semantical conditions that hold for a program P
and sets A,O of atoms iff there exists another program Q that is normal, positive, or
Horn, respectively, such that P and Q are strongly equivalence relative to A under pro-
jection to O. These conditions are parameterised in A and O and defined on the minimal
〈A,O〉-certificates of P and, alternatively, on the A-SE-models of P . Furthermore, we
showed that deciding whether a casting exists is not computationally harder than check-
ing equivalence under the considered notion, and provided methods for constructing a
casting whenever one exists. Our results contribute to the understanding of problem set-
tings in logic programming in the sense that they show in what scenarios the usage of
certain constructs are superfluous or not.

3 The existence of such a (U, U) is guaranteed when SEA(P ) is 〈A,O〉P,s-compliant.
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An interesting equivalence notion related to the one studied here is modular equiva-
lence, introduced by Oikarinen and Janhunen [13] for the purpose of modular program-
ming, accommodating the specification of input, output, and hidden atoms. Compared
to the use of projection, where answer sets that coincide on the projected part are treated
as identical, modular equivalence distinguishes between answer sets with differing hid-
den atoms and thereby enforces corresponding modules to have the same number of
answer sets. Update equivalence [14], on the other hand, has no provision of projection
but generalises relativised strong equivalence by allowing also the deletion of certain
program parts during comparison.

A natural next step is to consider casting questions for nonground programs. Towards
this end, recent work provides nonground versions of the kind of generalised equiva-
lences studied here [15], yet relativisation quickly leads to undecidable instances.
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vol. 2923, pp. 87–99. Springer, Heidelberg (2004)

5. Eiter, T., Fink, M., Tompits, H., Woltran, S.: On eliminating disjunctions in stable logic
programming. In: KR 2004, pp. 447–458. AAAI Press, Menlo Park (2004)

6. Pührer, J., Tompits, H., Woltran, S.: Elimination of disjunction and negation in answer-set
programs under hyperequivalence. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 561–575. Springer, Heidelberg (2008)

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

8. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte,
physikalisch-mathematische Klasse, preußische Akademie der Wissenschaften (1930)

9. Turner, H.: Strong equivalence made easy: Nested expressions and weight constraints. The-
ory and Practice of Logic Programming 3(4-5), 602–622 (2003)

10. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical proposi-
tional logic. In: KR 2002, pp. 170–176. Morgan Kaufmann, San Francisco (2002)

11. Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences
in answer set programming. ACM Transactions on Computational Logic 8(3), 1–53 (2007)

12. Woltran, S.: A common view on strong, uniform, and other notions of equivalence in answer-
set programming. Theory and Practice of Logic Programming 8(2), 217–234 (2008)

13. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for
SMODELS programs. TPLP 8(5-6), 717–761 (2008)

14. Inoue, K., Sakama, C.: Equivalence of logic programs under updates. In: Alferes, J.J., Leite,
J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 174–186. Springer, Heidelberg (2004)

15. Oetsch, J., Tompits, H.: Program correspondence under the answer-set semantics: The non-
ground case. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
591–605. Springer, Heidelberg (2008)



A Default Approach to Semantics of Logic
Programs with Constraint Atoms

Yi-Dong Shen1 and Jia-Huai You2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

ydshen@ios.ac.cn
2 Department of Computing Science, University of Alberta, Edmonton, Alberta,

Canada T6G 2E8
you@cs.ualberta.ca

Abstract. We define the semantics of logic programs with (abstract)
constraint atoms in a way closely tied to default logic. Like default logic,
formulas in rules are evaluated using the classical entailment relation, so
a constraint atom can be represented by an equivalent propositional for-
mula. Therefore, answer sets are defined in a way closely related to de-
fault extensions. The semantics defined this way enjoys two properties
generally considered desirable for answer set programming − minimal-
ity and derivability. The derivability property is very important because
it guarantees free of self-supporting loops in answer sets. We show that
when restricted to basic logic programs, this semantics agrees with the
conditional-satisfaction based semantics. Furthermore, answer sets by the
minimal-model based semantics can be recast in our approach. Conse-
quently, the default approach gives a unifying account of the major exist-
ing semantics for logic programs with constraint atoms. This also makes it
possible to characterize, in terms of the minimality and derivability prop-
erties, the precise relationship between them and contrast with others.

1 Introduction

In knowledge representation and reasoning, it is often desirable to embed into a
general inference process/structure special methods for solving/querying a pre-
defined relation. The goal is to make representation easier and reasoning more
effective. The technique has been explored, under the name of global constraints,
in constraint programming [1], and aggregates in logic programming [2].

More recently, a great deal of attention has been paid to incorporating con-
straint atoms (c-atoms for short, sometimes under the name of aggregates) into
answer set programming (ASP) [3,4,5,6,7,8,9,10,11,12,13,14,15]. The intensive
study on the subject is largely due to the unsettling question on the seman-
tics for these programs. All of the major semantics proposed so far agree on
logic programs with monotone c-atoms; when arbitrary c-atoms are allowed,
disagreements exist. Among the recent proposals beyond monotone constraints,
two approaches have attracted the most attention − the minimal-model based
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semantics [4] (with its extension [6]) and the conditional-satisfaction based se-
mantics [15] (with the equivalent one [12]). Although example programs have
been used to show their differences, since the ways in which they are defined are
quite different, to the best of our knowledge, no precise relationship has been
established.

In this paper, we propose a different approach to the semantics of logic pro-
grams with c-atoms, with a close tie to default logic [16]. We consider programs
consisting of rules of the form H ← G, where H is a propositional atom and G an
arbitrary formula built from atoms, c-atoms and standard connectives. Like de-
fault logic, formulas in rules are evaluated using the classical entailment relation,
so a constraint atom can be represented by an equivalent propositional formula.
Therefore, answer sets are defined in a way closely related to default extensions.
The semantics defined this way enjoys two properties generally considered desir-
able for answer set programming − minimality and derivability. The derivability
property is very important because it guarantees free of self-supporting loops in
answer sets. Several major existing semantics, such as [4,6,9], lack this property,
thus their answer sets may incur self-supporting loops.

We show that for basic logic programs, this semantics agrees with the
conditional-satisfaction based semantics. This reveals that the latter can be
viewed as a form of default reasoning without resorting to conditional satis-
faction. Furthermore, answer sets by the minimal-model based semantics can be
recast in our approach. This results in a generalization of the existing semantics
to arbitrary propositional formulas. This generalization differs from the one to
nested expressions [6] in their different underlying logics and the ways in which
c-atoms are encoded by formulas. Our approach is like default logic where for-
mulas are evaluated as in classical logic, while answer sets of nested expressions
are minimal total models in the logic here-and-there [17].

Our approach provides a unifying framework for evaluating/comparing the
major existing semantics. In particular, we can characterize their differences in
terms of the minimality and derivability properties. We show that an answer set
by the conditional-satisfaction based semantics is an answer set by the minimal-
model based semantics, with the additional condition that it is derivable in the
sense of default logic.

2 Preliminaries

We restrict attention to a propositional language, as we consider only Herbrand
interpretations so that the first-order case reduces to a propositional one via
grounding. We assume a propositional language determined by a fixed countable
set Σ of propositional atoms.

Any subset I of Σ is an interpretation. We call I+ = I the positive literals of
I, and I− = {¬a | a ∈ Σ \ I} the negative literals.

A c-atom A is a pair (D,C), where D is a finite set of atoms in Σ and C
is a collection of sets of atoms in D, i.e., C ⊆ 2D with 2D being the powerset
of D. For convenience, we use Ad and Ac to refer to the components D and C
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of A, respectively. As a general abstract framework, a c-atom A can be used
to represent any constraint with a finite set Ac of admissible solutions over a
finite domain Ad, including various aggregates [10,11]. Therefore, in the sequel
we use the aggregate notation and c-atoms exchangeably to express abstract
constraints.

The complement of a c-atom A is the c-atom A′ with A′
d = Ad and A′

c =
2Ad \Ac.

Formulas are built from atoms and c-atoms using connectives ¬ (negation),
∧ (conjunction), ∨ (disjunction), and ⊃ (implication), as in propositional logic.
A literal is an atom/c-atom or a negated atom/c-atom. A theory is a set of
formulas. When a theory mentions no c-atoms, it is called an ordinary theory.
An ordinary theory may be simply called a theory if it is clear from the context.

A (deductive) rule r is of the form H ← B, where H is an atom, B is a
formula, and ← is an if-then operator. The meaning of r is that “if the logic
property B holds then H holds.” We use head(r) and body(r) to refer to the
head H and body B of r, respectively.

A general logic program (or program) P is a set of rules. P is called a basic
program if the body of each rule is a conjunction of literals. A normal program
is a basic program without c-atoms. A positive program is a normal program
without negative literals.

Let I ⊆ Σ be an interpretation. I satisfies an atom A if A ∈ I; ¬A if A �∈ I.
I satisfies a c-atom A if Ad ∩ I ∈ Ac; ¬A if Ad ∩ I �∈ Ac. Therefore, it follows
that I satisfies ¬A if and only if I satisfies the complement of A.

The satisfaction of a formula F by an interpretation I is defined as in proposi-
tional logic. I satisfies a rule r if it satisfies head(r) or it does not satisfy body(r).
I is a model of a theory W if it satisfies all formulas of W . I is a model of a
program P if it satisfies all rules of P . A minimal model is a model none of whose
proper subset is also a model. A model I of P is supported if for each a ∈ I,
there is a rule in P of the form a ← body(r) such that body(r) is satisfied by I.
For any expression E, we say E is true (resp. false) in I if and only if I satisfies
(resp. does not satisfy) E.

For an (ordinary) theory W , we say that W is consistent (or satisfiable) if
W has a model. We use Cn(W ) to denote the deductive closure of W as in
propositional logic.

The entailment relation |= is defined as a minor extension to the one in propo-
sitional logic. For any two formulas F and G (possibly containing c-atoms), F
entails G, denoted F |= G, if G is true in all models of F . We write F ≡ G if
F |= G and G |= F , in which case F and G are said to be logically equivalent.
Note that when F and G involve no c-atoms, the entailment relation is exactly
the classical one. The extension makes it convenient to talk about formulas in-
volving c-atoms being logically equivalent.

For a set S of atoms, when S appears in a formula, it expresses a conjunction∧
a∈S a. Similarly, ¬S expresses a conjunction

∧
a∈S ¬a.

In this paper, the standard ASP semantics refers to the stable model semantics
defined in [18].
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3 Answer Sets for Programs without C-Atoms

We start by recalling the rationality principle − the spirit of the standard ASP
semantics for normal programs, which says that one shall not believe anything
one is not forced to believe [19,18]. The rationality principle instructs us that in
the construction of an answer set I from a normal program P , we should make
as many negative beliefs as possible, provided that no contradiction is derived.
On the one hand, this means that the answer set I shall be a minimal model
of P . On the other hand, this means that given the set I− = {¬a1, ...,¬am} of
negative beliefs, all positive beliefs I+ in I shall be derivable by applying the
deductive rules H ← B in P in the way that if B holds, then derive H .

We apply the rationality principle to general logic programs. The derivability
property is formally defined by means of deductive sets.

Definition 1. Let P be a program without c-atoms and W an (ordinary) theory.
The deductive set Th(P,W ) of P and W is the smallest set of formulas satisfying
the following two conditions: (1) W ⊆ Th(P,W ); (2) for each rule r in P , if
Th(P,W ) |= body(r) then head(r) ∈ Th(P,W ).

We can alternatively use a fixpoint approach to define the deductive set. We first
introduce the following one-step provability operator:

TP (W ) = {H | P has a rule H ← B such that W |= B}

Since the entailment relation |= is defined as in propositional logic, W |= B
implies V |= B if W ⊆ V . Then, TP is monotone, i.e., for any theories W1,W2
such that W1 ⊆ W2, TP (W1) ⊆ TP (W2). Therefore, for any (ordinary) theory
W , the sequence T i

P (W ), where T 0
P (W ) = W and T i+1

P (W ) = W ∪ TP (T i
P (W )),

is monotonically increasing and has a fixpoint T δ
P (W ) (i.e., there exists the first

ordinal δ such that T δ
P (W ) = T δ+1

P (W )). We then have this fixpoint theory
T δ

P (W ) as the deductive set of P and W , i.e. Th(P,W ) = T δ
P (W ).1

The above fixpoint definition shows that all positive literals in a deductive set
are derived stratum by stratum via the fixpoint sequence. This means that the
derivability property guarantees free of self-supporting loops.

Our definition of answer sets for general logic programs adheres to the ratio-
nality principle and builds directly on the derivability property.

Definition 2. Let P be a program without c-atoms and I an interpretation.
I is an answer set of P if (1) Th(P, I−) is consistent; and (2) for each a ∈ I,
Th(P, I−) |= a.

Since the head of each rule is an atom, Th(P, I−) consists of I− plus a set of
atoms. In particular, we have

Theorem 1. Let P be a program without c-atoms and I an interpretation. I is
an answer set of P if and only if Th(P, I−) = I ∪ I−.
1 When P is a normal program and W is a set of negative literals, T δ

P (W ) coincides
with the fixpoint T δ

P ′(∅) introduced in [20], where P ′ = P ∪ W .
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Example 1. Consider the following program:
P1 : p(a) ← (p(a) ∧ ¬p(b)) ∨ (p(b) ∧ ¬p(a)) ∨ (p(a) ∧ p(b)).

p(b) ← ¬q. q ← ¬p(b).
Let Σ = {p(a), p(b), q} and I = {p(a), p(b)}. Then I− = {¬q}. T 0

P1
(I−) =

I− = {¬q}, T 1
P1

(I−) = I− ∪ TP1(T 0
P1

(I−)) = {¬q, p(b)}, T 2
P1

(I−) = I− ∪
TP1(T 1

P1
(I−)) = {¬q, p(b), p(a)}, and T 3

P1
(I−) = T 2

P1
(I−). Note that the body

of the second rule is entailed by {¬q}, and the body of the first rule is en-
tailed by {¬q, p(b)}. Therefore, Th(P1, I

−) = T 2
P1

(I−) = {¬q, p(b), p(a)}. Since
Th(P1, I

−) = I ∪ I−, I = {p(a), p(b)} is an answer set of P1.
It is easy to check I = {q} is also an answer set of P1. No other interpretations

are answer sets of P1. For instance, for I = {p(b)} we have the deductive set
Th(P1, I

−) = {¬q,¬p(a), p(b), p(a)}, which is inconsistent. ��
Example 2. Consider another program:

P2 : c ← ¬((a ∧ ¬b) ∨ (b ∧ ¬a)).
a ← c. b ← a.

Let Σ = {a, b, c} and I = {a, b, c}. Then I− = ∅. T 0
P2

(I−) = ∅ and T 1
P2

(I−) =
T 0

P2
(I−), where no rule body is entailed by ∅. Th(P2, I

−) = ∅ and thus I is not
an answer set of P2. No other interpretations are answer sets of P2. Therefore,
P2 has no answer set. ��
The derivability property of the answer sets as defined by Definition 2 immedi-
ately follows from the definition. It is also easy to show that such answer sets
satisfy the minimality property.

Theorem 2. Answer sets by Definition 2 are supported, minimal models.

A supported, minimal model is not necessarily an answer set. For example, let
P consist of two rules: d ← ¬a and a ← a. I = {a} is a supported, minimal
model of P , but it is not an answer set.

For normal programs, answer sets defined above coincide with answer sets
under the standard ASP semantics.

Theorem 3. For a normal program P , an interpretation I is an answer set by
Definition 2 if and only if I is an answer set under the standard ASP semantics.

Our definition of answer sets is closely tied to Reiter’s default logic [16]. Recall
that a default theory is a pair ( = (D,W ), where W is a theory, D is a set of de-
faults of the form α : β1,...,βm

γ , and α, β1, ..., βm, γ are formulas. For a theory E, let
Γ�(E) be the smallest deductively closed set of formulas satisfying the following
two conditions: (1) W ⊆ Γ�(E); (2) for each default r in D, if Γ�(E) |= α and
¬β1, ...,¬βm �∈ E, then γ ∈ Γ�(E). E is called an extension of ( if E = Γ�(E).

Theorem 4. Let P be a program without c-atoms and I an interpretation. Let
D1 = { body(r):

a | a ← body(r) ∈ P}, D2 = { : ¬a
¬a | a ∈ Σ}, and ( = (D1 ∪D2, ∅).

Cn(Th(P, I−)) = Γ�(I ∪ I−).

By Theorem 1, I is an answer set of P if and only if I ∪ I− = Th(P, I−); then
by Theorem 4, if and only if Cn(I ∪I−) = Γ�(I ∪I−). Therefore, I is an answer
set of P if and only if Cn(I ∪ I−) is an extension of (.



282 Y.-D. Shen and J.-H. You

4 Answer Sets for Programs with C-Atoms

Since our semantics (Definition 2) is defined by deductive sets using the classical
entailment relation, it has an advantage that replacing the body of a rule by
a logically equivalent formula preserves answer sets. Therefore, to extend the
semantics to programs with c-atoms, it suffices to represent each c-atom as an
equivalent formula.

Recall that the satisfaction of a c-atom A is defined by means of propositional
interpretations [11]: for any interpretation I, I satisfies A if Ad ∩ I ∈ Ac, and
I satisfies ¬A if Ad ∩ I �∈ Ac. We want to have a suitable formula F with the
property that for any interpretation I, I satisfies A if and only if I satisfies
F . Such a formula has been introduced in [13], where it was used to justify an
abstract representation of c-atoms.

Definition 3 ([13]). Let A = (Ad, Ac) be a c-atom with Ac = {S1, ..., Sm}.
The DNF formula C1 ∨ ... ∨ Cm for A is defined as: each Ci is a conjunction
a1 ∧ ... ∧ ak ∧ ¬b1 ∧ ... ∧ ¬bl built from Si such that Si = {a1, ..., ak} and
(Ad \ Si) = {b1, ..., bl}.

Proposition 1. Let A be a c-atom and I an interpretation. Let C1 ∨ ... ∨ Cm

be the DNF formula for A. I satisfies A if and only if I satisfies C1 ∨ ... ∨ Cm.
I satisfies ¬A if and only if I satisfies ¬(C1 ∨ ... ∨ Cm).

Let body(r) be the body of a rule r, and body(r′) be body(r) with all c-atoms
replaced by their DNF formulas. By Proposition 1, an interpretation I satis-
fies body(r) if and only if I satisfies body(r′). We then have the following ASP
semantics for general logic programs.

Definition 4. Let P be a program and I an interpretation. I is an answer set
of P if I is an answer set of P ′ as defined in Definition 2, where P ′ is P with all
c-atoms replaced by their DNF formulas.

Since answer sets of P ′ satisfy both the minimality and the derivability property,
by Proposition 1 answer sets of P satisfy the two properties as well.

Example 3. Consider the following program (borrowed from [21]):

P3 : p(a) ← COUNT ({X | p(X)}) > 0.
p(b) ← ¬q. q ← ¬p(b).

The aggregate notation COUNT ({X | p(X)}) > 0 corresponds to a c-atom
A with Ad = {p(a), p(b)} and Ac = {{p(a)}, {p(b)}, {p(a), p(b)}}. The DNF
formula for A is (p(a) ∧ ¬p(b)) ∨ (p(b) ∧ ¬p(a)) ∨ (p(a) ∧ p(b)). By replacing A
with this DNF formula, we obtain P ′

3 which is the same as P1 in Example 1.
Since P ′

3 = P1 contains no c-atom, its answer sets can be computed applying
Definition 2. P1 has two answer sets: I1 = {p(a), p(b)} and I2 = {q}. Therefore,
by Definition 4 P3 has the two answer sets. ��
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Example 4. Consider the following program with a negated constraint:

P4 : c ← ¬1{a, b}1.
a ← c. b ← a.

The cardinality constraint 1{a, b}1 corresponds to a c-atom A with Ad = {a, b}
and Ac = {{a}, {b}}. The DNF formula for A is (a∧¬b)∨ (b∧¬a). By replacing
A with this DNF formula, we obtain P ′

4 which is the same as P2 in Example 2.
P2 has no answer set, thus P4 has no answer set. ��

5 Relating to Other Approaches

Our approach provides a unifying framework for evaluating the major exist-
ing proposals for arbitrary c-atoms, including the conditional-satisfaction based
semantics [15], the minimal-model based semantics [4,5], and the computation-
based semantics [9]. In this section, we characterize the differences of these se-
mantics in terms of the minimality and derivability properties for basic programs.

5.1 Conditional-Satisfaction Based Semantics

We show that when restricted to basic programs, Definition 4 defines the same
answer sets as the ones by conditional-satisfaction [15].

To introduce the notion of conditional satisfaction, we need a simple program
transformation. Any atom a can be expressed as an elementary c-atom A =
({a}, {{a}}); any negated atom ¬a can be expressed as a c-atom A = ({a}, {∅});
and any negated c-atom ¬A can be replaced by the complement of A. Due to
this, in this section we assume all basic programs have been rewritten so that
their rules are of the form H ← A1 ∧ ... ∧Am, where each Ai is a c-atom.

Definition 5. Let R and S be two sets of atoms and A a c-atom. We say R
conditionally satisfies A w.r.t. S, denoted R |=S A, if R satisfies A and for every
S′ such that R ∩ Ad ⊆ S′ and S′ ⊆ S ∩ Ad, we have S′ ∈ Ac. For a rule r in a
basic program, R |=S body(r) if R |=S Ai for each Ai in body(r).

An immediate consequence operator TP (R,S) is defined in terms of the condi-
tional satisfaction.

Definition 6. Let P be a basic program and R and S be two sets of atoms.
Define

TP (R,S) = {a | a ← body(r) ∈ P and R |=S body(r)}

It is proved that when the second argument is a model of P , TP is monotone
w.r.t. its first argument [15]. Therefore, for any model M the monotone sequence
T i

P (∅,M), where T 0
P (∅,M) = ∅ and T i+1

P (∅,M) = TP (T i
P (∅,M),M), converges

to a fixpoint T α
P (∅,M).

The conditional-satisfaction based ASP semantics says that a model M is an
answer set of P if M coincides with the fixpoint T α

P (∅,M) [15]. Denecker et al.
[22] and Shen and You [13] define the same semantics using different definitions.
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Example 5. Assume P4 of Example 4 has been rewritten to

P4 : c ← ({a, b}, {∅, {a, b}}).
a ← ({c}, {{c}}).
b ← ({a}, {{a}}).

Note that the c-atom in the body of the first rule is the complement of the orig-
inal c-atom. This program has no answer set under the conditional-satisfaction
based semantics. Take M = {a, b, c} as an example, which is a model of P4. Let
T 0

P4
(∅,M) = ∅. Although the c-atom in the body of the first rule is satisfied by ∅,

it is not conditionally satisfied by ∅ w.r.t. M . As a result, we reach the fixpoint
T 1

P4
(∅,M) = TP4(T 0

P4
(∅,M),M) = ∅. M does not agree with the fixpoint ∅, thus

is not an answer set of P4. ��
The conditional-satisfaction based fixpoint and the deductive set are closely
related.

Theorem 5. Let P be a basic program, P ′ be P with all c-atoms replaced by their
DNF formulas, and M be a model of P . We have T α

P (∅,M) = Th(P ′,M−)−M−.

The following corollary follows immediately, showing that the ASP semantics
of Definition 4 and the conditional-satisfaction based semantics agree on basic
programs.

Corollary 1. Let P be a basic program and M a model of P . M is an answer
set of P under the conditional-satisfaction based semantics if and only if M is
an answer set defined by Definition 4.

Since answer sets by Definition 4 respect the rationality principle, the conditional-
satisfaction based semantics also satisfies the two properties for basic programs.
Similar results have been established earlier [15], which shows that any answer set
under the conditional-satisfaction based semantics is a minimal model for which a
level mapping exists. The definition of a level mapping relies on identifying struc-
tural properties of a c-atom w.r.t. a given interpretation, in order to capture condi-
tional satisfaction. Thus, the derivability property can be seen as an independent
way to capture level mapping, without conditional satisfaction.

However, conditional satisfaction is not defined over disjunction of c-atoms.
In fact, a direct application could cause unintuitive behaviors.

Example 6 (borrowed from [23]). Let A be the aggregate SUM ({X | p(X)}) �=
−1. In standard mathematics, this is equivalent to SUM ({X | p(X)}) > −1 or
SUM ({X | p(X)}) < −1, because A ≡ B ∨C, where B and C denote the latter
two aggregates, respectively.

Now suppose S = {p(1)} and M = {p(1), p(2), p(−3)}. It can be verified that
while S |=M A, it is not the case that S |=M B or S |=M C. ��
In our approach, c-atoms are represented by propositional formulas, which are
then evaluated as in propositional logic. As a result, logic equivalence guarantees
the preservation of answer sets. In fact, it is not difficult to verify that, for any
program P , replacing a formula in the body of a rule in P by a logically equivalent
one results in a program strongly equivalent to P . This is an advantage of our
approach, inherited from that of default logic.



A Default Approach to Semantics of Logic Programs with Constraint Atoms 285

5.2 Minimal-Model Based Semantics

Let P be a basic program and I an interpretation. To check if I is an answer set,
this semantics first removes all rules whose body contains a literal that is not
satisfied by I, then defines I to be an answer set if I is a minimal model of the
simplified program P I [4,5]. Ferraris [6] defines an ASP semantics in a different
way, which agrees with the minimal-model based one on basic programs.

We now recast the minimal-model based semantics in our framework for gen-
eral logic programs, where c-atoms are represented by their DNF formulas. We
define the reduct P I of P w.r.t. I as the result of removing all rules r from P
such that body(r) is not satisfied by I.

Definition 7. Let P be a general logic program and P ′ be P with all c-atoms
replaced by their DNF formulas. An interpretation I is said to be a weak answer
set of P if I is a minimal model of P ′I .

Theorem 6. Weak answer sets of a program P are minimal models of P .

For basic programs, by Proposition 1 weak answer sets coincide with answer sets
under the minimal-model based semantics. Furthermore, we have

Theorem 7. Let P be a general logic program and P ′ be P with all c-atoms
replaced by their DNF formulas. An interpretation I is an answer set of P by
Definition 4 if and only if I is a weak answer set of P such that for any a ∈ I,
Th(P ′, I−) |= a.

It follows immediately that for basic programs, answer sets under the conditional-
satisfaction based semantics are such answer sets under the minimal-model based
semantics that are derivable via the deductive set.

The minimal-model based semantics does not satisfy the derivability property,
even for basic programs.

Example 7. Consider the following basic program:

P5 : p(1).
p(2) ← p(−1).
p(−1) ← SUM ({X | p(X)}) ≥ 1.

The aggregate SUM ({X | p(X)}) ≥ 1 corresponds to a c-atom A, where Ad =
{p(−1), p(1), p(2)} and Ac = {{p(1)}, {p(2)}, {p(−1), p(2)}, {p(1), p(2)}, {p(−1),
p(1), p(2)}}. The DNF formula for A is

(p(1) ∧ ¬p(−1) ∧ ¬p(2)) ∨ (¬p(1) ∧ ¬p(−1) ∧ p(2)) ∨ (¬p(1) ∧ p(−1) ∧ p(2))
∨(p(1) ∧ ¬p(−1) ∧ p(2)) ∨ (p(1) ∧ p(−1) ∧ p(2))

which as in propositional logic, can be simplified to (p(1) ∧ ¬p(−1)) ∨ p(2).
Let Σ = {p(1), p(−1), p(2)}. P5 has only one model, {p(1), p(−1), p(2)}. By

Definition 4 or equivalently under the conditional-satisfaction based semantics,
P5 has no answer set, since the model is not derivable via the deductive set.
However, I = {p(1), p(−1), p(2)} is an answer set of P5 under the minimal-
model based semantics. ��
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It should be pointed out that due to lack of derivability, the minimal-model based
semantics ([4] and its extension [6]) may incur undesirable self-supporting loops
in its answer sets. For instance, in the above example I = {p(1), p(−1), p(2)} is
the answer set of P5, where p(2) and p(−1) can only be deduced via one of the
following self-supporting loops:

p(2) → SUM ({X | p(X)}) ≥ 1 → p(−1) → p(2).
p(−1) → p(2) → SUM ({X | p(X)}) ≥ 1 → p(−1).

That is, in order to derive p(2) and p(−1) from P5 we must assume either p(2)
or p(−1) is true in advance.

5.3 Computation-Based Semantics

Liu et al. [9] define an answer set I for a basic program P to be the fixpoint of
a computation 〈Ii〉∞i=0 with I0 = ∅ and Ii+1 = T nd

Qi
(Ii), where Qi is a subset of

the rules in P whose bodies are satisfied by Ii and T nd
Qi

(Ii) consists of all heads
of rules in Qi, such that for each i ≥ 0, Ii ⊆ Ii+1 and Qi ⊆ Qi+1.

Consider the following basic program:

P6 : p(1).
p(−1) ← p(2).
p(2) ← SUM ({X | p(X)}) ≥ 1.

As described in Example 7, the DNF formula for SUM ({X | p(X)}) ≥ 1 is
(p(1)∧¬p(−1))∨p(2). P6 has two models, {p(1), p(−1)} and {p(1), p(−1), p(2)}.

Let ri refer to the i-th rule. We have a computation for P6, where I0 = ∅,
I1 = {p(1)} with Q0 = {r1}, I2 = {p(1), p(2)} with Q1 = {r1, r3}, and I3 =
{p(1), p(−1), p(2)} with Q2 = {r1, r2, r3}. I3 is the fixpoint of the computation,
where I0 ⊆ ... ⊆ I3 and Q0 ⊆ Q1 ⊆ Q2. Thus I3 is an answer set of P6 under
the computation-based semantics.

Observe that I3 is not a minimal model of P6; neither is it derivable via
the deductive set Th(P6, I

−
3 ). This shows that the computation-based semantics

satisfies neither the minimality nor the derivability property.
Just like the minimal-model based semantics, due to lack of derivability the

computation-based semantics may incur undesirable self-supporting loops in its
answer sets. For instance, I3 = {p(1), p(−1), p(2)} is an answer set of P6, where
p(2) can only be deduced via a self-supporting loop

p(2) → SUM ({X | p(X)}) ≥ 1 → p(2).

{p(1), p(−1), p(2)} is an answer set of P6 under the computation-based seman-
tics, but it is not under the minimal-model based one. On the contrary, {p(1),
p(−1), p(2)} is an answer set of P5 under the minimal-model based semantics,
but it is not under the computation-based one. This means that answer sets
under the minimal-model based semantics are not necessarily answer sets under
the computation-based semantics, and vice versa.



A Default Approach to Semantics of Logic Programs with Constraint Atoms 287

To get more restricted computations (answer sets), Liu et al. [9] propose to
use a sub-satisfiability relation � to replace the standard satisfiability with the
property that for any interpretation I and c-atom A, I � A implies I satisfies
A. Then, different computations and answer sets can be obtained by embedding
different sub-satisfiability relations into the definition of computation.

6 Summary and Discussion

Incorporating constraints into a general knowledge representation and reasoning
(KR) system has proven to be a crucial step in gaining representation power
and reasoning efficiency. When logic programs with constraint atoms are taken
as the underlying KR language, the question on the semantics has raised great
interest, with competing views and definitions of answer sets.

For normal logic programs, the stable model semantics has roots in different
nonmonotonic formalisms, thus, as summarized by Lifschitz [24], leading to cur-
rent twelve different definitions. As pointed out by Lifschitz, “there are reasons
why each of them is valuable and interesting. A new characterization of stable
models can suggest an alternative picture of the intuitive meaning of logic pro-
grams; · · · or it can be interesting simply because it demonstrates a relationship
between seemingly unrelated ideas.”

In this paper, we developed an alternative new approach to the semantics of
logic programs with c-atoms, where formulas in rules are evaluated using the
classical entailment relation and c-atoms are represented by equivalent propo-
sitional formulas. The resulting framework can be seen as one with c-atoms
embedded into a fragment of default logic. It turns out that both the conditional-
satisfaction based semantics and the minimal-model based semantics have a root
in the default framework. The former can be viewed as a form of default reason-
ing without conditional satisfaction, while under exactly the same representation
of c-atoms, the latter can be recast in the same framework. As a result, we are
able to identify the precise relationship between the two major existing semantics
and contrast with others such as the computation-based semantics.

The semantics defined by the default approach has two important proper-
ties − minimality and derivability. The derivability property is very useful; it
guarantees free of self-supporting loops in answer sets. Our examples show that
several major existing semantics, such as [4,6,9], lack this property, thus their
answer sets may incur self-supporting loops.

Another advantage of the default approach is that replacing a constraint
by a logically equivalent one preserves strong equivalence. This is an impor-
tant feature, since constraint atoms are supposed to represent pre-defined/built-
in/global constraints in constraint solving, and special constraint propagation
rules for such a built-in constraint may need to be implemented or updated.
In this case, one only needs to verify the preservation of satisfaction. This fea-
ture also provides a methodology of representing a constraint by some (logically
equivalent) combination of constraints. For example, an aggregate SUM (..) �= k
can be substituted by SUM (..) > k ∨ SUM (..) < k, according to the standard
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mathematics while preserving strong equivalence. Since constraints are viewed
as propositional formulas, this feature is applicable in a more general context:
Given a program P , replacing a formula (possibly including constraint atoms)
of the body of a rule in P by a logically equivalent one results in a program P ′

which is strongly equivalent to P .
As remarked earlier, our approach is different from that of [6], due to the dif-

ferent underlying logics and methods of representing c-atoms. In [6] rule bodies
and c-atoms are nested expressions in the logic of here-and-there, while in our
approach they are classical propositional formulas. We would like to argue that
an intimate integration of classical formulas into logic programs, as done in our
approach which is inherited from default logic, facilitates knowledge represen-
tation. The same point has been argued for a more general context by [25] and
recent work on integrating ASP with ontologies and description logics for the
Semantic Web (where classical formulas in rule bodies are interpreted as queries
to a description logic knowledge base [26]).

Our language can be extended to accommodate c-atoms in rule heads like
A ← G, where A is a c-atom and G an arbitrary formula. It can also be extended
to logic programs whose rule heads may be a disjunction of atoms. As a concrete
application, we are applying the default approach to characterizing the semantics
of description logic programs for the Semantic Web [26].
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LNCS, vol. 4670, pp. 286–301. Springer, Heidelberg (2007)

10. Marek, V.W., Remmel, J.B.: Set constraints in logic programming. In: Lifschitz, V.,
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Abstract. Circumscription is one of the most important formalisms for
reasoning with incomplete information. It is equivalent to reasoning un-
der the extended closed world assumption, which allows to conclude that
the facts derivable from a given knowledge base are all facts that satisfy
a given property. In this paper, we study the computational complexity
of several formalizations of inference in propositional circumscription for
the case that the knowledge base is described by a propositional theory
using only a restricted set of Boolean functions. To systematically cover
all possible sets of Boolean functions, we use Post’s lattice. With its help,
we determine the complexity of circumscriptive inference for all but two
possible classes of Boolean functions. Each of these problems is shown
to be either Πp

2-complete, coNP-complete, or contained in L.
In particular, we show that in the general case, unless P = NP, only lit-

eral theories admit polynomial-time algorithms, while for some restricted
variants the tractability border is the same as for classical propositional
inference.

1 Introduction

Circumscription is a non-monotonic logic introduced by McCarthy for first-order
theories to overcome the ‘qualification problem’ which is concerned with the
impossibility of representing all conditions for the successful performance of an
action [17]. Circumscription allows to conclude that the objects that can be
shown to have a certain property P by reasoning from a given knowledge base
Γ are all objects that satisfy P . Moreover, circumscription has been shown to
coincide with reasoning under the extended closed world assumption, in which all
formulae involving only propositions from P that cannot be derived from Γ are
assumed to be false [12]. To date, circumscription has become one of the most
well developed and extensively studied formalisms for non-monotonic reasoning.

Given a theory Γ containing a predicate P , circumscribing P amounts to se-
lecting only the models of Γ in which P is assigned the value true on a minimal
set of tuples. The key intuition behind this rationale is that minimal models have
as few ‘exceptions’ as possible and, thus, embody common sense. In propositional
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logic, P is simply a set of propositions; whence propositional circumscription asks
for the minimal models of Γ w. r. t. the coordinatewise partial order induced on
P by 0 < 1. The remaining propositions are partitioned into sets Q and Z
where propositions in Q are fixed and propositions in Z are allowed to vary in
minimizing the extent of P . We write <(P,Q,Z) for this order. In the literature,
circumscription has also been studied in a restricted form, in which all proposi-
tions are subject to minimization (i. e., Q = Z = ∅). Following [19], we will call
this restricted form basic circumscription and omit the (P,Q,Z)-subscript.

One of the most elementary tasks in logic is inference. The circumscriptive
inference problem asks whether a formula ψ holds in all models of ϕ that are
minimal w. r. t. <(P,Q,Z). As with most non-monotonic logics, inference is Πp

2-
complete [11,8] and, thus, strictly harder than the inference problem for classical
propositional logic unless the polynomial hierarchy collapses. This negative result
raises the question for fragments of lower complexity. One of the most natural
ways to exhibit such fragments is to restrict the formulae allowed in the premise
or the conclusion.

As one example, Schaefer studied the complexity of conjunctions of general-
ized clauses, i. e., conjunctions of arbitrary relations from a fixed set S [25]. He
used this approach to classify the complexity of the satisfiability problem for all
possible sets S. In this context, circumscriptive inference is well-studied from
the computational complexity perspective: in 2005, Nordh proved a trichotomy
classifying the complexity of circumscriptive inference to be either Πp

2-complete,
coNP-complete, or in P [19]. For basic circumscription, Kirousis and Kolaitis
first established a dichotomy, classifying the inference problem to be either Πp

2-
complete or in coNP [15]. To also refine this result into a trichotomy for basic
circumscription, Durand and Hermann showed that the inference problem for
affine formulae is coNP-complete [9]. Finally, Durand et al. completed the classi-
fication of the complexity basic circumscriptive inference in Schaefer’s framework
by establishing a trichotomy [10].

However, Schaefer’s framework is just one possibility of restricting the set of
premises. Instead of restricting formulae to conjunctions of relations from a fixed
set S, one may require that the premise formulae are written using a restricted
set B of Boolean functions. One would likewise assume the complexity to drop
into lower classes if the set B is very restrictive. This approach has first been
taken by Lewis, who classified the complexity of the satisfiability problem w. r. t.
to all finite sets of Boolean functions [16]. Many problems have been studied in
this way since then (see [24,23,13,1,3,2,18], amongst others).

Though this approach bears similarity to Schaefer’s framework, we stress that
in general the results do not imply each other. Consider, e. g., the set of relations
S definable using Horn formulae. The circumscriptive inference of a clause from
a conjunction of generalized clauses from S is coNP-complete [8]. On the con-
trary, if the knowledge base is restricted to consist of formulae expressible using
only Boolean implication x → y, then circumscriptive inference is Πp

2-complete
(Theorems 3 and 12), albeit {(x, y) | x → y} ∈ S.
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The present paper takes Post’s systematic approach to completely classify
the complexity for several formalizations of the inference problem for circum-
scription. Let B be a finite set of Boolean functions and let a B-formula be a
formula using functions from B as connectives only. We determine the complex-
ity of inference of a B-formula from the circumscription of a set of B-formulae,
written CircINF(B), for all finite sets B, except for the case that only affine
functions based on the ternary exclusive-or ⊕ are allowed. The complexity in
both propositional circumscription and basic circumscription for all remaining
sets B is trichotomic: inference in propositional circumscription is Πp

2-complete
whenever B can simulate non-monotone or non-affine Boolean functions, coNP-
complete for all monotone B that implement the or -function ∨, and tractable
otherwise (viz. if any B-formula is equivalent to a set of literals). The complexity
of inference in basic circumscription becomes tractable in addition to the above
cases if all functions from B can be defined using disjunctions only.

We also study the complexity of inferring a clause instead of a B-formula, and
the restriction of the premise set to a singleton. In both cases, we completely
classify the complexity for all finite sets B: (1) if a clause is to be inferred, then
inference remains equivalent to the first formalization with the exception that
for affine functions implementing the ternary ⊕, the problems becomes coNP-
hard; (2) if the premise set is required to be a singleton, then inference becomes
tractable for exactly the same clones as does the ordinary inference problem for
B-formulae in propositional logic [2], i. e., for all sets of Boolean functions such
that all its members can be expressed using either the and -function ∧, ∨, or ⊕.

As a result, we obtain an almost complete classification for the complexity of
propositional circumscription w. r. t. the Boolean functions allowed. Moreover, a
tradeoff between the expressivity of sets of Boolean functions and the complexity
of deciding the circumscriptive inference problem is exhibited, thus attaining a
clear picture of the complexity inherent to each Boolean function w. r. t. minimal
model semantics.

From the application point of view, our results imply that syntactically re-
stricting the knowledge base does not lead to tractable, yet expressive fragments
of circumscription. They furthermore allow the designer of nonmonotonic deduc-
tion systems to choose an appropriate representation, according to the required
expressiveness: depending on whether syntactically restricting the knowledge
base is possible or not, the complexity of the arising problem allows to select
appropriate heuristics for solving the problem.

The paper is organized as follows. Section 2 contains preliminaries, while
Sect. 3 introduces circumscription and the inference problems studied in this
paper. Our main results are presented in Sect. 4 to 6, where we classify the
complexity of circumscriptive inference problems w. r. t. the Boolean functions
allowed to construct the formulae. In each of these sections, we first give the
main theorems; the corresponding proofs are established from subsequent lem-
mas and propositions. Finally, Sect. 7 concludes with a discussion of the results
and identifies interesting further work. In the interests of space, some proofs are
omitted and will be included in the full version of this paper.
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2 Preliminaries

In this paper we make use of standard notions of complexity theory. The arising
complexity degrees encompass the classes ⊕L, P, NP, coNP, Σp

2 and Πp
2 , where

⊕L forms the class of languages recognizable by logspace Turing machines with
an odd number of accepting paths [5]. We also require the circuit complexity
classes AC0 and AC0[2]. The class AC0 denotes the class of languages recogniz-
able using logtime-uniform Boolean circuits of constant depth and polynomial
size over {∧,∨,¬}, where the fan-in of gates of the first two types is not bounded.
The class AC0[2] is defined similarly, but in addition to {∧,∨,¬} we also allow
⊕-gates of unbounded fan-in. For further information, we refer to [20,27].

For the hardness results we use constant-depth reductions, defined as follows:
A language A is constant-depth reducible to a language B (A ≤cd B) if there
exists a logtime-uniform AC0-circuit family {Cn}n≥0 with unbounded fan-in
{∧,∨,¬}-gates and oracle gates for B such that for all x, C|x|(x) = 1 iff x ∈ A (cf.
[27]). Denote by MOD2 the problem to decide whether a given string w ∈ {a, b}�

contains an even number of occurrences of the letter a. It is easily verified that
MOD2 is complete for AC0[2] under ≤cd-reductions.

We assume familiarity with propositional logic. The set of all propositional
formulae is denoted by L. For finite Γ ⊆ L and ϕ ∈ L, we identify Γ with

∧
Γ

and write Γ |= ϕ if all assignments satisfying all formulae in Γ also satisfy ϕ.
For a formula ϕ, let ϕ[α/β] denote ϕ with all occurrences of α replaced by β,
and let Γ[α/β] := {ϕ[α/β] : ϕ ∈ Γ} for Γ ⊆ L. A propositional formula using
only functions from a finite set B of Boolean functions as connectives is called a
B-formula. The set of all B-formulae is denoted by L(B). In order to cope with
the infinitely many finite sets B of Boolean functions, we require some algebraic
tools to classify the complexity of the infinitely many arising reasoning problems.
A clone is a set B of Boolean functions that is closed under superposition, i. e.,
B contains all projections and is closed under arbitrary composition [21]. Let B
be a clone. For ease of notation, we will also write L(B) and identify B with an
arbitrary finite base for B. For an arbitrary finite set B of Boolean functions,
we denote by [B] the smallest clone containing B and call B a base for [B]. In
[22], Post classified the lattice of all Boolean clones and found a finite base for
each clone. In order to introduce the clones relevant to this paper, we define the
following notions for n-ary Boolean functions f :

– f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}.
– f is monotone if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).
– f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).
– f is affine if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c for a constant c ∈ {0, 1} and variables

x1, . . . , xn.

The clones relevant to this paper are listed in Tab. 1. The definition of all Boolean
clones can be found, e. g., in [4].

Some of our results rely on the fact that the functions ∨, ∧ and ⊕ can be
implemented using ‘short’ formulae in order to avoid super-polynomial blowups.
The following lemma states the relevant cases.
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Table 1. A list of Boolean clones with definitions and bases

Name Definition Base
BF All Boolean functions {∧,¬}
R0 {f : f is 0-reproducing} {∧, �→}
R1 {f : f is 1-reproducing} {∨,→}
M {f : f is monotone} {∨,∧, 0, 1}
D2 {f : f is self-dual and monotone} {(x∧y)∨(y∧z)∨(x∧z)}
L {f : f is affine} {⊕, 1}
L1 L ∩ R1 {≡}
V {f : f is a disjunction of variables or a constant} {∨, 0, 1}
V2 V ∩ R0 ∩ R1 {∨}
E {f : f is a conjunction of variables or a constant} {∧, 0, 1}
E1 E ∩ R1 {∧, 1}
N {f : f depends on at most one variable} {¬, 0, 1}
I {f : f is a projection or a constant} {id, 0, 1}

Lemma 1. Let B be a finite set of Boolean functions such that [B] ∈ {V,M,BF}
(resp. [B] ∈ {E,M,BF}). Then, there exists a B-function f(x, y) such that
f(x, y) ≡ x ∨ y (resp. f(x, y) ≡ x ∧ y) and x, y occur exactly once in f .

3 Circumscription

Let ϕ ∈ L be a formula over a set X of propositions. We write ϕ(X) to denote
that the propositions occurring in ϕ are a subset of X . An assignment σ of X is
a mapping σ : X → {0, 1}. Slightly abusing notation, we will identify σ with the
set {x ∈ X : σ(x) = 1}. We say σ is a model of ϕ if σ evaluates ϕ to 1, written
σ |= ϕ. For a partition (P,Q,Z) of X , define the parametrized order ≤(P,Q,Z)
on assignments as follows: for assignments σ, σ′ : X → {0, 1}, let σ ≤(P,Q,Z) σ′

if σ ∩ P ⊆ σ′ ∩ P and σ ∩ Q = σ′ ∩ Q. We write σ <(P,Q,Z) σ
′ if σ ≤(P,Q,Z) σ

′

and σ ∩P �= σ′ ∩P . We say that a model σ of ϕ is minimal w. r. t. (P,Q,Z) (or
(P,Q,Z)-minimal) if there is no model σ′ such that σ <(P,Q,Z) σ′. Note that
if Q = Z = ∅ then <(P,Q,Z) coincides with the coordinatewise partial order <
induced by 0 < 1.

An assignment σ is a model of the circumscription of P in ϕ(X), written
σ |=circ

(P,Q,Z) ϕ, if σ is a (P,Q,Z)-minimal model. A formula ψ(X) can be inferred
from (the circumscription of P in) ϕ(X), written ϕ |=circ

(P,Q,Z) ψ, if ψ holds in
all (P,Q,Z)-minimal models of ϕ. Analogously define Γ |=circ

(P,Q,Z) ψ for sets of
formulae Γ. For any finite set B of Boolean functions, we define the inference
problem for B-formulae in propositional circumscription as

Problem: CircINF(B)
Instance: Γ(X) ⊆ L(B), ψ(X) ∈ L(B), a partition (P,Q,Z) of X .
Question: Does Γ |=circ

(P,Q,Z) ψ hold?

Let B be a clone. Again, we will also write CircINF(B) to denote all prob-
lems CircINF(B), where B is a finite base for B. Whenever considering basic
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circumscription, i. e., whenever CircINF is restricted to Q = Z = ∅, we omit the
(P,Q,Z) subscript and write BasicCircINF.

Regarding automated reasoning, it is useful to require formulae to be repre-
sented in (generalized) conjunctive normal form. It is hence natural to ask for
inference of clauses instead of B-formulae. To compare our results to prelimi-
nary work, we will thus also consider the variant CircINFcl(B) of the inference
problem, in which ψ is replaced by a clause over X . Moreover, we consider the
restriction CircINF1(B), in which Γ is assumed to be a single formula.

For the standard case B = {∧,∨,¬}, Cadoli and Lenzerini showed that
CircINF({∧,∨,¬}) is contained in Πp

2 [7]. The matching lower bound was given
by Eiter and Gottlob, who proved that CircINFcl({∧,∨,¬}) is Πp

2-hard, even if ψ
is restricted to be a single literal [11]. The upper bound can be easily generalized
to arbitrary sets B and the reduction given by Eiter and Gottlob can be com-
puted using constant-depth reductions indeed. We hence obtain the following
proposition matching our formalization.

Proposition 2 ([7,11]). CircINF(BF), CircINFcl(BF), and CircINF1(BF) are
Πp

2-complete, even if Q = Z = ∅.

4 Inference of B-Formulae

Theorem 3. Let B be a finite set of Boolean functions. Then CircINF(B) is

1. Πp
2-complete if [B] � M and [B] � L,

2. coNP-complete if [B] ⊆ M and [B] � E,
3. in coNP and ⊕L-hard if [B] ⊆ L and [B] � N,
4. AC0[2]-complete if [B] ⊆ N and [B] � I, and
5. in AC0 in all other cases (i. e., if [B] ⊆ E).

What is particularly interesting about Theorem 3 is that the complexity of cir-
cumscriptive inference differs for sets of Boolean functions being dual to each
other: while in propositional logic the inference problem for V- and E-formulae
is AC0-complete under ≤cd-reductions [2], it is not the case for circumscription.
CircINF(B) is coNP-hard if V2 ⊆ [B] (i. e., if ∨ ∈ [B]). Intuitively, this derives
from the fact that Γ ⊆ L(V2) is identified with the conjunction of the contained
formulae, i. e., Γ ≡

∧
i

∨
j xij , while the (P,Q,Z)-minimality of models for Γ

allows for modelling atomic negations. Hence, for V2 ⊆ [B], CircINF(B) is as
hard as the implication problem for arbitrary formulae; while for B ⊆ E, where
Γ ≡

∧
i xi, the complexity of the problem remains in AC0. This asymmetry

neatly contrasts with the complexity of inference for basic circumscription.

Theorem 4. Let B be a finite set of Boolean functions. Then BasicCircINF(B)
is

1. Πp
2-complete if [B] � M and [B] � L,

2. coNP-complete if [B] ⊆ M and [B] � E and [B] � V,
3. in coNP and ⊕L-hard if [B] ⊆ L and [B] � N,
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4. AC0[2]-complete if [B] ⊆ N and [B] � I, and
5. in AC0 in all other cases (i. e., if [B] ⊆ V or [B] ⊆ E).

The proof of Theorems 3 and 4 will be established from the propositions in this
section. To begin with, the following easy lemma reduces the number of clones
to be considered.

Lemma 5. Let B be a finite set of Boolean functions. Then CircINF(B) ≡cd
CircINF(B∪{1}), and CircINF(B) ≡cd CircINF(B∪{0}) if ¬ ∈ [B] or ∨ ∈ [B].
The equivalences hold even if Z = Q = ∅ is assumed.

From the proof of Lemma 5, we also obtain the following corollary that will be
of use in Sect. 5.

Corollary 6. Let B be a finite set of Boolean functions. Then CircINFcl(B) ≡cd
CircINFcl(B ∪ {0, 1}), even if Z = Q = ∅.

BF

M

VE

L

N

I

E1

L1

I1

Fig. 1. Boolean clones relevant to the
classification of CircINF(B)

Recall that when writing CircINF(B) for
a clone B, we identify B with an arbi-
trary, finite base for B. As a result of
Lemma 5, to completely classify the com-
plexity of CircINF(B) only the clones BF,
M, V, E, E1, L, L1, N, I, and I1 = I ∩ R1
have to be considered (see Fig. 1). For
example, if [B] � M and [B] � L then
CircINF(B) ≡cd CircINF(BF). Similarly
CircINF(B) ≡cd CircINF(M) if [B] ⊆ M,
[B] � E, and [B] � V. And if [B] ⊆
N and [B] � I (resp. [B] ⊆ L and
[B] � N) then CircINF(B) is equiva-
lent to CircINF(N) (resp. CircINF(L) or
CircINF(L1), depending on B).

Proposition 7. CircINF(M) is coNP-
complete, even if Q = Z = ∅.

Proof. For CircINF(M) ∈ coNP, let B be a finite set of Boolean functions such
that [B] = M, let (P,Q,Z) partition the set of propositions X , Γ ⊆ L(B) and
ψ ∈ L(B). It holds that Γ |=circ

(P,Q,Z) ψ iff for all (P,Q,Z)-minimal models σ of
Γ, σ |= Γ implies σ |= ψ.

For a monotone formula ϕ, we have that σ |= ϕ implies σ∪{x} |= ϕ for all x ∈
X . Thus, a model σ : X → {0, 1} is (P,Q,Z)-minimal for Γ iff (σ∪Z) \ {p} �|= Γ
for all p ∈ P with σ(p) = 1. One can hence check in polynomial time whether σ
is a (P,Q,Z)-minimal model of Γ. Consequently, to prove that Γ �|=circ

(P,Q,Z) ψ it
suffices to guess an assignment σ and then to check (in polynomial time according
to the discussion above) that σ is a minimal model of Γ falsifying ψ. This shows
that CircINF(B) ∈ coNP.
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As for coNP-hardness, we give a reduction from TAUT, that is, the problem
to decide whether a given formula in disjunctive normal form is a tautology.

Let ϕ ∈ L be in disjunctive normal form over propositions X = {x1, . . . , xn}.
Let Y = {y1, . . . , yn} be a set of propositions disjoint from X . Denote by ϕ′ the
formula derived from ϕ by replacing all negative literals ¬xi by yi. By virtue
of Lemma 1, we may w. l. o. g. assume that ∨,∧ ∈ B. We can hence define the
reduction function f as

f : ϕ �→
({ ∧

1≤i≤n

(xi ∨ yi)
}
, ϕ′, (X ∪ Y, ∅, ∅)

)
.

∧
1≤i≤n(xi ∨ yi) and ϕ′ are obviously monotone and can furthermore be con-

structed using AC0-circuits. We show that ϕ∈TAUT if and only if ({
∧

1≤i≤n(xi∨
yi)}, ϕ′, (X ∪ Y, ∅, ∅)) ∈ CircINF(B).

First assume that ϕ ∈ TAUT. Then σ |= ϕ(X) for any assignment σ : X →
{0, 1}. We define σ′ as the extension of σ to X∪Y defined by σ′(yi) = ¬σ(xi) for
all 1 ≤ i ≤ n. As a result, for σ1, σ2 : X → {0, 1}, the corresponding assignments
σ′

1, σ′
2 are incomparable under ≤(X∪Y,∅).

Now assume that there exists a (X ∪Y, ∅, ∅)-minimal model σ′ of the premise
such that σ′(xi) = σ′(yi) = 1 for some 1 ≤ i ≤ n. Then both assignments
σ′ \ {xi} <(P,Q,Z) σ′ and σ′ \ {yi} <(P,Q,Z) σ′ still satisfy

∧
1≤i≤n(xi ∨ yi), a

contradiction to σ′ being minimal. Hence, any (X ∪ Y, ∅, ∅)-minimal model σ′

of the premise satisfies σ′(xi) �= σ′(yi) for all 1 ≤ i ≤ n. As a result, any such
model is an extension of some assignment σ : X → {0, 1} as defined above. As
σ |= ϕ by assumption, we obtain σ′ |= ϕ[¬x1/y1, . . .¬xn/yn] = ϕ′.

As for ϕ /∈ TAUT, there exists an assignment σ : X → {0, 1} falsifying σ |= ϕ.
Let σ′ again be defined as the extension of σ to X∪Y satisfying σ′(yi) = ¬σ(xi).
Then σ′ is a (X ∪ Y, ∅, ∅)-minimal model of

∧
1≤i≤n(xi ∨ yi) such that σ′ �|= ϕ′.

Hence, σ′ witnesses {
∧

1≤i≤n(xi ∨ yi)} �|=circ
(P,Q,Z) ϕ

′. �

The following proposition re-proves coNP-hardness for a clone properly con-
tained in M. However, it does so only for propositional circumscription; addi-
tionally, the proof of Proposition 7 will be required to establish Theorem 15.

Proposition 8. CircINF(V) is coNP-complete, while BasicCircINF(V) is con-
tained in AC0.

Proof (Sketch). Membership of CircINF(V) in coNP follows from Proposition 7.
To prove the coNP-hardness of CircINF(V), let B be a finite set of Boolean
functions such that [B] = V. We reduce the unsatisfiability problem for formulae
in conjunctive normal form to CircINF(B). Given ϕ =

∧n
i=1 ci over propositions

in X , we map ϕ �→ (Γ, z, (P,Q,Z)), where P := X ∪ {x | x ∈ X} ∪ {gi | 1 ≤
i ≤ n}, Q := ∅, Z := {z} with z being a fresh proposition, and Γ is defined as
follows:

1. for each proposition x ∈ X , Γ contains the formula x ∨ x,
2. for each clause ci = xi1 ∨ · · · ∨ xiki ∨ ¬xiki+1 ∨ · · · ∨ ¬xini of ϕ, Γ contains

the ni + 1 formulae gi ∨ xi1, . . . , gi ∨xiki , gi ∨ xiki+1, . . . , gi ∨xini and gi ∨ z.
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It holds that if ϕ is unsatisfiable then every (P,Q,Z)-minimal model σ of Γ
sets σ(gi) = 0 for at least one 1 ≤ i ≤ n. As gi ∨ z ∈ Γ for all 1 ≤ i ≤ n, we
conclude Γ |= z. On the other hand, let σ be a (P,Q,Z)-minimal model of Γ. If
σ(z) = 0 then σ |=

∧n
i=1 gi, which in turn implies that σ ∩ X |= ϕ. Hence, all

(P,Q,Z)-minimal models of Γ satisfy z.
As the propositions gi need not be numbered by i, but can rather be indexed

according to their position in the input string, we conclude that the reduction can
be computable using AC0-circuits. Whence the coNP-hardness of CircINF(B)
under ≤cd-reductions follows.

To prove that BasicCircINF(B) ∈ AC0, let X = {x1, . . . , xn} denote the
set of of all propositions and let Γ ⊆ L(B), ψ ∈ L(B) be given. Then Γ ≡
c1∨

∧m
j=1

∨
i∈Ij

xi and ψ ≡ c2∨
∨

i∈J xi, where c1, c2 ∈ {0, 1} and I1, . . . , Im, J ⊆
{1, . . . , n}. It is readily observed that these representations can be computed
using AC0-circuits. Assume w. l. o g. that ψ �≡ 1 and let σ′ : {xi | i ∈ J} → {0, 1}
be the partial assignment defined by σ′(xi) = 0 for all i ∈ J . Then Γ |=circ ψ iff
σ′ can not be extended to a minimal model of ϕ. This is the case iff Γ[XJ/0] :=
c1∨

∧m
j=1

∨
i∈Ij\J xi is unsatisfiable. This is equivalent to not being satisfiable by

the all-1 assignment, because Γ[XJ/0] is monotone. As V-formulae can further
be evaluated in AC0 [26], BasicCircINF1(B) ∈ AC0 follows. �

An argument similar to the above can now be used to show that CircINF(E) ∈
AC0 for both propositional and basic circumscription.

Proposition 9. CircINF(E) is contained in AC0.

Proposition 10. CircINF(L) and CircINF(L1) are contained coNP and ⊕L-
hard, even if Q = Z = ∅.

Proof (Sketch). It is well known that minimality of models for sets of affine
formulae can be decided in polynomial time [14]. To prove that Γ �|=circ

(P,Q,Z) ψ,
we hence guess an assignment and verify that it is a (P,Q,Z)-minimal model of
Γ falsifying ψ.

For the ⊕L-hardness, observe that the classical inference problem for affine
formulae is hard for ⊕L under ≤cd-reductions [2]. Hence, mapping an instance
(Γ, ψ) over propositions X = {x1, . . . , xn} to (Γ ∪ Δ, ψ, (X ∪ Y, ∅, ∅)) with Y =
{y1, . . . , yn} and Δ = {xi ⊕ yi|1 ≤ i ≤ n} yields the desired reduction. �

Proposition 11. CircINF(N) is AC0[2]-complete, even if Q = Z = ∅.

Proof (Sketch). Let B be a finite set of Boolean functions such that [B] = N.
Let Γ(X) ⊆ L(B), ψ ∈ L(B), and let (P,Q,Z) be a partition of the set of
propositions X . Then ψ is equivalent to a literal and, similarly, Γ ≡

∧
ϕ∈Γ �ϕ.

Consequently, all (P,Q,Z)-minimal models σ of Γ satisfy σ(x) = 1 ⇐⇒ ϕ ≡ x
for some ϕ ∈ Γ, for all x ∈ P ∪Z. We can thus compute the above representation
of Γ and accept iff ψ ≡ ϕ for some ϕ ∈ Γ. Membership in AC0[2] follows from
the fact that N-formulae can be evaluated in AC0[2] (cf. [26]).

To establish the AC0[2]-hardness, we reduce MOD2 to of CircINF(B) by map-
ping the letters a and b to the B-representation of the negation and the identity,
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resp. The reduction can be computed using AC0-circuits, as one may w. l. o. g.
assume that the variable is the last symbol in both functions. �

5 Inference of Clauses

We will now consider the problem CircINFcl(B), where inference of a clause c
rather than a B-formula is to be checked. This variant of the inference problem
is close to the formalization of circumscriptive inference in Schaefer’s framework.
Indeed some upper and lower bounds can be derived from, e. g., [10]; however,
these do not suffice to obtain a complete classification in Post’s lattice.

Theorem 12. Let B be a finite set of Boolean functions. If [B] /∈ {L, L1} then
CircINFcl(B) and BasicCircINFcl(B) are ≤cd-equivalent to CircINF(B). Oth-
erwise, if [B] = L or [B] = L1 then CircINFcl(B) and BasicCircINFcl(B) are
coNP-complete.

Proof (Sketch). By Corollary 6, it suffices to consider the clones BF, M, V, L, N,
E and I. The Πp

2-completeness of CircINFcl(BF) follows from Proposition 2. For
the coNP-complete fragments, we distinguish the following two cases.

Clones M and V: Membership in coNP follows from a straightforward adapta-
tion of the algorithm given in the proof of Proposition 7. Note that the proof
of Proposition 8 shows that CircINF(B) is coNP-hard, even if ψ is restricted
to a single proposition. We adapt the reduction to show hardness for ba-
sic circumscription, too. Therefore, we drop z from the set of propositions,
remove from Γ the formulae gi ∨ z, 1 ≤ i ≤ n, and set the clause to be
inferred to ¬g1 ∨ · · · ∨ ¬gn. The modified reduction now satisfies that the
input formula ϕ is unsatisfiable iff Γ |=circ ∨n

i=1 ¬gi.
Clone L: Durand and Hermann showed that CircINFcl({⊕}) is coNP-complete

under polynomial time many-one reductions, even if Q = Z = ∅ [9]. Their re-
duction can indeed be computed using AC0-circuits. By virtue of Corollary 6,
it follows that CircINFcl(B) remains coNP-complete under ≤cd-reductions
for all L2 ⊆ [B] ⊆ L, where L2 = [{x⊕ y ⊕ z}].

To show the AC0[2]-completeness of CircINFcl(N), we follow the proof of Propo-
sition 11. Let B be a finite set of Boolean functions such that [B] = N and let
(P,Q,Z) partition the set of all propositions X . Further let Γ ⊆ L(B) and let c
be a clause. Then the set of (P,Q,Z)-minimal models σ for Γ is characterized by
σ(x) = 1 iff x ≡ ϕ for x ∈ X and some ϕ ∈ Γ. Now, Γ |=circ

(P,Q,Z) c iff σ |= c, which
can be tested using AC0-circuits. Hence, CircINFcl(B) is solvable in AC0[2]. For
the AC0[2]-hardness, note that the reduction given holds for CircINFcl, too.

It now remains to show CircINFcl(B) ∈ AC0 for all B such that [B] ⊆ E.
Analogously to the proof of Proposition 9, we have that Γ ≡

∧
x∈X′ for some set

X ′ ⊆ X and that all (P,Q,Z)-minimal models σ of Γ are uniquely determined
on X ′ ∪ P by the partial assignment σ′ defined by σ(x) = 1 iff x ∈ X ′. It thus
remains to test whether all such σ satisfy the given clause c. This is again the
case iff c does not include propositions from X \X ′ �
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Note that while CircINF(B) ≡cd CircINFcl(B) for all finite sets B such that
[B] /∈ {L, L1}, the restriction of CircINFcl to Q = Z = ∅ does not decrease the
complexity of the problem for V-formulae. Informally, this derives from the fact
that the all-0 assignment falsifying a V-formula is well-behaved w. r. t. minimiza-
tion, whereas for CircINFcl an arbitrary assignment σ may falsify the clause at
hand. It hence remains necessary to determine whether σ is among the minimal
models of the premise set.

6 Inference from Singletons

BF

M

E

E1

V

V0

L

L1L3L0

L2

N

N2

I

I0 I1

I2

Fig. 2. Boolean clones relevant to the clas-
sification of CircINF1(B)

As the last formalization of circum-
scriptive inference, we will consider
the restriction CircINF1, where Γ is
required to be a singleton set (i. e.,
a formula ϕ). Due to this restriction,
the constant 1 can no longer be gen-
erated as in the proof of Lemma 5;
the following restricted version holds
nevertheless.

Lemma 13. Let B be a finite set
of Boolean functions. If ∨ ∈ [B]
or ¬ ∈ [B], then CircINF1(B) ≡cd
CircINF1(B ∪ {0}). If ∧ ∈ [B], then
CircINF1(B) ≡cd CircINF1(B ∪ {1}).
The equivalences hold even if Z =
Q = ∅ is assumed.

Lemma 14. Let B be a finite set of
Boolean functions such that D2 ⊆
[B]. Then CircINF1(B) ≡cd CircINF1

(B ∪ {0}).

As a result of Lemmas 13 and 14, it suffices to consider the complexity of
CircINF1(B) for the clones depicted in Fig. 2.

The following theorem summarizes the complexity of CircINF1(B). As a re-
sult of the restriction to singleton sets, the inference problem for both V- and
L-formulae becomes tractable. Additionally restricting the problem to basic cir-
cumscription does not lower the complexity of the problem anymore.

Theorem 15. Let B be a finite set of Boolean functions. Then CircINF1(B)
and BasicCircINF1(B) are

1. Πp
2-complete if [B] � M and [B] � L,

2. coNP-complete if [B] ⊆ M and [B] � E and [B] � V,
3. AC0[2]-complete if [B] ⊆ L and [B] � I,
4. in AC0 in all other cases (i. e., if [B] ⊆ V or [B] ⊆ E).
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7 Concluding Remarks

In this paper we almost completely classified the complexity of the inference
problem for circumscription for different formalizations arising in the context of
Post’s lattice. The obtained complexity results form a trichotomy for all prob-
lems studied: depending on the set of Boolean connectives allowed, the infer-
ence problem is either Πp

2-complete, coNP-complete, or contained in P (more
precisely, complete for AC0[2] or contained in AC0, both of which form strict
subclasses of L). However, we have to leave open the complexity of CircINF(L)
and CircINF(L1), for which we were only able to obtain ⊕L-hardness and mem-
bership in coNP.

Our complexity results exhibit the trade-off between expressivity and trac-
tability in the worst-case: restricting the set of Boolean connectives allowed
does not lower the complexity of the circumscriptive inference problem unless
all functions in B are either monotone or affine—a significant restriction to its
expressivity; yet, the complexity of those fragments remains coNP-complete in
general and decreases only if further restrictions are imposed (cf. Tab. 2). This
supports previous results stating that non-monotonic reasoning is more com-
plex due to a ‘super-compact’ knowledge representation as compared to classical
propositional logic [6].

Non-monotonic reasoning had been introduced in hope of increasing the perfor-
mance of automated reasoning. Unfortunately, the increased computational com-
plexity of those problems seems to tell another story. But these results take into
consideration only the worst-case, they give no indication on the correlation of
nonmonotonicity and computational complexity. We thus believe that a finer anal-
ysis beyond the usual worst-case measures is an interesting topic for future work.

Table 2. The complexity of deciding circumscriptive inference for selected clones

[B] ⊆ E [B] = V [B] = M [B] = M
CircINFcl(B) ∈ P coNP-complete coNP-complete coNP-complete
CircINF(B) ∈ P coNP-complete ? coNP-complete
CircINF1(B) ∈ P ∈ P ∈ P coNP-complete
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Abstract. We present trichotomy results characterizing the complexity of rea-
soning with disjunctive logic programs. To this end, we introduce a certain defi-
nition schema for classes of programs based on a set of allowed arities of rules.
We show that each such class of programs has a finite representation, and for each
of the classes definable in the schema we characterize the complexity of the exis-
tence of an answer set problem. Next, we derive similar characterizations of the
complexity of skeptical and credulous reasoning with disjunctive logic programs.
Such results are of potential interest. On the one hand, they reveal some reasons
responsible for the hardness of computing answer sets. On the other hand, they
identify classes of problem instances, for which the problem is “easy” (in P) or
“easier than in general” (in NP).

1 Introduction

It is well known that the problem to decide whether a disjunctive logic program has an
answer set (the EAS problem, for short) is ΣP

2 -complete [1]. It is also well known that
putting restrictions on the input instances may affect the complexity. For example, the
EAS problem for normal logic programs is NP-complete [2].

In this paper we study the complexity of the EAS problem for classes of disjunctive
logic programs that can be defined by sets of program rule arities. We show that in each
case the problem is either in P, is NP-complete or is ΣP

2 -complete, and we characterize
the classes of programs that fall into each category. We extend this result to establish
similar characterizations for the problems of skeptical and credulous reasoning with
disjunctive logic programs. Such results are of potential interest. On the one hand, they
reveal some reasons responsible for the hardness of computing answer sets; cf. Lemmas
4 and 5. On the other hand, they identify classes of problem instances, for which the
problem is “easy” (in P) or “easier than in general” (in NP); cf. Lemmas 1 and 2.

Our results can be regarded as trichotomy results for the complexity of reasoning
tasks in disjunctive logic programming. Similar results are known for the complexity of
reasoning in other formalisms: propositional satisfiability [3,4,5], reasoning with mini-
mal models [6], default logic [7], and abductive reasoning [8]. There is however, an im-
portant distinction between those earlier papers and our approach. The results contained
there are concerned with the setting in which formulas are conjunctions of Boolean re-
lations, and the set of models of a formula is the intersection of the sets of models of
its constituent relations (that, in particular, implies the monotonicity of inference from
such formulas). The basic results concern the complexity of the satisfiability problem

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 303–315, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



304 M. Truszczyński

for classes of formulas determined by sets of Boolean relation allowed as formula con-
juncts. It turns out that there is a simple characterization of all those classes, for which
the problem is in P; moreover for all other classes the problem is NP-complete [3,4,5].
This result can be exploited to characterize the complexity of reasoning with systems,
in which basic reasoning tasks reduce to series of satisfiability tests [6,7,8]. In the set-
ting of disjunctive logic programs, these earlier results seem of little help. It is well
known that the answer-set semantics is nonmonotone and so, logic programs under the
answer-set semantics are not conjunctions of their rules. Thus, it is unclear that defining
classes of programs in terms of semantic properties of individual rules could yield any
useful insights.

2 Preliminaries

We fix an infinite countable set At of propositional variables. A disjunctive program (or
simply, program) over the set of atoms At is a collection of disjunctive logic program
rules, that is, expressions of the form

r = a1| . . . |ak ← b1, . . . , bm,not c1, . . . ,not cn, (1)

where ai, bi and ci are atoms from At . The disjunction a1| . . . |ak is the head of r
and the conjunction b1, . . . , bm,not c1, . . . ,not cn is the body of r. Further, we call
the triple [k,m, n] the arity of r. We denote the arity of r by a(r) and write a1(r),
a2(r) and a3(r) for the three components of a(r). Thus, under this notation, a(r) =
[a1(r), a2(r), a3(r)]. If a1(r) ≥ 1, we call r proper. Otherwise, a1(r) = 0 and r
is a constraint. Programs consisting of proper rules are proper programs. Similarly,
programs consisting of constraints only are constraint programs.

We recall that given a program P and a set of atoms M (an interpretation), the
reduct of P with respect to M , PM , is the program obtained by removing all rules
with a literal not c, where c ∈ M , in the body and, then, removing all negative literals
(negated atoms) from the bodies of all remaining rules. A set of atoms M is an answer
set of a disjunctive program P if M is a minimal model of PM [9].

For a program P , we denote by P and P the programs consisting of all proper rules
and of all constraints in P , respectively. The following result is well known.

Theorem 1. A set M ⊆ At is an answer set of a program P if and only if M is an

answer set of P and a model of P .

One can define classes of logic programs by specifying arities of rules. For instance,
the set {[1, 1, 0], [0, 1, 0]} defines the set of all Horn programs such that each rule has
at most one atom in the body. Some classes of programs do not have such a finitary
representation. For instance, the class of all Horn programs with constraints can be
defined by the set {[k,m, 0] | k ≤ 1, 0 ≤ m}, but there is no finite set of arities that
could be used instead. To handle such cases, we introduce now a general representation
schema for classes of programs defined by sets of arities.

Let U = {0, 1, . . .} ∪ {∞}. We consider U to be ordered by the relation ≤ (the
standard ≤ ordering relation on non-negative integers, extended by i ≤ ∞, for every
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i = 0, 1 . . .). Next, we define T = {[k,m, n] | k,m, n ∈ U}. Thus, T contains all
arities, as well as additional triples — those containing at least one occurrence of ∞.
We refer to triples of that latter sort as superarities. We emphasize that superarities are
not arities as we do not consider infinitary rules. If α ∈ T , we write α1, α2 and α3 for
the components of α.

Let α, β ∈ T . We define α * β if (1) αi ≤ βi, for i = 1, 2, 3 and, (2) if α1 = 0 then
β1 = 0. We write α ≺ β when α * β and α �= β.

If Δ ⊆ T , then we define F(Δ) to be the set of all finite programs P that satisfy
the following condition: for every rule r ∈ P there is α ∈ Δ such that a(r) * α. The
condition (2) in the definition of * allows us to distinguish between classes of proper
programs and classes of programs with constraints. Indeed, without the condition (2),
every class of programs of the form F(Δ) would contain constraints. With the condition
(2), we can specify constraint-free classes of programs by means of sets Δ such that for
every α ∈ Δ, α1 ≥ 1. Including in Δ elements α with α1 = 0 yields classes of
programs with constraints. As there are classes of proper programs that are of interest
(Horn programs and normal logic programs are typically defined as consisting of proper
rules only), the distinction is needed and motivates the condition (2) in the definition
of *.

Using this schema we can define several important classes of programs. For instance,
the class of proper Horn programs can be described as F({[1,∞, 0]}) and the class of
normal logic programs with constraints as F({[1,∞,∞], [0,∞,∞]}).

Our main goal in this paper is to determine the complexity of the EAS problem when
input programs come from classes F(Δ), for Δ ⊆ T .

3 The Case of Finite Δ

In this section we tackle the case when Δ is finite. We note that given a finite set Δ ⊆ T ,
the problem to decide the membership of a program in the class F(Δ) is in P.

We start by establishing the upper bounds on the complexity of the EAS problem
for classes F(Δ) given by some particular finite sets Δ of arities. Our first result is
concerned with the following classes: F({[∞,∞, 0]}) — the class of proper positive
disjunctive programs; F({[1,∞, 0], [0,∞,∞]}) — the class of programs whose every
rule is either a proper Horn rule or a constraint; F({[∞, 1, 0], [0, 1, 0]}) — the class
of dual Horn programs, that is, programs whose every rule, when viewed as a proposi-
tional clause, is a dual Horn clause; and F({[i, j, 0] ∈ T | i + j ≤ 2}) — the class of
positive programs whose every rule consists of at most two literals. For each of these
classes of programs, the EAS problem is easy (that is, in P).

Lemma 1. If Δ is one of:

1. {[∞,∞, 0], [0, 0, 0]}
2. {[1,∞, 0], [0,∞,∞]}
3. {[∞, 1, 0], [0, 1, 0]}
4. {[i, j, 0] ∈ T | i + j ≤ 2}

then the EAS problem for F(Δ) is in P.
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Proof: We omit the proofs of the first two statements, which are quite straightforward.
Thus, let us assume that P ∈ F({[∞, 1, 0], [0, 1, 0]}) or P ∈ F({[i, j, 0] ∈ T | i +

j ≤ 2}). Then P is a dual Horn program, or P is positive and every clause in P consists
of two literals. In each case, one can decide in polynomial time whether P has a model.
If the answer is “no,” then P has no answer sets. Otherwise, P has a model, say M .
Since M is a model of P , there is a subset M ′ of M such that M ′ is a minimal model

of P . We have P
M ′

= P . Thus, M ′ is an answer set of P . Since M satisfies P and
each rule in P is of the form ← a or ← a, b, M ′ satisfies P , too. Thus, M ′ is an answer
set of P . Again, the assertion follows. �

The second result establishes sufficient conditions for the EAS problem to be in the class
NP. It turns out to be the case for the following three classes of programs:F({[1,∞,∞],
[0,∞,∞]}) — the class of normal logic programs with constraints; F({[∞, 1,∞],
[0,∞,∞]}) — the class of programs whose reducts consist of proper dual Horn rules
and constraints; and F({[∞,∞, 0], [0,∞, 0]}) — the class of positive programs.

Lemma 2. If Δ is one of:

1. {[1,∞,∞], [0,∞,∞]}
2. {[∞, 1,∞], [0,∞,∞]}
3. {[∞,∞, 0], [0,∞, 0]}

then the EAS problem for F(Δ) is in NP.

Proof: If Δ = {[1,∞,∞], [0,∞,∞]}, F(Δ) consists of normal logic programs with
constraints. In this case, the result is well known [2].

Next, let Δ = {[∞, 1,∞], [0,∞,∞]} and P ∈ F(Δ). To prove the assertion it is
enough to show that there is a polynomial time algorithm for deciding whether a set of
atoms M ⊆ At(P ) is an answer set of P . To this end, we note that M is a minimal

model of P
M

if and only if for every a ∈ M , the program P
M ∪ { ← a} ∪ { ← b | b ∈

At(P ) \ M} does not have a model. Since P
M ∪ { ← a} ∪ { ← b | b ∈ At(P ) \ M}

is dual Horn, verifying whether M is a minimal model of P
M

can be accomplished

in polynomial time. In addition, checking that M is a model of P can also be done in
polynomial time, too. Thus, in this case, the assertion follows.

Finally, if Δ = {[∞,∞, 0], [0,∞, 0]} and P ∈ F(Δ), then deciding whether P has
an answer set is equivalent to deciding whether P has a model. Since the problem to
decide whether P has a model is in NP, the assertion follows. �

Next, we will prove several lower-bound results. We will first exhibit classes of pro-
grams of the form F(Δ) for which the EAS problem is NP-hard. To this end, we need
a lemma establishing the NP-hardness of the SAT problem for some simple classes of
CNF theories. For the most part, the result is folklore. We sketch an argument for the
sake of completeness.

Lemma 3. The SAT problem restricted to each of the following classes of CNF theories
is NP-hard:

1. the class of all CNF formulas ψ such that each clause of ψ is a disjunction of two
negated atoms, or of at most three atoms
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2. the class of all CNF formulas ψ such that each clause of ψ consists of at most two
literals, or is a disjunction of two atoms and one negated atom

3. the class of all CNF formulas ψ such that each clause of ψ consists of at most
two atoms, or of one negated atom, or is a disjunction of an atom and two negated
atoms

4. the class of all CNF formulas ψ such that each clause of ψ is a disjunction of two
atoms, or of at most three negated atoms.

Proof: We will only prove the case (3). The argument in all other cases is similar.
Let ϕ be a CNF formula whose every clause has three literals, and let X be a set of

atoms occurring in ϕ. For each atom z ∈ X we introduce a fresh atom z′. Next, in each
clause c we replace some of its positive literals a with ¬a′, and some of its negative
literals ¬b with b′ so that the resulting clause, we will denote it by ĉ, is the disjunction
of exactly one atom and two negated atoms. Such replacements can always be found.

Finally, we introduce one more fresh atom, say f , and define F (ϕ) as follows:

F (ϕ) = {z ∨ z′ | z ∈ X} ∪ {f ∨ ¬z ∨ ¬z′ | z ∈ X} ∪ {¬f} ∪
{ĉ | c is a clause in ϕ}

It is evident that F (ϕ) is in the class of theories under consideration.
We will show thatϕ has a model if and only if F (ϕ) has a model. To this end, we note

that models of F (ϕ) (if exist) are of the form M ∪ {z′ | z ∈ X \ M}, where M ⊆ X .
It is now easy to see that M is a model of ϕ if and only if M ∪ {z′ | z ∈ X \ M} is a
model of F (ϕ). Thus, the claim and, consequently, the assertion, follows.

As we noted, the argument for the remaining classes is similar. We only need to
change the definition of ĉ and use clauses ¬z ∨¬z′ instead of f ∨¬z ∨¬z′ (there is no
need to introduce f , as clauses being the disjunctions of two negated atoms are allowed
in formulas in each of the classes considered in (1), (2) and (4)). �

We will now use Lemma 3 to establish the NP-hardness of the EAS problem for F(Δ)
for several simple sets Δ ⊆ T .

Lemma 4. If Δ is any of:

1. {[1, 0, 1]}
2. {[2, 0, 0], [0, 0, 1]}
3. {[3, 0, 0], [0, 2, 0]}
4. {[2, 1, 0], [0, 2, 0]}
5. {[2, 0, 0], [1, 2, 0], [0, 1, 0]}
6. {[2, 0, 0], [0, 3, 0]}

then the EAS problem for F(Δ) is NP-hard.

Proof (sketch): (1) The proof of the NP-completeness of the EAS problem for normal
logic programs given by Marek and Truszczyński [2] establishes the assertion (1).

(2) We will construct a reduction from the SAT problem concerning the class considered
in Lemma 3(4). Let ϕ be a CNF of the appropriate form. We denote by pos(ϕ) the set
of all clauses in ϕ that are of the form a∨ b, where a, b ∈ At . We denote by neg(ϕ) the
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set of all remaining clauses in ϕ (all of them are disjunctions of at most three negative
literals).

For every clause c = ¬y1 ∨ . . .∨¬yk in neg(ϕ), we introduce a fresh atom xc. Next,
we define

P (ϕ) = {a|b ← | a ∨ b ∈ pos(ϕ)} ∪
{xc|yi ← | c ∈ neg(ϕ),

c = ¬y1 ∨ . . . ∨ ¬yk, 1 ≤ i ≤ k},
Q(ϕ) = {← not xc | c ∈ neg(ϕ)}, and

R(ϕ) = P (ϕ) ∪Q(ϕ).

One can now show that ϕ is satisfiable if and only if R(ϕ) has an answer set (we omit
the details). Since R(ϕ) ∈ F(Δ), the assertion follows by Lemma 3(4).

(3)-(6) In all the remaining cases, we exploit the fact that P ∈ F(Δ) has an answer
set if and only if P has a model (the same argument that we used in the proof of Lemma
2 applies). The latter problem for each of the cases (3)-(6) is equivalent to the satisfi-
ability problem for the classes considered in Lemma 3(1)-(4), respectively. In each of
these cases the problem is NP-hard (Lemma 3), and so the assertion follows. �

The next lemma establishes conditions guaranteeing ΣP
2 -hardness of the EAS problem.

Eiter and Gottlob [1] proved that given P ∈ F({[2, 0, 0], [1, 3, 0], [1, 0, 1]}), it is ΣP
2 -

hard to decide whether P has an answer set. The proof can be modified to the case when
the class of input programs is restricted to F({[2, 0, 0], [1, 2, 0], [1, 0, 1]}), as clauses of
the arity [1, 3, 0] can be simulated by clauses of arity [1, 2, 0]. Moreover, in the construc-
tion provided by Eiter and Gottlob, the only rule of the arity [1, 0, 1] used is a constraint
and it can be simulated by a rule of the arity [0, 0, 1]. Thus, the ΣP

2 -hardness holds also
for the class F({[2, 0, 0], [1, 2, 0], [0, 0, 1]}) of programs. We omit the details and state
the result only.

Lemma 5. If Δ is any of:

1. {[2, 0, 0], [1, 2, 0], [0, 0, 1]}
2. {[2, 0, 0], [1, 2, 0], [1, 0, 1]}

then the EAS problem for F(Δ) is ΣP
2 -hard.

We will now derive the main result of this section. It provides a complete characteriza-
tion of the complexity of the EAS problem for the class F(Δ). To state the result we
introduce one more piece of notation. Given Δ,Θ ⊆ T , we write Δ * Θ if for every
α ∈ Δ there is β ∈ Θ such that α * β.

Theorem 2. Let Δ ⊆ T be finite.

(A) If

1. Δ * {[∞,∞, 0], [0, 0, 0]}, or
2. Δ * {[1,∞, 0], [0,∞,∞]}, or
3. Δ * {[∞, 1, 0], [0, 1, 0]}, or
4. Δ * {[i, j, 0] ∈ T | i + j ≤ 2},
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then the EAS problem for F(Δ) is in P.

(B) Otherwise, if

1. Δ * {[1,∞,∞], [0,∞,∞]}, or
2. Δ * {[∞, 1,∞], [0,∞,∞]}, or
3. Δ * {[∞,∞, 0], [0,∞, 0]},

then the EAS problem for F(Δ) is NP-complete.

(C) Otherwise, the EAS problem for F(Δ) is ΣP
2 -complete.

Proof: The claim (A) follows directly from Lemma 1. Thus, let us assume that Δ does
not fall under the scope of (A) and satisfies the assumptions of (B). By Lemma 2, the
latter implies that the EAS problem for F(Δ) is in NP.

If {[1, 0, 1]} * Δ or {[2, 0, 0], [0, 0, 1]} * Δ, the NP-hardness of the EAS problem
for F(Δ) follows from Lemma 4, parts (1) and (2), respectively. Thus, let us assume
that {[1, 0, 1]} �* Δ and {[2, 0, 0], [0, 0, 1]} �* Δ.

Since {[1, 0, 1]} �* Δ, we have Δ * {[∞,∞, 0], [0,∞,∞]}. Since Δ does not
satisfy the condition (A2), {[2, 0, 0]} * Δ. Since {[2, 0, 0], [0, 0, 1]} �* Δ, {[0, 0, 1]} �*
Δ. Thus, Δ * {[∞,∞, 0], [0,∞, 0]}.

Since Δ does not satisfy the condition (A1), {[0, 1, 0]} * Δ. Similarly, since Δ does
not satisfy the condition (A3), {[1, 2, 0]} * Δ or {[0, 2, 0]} * Δ. We also have that
Δ does not satisfy the condition (A4). Thus, there is α ∈ Δ such that α1 + α2 ≥ 3.
Since we already proved that {[2, 0, 0]} * Δ, it follows that at least one of the following
conditions holds: {[3, 0, 0], [0, 2, 0]} * Δ, {[2, 1, 0], [0, 2, 0]} * Δ, {[2, 0, 0], [1, 2, 0],
[0, 1, 0]} * Δ, or {[2, 0, 0], [0, 3, 0]} * Δ. Thus, the NP-hardness of the EAS problem
for F(Δ) follows again from Lemma 4 and completes the proof of (B).

To prove (C), we observe that if Δ does not fall under the scope of (B), then {[2, 0, 0],
[1, 2, 0], [0, 0, 1]} * Δ. Indeed, since Δ does not satisfy (B1), {[2, 0, 0]} * Δ. Simi-
larly, since Δ does not satisfy (B2), {[1, 2, 0]} * Δ. Finally, since Δ does not satisfy
(B3), {[0, 0, 1]} * Δ or {[1, 0, 1]} * Δ. Thus, the ΣP

2 -hardness follows by Lemma 5.
Since the EAS problem is in ΣP

2 even without any restrictions on the class of programs,
both (C) and the assertion of the lemma follows. �

4 The Case of Infinite Δ

The question we study now is whether there are interesting classes of programs of the
form F(Δ), when Δ is infinite. The main result of this section is that by allowing Δ to
be infinite, we do not obtain any new classes of programs. In other words, for every class
of programs of the form F(Δ) there is a finite set Δ′ ⊆ T such that F(Δ) = F(Δ′).

A sequence {αk}∞k=1 is monotone (strictly monotone) if for every k, αk * αk+1

(αk ≺ αk+1, respectively). Let {αk}∞k=1 be a monotone sequence of elements of T .
We define the limit of this sequence as α∞ = [(α∞)1, (α∞)2, (α∞)3], where (α∞)i =
sup{(αk)i | k = 1, 2 . . . , }, for i = 1, 2, 3. Let Δ ⊆ T . A monotone sequence {αk}∞k=1
of elements of Δ is maximal if there is no α ∈ Δ such that α∞ ≺ α. We define A(Δ)
to be the set of the limits of maximal sequences in Δ.

We have the following two lemmas (we omit the proof of the first one as it is evident).
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Lemma 6. Let {βk}∞k=1 be a strictly monotone sequence of elements from T . For every
α ∈ T , if α ≺ β∞, then there is k such that α ≺ βk.

Lemma 7. Let Δ ⊆ T and α ∈ Δ. Then, there is α′ ∈ A(Δ) such that α * α′.

Proof: Let X = {β ∈ Δ | α * β}. If X has a maximal element, say γ, a sequence with
each term equal to γ is maximal. Its limit, also equal to γ, clearly satisfies γ ∈ A(Δ)
and α * γ. Thus, the assertion follows.

Otherwise, X has no maximal elements. Let α1 be any element in X (we note that
X �= ∅, as α ∈ X). Let k ≥ 1 and let 〈α1, . . . , αk〉 be a strictly monotone sequence
of k elements in X , for some k ≥ 1. Since X has no maximal elements, X contains
elements that are strictly greater than αk. Let us select as αk+1 an element β ∈ X such
that αk ≺ β and αk

i < βi on as many positions i = 1, 2, 3 as possible. An infinite
sequence we define in that way, we will denote it by α, is strictly monotone. Let us
assume that there is β ∈ Δ such that α∞ ≺ β. It follows that there is j, 1 ≤ j ≤ 3,
such that (α∞)j < βj . Thus, (α∞)j = m, for some integer m, and there is n such that
(αn)j = m. Since αn+1 * β and (αn) = (αn+1)j = m, the number of positions i
such that (αn)i < (αn+1)i is strictly smaller than the number of positions i such that
(αn)i < βi. Since β ∈ X , that contradicts the way we constructed the sequence α.

It follows that the sequence {αk}∞k=1 is maximal for Δ and so, the assertion follows
in this case, too. �

We now have the following properties. We provide a proof for the first of them and omit
proofs, rather direct and technical, of the remaining two.

Proposition 1. For every Δ ⊆ T , F(Δ) = F(A(Δ)).

Proof: To prove the assertion, it is enough to show that for every arity α (no occurrence
of ∞), {α} * Δ if and only if {α} * A(Δ). Let us first assume that {α} * Δ.
It follows that there is an element α′ ∈ Δ such that α * α′. By Lemma 7, there is
α′′ ∈ A(Δ) such that α′ * α′′. Thus, α * α′′ and so, {α} * A(Δ).

Conversely, let {α} * A(Δ). It follows that there is β ∈ A(Δ) such that α * β.
Since β ∈ A(Δ), there is a monotone sequence {βk}∞k=1 of elements of Δ such that its
limit is β. Wlog we can assume that either starting with some k0, the sequence {βk}∞k=1
is constant, or the sequence β is strictly monotone. In the first case, α * β = βk0 .
Since βk0 ∈ Δ, {α} * Δ. In the second case, Lemma 6 implies that there is k such
that α ≺ βk, and again {α} * Δ follows. �

Proposition 2. For every Δ, A(Δ) is an antichain.

Proposition 3. Every antichain in the partially ordered set 〈T ,*〉 is finite.

These properties imply the main result of this section. It asserts that every class of
programs F(Δ) can be defined by means of a finite set Δ′ that is an antichain in 〈T ,*〉.

Theorem 3. For every set Δ ⊆ T there is a finite subset Δ′ ⊆ T such that Δ′ is an
antichain and F(Δ) = F(Δ′).

Proof: Let us define Δ′ = A(Δ). By Propositions 2 and 3, Δ′ is a finite antichain in
〈T ,*〉, and by Proposition 1, F(Δ) = F(Δ′). Thus, the theorem follows. �
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5 The Complexity of Skeptical and Credulous Reasoning

The EAS problem is just one example of a reasoning task that arises in the context of
disjunctive logic programs with the answer-set semantics. There are several other tasks
that are of interest, too. They concern deciding whether a program nonmonotonically
entails a literal, that is an atom, say a, or its negation¬a. For a disjunctive logic program
P and a literal l we say that

1. P skeptically entails l, written P |=s l, if M |= l, for every answer set M of P (we
recall that if M is a model (a set of atoms) and a is an atom, M |= a if a ∈ M , and
M |= ¬a if a /∈ M )

2. P credulously entails l, written P |=c l, if there is an answer set M of P such that
M |= l.

We note that P |=s l if and only if P �|=c l, where l is l’s dual literal. Thus, to establish
fully the complexity of deciding nonmonotonic entailment it is enough to focus on
deciding whether P |=c ¬a and P |=s ¬a, where a is an atom. These two decision
tasks were studied by Eiter and Gottlob [1], who proved that, in general, the first one is
ΣP

2 -complete and the second one is ΠP
2 -complete.

Reasoning with answer sets is related to circumscription and closed-world reason-
ing with propositional theories. A detailed study of the complexity of those forms of
reasoning was conducted by Cadoli and Lenzerini [10]. Using Theorem 2 and one of
the results from that paper (which we state in the proof below), one can characterize
in terms of our definition schema the complexity of deciding, given a program P and
an atom a, whether P |=c ¬a and P |=s ¬a. The two problems are addressed in the
following two theorems.

Theorem 4. Let Δ ⊆ T be finite.

(A) If

1. Δ * {[1,∞, 0], [0,∞,∞]}, or
2. Δ * {[∞, 1, 0], [0, 1, 0]}, or
3. Δ * {[i, j, 0] ∈ T | i + j ≤ 2},

then the problem to decide whether P |=c ¬a, where P ∈ F(Δ) and a is an atom, is
in P.

(B) Otherwise, if

1. Δ * {[1,∞,∞], [0,∞,∞]}, or
2. Δ * {[∞, 1,∞], [0,∞,∞]}, or
3. Δ * {[∞,∞, 0], [0,∞, 0]},

then the problem to decide whether P |=c ¬a, where P ∈ F(Δ) and a is an atom, is
NP-complete.

(C) Otherwise, the problem to decide whether P |=c ¬a, where P ∈ F(Δ) and a is an
atom, is Σ2

P -complete.



312 M. Truszczyński

Proof: It is well known that P has an answer set M such that M |= ¬a (that is, a /∈ M )
if and only if P ∪ { ← a} has an answer set. Let Δ ⊆ T be finite and let us define
Δ′ = Δ ∪ {[0, 1, 0]}. Clearly, if P ∈ F(Δ), then P ∪ { ← a} ∈ F(Δ′). Moreover, if
Δ falls under the scope of (A) ((A) or (B), respectively) of this theorem then Δ′ falls
under the scope of (A) ((A) or (B), respectively) of Theorem 2. Consequently, the upper
bound follows by Theorem 2.

The proof of hardness exploits earlier results on the hardness of the EAS problem.
The reductions are provided by the following constructions. For a program P we define
P ′ = P ∪{a|b}, P ′′ = P ∪{a ← not b; b ← not a}, and P ′′′ = P ∪{a ← bd(r) | r ∈
P}, where a and b are fresh atoms. Clearly, P has an answer set if and only if P ′ |=c ¬a
(P ′′ |=c ¬a, P ′′′ |=c ¬a, respectively). We omit the details due to space limits. �.

Theorem 5. Let Δ ⊆ T be finite.

(A) If Δ * {[1,∞, 0], [0,∞,∞]}, then the problem to decide whether P |=s ¬a, where
P ∈ F(Δ) and a is an atom, is in P.

(B) Otherwise, if

1. Δ * {[1,∞,∞], [0,∞,∞]}, or
2. Δ * {[∞, 1,∞], [0,∞,∞]}

then the problem to decide whether P |=s ¬a, where P ∈ F(Δ) and a is an atom, is
coNP-complete.

(C) Otherwise, the problem to decide whether P |=s ¬a, where P ∈ F(Δ) and a is an
atom, is ΠP

2 -complete.

Proof: It is well known that P has an answer set such that M �|= ¬a (that is, a ∈ M)
if and only if P ∪ { ← not a} has an answer set. That observation implies all upper
bound results (by a similar argument as that used in the proof of the previous theorem).

We will now prove the lower bounds for the cases (B) and (C). Let us assume
that Δ does not satisfy (A) but falls under the scope of (B). If Δ satisfies (B1), then
{[1, 0, 1]} * Δ. Let P ∈ F(Δ) and let a and a′ be fresh atoms. We note that P has an
answer set if and only if P ∪ {a ← not a′} has an answer set M such that a ∈ M or,
equivalently, if and only if P ∪ {a ← not a′} �|=s ¬a. Thus, the hardness follows (cf.
Lemma 4(1)).

Let us assume then that Δ does not satisfy (B1). Then, we have that {[2, 0, 0]} * Δ.
It follows from the results of Cadoli and Lenzerini [10] that it is NP-complete to decide
whether a given 2CNF theory, whose every clause is a disjunction of two atoms, has a
minimal model that contains a given atom a. As minimal models of such theories are
precisely answer sets of the corresponding disjunctive program, it follows that given a
program P ∈ F(Δ) and an atom a, it is coNP-complete to decide whether P |=s ¬a.

Finally, let us assume that neither (A) nor (B) apply to Δ. Then [1, 2, 0] ∈ Δ and
[2, 0, 0] ∈ Δ. Eiter and Gottlob [1] proved that if P ∈ F({[2, 0, 0], [1, 3, 0]}) and a is an
atom then it is ΠP

2 -hard to decide whether P |=s ¬a. That result can be strengthened
to the case when P ∈ F({[2, 0, 0], [1, 2, 0]}), as clauses of the arity [1, 3, 0] can be
simulated by clauses of arity [1, 2, 0] (cf. the comments preceding Lemma 5). �

We note that credulous reasoning is simple (in P or in NP) for several classes of pro-
grams. In contrast, there are fewer classes of programs, for which skeptical reasoning
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is simple (in P or coNP). The main reason behind this asymmetry is that in the cases
(A2), (A3) and (B3) of Theorem 4 (positive programs) answer sets and minimal models
coincide. Thus, in these cases, credulous reasoning asks for the existence of a minimal
model that does not contain an atom a, which is equivalent to the existence of a model
(not necessarily minimal) that does not contain a. In other words, the requirement of
minimality becomes immaterial (one source of complexity disappears). This is not so
with skeptical reasoning, where not having a in any minimal model is not the same as
not having a in any model. A similar comparison of skeptical and credulous reasoning
for positive programs was offered by Eiter and Gottlob for the coarser setting of classes
of programs they considered [1].

6 Another Representation Schema

Finally, we consider briefly an alternative way, in which classes of programs could be
described by means of arities of rules. When defining the class F(Δ), we view each
element α ∈ Δ as a shorthand for the set of all arities β such that β * α. In other words,
Δ is an implicit representation of the set of all allowed arities: not only those arities that
are explicitly listed in Δ are legal but also those that are “dominated” by them.

There is another, more direct (more explicit), way to use arities to define classes of
programs. Let Δ ⊆ T be a set of arities, that is, we now do not allow superarities in
Δ. We define G(Δ) to consist of all finite programs P such that for every rule r ∈ P ,
a(r) ∈ Δ. Thus, when defining the class G(Δ), Δ serves as an explicit specification of
the set of allowed arities.

One can show that the results of Section 3can be adapted to the setting of classes of the
form G(Δ), where Δ is a finite set of arities. In particular, we have the following result.

Theorem 6. Let Δ ⊆ T be a finite set of arities. If there are no k,m ≥ 1 such that
{[k, 0, 0]} ∈ Δ or {[k, 0,m]} ∈ Δ, then the EAS problem for G(Δ) is in P. Otherwise:

(A) If

1. Δ * {[∞,∞, 0], [0, 0, 0]}, or
2. Δ * {[1,∞, 0], [0,∞,∞]}, or
3. Δ * {[∞, 1, 0], [0, 1, 0]}, or
4. Δ * {[i, j, 0] ∈ T | i + j ≤ 2},

then the EAS problem for G(Δ) is in P.

(B) Otherwise, if

1. Δ * {[1,∞,∞], [0,∞,∞]}, or
2. Δ * {[∞, 1,∞], [0,∞,∞]}, or
3. Δ * {[∞,∞, 0], [0,∞, 0]},

then the EAS problem for G(Δ) is NP-complete.

(C) Otherwise, the EAS problem for G(Δ) is Σ2
P -complete.
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Proof (sketch): Let us first assume that there are no k,m ≥ 1 such that {[k, 0, 0]} ∈ Δ
or {[k, 0,m]} ∈ Δ, and let P ∈ G(Δ). Then every rule in P has at least one positive
atom in the body and so, M = ∅ is the unique answer set of P . It can be verified in

polynomial time whether M = ∅ is a model of P . Thus, the EAS problem for programs
in G(Δ) can be decided in polynomial time.

To prove the remaining part of the assertion, we note that the upper bound is implied
directly by Theorem 2 (as G(Δ) ⊆ F(Δ)). To prove the lower bounds, we observe
that if there are k,m ≥ 1 such that {[k, 0, 0]} ∈ Δ or {[k, 0,m]} ∈ Δ, then the EAS
problem for F(Δ) can be reduced to the EAS problem for G(Δ). Indeed, let P ∈ F(Δ)
and let r ∈ P . Then there is α ∈ Δ such that a(r) * α. Having {[k, 0, 0]} ∈ Δ or
{[k, 0,m]} ∈ Δ, where k,m ≥ 1, allows us to “simulate” the effect of r with a rule
r′ of arity α obtained by repeating atoms in the head of r, and by inserting an atom
a and a negated atom not b, where a and b are fresh, as many times as necessary in
the body of r to “reach” the arity α. We also add the rule a| . . . |a ← or a| . . . |a ←
not a′, . . . ,not a′, where a′ is another fresh atom and a and not a′ are repeated k, or
k and m times, respectively. �

Thus, as long as Δ is finite, our approach and results obtained earlier apply to the classes
G(Δ), as well. In particular, given a finite Δ, there is a polynomial-time (in the size of
Δ) algorithm to decide which of the cases of Theorem 6 applies. In addition, there is a
polynomial-time algorithm to decide whether P ∈ G(Δ).

If Δ is infinite, the situation is different. For some infinite sets Δ there is no problem.
For instance, when Δ is specified by means of a finite set Δ′ of arities and superarities
and consists of all arities α such that {α} * Δ, then we have G(Δ) = F(Δ′). Thus,
Theorem 2 can be used to determine the complexity of the EAS problem for programs
from the class G(Δ). However, in general, each finitary representation schema for the
classes G(Δ) would need to be studied separately and, possibly, it might not lend itself
easily to reductions to Theorem 2.

7 Discussion

In the paper, we studied classes of programs defined in terms of “legal” arities of rules.
Specifically, we focused on classes of programs of the form F(Δ), where Δ ⊆ T . We
proved that each such class has a finite representation and, for each finite set Δ, we
determined the complexity of reasoning tasks for programs from F(Δ). We also con-
sidered a related family of classes of programs, namely those of the form G(Δ), where
Δ ⊆ T consists of arities only. For classes of programs of that form we established
the complexity of the EAS problem, as well as that of the credulous and skeptical rea-
soning. In each case, the complexity is given by one of three complexity classes (P,
NP-complete, and ΣP

2 -complete; or P, coNP-complete, and ΠP
2 -complete, depending

on the type of the reasoning task).
As we noted, our trichotomy results have some similarity to the dichotomy result

by Schaefer, and its corollaries for other logic formalisms: the abductive reasoning [8],
reasoning with minimal models [6] and, reasoning in default logic [7]. The classes of
theories and formulas considered in those papers are defined in terms of boolean re-
lations that are allowed in the language [3,4,5]. That definition schema satisfies the
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dichotomy property: for every class of formulas definable in that schema, the satisfia-
bility problem is in P, or is NP-complete. The monotonicity of the propositional logic
(the set of models of the conjunction of two formulas is the intersection of the sets
of models of the conjuncts) is a fundamental property required by that result. Since
logic programs with the answer-set semantics do not satisfy the monotonicity property,
it is unclear how to extend that formalism the approach originated by Schaefer. Thus,
we based our approach on a different definition schema developed specifically for pro-
grams, and related to the “complexity” of rules as measured by the numbers of atoms
in the head, and positive and negative literals in the body.

It turns out though, that some classes of programs/theories appear prominently in
both settings (for instance: Horn programs and Horn theories; positive programs with
no more than two literals per rule and 2CNF theories). It is then an interesting problem
whether a result based on the classification in terms of types of boolean relations can
be obtained for disjunctive logic programs. One possibility might be to consider a more
general setting of answer-set programs in the language of propositional logic under the
semantics of equilibrium models [11].
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Abstract. Belief Logic Programming (BLP) is a novel form of quanti-
tative logic programming in the presence of uncertain and inconsistent
information, which was designed to be able to combine and correlate
evidence obtained from non-independent information sources. BLP has
non-monotonic semantics based on the concepts of belief combination
functions and is inspired by Dempster-Shafer theory of evidence. Most
importantly, unlike the previous efforts to integrate uncertainty and logic
programming, BLP can correlate structural information contained in
rules and provides more accurate certainty estimates. The results are
illustrated via simple, yet realistic examples of rule-based Web service
integration.

1 Introduction

Quantitative reasoning has been widely used for dealing with uncertainty and
inconsistency in knowledge representation, and, more recently, on the Semantic
Web. A less explored issue in quantitative reasoning is combining correlated
pieces of information. Most works disregard correlation or assume that all the
information sources are independent. Others make an effort to take some forms
of correlation into account, but only in an ad hoc manner.

Among the models of uncertainty, probabilistic logic programming is par-
ticularly popular: [4,13,14,17,19,20]—just to name a few. However, when these
approaches are used to combine evidence from different sources, the usage of
probabilistic models becomes questionable, as discussed in Section 6. Another
well-established way of dealing with uncertainty is Fuzzy Logic [29]. It has been
successful in many application domains, but remains controversial due to some
of its properties [6,8]. For example, if S′ is a complement of the fuzzy set S, then
S ∩ S′ �= ∅ and even S ⊂ S′ are possible. This property is problematic for some
applications.

Dempster-Shafer theory of evidence [5,22] has also been central to many ap-
proaches to quantitative reasoning [1,2,3,15,21,23,27]. This theory is based on
belief functions [22]—a generalization of probability distributions, which repre-
sents degrees of belief in various statements. If these beliefs come from different
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sources, the belief functions must be combined in order to obtain more accu-
rate information. The difficult problem here is that these sources might not be
independent.

Yet another line of work is based on deductive database methodology without
dedicating to any particular theory of modeling uncertainty [10,11,12,15,24].

To the best of our knowledge, all existing works avoid correlating belief deriva-
tion paths, which often leads to counter-intuitive behavior when such correlation
is essential for correctness. Most approaches simply restrict logic dependencies
to avoid combining sources that are not independent [10,23]. Those that do not,
might yield incorrect or inaccurate results when combining sources that are cor-
related due to overlapping belief derivation paths. For example, consider two
rules A :- B ∧ C and A :- B ∧ D, each asserting its conclusion with cer-
tainty 0.5. The approach in [15] would directly combine the certainty factors for
A derived from the two rules as if they are independent, assigning A a com-
bined certainty, which is likely going to be too high. Clearly, the independence
assumption does not hold here, as both rules rely on the same fact B. A few
notable exceptions include Baldwin’s [1,2], Lakshmanan’s [12] and Kersting’s [9]
approaches. Kersting et al. provide a very general framework, which could, in
principle, be used to handle correlation. However, combination of two inconsis-
tent conclusions is hard to explain in probability theory. Both Baldwin’s and
Lakshmanan’s methods assume that every pair of rules with the same head have
the same correlation. Consequently their methods are inadequate for scenarios
such as the one described in Sections 2 and 7.

This paper introduces a novel form of quantitative reasoning, called Belief
Logic Programming (BLP). BLP was designed specifically to account for corre-
lation of evidence obtained from non-independent and, possibly, contradictory
information sources. BLP has non-monotonic semantics based on belief combi-
nation functions and inspired by Dempster-Shafer theory of evidence. The BLP
theory is orthogonal to the choice of a particular method of combining evidence
and, in fact, several different methods can be used simultaneously for different
pieces of uncertain information.1 Most importantly, unlike the previous efforts
to integrate uncertainty and logic programming, BLP can correlate structural
information contained in rules and provides more accurate certainty estimates.
The framework and the results are illustrated using simple, yet realistic examples
of rule-based integration of Web services that deal with uncertain information.

This paper is organized as follows. Section 2 presents a motivating example,
which is revisited in Section 7 from a technical standpoint. Section 3 provides
background on Dempster-Shafer theory of evidence. Then, we define the syntax
of BLP in Section 4 and the semantics in Section 5. Section 6 discusses several
aspects of BLP and relates it to some other theories of non-monotonic reasoning.
Section 8 concludes the paper.

1 The reader should not confuse Dempster-Shafer theory of evidence with Dempster’s
combination rule. BLP does not depend on that combination rule, but can use it for
modeling beliefs.
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2 Motivating Example

A group of Stony Brook students is planning a trip to see a Broadway musi-
cal. Normally, it takes 1.5 hours by car to get to Manhattan, but the students
know that Long Island Expressway is not called by the locals “the longest park-
ing lot in America” for nothing. The students consult a traffic service, which
integrates information from several independent information sources to provide
traffic advisory along various travel routes. Let us assume that these sources are:

– weather forecast (rain, snow, fog)
– social activity (parades, motorcades, marathons)
– police activity (accidents, emergencies)
– roadwork

The service uses the following rules (which are simplified for this example) to
generate advisories:

1. If the weather is bad, and there is roadwork along the route, the likelihood
of a delay is 0.9.

2. If there is roadwork and social activities along the route, the likelihood of a
delay is 0.8.

3. If there is roadwork and police activity along the route, the likelihood of a
delay is 0.99.

These rules are expressed in BLP as shown below, where ?r is the variable that
represents the travel route.

[0.9, 1] delay(?r) :- roadwork(?r) ∧ bad weather(?r)
[0.8, 1] delay(?r) :- roadwork(?r) ∧ social act(?r)
[0.99, 1] delay(?r) :- roadwork(?r) ∧ police act(?r)

The service generates advisories expressed as the likelihood of delays along the
routes of interest. The students do not want to miss the show due to traffic, but
they also have conference deadlines and so do not want to leave too early. They
decide that if the advisory says that the likelihood of delays is between 0.2 and
0.4 then they add one extra hour to the trip time. If the likelihood is between
0.4 and 0.6, then they add two hours, and if the likelihood is over 0.6 then they
take a train.

The key observation here is that the three rules used in generating the ad-
visory are not independent—they all rely on the roadwork information from
Department of Transportation. Our intuition suggests that predictions based on
the independence assumption might cost our student a Broadway show, a few
hours of sleep, or a conference paper.

As mentioned in the introduction, the novelty of our approach is that it does
not assume that the information sources are independent and instead properly
correlates inferences obtained using the rules that represent these sources. In
Section 7, we will return to this example and show that our approach improves
the quality of the advisory and could help the students avoid unnecessary grief.
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3 Preliminaries

In BLP, uncertainty is represented using belief functions of Dempster-Shafer
Theory [5,22].

In Probability Theory, a probability distribution function assigns probabili-
ties to mutually exclusive events. In Dempster-Shafer Theory, a mass function
assigns evidence (also known as degree of belief, certainty, or support) to sets
of mutually exclusive states. For example, the state {A,B,C} may have an as-
sociated degree of belief 0.4, which means that either A or B or C is true with
certainty 0.4. This statement does not imply anything about the individual truth
of A, B, or C, or about any of the sets {A,B}, {A,C}, or {B,C}.

Let U be the universal set—a set of all possible mutually exclusive states
under consideration. The power set P(U) is the set of all possible sub-sets of U ,
including the empty set, ∅.

A mass function is a mapping mass : P(U) −→ [0, 1] such that mass(∅) = 0
and

∑
S∈ P(U) mass(S) = 1. mass(S) expresses the proportion of all relevant and

available evidence that supports the claim that the actual true state belongs to
the set S ⊆ U and to no known proper subset of S. If it is also known that the
actual state belongs to a subset S′ of S then mass(S′) will also be non-zero.

The belief associated with the set S is defined as the sum of all the masses
of S’s subsets: belief(S) =

∑
S′⊆S mass(S′).

Dempster’s combination rule [5,22] addresses the issue of how to combine
two independent sets of mass assignments. It emphasizes the agreement between
multiple sources and ignores correlation and conflict through a normalization
factor. As it turns out, ignoring these aspects leads to unexpected derivations
[30]. To avoid this problem, BLP supports a family of combination methods, e.g.,
the rules in [21,28], and does not commit to any particular one. As a special case,
Dempster’s combination rule and its extensions can be used when appropriate.

4 Syntax of BLP

A belief logic program (or a blp, for short) is a set of annotated rules. Each
annotated rule has the following format:

[v, w] X :- Body

where X is a positive atom and Body is a Boolean combination of atoms, i.e., a
formula composed out of atoms by conjunction, disjunction, and negation. We
will use capital letters to denote positive atoms, e.g., A, and a bar over such
a letter will denote negation, e.g., A. The annotation [v, w] is called a belief
factor, where v and w are real numbers such that 0 ≤ v ≤ w ≤ 1.

The informal meaning of the above rule is that if Body is true, then this rule
supports X to the degree v and X to the degree 1−w. The difference, w− v, is
the information gap (or the degree of ignorance) with regard to X .

Note that, in keeping with the theory of evidence, BLP uses what is known as
explicit negation (or, strong negation) [18] rather than negation as failure. That
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is, if nothing is known about A, it only means that there is no evidence that A
holds; it does not mean that the negation of A holds.

An annotated rule of the form [v, w] X :- true is called an annotated fact;
it is often written simply as [v, w] X . In the remainder of this paper we will deal
only with annotated rules and facts and refer to them simply as rules and facts.

Definition 1. Given a blp P, an atom X is said to depend on an atom Y

– directly, if X is the head of a rule R and Y occurs in the body of R;
– indirectly, if X is dependent on Z, and Z depends on Y . �

We require that in a ground blp no atom depends on itself. So, there can be
no cyclic dependency among ground atoms. Most other works in this area, e.g.,
[3,19,20], make the same assumption. The extension of BLP that allows cyclic
dependency is future work and is beyond the scope of this paper.

5 Semantics of BLP

We begin with the concept of combination functions.

5.1 Combination Functions

Definition 2. Let D be the set of all sub-intervals of [0, 1], and Φ : D × D →
D be a function. Let us represent Φ([v1, w1], [v2, w2]) as [V (v1, w1, v2, w2),
W (v1, w1, v2, w2)]. We say that Φ is a belief combination function if Φ is
associative and commutative. �
A useful common-sense restriction on combination functions is that the functions
V and W above are monotonically increasing in each of their four arguments,
but this is not required for our results. Due to the associativity of Φ, we can
extend it from two to three and more arguments as follows:

Φ([v1, w1], ..., [vk, wk]) = Φ
(
Φ([v1, w1], ..., [vk−1, wk−1]), [vk, wk]

)
For convenience, we also extend Φ to the nullary case and the case of a single
argument as follows: Φ() = [0, 1] and Φ([v, w]) = [v, w]. Note that the order of
arguments in a belief combination function is immaterial, since such functions
are commutative, so we often write such functions as functions on multisets of
intervals, e.g., Φ({[v1, w1], ..., [vk, wk]}).

As mentioned earlier, there are many ways to combine evidence and so there
are many useful belief combination functions. Different functions can be used
for different application domains and even for different types of data within the
same domain. Our examples will be using the following three popular functions:

– Dempster’s combination rule:
• ΦDS([0, 0], [1, 1]) = [0, 1].
• ΦDS([v1, w1], [v2, w2]) = [v, w] if {[v1, w1], [v2, w2]} �= {[0, 0], [1, 1]},where

v = v1·w2+v2·w1−v1·v2
K , w = w1·w2

K , and K = 1 + v1 ·w2 + v2 ·w1 − v1 − v2.
In this case, K �= 0 and thus v and w are well-defined.

– Maximum: Φmax([v1, w1], [v2, w2]) = [max(v1, v2),max(w1, w2)].
– Minimum: Φmin([v1, w1], [v2, w2]) = [min(v1, v2),min(w1, w2)].
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5.2 Semantics

Given a blp P, the definitions of Herbrand Universe UP and Herbrand Base BP
of P are the same as in the classical case. As usual in logic programming, the
easiest way to define a semantics is by considering ground (i.e., variable-free)
rules. We assume that each atom X ∈ BP has an associated belief combination
function, denoted ΦX . Intuitively, ΦX is used to help determine the combined
belief in X accorded by the rules in P that support X .

Definition 3. A truth valuation over a set of atoms α is a mapping from α
to {t, f ,u}. The set of all possible valuations over α is denoted as T Val(α).

A truth valuation I for a blp P is a truth valuation over BP. Let T Val(P)
denote the set of all the truth valuations for P, so T Val(P) = T Val(BP). �

It is easy to see that T Val(P) has 3|BP| truth valuations. If α is a set of atoms,
we will use Bool(α) to denote the set of all Boolean formulas constructed out of
these atoms (i.e., using ∧, ∨, and negation).

Definition 4. Given a truth valuation I over a set of atoms α and a formula
F ∈ Bool(α), I(F ) is defined as in Lukasiewicz’s three-valued logic: I(A ∨B) =
max

(
I(A), I(B)

)
, I(A ∧ B) = min

(
I(A), I(B)

)
, and I(A) = ¬I(A), where f <

u < t and ¬t = f , ¬f = t, ¬u = u. We say that I |= F if I(F ) = t. �

Definition 5. A support function for a set of atoms α is a mapping mα from
T Val(α) to [0, 1] such that

∑
I∈T Val(α) mα(I) = 1.

The atom-set α is called the base of mα. A support function for a blp P is
a mapping m from T Val(P) to [0, 1] such that

∑
I∈T Val(P) m(I) = 1. �

Support functions, defined above, are always associated with mass functions of
Dempster-Shafer theory, as discussed in Section 6. In Dempster-Shafer theory,
every mass function has a corresponding belief function and, similarly, BLP
support functions are associated with belief functions, defined next.

Definition 6. Recall that Bool(BP) denotes the set of all Boolean formulas com-
posed out of the atoms in BP. A mapping bel : Bool(BP) −→ [0, 1] is said to
be a belief function for P if there exists a support function m for P, so that
for all F ∈ Bool(BP)

bel(F ) =
∑

I∈T Val(P) such that I|=F

m(I) �

Belief functions can be thought of as interpretations of belief logic programs.
However, as usual in deductive database and logic programming, we are inter-
ested not just in interpretations, but in models. We define this next.

Definition 7. Given a blp P and a truth valuation I, we define P’s reduct
under I to be PI = {R | R ∈ P, I |= Body(R)}, where Body(R) denotes the
body of the rule R.
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Let P(X) denote the set of rules in P with the atom X in the head. P’s
reduct under I with X as head is defined as PI(X) = PI ∩ P(X). Thus,
PI(X) is simply that part of the reduct PI , which consists of the rules that have
X as their head. �

We now define a measure for the degree by which I is supported by P(X).

Definition 8. Given a blp P and a truth valuation I for P, for any X ∈ BP,
we define sP(I,X), called the P-support for X in I, as follows.

1. If PI(X) = φ, then
– If I(X) = t or I(X) = f , then sP(I,X) = 0;
– If I(X) = u, then sP(I,X) = 1.

2. If PI(X) = {R1, . . . , Rn}, n > 0, let [v, w] be the result of applying ΦX to
the belief factors of the rules R1, . . . , Rn. Then
– If I(X) = t, then sP(I,X) = v;
– If I(X) = f , then sP(I,X) = 1 − w;
– If I(X) = u, then sP(I,X) = w − v. �

Informally, I(X) represents what the possible world I believes about X . The
above interval [v, w] produced by the ΦX represents the combined support ac-
corded by the rule set PI(X) to that belief. sP(I,X) measures the degree by
which a truth valuation I is supported by P(X). If X is true in I, it is the com-
bined belief in X supported by P given the truth valuation I. If X is false in I,
sP(I,X) is the combined disbelief in X . Otherwise, it represents the combined
information gap about X .

It is easy to see that the case of PI(X) = ∅ in the above definition is just a
special case of PI(X) = {R1, . . . , Rn}, since ΦX(∅) is [0, 1], by Definition 2.

We now introduce the notion of P-support for I as a whole. It is defined as a
cumulative P-support for all atoms in the Herbrand base.

Definition 9. If I is a truth valuation for a blp P, then

m̂P(I) =
∏

X∈BP

sP(I,X) �

Theorem 1. For any blp P,
∑

I∈T Val(P) m̂P(I) = 1. �

In other words, m̂P is a support function. This theorem is crucial, as it makes
the following definition well-founded.

Definition 10. The model of a blp P is the following belief function:

model(F ) =
∑

I∈T Val(P) such that I|=F

m̂P(I), where F ∈ Bool(BP). �

The belief function model(F ) measures the degree by which F is supported by
P. It is easy to see that every blp has a unique model. The rationale for the
above definition is expressed by the following theorem:
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Theorem 2. Let P be a blp and A an atom. For any rule R, let Body(R) denote
its body. Let S be a subset of P(A) that satisfies (i) model

(∧
R∈S Body(R)

)
> 0;

and (ii) S is maximal: if S′ ⊇ S is another subset of P(A) that satisfies (i)
then S′ = S. Let [vR, wR] denote the belief factor associated with the rule R
and suppose ΦA

(
{[vR, wR]}R∈S

)
= [v, w] (ΦA

(
{[vR, wR]}R∈S

)
is the result of

applying ΦA to the belief factors in S). Then

model
(
A ∧

∧
R∈S Body(R)

)
model

(∧
R∈S Body(R)

) = v
model

(
A ∧

∧
R∈S Body(R)

)
model

(∧
R∈S Body(R)

) = 1−w. �

In other words, model is a “correct” (and unique) belief function that embodies
the evidence that P provides for each atom. In other words, model supports each
atom in the Herbrand base with precisely the expected amount of support. In
contrast, all other works that we are aware of either do not account for combined
support provided by multiple rules deriving the same atom or do not have a clear
model-theoretic account for that phenomenon.

It is not hard to see that the BLP semantics is non-monotonic.2 To see that,
suppose rule r1 has the form [0.4, 0.4] X and rule r2 is [0.8, 0.8] X . Let P1 be
{r1}, P2 be {r2}, P3 be {r1, r2}, and beli be the model of Pi, i = 1, 2, 3. For any
combination function Φ, let [v, w] = Φ([0.4, 0.4], [0.8, 0.8]), since v ≤ w, either
v < 0.8 is true, or w > 0.4 is true, or both. If v < 0.8, then bel3(X) < 0.8 =
bel2(X). Thus, adding r1 to P2 reduces the support for X . If w > 0.4, then
bel3(X) < 0.6 = bel1(X), meaning that adding r2 to P1 reduces the support
for X. Non-monotonicity of Dempster-Shafer theory was also discussed in [16].

Also, under the BLP semantics, the support for A provided by a rule of the
form [v, w] A :- B1 ∨ B2 might differ from the support for A provided by the
pair of rules [v, w] A :- B1 and [v, w] A :- B2, if ΦA([v, w], [v, w]) �= [v, w].

A direct implementation of the semantics would have high complexity. A much
more efficient query answering algorithm is presented in [26].

6 Discussion

First, one might be wondering whether the combination functions in BLP are
really necessary and whether the same result could not be achieved without the
use of combination functions. The answer is that combination functions can be
dispensed with. However, this requires an extension of BLP with default negation
and, more importantly, causes an exponential blowup of the program (making it
an unlikely tool for knowledge engineering). This theme will be elaborated upon
in a full version of this paper.

Next we discuss the relationship of BLP to Dempster-Shafer belief functions
and defeasible reasoning.
2 However, monotonicity holds under certain conditions, for instance, if every belief

factor is of the form [v, 1] and every combination function Φ([v1, 1], [v2, 1]) is mono-
tonically increasing in v1 and in v2. Under these conditions, the belief in any negated
literal is 0.
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Probability vs. belief in combination of evidence. Probability theory has
been widely used for reasoning with uncertainty. However, several aspects of the
application of this theory to modeling uncertainty has been criticized [22,31],
especially when it comes to combining evidence obtained from different sources.

To illustrate, consider two mutually exclusive states A and A. Suppose this
distribution is provided by two different sources. Source 1 may assert that
prob(A) = 0.8, prob(A) = 0.2, meaning that the probability of A is 0.8. Source
2 may assert that prob(A) = 0.6, prob(A) = 0.4, meaning that the probability
of A is 0.6. There is no obvious way to combine information from these two
sources because probability is objective. Some approaches take the maximum or
the minimum of the two probability values; others take the average. However,
none of these has any probabilistic justification.

In some frameworks, e.g. [4,15], probability intervals are used to model un-
certainty. Suppose source 1 asserts 0.8 ≤ prob(A) ≤ 1 and source 2 asserts
0.6 ≤ prob(A) ≤ 0.7. Some approaches [4] compute the intersection of the two
intervals, yielding ∅ (thus concluding nothing). Some other approaches [15] sim-
ply combine the uncertainty ranges, for instance, [min(0.8, 0.6), max(1, 0.7)].
Again, no probabilistic justification exists for either of these rules of combina-
tion, so probability theory is used here in name but not in substance.

In contrast, Dempster-Shafer theory [5,22] gives up certain postulates of the
probability theory in order to provide an account for the phenomenon of com-
bined evidence.

Relationship to Dempster-Shafer theory of evidence. We now relate our
semantics to Dempster-Shafer theory.

Definition 11. A complete valuation over a set of atoms α is a mapping
from α to {t, f}. The set of all complete valuations over α is denoted as U(α). A
complete valuation I for a blp P is a complete valuation over BP. Let U(P)
denote the set of all the complete valuations for P, so U(P) = U(BP). �

Complete valuations correspond to interpretations in classical 2-values logic pro-
grams. A complete valuation J can be viewed as a state, and it is clear that two
different complete valuations represent two mutually exclusive states. U(α) is a
universal set of mutually exclusive states.

A truth valuation I over α (see Definition 3) can be uniquely mapped to a set
of complete valuations: ΨI = {J ∈ U(α) | ∀A ∈ α, J(A) = t if I(A) = t, J(A) =
f if I(A) = f}. In other words, each truth valuation I represents a subset ΨI of
U(α), and hence an element ΨI of P(U(α)), the power set of U(α). Obviously,
{ΨI |I ∈ T Val(α)} ⊂ P(U(α)).

Dempster-Shafer’s mass function, mass, is a mapping from P(U(α)) to [0, 1]
such that

∑
S∈ P(U(α)) mass(S) = 1. According to Definition 5, our support func-

tion m is a mapping from T Val(α) to [0, 1] such that
∑

I∈ T Val(α) m(I) = 1.
Given any support function m, it can be related to a unique mass function, mass,
as follows.

mass(ΨI) = m(I), ∀I ∈ T Val(α)
mass(S) = 0, if S �= ΨI , ∀I ∈ T Val(α) (1)
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Based on the above correspondence between Dempster-Shafer’s mass function
and BLP support function introduced in Definition 5, we establish a correspon-
dence between Dempster-Shafer’s belief function and BLP’s belief function of
Definition 6.

Any BLP formula F ∈ Bool(BP) (defined in Section 5.2) uniquely corresponds
to a set of complete valuations: ΘF = {J ∈ U(BP) | J |= F}. Clearly, ΘF ∈
P(U(BP)), and it can be shown that {ΘF | F ∈ Bool(BP)} = P(U(BP)).

Theorem 3. Let m be a support function and mass its corresponding mass func-
tion as in (1). Also let bel be the belief function of Definition 6 constructed
from m, and let belief be the Dempster-Shafer’s belief function based on mass:
belief(S) =

∑
∀S′⊆S mass(S′). Then, for any F ∈ Bool(BP), the following

holds: bel(F ) = belief(ΘF ). �
In other words, any BLP belief function corresponds to a Dempster-Shafer’s
belief function.

Relationship to defeasible logic programs and explicit negation. There is
an interesting correspondence between the treatment of contradictory information
in BLP and a form of defeasible reasoning called Courteous Logic Programming [7]
and, more generally, Logic Programmingwith Courteous Argumentation Theories
(LPDA) [25]. Here we consider only LPDA without default negation. A defeasible
LPDA rule has the form

@r H :- B1 ∧ · · · ∧Bn (2)
where r is a label, H and Bi, 1 ≤ i ≤ n, are atoms or explicitly negated atoms.
As before, we use A to represent explicit negation of A.

For any atom A, let λ(A) = [1, 1]A and λ(A) = [0, 0]A. We extend λ to
rules of the form (2) so that λ(@r H :- B1∧· · ·∧Bn) is λ(H) :- B1∧· · ·∧Bn.
Finally, λ is extended to programs so that λ(Π) = {λ(R) | R ∈ Π}. Note that
λ(Π) is a blp.

Let Π |=LPDA F denote that Π entails F under the semantics of LPDA
[25] with one of the courteous argumentation theories and let the combina-
tion function Φ1 be such that Φ1([0, 0], [1, 1]) = [0, 1], Φ1([0, 0], [0, 0]) = [0, 0],
Φ1([1, 1], [1, 1]) = [1, 1].

Theorem 4. Let Π be an acyclic LPDA program that consists of the rules of
the form (2) and let belλ(Π) be the model of the blp λ(Π) with the combination
function Φ1. Assume, in addition, that none of the rules in Π defines or uses the
special predicates overrides and opposes, which in LPDA provide information
about conflicting rules and their defeasibility properties. Then, for any formula
F ∈ Bool(BΠ), Π |=LPDA F if and only if belλ(Π)(F ) = 1. �
In both theories, the presence of A and A (in LPDA) or of [1, 1]A and [0, 0]A (in
BLP) implies that A’s truth value is undefined. That is, inconsistent information
is self-defeating. In contrast, Pearce and Wagner’s logic programs with strong
negation, as defined in [18], handle inconsistent information by explicitly declar-
ing a contradiction. Thus, if Π in Theorem 4 is a program with strong negation
then Π |=LPSN F is equivalent to belλ(Π)(F ) = 1 only if Π is consistent. Here
|=LPSN denotes the entailment in logic programing with strong negation [18].
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In the opposite direction, the connection is more complicated and we do not
have the space to describe it here.

7 Motivating Example (Cont’d)

Returning to the example in Section 2, suppose that our information sources
predict 50% chance of bad weather, parades with 50% certainty, roadwork along
the Long Island Expressway (henceforth LIE) with certainty 80%, and police ac-
tivity due to accidents with the likelihood of 40%. This information is expressed
in BLP as follows.

[0.8, 0.8] roadwork(LIE) [0.5, 0.5] bad weather(LIE)
[0.5, 0.5] social act(LIE) [0.4, 0.4] police act(LIE) (3)

The traffic service fetches the above information from four different information
sources and integrates them using these rules:3

[0.9, 1] delay(?r) :- roadwork(?r) ∧ bad weather(?r)
[0.8, 1] delay(?r) :- roadwork(?r) ∧ social act(?r)
[0.99, 1] delay(?r) :- roadwork(?r) ∧ police act(?r)

Suppose the atom delay(?r) is associated with the combination function Φmax

defined in Section 5.1. When correlation is not taken into account, as in [1,12],
the belief factor of delay(LIE) is [0.36, 1], which means that the available infor-
mation predicts traffic delay with certainty 0.36 and smooth traffic with certainty
0. Based on this advisory, the students would decide to drive and leave one hour
earlier than normal (see Section 2 for the explanation of how the students make
their travel plans). It is not hard to see that this advisory might cost our stu-
dents a show. The information from the weather forecast and Department of
Transportation alone (the first rule) is enough to predict traffic delays with cer-
tainty 0.36. Taking into account the possibilities of parades and accidents, it is
reasonable to up the expectation of delays. In contrast, BLP computes the belief
factor for traffic delays to be [0.63, 1], which means that our students will shell
out a little extra for the train but will make it to the show.

One may argue that the problem was the Φmax combination function and a
different function, such as the Dempster’s combination rule ΦDS (Section 5.1),
may do just fine even without BLP. While this might be true for the traffic
conditions in (3), a wrong advice will be given in the following scenario:

[0.2, 0.2] roadwork(LIE) [0.8, 0.8] bad weather(LIE)
[0.9, 0.9] social act(LIE) [0.3, 0.3] police act(LIE)

where we assume that delay(?r) is associated with the combination function
ΦDS . Without taking correlation into account, the belief factor of delay(LIE)
becomes [0.31, 1]—again suggesting to add one extra hour to the trip. However,

3 Note that although the semantics is defined for ground rules, query answering algo-
rithms work with non-ground rules [26].



Belief Logic Programming: Uncertainty Reasoning with Correlation 327

this advisory errs on the cautious side. Here all three rules make their predictions
building the same roadwork factor into their decision, so this factor is counted
multiple times. In contrast, BLP recognizes that the three predictions are not
independent and its calculated certainty factor is [0.18, 1]. Thus, the students
will allocate no extra time for the eventualities and will get that badly needed
extra hour of sleep before their conference deadlines.

We thus see that, by correlating rules, BLP is able to better predict certainty
factors of the combined information.

8 Conclusions

We introduced a novel logic theory, Belief Logic Programming, for reasoning
with uncertainty. BLP is based on the concept of belief function and is inspired
by Dempster-Shafer theory, but it is not simply integration of Dempster-Shafer
theory and logic programming. First, unlike the previous efforts in applying
Dempster-Shafer theory in logic programming [1,2,15], BLP can correlate struc-
tural information contained in derivation paths for beliefs, as illustrated in the
motivating example in Section 2 and Section 7. Secondly, BLP is not restricted to
any particular combination rule, instead any number of reasonable combination
rules can be used. Apart from traditional uses in expert systems, such a language
can be used to integrate semantic Web services and information sources, such as
sensor networks and forecasts, which deal with uncertain data.

For future work, we plan to extend the algorithms to deal with non-ground rules
and queries, and to make them optimized based on belief factors given in the query.
Another important extension is to allow cyclic dependency among ground atoms.
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Abstract. In this paper we consider a new class of logic programs, called weight
constraint programs with functions, which are lparse programs incorporating func-
tions over non-Herbrand domains. We define answer sets for these programs and
develop a computational mechanism based on loop completion. We present our re-
sults in two stages. First, we formulate loop formulas for lparse programs (without
functions). Our result improves the previous formulations in that our loop formu-
las do not introduce new propositional variables, nor there is a need of translating
lparse programs to nested expressions. Building upon this result we extend the
work to weight constraint programs with functions. We show that the loop com-
pletion of such a program can be transformed to a Constraint Satisfaction Problem
(CSP) whose solutions correspond to the answer sets of the program, hence off-
the-shelf CSP solvers can be used for answer set computation. We show some
preliminary experimental results.

1 Introduction

Logic programming based on stable model/answer set semantics, called answer set pro-
gramming (ASP), has been considered a promising paradigm for declarative problem
solving. The general idea is to encode a problem by a logic program such that the an-
swer sets of the program correspond to the solutions of the problem. The class of logic
programs with weight constraints, typically called lparse programs [15,19], are among
the most commonly used forms of programs in ASP. A number of ASP systems are
implemented according to the semantics of lparse programs defined in [15,19], which
include SMODELS, CMODELS, and CLASP.

The idea of loop formulas [11] makes it possible to compute answer sets of logic
programs using SAT solvers or SAT solving techniques. ASSAT and CMODELS are such
implementations. The mechanism of loop completion (completion plus loop formu-
las) has been extensively studied for some general classes of logic programs, including
disjunctive logic programs [9], logic programs with nested expressions [6], logic pro-
grams with arbitrary propositional formulas [4], arbitrary first-order sentences [8] and
logic programs with abstract constraint atoms [12,20].

To deal with weight rules, CMODELS implemented a translation defined in [6], where
an lparse program is translated into a logic program with nested expressions [7]. In
general, the translation defined in [6] may generate an exponentially larger program.
Liu and Truszcynski studied logic programs with monotone and convex constraints
and showed that an lparse program can be transformed to a set of pseudo-boolean
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constraints, based on its loop completion [12]. They implemented the system called
PBMODELS for lparse programs in which negative literals are not allowed in weight
constraints. The restriction can be removed by a translation using new propositional
variables.

In another development, ASP has recently been extended to incorporate functions.
The approach presented in [10] aims at economically and naturally encoding problems
in ASP, by allowing functions over non-Herbrand domains. With loop completion, a
normal logic program with functions can be translated to an instance of the Constraint
Satisfaction Problem (CSP). Thus, off-the-shelf CSP solvers can be employed as black
boxes for answer set computation.

It is important to notice that the goal of [10] is different from most of the other
approaches to adding functions into ASP (see, e.g., [1,3,18]). Functions in these other
approaches, just like Horn clause logic programming, are interpreted by fixed mappings
and are used to define recursive data structures over infinite Herbrand domains. While
these approaches aim at increasing the expressive power of ASP, the approach of [10]
aims at economic and natural representation of knowledge and efficient computation.

In this paper, we consider adding functions into lparse programs along the line of
[10]. We present our work in two stages. First, we show that loop completion can be
formulated directly for lparse programs with arbitrary weight constraints, without in-
troducing new symbols. This improves previous results in that we need not transform
an lparse program into a program with nested expressions, as defined in [6] and imple-
mented in CMODELS [7], nor do we need to require weight constraints to contain only
positive literals, as in [12].

More importantly, we consider a new class of logic programs, called weight (con-
straint) programs with functions. We define answer sets for these programs, generalize
the definition of completion and loop formulas to this class of programs, and show that
answer sets can be characterized by loop completion. This provides a basis for extend-
ing FASP1, an implementation for normal logic programs with functions, to compute
answer sets of weight programs with functions. This approach possesses two main ad-
vantages. First, CSP facilities such as global constraints can be readily brought into the
ASP language, since the programs in this language are translated into CSP instances.
In this sense, this approach can be seen as another attempt to integrate CSP with ASP
(cf. [14]). Another advantage of this approach is that the sizes of grounded programs
sometimes can be substantially smaller than those of the standard ASP encodings.

In a preliminary experiment, we tested our extended implementation on the magic
N -square problem encoded by a weight program with functions. We use two top ranked
solvers from the 3rd CSP Solver Competition2, as black boxes to FASP. Our experiment
shows that FASP outperforms all the above mentioned state-of-the-art ASP solvers.

In the next section, we propose loop formulas for lparse programs, while in Section 3
we add functions to lparse programs, define the semantics, and formulate loop formu-
las for these programs. We report preliminary experimental results in Section 4, and
conclude the paper with final remarks in Section 5.

1 http://www.cse.ust.hk/fasp/
2 http://cpai.ucc.ie/08/
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2 Lparse Programs

2.1 Preliminary Definitions

We assume an underlying propositional language LP . As given in [15], a rule element
is an atom (positive rule element) or an atom prefixed with not (negative rule element).
A weight constraint is an expression of the form

l ≤ {c1 : w1, . . . , cn : wn} ≤ u (1)

where

– each of l and u is a real number or one of the symbols +∞, −∞, if l (resp. u) is
−∞ (resp. +∞) then “l ≤” (resp. “≤ u”) can be omitted.

– c1, . . . , cn are rule elements different from each other, and
– w1, . . . , wn are nonnegative real numbers3.

We denote the weight constraint (1) by l ≤ S ≤ u, where l or u may be omitted as
defined above and S = {c1 : w1, . . . , cn : wn}.

Let C = l ≤ S ≤ u be a weight constraint. We denote Atoms+(C) = {a | (a :
wa) ∈ S} and Atoms(C) = Atoms+(C) ∪ {b | (not b : wb) ∈ S}. Let K be a
set of weight constraints. By Atoms+(K), we mean the set

⋃
C∈K Atoms+(C) and by

Atoms(K) we mean the set
⋃

C∈K Atoms(C).
Let Z be a set of atoms, c a rule element and C a weight constraint of the form (1).

Z satisfies c, denoted by Z |= c, if c ∈ Z whenever c is an atom, and c /∈ Z otherwise.
The set Z satisfies the weight constraint C, written Z |= C, if the sum of the weights
wj for all j such that Z satisfies cj is not less than l and not greater than u.

An lparse program (or just a logic program) is a finite set of weight rules of the form

C0 ← C1, . . . , Cn (2)

where Ci (0 ≤ i ≤ n) are weight constraints. Let r be a rule of the form (2). C0 and
{C1, . . . , Cn} are called its Head and Body, respectively. Alternatively, we also write r
in the form of Head ← Body, for convenience.

We denote by Atoms(P ) the union of Atoms(C) where C is a weight constraint
occurring in P . A weight rule is a Horn rule if its head is a positive rule element and
every member of its body has the form l ≤ S, where S does not mention any negative
rule elements.

In the following, let Z be a set of atoms.
Z satisfies a logic program P if, for every rule of the form (2) in P , Z satisfies C0

whenever Z satisfies C1, . . . , Cn.
The reduct of a weight constraint C = l ≤ S ≤ u with respect to Z , denoted CZ , is

the weight constraint lZ ≤ S′, where

– S′ is obtained from S be dropping all pairs (not b : w), and
– lZ is l minus the sum of the weights w for all pairs (not b : w) in S such that b �∈ Z .

3 We consider only nonnegative weights in the paper, as negative weights can be replaced by
negative rule elements [13,19].



332 Y. Wang et al.

Since the reduct of a weight constraint l ≤ S ≤ u no longer mentions u, we will simply
write (l ≤ S)Z instead.

The reduct of a weight rule

C0 ← l1 ≤ S1 ≤ u1, . . . , ln ≤ Sn ≤ un (3)

with respect to Z is the set of rules

{a ← (l1 ≤ S1)Z , . . . , (ln ≤ Sn)Z | a ∈ Atoms+(C0) ∩ Z,Z |= Si ≤ ui for all i}.

The reduct PZ of a logic program P with respect to Z is the union of the reducts of the
rules of P with respect to Z . Clearly, PZ consists of Horn rules only.

If an lparse program P consists of Horn rules then it has a unique minimal set S of
atoms such that S |= P . The set is called the deductive closure of P and denoted by
cl(P ). S is an answer set of P if S |= P and S = cl(P ). Given an lparse program P
and a set of atoms S, S is an answer set of P if and only if S |= P and cl(PS) = S.

2.2 Completion and Loop Formulas

Completion. Following [12], to define the completion we first introduce an extension
LPwc of the language LP . A formula in LPwc is an expression built from weight con-
straints by means of boolean connectives ∧, ∨, ⊃, and ¬. The notion of a model of a
formula extends in a standard way to the class of formulas in LPwc.

Let P be an lparse program. The completion of P , denoted COMP (P ), is defined as
follows:

1. For every rule Head ← Body in P we include in COMP (P ) an LPwc formula

(∧
Body

)
⊃ Head (4)

2. For every atom a ∈ Atoms(P ), we include in COMP (P ) an LPwc formula

a ⊃
∨

1≤i≤n

(∧
Bodyi

)
(5)

where (Head1 ← Body1), . . . , (Headn ← Bodyn) are the rules of P such that a ∈
Atoms+(Headi), for all i (1 ≤ i ≤ n). Please note that,

∨
∅ = ⊥ (“false”) and∧

∅ = �(“true”).

Loops and Loop Formulas. Let P be an lparse program. The positive dependency
graph of P , written GP , is the directed graph (V,E), where

– V = Atoms(P ),
– (a, b) ∈ E if there a rule of the form (2) in P such that a ∈ Atoms+(C0) and

b ∈ Atoms+(Ci) for an i(1 ≤ i ≤ n).
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A nonempty subset L of Atoms(P ) is a loop of P if there is a non-zero length cycle in
GP that goes through only and all the nodes in L.

Let C = l ≤ S ≤ u be a weight constraint and L a set of atoms. The restriction of
C to L, written C|L, is the following LPwc formula

l ≤ S′ ∧ S ≤ u (6)

where S′ is obtained from S by removing every pair (ci : wi) from S if ci ∈ L.
The loop formula of a loop L, written LF (L,P ), is the following LPwc formula

∨
L ⊃

∨
1≤i≤n

∧
C∈Bodyi

C|L

where (Head1 ← Body1), . . . , (Headn ← Bodyn) are the rules of P such that, for
each i (1 ≤ i ≤ n), Atoms+(Headi) ∩ L �= ∅.

Theorem 1. Let P be an lparse program. M is an answer set of P if and only if M is
a model of COMP (P ) ∪ LF (P ), where LF (P ) is the set of loop formulas of P .

Since a literal l can be regarded as the weight constraint 1 ≤ {l = 1} ≤ 1, normal
logic programs can be seen as special cases of lparse programs. Note also that, suppose
L is a set of atoms and l a literal, if l is an atom in L then l|L is 1 ≤ {} ≤ 1 which is
equivalent to ⊥, and l itself otherwise. In this way, the above definitions of loops and
loop formulas can be regarded as a generalization of those for normal logic programs.

3 Weight Programs with Functions

3.1 Syntax and Semantics

We consider the class of weight programs with functions. Following [10], we assume a
many-sorted first-order language L that may have pre-interpreted symbols such as the
standard arithmetic functions “ + ”, “ − ” and so on. By an atom we mean an atomic
formula that does not mention equality, an equality atom is a formula of the form t = t′

where t and t′ are terms of L. Unless stated otherwise, by functions we mean proper
functions (whose arities are greater than 0). Rule elements are extended to be atoms and
equality atoms (positive rule elements), and their negations (negative rule elements).
For convenience, we write t �= t′ for not t = t′.

A weight constraint with functions is an expression of the form

l ≤ {c1 : w1, . . . , cn : wn} ≤ u (7)

where each ci (1 ≤ i ≤ n) is a rule element, l and u are real numbers, wi (1 ≤ i ≤ n)
are nonnegative real numbers. A weight rule now is an expression

C0 ← C1, . . . , Cn (8)

where each Ci (1 ≤ i ≤ n) is a weight constraint with functions. Again, C0 and
{C1, . . . , Cn} are its Head and Body, respectively. A weight (constraint) program with
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functions P is a set of weight rules together with a set of type definitions, one for each
type τ used in the rules of P . A type definition takes the form

τ : D (9)

where D is a finite nonempty set of elements, called the domain of τ . In particular, if
a constant c of type τ occurs in a rule of P , then the domain D of τ as specified in
the type definitions of P must contain c. In addition, the notations about sets of atoms
labeled by the symbols Atoms+ and Atoms are extended to the case of weight programs
with functions (note that they denote sets of non-equality atoms).

Let P be a weight program with functions. An atom p(c1, . . . , ck) is said to reside in
P if p is a predicate of type τ1 × · · · × τk in P , and ci ∈ Di, where Di is the domain of
the type τi, for each i. We denote by At(P ) the set of atoms residing in P .

Example 1. The magic N -square problem is to construct an N × N array using each
integer in {1, . . . , N2} as an entry in the array exactly once in such a way that entries in
each row, each column, and either of two main diagonals sum up to N(N2 +1)/2. Bor-
rowing the familiar notation of conditional literals [15] (below, we use “|” instead of “:”
for conditional literals for syntactic distinction), we can formulate these requirements
by the following weight rules:

1 ≤ {square(X,Y ) = W : 1 | num(X ;Y )} ≤ 1 ← value(W ) (10)

w ≤ {square(X,Y ) = W : W | num(X), value(W )} ≤ w ← num(Y ) (11)

w ≤ {square(X,Y ) = W : W | num(Y ), value(W )} ≤ w ← num(X) (12)

w ≤ {square(X,X) = W : W | num(X), value(W )} ≤ w (13)

w ≤ {square(X,N −X) = W : W | num(X), value(W )} ≤ w (14)

where square is a function of the type num × num → value, the domain of num
is the set of numbers {1, 2, . . . , N}, the domain of value is {1, 2, . . . , N2}, and w =
N × (N2 + 1)/2. Rule (10) guarantees that all cells square(X,Y ) have distinct values
from {1, . . . , N2}. An instance of the problem is specified by a given number N .

Let P be a weight program with functions. The grounding of P consists of type defini-
tions in P and the rules that are obtained by replacing variables in the rules of P with
elements in their respective domains.

As noted in [10], a ground rule may have symbols not in the original language L. We
let LP be the language that extends L by introducing a new constant for each element
that is in the domain of a type, but not a constant in L. These new constants will have
the same type as their corresponding elements. In this case, the fully instantiated rules
will be in the language LP . In the following, unless otherwise stated, we shall equate a
weight program with functions with its grounding in the extended language LP . Note
that the language LP associates with the given program P .

Given a weight program with functions P , an interpretation I of P is a first-order
structure that defines a mapping such that:

– The domains of I are those specified in the type definitions of P .
– A constant is mapped to itself.
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– If R is a relation of arity τ1 × · · · × τn and the type definitions τi : Di, 1 ≤ i ≤ n,
are in P , then RI ⊆ D1 × · · · ×Dn.

– If f is a function of type τ1 × · · · × τn → τn+1, n ≥ 1, and the type definitions
τi : Di,1 ≤ i ≤ n+1, are in P , then f I is a function from D1×· · ·×Dn to Dn+1.
A pre-interpreted function should follow its standard interpretation.

By Ia, we denote the set of atoms that are true under I , i.e., {p(c) | pI(c) holds},
where c is a tuple of constants matching the arity of relation symbol p. Note that an
interpretation always associates with a weight program with functions. The valuation
of a term t under an interpretation I , denoted by tI , is a constant defined as:

– tI = c if t = c;
– tI = c′ if t = f(s) and f I(sI) = c′, where s is a tuple of terms matching the type

of f , say s = (t1, . . . , tn), and sI stands for (tI1, . . . , t
I
n).

Let I be an interpretation. I satisfies an atom p(t) if tI ∈ pI , i.e., p(tI) ∈ Ia. The inter-
pretation I satisfies an equality atom t1 = t2 if tI1 = tI2. The satisfaction (and model),
written by |=, for literals, weight constraints with functions and weight programs with
functions can be straightforwardly defined accordingly.

Let P be a weight program with functions, I an interpretation for P , and l ≤ S ≤ u
a weight constraint occurring in P . The reduct of l ≤ S ≤ u with respect to I , written
[l ≤ S]I (again, since the reduct does not mention u, we will omit u), is the weight
constraint l(I,S) ≤ SI , where

– SI is obtained from S by
• replacing each functional term f(t) in a rule by d if f I(tI) = d;
• removing all pairs (c : w) whenever c is of the forms “not a” or “t = t′” where

a is an atom or an equality atom, t and t′ are terms.
– l(I,S) is the following expression:

l −
∑

c:wc∈S
I|=c

wc

where c is a negative rule element or an equality atom.

The reduct of a rule of the form

l0 ≤ S0 ≤ u0 ← l1 ≤ S1 ≤ u1, . . . , ln ≤ Sn ≤ un

in P , with respect to an interpretation I , is the set of rules

{p(c) ← [l1 ≤ S1]I , . . . , [ln ≤ Sn]I | p(c) : w ∈ SI
0 , I |= p(c), I |= Si ≤ ui for all i}.

The reduct of P under the interpretation I , written P I , is the union of the reducts of the
rules in P with respect to I .

Clearly, P I is an lparse program consisting of Horn rules only. The answer set se-
mantics for such logic programs is already defined; i.e., a set of atoms Z is an answer
set of P I if Z |= P I and Z = cl(P I). We call the interpretation I for P an answer set
of P if Ia is an answer set of P I .
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Example 2. Consider the following weight program with functions P :

f : τ → τ, p : τ, τ : {0, 1},
1 ≤ {(f(0) �= f(1)) : 1, p(0) : 2} ≤ 2 ← 1 ≤ {not p(f(1)) : 2, p(f(0)) : 1} ≤ 2.

Let’s consider the interpretation I for P such that f I(0) = f I(1) = 0, pI(0) holds and
pI(1) does not. The reduct P I consists of a single rule: p(0) ← 1 ≤ {p(0) : 1}. Since
∅ is the answer set of P I which different from Ia = {p(0)}, it follows that I is not an
answer set of P .

Note that functions in our weight programs are not semantically necessary, since they
can be replaced by predicates while preserving the semantics (cf. [10]).

3.2 Completion and Loop Formulas

Similar to Section 2.2, to accommodate logic formulas that may contain weight con-
straints with functions, we extend the language L to Lwc, in which a weight constraint
with functions is regarded as an atomic formula of Lwc.

Let P be a weight program with functions. The completion of P , written COMP (P ),
consists of the following formulas of the language Lwc:

1. For every rule Head ← Body in P , we include the following Lwc formula in
COMP (P )

(
∧

Body) ⊃ Head.

2. For each atom p(c) ∈ At(P ), we include the following formula in COMP (P )

p(c) ⊃
∨

1≤i≤n

⎡
⎣∧Bodyi ∧

⎛
⎝ ∨

p(t)∈Atoms+(Headi)

t = c

⎞
⎠
⎤
⎦

where Headi ← Bodyi(1 ≤ i ≤ n) are the rules of P , t = c stands for the formula
t1 = c1 ∧ · · · ∧ tn = cn whenever t = (t1, . . . , tn) and c = (c1, . . . , cn).

Let P be a weight program with functions. The positive dependency graph of P , written
GP , is the directed graph (V,E), where

– V = At(P ) and
– (p(c), q(d)) ∈ E if P has a rule of the form (8) such that, p(t) ∈ Atoms+(C0),

q(s) ∈ Atoms+(Ci), for some i (1 ≤ i ≤ n), and there exists an interpretation I
for P with tI = c and sI = d.

A non-empty subset L of At(P ) is a loop of P if there is a non-zero length cycle in GP

that goes through only and all the nodes in L.
In the following, to define loop formulas, we further extend the language Lwc to

Lwc
o such that, for any predicate p and a non-empty subset L of At(P ), Lwc

o contains
a predicate pL that has the same arity as that of p. The interpretations for P can be
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similarly extended. Let p(t) be an atom and L ⊆ At(P ). The L-irrelevant formula of
p(t), written IL(p(t), L), is defined as

pL(t) ≡

⎛
⎝p(t) ∧

∧
p(c)∈L

¬(c = t)

⎞
⎠ (15)

Intuitively, given an interpretation I for P , pI
L(tI) holds if and only if pI(tI) holds and

p(tI) /∈ L. Note that, suppose t mentions only constants, we then have pL(t) ≡ p(t) if
p(t) /∈ L, and pL(t) ≡ ⊥ otherwise.

Let P be a weight program with functions, L ⊆ At(P ) and C a weight constraint
l ≤ S ≤ u. The restriction of C to L, written C‖L, is the following Lwc

o formula:

(l ≤ S′) ∧ (S ≤ u) ∧

⎛
⎝ ∧

p(t)∈Atoms+(C)

IL(p(t), L)

⎞
⎠ (16)

where S′ is obtained from S by replacing each atom p(t) ∈ Atoms+(C) by its L-
irrelevant formula pL(t). In particular, if C mentions only literals that contain no func-
tion symbols, then C‖L coincides with C|L in the language Lwc.

Let L be a loop of a weight program with functions P . The loop formula of L with
respect to P , written LF (L,P ), is the following Lwc

o formula:

∨
L ⊃

∨
1≤i≤n

⎡
⎢⎢⎣
⎛
⎜⎜⎝

∨
p(c)∈L

p(t)∈Atoms+(Headi)

t = c

⎞
⎟⎟⎠ ∧

⎛
⎝ ∧

C∈Bodyi

C‖L

⎞
⎠
⎤
⎥⎥⎦ (17)

where Headi ← Bodyi(1 ≤ i ≤ n) are the rules of P .

Theorem 2. Let P be a weight program with functions. An interpretation I for P is an
answer set of P if and only if o(I) is a model of COMP (P ) ∪LF (P ) where LF (P ) is
the set of loop formulas of P and o(I) is the extension of I according to (15).

3.3 Translation to CSP

In order to translate a weight program with functions into a CSP instance, similar to
[10], we need to assume a certain “normal form” for functional terms.

Let P be a weight program with functions. We say P is free of functions in arguments
if all terms that can be evaluated independently of interpretations have been replaced
by constants in LP , and none of the predicates or functions that are not pre-interpreted
have a functional term in their arguments. Given a weight program with functions P ,
we can translate it into one that is free of functions in arguments using the following
procedure:

(1) evaluate all terms that mention only constants and pre-interpreted functions to con-
stants;



338 Y. Wang et al.

(2) for each rule in P , repeatedly replace every occurrence of a term f(u1, . . . , un) in
any argument of a predicate or a function that is not pre-interpreted in the rule by a
new fresh variable v of the same type as the range of f , and add f(u1, . . . , un) = v
to the body of the rule, where ui is a simple term; and

(3) ground the rules obtained in the above step.

It is evident that the original program and the transformed one are equivalent in the
sense that they have the same answer sets. In the following, without loss of generality,
we assume that weight programs with functions are free of functions in arguments. In
this case, we can replace C‖L with C|L in the equation (17).

Accordingly, using completion and loop formulas, we can translate a weight program
with functions to a CSP [17], denoted R(P ) = 〈X ,D, C〉, as follows. The set X of
variables and their domains are

– for each atom p in At(P ), there is a variable for it whose domain is {0, 1}, and
– for each functional term f(u1, . . . , un) occurring in P such that f is not pre-

interpreted, there is a variable for it whose domain is the range of f .

The set C of the constraints is: for each formula φ in COMP (P ) ∪ LF (P ), there is a
constraint c(φ) = 〈S,R〉 in C, where R is the constraint obtained from φ by replacing
atoms and functional terms in it by their corresponding variables, and S is the set of
variables occurring in R.

Theorem 3. Let P be a weight program with functions that is free of functions in ar-
guments, and I an interpretation of P . Then I is an answer set of P if and only if v(I)
is a solution of R(P ), where v(I) is defined as follows:

– if x ∈ X corresponds to an atom p, then v(I) assigns x the value 1 iff p is true
under I; and

– if x ∈ X corresponds to a term f(u1, . . . , un), then v(I) assigns x the value u iff
f I(u1, . . . , un) = u.

4 Implementation and Experiments

Implementation. By Theorem 3, we can compute the answer sets of weight programs
with functions using the same algorithm proposed in [10]. As we know, the current CSP
encoding formalism under the name of XCSP 2.14, which is designed for the third CSP
solvers competition, allows global constraints, such as weightSum, allDifferent, among,
atleast, atmost, cumulative, etc. Our approach of using CSP solvers to compute answer
sets allows us to make use of these facilities. Therefore, we can incorporate global
constraints into the ASP language for weight programs with functions, by introducing
appropriate denotations. For example, we use the following notation

f : τ1 × . . .× τn → τ [allDifferent]

4 http://www.cril.univ-artois.fr/˜lecoutre/research/benchmarks/benchmarks.html#format
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Table 1. The magic N -square problem

N= smodels cmodels clasp pbmodels FASP Size
? pbs satzoo cpHydra Mistral lparse FASP

4 0.340 11.390 0.030 1.4041 3.0162 0.0720 0.0480 55K 781B
5 – 71.120 8.060 11.4487 32.510 0.0560 0.0320 130K 798B
6 – – 6.260 113.8152 118.0994 10.7452 0.0240 263K 1.1K
7 – – 92.880 – 420.9823 10.3772 1.2401 479K 2.1K
8 – – – – – 10.2013 2.3602 808K 2.6K
9 – – – – – 0.3360 0.4000 1.3M 3.2K

Legends: – - No result in 0.5 hours. lparse - the LPARSE encoding. FASP - the encoding
using functions.

to express not only the input/output types of the function symbol f but also the require-
ment that the function f(t) should produce different values for different t’s. Accord-
ingly, the rule (10) in Example 1 can be omitted by specifying

square : num× num → value[allDifferent]

for the definition of the function square. In the current version of FASP, invocation to
the CSP global constraint allDifferent has been implemented.

Notice further that, in the rules (11–14) of Example 1, the expression “square(X,Y )
= W : W ” means if the value of square(X,Y ) is W then the weight of “square(X,Y )
=W ” is W , i.e., the value of square(X,Y ). Thus, we can simply write square(X,Y )
instead of “square(X,Y ) = W : W ” in those rules. In this case, a weight constraint
with functions can be encoded by a CSP constraint in terms of linear inequations. That
is, the values W of square(X,Y ) are not explicitly enumerated in the generation of
the CSP instance. As a result, the size of the ground programs is in the order of O(n2).

Experiments. In our experiments, we used two CSP solvers, cpHydra-k-10 and Mistral
1.331, which were two top CSP solvers in the 2008 CSP competition.

We tested our implementation with the benchmark magic N -square problem and
compared the time cost in seconds with the ASP solvers:5 SMODELS, CMODELS, CLASP,
and PBMODELS. The experiments were done on a PC with Intel Pentium(R) Dual-Core
CPU (2.50GHz), 1GB RAM running Fedora Linux Core 6.0 and the results are sum-
marized in Table 1.

The encoding for the magic N -square problem in LPARSE is adopted from the web-
site of PBMODELS as follows:

#weight wt(I) = I. num(1..n). 1{sqr(I,J,D):num(I;J)}1 :- data(D).
data(1..n*n). 1{sqr(I,J,D):data(D)}1 :- num(I;J).
n(n*2+1)/2 [ sqr(I, J, A)=A : num(J): data(A) = weight(wt(A)) ] n(n*2+1)/2 :- num(I).
n(n*2+1)/2 [ sqr(I, J, A)=A : num(I): data(A) = weight(wt(A)) ] n(n*2+1)/2 :- num(J).
n(n*2+1)/2 [ sqr(I, I, A)=A : num(I): data(A) = weight(wt(A)) ] n(n*2+1)/2.
n(n*2+1)/2 [ sqr(I, n+1-I, A)=A : num(I;n+1-I): data(A) = weight(wt(A)) ] n(n*2+1)/2.

5 Solving time only, not including the grounding time, nor the time for generating CSP
instances.
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Grounding this program may produce a ground program of the size O(n4).
We tested PBMODELS using two engines, PBS and SATZOO, which are considered

the best for this benchmark [12]. It is clear that FASP outperforms all the ASP solvers
for this benchmark. For comparison, we also output the sizes of these ground programs
in LPARSE and in our FASP. The ground programs in LPARSE are generated using lparse
with the “-t” option. Table 1 shows that, using functions may significantly reduce the
size of the ground program.

5 Final Remarks

In this paper we formulated completion and loop formulas for lparse programs directly,
and generalized them to weight (constraint) programs with functions that are interpreted
over non-Herbrand domains. We show that the completion and loop formulas capture
the answer sets of these programs. This enables us to extend FASP for computing answer
sets of a weight program with functions. We apply our extended implementation to the
magic N -square problem, and the experimental results show a clear advantage of our
approach over the traditional ASP solvers.

For adding functions into ASP, a majority of recent work support functions over the
Herbrand interpretations [1,3,18]. Quantified Equilibrium Logic (QEL) [16] and the Gen-
eral Theory of Stable Models [5] allow non-Herbrand interpretations. In QEL, the equi-
librium models are Kripke structures while the answer set semantics for the General
Theory of Stable Models is defined by translating a sentence into a second-order one. On
the other hand, the work of [2] is closely related to ours, where a functional logic pro-
gramming language is defined, in which the valuation of functions can be partial while
it must be total in our case.

Our past experience shows that, typically for scheduling benchmarks, CSP-based
solvers tend to be more efficient, sometimes they can be orders of magnitude faster
than the traditional ASP solvers. We hope that our fine tuning of FASP and further
experiments on it can close the gap.
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Abstract. We present a formal framework where a nonmonotonic formalism (the
action description language C+) is used to provide robots with high-level reason-
ing, such as planning, in the style of cognitive robotics. In particular, we introduce
a novel method that bridges the high-level discrete action planning and the low-
level continuous behavior by trajectory planning. We show the applicability of
this framework on two LEGO MINDSTORMS NXT robots, in an action domain
that involves concurrent execution of actions that cannot be serialized.

1 Introduction

As robotics technology is broadening its applications from factory to more general-
purpose applications in public use, demands from robots shift from speed and precision
towards safety and cognition. New levels of robustness, physical dexterity, and cognitive
capability are necessitated from robots that can perform in dynamic environments in-
volving humans. While traditional robotics design and construct extremely rigid robots
with high position control gains, cognitive robotics [1] is concerned with providing
robots with higher level cognitive functions that involve reasoning about goals, percep-
tion, actions, the mental states of other agents, collaborative task execution, etc., so that
they can give high-level decisions to act intelligently in a dynamic world. This paper is
an attempt to close the gap between traditional robotics and cognitive robotics, to meet
the demands of various applications from robots.

There have been various studies to close the gap between traditional robotics and
cognitive robotics, by implementing high-level robot control systems based on differ-
ent families of formalisms for reasoning about actions and change. For instance, [2]
describes a system, LEGOLOG1, that controls a LEGO MINDSTORMS RIS robot us-
ing the high-level control language GOLOG [3] based on the situation calculus [4,5]. [6]
presents an execution monitoring system for GOLOG and the RHINO control software
which operates on RWI B21 and B14 mobile robots. [7] studies coordination of soccer
playing robots, using an extension of GOLOG. In the WITAS Unmanned Aerial Vehi-
cle Project2 temporal action logic [8], features and fluents [9], and cognitive robotics
logic [10] are used for representing the actions and the events, as a part of a helicopter
control system [11]. [12] describes how event calculus [13,14] can be used to provide

1 http://www.cs.toronto.edu/cogrobo/Legolog
2 http://www.ida.liu.se/ext/witas

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 342–354, 2009.
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Fig. 1. The overall system architecture

high-level control for a Khepera robot. The agent programming language FLUX [15],
based on the fluent calculus [16], has also been used to control the execution of some
robots.3 For instance, [17] presents how FLUX can be used for monitoring the execution
of a plan, on a Pioneer 2 mobile robot.

We continue this line of research to provide traditional robotics with high-level rea-
soning in the style of cognitive robotics, with a different formalism (i.e., the action de-
scription language C+ [18]), a different reasoner (i.e., CCALC4), a different robot (i.e.,
LEGO MINDSTORMS NXT), and most importantly with a different method, which
bridges the high-level discrete action planning and the low-level continuous behavior
with “trajectory planning”.

Also we consider high-level reasoning in a different sort of action domain that involves
concurrent execution of actions that cannot be serialized. In particular, we study planning
problems that require two robots to pick up and carry a payload from an initial location
to a goal location, on a maze, while avoiding obstacles. The idea is for the robots to
automatically generate a plan, and then execute it collaboratively (Fig. 1). In this domain,
the robots can follow complex paths (not necessarily a straight path marked a priori, as in
LEGOLOG) avoiding obstacles; this is why our system has trajectory planning between
the high-level discrete action planning and the low-level continuous behavior. We can
describe this action domain (in particular, the frame problem, the ramification problem,
the qualification problem, nonserializable concurrency) in C+ in a straightforward way.

3 http://www.fluxagent.org/projects.htm
4 http://www.cs.utexas.edu/users/tag/cc

http://www.fluxagent.org/projects.htm
http://www.cs.utexas.edu/users/tag/cc
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Our main contributions can be summarized in two parts:

– Action description languages [19] are well-studied for various sorts of high-level
reasoning about actions and change. On the other hand, unlike the other formalisms
mentioned above, it has not been shown on a real robot how high-level reason-
ing performed within an action description language can be useful for traditional
robotics. In that sense, our work is the first to demonstrate the use of action de-
scription languages for high-level reasoning and control of robots, in the style of
cognitive robotics.

– LEGO MINDSTORMS NXT is available at a relatively low price and is widely
available all over the world compared to more sophisticated robots. It allows one
to build various kinds of robots, and write programs to control them. Also, the
high-level reasoning component based on the action description language C+ can
be replaced by one based on a different formalism. These features of the overall
system enable the reproduction and improvement of our work for educational and
research purposes by other researchers who study action description languages,
other formalisms for reasoning about actions and change, cognitive robotics, and
also traditional robotics.

In the rest of the paper, first we describe the overall system shown in Fig. 1. After
we describe the particular action domain and the kind of planning problems we are
interested in, we formalize them in the language of CCALC. After that, we explain how
a plan computed by CCALC is executed by a LEGO MINDSTORMS NXT robot. We
conclude with a discussion on the results and the challenges, as well as the future work.

2 The Overall System Architecture

The overall architecture of our high-level reasoning and control platform is illustrated
in Fig. 1.

We start with a description of an action domain in the action description language
C+ [18]. The idea is, based on this description, to plan the actions of two LEGO MIND-
STORMS NXT robots to achieve a common goal. For that, we use the reasoner CCALC.
Given an initial state and goal conditions, CCALC computes a plan to reach a goal state,
and displays the complete history (including the state information). From such a history,
we extract the trajectories of the robots (including the positions and the orientations of
the joints of the robots) using inverse kinematics; these trajectories are obtained from a
history automatically with a C++ program. After that, we pass these trajectories to the
robots, by means of messages via Bluetooth communication, using the program NeXT-
Tool. All these tasks are automatically performed on a PC using a Python program.

The brain of a LEGO MINDSTORMS NXT robot is NXT—an embedded controller
(with an ARM7 microprocessor) capable of processing messages via the Bluetooth
communication, and sending signals to three motors. In our work, two motors are used
for movements of the robot on a plane; a third motor is used for the rotation of the
robot arm. Since gripping would require an additional degree of freedom, a permanent
magnet is used as the end-effector; by this way, a payload with metal endpoints can be
grabbed by the robots. Several methods and languages exist for programming NXTs.
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Due to its documentation and relative ease of use, we use the programming language
NXC to control the movements of the robots according to the received messages.

3 Example: Two Robots and a Payload

Consider two robots, and a payload (a long metal stick) on a platform. Suppose that
each robot has a magnet at its end-effector so that it can hold the payload only at one
end. None of the robots can carry the payload alone; they have to hold the payload at
both ends to be able to carry it. The goal is to place the payload at a specified goal
position on the platform.

3.1 Action Domain Description

We view the platform as a maze. We represent the robots by the constants r1 and r2. We
describe the payload by its end points, and denote them by the constants pl1 and pl2.

We characterize each robot by its end-effector, and describe its position by a grid
point on the maze. The location (X,Y) of a robot R is specified by two functional
fluents, xpos(R)=X and ypos(R)=Y. Similarly, the location (X,Y) of an end point P1
of the payload is specified by two fluents, xpay(P1)=X and ypay(P1)=Y. Movements
of a robot R in some direction D are described by actions of the form move(R,D). Each
such action has an attribute that specifies the number of steps to be taken by the robot.

In the following, suppose that R denotes a robot, P1 and P2 denote the end points of
the payload, N and N1 range over nonnegative integers 1, ..., maxN, and D and D1 range
over all directions, up, down, right, left. Also suppose that X1, X2, Y1, Y2 range
over nonnegative integers 1, ..., maxXY.

We present the causal laws in the language of CCALC.

Direct effects of actions. We describe the effect of a robot’s moving right, by the causal
laws

move(R,right) causes xpos(R)=X2 if steps(R,right)=N & xpos(R)=X1
where X2=X1+N & X2 =< maxN.

Similarly, we describe the effects of moving in other directions.

Ramifications. If a robot R is at the same location as an end point P1 of the payload,
the end-effector of that robot attracts that end point:

caused on(R,P1) if xpos(R)=xpay(P1) & ypos(R)=ypay(P1).

Then the location of the payload is determined by the locations of the robots:

caused xpay(P1)=X1 if on(R,P1) & xpos(R)=X1.
caused ypay(P1)=Y1 if on(R,P1) & ypos(R)=Y1.

Preconditions of actions. We describe that a robot cannot move in opposite directions
by the causal laws
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nonexecutable move(R,up) & move(R,down).
nonexecutable move(R,left) & move(R,right).

We describe each robot’s range of motion, taking into account the Pythagorean Theo-
rem, by the causal laws

nonexecutable move(R,D) & move(R,D1)
if D @< D1 & steps(R,D)=N & steps(R,D1)=N1
where N*N+N1*N1 > maxN*maxN.

The robots can carry the payload only if both of them hold the payload at its end points.

nonexecutable move(R,D) if -canCarry & on(R,P1).

The conditions under which two robots can carry the payload are described by
canCarry:

caused canCarry if on(r1,P1) & on(r2,P2) & P1\=P2
after on(r1,P1) & on(r2,P2) & P1\=P2.

Note that it is required by the causal laws above that the robots wait for one step imme-
diately after they hold the payload at both ends.

Constraints. We make sure that a payload cannot move places unless it is carried by
the causal laws

caused false if xpay(P1)=X1 & X1\=X2
after -canCarry & xpay(P1)=X2.

caused false if ypay(P1)=Y1 & Y1\=Y2
after -canCarry & ypay(P1)=Y2

Since CCALC can only deal with integers, we cannot keep track of the exact locations
of the payload. (Consider, for instance, moving one end of the horizontally-situated
payload up by 2 steps.) Therefore, we allow the payload’s length change with a small
tolerance for a more flexible motion. Suppose that linklengthsq denotes the square
of the length of the payload; and tolerance denotes the maximum change allowed
in the payload’s length. The following laws ensure that the payload’s length cannot in-
crease/decrease more than tolerance:

caused false
if xpay(pl1)=X1 & xpay(pl2)=X2 & ypay(pl1)=Y1 & ypay(pl2)=Y2
where

(X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1) < (linklengthsq-tolerance) ++
(X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1) > (linklengthsq+tolerance).

To take care of obstacles on the platform (to prevent collisions), we add the following
causal laws:

caused false if xpos(R)=X1 & ypos(R)=Y1
after xpos(R)=X2 & ypos(R)=Y2
where collision(X1,Y1,X2,Y2) &

between(X2-maxN,X2+maxN,X1) & between(Y2-maxN,Y2+maxN,Y1).
caused false

if xpay(pl1)=X1 & ypay(pl1)=Y1 & xpay(pl2)=X2 & ypay(pl2)=Y2
where collision(X1,Y1,X2,Y2).
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Here collision is an external function defined in C++, and between is an external
SWI Prolog function; both are evaluated in SWI Prolog while grounding the causal
laws. The first law above prevents the robot end-effectors from moving to a position
occupied by an obstacle. The second law ensures that at every state of the world the
payload cannot collide with an obstacle.

3.2 Collision Detection

The constraints above ensure at each step that the length of a payload does not change
more than a specified tolerance, and the robot end-effectors and the payload do not
collide with an obstacle. However, during the plan execution, between any two steps of
the plan, the length of a payload can change out of the specified range, and there may
be collisions. To ensure collision-free trajectories for the robot end-effectors and the
payload, a collision detection algorithm is required.

Such a collision detection algorithm can be implemented in C++ as a function, which
takes as inputs the end-effector coordinates of a robot (or the end point coordinates of
the payload) at the current state and the next state, and returns “true” if the path is free of
collisions. Let’s call this function trajectoryCollision. After that, we can prevent
collision by adding to the description in Section 3.1 the causal laws

caused false
if xpay(pl1)=X1 & ypay(pl1)=Y1 & xpay(pl2)=X2 & ypay(pl2)=Y2
after
xpay(pl1)=X3 & ypay(pl1)=Y3 & xpay(pl2)=X4 & ypay(pl2)=Y4

where trajectoryCollision(X1,Y1,X3,Y3,X2,Y2,X4,Y4) &
between(X3-maxN,X3+maxN,X1) & between(Y3-maxN,Y3+maxN,Y1) &
between(X4-maxN,X4+maxN,X2) & between(Y4-maxN,Y4+maxN,Y2).

However, there are too many of such causal laws (due to the 8 schematic variables).
(Grounding the schematic law above takes more than an hour if we reduce the grid size
and restrict the collision detection check to a small set of possible positions of the robot
end-effectors.) We can modify trajectoryCollision so that it takes 6 variables
instead (the positions of one of the end points and the orientation of the payload at the
current state and the next state) to uniquely determine the current and the next positions
of the robot end-effectors and the payload; add new definitions for the orientations; and
modify the schematic causal law above. However, these modifications do not reduce the
grounding time sufficiently.

Therefore, instead of adding to the action domain description D in Section 3.1 causal
laws with too many variables, we apply Algorithm 1. The idea is to compute a plan with
D using CCALC, and then check whether such a plan could lead to a trajectory collision.
If such a collision is detected between Steps i and i + 1, then we extract the location L
of the payload and the action A executed at Step i and ask CCALC for a different plan
that does not execute A at a state where the payload is located at L. It is important to
note that CCALC grounds the action domain only once at the very first iteration of the
algorithm; after that, no grounding is done to compute a collision-free plan.
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Algorithm 1. PLAN

Input: An action domain description D, a planning problem P
Output: A collision-free plan P of length at most n, if exists

plan := false; // no collision-free plan is computed so far
while ¬plan do

plan, P, H ← Compute a plan P of length at most n, within a history H , using CCALC

with D and P , if there exists such a plan;
if plan then

collision := false; // no trajectory collision is detected so far
i := 0;
while ¬collision AND i ≤ |P | do

Δ ← Extract the relevant parameters from the history H to uniquely identify the
positions of the robot end-effectors at Steps i and i + 1;
// Extract the location L of the payload and the action A executed at Step i, if a collision
is detected
collision, L, A ← trajectoryCollision(Δ);
i + +;

end while
if ¬collision then

return P
else

P ← Modify the planning problem P to compute a plan that does not execute A at a
state where the payload is located at L;
plan := false;

end if
end if

end while

4 Finding a Collision-Free Plan

Suppose that initially the robots r1 and r2 are at (1,1) and (2,1) respectively, and
the end points of the payload are at (4,1) and (9,1). The goal is to move the payload
to a location so that its end points are at (4,9) and (9,9). This planning problem can
be described in the language of CCALC by means of a “query” as follows:

:- query
maxstep :: 0..infinity;
0: -canCarry, xpos(r1)=1, ypos(r1)=1, xpos(r2)=1, ypos(r2)=1,

xpay(pl1)=4, ypay(pl1)=1, xpay(pl2)=9, ypay(pl2)=1;
maxstep: xpay(pl1)=9, ypay(pl1)=9, xpay(pl2)=4, ypay(pl2)=9.

CCALC then computes the following plan (Plan 1) for this problem:

0: move(r1,up,steps=2) move(r1,right,steps=2) move(r2,up,steps=3)
1: move(r1,up,steps=3) move(r1,right,steps=2) move(r2,up,steps=2)

move(r2,right,steps=3)
2: move(r1,down,steps=3) move(r1,right,steps=2) move(r2,down,steps=2)

move(r2,right,steps=3)
3: move(r1,down,steps=2) move(r1,left,steps=3) move(r2,down,steps=3)
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move(r2,right,steps=2)
4:
5: move(r2,up,steps=3) move(r2,left,steps=1)
6: move(r1,up,steps=2) move(r1,right,steps=2)

move(r2,up,steps=3) move(r2,right,steps=1)
7: move(r1,up,steps=2) move(r1,right,steps=3)

move(r2,up,steps=2) move(r2,left,steps=3)
8: move(r1,up,steps=4) move(r2,left,steps=2)

However, while executing this plan, between time units 7 and 8, the payload collides
with the obstacle as illustrated in Fig. 2. Therefore, from the history CCALC computed,
we extract the position L of the payload at Step 7:

xpay(pl1)=6 xpay(pl2)=9 ypay(pl1)=3 ypay(pl2)=7

and the actions A executed at Step 7:

move(r1,up,steps=2) move(r1,right,steps=3)
move(r2,up,steps=2) move(r2,left,steps=3)
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Fig. 2. This figure illustrates the execution of Plan 1 on the robot system, at time step 7. Colors
blue, red, green and black are associated with the Robots 1 and 2, the payload, and the obstacles,
respectively. Circles and their labels indicate the positions of the robot end-effectors, while the
thick green lines denote the position of the payload at each step according to the history calculated
by CCALC. For instance, according to the computed history, at Step 7, the end-effectors of Robots
1 and 2 are located at (6,3) and (9,7) respectively, holding the end points of the payload. The
thinner green lines denote the payload configuration constructed from the motor encoder data.
Observe that, although at time steps 7 and 8 the payload does not collide with the obstacles,
between time steps 7 and 8 it does collide with the obstacles. Also the length of the payload
changes more than the allowable tolerance.
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After that, we ask CCALC to find a different plan that does not execute the actions A at
a state where the payload is located at L, by modifying the query above as follows:

:- query
label::5;
maxstep :: 9..infinity;
0: -canCarry, xpos(r1)=1, ypos(r1)=1, xpos(r2)=1, ypos(r2)=1,

xpay(pl1)=4, ypay(pl1)=1, xpay(pl2)=9, ypay(pl2)=1;
maxstep: xpay(pl1)=9, ypay(pl1)=9, xpay(pl2)=4, ypay(pl2)=9;
T<maxstep ->> (

((T: xpay(pl1)=6) && (T: ypay(pl1)=3) &&
(T: xpay(pl2)=9) && (T: ypay(pl2)=7)) ->>

-((T: move(r1,up)) && (T: steps(r1,up)=2) &&
(T: move(r1,right)) && (T: steps(r1,right)=3) &&
(T: move(r2,up)) && (T: steps(r2,up)=2) &&
(T: move(r2,left)) && (T:steps(r2,left)=3) )).

Then CCALC computes the following plan (Plan 2)

0: move(r1,up,steps=2) move(r1,right,steps=3)
move(r2,up,steps=2) move(r2,right,steps=3)

1: move(r1,up,steps=2) move(r1,right,steps=3)
move(r2,up,steps=2) move(r2,right,steps=3)

2: move(r1,down,steps=1) move(r1,right,steps=2)
move(r2,down,steps=3) move(r2,left,steps=1)

3: move(r1,down,steps=3) move(r2,down,steps=1) move(r2,left,steps=2)
4:
5: move(r1,up,steps=4) move(r2,up,steps=1) move(r2,right,steps=1)
6: move(r1,up,steps=4) move(r2,up,steps=2) move(r2,right,steps=3)
7: move(r1,left,steps=3) move(r2,up,steps=1) move(r2,right,steps=1)
8: move(r1,left,steps=2) move(r2,up,steps=4)

According to this plan, for instance, at Step 7, Robot 1 moves left by 3 units, and Robot
2 moves up by 1 unit and right by 1 unit.

5 Executing a Plan on LEGO Robots

Once CCALC computes a plan for a given problem, it logs the complete history (includ-
ing the state information). From such a plan, the positions of the robot end-effectors at
each time step can be extracted. The simplest approach for executing the plan would be
to convert these state values into motor angles and use these values as set-point refer-
ences for the motors. However, set-point tracking does not guarantee a linear motion of
the end-effector, and may cause collisions with the obstacles. To obtain more straight
trajectories, a simplified trajectory tracking controller is implemented by introducing in-
termediate steps to the plan using linear interpolation. Then, these intermediate points
are mapped to robot joint variables.
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Fig. 3 depicts a schematic representation of two planar robots carrying a payload.
For each robot i, its end-effector is located at a grid point (xi,yi) and its corresponding
joint variables are denoted as (si,θi). The forward kinematics of each robot maps its
joint variables to its end-effector coordinates and reads as

xi = si + li cos(θi) (1)

yi = li sin(θi) (2)

while the inverse kinematics maps the end-effector coordinates to the joint variables
and is given as

si = xi ±
√

l2i − y2
i (3)

θi = atan2
(
±
√

l2i − y2
i , yi

)
(4)

where li represents the length of each robot arm. One can observe that two feasible
solutions exist for the inverse kinematics of each robot and the ± signs in equations (3)
and (4) are coupled.

After the joint space trajectories are calculated, they are passed to the robots, by
means of messages via Bluetooth communication, using the NeXTTool program. Based
on these joint space trajectories, the computed plan is executed by the robots via an
NXC program. Algorithm 2 presents the structure of the NXC program used for the
low level control of the robots.

To locate a robot at a reference configuration within an acceptable error margin, it
is essential that the actual configuration of the robot is checked with respect to the ref-
erence configuration. Hence, a feedback controller is necessitated. Due to its ease of
implementation, a proportional feedback controller (P-controller) is employed to en-
sure a robust tracking of the robots in the joint space. The P-controller continually
compares the reference and actual joint variables and compensates for the error term by

Algorithm 2. NXC Program
Input: Trajectories (a list of reference angles)
Output: Log file

Check for the Bluetooth communication
Go to the initial configuration
Wait for the start signal
while There is a trajectory to follow do

Read the reference angles
while Not at the reference angles do

Read the motor angles
Calculate the error in motor position
Rotate the motor to compensate for the error
Record the motor angles

end while
end while
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Fig. 5. This figure illustrates the execution of Plan 2 on the robot system. Colors blue, red, green
and black are associated with the Robots 1 and 2, the payload, and the obstacles, respectively.
Circles and their labels indicate the positions of the robot end-effectors, while the thick green lines
denote the position of the payload at each step according to the history calculated by CCALC.
For instance, according to the computed history, initially, the end-effectors of robots are located
at the grid point (1,1), and the payload lies between the points (4,1) and (9,1); at Step 6, the end-
effectors of Robots 1 and 2 are located at (9,5) and (5,2) respectively, holding the end points of
the payload. Blue and red lines represent the end-effector trajectories of each robot, while thinner
green lines denote the payload configuration as constructed from the motor encoder data. The
black lines represent the obstacles.

commanding a counteracting motion that is proportional to the magnitude of the error
signal. The P-controller gain is tuned empirically to achieve acceptably low overshoot
and steady state error of the motor response.

For instance, consider the planning problem described in the previous section. After
CCALC computes a collision-free plan (Plan 2) for the problem as described in the
previous sections, the intermediate points are interpolated and mapped to the robot joint
space as explained above. Then, the LEGO robots trace these trajectories as in Fig.s 4
and 5. Fig. 4 presents snapshots taken at each step of the plan, while Fig. 5 depicts the
trajectories of the robot end-effectors and the payload.

6 Discussion

We have demonstrated with some planning problems in a sample action domain, how
the logic-based formalism C+ can be used to endow two LEGO MINDSTORMS NXT
robots with high-level reasoning in the style of cognitive robotics.

In these experiments, we encountered many challenges. For instance, that CCALC

can handle integers only, caused some difficulties in calculating the exact positions of
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the robots. To deal with this problem, we assumed that the length of the payload might
increase/decrease within a specified tolerance. We also faced control challenges: Lack
of floating point operations in NXC; low encoder resolution, high friction and backlash
of the LEGO motors; and the flexible robot structure due to plastic parts. To address
these challenges we have to upgrade the hardware/software of LEGO MINDSTORMS
NXT robots. The modification of the overall architecture to include monitoring of the
plan execution is a part of the ongoing work.
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Abstract. We introduce a general approach to cryptographic protocol verifica-
tion based on answer set programming. In our approach, cryptographic protocols
are represented as extended logic programs where the answer sets correspond to
traces of protocol runs. Using queries, we can find attacks on a protocol by finding
the answer sets for the corresponding logic program. Our encoding is modular,
with different modules representing the message passing environment, the pro-
tocol structure and the intruder model. We can easily tailor each module to suit
a specific application, while keeping the rest of the encoding constant. As such,
our approach is more flexible and elaboration tolerant than related formalizations.
The present system is intended as a first step towards the development of a com-
piler from protocol specifications to executable programs; such a compiler would
make verification a completely automated process. This work is also part of a
larger project in which we are exploring the advantages of explicit, declarative
representations of protocol verification problems.

1 Introduction

A cryptographic protocol is a sequence of encrypted messages that is used to exchange
information and achieve communicative goals over an insecure network. Proving that a
cryptographic protocol is secure is difficult, because many attacks are subtle and diffi-
cult to find. The problem is further complicated by the fact that protocol goals are often
specified imprecisely, which makes it difficult to know exactly what might constitute
an attack. In this paper, we use Answer Set Programming (ASP) to encode relevant
information involved in a cryptographic protocol, including agent capabilities and the
message passing environment, and to automatically detect attacks.

A wide range of methods have been previously employed for the verification of cryp-
tographic protocols, including encodings in many different formal logics. Our work is
distinguished from most of these methods in that we use a declarative formalism for
reasoning about action effects. We specify the steps of a cryptographic protocol in a
logic program where the answer sets correspond to sequences of messages exchanged
between agents. After translating a given protocol into our encoding, it is straightfor-
ward to automatically generate attacks by using an answer set solver.
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This paper makes several contributions to work on cryptographic protocol verifica-
tion. First, given our declarative approach, all aspects of protocol specification, includ-
ing agent capabilities, the message-passing environment, and the goals of the protocol,
are explicitly specified. As a result also, our model of message passing is more gen-
eral and more flexible than other models used in protocol verification. For example, in
our approach it is straightforward to modify the capabilities of the intruder for a spe-
cific application. Second, our work provides a methodology for compiling an arbitrary
cryptographic protocol into a formal encoding suitable for automated analysis. This is a
significant improvement over purely logical representations of cryptographic protocols,
where the translation from formalism to implementation may be non-trivial.

We proceed as follows. In §2, we provide an illustrative example, related work, and
motivation for our approach. In §3, we present the details of our formal model. In §4,
we discuss the advantages of our approach as compared with related formalisms. We
then offer some concluding remarks and directions for future work.

2 Background and Motivation

2.1 Illustrative Example: The Needham Schroeder Protocol

We introduce the well-known Needham Schroeder protocol [15]. This is an authenti-
cation protocol involving two agents A and B, which is to say that the goal is for each
agent to establish that they are communicating with the other. In the protocol specifica-
tion, the notation {M}K is used to denote the message M encrypted with the key K .
In the given protocol, NA and NB denote random numbers, called nonces, generated
by A and B respectively. The key KA is the public key for A and the key KB is the
public key for B. In public key cryptography, each agent also has a corresponding pri-
vate key that is used for decryption. We treat encryption as a ‘black box’ operation by
assuming that an encrypted message can never be decrypted without the corresponding
private key. Hence, a message encrypted with the public key of some agent can only be
decrypted by that particular agent. Using these conventions, the protocol is specified as
follows.

The Needham Schroeder Protocol
1. A → B : {NA, A}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

Each line in the specification indicates that a message is sent from one agent to the
other, as indicated by the arrow. Hence, the first step in the protocol is for A to send
B the nonce NA as well as an identifier for A, both encrypted with B’s public key. In
the second step, B responds with the nonce NA as well as a new nonce, both encrypted
with A’s public key. Intuitively, the idea is that A can conclude that B received the first
message, because only B has the private key for decrypting this message. The protocol
concludes with A responding to B’s nonce, appropriately encrypted.

An attack on the Needham Schroeder protocol was discovered by Lowe [15]. Fol-
lowing convention, we describe the attack using the same “arrow” notation used for
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specifying protocols. The symbol I denotes a dishonest agent called the intruder. In
order to clarify the attack, we use the notation IA in situations where I is pretending to
be A, either by intercepting a message intended for A or by sending a message that A
would be expected to send. In the attack, A initiates a run of the protocol with I , but
then I uses the nonce generated by A to start a new run with B.

Needham Schroeder Protocol Attack
1. A → I : {NA, A}KI

1′. IA → B : {NA, A}KB

2′. B → IA : {NA, NB}KA

2. I → A : {NA, NB}KA

3. A → I : {NB}KI

3′. IA → B : {NB}KB

By interweaving protocol runs, in this attack I is able to get A to decrypt the challenge
nonce sent by B. Hence, at the conclusion of this trace, B believes that it has been
communicating with A, when it has not.

2.2 Logic-Based Verification

Logical methods have been used to prove the correctness of cryptographic protocols.
The basic idea is to encode the steps of a protocol as formulas in a logic, and also to
formalize the goals of the protocol in the same logic. A protocol is then shown to be
secure by proving that the goal is logically entailed by the formulas that correspond to
the steps of the protocol. The first logic defined explicitly for protocol verification was
the BAN logic of Burrows, Abadi and Needham [4]. This work has been highly influen-
tial for two main reasons. First, it illustrates that protocol verification can be reduced to
formal reasoning in a logic. Second, it demonstrates the significance of knowledge and
belief when proving protocol correctness. Although BAN logic itself has several known
flaws, it has lead directly to the development of several more sophisticated protocol log-
ics. In many cases, such logics are based on the well-known “runs and systems” model
of message passing [7].

Virtually all logic-based approaches to protocol verification use the Dolev-Yao in-
truder model, which specifies that an intruder can read, intercept and forward the mes-
sages sent between honest agents [6]. In this model, messages are received with no proof
of authorship, which means that a message recipient is never aware of the sender, except
possibly via the contents of the sent message. Encryption is assumed to be unbreakable,
so an intruder can never decrypt an encrypted message without the appropriate key.

In contrast to the bulk of the work in protocol verification, our approach emphasises a
declarative representation. One declarative formalism that has been employed for pro-
tocol verification in the past is the situation calculus [14]. The first work in this area
consisted of a direct encoding of message passing in the presence of a Dolev-Yao in-
truder [13]. In this model, message interception and forwarding was modeled by means
of non-deterministic effects for message sending. More recently, in a companion to the
present paper, we have introduced a new situation calculus model of cryptographic pro-
tocols [5]. In this approach, we introduce an explicit intruder model, in which message
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interception and forwarding are actions executed by an intruder. This approach is dis-
cussed further in the final section.

As well, there has been previous work in using ASP for protocol verification. Two
distinct, yet similar, ASP models have been proposed in [1,16]. The basic idea in these
approaches is to provide a template for defining a logic program that represents a spe-
cific protocol. Answer sets correspond to sequences of exchanged messages, which
can then be analysed with respect to a set of explicitly defined attacks. Since attacks
are specified in advance, this approach cannot readily be used to find “new” or “unex-
pected” attacks on a protocol. In contrast, in our approach, we define attacks through
user-specified queries over the set of protocol runs. Another distinguishing feature of
our approach is that we present modular definitions of message passing, intruder capa-
bilities, and protocol structure. Hence, we define a formalism that is more flexible and
elaboration tolerant.

2.3 Motivation

The standard specification of protocols, as illustrated by the Needham-Schroeder Proto-
col above, is both incomplete and imprecise. It is incomplete, in part, because the goal
of the protocol is not explicitly given. Without a precise goal for a protocol, it is diffi-
cult to determine if a given trace constitutes an attack. The specification of protocols is
ambiguous because it is not clear exactly what A → B actually means; clearly it does
not mean that A successfully sends the message to B. Instead, it seems to conflate two
things:

1. A intends to send the message to B.
2. A actually sends the message to someone.

This interpretation suggests that the intentions of a sender are relevant for protocol ver-
ification. Nevertheless, intentions are often left implicit in many approaches to protocol
verification. One of the main motivations of this paper is to provide a more precise and
explicit description of what is intended in a cryptographic protocol specification. An ad-
vantage of our approach is that we specify protocols and protocol goals in a declarative
manner, which allows us to critically examine exactly what constitutes an attack.

One problem with existing formal models for protocol verification is that they im-
plicitly assume that honest agents do not do anything irresponsible or dangerous. For
example, honest agents do not send plain text messages that compromise secret keys.
While this example is obvious, it may not be clear which other actions are irresponsi-
ble. By specifying attacks in terms of flexible queries on the set of traces satisfying a
protocol, we are able to discover which actions should be avoided by an honest agent.

Lastly, we are interested in comparing alternative declarative paradigms for crypto-
graphic protocol analysis, in particular, and multi-agent message passing, in general.
Consequently we have been developing in parallel an ASP approach along with a situa-
tion calculus encoding. It is not immediately obvious, however, how to choose between
ASP and a formalism such as the situation calculus. In the discussion, we briefly con-
sider the relative merits of each approach.
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3 Approach

Our aim is to define a logic program in which the answer sets correspond to sequences
of exchanged messages between agents. We will refer to the honest agents as principals,
in contrast to the intruder whose goal is to disrupt communication between principals.
The formalization consists of three essentially independent modules. One module in-
cludes generic information about message passing and protocols; one module includes
a specification of the intruders capabilities; and the third includes the structure of a spe-
cific protocol. This approach makes the formalization very elaboration tolerant, as we
are free to manipulate the message passing environment, the protocol structure, or the
intruder to suit different applications. The ability to change the intruder is particularly
novel in the protocol verification community, where the Dolev-Yao intruder is so en-
trenched. Nevertheless, there are practical examples where the power of the intruder
may be altered by external issues, such as network topology.

We assume the reader is familiar with ASP, as described in [11], for example. We
also make extensive use of constrained choice rules involving expressions of the form

i {p, q, r} j

Such expressions are understood to indicate that at least i of the enclosed atoms are true,
but not more than j are true. Another kind of expression we make use of is conditions
of the form p(X) : q(X). These expressions are used for instantiating the variable
X with the domain predicate q(X) to collections of terms within a single rule. For ex-
ample, if there are the facts q(1), q(2) and q(3) in the program, then i {p(X) :
q(X)} j will be grounded to i { p(1), p(2), p(3) } j. Also, our program
is λ-restricted as described in [10] in order to avoid problems with function symbols.

3.1 Protocol Module

The protocol module sets up a general message passing framework, the principals’ hold-
ings and capabilities, as well as some high-level auxiliary predicates. It also specifies
different types for variables.1

Keys and Nonces: Principals need keys for encryption. Our approach supports both
asymmetric and symmetric key encryption. The protocol module is responsible for set-
ting up the key infrastructure. It specifies keys for every agent and distributes the public
or the shared keys to the appropriate principals. In order to guarantee the freshness
of messages, certain protocols require nonces or timestamps in messages. Due to the
propositional nature of our formalism, it is not possible to have every agent create an
unlimited number of nonces on demand. Instead, a sufficient number n of nonces is
assigned to each principal. For performance reasons, n defaults to 1, but can also be set
as a command line parameter. In the initial state all nonces are fresh at the outset; and
no messages have been sent or received.

1 Of course these declarations are eventually grounded, but it is useful to think of the variables
as ranging over different classes of entities.
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Actions: Protocol analysis is focused on analyzing sequences of actions. Clearly, send
and receive actions are central, although these need not be the only actions. Actions
occur at some point in time, and the notion of time is abstracted into slices or time
steps. In order to keep the search space manageable, internal actions related to message
composition and encryption are implemented through state constraints. This means that
a single time step is used for one agent to receive a message, decrypt its contents,
compose a reply, encrypt and send it. The reply may then be received by a recipient in
the following time step. The maximum number of time steps is also set as a parameter.
Sending and receiving of messages is modelled as events or actions that are triggered
once all preconditions are satisfied. A message is sent as soon as a principal has the
message and wants to send it.2

send(A, B, M, T) :- wants(A, send(A, B, M), T),
has(A, M, T).

If the message does not get intercepted by the intruder, it will be received in the next
time step.

receive(A, B, M, T+1) :- send(B, A, M, T),
not intercept(M, T+1).

The sending action effectively acts as a precondition for receiving, while an effect of
the receive action is that the recipient possesses the message afterwards.

has(A, M, T) :- receive(A, B, M, T).

If a principal receives a message as part of a particular protocol, then they want to
send the appropriate response. The notion of ”appropriateness” is modelled by the fit
predicate that matches certain message components.

{ wants(A, send(A, B, M), T) } 1 :- receive(A, B, M2, T),
fit(msg(J, B, A, M2), msg(J+1, A, B, M)).

Auxiliary predicates. In order to be able to specify flexible goal and attack conditions in
the instance module, we provide several auxiliary predicates. Some of these predicates
are straightforward, such as the predicate talked to indicate that two agents have
successfully communicated:

talked(A, B, T+1) :- send(A, B, M, T),
receive(B, A, M, T+1).

In contrast, the predicate authenticated, which is used as part of a goal specifica-
tion, is much more complex. We say that A is authenticated with B only if A has sent a
fresh “challenge nonce” encrypted with an appropriate key to B; B has to have replied
to A’s challenge with the same nonce, again encrypted with a key so that only A can
decrypt it. As well, A received B’s reply and all events happened in the right order. The
predicate is given as follows:

2 Note that this and following code examples may not be complete. On occasion, details, such
as domain restrictions, are omitted for readability and brevity.
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authenticated(A, B, T) :-
send(A, B, enc(M1, K1), T1),
fresh(A, nonce(A, Na), T1),
part_m(nonce(A, Na), M1),
key_pair(K1, Kinv1), has(A, K1, T1),
has(B, Kinv1, T1),
not has(C, Kinv1, T1) : agent(C) : C != B,
send(B, A, enc(M2, K2), T2),
receive(A, B, enc(M2, K2), T),
part_m(nonce(A, Na), M2),
key_pair(K2, Kinv2), has(B, K2, T1),
has(A, Kinv2, T1),
not has(C, Kinv2, T1) : agent(C) : C != A,
T1 < T2, T2 < T.

Authentication is generally a difficult concept to define, and different notions of authen-
tication may be required for different protocols. One advantage of our approach is that
it is easy to change the definition of authentication to suit a particular application or a
particular audience. Also, the protocol module can easily be extended by other auxiliary
predicates that might be useful for a wide range of protocols.

3.2 Intruder Module

The intruder module specifies all aspects of the intruder. As noted, an advantage of our
approach is that the intruder model is flexible and easy to modify. If our system is run
without the intruder module, then it simply computes all valid protocol runs between
honest principals within the given time bound. If an intruder module is given, then the
system can be used to find attacks on the protocol that may be carried out by the intruder.

Holdings: By default, the intruder holds the public key of every agent. The intruder
also holds a public-private key pair. It is important that the intruder has this pair, since
it allows the intruder to “pretend” to be an honest agent that initiates protocol runs with
principals. Since the intruder module can be modified, it is straightforward to model, for
example, the situation in which an intruder has obtained a key belonging to someone
else. This is an important improvement over existing approaches to verification, as it
allows us to give customized proofs of security. For example, we may be able to prove
that a certain protocol is secure, even if one of the participants has a compromised
private or shared key.

Capabilities: The intruder module specifies the capabilities and limitations of the in-
truder. In general, we specify a Dolev-Yao type intruder, because this makes it easier
to compare our approach with existing approaches. Hence, we specify that the intruder
can intercept messages and that it receives the messages that it intercepts:

0 { intercept(M, T+1) } 1 :- send(A, B, M, T).
receive(I, A, M, T+1) :- send(A, B, M, T),

intercept(M, T+1).



362 J.P. Delgrande, T. Grote, and A. Hunter

The intruder can also send messages whenever it wants to. However, it can not send
messages that it does not have:

:- send(I, A, M, T), not has(I, M, T).

Of course, the intruder can also fake the sender name of messages it sends:

1 { receive(A, B, M, T+1) : principal(B) } 1 :-
send(I, A, M, T).

This will make the receive action of principal A look like it obtained the message from
a principal B.

Again, the capabilities we have listed here are examples that are useful for many
types of protocols. Using interface predicates from the protocol module and standard
ASP syntax, it is possible to specify a wide range of different capabilities. For example,
one might want to specify that an intruder can only eavesdrop on messages that arrive
at or originate from one specific principal.

3.3 Instance Modules

In order to verify a particular protocol, we need to provide an encoding of that protocol
in ASP. This encoding is done in the instance module. Currently, we have encoded two
protocols: the Needham Schroeder Protocol and the Challenge Response Protocol. The
structure of the ASP encoding is straightforward; indeed the next step in the project is
to automate the process, so that, given a simple “arrows” specification like that for the
Needham-Schroeder protocol, a corresponding instance module in ASP is produced. At
present, however, the encodings are done by hand.

In the beginning of the instance module, certain options such as the maximum num-
ber of concurrent protocol runs have to be set. The principals participating have to be
added, too. This is done by simply including several interface predicates of the form
principal(a). The instance module for a specific protocol also has to state which
kind of encryption should be used. For example, public-key encryption is activated if
the fact set(pub key enc) is added. All the details about the encryption are handled
by the protocol module and is of no concern to the instance module.

The instance module has four main components: a specification of valid messages,
completion conditions, the goal of the protocol, and attack conditions. We illustrate how
each component is implemented, using the Needham Schroeder protocol as an example.

Messages: In order to model message passing in ASP, it is useful to bound the number
of messages that can be exchanged. In practice, the set of messages is of course not
bounded – given a composition operator and an encryption operation, it is possible to
define an infinite set of messages. However, if we fix a specific protocol, then it is easy
to specify the set of messages that can be used in a valid run. In the Needham Schroeder
protocol, for example, there are three basic message forms that can be sent, one for each
line of the protocol. However, each message can involve any nonce that is available and
it can involve the public key of any agent on the network. In our framework there are
only a finite number of nonces and agents, so it is easy to delimit the class of messages.

The protocol itself can then be described by a valid subset of possible messages:
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msg(1,A,B,enc(m(nonce(C,Na),principal(A)),pub_key(B))).
msg(2,B,A,enc(m(nonce(C,Na),nonce(D,Nb)),pub_key(A))).
msg(3,A,B,enc(m(nonce(D,Nb)),pub_key(B))).

These rules correspond to the first, second and third message of the protocol.

Completion Conditions: Normally, a protocol run is completed if all of the messages
have been sent and received. We define the completion conditions at the agent level,
which means we need to specify when each participating agent believes the protocol is
completed. To achieve this, we introduce a general believes predicate that is also
used to represent other beliefs of the principals. If a principal has sent and received the
appropriate messages in the right order, it will believe that it successfully completed a
valid run of the protocol with another principal. Unfortunately, it was not possible to
generalize this condition for every protocol in the protocol module. However a compiler
could easily create this rule from the protocol specification.

Goals: As we saw, the protocol module includes a set of high-level meta-predicates
that can be used to define specific goals. In the Needham Schroeder protocol instance,
the goal is that both principals should believe that the other one is authenticated and
that they actually are.

goal(A, B, T) :- authenticated(A, B, T),
believes(A, authenticated(A, B), T),
authenticated(B, A, T),
believes(B, authenticated(B, A), T).

This is essentially a definition of “mutual authentication”, following the BAN tradition
in which we only consider nested beliefs to depth two. As noted earlier, the concept of
authentication is difficult to define and there might be disagreements about the definition
used here. However, it is easy to change the definition of mutual authentication while
leaving the rest of the encoding and the other modules unchanged.

Attacks: An attack on a protocol is a run of the protocol that causes an agent to believe
the goal is true, when in fact the goal is not true. In the case of the Needham Schroeder
protocol, an attack is specified in terms of a principal believing that it is authenticated,
but is in fact not authenticated.

attack :- believes(A, authenticated(A, B), T),
not authenticated(A, B, T).

In this case, the principal’s belief is false and must have been created somehow. Our
system can give an explanation of how this happened by showing the protocol trace
that led to the false belief. This is done by including the integrity constraint :- not
attack in the protocol instance. Then all answer sets of our system will represent an
attack, because traces that are not an attack are excluded.

3.4 Protocol Verification

Given the three modules of our ASP encoding, an ASP solver can be used to find attacks
on a given protocol. For our implementation, we ground our encoding using GrinGo
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[10] and compute the answer sets using clasp [9]. For simplicity, we use the hybrid pro-
gram Clingo3 to perform both tasks in one step. Also, in order to format the display of
the output, we employ a Python script output.py that makes the results more read-
able. Therefore, at the command line, we can verify the Needham Schroeder protocol
by executing the following command.

clingo protocol.lp intruder.lp needham_schroeder.lp \
-c n=1 -c t=6 0 | output.py

Note that you have to specify the number of nonces n that each agents has initially and
the maximum trace length t as parameters. We also provide run scripts, so users do not
need to remember the entire command line. These scripts just take n and t as optional
parameters that are initialised with reasonable default values.

The above command will output attacks on the Needham Schroeder protocol in the
following format:

send(a,i,enc(m(nonce(a,1),principal(a)),pub_key(i)),0)

receive(i,a,enc(m(nonce(a,1),principal(a)),pub_key(i)),1)
send(i,b,enc(m(nonce(a,1),principal(a)),pub_key(b)),1)

receive(b,a,enc(m(nonce(a,1),principal(a)),pub_key(b)),2)
send(b,a,enc(m(nonce(a,1),nonce(b,1)),pub_key(a)),2)

receive(i,b,enc(m(nonce(a,1),nonce(b,1)),pub_key(a)),3)
send(i,a,enc(m(nonce(a,1),nonce(b,1)),pub_key(a)),3)

receive(a,i,enc(m(nonce(a,1),nonce(b,1)),pub_key(a)),4)
send(a,i,enc(m(nonce(b,1)),pub_key(i)),4)

receive(i,a,enc(m(nonce(b,1)),pub_key(i)),5)
send(i,b,enc(m(nonce(b,1)),pub_key(b)),5)

believes(b,authenticated(b,a),6)
believes(b,completed(b,a),6)
receive(b,a,enc(m(nonce(b,1)),pub_key(b)),6)

The attack can be read directly from this output. To improve readability, it would be
straightforward to incorporate an additional script to transform this output into the usual
“arrow” syntax enriched with the believes predicates.

Our system employs a minimize statement by default to always return the shortest
attack. But it can easily be reconfigured to return all attacks that are possible in the given
trace length. Note that our system is not actually able to prove a protocol is correct, as
it will simply continue looking for successively longer attacks. However, it is possible
to prove that there is no attack of involving less than k actions, for a pre-specified
number k.

3 http://potassco.sf.net

http://potassco.sf.net
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It addition to Lowe’s attack on the Needham Schroeder protocol, our system dis-
covered several other attacks that become possible if the agents’ capabilities are not
circumscribed. The simplest such attack is what we have called the “Stupidity Attack”
in which one principal sends an unencrypted nonce to the intruder. A more sophisti-
cated attack we found was dubbed the “Bad Memory Attack”, because it only works if
the principals are unable to remember the current state of a protocol run.

Bad Memory Attack
1. A → B : {NA, A}KB

2. B → IA : {NA, NB}KA

2′. I → A : {NA, NB}KA

3′. A → I : {NB}KI

3. IA → B : {NB}KB

In this attack, A starts the protocol regularly with B. The second message is intercepted
by the intruder who uses this message to send it as challenge to A in line with the second
step of the protocol. A has a bad memory and does not realize that he did not initiate
the protocol with I . So A replies to the challenge, effectively decrypting the nonce NB

for the intruder, who is then able to use it to fool B.
Our system produces attacks for the Challenge Response and Needham Schroeder

protocol in less than two seconds. If each agent is given more than one nonce, the run-
time increases significantly.4 This seems to be partly caused by the grounding process.
Nonces are involved in almost every ASP rule of our encoding and are responsible for
the creation of exponentially many ground rules. Another reason for the increased over-
all runtime of our system when using more nonces or a larger plan length is the bigger
search space. The option of minimizing the number of sent messages forces Clasp to
almost traverse the entire search space to make sure that no smaller trace exists. Incre-
mental grounding and solving as described in [8] might be useful for coping with the
blowup caused by the plan length and the search for a minimal trace length of an attack.
This is a topic for future work.

4 Discussion

4.1 Comparison with Related Formalisms

There has been previous work on declarative approaches to protocol verification in the
situation calculus [13], in abductive logic programming [2], and in ASP [1,16]. Our
approach is more flexible than these approaches in the sense that different aspects of the
model can be modified, while maintaining a consistent overall framework. Our work is
also distinguished by the fact that we can detect unexpected “attacks” on a protocol.

As well we mentioned a companion paper that formulates cryptographic protocol
verification in terms of a situation calculus theory [5]. Both of our approaches are, or
are in the process of, being implemented. The situation calculus approach allows a more
procedural specification, in that agent actions are defined and “executed”. As well, it al-
lows a more refined specification of control and message passing. On the other hand,

4 We obtained the following times with the Needham Schroeder protocol: 3 nonces: 2 sec, 6
nonces: 13 sec, 9 nonces: 51 sec, 12 nonces: 190 sec.
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the situation calculus approach will require more work with regards to an implemen-
tation; we anticipate making use of more procedural constructs as found in ConGolog.
For the ASP approach described here, implementation was more straightforward and
a prototype was readily obtained5. The biggest issue in the ASP implementation was
controlling the state explosion that resulted from grounding. Performance issues arise
when the number of agents, nonces or concurrent protocol runs is increased.

Last, it is interesting to note that our original intention was to formulate our theory
not directly in ASP, but rather in the action language C [12]. Unfortunately, C turned out
to be problematic for several reasons, notably the fact that action effects must be Marko-
vian. In reasoning about protocol exchanges, it is inevitably necessary to express effects
due to a certain sequence of actions. Neither the description nor the query language of C
support this. As a result, we found that it was easier and more straightforward to encode
protocols directly in ASP.

4.2 Conclusion

We have described a formulation and implementation of cryptographic protocol anal-
ysis and verification in ASP. A primary advantage of using ASP is that it provides a
declarative formalism for which efficient implementations exist. As a result we were
able to specify a framework that is flexible, declarative, and elaboration tolerant. The
approach provides for flexible models of the intruder and principals, and the specifica-
tion of goals at an intensional level in terms of an agent’s beliefs. The implementation
discovered not just the standard known attacks, but also other possible attacks, among
them the Bad Memory Attack and the Stupidity Attack. Both of these latter attacks are
easily addressed; however the detection of such attacks for a simple protocol suggests
that, in general, there may be other, more subtle attacks that a declarative formalism,
with a full specification of agent actions, may be able to detect.

There have been challenges in the implementation, primarily in getting the imple-
mentation to scale up. Increasing the number of agents, the number of available nonces,
and the suite of actions available to an agent all provide challenges. For future work,
we will first continue to develop our implementations. Concurrently we are also work-
ing on a compiler, both for ASP and the situation calculus approaches, that will take
an arbitrary protocol and produce an executable theory. Hence, in a broader potential
contribution, this project will provide a testbed for comparing approaches implemented
in a constraint formalism such as ASP, with a more planning-oriented approach such as
the situation calculus.
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Abstract. In this paper we present the IDUM system, a successful application of
logic programming to e-tourism. IDUM exploits two technologies that are based
on the state-of-the-art ASP system DLV: (i) a system for ontology representation
and reasoning, called OntoDLV; and, (ii) HıLεX a semantic information extrac-
tion tool. The core of IDUM is an ontology which models the domain of the
touristic offers. The ontology is automatically populated by extracting the in-
formation contained in the touristic leaflets produced by tour operators. A set of
specifically devised ASP programs is used to reason on the information contained
in the ontology for selecting the holiday packages that best fit the customer needs.
An intuitive web-based user interface eases the task of interacting with the system
for both the customers and the operators of a travel agency.

1 Introduction

In the last few years, the tourism industry has strongly modified marketing strategies
with the diffusion of e-tourism portals in the Internet. Big tour operators are exploiting
new technologies, such as web portals and e-mails, in order to both simplify their ad-
vertising strategies and reduce the selling costs. The efficacy of e-tourism solutions is
also witnessed by the continuously growing community of e-buyers that prefer to surf
the Internet for buying holiday packages. On the other hand, traditional travel agencies
are undergoing a progressive loss of marketing competitiveness. This is partially due
to the presence of web portals, which basically exploit a new market. Indeed, Internet
surfers often like to be engaged in self-composing their holiday by manually searching
for flights, accommodation etc. Instead, the traditional selling process, whose strength
lies in both direct contact with customer and knowledge about customer habits, is ex-
periencing a reduced efficiency. This can be explained by the increased complexity of
matching demand and offer. Indeed, travel agencies receive thousand of e-mails per day
from tour operators containing new pre-packaged offers. Consequently, the employees
of the agency cannot know all the available holiday packages (since they cannot analyze
all of them). Moreover, customers are more demanding than in the past (e.g. the clas-
sic statement “I like the sea” might be enriched by “I like snorkeling”, or “please find
an hotel in Cortina” might be followed by “featuring beauty and fitness center”) and
they often do not declare immediately all their preferences and/or constraints (like, e.g.,
budget limits, preferred transportation mean or accommodation etc.). This knowledge
of customers preferences plays a central role in the traditional selling process; However,
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the task of matching this information with the large unstructured e-mail database is both
difficult to carry out in a precise way and is time consuming. Consequently, the seller is
often unable to find the best possible solution to the customer needs in a short time.

The goal of the IDUM project is to devise a system that addresses the above-mentioned
causes of inefficiency by offering:

(i) an automatic extraction and classification of the incoming touristic offers (so
that they are immediately available for the seller), and

(ii) an “intelligent” search that combines knowledge about users preferences with
geographical information, and matches user needs with the available offers.

We could achieve the goal by exploiting Answer Set Programming (ASP) [1]. ASP is a
powerful logic programming language, which is very expressive in a precise mathemat-
ical sense; in its general form, allowing for disjunction in rule heads and nonmonotonic
negation in rule bodies, in a fully declarative way ASP can represent every problem in
the complexity class ΣP

2 and ΠP
2 (under brave and cautious reasoning, respectively) [2].

In particular, the core functionalities of IDUM were based on two technologies1 relying
on the state-of-the-art ASP system DLV [3]:

– OntoDLV [4,5] a powerful ASP-based ontology representation and reasoning sys-
tem; and,

– HıLεX [6,7,8], an advanced tool for semantic information-extraction from unstruc-
tured or semi-structured documents.

More in detail, in the IDUM system, behind the web-based user interface (that can
be used by both employees of the agency and customers), there is an “intelligent”
core that exploits an OntoDLV ontology for both modeling the domain of discourse
(i.e., geographic information, user preferences, and touristic offers, etc.) and storing the
available data. The ontology is automatically populated by extracting the information
contained in the touristic leaflets produced by tour operators. It is worth noting that, of-
fers are mostly received by the travel agency in a dedicated e-mail account. Moreover,
the received e-mails are human-readable, and the details are often contained in email-
attachments of different format (plain text, pdf, gif, or jpeg files) and structure that
might contain a mix of text and images. The HıLεX system allows for automatically
processing the received contents, and to populate the ontology with the data extracted
from touristic leaflets. Once the information is loaded on the ontology, the user can per-
form an “intelligent” search for selecting the holiday packages that best fit the customer
needs. IDUM tries to mimic the behavior of the typical employee of a travel agency by
exploiting a set of specifically devised logic programs that “reason” on the information
contained in the ontology.

In the remainder of the paper, we first introduce the employed ASP-based technolo-
gies; then, in Section 3, we describe how the crucial tasks have been implemented. We
show the architecture of the IDUM system in Section 4, and we draw the conclusion in
Section 6.

1 Both systems are developed by Exeura srl, a technology company working on analytics, data
mining, and knowledge management, that is working on their industrialization finalized to
commercial distribution.
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2 Underlying ASP-Based Technologies

The core functionalities of the e-tourism systems IDUM were based on two technolo-
gies relying on the DLV system [3]: OntoDLV [4,5] a powerful ASP-based ontology
representation and reasoning system; and, HıLεX [6,7,8], an advanced tool for semantic
information-extraction from unstructured or semi-structured documents.

In the following we briefly describe both OntoDLV and HıLεX, the reader interested
in a more detailed description is referred to [4,5] and [6,7,8], respectively.

2.1 The OntoDLV System

Traditional ASP in not well-suited for ontology specifications, since it does not directly
support features like classes, taxonomies, individuals, etc. Moreover, ASP systems are
a long way from comfortably enabling the development of industry-level applications,
mainly because they lack important tools for supporting programmers. All the above-
mentioned issues were addressed in OntoDLV [4,5] a system for ontologies specifica-
tion and reasoning. Indeed, by using OntoDLV, domain experts can create, modify, store,
navigate, and query ontologies; and, at the same time, application developers can eas-
ily develop their own knowledge-based applications on top of OntoDLV, by exploiting
a complete Application Programming Interface [9]. OntoDLV implements a powerful
logic-based ontology representation language, called OntoDLP, which is an extension of
(disjunctive) ASP with all the main ontology constructs including classes, inheritance,
relations, and axioms. In OntoDLP, a class can be thought of as a collection of individ-
uals who belong together because they share some features. An individual, or object, is
any identifiable entity in the universe of discourse. Objects, also called class instances,
are unambiguously identified by their object-identifier (oid) and belong to a class. A
class is defined by a name (which is unique) and an ordered list of attributes, identify-
ing the properties of its instances. Each attribute has a name and a type, which is, in
truth, a class. This allows for the specification of complex objects (objects made of other
objects). Classes can be organized in a specialization hierarchy (or data-type taxonomy)
using the built-in is-a relation (multiple inheritance). Relationships among objects are
represented by means of relations, which, like classes, are defined by a (unique) name
and an ordered list of attributes (with name and type). OntoDLP relations are strongly
typed while in ASP relations are represented by means of simple flat predicates. Impor-
tantly, OntoDLP supports two kind of classes and relations: (base) classes and (base)
relations, that correspond to basic facts (that can be stored in a database); and collection
classes and intensional relations, that correspond to facts that can be inferred by logic
programs; in particular, collection classes are mainly intended for object reclassification
(i.e., for repeatedly classifying individuals of an ontology). For instance, the following
statement declares a class modeling customers, which has six attributes, namely: first-
Name, lastName, and status of type string; birthDate of type Date; a positive integer
childNumber, and job which contains an instance of another class called Job.

class Customer (firstName: string, lastName: string,
birthDate: Date, status: string,
childNumber: positive integer, job: Job).
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As in ASP, logic programs are sets of logic rules and constraints. However, OntoDLP
extends the definition of logic atom by introducing class and relation predicates, and
complex terms (allowing for a direct access to object properties). This way, the On-
toDLP rules merge, in a simple and natural way, the declarative style of logic pro-
gramming with the navigational style of the object-oriented systems. In addition, logic
programs are organized in reasoning modules, to take advantage of the benefits of mod-
ular programming. For example, with the following program we single out the pairs of
customers having the same age

module (CustomersWithTheSameAge) {
sameAge(C1,C2,D) :- C1: Customer(birthDate:D),

C2: Customer(birthDate:D).
}

The core of OntoDLV is a rewriting procedure [5] that translates ontologies, and rea-
soning modules to an equivalent standard ASP program which, in the general case, runs
on state-of-the art ASP system DLV [3].

OntoDLV features an advanced persistency manager allows one to store ontologies
transparently both in text files and internal relational databases; while powerful type-
checking routines are able to analyze ontology specifications and single out consistency
problems. Importantly, if the rewritten program is stratified and non-disjunctive [1,10,11]
(and the input ontology resides in relational databases) then the evaluation is carried out
directly in mass memory by exploiting a specialized version of the same system, called
DLV DB [12]. Note that, since class and relation specifications are rewritten into stratified
and non-disjunctive programs, queries on ontologies can always be evaluated by exploit-
ing a DBMS. This makes the evaluation process very efficient, and allows the knowledge
engineer to formulate queries in a language more expressive than SQL. Clearly, more
complex reasoning tasks (whose complexity is NP/co-NP, and up to ΣP

2 /ΠP
2 ) are dealt

with by exploiting the standard DLV system instead.

2.2 The HıLεX System

HıLεX [6,7,8] is an advanced system for ontology-based information extraction from
semi-structured and unstructured documents, that has been already exploited in many
relevant real-world applications. The HıLεX system implements a semantic approach
to the information extraction problem based on a new-generation semantic conceptual
model by exploiting:

– ontologies as knowledge representation formalism;
– a general document representation model able to unify different document formats

(html, pdf, doc, ...);
– the definition of a formal attribute grammar able to describe, by means of declara-

tive rules, objects/classes w.r.t. a given ontology.

Most of the existing information extraction approaches do not work in a semantical way
and they are not independent of the specific type of document they process. Contrari-
wise, the approach implemented in HıLεX confirms that it is possible recognize, extract
and structure relevant information form heterogeneous sources.
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HıLεX is based on OntoDLP for describing ontologies, since this language perfectly
fits the definition of semantic extraction rules.

Regarding the unified document representation, the idea is that a document (un-
structured or semi-structured) can be seen as a suitable arrangement of objects in a
two-dimensional space. Each object has its own semantics, is characterized by some
attributes and is located in a two-dimensional area of the document called portion. A
portion is defined as a rectangular area univocally identified by four cartesian coor-
dinates of two opposite vertices. Each portion “contains” one or more objects and an
object can be recognized in different portions.

The language of HıLεX is founded on the concept of ontology descriptor. A “descrip-
tor” looks like a production rule in a formal attribute grammar, where syntactic items are
replaced by ontology elements, and where extensions for managing two-dimensional
objects are added. Each descriptor allows us to describe: (i) an ontology object in order
to recognize it in a document; or (ii) how to “generate” a new object that, in turn, may
be added in the original ontology.

Note that an object may also have more than one descriptor, thus allowing one to
recognize the same kind of information when it is presented in different ways.

3 The IDUM System

In this section we describe the core of the IDUM system and its innovative features
based on ASP. IDUM is an e-tourism system, conceived for classifying and driving the
search of touristic offers for both travel agencies operators and their customers.

IDUM, like other existing portals, has been equipped with a proper (web-based) user
interface; but, behind the user interface there is an “intelligent” core that exploits knowl-
edge representation and reasoning technologies based on ASP. In IDUM (see Figure 1,
the information regarding the touristic offers provided by tour operators is received
by the system as a set of e-mails. Each e-mail might contain plain text and/or a set
of leaflets, usually distributed as pdf or image files which store the details of the of-
fer (e.g., place, accommodation, price etc.). Leaflets are devised to be human-readable,

Fig. 1. The IDUM System
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might mix text and images, and usually do not have the same layout. E-mails (and their
content) are automatically processed by using the HıLεX system,2 and the extracted
data about touristic offers is used to populate an OntoDLP ontology that models the
domain of discourse: the “tourism ontology”. The resulting ontology is then analyzed
by exploiting a set of reasoning modules (ASP programs) combining the extracted data
with the knowledge regarding places (geographical information) and users (user prefer-
ences) that we inserted in the tourism ontology. The system mimics the typical deduc-
tions made by a travel agency employee for selecting the most appropriate answers to
the user needs.

It is worth pointing out that, the core of the system is based on ASP technologies,
since both the two most innovative and important features: automatic extraction of
touristic offers and intelligent search, were implemented by exploiting OntoDLV and
HıLεX.

In the following sections, we briefly describe the tourism ontology and the imple-
mentation of the above-mentioned ASP-based features.

3.1 The Tourism Ontology

The “tourism ontology” has been specified by analyzing the nature of the input (we
studied the characteristics of several touristic leaflets) with the cooperation of the staff
of a real touristic agency, who were repeatedly interviewed. In this way, we could model
the key entities that describe the process of organizing and selling a complete holiday
package: in particular, the “tourism ontology” models all the required information, such
as user profile, geographic information, kind of holiday, transportation means, etc. In
Figure 2, we report some of the most relevant classes and relations that constitute the
tourism ontology. In detail, the class Customer allows us to model the personal infor-
mation of each customer, while a number of relations is used to model user preferences,
like CustomerPrefersTrip and CustomerPrefersMeans, which associate each customer
to his preferred kind of trip, and his preferred transportation means, respectively. The
kind of trip is represented by using a class TripKind. Examples of TripKind instances
are: safari, sea holiday, etc. In the same way, e.g. airplane, train, etc. are instances of
the class TransportationMean. Geographical information is modeled by means of the
class place, which has been populated with the information regarding more than a thou-
sand touristic places. Moreover, with each place is associated a kind of trip by means
of the relation PlaceOffer (e.g. Kenya offers safari, Sicily offers both sea and sightsee-
ing). Importantly, the natural a part-of hierarchy of places is easily modeled by using
the intensional relation Contains. This allowed us to assert manually only some basic
facts and to obtain all the basic inclusions in a simple yet efficient way. Indeed, the
full hierarchy is computed by evaluating a rule (which, basically, encodes the transitive
closure).

The mere geographic information is, then, enriched by other information that is usu-
ally exploited by travel agency employees for selecting a travel destination. For in-
stance, one might suggest avoiding sea holidays in winter, or going to India during the

2 Note that, e-mails are the main source of touristic offers, but IDUM can deal with sources
different from e-mails; indeed, e-mails are ”unwrapped”: attachments are analyzed, enclosed
external links are followed and corresponding web pages analized.
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class Customer (firstName: string, lastName: string,
birthDate: Date, status: string,
childNumber: positive integer, job: Job).

relation CustomerPrefersTrip ( cust:Customer, kind: TripKind ).
relation CustomerPrefersMeans ( cust:Customer,

means: TransportationMean ). ...

class Place ( description:string ).
intentional relation Contains ( pl1:place, pl2:place )
{ Contains(P1,P2) :- Contains(P1,P3), Contains(P3,P2).
Contains(’Europe’, ’Italy’). Contains(’Italy’, ’Sicily’).
Contains(’Sicily’, ’Palermo’). ... }

relation PlaceOffer( place: place, kind: tripKind ).
relation SuggestedPeriod ( place:place, period: positive integer ).
relation BadPeriod ( place:place, period: positive integer ).

class TouristicOffer( start: Place, destination: Place,
kind: TripKind, means: TransportationMean,
cost: positive integer, fromDay: Date, toDay: Date,
maxDuration: positive integer, deadline: Date,
uri: string, tourOperator: TourOperator ).

class TransportationMean ( description: string ).
class TripKind ( description: string ).
...

Fig. 2. Main entities of the touristic ontology

wet monsoon period; whereas, one should be recommanded a visit to Sicily in summer.
This was encoded by means of the two relations SuggestedPeriod and BadPeriod.

Finally, the TouristicOffer class contains an instance for each available holiday pack-
age. The instances of this class are added either automatically, by exploiting the HıLεX
system (see next section), or manually by the personnel of the agency.

3.2 Automatic Extraction of Touristic Offers

Touristic offers are mainly available in digital format and they are received via e-mail.
It is usual that more than a hundred emails per day crowd the mail folder of a travel
agency, and often the personnel cannot even analyze the entire in-box. This causes a loss
of efficiency in the selling process, because some interesting offers might be ignored.
Note that, most of the information is contained in pdf, gif or jpeg files attached to the
e-mail messages, and this strongly limits the efficacy of standard search tools like, e.g.,
the ones provided by e-mail clients.

To deal with this problem, the IDUM system has been equipped with an automatic
classification system based on HıLεX. Basically, after some pre-processing steps, in
which e-mails are automatically read from the inbox, and their attachments are prop-
erly handled (e.g. image files are analyzed by using OCR software), the input is sent to
HıLεX. In turn, HıLεX is able to both extract the information contained in the e-mails
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Fig. 3. Extracting offer information

and populate the TouristicOffer class. This has been obtained by encoding several ontol-
ogy descriptors (actually, we provided several descriptors for each kind of file received
by the agency). For instance, the following descriptor:

<TouristicOffer (Destination, Period)> ->
<X:place(XX)>{Destination:=X;}
<X:date(XX)>{Period:=X;}
SEPBY <X:separator()>.

extracts from the leaflet in Figure 3(a) that the proposed holiday package regards trips
to both the Caribbean islands and Brazil. Moreover, it also extracts the period in which
this trip is offered. The extracted portions are outlined in Figure 3(b). The result of the
application of this descriptor are two new instances of the TouristicOffer class.

3.3 Personalized Trip Search

The second crucial task carried out in the IDUM system is the personalized trip search.
This feature has been conceived to make simpler the task of selecting the holiday pack-
ages that best fit the customer needs. We tried to “simulate” the deductions made by an
employee of the travel agency in the selling process by using a set of specifically de-
vised logic programs. In a typical scenario, when a customer enters the travel agency, an
employee tries to understand his current desires and preferences at first; then, the seller
has to match the obtained information with a number of pre-packaged offers. Actually, a
number of candidate offers are proposed to the customer and, then, the employee has to
understand his needs by interpreting the preferences of the customer. Customer prefer-
ences depend on his personal information (age, gender, marital status, lifestyle, budget,
etc.), but also on his holiday habits (e.g. he prefers going to the mountains, or he has
already been to Italy). Actually, this information has to be elicited by the seller by inter-
viewing the customer, but most of it might be already known by the employee if he is
serving an old customer. In this process, what has to be clearly understood (for properly
selecting a holiday package fitting the customer needs) is summerized in the following
four words: where, when, how, and budget. Indeed, the seller has to understand where
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the customer desires to go; when he can/wishes to leave; how much time he will dedi-
cate to his holiday; which is the preferred transportation means (how); and, finally, the
available budget. However, the customer does not directly specify all this information,
for example, he can ask for a sea holiday in January but he does not specify a precise
place, or he can ask for a kind of trip that is unfeasible in a given period (e.g. winter
holiday in Italy in August). In this case the seller has to exploit his knowledge of the
world for selecting the right destination and a good offer in a huge range of proposals.
This is exactly what the IDUM system does when a user starts a new search. Current
needs are specified by filling an appropriate search form (see Figure 4), where some of
the key information has to be provided (i.e. where and/or when and/or available money
and/or how). Note that, the tourism ontology models both the knowledge of the seller
(geographic information and preferred places), and the profile of customers (clearly,
in the case of new customers the seller has to fill the ontology with profile informa-
tion, whereas the ontology already contains the information regarding old customers);
moreover, the extraction process continuously populates the ontology with new touristic
offers. Thus, the system, by running a specifically devised reasoning module, combines
the specified information with the one available in the ontology, and shows the holiday
packages that best fit the customer needs. For example, suppose that a customer speci-
fies the kind of holiday and the period, then the following (simplified) module creates a
selection of holiday packages:

module(kindAndPeriod) {
%detect possible and suggested places
possiblePlace(P) :- askFor(tripKind:K),

PlaceOffer(place:P, kind:K).

suggestPlace(P) :- possiblePlace(P), askFor(period:D),
SuggestedPeriod(place:P1, period:D),
not BadPeriod(place:P1, period:D).

%select possible, alternative and suggestible packages
possibleOffer(O) :- O:TouristicOffer(destination:P),

possiblePlace(P).

alternativeOffer(O) :- O:TouristicOffer(destination:P),
suggestPlace(P).

suggestOffer(O) :- O:TouristicOffer(destination:P, mean:M),
suggestPlace(P), askFor(cust:C),
CustomerPrefersMean(cust:C, mean:M).

}

The first two rules select: possible places (i.e., the ones that offer the kind of holiday in
input); and places to be suggested (because they offer the required kind of holiday in
the specified period). Finally, the remaining three rules search in the available holiday
packages the ones that: offer an holiday that matches the original input (possible offer);
are good alternatives in suggested places (alternativeOffer); or match the customer’s
preferred means and can be suggested.
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Fig. 4. The IDUM User Interface

The example above reports one of the several reasoning modules that have been
devised for implementing the intelligent search. In the development process, we ex-
ploited many of the advanced features of the language like negation as failure and
aggregates. The declarative nature of ASP allowed us to design effective solutions and
to tune rapidly our modules by following the suggestions of the domain experts.

4 System Architecture

The architecture of the IDUM system, which is depicted in Figure 5, is made up of
four layers: Data Layer, Information Layer, Knowledge Layer, and Service Layer. In
the Data Layer the input sources are dealt with. In particular, the system is able to
store and handle the most common kind of sources: e-mails, plain text, pdf, gif, jpeg,
and HTML files. The Information Layer provides ETL (Extraction, Transformation and
Loading) functionalities, in particular: in the loading step the documents to be processed
are stored in an auxiliary database (that also manages the information about the state
of the extraction activities); whereas, in the Transformation step, semi-structured or
non-structured documents are manipulated. First the document format is normalized;
then, the “bi-dimensional logical representation” is generated (basically, the HıLεX
portions are identified); finally, HıLεX descriptors are applied in the Semantic Ex-
traction step and ontology instances are recognized within processed documents. The
outcome of this process is a set of concept instances, that are recognized by match-
ing semantic patterns, and stored in the core knowledge base of the system where
the tourism ontology resides (Knowledge Layer). Domain ontology and extracted in-
formation are handled by exploiting the Persistency manager of the OntoDLV sys-
tem (see Section 2.1). The Services Layer features the profiling service and the
intelligent search (see Section 3.3) which implements the reasoning on the core on-
tology by evaluating in the OntoDLV system a set of logic programs. The Graphical
User Interface (GUI) can access the system features by interacting with a set of web-
services.
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Fig. 5. System Architecture

5 Related Work

The usage of ontologies for developing e-tourism applications was already studied in
the literature [13,14,15,16,17], and the potential of the application of semantic technol-
ogy recognized [18,19].

The architecture of an e-tourism system able to create a touristic package in a dy-
namic way is presented in [14]. This system permits the customer to specify a set
of preferences for a vacation and dynamically access and query a set of information
sources to find component such as accommodation, car rental, and leisure activities in
real time. It is based on an ontology written in OWL-DL [20]. The ontology exploited
in [15,14] encodes the same key concepts of ours, but does not include information
about user preferences. Another advantage of the our approach is the possibility of
developing ASP programs that reason on the data contained in the ontology for devel-
oping complex searches, while there is no accepted solution for combining logic rules
and OWL-DL ontologies.

The SPETA system [21], which is based on the ontology of [14], acts as an advisor
for tourists. Fundamentally, SPETA follows people who need advising when visiting
a new place, and who consequently do not know what is interesting to visit. Here the
ontology is enriched with user profile information for determining the common charac-
teristics of the previously visited places and the user behavior. In this way the system
recommends attractions which are likely to fit the user expectations. It exploits GPS
technology to know user position and it gets user data from previous users history and
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also from social networks. Both SPETA and IDUM exploit an ontology for building
personalized solutions for the users, but the goal of SPETA is different from that of
IDUM. Indeed, the former was conceived for offering assistance and information to the
user when they already are on a place, while the goal of IDUM is to assist the users in
the selection of an holiday.

The E-Tourism Working Group at DERI [22] is developing e-tourism solutions based
on the Semantic Web technology. Their goal is to develop an advanced eTourism Se-
mantic Web portal which will connect the customers and virtual travel agents from
anywhere at anytime with any needs and requests. In [23], they present OnTour an in-
formation retrieval system that exploits an RDF engine for storing the data regarding
accommodation facilities of different types. DERI also developed a content manage-
ment system: OnTourism [24]. The solution is very similar to IDUM, but it is based on
the use of Lixto Software [25] which makes information extraction from web pages.
Information about current events is crawled from several web sources and it is rendered
in a machine-accessible semantic.

6 Conclusion and Market Perspective

In this paper we have described a successful example of commercial and practical use
of logic programming: the e-tourism system IDUM.

The core of IDUM is an ontology modeling the domain of the touristic offers, which
is automatically populated by extracting the information contained in the e-mails sent
by tour operators; and an intelligent search tool based on answer set programming is
able to search the holiday packages that best fits the customer needs.

The system has been developed under project “IDUM: Internet Diventa Umana”
(project n. 70 POR Calabria 2000/2006 Mis. 3.16 Azione D Ricerca e Sviluppo nella
Imprese Regionali - Modulo B Voucher Tecnologici) funded by the Calabrian Region.
The project team involved five organizations: the Department of Mathematics of the
University of Calabria (that has ASP as one of the principal research area), the con-
sortium Spin, Exeura srl (a company working on knowledge management), Top Class
srl (a travel agency), and ASPIdea (a software farm specialized in the development of
web applications). The members exploited their specific knowledge for developing the
innovative features of the system. The strong synergy among partners made it possible
to push the domain knowledge of the travel agency TopClass in both the ontology and
in the reasoning modules. The result is a system that mimics the behavior of a seller
of the agency and it is able to search in a huge database of automatically classified of-
fers. IDUM combines the speed of computers with the knowledge of a travel agent for
improving the efficiency of the selling process.

The IDUM system was initially conceived for solving the specific problems of a
travel agency, and it is currently employed by one of the project partners: Top Class
srl. We are working on an enterprise version of the system conceived for offering its
advanced services to several travel agencies. The enhancements of IDUM will be de-
veloped under another technology-transfer PIA (Pacchetti Integrati di Agevolazione
industria, artigianato e servizi) project funded by the Calabrian region. The value of
the system was confirmed by the good position obtained by the proposal in the project
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evaluation ranking (IDUM occupies the 2nd position over more than 400 competing
proposals). Moreover, we received very positive feedbacks from the market, indeed
many travel agents are willing to use the system, and the potential of IDUM has been
recognized also by the chair of the Italian touring club, which is the most important
Italian association of tour operators.
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Abstract. The tool cc� is an implementation for testing various parameterised
notions of program correspondence between logic programs under the answer-
set semantics, based on reductions to quantified propositional logic. One such
notion is relativised uniform equivalence with projection, which extends standard
uniform equivalence via two additional parameters: one for specifying the input
alphabet and one for specifying the output alphabet. In particular, the latter pa-
rameter is used for projecting answer sets to the set of designated output atoms,
i.e., ignoring auxiliary atoms during answer-set comparison. In this paper, we
discuss an application of cc� for verifying the correctness of students’ solutions
drawn from a laboratory course on logic programming, employing relativised
uniform equivalence with projection as the underlying program correspondence
notion. We complement our investigation by discussing a performance evalua-
tion of cc�, showing that discriminating among different back-end solvers for
quantified propositional logic is a crucial issue towards optimal performance.

1 Introduction

This paper deals with a system for testing various refined notions of program corre-
spondence for nonmonotonic logic programs under the answer-set semantics, called
cc� (standing for “correspondence-checking tool”) [1]. It belongs to a current line
of research in answer-set programming (ASP) about questions of program equivalence
relevant for different software engineering tasks like optimisation, modular program-
ming, and verification. This research was for the most part initiated by the seminal
work of Lifschitz, Pearce, and Valverde [2] about strong equivalence, which is defined
to hold between two programs P and Q iff P ∪ R and Q ∪ R are ordinarily equiva-
lent, i.e., have the same answer sets, for every program R (here, R is called context).
Albeit strong equivalence circumvents the failure of ordinary equivalence to yield a re-
placement property similar to the one of classical logic, it is however too restrictive for
certain applications. This led to the investigation of more liberal notions, chiefly among
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them uniform equivalence [3], which is defined similar to strong equivalence except
that context programs are restricted to be sets of facts. In any case, both strong and
uniform equivalence do not take standard programming techniques like the use of local
(auxiliary) variables into account, which may occur in some subprograms but which are
ignored in the final solutions. In other words, these notions do not admit the projection
of answer sets to a set of dedicated output atoms. To accommodate issues like the above,
Eiter et al. [4] introduced a general framework for specifying parameterised notions of
program correspondence, allowing both answer-set projection as well as the specifica-
tion which kind of context class should be used for program comparison. Thus, these
notions generalise not only strong and uniform equivalence but also relativised versions
thereof [5] (where relativisation refers to the possibility of specifying the alphabet of
the context class).

The system cc� was developed as a checker for specific correspondence problems
belonging to the framework of Eiter et al. [4], based on reductions to the satisfiability
problem of quantified propositional logic.1 Such a reduction approach is motivated by
two aspects: (i) the complexity of the considered problems—lying on the third and
fourth level of the polynomial hierarchy, respectively—is captured by certain classes
of quantified propositional formulas, and (ii) the availability of advanced solvers for
quantified propositional logic.

Here, we are interested in specific correspondence problems computable by cc�,
viz. propositional query equivalence problems (PQEPs) [6], which generalise uniform
equivalence amounting to relativised uniform equivalence with projection.2 In particu-
lar, we discuss how PQEPs can be used to verify the correctness of solutions provided
by students as part of their assignments for a laboratory course on knowledge-based
systems at our university, relative to a reference solution. The assignments are taken
from the domain of model-based diagnosis and use the diagnosis front-end of the well-
known ASP solver DLV [7] as underlying reasoning engine. The main difficulty for
verifying the students’ solutions is that PQEPs deal with propositional programs only
whilst the solution programs are non-ground. A naive grounding would not be feasible,
so we resorted to a special technique restricting the domain to admissible inputs as well
as employing the intelligent grounder of DLV. It turned out that verifying the solutions
in this way yielded less false positives than with a test script currently in use, which is
based on a collection of sample test cases.

As cc� admits the use of different QBF solvers as back-end engines, we also re-
port about an experimental evaluation of the tool using a set of benchmark problems
showing the runtime behaviour of the system depending on a chosen solver. The exper-
iments were based on a set of parameterisable benchmarks stemming from the hardness
proof of the complexity analysis of the corresponding equivalence problems [6]. These
benchmarks have the particular advantage that they can be used to easily verify the cor-
rectness not only of cc� but also of the employed QBF solvers. This proved to be very

1 Recall that quantified propositional logic is an extension of ordinary propositional logic allow-
ing quantifications over atomic formulas. Following custom, we refer to formulas of quantified
propositional logic as quantified Boolean formulas (QBFs).

2 The name PQEP stems from taking a database point of view in which programs are considered
as queries over databases.
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helpful during the development of the system. The experiments show that discriminat-
ing among different back-end QBF solvers is crucial towards optimal performance.

The paper is organised as follows. In Section 2, we recapitulate the relevant aspects
from ASP and correspondence checking, as well as from quantified propositional logic.
Afterwards, in Section 3, we review the theoretical basis of cc�, including some opti-
misations employed in the system. This is followed by Section 4 containing a discussion
of the experimental results. Section 5 discusses the application of cc� for verifying stu-
dents’ solutions. The paper concludes with a brief summary and outlook in Section 6.

2 Background

Answer-set semantics. We are concerned with disjunctive logic programs (DLPs) which
are finite sets of safe rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am, not am+1, . . . ,not an, (1)

where n≥m≥ l≥ 0, all ai are atoms from some fixed vocabulary U , and “not” denotes
default negation. Recall that safety means that all variables occurring in the head or
negative body also occur in the positive body. A rule or program containing no variables
is ground. The grounding of a program P relative to a set C of constants is defined as
usual and denoted by grd(P,C). Programs containing only atoms of arity 0 are called
propositional. Following custom, we will identify ground programs with propositional
ones. The set of all atoms occurring in a program P is denoted by At(P ). By a fact, we
understand a rule of form a ←, usually just written a. Note that facts must be ground.
Given a finite set A of ground atoms, the power set, 2A, of A thus represents the set of
all programs containing facts from A only.

Following Gelfond and Lifschitz [8], an interpretation I (i.e., a set of ground atoms)
is an answer set of a ground program P iff it is a minimal model of the reduct P I ,
resulting from P by (i) deleting all rules containing a default-negated atom not a such
that a ∈ I , and (ii) deleting all default-negated atoms in the remaining rules. The answer
sets of a non-ground program are given by the answer sets of the grounding over its
Herbrand universe. The set of all answer sets of a program P is denoted by AS(P ).

We continue with recapitulating the relevant program correspondence notions. For
this, we consider propositional programs only in what follows as cc� deals with just
these kinds of programs. To begin with, for collections S,S′ of sets of ground atoms,
a set B of ground atoms, and � ∈ {⊆,=}, we define S �B S′ as {Y ∩ B | Y ∈
S} � {Y ∩ B | Y ∈ S′}. Following Oetsch et al. [6], a propositional query inclusion
problem, or PQIP, is a tuple of form (P,Q, 2A,⊆B) and a propositional query equiv-
alence problem, or PQEP, is a tuple of form (P,Q, 2A,=B), where P and Q are two
programs and A and B are sets of atoms, intuitively referring to sets of input and output
atoms, respectively. We say that (P,Q, 2A,�B) holds, for � ∈ {⊆,=}, iff, for each
set of facts F ∈ 2A, AS(P ∪ F ) �B AS(Q ∪ F ). For a PQEP Π = (P,Q, 2A,=B),
the PQIPs Π→ = (P,Q, 2A,⊆B) and Π← = (Q,P, 2A,⊆B) are associated with Π .
Clearly, Π holds iff both Π→ and Π← hold.

PQEPs express ordinary equivalence, uniform equivalence [3], and strong equiva-
lence [2] as follows: If P and Q are formed over alphabet U , then P and Q are (i) or-
dinarily equivalent iff the PQEP (P,Q, {∅},=U) holds, (ii) uniformly equivalent iff
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(P,Q, 2U ,=U ) holds, and (iii) strongly equivalent iff (P,Q,PU ,=U) holds, where PU
is the set of all programs over U .

Concerning the complexity of PQIPs and PQEPs, as shown previously [6], given
programs P,Q ∈ PU , sets A,B ⊆ U of atoms, and � ∈ {⊆,=}, deciding whether
(P,Q, 2A,�B) holds is ΠP

3 -complete. Moreover, the problem is ΠP
2 -complete in case

B = U . Both hardness results hold even for arbitrary but fixed A.

Quantified propositional logic. The complexity results above show that PQIPs and
PQEPs can be efficiently reduced to quantified propositional logic, an extension of
classical propositional logic in which formulas are permitted to contain quantifications
over propositional variables. Such formulas are also called quantified Boolean formulas
(QBFs); we denote them by upper-case Greek letters. Similar to predicate logic, ∃ and
∀ are used as symbols for existential and universal quantification, respectively.

For an interpretation I and a QBF Φ, the relation I |= Φ is defined analogously
as in classical propositional logic, with the additional conditions that I |= ∃p Ψ iff
I |= Ψ [p/�] or I |= Ψ [p/⊥], and I |= ∀p Ψ iff I |= Ψ [p/�] and I |= Ψ [p/⊥],
for Φ = Qp Ψ with Q ∈ {∃, ∀}, where Ψ [p/φ] denotes the QBF resulting from Ψ by
replacing each free occurrence of p in Ψ by φ.3 Satisfiability and validity of a QBF are
defined analogously as for formulas in classical propositional logic. Note that for closed
QBFs it holds that the notions of satisfiability and validity coincide.

Given a finite set P of atoms, QP Ψ stands for any QBF Qp1Qp2 . . .QpnΨ such
that P = {p1, . . . , pn}. A QBF Φ is said to be in prenex normal form (PNF) iff it is
closed and of the form QnPn . . .Q1P1 φ, where n ≥ 0, φ is a propositional formula,
and Qi ∈ {∃, ∀} such that Qi �= Qi+1 for 1 ≤ i ≤ n− 1. Moreover, if φ is in conjunc-
tive normal form, then Φ is in prenex conjunctive normal form (PCNF), and if φ is in
disjunctive normal form, then Φ is in prenex disjunctive normal form (PDNF). A QBF
Φ = QnPn . . .Q1P1 φ is also referred to as an (n,Qn)-QBF. Any closed QBF Φ is eas-
ily transformed into an equivalent QBF in prenex normal form such that each quantifier
occurrence from Φ corresponds to a quantifier occurrence in the prenex normal form.

Well-known complexity results for the evaluation problem of QBFs imply that PQIPs
and PQEPs can be efficiently reduced to (3, ∀)-QBFs. These reductions are the central
theoretical basis for cc� and are discussed next.

3 Underlying Translations of cc�

In this section, we recapitulate the basic encodings for mapping PQIPs and PQEPs into
QBFs [6] and introduce a slightly simplified encoding.

We start with some notation and ancillary definitions. Given a set V of atoms, we
assume (pairwise) disjoint copies V i = {vi | v ∈ V }, for every i ≥ 1. Furthermore,
we define (V i ≤ V j) as

∧
v∈V (vi → vj), (V i < V j) as (V i ≤ V j) ∧ ¬(V j ≤ V i),

and (V i = V j) as (V i ≤ V j) ∧ (V j ≤ V i). Loosely speaking, these operators allow
to compare different subsets of atoms from a common set V under subset inclusion,
proper-subset inclusion, and equality, respectively.

3 The notion of a free variable occurrence is defined similarly as in predicate logic.
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We use superscripts as a general renaming scheme for formulas and rules. That is, for
each i ≥ 1, αi expresses the result of replacing each occurrence of an atom v in α by vi,
where α is any formula or rule. For a rule r of form (1), we define H(r) = a1∨· · ·∨al,
B+(r) = al+1 ∧ · · · ∧ am, and B−(r) = ¬am+1 ∧ · · · ∧ ¬an. We identify empty
disjunctions with ⊥ and empty conjunctions with �.

In order to express properties of logic programs and respective program reducts in the
language of quantified propositional logic, we introduce the following concept: Given
a propositional program P , define P 〈i,j〉 =

∧
r∈P

(
(B+(ri) ∧ B−(rj)) → H(ri)

)
.

Then, for any propositional program P with At(P ) = V , any interpretation I , and any
X,Y ⊆ V such that, for some i, j ≥ 0, I ∩ V i = X i and I ∩ V j = Y j , it holds that
X |= PY iff I |= P 〈i,j〉 [9].

We are now in a position to state the encoding due to Oetsch et al. [6].

Proposition 1. Let Π = (P,Q, 2A,⊆B) be a PQIP, At(P ∪Q) = V , A,B ⊆ V , and

S[Π ] = ∀V 1∀A2¬
(
ΦΠ ∧ ∀V 4

(
(B4 = B1) → ΨΠ

))
, where

ΦΠ = P 〈1,1〉 ∧ (A2 ≤ A1) ∧ ∀V 3
((

(A2 ≤ A3) ∧ (V 3 < V 1)
)
→ ¬P 〈3,1〉

)
and

ΨΠ =
((

Q〈4,4〉 ∧ (A2 ≤ A4)
)
→ ∃V 5

((
(A2 ≤ A5) ∧ (V 5 < V 4)

)
∧Q〈5,4〉)).

Then, Π holds iff S[Π ] is valid. Moreover, a PQEP Ω = (P,Q, 2A,=B) holds iff
S[Ω→] ∧ S[Ω←] is valid.

Besides the above encoding S[·], cc� implements a slightly adapted version which we
introduce next. The key observation for the subsequent adaption is that we use a fixed
assignment for atoms in view of the subformulaB4 = B1 of S[·]. Hence, for the quanti-
fier block ∀V 4, it is sufficient to take only atoms from V 4 \B4 into account and replace
all occurrences of atoms v4 ∈ B4 by v1 within the remaining part of the formula. We
thus obtain:

Theorem 1. Let Π = (P,Q, 2A,⊆B) be a PQIP, At(P ∪ Q) = V , and A,B ⊆ V .
Then, Π holds iff T[Π ] = ∀V 1∀A2¬

(
ΦΠ ∧ ∀(V 4 \ B4)ΨΠ [B4/B1]

)
is valid, where

ΦΠ and ΨΠ are the QBFs from Proposition 1 and ΨΠ [B4/B1] is the result of replacing
all occurrences of atoms v4 ∈ B4 in ΨΠ by v1.

Obviously, all encodings introduced so far, are (i) always linear in the size of P , Q, A,
and B, and (ii) possess at most two quantifier alternations in any branch of the formula
tree. The latter shows that any such encoding is easily translated into a (3, ∀)-QBF.
Thus, the complexity of evaluating these QBFs is not harder than the complexity of the
encoded decision problems, which shows the adequacy of the encodings in the sense
of Besnard et al. [10]. The benefit of the refined encodings is, however, that the num-
ber of universally quantified variables is reduced—in fact, in some specific cases, one
quantifier block even vanishes. This guarantees adequacy also for some special cases
of query problems with lower complexity. Note that by a proper parameterisation of a
PQIP (resp., PQEP) also some important special cases of correspondence checking can
be realised, e.g., uniform equivalence and ordinary equivalence. It can easily be verified
that all special cases without projection have in common that the resulting encodings
based on T[·] yield QBFs with at most one quantifier alternation in each branch of the
formula tree, witnessing their ΠP

2 -membership.
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4 Dress Rehearsal: Some Preliminary Performance Evaluation

In this section, we present a preliminary experimental evaluation of our implementation,
in order to assess the behaviour of cc� under different QBF solvers, different encodings,
and different problem settings in terms of runtime performance.

In the spirit of previous experiments with cc� [1], we use a reduction from QBFs
to PQIPs as given by the ΠP

3 -hardness proof for deciding PQIPs [6]. This provides us
with a class of random benchmark problems for cc� which is easily parameterisable
and which reflects, in some sense, the inherent hardness of the problem. More precisely,
the method is as follows: (i) generate a random (3, ∀)-QBF Φ in PDNF; (ii) reduce Φ to
a PQIP ΠΦ = (P,Q, 2A,⊆B) such that Φ is valid iff ΠΦ holds [6]; and (iii) apply cc�
to derive the corresponding encoding S[ΠΦ] or T[ΠΦ]. A particular advantage of this
method is that it allows in a straightforward way to verify the correctness of the overall
system: just check whether Φ and one of S[ΠΦ] or T[ΠΦ] have the same truth value.
Indeed, with the help of this feature, we were able to find errors in some QBF solvers.

Our benchmark set consists of 1000 instances. The randomly generated QBFs of
Step (i) contain 24 different atoms each. From those 24 atoms, each quantifier block
binds 8 of them. Each term in the PDNF contains 4 atoms which are selected randomly
among the 24 atoms and are negated with probability 0.5. The whole formula consists of
38 terms. From the 1000 instances, 506 evaluate to true and 494 evaluate to false. Thus,
the ratio between true and false instances is close to 1 which indicates that the instances
are neither under-constrained nor over-constrained. From each Φ, we construct a PQIP
ΠΦ = (P,Q, 2A,⊆B) such that Φ is true iff ΠΦ holds. Note that P , Q, and B are
determined by the reduction but the context A can be chosen arbitrarily.

For our experiments, we use three different settings, viz. the empty context A = ∅,
the full context A = U , and an in-between setting ∅ ⊆ A ⊆ U . For the last setting, each
atom occurring in one of the two programs P and Q is in A with probability 0.5. We
consider both encodings from PQIPs to QBFs, S[·] and T[·], together with the three set-
tings for the context. We compare the QBF solvers semprop [11] (release 24/02/02),
qube-bj [12] (v1.2), quantor [13] (release 25/01/04), and qpro [14], all of them
showed to be competitive in previous QBF evaluations. The solvers qpro, qube-bj,
and semprop are based on the standard DPLL decision procedure extended by special
learning techniques whereas quantor implements a combination of resolution and
variable expansion. All solvers except qpro require the input to be in prenex conjunc-
tive normal form. Thus, for those solvers, an intermediate prenexing step is necessary.
All experiments were carried out on a 3.0 GHz Dual Intel Xeon workstation, with 4 GB
of RAM and Linux version 2.6.8.

Figure 1 summarises the results of the comparison. The different QBF solvers, en-
codings (S[·], T[·]), and settings for the context (empty, half-full, full, respectively) are
given on the abscissa, and the median runtimes in seconds are depicted on the ordinate.

Observe that the alternative encoding T[·] does not achieve faster runtimes for all
solvers, although it uses less variables. For qpro and qube-bj, QBFs from T[·] are
solved—as one would expect—faster. This is not the case for semprop and quantor,
where semprop solves QBFs from S[·] slightly faster and quantor solves them much
faster. The median runtime for quantor with full context and encoding T[·] is even
greater than 100 seconds. Concerning the influence of the context parameterisation on
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Fig. 1. Median runtimes for different solvers, encodings, and problem settings

Fig. 2. Runtime distribution for qpro, semprop, qube-bj, and quantor

the runtimes, the non-normal-form solver qpro achieves best results for the empty
context but rather poor results for the full context. For qube-bj the contrary is true,
however, i.e., it achieves best results for the full context but poor results for the empty
context—a quite surprising observation. Finally, the most robust solver in this aspect is
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semprop. Recall that each of the derived PQIPs (P,Q, 2A,⊆B) either holds for any A,
or does not hold for any A. The assignments of atoms from X1 in our encodings which
“guess” context-program candidates are thus irrelevant for the truth value of the QBFs.
As qpro does not implement any heuristics concerning the selection of atoms, it is not
surprising that runtimes scale exponentially with respect to the context. Interestingly,
the runtimes for qube-bj even worsens without those “decoy” variables.

The results in Fig. 2 provide some deeper insights concerning the runtime behaviour of
the non-normal-form solver qpro and the normal-form solvers semprop, qube-bj,
and quantor, respectively. For those graphs, the abscissa gives the runtime in seconds
(scaled logarithmically) and the ordinate gives the number of solved problem instances.
This means that for each runtime in the data we depict how many instances were solved
with runtime less than or equal to that time. The different curves correspond to the differ-
ent combinations of the chosen encoding and context parameterisation. For better legi-
bility, different symbols are attached to the curves.

5 cc� on Stage: A Verification Application

We next discuss an application of cc� for verifying the correctness of certain programs.
In particular, these programs represent the solutions of students as part of their assign-
ments for a laboratory course on knowledge-based systems at our university. We com-
pare these solutions relative to a reference program based on verifying certain PQEPs.
As the involved programs are non-ground, we need special techniques to take this into
account. Hence, our results demonstrate also how our reduction approach to QBFs can
be applied to non-ground programs as well.

One of the objectives of the course is to model a simple air-conditioning system
by means of logic programs and, based on this model, to solve Reiter-style diagnosis
tasks [15] with the dedicated diagnosis front-end of DLV [7]. The programs we con-
sider here should represent the correct behaviour of the components of the air-condition
system and are taken from three installments of the course between 2006 and 2008.
The problem description slightly changed from year to year, yet Fig. 3 prototypically
illustrates the specification of such an air-conditioning system. This system consists of
four components, viz. a heater (h), a cooler (c), a switch (s), and a valve (v). They
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Fig. 3. Overall architecture of one particular air-conditioning system considered for a course
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are connected by air lines (grey bars) and data lines (ordinary lines). The students’
task is to model each component of the system as well as the connections between the
components and some additional constraints required for diagnosing by respective pro-
grams. The problem description provides detailed specifications of the system and its
components and defines the predicates to be used for the input and output of the single
components and the whole system. The system’s input airstream (air in) is modeled
by a temperature value, ranging from 0 to 60, and a value specifying whether or not
air is streaming (on or off). The same holds for the output airstream (air out). The
input values of threeway in is one of cool, heat, and off. Performance is regulated
by the input value of scale in which can be 0, 1, 2, or 3. The following specification
determines the normal behaviour of the heater component:

The heater warms-up the incoming airstream by three times the value set on the data line
but only to a maximum value of 45. If the incoming airstream is already warmer than 45,
then it is propagated unaltered to the heater’s output. Air is streaming at the component’s
output iff it is streaming at the component’s input. If it is not streaming at the output,
the temperature is set to the value defined by a dedicated predicate ambient t(·).

The following program represents this specification in DLV syntax. Note that ab(·)
denotes the special predicate employed by DLV referring to a defective component.

% relates output airstream (on, off) with input airstream
s(H,o1,X) :- heater(H), s(H,i1,X), not ab(H).
% warming-up of the airstream according to the specification
t(H,o1,X) :- heater(H), t(H,i1,Y), d(H,i2,Z), s(H,o1,on),

A = Z*3, X = Y + A, X <= 45, not ab(H).
t(H,o1,45) :- heater(H), t(H,i1,Y), d(H,i2,Z), s(H,o1,on),

A = Z*3, X = Y + A, X > 45, t(H,i1,T), T <= 45, not ab(H).
t(H,o1,T) :- heater(H), t(H,i1,Y), d(H,i2,Z), s(H,o1,on),

A = Z*3, X = Y + A, X > 45, t(H,i1,T), 45 < T, not ab(H).
% temperature of output airstream when air is not streaming
t(H,o1,X) :- heater(H), s(H,o1,off), ambient_t(X), not ab(H).

We will not go into further details but turn instead our attention to the considered veri-
fication tasks determining the correctness of the students’ solutions.

Verification with cc�. Let us denote by σ a specification that has to be represented by
a logic program. Furthermore, let Stud(σ) be a student’s attempt to represent σ while
Ref (σ) is the reference solution. The possible input for the program specified by σ is
assumed to be defined over a fixed set I(σ) of ground predicates, and, similarly, the
output is fixed by a set O(σ) of ground predicates. Usually, specifications make further
(implicit) assumptions concerning the input, e.g., some predicates need to be defined
always or are restricted to be functional in some argument. We call a set A(σ) ⊆ I(σ)
satisfying such assumptions admissible with respect to σ.

Definition 1. A program Stud(σ) is correct with respect to a specification σ iff, for any
admissible set A(σ) ⊆ I(σ), AS (Stud(σ) ∪A(σ)) =O(σ) AS (Ref (σ) ∪A(σ)).

Note that both Stud(σ) and Ref (σ) are non-ground programs. For instance, for the
heater specification from above, σH , the set I(σH) contains the atoms heater(C),
ambient t(T ), d(C, i2, Z), t(C, i1, T ), s(C, i1, on), and s(C, i1, off), while the
set O(σH ) can be fixed to atoms t(C, o1, T ), s(C, o1, on), and s(C, o1, off), where T
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ranges from 0 to 60,Z ∈ {0, 1, 2, 3}, andC ∈ {s, h, c, v}. Any subset A(σH) ⊆ I(σH)
is admissible if A(σH) contains exactly one predicate ambient t(·), and predicates
t(·, ·, ·) and s(·, ·, ·) are functional in their third argument.

In order to apply cc� for our verification purpose, the overall strategy is to ground
programs Stud(σ) and Ref (σ) and then to reduce the problem of program correct-
ness to a PQEP. The reason why a reduction to standard uniform equivalence or or-
dinary equivalence (with additional guessing rules) is not feasible, is the necessity of
answer-set projection which has two sources: first, programmers usually employ aux-
iliary atoms which are not considered as output predicates, and second, new atoms are
sometimes added by the grounding procedure (we return to this point in a moment). In
terms of complexity theory, projection is the reason why deciding PQEPs is exponen-
tially harder than to decide problems of ordinary equivalence or uniform equivalence.

First, we outline how to handle the restriction to consider only admissible inputs.
We express admissibility conditions, as exemplified above, by constraints. For instance,
the admissibility conditions for ambient t(·) for the heater can be encoded by the
following program:

def_ambient_t :- ambient_t(T). :- not def_ambient_t.
:- ambient_t(T1), ambient_t(T2), T1 <> T2.

In general, we denote by C(σ) the program representing admissibility constraints on
the input according to specification σ. The following result establishes the connection
between program correctness and PQEPs:

Theorem 2. Stud(σ) is correct with respect to σ iff the PQEP (P,Q, 2A,=B) holds,
where P =grd(Stud(σ)∪C(σ), D), Q=grd(Ref (σ)∪C(σ), D), A=I(σ), B=O(σ),
and D is a finite set containing all constants in Stud(σ) ∪ Ref (σ) ∪ C(σ) ∪ I(σ).

Verifying students’ solutions by following the above theorem and then applying cc�
is in principle possible since our domain is finite, but the resulting programs would be
prohibitively large. So, instead of applying a naive grounding by strictly following the
definition, we make use of the intelligent grounding component of DLV. This means that
several optimisations are performed, e.g., input rewriting, deletion of rules whose body
is always false, and semi-naive evaluation. The choice of enabled options has significant
impact on the runtimes of the subsequently employed QBF solver, however. We also
remark that some optimisations, e.g., the input rewriting, introduce new atoms. Thus,
not only auxiliary atoms used by a programmer but also such new atoms stemming from
the grounding request the use of projection in equivalence tests. Note that by using
DLV’s intelligent grounder, we can use strong negation as well as integer arithmetics
and comparison predicates in the programs. The grounder translates these constructs
such that they do not occur in the ground programs.

However, the optimisations of the intelligent grounder may be too excessive. For
example, the grounding of the program for the heater above would result in the empty
program since there are no facts, and therefore the bodies of the rules are always false.
Our concrete method to ground programs is as follows: Let P be a program and σ its
underlying specification. First, augmentP by rules a ← a′ and a′∨a′′ for any a ∈ I(σ),
where a′ and a′′ are globally new atoms. Then, ground the augmented version of P .
Finally, delete all rules containing primed or double-primed atoms from the resulting
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program. This method guarantees that the semantics of the ground program, possibly
joined with atoms from I(σ), is correctly preserved under the conservative assumption
that the grounder only preserves ordinary equivalence.

However, the resulting programs are still too large. We thus sacrifice completeness
of the verification problems by restricting the sets I(σ) to contain only certain relevant
predicates. For the heater specification σH from above for example, we restrict I(σH)
in such a way that not all temperature values from 0 to 60 are considered but only an
interval around 45 since it is very likely that if a student program is not correct, then it
will diverge from the specification on input from this interval.

Results of the verification. As already mentioned, we considered student data from
three semesters. All experiments were carried out on a 3.0 GHz Quad Core Intel Xeon
workstation, with 33 GB of RAM and SuSE Linux version 10.3. We used the QBF
solver qpro with encoding T[·], as it turned out that all other solvers mentioned in
the previous section showed a runtime behaviour several orders of magnitude worse
than qpro’s. Concerning the setting for the grounder, we achieved best performance
when the option for input rewriting was disabled. The reason is that this optimisation
introduces new atoms which seems to be disadvantageous for qpro.

We also compared the outcomes of the equivalence tests with results from a test
approach currently used in the course. In the latter, test cases (admissible subsets of
input predicates) are individually specified, and then it is tested whether a student’s
program and our reference program yield the same answer sets when joined with the
test cases. Such sets of test cases usually comprise 10 to 20 instances. As it will turn
out, many errors were undetected by our current approach, thus it is rather prone to
false-positives with respect to the verification task.

Table 1. Outcomes of the program verification

semester component number of classified as correct runtimes
instances current approach cc� approach average median

ws2006 c 50 44 38 0.9 1.0
h 50 39 32 1.0 1.1
s 50 29 22 0.4 0.1
v 50 40 34 5.1 5.6
all 50 42 32 70.2 103.0

ws2007 c 78 67 56 0.8 0.8
h 78 69 59 0.6 0.6
s 78 52 0 1.4 1.5
v 78 48 8 4.5 2.9
all 78 60 39 491.4 894.0

ws2008 c 100 54 40 1.3 2.3
h 100 70 13 0.2 0.2
s 100 59 28 1.4 3.0
v 100 53 25 0.6 1.1
all 100 52 19 132.3 72.5
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Table 1 summarises the results of our experiments. We provide the year of the
semester a course took place, the name of the component we considered, the number of
instances of that component, the number of instances classified as correct by the current
approach, the number of instances classified as correct by our reduction approach, the
average runtime in seconds, as well as the median runtime for solving the QBFs. Com-
ponents c, h, s, v denote the cooler, heater, switch, and valve as before, while ‘all’ refers
to the overall program consisting of all components, the encoding of the connections
between them, and additional constraints required for diagnosing. The ground programs
for the component tests contain up to 985 rules. The number of variables in the resulting
QBFs ranges from 229 to 623. For the overall tests, programs contain up to 4818 rules,
and the QBFs contain 949 to 3143 variables. Note that whenever a program is classified
as not correct by the current approach, then it is classified as not correct by the cc�
approach as well. Hence, the difference between the numbers of programs classified as
correct by the two approaches is the number of false positives for the current approach.
Table 1 shows that runtimes for the solved QBFs keep in reasonable bounds. Coming
as no surprise, the cc� approach reveals significantly more incorrect solutions than the
current approach. The reason that the number of correct overall programs is not smaller
than the minimum number of its correct components is mainly due to different restric-
tions on what admissible input means. The two significantly small numbers of correct
solutions for the switch and the valve component in the ‘ws2007’ test set is because of
subtle differences between the reference and the student solutions in case some input
values are missing. If this is considered to be too strict, one can simply exclude such
cases by changing the admissibility constraints accordingly.

6 Conclusion

In this paper, we discussed how correspondence problems which allow to restrict the
alphabet of the context class and which facilitate the removal of auxiliary atoms in
the comparison—two important concepts for program equivalence in practice—can be
used in a concrete scenario. Moreover, though cc� processes propositional programs
only, it can still be employed for program comparisons of non-ground programs. We
recapitulated some details of the tool, based on an efficient reduction to QBFs, discussed
one particular optimisation, and analysed experiments with different QBF solvers on a
random benchmark set which reveals interesting differences of the solvers depending on
the particular problem parameterisation and the choice of the encoding. More relevantly,
we considered an application concerning the verification of programs.

There remain many issues for future work. For model-based diagnosis, native con-
cepts of equivalence, directly defined in terms of a diagnosis problem, would be useful.
In case programs are not equivalent, a counterexample that gives information why the
programs are not equivalent would be of great value. cc� can be used to generate QBFs
such that assignments for the open variables correspond to such counterexamples. How-
ever, few solvers can compute such assignments—to extend qpro in this way is future
work. Also, often non-ground programs are formulated over a language with an infi-
nite domain. An important topic is to single out at least sufficient conditions when we
can restrict this domain to a finite subdomain such that program equivalence over this
subdomain implies equivalence over the unrestricted domain.
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Concerning related work, we mention the system DLPEQ [16] for deciding ordinary
equivalence, which is based on a reduction to logic programs, and the system SELP [17]
for checking strong equivalence, which is based on a reduction to classical logic. Strong
equivalence between non-ground programs can be decided by a dedicated system that
is based on a reduction to a decidable fragment of first-order logic [18].
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Abstract. We consider the problem of whether a given preferred answer set pro-
gram can be reduced to a propositional formula. Research on this topic is of both
theoretical and practical interests: on one hand, it will shed new insights to under-
stand the expressive power of preferred answer set programs; on the other hand,
it may also lead to efficient implementations for computing preferred answer sets
of logic programs. In this paper, we focus on Brewka and Eiter’s preferred an-
swer set programs. We propose a translation from preferred answer set programs
to propositional logic and show that there is one-to-one correspondence between
the preferred answer sets of the program to the models of the resulting propo-
sitional theory. We then link this result to Brewka and Eiter’s weakly preferred
answer set semantics.

Keywords: answer set semantics, prioritized logic programs, answer set
computations.

1 Introduction

In recent years, Answer Set Programming (ASP) has become one of the most effective
approaches for declarative problem solving in knowledge representation and reasoning.
One important research in this area is to translate various answer set programs, such
as normal logic programs and disjunctive logic programs, into propositional logic, so
that the answer sets of these logic programs are precisely captured by the models of
corresponding propositional theories, e.g. [5,7]. Research on this topic is of both theo-
retical and practical interests because it has not only provided new insights for a better
understanding of the expressive power of answer set programming, but also been led to
some efficient computations for answer set programming [7].

On the other hand, preferred answer set programming is a promising method for
dealing with conflict resolution in nonmonotonic reasoning. Over the years, a number
of various preferred answer set program (also called prioritized logic program) frame-
works have been developed, which extended traditional answer set semantics by inte-
grating proper priorities into the underlying logic programs, e.g. [3,4,6,8].

However, it remains as an unaddressed question whether a similar translation can be
achieved between preferred answer set programs and propositional logic. This paper
provides a positive answer to this question. We focus on Brewka and Eiter’s preferred
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answer set programs and propose a translation between preferred answer set programs
and propositional logic. In particular, we prove that given a preferred logic program,
the models of a propositional theory, which consists of the completion, loop formulas,
and preference formula of the program, precisely are the same as the preferred answer
sets of the underlying program.

The rest of the paper is organized as follows. Section 2 overviews the basic no-
tions and concepts of Brewka and Eiter’s preferred and weakly preferred answer set
programs. Section 3 presents our translation from the preferred answer set program
to propositional logic and proves a one-to-one correspondence between the preferred
answer sets of the program and the models of the translated propositional theory. Sec-
tion 4 then links this result to weakly preferred answer set programs. Finally, section 5
concludes the paper with some discussions.

2 Brewka and Eiter’s Preferred Answer Set Semantics: An
Overview

Consider a propositional language L which consists of a set of propositional atoms.
A fully prioritized logic program on the language L is a pair (Π,<), where Π is a
(finite) normal logic program and < is a strict total order on Π . Since < is a total order
on the set Π , the rules in Π corresponds to a unique ordinal number, and thus to an
enumeration r1, · · · , rα, · · · , r|Π| of the elements of Π . Therefore we use the notion
{rα}< to represent (Π,<).

A ground rule r is defeated by a set of atoms S if there exist some atom a ∈ S
such that a appears in the negative body of r, i.e., “not a” is a part of r’s body. We use
Head(r), Pos(r) and Neg(r) to denote the head atom, the set of atoms occurring in the
positive body, and the set of atoms occurring in the negative body of rule r, respectively.
Given a set of atoms S and a rule r, if Head(r) /∈ S and Pos(r) ⊆ S then we refer to
r as a zombie rule with respect to S or simply “zombie rule” when it is clear from the
context. Intuitively, a zombie rule r is a rule which is assured to be non-generating with
respect to S as Head(r) /∈ S.

Definition 1. [2] Let Π< = (Π,<) be a fully prioritized grounded (normal) logic
program and X a set of ground atoms. Let XΠ<′ = ( XΠ,<′) be the fully grounded
prioritized logic program such that XΠ is the set of rules obtained from Π by

1. deleting every rules having an atom p in its positive body where p /∈ X, and
2. removing from each remaining rules their positive body,

and <′ is inherited from < by the map f : XΠ −→ Π, i.e., r′1 <′ r′2 iff f(r′1) < f(r′2),
where f(r′) = r is the first rule in Π with respect to < such that r′ results from r by
step 2.

Note that <′ is also a strict total order on XΠ . For a fully prioritized program Π<, a
set of atoms S, and SΠ defined as in above, the preferred answer set semantics of Π<

is defined through an operator CSΠ<′ : 2Atoms( SΠ<′ ) −→ 2Atoms( SΠ<′ )1 such that

1 Here Atoms( SΠ<′) denotes the set of all atoms occurring in SΠ<′ .
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an answer set A of Π satisfies the priorities if and only if CAΠ<′ (A) = A. The formal
definition is given below.

Definition 2. [2] For a fully prioritized grounded (normal) logic programΠ< = (Π,<)
and a set S of atoms, let SΠ<′ = (SΠ,<′) = {rα}<′ where SΠ and <′ is defined as
in Definition 1. The sequence Sα is defined as follows:

S0 = ∅

for α = 0, and

Sα+1 =

⎧⎪⎨
⎪⎩
Sα if rα+1 is defeated by Sα or

Head(rα+1) ∈ S and rα+1 defeated by S,

Sα ∪ {Head(rα+1)}, otherwise.

for 0 < α < |Π |. Then CSΠ<′ (S) = S|Π|.

For a fully prioritized grounded logic program Π< = (Π,<) and an answer set A of
Π , A is a preferred answer set of Π< if and only if CAΠ<′ (A) = A.

Obviously, there are some fully prioritized grounded logic programs that may have
no preferred answer set. In [2], this problem was addressed by a proposed relaxation
that gives preferred answer sets whenever they exist and an approximation called weakly
preferred answer sets, in the other cases. For a formal definition, the notion of inversion
is first introduced.

Definition 3. [2] Let <1 and <2 be two well-orderings on set S. We define InvS(<1
, <2) (inversions of <2 in <1) as

InvS(<1, <2) = {(b, a) | a, b ∈ S, a <2 b, b <1 a}.

The idea behind weakly preferred answer sets is linked to counting those inversions
from a full prioritization<1 of a grounded logic programΠ to another full prioritization
<2 of the program. To formally define this, the notion of distance is introduced.

Definition 4. [2] Let <1 and <2 be well-orderings of a finite set S. The distance from
<1 to <2, denoted dS(<1, <2), is defined as

dS(<1, <2) = |InvS(<2, <1)| .

From the above definition, the notion of preference violation degree, denoted pvd is
defined as follows.

Definition 5. [2] Let Π< = (Π,<) be a finite fully prioritized grounded (normal) logic
program. For an answer set A of Π, define pvdΠ<(A) (preferrence violation degree of
A in Π<) as

pvdΠ<(A) = min{dΠ(<,<′) | <′ is any full prioritization of Π such that

A is a preferred answer set of Π<′ = (Π,<′)}.
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Intuitively, pvdΠ<(A) is the minimum distance possible from the full prioritization of
Π< to any fully prioritized rule base Π<′ = (Π,<′) such that A is a preferred answer
set of Π<′ . From the above definitions, the semantics of weakly preferred programs can
be formally defined as follows.

Definition 6. [2] Let Π< = (Π,<) be a finite fully prioritized grounded (normal)
logic program. We define

pvd(Π<) = min{pvd(Π<)(A) |A is an answer set of Π}.

Then A is a weakly preferred answer set of Π< iff pvdΠ<(A) = pvd(Π<).

Informally A is a weakly preferred answer set of a fully prioritized grounded (normal)
logic program Π< if there exist a full prioritization <1 of Π such that A is a preferred
answer set of Π<1 , and for any other full prioritization <2 of Π where there exist a
preferred answer set A′ of Π<2 , we have dΠ(<,<1) ≤ dΠ(<,<2).

3 Preference Formulas and the Translation

In this section, we propose a translation from the preferred answer set semantics to
propositional logic, such that a one-to-one correspondence exist for this translation.

Definition 7. For a finite fully prioritized grounded (normal) logic program Π< =
(Π,<), we define the preference formula PF (Π<) of Π< as follows:

PF (Π<) =
∧

r∈Π<,Head(r)=a

(¬a ∧
∧

b∈Pos(r)

b ⊃

∨
r′∈defΠ(r),r′<r

(
∧

c∈Pos(r′)

c ∧
∧

d∈Neg(r′)

¬d))

where defΠ(r) = {r′ | r′ ∈ Π,Head(r′) ∈ Neg(r), Head(r′) �= Head(r) or
Neg(r′) �= Neg(r)}.

Informally, defΠ(r) is the set of rules in Π that defeat r in a sense that each rule r′ in
defΠ(r) is different from r with regards to either Head(r) or Neg(r), and Head(r′) ∈
Neg(r).

Theorem 1. For a finite fully prioritized grounded (normal) logic programΠ<=(Π,<)
and an answer set A of Π , A |= PF (Π<) iff A is a preferred answer set of Π<.

In [7], Lin and Zhao proposed a translation of finite normal logic programs to propo-
sitional formulas without the need of extra variables. The translation is of the form
Comp(Π) ∧ LF (Π) where Comp(Π) is the completion of the logic program Π and
LF (Π) is the conjunction of all loop formulas associated with Π . The loop formulas
are a way of strengthening the completion of Π such that a set of atoms A is an answer
set of Π iff A is a model of Comp(Π) ∧ LF (Π). Using Lin and Zhao’s result, we
are able to translate prioritized normal logic programs to propositional formulas via the
following theorem. Moreover, the models of the resulting propositional formula are in
a one-to-one correspondence with the preferred answer sets of the logic program.
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Theorem 2. For a finite fully prioritized grounded (normal) logic program Π< =
(Π,<), A |= Comp(Π) ∧ LF (Π) ∧ PF (Π<) iff A is a preferred answer set of Π<.

4 Linking Weakly Preferred Answer Set Programs

We now try to link the semantics of weakly preferred answer sets by extending our
previously defined preference formula. Intuitively, we model the weakly preferred cri-
terion by encoding the inversions between two full prioritizations of the rules of a given
program. To achieve this, we introduce two classes of new atoms of the form (r1, r2)
and X(r1,r2) where r1 and r2 are rule names of the given program.

Definition 8. For a finite fully prioritized grounded (normal) logic program Π< =
(Π,<), we define the weak preference formula WPF (Π<) as follows:

WPF (Π<) =∧
r∈Π,Head(r)=a

(¬a ∧
∧

b∈Pos(r)

b ⊃
∨

r′∈defΠ (r)

(
∧

c∈Pos(r′)

c ∧
∧

d∈Neg(r′)

¬d ∧ (r′, r)))

(1)

∧
∧

r1,r2∈Π,r1 �=r2

(((r1, r2) ∨ (r2, r1)) ∧ ((r1, r2) ⊃ ¬(r2, r1))) (2)

∧
∧

r1,r2,r3∈Π,r1 �=r2 �=r3

((r1, r2) ∧ (r2, r3) ⊃ (r1, r3)) (3)

∧
∧

r1,r2∈Π<,r2<r1

(((r1, r2) ⊃ X(r1,r2)) ∧ (X(r1,r2) ⊃ (r1, r2))) (4)

The formula WPF (Π<) is a conjunction of the four subformulas (1), (2), (3), and (4).
As can be seen, formula (1) is similar to PF (Π<) except that a rule that defeats a zom-
bie rule does not necessarily have to be more preferred with respect to < and that if a
rule r′ defeats a zombie rule r then the atom (r′, r) (i.e. encodes r′ is more preferred
than r but not necessarily with respect to <) should be satisfied (i.e. in the model satis-
fying WPF (Π<)). Basically, the conjunction of the two formulas (2) and (3) encodes
a full prioritization of the rules in Π (not necessarily <) where the prioritization rela-
tions are represented by the atoms of the form (r1, r2). The last formula (4) encodes
the inversions of < from the other full prioritization relations (that are represented by
the atoms (r1, r2)), which are then represented by the atoms of the form X(r1,r2) (i.e. it
indicates that (r1, r2) is an inversion of r2 < r1).

Before we present our main theorem of this section, we need to first introduce a
useful notion. Let L1 and L2 be two propositional languages and L1 ⊆ L2, and A an
interpretation of L1 (i.e. a subset of atoms of L1), an interpretation B of L2 is called an
extension of A on L2, denoted as B = ext(A)L2 , if A ⊆ B, and A and B agree on the
truth values of all propositional atoms of L1.2

2 Intuitively, L2 is a superset of L1.
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Theorem 3. For a finite fully prioritized grounded (normal) logic program Π< =
(Π,<) and an interpretation A of language L = Atom(Π), A is a weakly preferred
answer set of Π< iff there exist an extension ext(A)P of A, where P = Atoms(Π) ∪
{(ri, rj) | ri, rj ∈ Π} ∪ {X(ri,rj) | ri, rj ∈ Π<, rj < ri}3, such that ext(A)P |=
Comp(Π) ∧ LF (Π) ∧ WPF (Π<) and for all models M of Comp(Π) ∧ LF (Π) ∧
WPF (Π<), |ext(A)P 
X | ≤ |M 
X |.

5 Conclusions

In this paper, we have proposed a translations between Brewka and Eiter’s preferred
answer set programs and propositional logic. We have also proved a one-to-one corre-
spondence theorem for the translation. Moreover, we also provided a link between the
weakly preferred answer sets and propositional logic. We believe that our work will be
of practical values to serve as an alternative approach for current preferred answer set
programming implementations [6]. Currently we are considering to implement a SAT
based preferred answer set solver based on the work developed in this paper. From an
implementation viewpoint, since our defined preference and weak preference formu-
las remain in a polynomial size of the underlying program, techniques of ASSAT [7]
may be used to optimize the computation of preferred answer sets. For future work, we
consider the possibility of applying similar methods to capture the preferred answer set
framework in [3] which allows the specification of dynamic orderings such that static
orderings are a trivial restriction of the more general dynamic case.
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Abstract. In this paper we describe an approach for integrating CR-Prolog and
constraint programming, in which CR-Prolog is viewed as a specification lan-
guage for constraint satisfaction problems. Differently from other methods of
integrating ASP and constraint programming, our approach has the advantage of
allowing the use of off-the-shelf, unmodified ASP solvers and constraint solvers,
and of global constraints, which substantially increases practical applicability.

1 Introduction

Particular interest has been recently devoted to the integration of Answer Set Pro-
gramming (ASP) [1] with Constraint Logic Programming (CLP) (see [2,3]), aimed at
combining the ease of knowledge representation of ASP with the powerful support for
numerical computations of CLP. Such approaches are mostly based on extending the
ASP language and on using answer set and constraint solvers modified so that they can
work together. Although the combination of ASP and CLP showed substantial perfor-
mance improvements over ASP alone, the restriction of using ad-hoc ASP and CLP
solvers limits the practical applicability of the approach. In fact, programmers can no
longer select the solvers that best fit their needs (most notably, SMODELS, DLV, SWI-
Prolog and SICStus Prolog), as is instead commonly done in ASP. Another limitation
is the general lack of specific support for global constraints. Without global constraints,
applications’ performance is often heavily impacted by the combinatorial explosion of
the underlying search space.

In [4] we have presented a method for integrating ASP and constraint program-
ming. In this paper we extend the approach and integrate constraint programming with
an extension of ASP, called CR-Prolog [5]. CR-Prolog introduces in ASP the notion
of consistency restoring rule, which is particularly useful to represent unlikely events,
less-desired choices, etc. Our technique consists in viewing CR-Prolog as a specifica-
tion language for constraint satisfaction problems. CR-Prolog programs are written in
such a way that their answer sets encode the desired constraint satisfaction problems;
the solutions to those problems are found using constraint satisfaction techniques. Both
the answer sets and the solutions to the constraint problems can be computed with ar-
bitrary off-the-shelf solvers, as long as a (relatively simple) translation procedure is
defined from the ASP encoding of the constraint problems to the input language of the
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constraint solver selected. Moreover, our approach allows the use of the global con-
straints available in the selected constraint solver. Compared to the other approaches
to the integration of ASP and CLP, our technique allows programmers to exploit the
full power of the underlying state-of-the-art solvers when tackling industrial-size prob-
lems. Finally, although space restrictions prevent us from discussing it here, our exper-
iments have also shown that our technique produces programs that are arguably more
compact and easy to understand than those written in CLP alone, but with comparable
performance.

2 Background

The syntax of CR-Prolog is defined as follows. A regular rule is a statement of the form1

h ← l1, . . . , lm, not lm+1, . . . , not ln, where h and li’s are literals (defined as usual).
The intuitive meaning of the statment is that a reasoner who believes {l1, . . . , lm} and
has no reason to believe {lm+1, . . . , ln}, has to believe h. A consistency-restoring rule

(or cr-rule) is a statement of the form: r : h +← l1, . . . , lm, not lm+1, . . . , not ln, where
r, called the cr-rule’s name, is a (possibly compound) term uniquely identifying the cr-
rule. The intuitive reading of the statement is that a reasoner who believes {l1, . . . , lm}
and has no reason to believe {lm+1, . . . , ln}, may possibly believe h. The implicit as-
sumption is that this possibility is used as little as possible, only when the reasoner
cannot otherwise form a non-contradictory set of beliefs. A preference order on the use
of cr-rules can also be given by means of atoms of the form prefer(r1, r2) [5]. By
rule we mean a regular rule or a cr-rule. Given rule ρ, we call {l1, . . . , not ln} its body
(body(ρ)). Given cr-rule name r, body(r) denotes the body of the corresponding cr-rule.
A program is a set of rules. As usual, a non-ground program is viewed as a shorthand
for the program consisting of the ground instances of its rules. Given a program Π , the
regular part of Π is the set of its regular rules, and is denoted by reg(Π). The set of its
cr-rules is denoted by cr(Π). The semantics of CR-Prolog can be found in [5].

Let us now turn our attention to Constraint Programming. The definition of con-
straint satisfaction problem that follows is adapted from [6]. A Constraint Satisfaction
Problem (CSP) is a triple 〈X,D,C〉, where X = {x1, . . . , xn} is a set of variables,
D = {D1, . . . , Dn} is a set of domains, such that Di is the domain of variable xi (i.e.
the set of possible values that the variable can be assigned), and C is a set of constraints.
Each constraint c ∈ C is a pair c = 〈σ, ρ〉 where σ is a list of variables and ρ is a sub-
set of the Cartesian product of the domains of such variables. An assignment is a pair
〈xi, a〉, where a ∈ Di, whose intuitive meaning is that variable xi is assigned value a. A
compound assignment is a set of assignments to distinct variables from X . A complete
assignment is a compound assignment to all the variables in X . A constraint 〈σ, ρ〉 spec-
ifies the acceptable assignments for the variables from σ. We say that such assignments
satisfy the constraint. A solution to a CSP 〈X,D,C〉 is a complete assignment satis-
fying every constraint from C. Constraints can be represented either extensionally, by
specifying the pair 〈σ, ρ〉, or intensionally, by specifying an expression involving vari-
ables, such as x < y. In this paper we focus on constraints represented intensionally.

1 For simplicity we focus on non-disjunctive programs. Our results extend to disjunctive pro-
grams in a natural way.
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A global constraint is a constraint that captures a relation between a non-fixed number
of variables [7], such as sum(x, y, z) < w and all different(x1, . . . , xk). One should
notice that the mapping of an intensional constraint specification into a pair 〈σ, ρ〉 de-
pends on the constraint domain. For example, the expression 1 ≤ x < 2 corresponds
to the constraint 〈〈x〉, {〈1〉}〉 if the finite domain is considered, while it corresponds
to 〈〈x〉, {〈v〉 | v ∈ [1, 2)}〉 in a continuous domain. For this reason, in this paper we
assume that a CSP includes the specification of the intended constraint domain.

3 Encoding Constraint Problems in CR-Prolog

Our approach consists in writing CR-Prolog programs whose answer sets encode the
desired constraint satisfaction problems (CSPs). The solutions to the CSPs are then
computed using constraint satisfaction techniques.

CSPs are encoded in CR-Prolog using the following three types of statements: (1)
a constraint domain declaration is a statement of the form cspdomain(D), where D
is a constraint domain such as fd, q, or r; informally, the statement says that the CSP
is over the specified constraint domain, thereby fixing an interpretation for the inten-
sionally specified constraints; (2) a constraint variable declaration is a statement of the
form cspvar(x, l, u), where x is a ground term denoting a variable of the CSP (CSP
variable or constraint variable for short), and l and u are numbers from the constraint
domain; the statement says that the domain of x is [l, u];2 (3) a constraint statement
is a statement of the form required(γ), where γ is an expression that intensionally
represents a constraint on (some of) the variables specified by the cspvar statements;
intuitively the statement says that the constraint intensionally represented by γ is re-
quired to be satisfied by any solution to the CSP. For the purpose of specifying global
constraints, we allow γ to contain expressions of the form [δ/k]. If δ is a function
symbol, the expression intuitively denotes the sequence of all variables formed from
function symbol δ and with arity k, ordered lexicographically. For example, given CSP
variables v(1), v(2), v(3), [v/1] denotes the sequence 〈v(1), v(2), v(3)〉. If δ is a rela-
tion symbol and k ≥ 1, the expression intuitively denotes the sequence 〈e1, e2, . . . , en〉
where ei is the last element of the ith k-tuple satisfying relation δ, according to the
lexicographic ordering of such tuples. For example, given a relation r′ defined by
r′(a, 3), r′(b, 1), r′(c, 2), the expression [r′/2] denotes the sequence 〈3, 1, 2〉.

Example 1. A simple CSP is encoded by A1 = {cspdomain(fd), cspvar(v(1), 1, 3),
cspvar(v(2), 2, 5), cspvar(v(3), 1, 4), required(v(1) + v(2) ≤ 4),
required(v(2) − v(3) > 1), required(sum([v/1]) ≥ 4)}.

In the rest of this paper, we consider signatures that contain: relations cspdomain,
cspvar, required; constant symbols for the constraint domains FD, Q, and R; suit-
able symbols for the variables, functions and relations used in the CSP; the numerical
constants needed to encode the CSP.

Let A be a set of atoms formed from relations cspdomain, cspvar, and required.
We say that A is a well-formed CSP definition if: A contains exactly one constraint

2 As an alternative, the domain of the variables could also be specified using constraints. We use
a separate statement for similarity with CLP languages.
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domain declaration; the same CSP variable does not occur in two or more constraint
variable declarations of A; every CSP variable that occurs in a constraint statement
from A also occurs in a constraint variable declaration from A. Let A be a well-
formed CSP definition. The CSP defined by A is the triple 〈X,D,C〉 such that:
X = {x1, x2, . . . , xk} is the set of all CSP variables from the constraint variable dec-
larations in A; D = {D1, D2, . . . , Dk} is the set of domains of the variables from X ,
where the domain Di of variable xi is given by arguments l and u of the constraint vari-
able declaration of xi in A, and consists of the segment between l and u in the constraint
domain specified by the constraint domain declaration from A; C is a set containing a
constraint γ′ for each constraint statement required(γ) of A, where γ′ is obtained by:
(1) replacing the expressions of the form [f/k], where f is a function symbol, by the
list of variables from X formed by f and of arity k, ordered lexicographically; (2) re-
placing the expressions of the form [r/k], where r is a relation symbol and k ≥ 1, by
the sequence 〈e1, . . . , en〉, where, for each i, r(t1, t2, . . . , tk−1, ei) is the ith element
of the sequence, ordered lexicographically, of atoms from A formed by relation r; (3)
interpreting the resulting intensionally specified constraint w.r.t. the constraint domain
specified by the constraint domain declaration from A.

Example 2. Set A1 from Example 1 defines the CSP:

〈{v(1), v(2), v(3)},
{
{1, 2, 3}, {2, 3, 4, 5},

{1, 2, 3, 4}
}
,

{
v(1) + v(2) ≤ 4, v(2) − v(3) > 1,

sum(v(1), v(2), v(3)) ≥ 4

}
〉.

Let A be a set of literals. We say that A contains a well-formed CSP definition if the
set of atoms from A formed by relations cspdomain, cspvar, and required is a well-
formed CSP definition. We also say that a CSP is defined by a set of literals A if it is
defined by the well-formed CSP definition contained in A. Notice that, if a set A of
literals does not contain a well-formed CSP definition, A does not define any CSP. For
simplicity, in the rest of the discussion we omit the term “well-formed” and simply talk
about CSP definitions.

Definition 1.

– A pair 〈A,α〉 is an extended answer set of cr-rule free program Π iff A is an answer
set of Π and α is a solution to the CSP defined by A.

– Let Π be a program, and R be a set of names of cr-rules from Π , and prefer∗

be the transitive closure of relation prefer. V = 〈A,R〉 is an extended view of
Π if: (1) A is an extended answer set of reg(Π) ∪ θ(R); (2) for every r1, r2, if
S |= prefer∗(r1, r2), then {r1, r2} �⊆ R; (3) for every r in R, body(r) is satisfied
by S.

– An extended view V is an extended candidate answer set of Π if, for every view V ′

of Π , V ′ does not dominate V .3

– A is an extended answer set of Π if: (1) there exists a set R of names of cr-rules
from Π such that 〈A,R〉 is a candidate answer set of Π , and (2) for every extended
candidate answer set 〈A′, R′〉 of Π , R′ �⊂ R.

3 The notion of dominance extends to extended views in a natural way.
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Example 3. Consider set A1 from Example 1. An extended answer set of A1 is 〈A1,
{(v(1), 1), (v(2), 3), (v(3), 1)}〉. Consider program P1 below and a corresponding
extended answer set. Notice that the cr-rule is used to say that the sum of the CSP
variables should be less than 20 if at all possible.

P1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i(1). . . . i(4). cspdomain(fd).

cspvar(v(I),1, 10) ← i(I).

required(v(I1) − v(I2) ≥ 3) ←
i(I1), i(I2), I2 = I1 + 1.

required(sum([v/1]) ≥ 20) ←
not can violate.

r : can violate
+← .

Extended answer set:
〈{i(1), . . . , i(4), cspdomain(fd),

cspvar(v(1), 1, 10), . . . ,
cspvar(v(4), 1, 10),

required(v(1) − v(2) ≥ 3), . . . ,
required(v(3) − v(4) ≥ 3)},

{(v(1), 10), (v(2), 7), (v(3), 4), (v(4), 1)}〉

To compute the extended answer sets of a cr-rule free program, we combine the use of
answer set solvers and constraint solvers (see Algorithm 1). As discussed in [4], step
(1) of Algorithm 1 relies on the correctness of the translation from the CSP definition to
the encoding for the constraint solver. Soundness and completeness results for the algo-
rithm can be found in [4]. The extended answer sets of arbitrary CR-Prolog programs
can be computed by extending the CRMODELS algorithm from [8]. The complete algo-
rithm is shown below (see Algorithm 2). We refer the reader to [8] for the definition of
operators γi, τ , λ, ν and hr. To compute extended answer sets, the original algorithm is
modified to use a new function ε1(Π), which returns an arbitrary element of ε(Π) (and
replaces function α1 as used in the original algorithm). Soundness and completeness
of the algorithm follow from soundness and completeness of Algorithm 1 and from the
results in [8].

Algorithm 1. ε
Input: Program Π
Output: The set of extended answer sets of Π
E := ∅1

Let A be the set of answer sets of Π containing a CSP definition.2

for each A ∈ A do3

Select solver solveD for constraint domain D as specified by cspdomain(D) ∈ A.4

Translate the CSP definition from A into an encoding χD
A suitable for solveD.5

Let S = {α1, . . . , αk} be the set of solutions returned by solveD(χD
A).6

for each α ∈ S do E := E ∪ 〈A,α〉.7

end8

return E9

4 Related Work

The clingcon system [3] integrates the answer set solver Clingo and the constraint solver
Gecode. The system thus differs significantly from ours in that programmers cannot
arbitrarily select the most suitable ASP and constraint solvers for the task at hand.
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Algorithm 2. CRMODELS-CSP

Input: A CR-Prolog program Π
Output: The extended answer sets of Π
C := ∅ ; A := ∅ ; i := 01

while i ≤ |cr(Π)| do2

C′ := ∅3

repeat4

if γi(Π) ∪ C is inconsistent then M := ⊥5

else6

〈M, α〉 := ε1(γi(Π) ∪ C)7

if τ (M, Π) is inconsistent then8

A := A ∪ {〈M ∩ Σ(Π), α〉 }9

C′ := C′ ∪ { ← λ(M ∩ atoms(appl, hr(Π))). }10

end11

C := C ∪ { ← λ(M), ν(M). }12

end13

until M = ⊥14

C := C ∪ C′ ; i := i + 1 [now consider views obtained with one more cr-rule]15

end16

return A17

The approach proposed in [2] is based on an extension, called AC(C), of CR-Prolog,
allowing the use of CSP-style constraints in the body of the rules. The assignment of
values to the constraint variables is denoted by means of special atoms occurring in the
body of the rules. Such atoms are treated as abducibles, and their truth determined by
solving a suitable CSP. The following result connects our approach and AC(C).

Theorem 1. An AC0 program Π can be translated into a CR-Prolog program whose
extended answer sets are in one-to-one correspondence with the answer sets of Π .
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Abstract. In the last two decades there has been a lot of research on action lan-
guages and reasoning about actions. Most of this research assume a domain with
a single agent and possibly the environment. In this short paper we explore the
relevance of this research vis-a-vis modeling multi-agent domains. We use the
action language C and show that with minimal extensions it can capture several
multi-agent domains from the literature.

1 Introduction and Motivation

There is now a large body of research on multi-agent systems. A lot of it is indepen-
dent of research in reasoning about actions and action languages where the modeling
is usually about a single agent in an environment. Often various papers in multi-agent
systems introduce novel languages (with its syntax and semantics) that capture specific
examples introduced in that paper. In this short paper we explore how far the action
languages that were developed for a single agent (in an environment scenario) can be
used and adapted for multi-agent domains. Our starting point is a well-studied and well-
understood single agent action language—the language C [2]. We choose this language
because it provides a number of features that appear necessary to handle multi-agent
domains, such as concurrent interacting actions. The language is used to formalize a
number of examples drawn from the multi-agent literature, describing different types
of problems that can arise when dealing with multiple agents. Whenever necessary, we
identify weaknesses of C and introduce simple extensions that are adequate to model
these domains. The resulting language can be used as a foundation for different forms
of reasoning in multi-agent domains (e.g., projection, validation of plans), which are
formalized in the form of a query language.

Before we continue, let us discuss the desired features and the assumptions that we
place on the target multi-agent systems. In this paper, we consider MAS domains as
environments in which multiple agents can execute actions to modify the overall state
of the world. We assume that: (1) Agents can execute actions concurrently; (2) Each
agent knows its own capabilities; (3) Actions executed by different agents can interact;
(4) Agents can communicate to exchange knowledge; and (5) Knowledge can be private
to an agent or shared among groups of agents. The questions that we are interested in
answering in a MAS domain involve both hypothetical reasoning, e.g., what happens if
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agent A executes the action a; what happens if A executes a1 and B executes b1 at the
same time; etc, and planning/capability, e.g., can a specified group of agents achieves a
certain goal from a given state of the world. Variations of the above types of questions
will also be considered. For example, what happens if the agents do not have complete
information, if the agents do not cooperate, if the agents have preferences, etc.

2 Action Language C and Using It for Multi-agent Domains

The starting point of our investigation is the action language C [2]—an action descrip-
tion language originally developed to describe single agent domains, where the agent
is capable of performing non-deterministic and concurrent actions. A domain descrip-
tion in C builds on a language signature 〈F ,A〉, where F is a finite collection of fluent
names and A is a finite collection of action names. Both the elements of F and A are
viewed as propositional variables, and they can be used in formulae constructed using
the traditional propositional operators. A propositional formula over F ∪ A is referred
to simply as a formula, while a propositional formula over F is referred to as a state
formula. A fluent literal is of the form f or ¬f for any f ∈ F .

A domain description D in C is a finite collection of axioms of the following forms:

caused � if F (static causal axiom)
caused � if F after G (dynamic causal axiom)

where � is a fluent literal, F is a state formula, while G is a formula. The language also
allows the ability to declare properties of fluents; in particular non inertial � declares
that the fluent literal � is to be treated as a non-inertial literal. A problem specification
is obtained by adding an initial state description I to a domain D, composed of axioms
of the form initially �, where � is a fluent literal.

C supports a query language (called P in [2]). This language allows queries of the
form necessarily F after A1, . . . , Ak, where F is a state formula and A1, . . . , Ak are
sets of actions (called a plan). Intuitively, the query asks whether each state s reached
after executing A1, . . . , Ak from the initial state I has the property s |= F . This is
denoted by (D, I) |= necessarily F after A1, . . . , Ak.

We now discuss some small modifications of C necessary to enable modeling MAS
domains, through sample MAS problems drawn from the MAS literature. We will de-
scribe each domain from the perspective of someone (the modeler) who has knowledge
of everything, including the capabilities and knowledge of each agent. Note that this is
only a modeling perspective—it does not mean that we expect agents to have knowledge
of everything, we only expect the modeler to have such knowledge.

We associate to each agent an element of a set of agent identifiers, AG. We will
describe a MAS domain over a set of signatures 〈Fi,Ai〉 for each i ∈ AG, with the
assumption that Ai ∩ Aj = ∅ for i �= j. Observe that

⋂
i∈S Fi may be not empty for

some S ⊆ AG. This represents common knowledge between the agents in the group
S of agents. The result is a C domain over the signature 〈

⋃n
i=1 Fi,

⋃n
i=1 Ai〉. We will

require the following condition to be met: if caused � if F after G is an axiom and
a ∈ Ai appears in G, then the literal � belongs to Fi.



Modeling Multi-agent Domains in an Action Languages: An Empirical Study 411

The Prison Domain. [5] In this example, we have two prison guards 1 and 2 who
control two gates, the inner gate and the outer gate, by operating the four buttons a1,
b1, a2, and b2. Agent 1 controls a1 and b1, while agent 2 controls a2 and b2. If either
a1 or a2 is pressed, then the state of the inner gate is toggled. The outer gate, on the
other hand, toggles if both b1 and b2 are pressed. In C, this domain can be represented
as follows. The set of agents is AG = {1, 2}. For agent 1, we have:

F1 = {in open, out open, pressed(a1), pressed(b1)}.
Here, in open and out open represent the fact that the inner gate and outer gate are
open respectively. pressed(X) says that the button X where X ∈ {a1, b1} is pressed.
We have A1 = {push(a1), push(b1)}. This indicates that guard 1 can push buttons
a1 and b1. Similarly, for agent 2, we have F2 = {in open, out open, pressed(a2),
pressed(b2)} and A2 = {push(a2), push(b2)}. We assume that the buttons do not
stay pressed—thus, pressed(X), for X∈{a1, b1, a2, b2}, is a non-inertial fluent with
the default value false.

The axioms in the domain specification (Dprison) are:

non inertial ¬pressed(X)
caused pressed(X) after push(X)
caused in open if pressed(a1) ∧ ¬in open
caused ¬in open if pressed(a1) ∧ in open
caused out open if pressed(b1) ∧ pressed(b2) ∧ ¬out open
caused ¬out open if pressed(b1) ∧ pressed(b2) ∧ out open

where X ∈ {a1, b1, a2, b2}. The first axiom declares that pressed(X) is non-inertial
and has false as its default value. The second axiom describes the effect of the action
push(X). The rest is a collection of static law axioms representing the relationships
between the fluents in F1 ∪ F2.

Let us now consider queries from [5] and see how they can be answered using
Dprison. In the first situation, both gates are closed, 1 presses a1 and b1, and 2 presses
b2. The question is whether the gates are open or not after the execution of these actions
The initial situation is specified by the initial state description I1 containing

I1 =
{

initially ¬in open, initially ¬out open
}

In this situation, there is only one initial state s0={¬� | �∈F1∪F2}. We can show
that (Dprison, I1) |= necessarily out open ∧ in open after {push(a1), push(b1),
push(b2)}. If the outer gate is initially closed, i.e., I2 = { initially ¬out open}, then
the set of actions A = {push(b1), push(b2)} is both necessary and sufficient to open
it, i.e., the following queries hold: necessarily out open after X and necessarily ¬
out open after Y where A⊆X and A\Y �=∅.

Adding Priority between Actions. Let us now present a small extension of C that al-
lows for the encoding of competitive behavior between agents in MAS. For each domain
specification D, we assume the presence of a function PrD : 2A→2A with PrD(A)
denotes the set of actions whose effects will be accounted for when A is executed.

In the rocket domain [8], we have a rocket, a cargo, and the agents 1, 2, and 3. The
rocket or the cargo are either in london or paris. The rocket can be moved by 1 and 2



412 C. Baral, T.C. Son, and E. Pontelli

between the two locations. The cargo can be loaded (unloaded) into the rocket by 1 and
3 (2 and 3). Agent 3 can refill the rocket if the tank is not full.

We will use the fluents r(london) and r(paris) to denote the location of the rocket.
Likewise, c(london) and c(paris) denote the location of the cargo. in rocket says that
the cargo is inside the rocket and tank full states that the tank is full. The signatures
for the agents can be defined as follows.

F1 =
{

in rocket, r(london), r(paris), c(london), c(paris)
}

F2 =
{

in rocket, r(london), r(paris), c(london), c(paris)
}

F3 =
{

in rocket, r(london), r(paris), c(london), c(paris), tank full
}

and A2 = {unload(2),move(2)}, A3 = {load(3), refill}, and A1 = {load(1),
unload(1),move(1)}. This domain has a special feature—there are priorities among
the actions. It states that load or unload will have no effect if move is executed. The
effects of two load actions is the same as that of a single load action. Likewise, two
unload actions have the same result as one unload action. We define PrD as follows:

• PrD(X) = {move(a)} if ∃a. move(a) ∈ X .
• PrD(X) = {load(a)} if move(x) �∈ X for every x ∈ {1, 2, 3} and load(a) ∈ X .
• PrD(X) = {unload(a)} if move(x) �∈ X and load(x) �∈ X for every x ∈ {1, 2, 3}

and unload(a) ∈ X .
• PrD(X) = X otherwise.

The domain specification Drocket includes, among the others, and the following
axioms:

caused in rocket after load(i) (i ∈ {1, 3})
caused tank full if ¬tank full after refill
caused ¬tank full if tank full after move(i) (i ∈ {1, 2})
caused r(london) if r(paris) ∧ tank full after move(i) (i ∈ {1, 2})
caused c(paris) if r(paris)∧ in rocket

Let I4 consist of the following axioms: initially tank full, initially r(paris),
initially c(london), and initially ¬in rocket. Then the following query holds:

(Drocket, I4) |= necessarily c(paris) after {move(1)}, {load(3)}, {refill}, {move(3)}.
Adding Reward Strategies. The next example illustrates the need to handle numbers
and optimization to represent reward mechanisms. The extension of C is simply the
introduction of numerical fluents—i.e., fluents that, instead of being simply true or false,
have a numerical value. For this purpose, we introduce a new variant of the necessity
query

necessarily max F for ϕ after A1, . . . , An

where F is a numerical expressions involving only numerical fluents, ϕ is a state for-
mula, and A1, . . . , An is a plan. Given a domain specification D and an initial state
description I, we can define for each fluent numerical expression F and plan α:

value(F, α) = max {s(F ) | s ∈ Φ∗(α, s0), s0 is an initial state w.r.t. I, D}
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where s(F ) is the value of the expression F in state s and Φ∗(α, s0) are the states
reached from the execution of the sequence of actions α. This allows us to define the
following notion of entailment: necessarily max F for ϕ after A1, . . . , An holds if:

◦ necessarily ϕ after A1, . . . , An holds, and
◦ for every other plan B1, . . . , Bm such that (D, I) |= necessarily ϕ after B1, . . . ,

Bm we have that value(F, [A1, . . . , An]) ≥ value(F, [B1, . . . , Bm]).

The following example has been derived from [1]. There are three agents. Agent 0 is a
normative system that can play one of two strategies—either st0 or ¬st0. Agent 1 plays
a strategy st1, while agent 2 plays the strategy st2. The reward system is described in
the following tables (the first is for st0 and the second one is for ¬st0).

st0 st1 ¬st1
st2 1, 1 0, 0

¬st2 0, 0 −1,−1

¬st0 st1 ¬st1
st2 1, 1 0, 0

¬st2 0, 0 1, 1

The signatures used by the agents are: F0 = {st0, reward}, F1 = {st1, reward1},
F2 = {st2, reward2}, A0 = {play 0, play not 0}, A1 = {play 1, play not 1}, and
A2 = {play 2, play not 2}. The domain specification Dgam consists of:

caused st0 after play 0 caused ¬st0 after play not 0
caused st1 after play 1 caused ¬st1 after play not 1
caused st2 after play 2 caused ¬st2 after play not 2
caused reward 1 = 1 if ¬st0 ∧ st1 ∧ st2 caused reward 2 = 1 if ¬st0 ∧ st1 ∧ st2
caused reward 1 = 0 if ¬st0 ∧ st1 ∧ ¬st2 caused reward 2 = 0 if ¬st0 ∧ st1 ∧ ¬st2
. . .
caused reward = a + b if reward1 = a ∧ reward2 = b

Assuming that I = { initially st0} we can show that the following query holds:
(Dgam, I) |= necessarily max reward after {play1, play2}.

3 Reasoning and Properties

We discuss various types of reasoning that are directly enabled by the semantics of C.
Let us start exploring queries aimed at capturing the capabilities of agents. We will

use the generic form can X do ϕ, where ϕ is a state formula and X ⊆ AG where
AG is the set of agent identifiers of the domain. The intuition is to validate whether the
group of agents X can guarantee that ϕ is satisfied.

If X = AG then the semantics of the capability query is simply expressed as
(D, I) |= can X do ϕ iff ∃k. ∃A1, . . . , Ak such that

(D, I) |= necessarily ϕ after A1, . . . , Ak.

If X �= {1, . . . , n}, then we can envision different variants of this query.
The Capability queries with non-interference and complete knowledge are used

to verify whether the agents in X can achieve ϕ when operating in an environment
that includes all the agents, but the agents AG \ X are simply providing their knowl-
edge and not performing actions or interfering. We will denote this type of queries as
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cann
g X do ϕ (n: not interference, g: availability of all knowledge). The semantics of

this type of queries can be formalized as follows: (D, I) |= cann
g X do ϕ if there

is a sequence of sets of actions A1, . . . , Ak with the following properties: for each
1 ≤ i ≤ k we have that Ai ⊆

⋃
j∈X Aj (we perform only actions of agents in X), and

(D, I) |= necessarily ϕ after A1, . . . , Ak.
The Capability queries with non-interference and projected knowledge assume

that not only the other agents (AG \ X) are passive, but they also are not willing
to provide knowledge to the active agents. We will denote this type of queries as
cann

l X do ϕ.
Let us refer to the projection of I w.r.t. X (denoted by proj(I, X)) as the set of

all the initially declarations that build on fluents of
⋃

j∈X Fj . The semantics of cann
l

type of queries can be formalized as follows: (D, I) |= cann
l X do ϕ if there is a

sequence of sets of actions A1, . . . , Ak such that: for each 1 ≤ i ≤ k we have that
Ai ⊆

⋃
j∈X Aj , and (D, proj(I, X)) |= necessarily ϕ after A1, . . . , Ak (i.e., the

objective will be reached irrespective of the initial configuration of the other agents).
The Capability queries with interference take into account the possible interfer-

ence from other agents in the system. Intuitively, the query with interference, denoted
by cani X do ϕ, implies that the agents X will be able to accomplish X in spite of
other actions performed by the other agents.

The semantics is as follows: (D, I) |= cani X do ϕ if there is a sequence of sets
of actions A1, . . . , Ak such that: for each 1 ≤ i ≤ k we have that Ai ⊆

⋃
j∈X Aj , and

for each sequence of sets of actions B1, . . . , Bk, where
⋃k

j=1 Bj ⊆
⋃

j /∈X Aj , we have
that (D, I) |= necessarily ϕ after (A1 ∪B1), . . . , (Ak ∪Bk).

It is possible to design additional classes of queries to explore properties of a theory
such as

• Agent redundancy: agent redundancy is a property of (D, I) which indicates the
ability to remove an agent to accomplish a goal.

• Agent Necessity: agent necessity is symmetrical to redundancy—it denotes the
inability to accomplish a property ϕ if an agent is excluded.

• Compositionality: The formalization of multi-agent systems in C enables explor-
ing the effects of composing domains; this is an important property, that allows
us to model dynamic MAS systems (e.g., where new agents can join an existing
coalition).

4 Conclusion

In this paper, we presented an investigation of the use of the C action language to model
MAS domains. We discussed several interesting features that are necessary for model-
ing MAS, and showed how such features can be encoded in C—either directly or with
simple extensions of the action language. We mentioned several forms of reasoning that
are naturally supported by the proposed language.

However, existing research in action languages reach their limits with respect the
multi-agency when one needs to represent and reason about agents knowledge about
other agents knowledge. An example of this is the muddy children problem. We
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explore this in detail in a sequel. Additional research directions include, adapting the
more advanced forms of reasoning and implementation proposed for C to the case of
MAS domains and investigating the use of the proposed extension of C in formalizing
distributed systems.
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Abstract. For some problems with many solutions, like planning and phylogeny
reconstruction, one way to compute more desirable solutions is to assign weights
to solutions, and then pick the ones whose weights are over (resp. below) a thresh-
old. This paper studies computing weighted solutions to such problems in Answer
Set Programming. We investigate two sorts of methods for computing weighted
solutions: one suggests modifying the representation of the problem and the other
suggests modifying the search procedure of the answer set solver. We show the
applicability and the effectiveness of these methods in phylogeny reconstruction.

1 Introduction

In Answer Set Programming (ASP) [1,8], a computational problem is described as an
ASP program whose answer sets correspond to solutions, and answer sets for this pro-
gram are computed using answer set solvers. Some problems, like planning and phy-
logeny reconstruction, have many solutions. Moreover, the correspondence between the
answer sets and the solutions may not be one-to-one; there may be many answer sets
that denote the same solution. For such problems, one way to compute more desirable
solutions is to assign weights to solutions, and then pick the distinct solutions whose
weights are over (resp. below) a threshold. For example, in a planning problem, we can
define the weight of a plan in terms of the costs of actions (or action sequences), and
then compute the distinct plans whose weights are less than a given value. In puzzle
generation, we can define the weight of a puzzle instance by means of some difficulty
measure, and then generate difficult puzzles whose weights are over a given value. Mo-
tivated by such applications, we study the problem of computing weighted solutions
in ASP and show the applicability of our approach in phylogeny reconstruction (i.e.,
computing leaf-labeled trees, called phylogenies, to model the evolutionary history of a
set of species).

We study two sorts of methods for computing weighted solutions: the representation-
based methods and the search-based methods. In the former, the idea is to modify the
ASP representation of the problem, to compute weighted solutions. In particular, we are
interested in elaboration tolerant representations, where the weight of a solution is de-
fined as an ASP program and added to the ASP representation of the problem. The latter,
on the other hand, do not modify the ASP representation of the problem, but define the
weight function externally (e.g., as a C++ program) and modify the search algorithm of
the answer set solver to compute solutions over (resp. below) a given threshold. In this
paper, we introduce such a search-based method for computing weighted solutions, and
implement it by modifying the search algorithm of the answer set solver CLASP [7].
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We apply these methods to phylogeny reconstruction. Reconstructing phylogenies
for a given set of taxonomic units is important for various research such as historical
linguistics, zoology, anthropology, archeology, etc.. For example, a phylogeny of par-
asites may help zoologists to understand the evolution of human diseases [4]; a phy-
logeny of languages may help scientists to better understand human migrations [11]. In
this study, we define the weight of a phylogeny for the family of Indo-European lan-
guages studied in [2], in such a way as to reflect its plausibility and importance. Using
this weight function, we show the applicability and effectiveness of the methods above
(for computing weighted solutions) in reconstructing plausible phylogenies for Indo-
European languages. No existing phylogenetic system has such utilities for experts to
compute more plausible phylogenies, so our methods provide a useful tool for phylo-
genetics. Likewise, our methods provide a useful tool for various other applications of
ASP.

2 Computing Weighted Solutions

We are interested in the following sorts of computational problems for computing
weighted solutions:

AT LEAST (resp. AT MOST) w-WEIGHTED SOLUTION: Given an ASP program P
that formulates a computational problem P , a weight measure ω that maps a solu-
tion for P to a nonnegative integer, and a nonnegative integer w, decide whether a
solution S exists for P such that w(S) ≥ w (resp. w(S) ≤ w).

For instance, suppose that P describes the phylogeny reconstruction problem for Indo-
European languages, and that ω describes the total weight of the characters compatible
with the to-be-reconstructed phylogeny and takes into account some domain-specific
information. Then finding phylogenies whose weights are at least 45 is an instance of
the problem above.

We study two sorts of methods, representation-based and search-based, to compute
at least/most w-weighted solutions in ASP.

The idea behind the representation-based methods is to modify the representation of
the problem, to compute weighted solutions. For an elaboration tolerant representation
P , such modifications are done by means of adding some rules W describing the weight
of a solution and some constraints C on the weights of the solutions (Fig. 1). Then we
can compute at least (resp. most) w-weighted solutions by computing answer sets for
the ASP program P ∪ W ∪ C. In some cases, we do not have to define the weight of
a solution explicitly; we can use aggregates (e.g., sum, count, times) to compute the
weight, in the sense of [9,6,10]. Some other problems require an explicit definition of
the weight of a solution. Phylogeny reconstruction problems we consider are in the
latter group: the weight of a phylogeny does not only depend on the weights of some
parts of the phylogeny but also some domain-specific information.

Search-based methods (as outlined in Fig. 2) on the other hand do not modify the
ASP representation of the problem, but define the weight function externally (e.g., as
a C++ program) and modify the search algorithm of the answer set solver to com-
pute solutions over (resp. below) a given threshold. There is no answer set solver that
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Fig. 1. Computing at most/least w-weighted solutions with representation-based method

Fig. 2. Computing at most/least w-weighted solutions with search-based method

can compute weighted solutions in such a way. Therefore, in our studies, we consider
the solver CLASP [7], and modify its search algorithm to implement this search-based
method. We call the new algorithm as CLASP-W. CLASP-W is shown in Algorithm 1:
the parts in red denote the modifications we have made over CLASP’s algorithm (i.e.,
if we remove the red parts, then we get CLASP’s algorithm). Note that, compared to
CLASP, CLASP-W has a new function called WEIGHT-ANALYZE. At each step of the
search, CLASP has a partial solution and tries to complete it to find a solution to the
given problem. The function WEIGHT-ANALYZE computes an upper bound (resp. lower
bound) for the weight of a completion of the partial solution, so that CLASP-W does
not perform redundant search towards a complete solution. WEIGHT-ANALYZE func-
tion is domain-specific; therefore, in order to use CLASP-W, we need to implement this
function (in a separate file) according to the given weight measure for the particular
problem. We do not need to modify CLASP-W for different problems.

3 Computing Weighted Phylogenies for Indo-European Languages

The evolutionary relations between species (or “taxonomic unit”) based on their shared
traits can be modeled as a phylogeny (or a phylogenetic tree). The problem of phy-
logeny reconstruction asks for “plausible” phylogenies for a given set of taxonomic
units. There have been various studies to compute plausible phylogenies (see [2] for a
discussion). In the following, we will consider a character-based cladistics with respect
to the compatibility criterion, as in [2]. Our goal is to find a phylogeny with a small
number of incompatible characters. The problem of reconstructing a phylogeny with at
most k incompatible characters (let us call this problem as k-CP) is NP-hard [5].
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Algorithm 1. CLASP-W
Input: An ASP program Π and a nonnegative integer w
Output: An answer set for Π , that describes an at least (resp. at most) w-weighted solution

A ← ∅ // current assignment of literals
� ← ∅ // set of conflicts
while A does not represent an answer set do

// propagate according to the current assignment and conflicts;update the current assignment
NOGOOD-PROPAGATION(Π,A,�)
// compute an upper (resp. lower) bound for the weight of a solution that contains A
weight ← WEIGHT-ANALYZE(A)
// if the upper bound weight is less than the desired weight value w
// then no need to continue search to find an at least w-weighted solution
if There is a conflict in unit-propagation OR weight < w then

RESOLVE-CONFLICT (Π,A,�) // learn and update the conflict set and do backtracking
end if
if Current assignment does not yield an answer set then

SELECT(Π,A,�) // select a literal to continue search
else

return A
end if

end while
return false

While reconstructing phylogenies, some characters may give more information than
the others. For instance, to model the evolutionary history of a family of languages,
morphological/phonological characters are more informative than lexical characters. In
order to emphasize the role of such characters in reconstructing a phylogeny, we define
the concept of a weighted phylogeny.

A weighted phylogeny is a phylogeny along with a weight functionΦ that maps every
character i ∈ I to a nonnegative integer. The weight of a phylogeny can be defined in
various ways with respect to Φ; in the following, we consider the weight of a phylogeny
as the sum of the weights of all characters that are compatible with that phylogeny.

With such a weight measure and an ASP program describing phylogeny reconstruc-
tion (like the one in [2,3]), we can compute weighted phylogenies for the family of
Indo-European languages described in [2], using the representation-based method or
the search-based method described in Section 2.

To get more plausible phylogenies, we also incorporate further domain-specific in-
formation in the weight measure. It is told us by historical linguist Don Ringe that it
is least likely that Greco-Armenian languages be siblings with Balto-Slavic languages.
Similarly, but not as least likely as Greco-Armenian and Balto-Slavic, is the grouping
of Greco-Armenian with Germanic languages. If the to-be-reconstructed phylogenies
have such odd groupings of languages, we reduce some amount from the total weight
of the phylogeny making sure that the weight of a phylogeny is not negative.
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4 Experimental Results

We applied the computational methods described above (i.e., the representation-based
method, and the search-based method) to reconstruct weighted phylogenies for Indo-
European languages, as described in the previous section, with the dataset and the ASP
program used in [2].

Let us consider computing an at least w-weighted phylogeny with at most c incom-
patible characters. In Table 1, for each problem, for each method, we present the com-
putation time (CPU seconds), the size of the ground program (the number of atoms,
and the number of rules), and the size of the memory (MB) used in computation.1 For
instance, let us consider computing a phylogeny with at most 17 incompatible char-
acters, and whose weight is at least 45. With the representation-method, CLASP takes
15.32 CPU sec.s to compute such a phylogeny; the ground program has 79229 atoms
and 1585419 rules; the computation of the phylogeny consumes 369 MB of memory.
On the other hand, with the search-based method, CLASP-W takes 1.30 CPU sec.s to
compute such a phylogeny; the ground program has 3744 atoms and 55219 rules; the
computation of the phylogeny consumes 22 MB of memory.

Observe in Table 1 that in terms of both computation time and the memory used,
the search-based method performs better than the representation-method. These results
conforms with our expectations. The representation-based method explicitly defines the
weight function, and thus the program/memory size is larger. The search-based method
deals with the time consuming computation of weights of phylogenies, not at the rep-
resentation level but at the search level, so it does not require an ASP representation of
the weight function but requires a modification of the solver to guide it find a plausible
phylogeny, and hence the smaller the program/memory size and the computation time.

Table 1. The representation-based method vs. the search-based method: computing a phylogeny
with at most c incompatible characters, and whose weight is at least w.

# of incompatible weight method time program size memory size
characters (c) (w) (CPU sec.s) (MB)

16 45 representation-based 15.52 # of atoms: 79229 369
# of rules: 1585419

search-based 1.34 # of atoms: 3744 22
# of rules: 55219

17 45 representation-based 15.32 # of atoms: 79229 369
# of rules: 1585419

search-based 1.30 # of atoms: 3744 22
# of rules: 55219

18 45 representation-based 15.47 # of atoms: 79229 369
# of rules: 1585419

search-based 1.10 # of atoms: 3744 22
# of rules: 55219

1 All CPU times are in seconds, for a workstation with a 1.5GHz Xeon processor and 4x512MB
RAM, running Red Hat Enterprise Linux (Version 4.3).
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In [2], after computing all 45 phylogenies, the authors examine them manually, and
identify 14 of them as plausible and with at most 18 incompatible characters. With the
weight measure defined in Section 3, and the representation/search-based methods de-
scribed above for computing weighted phylogenies, we could automatically compute all
plausible phylogenies with at most 18 incompatible characters in 22.35 CPU seconds.

5 Discussion

We studied the problem of computing weighted solutions in ASP, where the weight of
a solution should be defined explicitly. We introduced a search-based method that im-
plements the weight of a solution as a C++ program, and modifies the search algorithm
of the ASP solver CLASP to compute weighted solutions with respect to that weight
program. We call the modified version of CLASP as CLASP-W.

We showed the applicability and effectiveness of the search-based method in recon-
structing phylogenies for Indo-European languages, where the weight of a phylogeny
takes into account domain-specific information to characterize the plausibility of phylo-
genies. In particular, by computing at least w-weighted phylogenies, we could compute
more plausible and less number of phylogenies for Indo-European languages. We ob-
served that the search-based method (with CLASP-W) is better than the representation-
based method (with CLASP) in terms of computation time and space.

Since no existing phylogenetic system can compute weighted phylogenies, our
search-based methods (including the weight measure and the solver CLASP-W) provide
a useful tool for experts to automatically analyze phylogenies online. There are many
appealing ASP applications (e.g., product configuration, planning) for which finding
weighted solutions could be useful; in this sense, our methods are useful also for ASP.
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Abstract. We explore the use of Constraint Logic Programming (CLP)
as a platform for experimenting with planning domains in presence of
multiple interacting agents. We develop a novel constraint-based action
language, BMAP, that enables the declarative description of large classes
of multi-agent and multi-valued domains. BMAP supports several complex
features, including combined effects, concurrency constraint, interacting
actions, and delayed effects.

1 Introduction

Representing and programming intelligent and cooperating agents that are able
to acquire, represent, and reason with knowledge is a challenging problem for
which an extensive literature exists, presenting different languages for the de-
scription of planning domains (see, e.g., [11, 10, 8]) in the context of single-agent
domains. Logic programming has been extensively used in this context, and An-
swer Set Programming [1] has been one of the paradigms of choice.

Constraint Logic Programming over Finite Domains has been recently shown
to be another viable paradigm for reasoning about actions and change (e.g., [17,
18, 22, 6]). [6] makes a strong case for the use of constraint programming, demon-
strating the flexibility of constraints in modeling several extensions of action lan-
guages, necessary to address real-world planning domains. Our goal is to develop
a high-level description language to represent domains with multiple interacting
agents, along with other properties relevant for representing complex domains
(e.g., multi-valued fluents and constraints). Each agent can have different capa-
bilities (it can perform different actions). The actions of the agents can also be
cooperative—i.e., their cumulative effects are required to apply a change to the
world—or conflicting—i.e., some actions may exclude other actions from being
executed. Each agent maintains its own view of the world, but groups of agents
may share knowledge of certain features of the world (through shared fluents).

The starting point of our project is represented by the design of a novel
action language, named BMAP, for encoding multi-agent action domains. BMAP

adopts the perspective, shared by many other researchers (e.g., [3, 16, 20]), of
viewing a multi-agent system from a centralized perspective, where a centralized
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description defines the modifications to the world derived from the agents’ action
executions (even though the individual agents may not be aware of that). This
perspective is important to investigate properties of a domain (e.g., existence
of solutions, plan validation) and it represents the underlying semantics for the
development of efficient centralized or distributed planning algorithms.

We have implemented a Prolog tool that maps a BMAP action description into
a constraint satisfaction problem and supports the process of validating the
existence of plans to solve planning problems. Due to lack of space, we omit here
the precise semantics of BMAP and the implementation details (see [7]).

Related work. Various authors have explored the use of logic programming,
such as normal logic programs and abductive logic programs, to address cooper-
ation between agents (e.g., [15, 19, 9]). To the best of our knowledge, the use of
CLP technology for modeling multi-agent domains is novel. On the other hand,
the use of constraints in modeling single-agent domains has been successfully
validated by several authors. CLP has been used to support the development of
the fluent calculus [22]. In [2] the authors analyze different encodings of sequen-
tial planning as CSP. Another interesting work on using constraints to guide
planning in domain with actions with durations has been proposed in [23].

CLP has also been used to implement the centralized store of distributed
programming platforms (e.g., OCP [13]). Some aspects of concurrency have been
formalized and addressed also in the context of existing action languages (e.g.,
C, C+, CARD [10, 12, 5]) and in the area of multi-agent planning (e.g., [4, 3]). A
recent effort along similar lines as ours, modeling an action language for multi-
agent systems, has been proposed by Son and Sakama [21], relying on the use of
answer set programming (with consistency restore rules).

2 Syntax of the Language BMAP

The signature of the BMAP language consists of the following sets:

• G: agent names, used to identify the agents participating in the domain.
• F : fluent names; we assume that F =

⋃
a∈G Fa, where Fa are the fluents used

to describe the knowledge of agent a. We assume that a �= a′ → Fa∩Fa′ = ∅.
• A: action names.
• V : values for the fluents in F . In the following, we assume V = Z.1

Agents and Fluents. An assertion (agent declaration) of the type agent(a),
where a ∈ G, states the existence of the agent named a. The fluents that can
be used by agent a to describe its own knowledge, are described by axioms:
fluent(a, f, {v1, . . . , vk}) with a ∈ G and f ∈ Fa. This statement also deter-
mines the set of admissible values for f , i.e., {v1, . . . , vk} ⊆ V .2

1 We will use a, b for agent names, f, g for fluent names, and x, y for action names.
2 We admit the notation fluent(a, f, v1, v2) for fluent(a, f, {v1, v1 + 1, . . . , v2}).
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Fluents can be used in Fluent Expressions (FE), which are defined inductively
as follows (where n ∈ V , t ∈ Z, ⊕ ∈ {+,−, ∗, /, mod}, f ∈ F , and r ∈ N):

FE ::= n | f t | f @ r | FE1 ⊕ FE2 | − (FE) | abs(FE) | rei(C)

Fluent expressions are evaluated with respect to an “history” of evolution of the
world. Given an integer number t, an expression of the form f t is an annotated
fluent expression. Intuitively, for t < 0 (t > 0), the expression refers to the value
f had −t steps in the past (will have t steps in the future). f is a shorthand for
f0, the current value. Annotated expressions refer to points in time, relatively
to the current state. The ability to create formulae that refer to different time
points along the evolution of the world enables the encoding of non-Markovian
processes. An expression of the form f @ r denotes the value f has at the rth

step in the evolution of the world (i.e., it refers to an absolutely specified point
in time). The last alternative (reified expression) requires the notion of fluent
constraint C (defined next). The intuitive semantics is that an expression rei(C)
assumes a Boolean value depending on the truth of C.

A primitive fluent constraints (PC) is a formula FE1 op FE2, where FE1 and
FE2 are fluent expressions, and op ∈ {=, �=,≥,≤, >,<} is a relational operator.
Fluent constraints are propositional combinations of primitive constraints:

PC ::= FE1 op FE2 C ::= PC | ¬C | C1 ∧ C2 | C1 ∨ C2

To represent shared knowledge between agents, we assume the existence of an
equivalence relation ≡F⊆ F×F . Given two agents a and b, if Fa + f ≡F f ′ ∈ Fb,
then the two fluents f and f ′ represent the same property of the world.

Actions Description. An axiom of the form action(Ag, x), where Ag ⊆ G and
x ∈ A, declares that x is meant to be executed collectively by the set of agents
Ag. The action is said to be individual if |Ag| = 1, collective if |Ag| > 1 and
exogenous if |Ag| = 0.

For each axiom action(Ag, x), we introduce the expression actocc(Ag, x),
called action flag, to denote the execution of that action. Action flags are in-
tended to be Boolean-valued expressions, which will be used in combination with
fluent constraints. Action-fluent expressions (AFE) extend the structure of fluent
expressions by allowing propositions related to action occurrences:

AFE ::= n | f t | f @ r | actocc(Ag, x)t | actocc(Ag, x) @ r |
AFE1 ⊕ AFE2 | − (AFE) | abs(AFE) | rei(C)

where n ∈ V , t ∈ Z, r ∈ N, f ∈ F , x ∈ A, Ag ⊆ G, and ⊕ ∈ {+,−, ∗, /, mod}.
Time-annotated action-fluent expressions allow us to refer to the occurrences of
actions at any point during the evolution of the world. Action-fluent-expressions
can be used to form action-fluent constraints, as done for fluent constraints.

An axiom of the form: executable(Ag, x, C), where Ag ⊆ G, x ∈ A, and C is
an action-fluent constraint, states that C has to be entailed by the current state
for x to be executable by the set of agents Ag. We assume that an executability
axiom is present for each pair Ag, x such that action(Ag, x) is defined.
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An axiom of the form causes(Eff, Prec) encode the effects of dynamic causal
laws. Prec is an action-fluent constraint, called the precondition constraint, that
implies the truth (w.r.t. the current state) of at least one action flag. Eff is a
fluent constraint, called the effect constraint. The axiom asserts that if Prec is
true, then Eff must hold in the next state. If Prec implies the conjunction of
two (or more) action flags, then the effect refers to a compound action. Thus, a
compound action is a concomitant execution of independently modeled actions.

Static causal laws and other State Constraints. Static causal laws can be
expressed by axioms of the form caused(C1, C2), stating that the action-fluent
constraint C1 → C2 must be entailed in any state encountered. Specific classes
of static causal laws are commonly encountered. Due to lack of space, we in-
troduce syntactic sugar for only on one of them. The specification of dynamic
causal laws allows us to deal with effects derived from the concurrent execu-
tion of actions. Similarly, we may encounter situations where certain actions
cannot be executed concurrently by different agents. This constraint can be en-
forced using the notions of action-fluent expressions and constraints. The axiom
concurrency control(C) states that the action-fluent constraint C must hold.
It must contain at least two action flags. It is a syntactic sugar for the static
causal law caused(true, C). For instance, the fact that two agents can walk
through a revolving door only one at the time can be modeled by

concurrency control(actocc({a}, walk through) +
actocc({b}, walk through) ≤ 1).

Costs. In BMAP it is possible to specify information about the cost of each action
and about the global cost of a plan. In particular:

• action cost(Ag, x, V al), where Ag ⊆ G, x ∈ A, and V al specifies the cost
of executing the action described by the axiom action(Ag, x) (otherwise, a
default cost of 1 is assigned).

• state cost(FE) specifies the cost of a generic state as the result of the
evaluation of the fluent expression FE, built using the fluents present in the
state (otherwise, a default cost of 1 is assumed).

Action Domains. An action domain description D is a collection of axioms of
the forms described earlier. A specific instance of a planning problem is a tuple
〈D, I,O〉, where D is an action domain description, I is a collection of axioms
of the form initially(C) (describing the initial state of the world), and O is a
collection of axioms of the form goal(C), where C is a fluent constraint.

3 Experiments

An interpreter of the language BMAP, realized in SICStus Prolog, is available at
www.dimi.uniud.it/dovier/CLPASP/MAP along with some planning domains. Once
the action description is translated into a constraint satisfaction problem, so-
lution’s search starts following some heuristics. There is an overall “leftmost”

www.dimi.uniud.it/dovier/CLPASP/MAP
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Table 1. Timing is in seconds. The symbol ‘–’ denotes no answer within 1 hour.

Single-agent Plan
length leftmost ffc ffcd

Three Barrels 11 0.12 0.11 0.07
Goat-Wolf etc. 23 0.14 0.04 0.28

Gas diffusion 6 34.9 34.9 9.65
15-Puzzle 15 62.0 64.7 4.55

Peg Solitaire 31 – – 44.7

Multi-agent Plan
length leftmost ffc ffcd

Bob&Mary 5 0.01 0.01 0.01
Social Game 2 0.04 0.04 0.06
Dining phil. 9 339 439 –
Fuel&Cars 10 736 743 0.48

Robots&Table 7 316 461 118

strategy that implements progression, i.e., we first considers the transition
〈s0, t1, s1〉 from the initial state s0, then the transition 〈s1, t2, s2〉, etc. The pro-
grammer can choose the labeling strategy to be locally applied in these steps.
The main options are leftmost, ff (first-fail), ffc (first-fail with a choice on
the most constrained variable), or ffcd (which combines ffc with a downward
selection of values for constrained variables). In most experiments, the latter
strategy gives the best performance.

We run the system on some classical single-agent domains, such as the three
barrels (12-7-5), a Sam Lloyd’s puzzle, the goat-cabbage-wolf problem, the gas
diffusion problem [6], and the peg-solitaire—csplib 037, also in the 2008 planning
competition. Note that the peg-solitaire problem is solved in [14] in 388s, using
a complex encoding that uses operations research techniques. We solve it in less
than 45 seconds with a simple BMAP encoding.

We have also tested the BMAP implementation on the suite of peg-solitaire
instances used in IPC08 for the “sequential satisficing track”. The competition
imposed these restrictions: the plan has to be produced within 30 minutes, by
using at most 2GB of memory. The suite is composed of 30 problems. The BMAP

planner found the optimal plan for 24 problems.
Finally, we have tested the interpreter on some inherently concurrent domains,

such as the dining philosophers—with the traditional rules, and when one eat he
will be alive for 10 seconds; we seek a plan that ensures that all philosophers to
be alive at a certain time—a problem of cars and fuels (EATCS bulletin N. 89,
page 183—by Laurent Rosaz—tested with four cars), a social-game invented by
us (that required 6 actions if solved by one agent), and two problems described in
previous works on concurrency and knowledge representation. The first problem
(Bob and Mary) is adapted from the working example of [4] and is related to
the need of cooperation for opening a door. We have modeled it either using
collective actions or using compound actions (for opening the door). The second
problem is instead adapted from the working example of [3] and it is related to
two agents that can use a table to carry sets of blocks from one room to another.

4 Conclusions

We presented a constraint-based action description language, BMAP, that extends
the previously proposed language BMV [6]. The new language retains all the
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features of BMV , e.g., multi-valued fluents and the possibility of referring to flu-
ents in any different state of the trajectory. The major novelty of BMAP consists
of allowing declarative formalization of agent domains in presence of multiple in-
teracting agents. Each agent can have a different (partial) view of the world and
a different collection of executable actions. Moreover, preconditions, as well as
effects, of the actions it performs, might interact with those performed by other
agents. Concurrency and cooperation are easily modeled by means of static and
dynamic causal laws, that might involve constraints referring to action occur-
rences, even performed by different agents in different points in time.
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Abstract. We present an extension EL+⊥
T of the description logic

EL+⊥
for reasoning about prototypical properties and inheritance with

exceptions. EL+⊥
T is obtained by adding to EL+⊥

a typicality operator
T, which is intended to select the “typical” instances of a concept. In
EL+⊥

T knowledge bases may contain inclusions of the form “T(C) is
subsumed by P”, expressing that typical C-members have the property
P . We show that the problem of entailment in EL+⊥

T is in co-NP.

1 Introduction

In Description Logics (DLs) the need of representing prototypical properties
and of reasoning about defeasible inheritance of such properties naturally arises.
The traditional approach is to handle defeasible inheritance by integrating some
kind of nonmonotonic reasoning mechanism. This has led to study nonmono-
tonic extensions of DLs [2,3,4,5,6,12]. However, finding a suitable nonmonotonic
extension for inheritance with exceptions is far from obvious.

In this work we introduce a defeasible extension of the description logic EL+⊥

called EL+⊥
T, continuing the investigation started in [7], where we extended the

logic ALC with a typicality operator T. The intended meaning of the operator T
is that, for any concept C, T(C) singles out the instances of C that are consid-
ered as “typical” or “normal”. Thus assertions as “typical football players love
football” are represented by T(FootballPlayer ) , FootballLover . The semantics
of the typicality operator T turns out to be strongly related to the semantics of
nonmonotonic entailment in KLM logic P [11].

In our setting, we assume that the TBox element of a KB comprises, in
addition to the standard concept inclusions, a set of inclusions of the type
T(C) , D where D is a concept not mentioning T. For instance, a KB may con-
tain: T(Dog) , Affectionate; T(Dog) , CarriedByTrain ; T(Dog � PitBull ) ,
NotCarriedByTrain ; CarriedByTrain � NotCarriedByTrain , ⊥, corresponding
to the assertions: typically dogs are affectionate, normally dogs can be trans-
ported by train, whereas typically a dog belonging to the race of pitbull cannot

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 430–436, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(since pitbulls are considered as reactive dogs); the fourth inclusion represents
the disjointness of the two concepts CarriedByTrain and NotCarriedByTrain .
Notice that, in standard DLs, replacing the second and the third inclusion with
Dog , CarriedByTrain and Dog � PitBull , NotCarriedByTrain , respectively,
we would simply get that there are not pitbull dogs, thus the KB would collapse.
This collapse is avoided as we do not assume that T is monotonic, that is to say
C , D does not imply T(C) , T(D).

By the properties of T, some inclusions are entailed by the above KB, as for
instance T(Dog � CarriedByTrain) , Affectionate. In our setting we can also
use the T operator to state that some domain elements are typical instances
of a given concept. For instance, an ABox may contain either T(Dog)(fido) or
T(Dog �PitBull)(fido). In the two cases, the expected conclusions are entailed:
CarriedByTrain(fido) and NotCarriedByTrain(fido), respectively.

In this work, we present some preliminary results on low complexity Descrip-
tion Logics extended with the typicality operator T. In particular we focus on
the logic EL+⊥

of the well known EL family. The logics of the EL family allow
for conjunction (�) and existential restriction (∃R.C). Despite their relatively
low expressivity, a renewed interest has recently emerged for these logics. In-
deed, theoretical results have shown that EL has better algorithmic properties
than its counterpart FL0, which allows for conjunction and value restriction
(∀R.C). Also, it has turned out that the logics of the EL family are relevant for
several applications, in particular in the bio-medical domain; for instance, med-
ical terminologies, such as GALEN, SNOMED, and the Gene Ontology used in
bioinformatics, can be formalized in small extensions of EL.

We present some results about the complexity of EL+⊥
T. We show that,

given an EL+⊥
T KB, if it is satisfible, then there is a small model whose size is

polynomial in the size of KB. The construction of the model exploits the facts
that (1) it is possible to reuse the same domain element (instance of a concept
C) to fulfill existential formulas ∃r.C w.r.t. domain elements; (2) we can restrict
our attention to a class of models in which the preference relation < is multi-
linear and polynomial, that is it determines a set of disjoint chains of elements
of polynomial length. The construction of the model allows us to conclude that
the problem of deciding entailment in EL+⊥

T is in co-NP.
Technical details and proofs can be found in the accompanying report [10].

2 The Logic EL+⊥
T

We consider an alphabet of concept names C, of role names R, and of individuals
O. The language L of the logic EL+⊥

T is defined by distinguishing concepts and
extended concepts as follows: (Concepts) A ∈ C, �, and ⊥ are concepts of L; if
C,D ∈ L and r ∈ R, then C�D and ∃r.C are concepts of L. (Extended concepts)
if C is a concept, then C and T(C) are extended concepts of L. A knowledge
base is a pair (TBox,ABox). TBox contains (i) a finite set of GCIs C , D, where
C is an extended concept (either C′ or T(C′)), and D is a concept, and (ii) a
finite set of role inclusions (RIs) r1◦r2◦· · ·◦rn , r. ABox contains expressions of
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the form C(a) and r(a, b) where C is an extended concept, r ∈ R, and a, b ∈ O.
In order to provide a semantics to the operator T, we extend the definition of a
model used in “standard” terminological logic EL+⊥

:

Definition 1 (Semantics of T). A model M is any structure 〈Δ,<, I〉, where
Δ is the domain; < is an irreflexive and transitive relation over Δ, and satisfies
the following Smoothness Condition: for all S ⊆ Δ, for all a ∈ S, either a ∈
Min<(S) or ∃b ∈ Min<(S) such that b < a, where Min<(S) = {a : a ∈ S
and �b ∈ S s.t. b < a}. I is the extension function that maps each extended
concept C to CI ⊆ Δ, and each role r to a rI ⊆ ΔI ×ΔI . For concepts of EL+⊥

,
CI is defined in the usual way. For the T operator: (T(C))I = Min<(CI). A
model satisfying a KB (TBox,ABox) is defined as usual. Moreover, we assume
the unique name assumption.

Notice that the meaning of T can be split into two parts: for any a of the
domain Δ, a ∈ (T(C))I just in case (i) a ∈ CI , and (ii) there is no b ∈ CI

such that b < a. In order to isolate the second part of the meaning of T, we
introduce a new modality �. The basic idea is simply to interpret the preference
relation < as an accessibility relation. By the Smoothness Condition, it turns
out that � has the properties as in Gödel-Löb modal logic of provability G. The
interpretation of � in M is as follows: (�C)I = {a ∈ Δ | for every b ∈ Δ, if
b < a then b ∈ CI}. We have that a is a typical instance of C (a ∈ (T(C))I)
iff a ∈ CI and, for all b < a, b �∈ CI , namely we have that a ∈ (T(C))I

iff a ∈ (C � �¬C)I . From now on, we consider T(C) as an abbreviation for
C � �¬C. The Smoothness Condition ensures that typical elements of CI exist
whenever CI �= ∅, by preventing infinitely descending chains of elements.

3 Complexity of EL+⊥
T

In order to give a complexity upper bound for the logic EL+⊥
T, we show that,

given a model M = 〈Δ,<, I〉 of a KB, we can build a small model of KB whose
size is polynomial in the size of the KB.

Theorem 1 (Small model theorem). Let KB=(TBox,ABox) be an EL+⊥
T

knowledge base. For all models M = 〈Δ,<, I〉 of KB and all x ∈ Δ, there exists
a model N = 〈Δ◦, <◦, I◦〉 of KB such that (i) x ∈ Δ◦, (ii) for all EL+⊥

T
concepts C, x ∈ CI iff x ∈ CI◦

, and (iii) | Δ◦ | is polynomial in the size of KB.

Due to space limitations, here we only give a sketch of the proof, whose details
can be found in [10]. The construction comprises three steps.

(step A) First of all, in order to reduce the size of the model, we cut a portion of
it that includes x. We build a model M′ by means of the following construction.
For each atomic concept C ∈ C and for each role r ∈ R we let S(C) and R(r) be
the mappings computed by the algorithm defined in [1] to compute subsumption
by means of completion rules. As usual, for a given individual a in the ABox, we
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write aI to denote the element of Δ corresponding to the extension of a in M.
We make use of three sets of elements: Δ0 will be part of the domain of the model
being constructed, and it contains a portion of the domain Δ of the initial model.
All elements introduced in the domain must be processed in order to satisfy the
existential formulas. Unres is used to keep track of not yet processed elements.
Finally, Δ1 is a set of elements that will belong to the domain of the constructed
model. Each element wC of Δ1 is created for a corresponding atomic concept
C and is used to satisfy any existential formula ∃r.C throughout the model. In
the following by wC we mean the domain element of Δ1 which is added for the
atomic concept C. We provide an algorithmic description of the construction of
model M′ from the given model M. Observe that M can be an infinite model.

1. Δ0 := {x} ∪ {aI ∈ Δ | a occurs in the ABox }
2. Unres :={x} ∪ {aI ∈ Δ | a occurs in the ABox }
3. Δ1:=∅
4. while Unres �= ∅ do
5. extract one y from Unres
6. for each ∃r.C occurring in KB s.t. y ∈ (∃r.C)I do
7. if �wC ∈ Δ1 then
8. choose w ∈ Δ s.t. (y, w) ∈ rI and w ∈ CI

9. Δ0 := Δ0 ∪ {w}
10. Unres :=Unres ∪ {w}
11. create a new element wC associated with C
12. Δ1 := Δ1 ∪ {wC}
13. add w <′ wC

14. add (y, wC) to rI′

15. else
16. add (y, wC) to rI′

17. for each yi ∈ Δ such that yi < y do
18. Δ0 := Δ0 ∪ {yi}
19. Unres :=Unres ∪{yi}
20. for each wC , wD ∈ Δ1 with C �= D do
21. if (C, D) ∈ R(r) then add (wC , wD) to rI′

The model M′ = 〈Δ′, <′, I ′〉 is defined as follows:

– Δ′ = Δ0 ∪Δ1

– we extend <′ computed by the algorithm by adding u <′ v if u < v, for each
u, v ∈ Δ′;

– the extension function I ′ is defined as follows: • for all atomic concepts
C ∈ C, for all domain elements in Δ′, we define: for each u ∈ Δ0, we let
u ∈ CI′

if u ∈ CI ; for each wD ∈ Δ1, we let wD ∈ CI′
if C ∈ S(D). •

for all roles r, we extend rI′
constructed by the algorithm by means of the

following role closure rules: for all inclusions r , s ∈ TBox, if (u, v) ∈ rI′

then add (u, v) to sI′
; for all inclusions r1 ◦ r2 , s ∈ TBox, if (u, v) ∈ rI′

1
and (v, w) ∈ rI′

2 then add (u,w) to sI′
. • I ′ is extended so that it assigns aI

to each individual a in the ABox.
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M′ is not guaranteed to have polynomial size in the KB because in line 18 we
add an element yi for each yi < y, then the size of Δ0 may be arbitrarily large.

(step B) We refine our construction in order to obtain from M′ a multi-linear
model with a polynomial number of chains. Intuitively, a model is multi-linear if
the relation < forms a set of chains of domain elements, that is, for every u, v, z
of the domain, we have that: (i) if u < z and v < z and u �= v, then u < v or
v < u; (ii) if z < u and z < v and u �= v, then u < v or v < u. From M′ we
can obtain a multilinear model M′′ that preserves the interpretation of atomic
concepts with respect to common elements of the domain and has a polynomial
number of chains.

(step C) We finally construct a model N from M′′ whose domain has polynomial
size in the size of KB. The idea is as follows. Let us consider a chain w0, w1, w2, . . .
in the multi-linear model. We can observe that, given wi and wj in the chain such
that wi < wj , the set of negated box formulas ¬�¬C of which wi is an instance
is a subset of the set of negated box formulas of which wj is an instance. We can
thus shrink each chain by retaining only the elements wi, wj such that wi < wj

implies there exists a formula ¬�¬C such that wj is an instance of ¬�¬C and
wi is not an instance of ¬�¬C. As there is only a polynomial number of such box
formulas ¬�¬C, each chain will contain only a polynomial number of elements.
Since the number of chains is polynomial in itself (by step B), the resulting
model N has a polynomial size.

Given Theorem 1 above, when evaluating the entailment, we can restrict our
consideration to small models, namely, to polynomial multi-linear models of the
KB. We write KB |= α to say that a query α holds in all the models of the KB.
A query α is either a formula of the form C(a) or a subsumption relation C , D.
We write KB |=s α to say that α holds in all polynomial multi-linear models of
the KB. It holds that KB |= α if and only if KB |=s α. As a consequence, we
can give an upper bound on the complexity of EL+⊥

T:

Theorem 2. In EL+⊥
T, the problem of deciding whether KB |= α is in co-

NP. The problems of satisfiability of a KB and of concept satisfiability are in
NP. The problems of subsumption and of instance checking are in co-NP.

4 Conclusions and Future Issues

We have presented the description logic EL+⊥
T, that is EL+⊥

extended by a
tipicality operator T intended to select the “most normal” instances of a con-
cept. Whereas for ALC + T deciding satisfiability (subsumption) is EXPTIME
complete (see [9]), we have shown here that for EL+⊥

T the complexity is sig-
nificantly smaller, namely it reduces to NP for satisfiability (and co-NP for
subsumption). This result is obtained by a “small” model property (of a partic-
ular kind: multi-linear) that fails for the whole ALC +T as well as for ALC. We
believe that this bound is also a lower bound, but we have not proved it so far.
Although validity/satisfiability for KLM logic P is known to be (co)NP hard, in
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EL+⊥
T, we can only directly encode nonmonotonic assertions A |∼ B where A

is a conjunction of atoms and B is either an atom or ⊥. As far as we know, the
complexity of this fragment of P is unknown. Thus a lower bound for EL+⊥

T
cannot be obtained from known results about KLM logic P.

The logic EL+⊥
T in itself is not sufficient for prototypical reasoning and inher-

itance with exceptions, in particular we need a stronger (nonmonotonic) mecha-
nism to cope with the problem known as irrelevance. Concerning the example of
the Introduction, we would like to conclude that typical red dogs are affection-
ate, since the color of a dog is irrelevant with respect to the property of being
affectionate. However, as the property of being red is not a property neither of
all dogs, nor of typical dogs, in EL+⊥

T we are not able to conclude T(Dog �
Red) , Affectionate. One possibility is to consider a stronger (nonmonotonic) en-
tailment relation EL+⊥

Tmin determined by restricting the entailment of EL+⊥
T

to “minimal models”, as defined in [8] for ALC + T. Intuitively, minimal mod-
els are those that maximise “typical instances” of a concept. As shown in [8], for
ALC + Tmin, minimal entailment can be decided in co-NExp

NP. We believe
that for EL+⊥

Tmin we can obtain a smaller complexity upper bound on the base
of the results presented here.
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Abstract. We present a new general purpose query and abduction language for
reasoning about action domains that allows the processing of simultaneous
actions, definition of conditions and reasoning about fluents and actions. AQL
provides a simple declarative syntax for the specification of constraints on the
histories (the combination of action traces and state transitions) within the mod-
elled domain. Its semantics, provided by the translation of AQL queries into Ans-
Prolog, acquires the benefits of the reasoning power provided by Answer Set
Programming (ASP). The answer sets obtained from combining the query and
the domain description correspond to those histories of the domain changing over
time that satisfy the query. The result is a simple, high-level query and constraint
language that builds on ASP. Through the synthesis of features it offers a more
flexible, versatile and intuitive approach compared to existing languages. Due to
the use of ASP, AQL can also be used to reason about partial histories.

1 Introduction

Action domains are a useful mechanism for modelling a variety of domains such as
planning, protocol definition and normative frameworks. Given an action description we
can use established computational techniques, such as Answer Set Programming (ASP)
or SAT solvers to verify or examine model properties. It is desirable that such a system
should allow designers to specify model properties with a high degree of flexibility
while offering qualitative properties of succinctness and human readability.

Action languages[2, 5] are a way of formally describing the effects of actions on
a domain using a subset of natural language. Transition systems are central to action
languages: with every action (or the combined effects of simultaneous actions) the en-
vironment changes. Traditionally action languages have two distinct parts: (i) a descrip-
tion language to capture the effects of actions, thus defining the transition system, and
(ii) a query language to write queries or reason about the transition system.

In this paper, we present a new action query and abduction language AQL whose
semantics is provided by ASP [1], a logic programming language used for knowledge
representation and reasoning. AQL can be used in two ways: for transition system
path selection and for model-checking. AQL extends existing query language to allow
for simultaneous actions and the definition of conditions that can then form part of
more complex queries. Furthermore, AQL does not rely on the use of any particular
action description language but can be used on top of a AnsProlog description or in
conjunction with any action language description that maps to AnsProlog.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 437–443, 2009.
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2 Action Domains

The purpose of action domain [4, 5] modelling is to be able to observe the effect of
actions on the environment. A light switch offers a simple example: in one state it is
on, the action of flicking a switch changes the state to off, etc. State transitions systems
provide an effective representation mechanism, in which each state is identified by a set
of fluents that are true in that state. Anything not in the set is not true (for the model).
Actions are modelled by transition to a new state, wherein some fluents are added and
others removed with respect to the previous state. Here we only consider deterministic
domains in which there is exactly one next state resulting from the cumulative effect
of a sequence of (sets of) actions—known as a trace—on the current state to build a

history: s0
a0→ s1

{a1,a2}→ . . .
am→ sn, where states are denoted si, i ∈ 0 . . . n and actions

aj , j ∈ 0 . . .m. Planning [7] is probably the best known example of the use of action
domains and reasoning over such domains, where the final state is the goal and the trace
is the sequence of actions to achieve that goal.

In this paper, we use answer set programming to represent and reason about action
domains, their traces and histories. As a result, histories are output as answer sets. How-
ever, rather than modelling domains directly in ASP, we put forward the abstraction of
an action language—with subsequent translation to AnsProlog —because this enables
the user to focus on domain specifics, rather than generic details—such as inertia—that
are common to every domain. Several such action language have been developed, with
general languages like A [5], C [6] and DLV-K [3] and numerous domain-specific ones.

3 AQL

AQL is a query language that can be used directly with an AnsProlog program repre-
senting the action domain or with any action language.

Given an action domain M, we use AM
1 to denote the set of all actions in the

action domain M while FM is the set of all available fluents. When modelling histories
and traces, we need the monitor the domain over a period of time (or a sequence of
states). We assume that they are modelled using instant(I). The ordering of instances
is established by next(I1, I2), with the final instance defined as final(I). Following
convention, we assume that the truth of a fluent F ∈ F at a given state instance I is
represented as holdsat(F, I), while an action A ∈ A is modelled as occurred(A, I).

AQL has two basic concepts: (i) constraint: an assertion of a property that must be
satisfied by a valid trace (e.g. a restriction on which traces are considered), and (ii) con-
dition: a specification of properties that can may hold for a given trace. Conditions can
be declared in relation to other conditions and constraints can involve declared con-
ditions. Table 1 summarises the syntax of the language, while the remainder of this
section discusses in detail the elements of the language and their semantics.

Basic Constructs. AQL provides (Table 1: AQL-1–AQL-5) various forms of names:
variable, variable list, name, param list and identifier. An identifier is

1 The action domain will be omitted when it is clear from the context.
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Table 1. AQL Syntax

Expression Definition
<variable> ::= [A-Z][a-zA-Z0-9 ]* (AQL-1)

<variable list> ::= <variable> , <variable list> | <variable> (AQL-2)

<name> ::= [a-z][a-zA-Z0-9 ]* (AQL-3)

<param list> ::= ( <variable list> ) (AQL-4)

<identifier> ::= <name> <param list> | <name> (AQL-5)

<predicate> ::= happens( <identifier> ) | holds( <identifier>) (AQL-6)

<literal> ::= not <predicate> | <predicate> (AQL-7)

<while expr> ::= <literal> while <while expr> | <literal> (AQL-8)

<after> ::= after( <integer> ) | afterl (AQL-9)

<after expr> ::= <while expr> <after> <after expr> |; (AQL-10)

<while expr> (AQL-11)

<condition literal> ::= not <identifier> | <identifier> (AQL-12)

<term> ::= <after expr> | <condition literal> (AQL-13)

<conjunction> ::= <term> and <conjunction> | <term> (AQL-14)

<disjunction> ::= <term> or <disjunction> | <term> (AQL-15)

<condition decl> ::= condition <identifier> : <disjunction>; |
condition <identifier> : <conjunction>; (AQL-16)

<constraint> ::= constraint <disjunction> ; |
condition <identifier> : <conjunction>; (AQL-17)

an arbitrary name which may have variable parameters, that enables the parameteri-
sation of actions and fluents. AQL defines (Table 1: AQL-6) two predicates that form
the basis of all queries. The first is happens(Action), meaning that the specified ac-
tion should occur at some point during history.The second is holds(Fluent), which
means that the specified fluent is true at some point. Negation (as failure) is provided
by the unary operator not (Table 1: AQL-7). To construct complex queries, it is often
easier to break them up into sub-queries, or in AQL terminology, sub-conditions. We
can then join these with other criteria. Sub-conditions may be referenced within rules
as condition literals (Table 1: AQL-12). The building block of query conditions is the
term (Table 1: AQL-13). Query conditions are either after expressions or literals. Terms
may be grouped and connected by the connectives and and or which provide logi-
cal conjunction and disjunction (Table 1: AQL-14 and AQL-15). On their own, they do
not allow us create arbitrary combinations of predicates so additionally we provide the
means to declare conditions. Table 1: AQL-16 defines a condition with the specified
name to have a value equal to the specified disjunction or conjunction. This al-
lows the condition name to be used as a condition literal. AQL also allows for
the specification of constraints (Table 1: AQL-17). They specify properties of the trace
which must be true.

Example queries. To illustrate how this language is used to form queries, consider a
simple light bulb action domain. The fluent on is true when the bulb is on. The action
switch turns the light on or off. We can require that at some point the light is on:

constraint holds(on);

We can require that the light is never on:
condition light_on: holds(on);
constraint not light_on;

There is some subtlety here in that light on is true if at any instant on is true. There-
fore, if light on is not true, there cannot be an instant at which on was true. And what
if the bulb is brokenThis can be expressed as:
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constraint not light_on and happens(switch);

Using condition names, we can create arbitrary logical expressions. The statement that
action a1 and either action a2 or e3 should occur can be expressed as follow:

condition disj: happens(a2) or happens(a3);
condition conj: happens(a1) and disj;

Query Semantics. In this paper we define the semantics of AQL in terms of its mapping
to AnsProlog . The semantics of an AQL query is defined by the translation function
T which translates AQL into AnsProlog . This function takes a fragment of AQL and
generates a set of (partial) AnsProlog rules. The semantics of predicates are defined
as: T (happens(e)) = occurred(e, I) and T (holds(f)) = holdsat(f, I).

For a literal of the form not P (where P is a predicate) the semantics is: T (not P ) =
not T (P). For a condition literal they are: T (conditionName) = conditionName and
T (not conditionName) = not conditionName and a conjunction of terms is:
T (t1 and t2 and · · · and tn) = T (t1), T (t2), . . . ,T (tn). Each disjunction is translated into
multiple rules. The translation itself depends if depending on whether the disjunction is
within a condition declaration or a constraint:

T (condition conditionName : t1 or t2 or · · · or tn; ) =
{conditionName ← T (ti). | 1 ≤ i ≤ n}

T (constraint t1 or t2 or · · · or tn; ) =
{newName ← T (ti). | 1 ≤ i ≤ n}∪
{⊥ ← not newName.}

Note that the term newName denotes any identifier that is unique within the AnsProlog
program that is the combination of the query and the action program. In addition, each
time instant I generated in the translation of a predicate represents a name for a time
instant that is unique within the AQL query.

Concurrent Actions and Fluents. We may wish to talk about actions occurring at the same
time as one or more fluents are true, simultaneous occurrence of actions or combina-
tions of fluents being simultaneously true (and/or false). For this situation, AQL has the
keyword while (Table 1: AQL-8) to indicate that literals are true simultaneously. Such
while expressions are only defined over literals constructed from predicates.

Returning to the light bulb example, we can now specify that we want only traces
where the light was turned off at some point:

constraint happens(switch) while holds(on);

Or that at some point the light was turned left on:
constraint holds(on) while not happens(switch);

The semantics for while is:
T (L1 while L2 while · · · while Ln) = T (L1), T (L2), . . . , T (Ln), instant(I).

Action and Fluent Ordering. The language allows for the expression of orderings over
actions. This is done with the after keyword (Table 1: AQL-9). In some cases we need
to say not only that a given literal holds after some other literal, but that this is the case
after a precise number of time instants (n). So, for a fluent that does (or does not) hold
at time instant ti or an action that occurs between ti and ti+1, we can talk about literals
that hold at ti+n or occur between ti+n and ti+n+1. An after expression may contain
only the after operator or the after(n) operator, depending on how precisely the
gap between the two operands is to be specified.
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Once again returning to the light bulb example, we can now specify a query which
requires the light to be switched twice (or more):

constraint happens(switch) after happens(switch);

Or that once that light has is on, it cannot be switched off again:
condition switch_off: happens(switch) after holds(on);
constraint not switch_off;

We give the semantics for the binary operator after(n): T (Wi after(n) Wj) =
T (Wi), T (Wj), after(ti, tj, n) This can easily be generalised for after expressions built
of sequences of after(n) operators mixed with after operators.

4 Reasoning with AQL

We now illustrate how AQL can be used to perform three common tasksin computa-
tional reasoning: prediction, postdiction and planning.

Prediction is the problem of ascertaining the resulting state for a given (partial) se-
quence of actions and initial state. That is, suppose some transition system is in state
S and a (partial) sequence A of actions occurs. Then the prediction problem (S,A) is
to decide the set of states {S′} which may result. Postdiction is the converse problem:
if a system is in state S′ and we know that sequence A has occurred, then the problem
(A,S′) is to decide the set {S} of states that could have held before A. The planning
problem (S, S′) is to decide which sequence(s) of actions, {A}, will bring about state
S′ from state S.

Identifying States. A state S = {f1, . . . , fn} is described by the set of fluents fi that are
true. In AQL states can be represented using using the while:

holds(f_1) while ... while holds(f_n) while
not holds(g_1) while ... while not holds(g_k)

where f1...k are fluents that hold in S and g1...k those that do not.

Describing Action Ordering. A sequence of actions A = a1, . . . , an may be encoded
as an after expression. In this case of complete information, we can express A as
follows:

happens(a_n) after(1) ... after(1) happens(a_1)

If we do not have complete information, but we know that ai+1 happens later than ai

than we can express this as:
happens(a_i+1) after happens(a_i)

We can combine these cases throughout the formulation of A to represent the amount
of information available.

The Prediction Problem. Given an initial state S and a sequence of actions A, the pre-
diction problem (S,A) can be expressed in AQL as:

constraint A after(1) S;

This query limits traces to those in which at some point S holds after which the actions
of A occur in sequence. The answer sets that satisfy this query will then contain {S′}.

The Postdiction Problem. Given a sequence of actions A and a resulting state S′, the
postdiction problem (A,S′) can be expressed as:
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constraint S after(1) A;

This requires S to hold in the next instant following the final action of A.

The Planning Problem. Given a pair of states S and S′ the planning problem (S, S′) can
be expressed in AQL as:

constraint S’ after S;

This allows any non-empty sequence of actions to bring about the transition from S to
S′. If we want to consider plans of length k (i.e. E = a1, . . . , ak) then we can express
this using after(k) instead.

5 Discussion

In [5], the authors present four query languages: P ,Q,Qn,R. The action query lan-
guage P has just two constructs: now L and necessarily F after A1, ..., An,
where L refers to a fluent or its negation, F is a fluent and where Ai are actions. These
queries can equally be encoded in AQL using the techniques discussed in Section 4.
The same is true for the query languages Q, Qn and R. Given the action ordering tech-
nique used, we can assign specific times to each of the fluents. AQL can express all
the same kinds of queries as the query languages above, but in addition AQL is capa-
ble of modelling simultaneous actions and fluents, permits the expression of complex
queries using disjunctions and conjunctions of conditions and, above all, allows reason-
ing with incomplete information, thus fully exploiting the reasoning power of answer
set programming.

The Causal Calculator (CCALC)[4] is a versatile tool mainly used for modelling
action domains. While CCALC can also support querying, AQL has been designed
specifically as a query language, providing constructs to make specifying queries more
intuitive and versatile. Relative ordering of actions or states is much more difficult in
CCALC then it is AQL. Furthermore, CCALC also does not allow for the formulation
of composite queries (condition literals).

As it stands AQL offers an intuitive and versatile query and abduction language for
action domains, offering improvements in both query semantics and expressibility over
existing approaches. The language is succinct and compact, comprising a small core of
orthogonal operators (that is none can be expressed in terms of the others). However,
from a software engineering point of view, there is a case for improving usability by
providing commonly used constructs as part of the language.
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Abstract. We improve the formulations of loop formulas for weight constraint
and aggregate programs by investigating the level mapping characterization of
the semantics for these programs. First, we formulate a level mapping character-
ization of the stable model semantics for weight constraint programs, based on
which we define loop formulas for these programs. This approach makes it possi-
ble to build loop formulas for programs with arbitrary weight constraints without
introducing new atoms. Secondly, we further use level mapping to characterize
the semantics and propose loop formulas for aggregate programs. The main result
is that for aggregate programs not involving the inequality comparison operator,
the dependency graphs can be built in polynomial time. This compares to the
previously known exponential time method.

1 Introduction

Logic programming under stable model semantics has been extended to incorporate a
variety of constraints to facilitate knowledge representation and reasoning. These con-
straints include weight constraints [12], aggregates [1,11,14] and abstract constraints
[10,13]. We refer to logic programs with these constraints as weight constraint, aggre-
gate and abstract constraint programs, respectively.

Lin and Zhao [6] propose to compute stable models of normal logic program as the
model of the loop completion of the program. The loop completion consists of the loop
formulas and the formulas of the completion of the program. Liu and Truszczyński
[8] extend the approach to weight constraint programs where the weight constraints
contain only positive literals and weights. However, in order to transform an arbitrary
weight constraint to a weight constraint with only positive literals and weights, new
propositional atoms are needed [8,9]. In theory, new atoms enlarge the search space
for stable model computation. An interesting question is whether the loop formulas for
arbitrary weight constraint programs can be formulated without extra atoms.

The method of level mapping has been studied to characterize stable models [2,4]
of normal programs. We observe that such a characterization is closely related to the
formulation of loop formulas. We present level mapping characterization of the stable
models of weight constraint programs. The characterization leads to a formulation of
loop formulas for arbitrary weight constraint programs without introducing extra atoms.
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Aggregate programs are closely related to weight constraint programs, since many
aggregates can be encoded by weight constraints [7]. There are different semantics pro-
posed for aggregate programs [3,5,14]. Among them, the semantics based on condi-
tional satisfaction is considered the most conservative [13], in the sense that any answer
set under this semantics is an answer set under others, but the reverse may not hold. We
are interested in the formulation of loop formulas for this semantics. To distinguish
from the stable model semantics of weight constraint programs, we call the semantics
answer set semantics.

Loop formulas for answer set semantics are presented in [15]. In the approach, given
a program, the construction of the dependency graph requires computing what is called
”local power set” for the constraints in the program, to capture conditional satisfaction.
The process takes exponential time in the size of the program. We investigate the level
mapping characterization of answer sets and find that, for aggregates, the conditional
satisfaction checking can be reduced to polynomial time standard satisfaction checking.
Based on this finding, we define the levels of aggregates. The definition induces a for-
mulation of loop formulas, where local power sets are not needed and the exponential
process to construct the dependency graph is avoided.

2 Level Mapping Induced Loop Formulas for Weight Constraint
Programs

A weight constraint is of the form

l [a1=wa1 , ..., an=wan ,not b1=wb1 , ...,not bm=wbm ]u (1)

where each ai, bj is an atom. Atoms a′is and not-atoms not b′is are also called literals
(positive and negative literals, respectively). We denote by lit(W ) the set of literals in a
weight constraint. Each literal in a constraint is associated with a weight1. The numbers
l and u give the lower and upper bounds of the constraint, respectively. The weights
and bounds are real numbers. Either of the bounds may be omitted in which case the
missing lower bound is taken to be −∞ and the missing upper bound ∞.

A set of atoms M satisfies a weight constraint W of the form (1), denoted M |= W ,
if (and only if) l ≤ w(W,M) ≤ u, where w(W,M) =

∑
ai∈M wai +

∑
bi �∈M wbi . M

satisfies a set of weight constraints Π if M |= W for every W ∈ Π .
A weight constraint program is a finite set of rules of the form

W0 ← W1, ...,Wn (2)

where each Wi is a weight constraint. We use hd(r) and bd(r) to denote W0 and
{W1, ...,Wn}, respectively. Atom(P ) denotes the set of the atoms appearing in pro-
gram P . For the semantics of weight constraint programs, we refer the reader to [12].

Notations. In the rest of this paper, we will use the following notations: Given a weight
constraint W of the form (1) and a set of atoms M , we define Ma(W ) = {ai ∈

1 The weights of literals could be negative. It is pointed out that negative weights can be elim-
inated by a transformation [12]. We assume that weights are non-negative if not indicated
otherwise.
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M | ai ∈ lit(W )} and Mb(W ) = {bi ∈ M | not bi ∈ lit(W )}. Since W is always
clear by context, we will simply write Ma and Mb.

In general, an atom may appear both positively and negatively in a weight constraint.
We call such an atom a dual atom, e.g. atom a is a dual atom in 1[a = 1,not a = 2]1.

Following the notation in [13], for a set of atoms X and a mapping λ from X to
positive integers, we define H(X) = max({λ(a) | a ∈ X}). For the empty set ∅, we
define max(∅) = 0 and min(∅) = ∞.

2.1 Level Mapping Characterization of Stable Models

Given a set of atoms X , a level mapping of X is a function λ from the atoms in X to
positive integers. Let W be a weight constraint of the form (1), M a set of atoms and λ
a level mapping of M . The level of W w.r.t. M , denoted L(W,M), is defined as:

L(W,M) = min({H(Xa) | X ⊆ M, and w(W,Xa) ≥ l +
∑

bi∈M\Xa

wbi}). (3)

Proposition 1. Let W be a weight constraint of the form (1), M and X be two sets
of atoms. w(WM , Xa) ≥ lM iff w(W,Xa) ≥ l +

∑
bi∈M\Xa

wbi , where WM is the

reduct of W w.r.t. M as defined in [12] and lM is the lower bound of WM .

Intuitively, the level of W w.r.t. M depends on the levels of atoms in M that are neces-
sary to satisfy WM and positive in W .

Definition 1. Let P be a weight constraint program and M a set of atoms. M is said
to be level mapping justified by P if there is a level mapping λ of M satisfying that for
each b ∈ M , there is a rule r ∈ P such that b ∈ lit(hd(r)), M |= bd(r), and for each
W ∈ bd(r), λ(b) > L(W,M).

By Proposition 1, the following theorem can be proved.

Theorem 1. Let P be a weight constraint program and M a set of atoms. M is a stable
model of P iff M is a model of P and level mapping justified by P .

2.2 Loop Formulas for Weight Constraint Programs

To characterize stable models by loop formulas, we need the concept of completion of
a program, whose models are the supported models of the program. The definition of
completion can be found in [8]. For a program P , we denote its completion Comp(P ).

The formulation of loop formulas consists of two steps: constructing a dependency
graph and then establishing a formula for each loop in the graph.

Let P be a weight constraint program. The dependency graph of P , denoted GP =
(V,E), is a directed graph, where (i). V = Atoms(P ) and (ii). (u, v) is a directed edge
from u to v in E, if there is a rule of the form (2) in P , such that u ∈ lit(W0) and
v ∈ lit(Wi) for some i (1 ≤ i ≤ n). Let G = (V,E) be a directed graph. A set L ⊆ V
is a loop in G if the subgraph of G induced by L is strongly connected.

Let W be a weight constraint and L be a set of atoms. The restriction of W w.r.t. L,
denoted W|L, is a conjunction of weight constraints Wl|L ∧Wu|L, where
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– Wl|L is obtained by removing the upper bound and all positive literals in L and
their weights from W ;

– Wu|L is obtained by removing the lower bound from W .

Let P be a weight constraint program and L be a loop in GP . The loop formula for L,
denoted LF (P,L), is defined as

LF (P,L) =
∨

L →
∨

{
∧

W∈bd(r)

W|L | r ∈ P,L ∩ lit(hd(r)) �= ∅} (4)

Let P be a weight constraint program. The loop completion of P denoted LComp(P )
is defined as LComp(P ) = Comp(P ) ∪ {LF (P,L) | L is a loop in GP }.

Theorem 2. Let P be a weight constraint program and M a set of atoms. M is a stable
model of P iff M is a model of LComp(P ).

3 Level Mapping Induced Loop Formulas for Aggregate Programs

An aggregate is a constraint on sets taking the form aggr({X | p(X)}) op Result,
where aggr is an aggregate function. The standard aggregate functions are those in
{SUM, COUNT, AVG, MAX, MIN}. The relational operator op is from {=, �=, <,>
,≤,≥} and Result is either a variable or a numeric constant.

An aggregate program is a set of rules of the form

h ← A1, ..., An (5)

where h is an atom and A1, ..., An are aggregates. The semantics of aggregate programs
bases on the notion of conditional satisfaction. We refer the reader to [14] for the details.

All of the standard aggregates (without the operator “ �=”2) can be encoded by weight
constraints as shown in [7]. In this section, we focus on programs with aggregate SUM
only3. For an aggregate A, we denote its weight constraint encoding W (A). A property
of aggregates is that their weight constraint encoding contain no dual atoms. This is
useful to prove the proposition later.

3.1 Level Mapping Characterization of Answer Sets

Let A be an aggregate, M a set of atoms and λ a level mapping of M . The answer set
level of A w.r.t. M , denoted L∗(A,M), is defined as:

L∗(A,M) = min({H(X) | X ⊆ M,w(W (A), Xa) ≥ l +
∑

bi∈M

wbi , (6)

and w(W (A), Xb) ≤ u−
∑

ai∈M

wai}),

2 We only study the aggregates without the operator “�=”, since for programs with SUM(.) �= k,
the answer set existence problem is at a level higher than NP-Completeness in the complexity
hierarchy, according to Son and Pontelli [14].

3 Note: Aggregates COUNT and AV G are special cases of SUM . Aggregates MAX and
MIN can be encoded by SUM [7].
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where l and u are the lower and upper bounds of W (A) respectively.
Intuitively, the level of A, w.r.t. M depends on the level of atoms in M that are

necessary to conditionally satisfies A, w.r.t. M .

Proposition 2. Let A be an aggregate and X and M two sets of atoms such that
X ⊆ M . X conditionally satisfies A w.r.t. M iff w(W (A), Xa) ≥ l +

∑
bi∈M wbi

and w(W (A), Xb) ≤ u−
∑

ai∈M wai , where l and u are the lower and upper bounds
of W (A), respectively.

Definition 2. Let P be an aggregate program and M a set of atoms. M is said to be
strongly level mapping justified by P if there is a level mapping λ of M satisfying that
for each b ∈ M , there is a rule r ∈ P such that b = hd(r), M |= bd(r), and for each
A ∈ bd(r), λ(b) > L∗(A,M).

Using Proposition 2, we can prove the following theorem.

Theorem 3. Let P be an aggregate program and M a set of atoms. M is an answer set
of P iff M is a model of P and strongly level mapping justified by P .

3.2 Loop Formulas for Aggregate Programs

The completion of aggregate programs consists of the same set of formulas as that
of weight constraint programs, except that the weight constraints in the formulas are
weight constraint encoding of aggregates.

Let P be an aggregate program. The dependency graph of P , denoted G∗
P = (V,E),

is a directed graph, where (i). V = Atom(P ) and (ii). (u, v) is a directed edge from
u to v in E, if there is a rule of the form (5) in P such that u = hd(r) and either v or
not v ∈ lit(W (Ai)) for some i (1 ≤ i ≤ n).

Now we give the strong restriction of an aggregate w.r.t. a loop by defining the strong
restriction of a weight constraint. Let W be a weight constraint and L a set of atoms.
The strong restriction of W , w.r.t. L, denoted W ∗

|L, is a conjunction of weight con-
straints W ∗

l|L ∧W ∗
u|L, where

– W ∗
l|L is obtained by removing from W the upper bound, all positive literals that are

in L and their weights;
– W ∗

u|L is obtained by removing from W the lower bound, not bi = wbi for each
bi ∈ L, and changing the upper bound to be u−

∑
bi∈L wbi .

The strong restriction of an aggregateA w.r.t. a loopL is defined as the strong restriction
of its weight constraint encoding w.r.t. the loop W ∗

|L(A).
Let P be an aggregate program and L a loop in G∗

P . The loop formula for L, denoted
LF ∗(P,L), is defined as

LF ∗(P,L) =
∨

L →
∨

{
∧

A∈bd(r)

W (A)∗|L | r ∈ P, hd(r) ∈ L} (7)

Let P be an aggregate program. The loop completion of P , denoted LComp∗(P ), is
defined as LComp∗(P ) = Comp(P ) ∪ {LF ∗(P,L) | L is a loop in G∗

P }.

Theorem 4. Let P be an aggregate program and M a set of atoms. M is an answer set
of P iff it is a model of LComp∗(P ).
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4 Conclusion and Future Work

We present level mapping characterizations of semantics for weight constraint programs
and aggregate programs, respectively. Based on the level mapping characterizations,
we improve the formulation of loop formulas for these programs. For arbitrary weight
constraint programs, we propose a formulation of loop formulas that does not require
introducing any new atoms; For aggregate programs, we show that the dependency
graph can be constructed in time polynomial in the size of programs.

The level mapping and loop formulas are defined on aggregate SUM . For the ag-
gregates MAX and MIN , direct definition may be desired for intuitiveness. We leave
this for the future work.
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Abstract. Building upon the 2-valued Layered Models semantics for normal
programs, we introduce a refinement — the Layer Supported Models semantics
— which, besides keeping all of LMs’ properties, furthermore respects the Well-
Founded Model.

Keywords: Stable Models, Relevance, Semantics, Layering.

1 Introduction

In [5] we presented the Layered Models semantics, a 2-valued semantics for Normal
Logic Programs (NLPs) which guarantees model existence, enjoys relevance and cu-
mulativity, and is a conservative extension of the Stable Models (SMs) semantics [3].
Although the LMs proposed in [5] already enforces minimality of its models, it does
not ensure compatibility with the Well-Founded Model (WFM). The refinement to the
LMs we now propose — Layer Supported Models (LSMs) semantics — obeys the pro-
viso that each model respects the WFM. To achieve this we simply refine the notion of
layering original of [5]. Intuitively, a program is conceptually partitioned into “layers”
which are subsets of its rules. Rules forming loops are placed in the same layer, while
rules not forming loops are placed in different layers — higher layer rules depending
on lower layer rules, but not vice-versa. An atom is then considered true in a model if
there is some rule for it, at some layer, where all literals in its body supported by rules
of lower layers are also true. Otherwise the atom is false.

The core reason SM semantics fails to guarantee model existence for every NLP is
that the stability condition it imposes on models is impossible to be complied with by
Odd Loops Over Negation (OLONs) — like a ← not a,X1. In fact, the SM semantics
community uses such inability as a means to write Integrity Constraints (ICs).

The LSM semantics provides a semantics to all NLPs. In the a ← not a,X example
above, wheneverX is true, the only LSM is {a,X}. For LSM semantics OLONs are not
ICs. ICs are implemented with rules for reserved atom falsum, of the form falsum ←
X , where X is the body of the IC we wish to prevent being true. This does not prevent
falsum from being in some models. From a theoretical standpoint this means that the
LSM semantics does not include an IC compliance enforcement mechanism. ICs must
be dealt with in two possible ways: either by 1) a syntactic post-processing step, as a
“test phase” after the model generation “generate phase”; or by 2) embedding the IC

1 OLON is a loop with an odd number of default negations in its circular call dependency path.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 450–456, 2009.
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compliance in a query-driven (partial) model computation, where such method can be a
top-down query-solving one a la Prolog, since the LSM semantics enjoys relevance. In
this second case, the user must conjoin query goals with not falsum. If inconsistency
examination is desired, like in the 1) case above, models including falsum can be
discarded a posteriori. This is how LSM semantics separates OLON semantics from IC
compliance.

After notation and background definitions, we present the formal definition of LSM
semantics and overview its properties. The applications afforded by LSMs are all those
of SMs plus those requiring OLONs for model existence, and those where OLONs are
actually employed for problem representation. Work under way concerns the efficient
implementation of the LSM semantics.

2 Background Notation and Definitions

Definition 1. Logic Rule. A Logic Rule r has the general form
H ← B1, . . . , Bn, not C1, . . . , not Cm where H , the Bi and the Cj are atoms.

We call H the head of the rule — also denoted by head(r). And body(r) denotes the set
{B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of r. Throughout this
paper we will use ‘not ’ to denote default negation. When the body of the rule is empty,
we say the head of rule is a fact and we write the rule just as H . A Logic Program (LP
for short) P is a (possibly infinite) set of ground Logic Rules of the form in Definition 1.
In this paper we focus mainly on NLPs, those whose heads of rules are positive literals,
i.e., simple atoms; and there is default negation just in the bodies of the rules. Hence,
when we write simply “program” or “logic program” we mean an NLP.

3 Layering of Logic Programs

The well-known notion of stratification of LPs has been studied and used for decades
now. But the common notion of stratification does not cover all LPs, i.e., there are some
LPs which are non-stratified. The usual syntactic notions of dependency are mainly fo-
cused on atoms. They are based on a dependency graph induced by the rules of the
program. Useful these notions might be, for our purposes they are insufficient as they
leave out important structural information about the call-graph of P . To cover that in-
formation we also define below the notion of a rule’s dependency. Indeed, layering puts
rules in layers, not atoms. An atom B directly depends on atom A in P iff there is at
least one rule with head B and with A or not A in the body. An atom’s dependency is
just the transitive closure of the atom’s direct dependency. A rule directly depends on
atom B iff any of B or not B is in its body. A rule’s dependency is just the transitive
closure of the rule’s direct dependency. The Relevant part of P for some atom A, rep-
resented by RelP (A), is the subset of rules of P with head A plus the set of rules of P
whose heads the atom A depends on, cf. [2]. Likewise for the relevant part for an atom
A notion [2], we define and present the notion of relevant part for a rule r. The Relevant
part of P for rule r, represented by RelP (r), is the set containing the rule r itself plus
the set of rules relevant for each atom r depends on.
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Definition 2. Parts of the body of a rule. Let r = H ← B1, . . . , Bn, not C1, . . . , not
Cm be a rule of P . Then, rl = {Bi, not Cj : Bi depends on H ∧ Cj depends on H}.
Also, rB = {Bi : Bi ∈ (body(r) \ rl)}, and rC = {Cj : not Cj ∈ (body(r) \ rl)}.

Definition 3. HighLayer function. The HighLayer function is defined over a set of
literals: its result is the highest layer number of all the rules for all the literals in the
set, or zero if the set is empty.

Definition 4. Layering of a Logic Program P . Given a logic program P a layering
function L/1 is just any function defined over the rules of P ′, where P ′ is obtained from
P by adding a rule of the form H ← falsum for every atom H with no rules in P ,
assigning each rule r ∈ P ′ a positive integer, such that:

– L(r) = 0 if falsum ∈ body(r), otherwise
– L(r) ≥ max(HighLayer(rl), HighLayer(rB), (HighLayer(rC) + 1))

A layering of program P is a partition P 1, . . . , Pn of P such that P i contains all rules
r having L(r) = i, i.e., those which depend only on the rules in the same layer or layers
below it.

This notion of layering does not correspond to any level-mapping [4], since the later is
defined over atoms, and the former is defined over rules. Also, due to the definition of
dependency, layering does not coincide with stratification [1], nor does it coincide with
the layer definition of [6]. However, when the program at hand is stratified (according
to [1]) it can easily be seen that its respective layering coincides with its stratification.
In this sense, layering, which is always defined, is a generalization of the stratification.

Amongst the several possible layerings of a program P we can always find the least
one, i.e., the layering with least number of layers and where the integers of the layers
are smallest. In the remainder of the paper when referring to the program’s layering we
mean such least layering (easily seen to be unique).

4 Layer Supported Models Semantics

The Layer Supported Models semantics we now present is the result of the two new
notions we introduced: the layering, formally introduced in section 3, which is a gen-
eralization of stratification; and the layered support, as a generalization of classical
support. These two notions are the means to provide the desired 2-valued semantics
which respects the WFM, as we will see below.

An interpretation M of P is classically supported iff every atom a of M is classically
supported in M , i.e., all the literals in the body of some rule for a are true under M in
order for a to be supported under M .

Definition 5. Layer Supported interpretation. An interpretation M of P is layer sup-
ported iff every atom a of M is layer supported in M , and this holds iff a has a rule r
where all literals in (body(r) \ rl) are true in M . Otherwise, it follows that a is false.
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Theorem 1. Classical Support implies Layered Support. Given an NLP P , an inter-
pretation M , and an atom a such that a ∈ M , if a is classically supported in M then a
is also layer supported in M .

Proof. Trivial from the definitions of classical support and layered support. ��
In programs without odd loops layered supported models are classically supported too.

Example 1. Layered Unsupported Loop. Consider program P :
c ← not a a ← c, not b b

The only rule for b is in the first layer of P . Since it is a fact it is always true in
the WFM. Knowing this, the body of the rule for a is false because unsupported (both
classically and layered). Since it is the only rule for a, its truth value is false in the WFM,
and, consequently, c is true in the WFM. This is the intuitively desirable semantics for
P , which corresponds to its LSM semantics. LM and the LSM semantics differences
reside both in their layering notion and the layered support requisite of Def. 5. In this
example, if we used LM semantics, which does not exact layered support, there would
be two models: LM1 = {b, a} and LM2 = {b, c}. {b} is the only minimal model for
the first layer and there are two minimal model extensions for the second layer, as a is
not necessarily false in the LM semantics because Def. 5 is not adopted. Lack of layered
support lets LM semantics fail to comply with the WFM. Note that adding a rule like
b ← a would not affect the semantics of the program, according to LSM. This is so
because, such rule would be placed in the same layer with the rules for a and c, but
leaving the fact rule b in the strictly lower layer.

Intuitively, the minimal layer supported models up to and including a given layer,
respect the minimal layer supported models up to the layers preceding it. It follows triv-
ially that layer supported models are minimal models, by definition. This ensures the
truth assignment to atoms in loops in higher layers is consistent with the truth assign-
ments in loops in lower layers and that these take precedence in their truth labeling. As
a consequence of the layered support requirement, layer supported models of each layer
comply with the WFM of the layers equal to or below it. Combination of the (merely
syntactic) notion of layering and the (semantic) notion of layered support makes the
LSM semantics.

Definition 6. Layer Supported Model of P . Let P 1, . . . , Pn be the least layering of
P . A layer supported interpretation M is a Layer Supported Model of P iff

∀1≤i≤nM |≤i is a minimal layer supported model of ∪1≤j≤i P
j

where M |≤i denotes the restriction of M to heads of rules in layers less or equal to i:
M |≤i ⊆ M ∩ {head(r) : L(r) ≤ i}

The Layer Supported semantics of a program is just the intersection of all of its Layer
Supported Models.

Layered support is a more general notion than that of perfect models [7], with simi-
lar structure. Perfect model semantics talks about “least models” rather than “minimal
models” because in strata there can be no loops and so there is always a unique least
model which is also the minimal one. Layers, as opposed to strata, may contain loops
and thus there is not always a least model, so layers resort to minimal models, and these
are guaranteed to exist (it is well known every NLP has minimal models).
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It is worth noting that atoms with no rules and appearing in the bodies of some rule
are necessarily “placed” in the lowest layer: an atom a having no rules is equivalent to
having the single rule a ← falsum. Any minimal model of this layer will consider
the heads of such rules to be false. This ensures compliance with the Closed World
Assumption (CWA).

In [5] the authors present an example (7) where three alternative joint vacation solu-
tions are found by the LM semantics, for a vacation problem modeled by an OLON. The
solutions found actually coincide with those found by the LSM semantics. We recall
now a syntactically similar example (from [8]) but with different intended semantics,
and show how it can be attained in LSM by means of ICs.

Example 2. Working example [8].

tired ← not sleep sleep ← not work work ← not tired

As in the example 7 of [5], the LSM semantics would provide three solutions for
the above program: {work, tired}, {work, sleep}, {sleep, tired}. Although some (or
even all!) of these solutions might be actually plausible in a real world case, they are not,
in general, the intended semantics for this example. With the LSM semantics, the way to
prune away some (or all) of these solutions is by means of ICs. For example, to eliminate
the {work, sleep} solution we would just need to add the IC falsum ← work, sleep.

The principle used by LSMs to provide semantics to any NLP — whether with
OLONs or not — is to accept all, and only, the minimal models that are layer supported,
i.e., that respect the layers of the program. The principle used by SMs to provide se-
mantics to only some NLPs is a “stability” (fixed-point) condition imposed on the SMs
by the Gelfond-Lifschitz operator.

5 Properties of the Layer Supported Models Semantics

Although the definition of the LSMs semantics is different from the LMs of [5], this
new refinement enjoys the desirable properties of the LMs semantics, namely: guarantee
of model existence, relevance, cumulativity, and being a conservative extension of the
SMs semantics. Moreover, and this is the main contribution of the LSMs semantics, it
respects the Well-Founded Model.

Due to lack of space, the complexity analysis of this semantics is left out of this
paper. Nonetheless, a brief note is due. Model existence is guaranteed for every NLP,
hence the complexity of finding if one LSM exists is trivial, when compared to SMs
semantics. Brave reasoning — finding if there is any model of the program where some
atom a is true — is an intrinsically NP-hard task from the computational complexity
point of view. But since LSM semantics enjoys relevance, the computational scope of
this task can be reduced to consider only RelP (a), instead of the whole P . From a
practical standpoint, this can have a significant impact in the performance of concrete
applications. Cautious reasoning (finding out if some atom a is in all models) in the
LSM semantics should have the same computational complexity as in the SMs, i.e.,
coNP-complete.
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5.1 Respect for the Well-Founded Model

Definition 7. Interpretation M of P respects the WFM of P . An interpretation M
respects the WFM of P iff M contains the set of all the true atoms of the WFM of P ,
and it contains no false atoms of the WFM of P .

Theorem 2. Layer Supported Models respect the WFM. Let P be an NLP, and P≤i

denote
⋃

1≤j≤i P
j , where P j is P ’s j layer. Each LSM M |≤i of P≤i, where M ⊇

M |≤i, respects the WFM of P i ∪M |<i.

Proof. By hypothesis, each M |≤i is a full LSM of P≤i. Consider P 1. Any M |≤1 con-
tains the facts of P , and their direct positive consequences, since the rules for all of
these are necessarily placed in the first layer in the least layering of P . Hence, M |≤1
contains all the true atoms of the WFM of P 1. Layer 1 also contains whichever loops
that do not depend on any other atoms besides those which are the heads of the rules
forming the loop. Any such loops having no negative literals in the bodies are determin-
istic and, therefore, the heads of the rules forming the loop will be all true or all false
in the WFM of P 1, depending on whether the bodies are fully supported by facts in the
same layer, or not, and, in the latter case, if the rules are not involved in other types of
loop making their heads undefined. In any case, an LSM of this layer will by necessity
contain all the true atoms of the WFM of P 1. On the other hand, assume there is some
atom b which is false in the WFM of P 1. b being false in the WFM means that either b
has no rules or that every rule for b has an unsatisfiable body in P 1. In the first case, by
definition 6 we know that b cannot be in any LSM. In the second case, every unsatisfi-
able body is necessarily unsupported, both classically and layered. Hence, b cannot be
in any LSM of P 1. This means that any LSM contains no atoms false in the WFM of
P 1, and, therefore, that they must respect the WFM of P 1.

By hypothesis M |≤i+1 is an LSM of P≤i+1 iff M |≤i+1 ⊇ M |≤i, for some LSM
M |≤i of P≤i, which means the LSMs M |≤i+1 of P≤i+1 are exactly the LSMs M |≤i+1
of P i+1 ∪M |≤i. Adding the M |≤i atoms as facts imposes them as true in the WFM of
P i+1 ∪ M |≤i. The then deterministically true consequences of layer i + 1 — the true
atoms of the WFM of P i+1 ∪ M |≤i — become necessarily present in every minimal
model of P i+1 ∪ M |≤i, and therefore in its every LSM M |≤i+1. On the other hand,
every atom b false in the WFM of P i+1 ∪ M |≤i has now unsatisfiable bodies in all its
rules (up to this layer i+1). Hence, b cannot be in any LSM of P i+1∪M |≤i. Therefore,
every M |≤i+1 respects the WFM of P i+1 ∪M |≤i. Hence, more generally, every M |≤i

respects the WFM of P i ∪M |<i

��
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Abstract. We apply ASP to model validation in a CASE setting, where models
are UML class diagrams and object diagrams are called “snapshots”. We present
the design and implementation of MSG, a snapshot generator for UML models
that employs DLV-Complex as a generator engine, the answer sets representing
the legal snapshots.

1 Introduction

The object of this research is the application of ASP to model validation in a CASE
setting, in particular evaluating the “correctness” of formal specifications (or models)
with respect to their requirements. Here, models are UML class diagrams [8] with con-
straints, typically written in OCL: a diagram should represent an abstraction of the
problem domain; the objects populating a system state should represent a “snapshot”
of a corresponding counterpart in the modeled world. In the UML, snapshots are rep-
resented by object diagrams. The legal snapshots are those satisfying the constraints
that can be attached to the model to better specify the desired properties. In this con-
text, tools for snapshot generation (SG) are an important part of the “weaponry” of
light-weight formal methods. In fact, the relevance of SG for validation and testing in
OO software development is widely acknowledged and a relevant part of the recently
branded field of “Model-Based Testing” [4]. The latter ranges from model animation
to ways of establishing partial certification such as model consistency and constraints
independence checking.

This paper presents the design and implementation of a snapshot generator for UML
models called “MSG” (read as “Message” and standing for “Milano Snapshot Gener-
ator”, cooml.dsi.unimi.it/msg), which employs DLV-Complex [3] as a generator
engine, the answer sets representing the legal snapshots. This is integrated in a sys-
tem that takes as input any UML class diagram in XMI format and eventually displays
back to the user the answers, i.e. the snapshots in the same format. The main theoret-
ical contribution consists in a specialized representation of UML class diagrams into
DLV-Complex, tailored to the fully automatic generation of non isomorphic snapshots
The representation makes essential use of DLV-Complex’s external functions, but still
requires the introduction of an intermediate language (DLVExi) adding polymorphic
types and existential quantification [5].

Background on UML. The Unified Modeling Language (UML) comprises a variety
of model types for describing system properties, both static (e.g. class models, object
models) and dynamic (e.g. state-machines, activity graphs). One of the more prominent

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 457–463, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

cooml.dsi.unimi.it/msg


458 M. Ornaghi et al.

(a) (b)

Fig. 1. A class diagram of an Internet Service Provider (a) and a snapshot for it (b)

model types is the class model (visualized as a class diagram) used to represent the
underlying data model of a system in an object-oriented manner. A class diagram con-
sists of a set of classes (rectangles) and relations among them, in particular associations
(lines connecting rectangles), as shown in our running example (Fig. 1 (a)), a simpli-
fied version of the ISP example from http://www.brucker.ch/projects/hol-ocl/.
In this scenario a Provider offers some Service(s) at a certain price. A Customer
chooses one of these services and she is charged a Bill according to her SurfRecord
and the download rate. According to the UML “type-instance” dichotomy [8], classes,
associations and class diagrams represent “types”. Classes instantiate over “objects”,
associations over “links” and class diagrams over object diagrams, called “snapshots”.
Fig. 1 (b) shows a snapshot, where a providerp (precisely, an object p of class Provider)
offers two services s0, s1 and has two clients c0, c1, where c0 chooses s0, and so on.
Association ends are decorated with various multiplicities. For example, the multiplicity
1..* at the Service-end of the association offers denotes that a provider may offer
one or more services, while 1 at the Provider-end indicates that a service is offered by
one provider.

We remark that we can omit oids (object identifiers) in a snapshot. One way to look
at this is considering oids as abstractions of memory addresses, which are transparent in
OO programming. Thus, two snapshots of the same class diagram should be considered
equal if they are isomorphic, where, roughly speaking, a snapshot isomorphism is a
bijective map among oids that preserves the navigations. For example, if in the ISP
snapshot we map c0 into c1 and c1 into c0, we get an isomorphic copy, i.e., morally,
the “same” snapshot.

2 Model Validation and Snapshot Generation

Since requirements are informal, model validation can be only empirical, i.e., it is per-
formed by comparing the formal model with the user’s expectations. In this context, a
snapshot generation tool (SGT) plays an important role. A SGT has two inputs: a model
M and a set G of generation requests (GR), needed to make the number of snapshots fi-
nite. SGT output the set of legal snapshots that satisfy G. It allows us to perform various
“experiments”. To name one, the mere existence of a snapshot ensures that the model
is consistent with its constraints.

Fig. 2 shows the architecture and the data-flow of MSG. We start with the open source
UML tool BOUML (http://bouml.free.fr/) to design diagrams and to generate the

http://www.brucker.ch/projects/hol-ocl/
http://bouml.free.fr/
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corresponding XMI representation. At the end of SG, BOUML displays the snapshots
produced by the as2xmi module from the XMI format.

UML tool
BOUML

XMI model XMI2DLVEXI
  (Java)

DLVExi programGen Requests

TODLV
(Prolog)

DLV-Complex 
Progran

DLV EngineAnswer sets

XMI snapshots

as2xmi (Java)

Fig. 2. The data flow view of the system

The translation from XMI to DLV
has been divided in two phases, using
an intermediate language DLVExi. The
latter allows us to decouple the repre-
sentation of XMI models in logic from
the definition and implementation of the
generation request language. The Java
component XMI2DLVEXI translates an
XMI model M into a DLVExi program
EM, which is a faithful representation of
M in the following sense: every legal
snapshot of M is represented by an “an-
swer set” of EM and every “answer set”
of EM represents a legal snapshot of M. The component TODLV translates the program
EM and the generation requirements G into a DLV-Complex program PM,G. The answer
sets of PM,G are the answer sets of EM that satisfy G. DLV-Complex [2] is used as the
generator engine.

3 Representing UML into ASP

In this section we discuss some encoding techniques for UML+OCL class diagrams
in DLV-Complex. We do this via an intermediate language, DLVExi, which can be
seen as an extension of DLV-Complex with a ML-like polymorphic type system and
allowing conjunction and existential quantification in the head of clauses, as shown by
the following fragment of trel, one of the DLVExi encodings of the UML with which
we have experimented.

type obj(C) --> o(C). type typeId(X) --> tid.
type mult --> m(int,int); star(int); union(mult,mult).
type association(C1,C2) --> ass(assoc_name). ...
pred object(obj(C)), is_association(association(C1,C2)), is_class(class(C)),

link(association(C1,C2),obj(C1),obj(C2)), att_rec(obj(C),T),
mLeft(association(C1,C2),obj(C2),int),
mRight(association(C1,C2),obj(C1),int),
leftMult(association(C1,C2),mult),
rightMult(association(C1,C2),mult), violates(int,mult), ...

trel(C1:type, C2:type, X:C1, Y:C2, A:association(C1,C2)) isunit {
object([C1],o(X)) v neg(object([C1],o(X))) if is_class(tid([C1])), %g1
link(A,o(X),o(Y)) v neg(link(A,o(X),o(Y))) if %g2

is_association(A) & object(o(X)) & object(o(Y)),
exi([v], att_rec(o(X),v)) if object(o(X)), %ec
false if leftMult(A,M)&object(o(Y))&mLeft(A,o(Y),N)&violates(N,M), %t1
false if rightMult(A,M)&object(o(X))&mRight(A,o(X),N)&violates(N,M) %t2}.

Before explaining trel, some brief comments on the DLVExi language are in or-
der. Types are expressed analogously to datatype declarations in functional program-
ming languages, where --> productions introduce polymorphic types by listing the
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type constructors (also called generators). For example, mult (multiplicity) is gener-
ated by m(int,int), star(int) and, recursively, union(mult,mult). The ground
mult-terms represent multiplicities, for example union(m(1,2),star(5)) represents
1..2, 5..*. One use of (polymorphic) types is as wrappers, abstracting away from
the types of the specific UML model. In particular, obj(C) is the type of the oids for
a class type C and association(C1,C2) the type of the associations between class C1
(left hand side) and C2 (right hand side). For the sake of type safe grounding [5], every
ground term must have a unique type. To this aim, [5] introduces annotated functions
fJ(. . . ) and predicates pJ(. . . ). In our concrete syntax, the annotations J are enclosed be-
tween square brackets. For example, tid([C1]) is the concrete syntax of tidC1, while
object([C1],o(X)) is objectC1(o(X)). Annotations may be left understood and are
reconstructed by the system. If multiple annotations are possible, the system produces
an error message. Polymorphic types allow us to decouple the general representation
choices from the signature of the specific UML model. In this way, we can represent a
UML model M by a DLVExi theory TM = R∪EM, where R is a general “representa-
tion theory”, and an “encoding theory” EM representing M in R. The theory R does not
depend on M, but only on the representation choices and the generation strategy. For
example, the above trel corresponds to a relational representation of the associations,
by means of the predicates object(O) (“O is a live object”) and link(A,O1,O2) (“O1
and O2 are linked by the association A”). According to the “guess and test” methodol-
ogy of DLV [9], live objects and links are guessed by the rules %g1 and %g2, while %t1
and %t2 “test” the multiplicity constraints. The XMI2DLVEXI component translates M
into the encoding theory EM . For example, part of the ISP-encoding (Fig. 1 (a)) is:

type customer. type bill. ... % the types for the ISP classes
type customer_atb --> rec(id:int, name:string). % the types for the
type bill_atb --> rec(amount:float). % attribute-records
... ISP isunit {

is_class(tid([bill])) if true, % "bill" identifies a class-type
...
is_association(ass([customer,bill],charged)) if true,
% "charged" is the name of an association between customer and bill
...
leftMult(ass([customer,bill],charged),m(1,1)) if true,
% the multiplicity on the customer association end of "charged" is 1
% ....}

Inputs to the TODLV component are the theory TM = R∪EM and a set GR of generation
requests. The output is a DLV-Complex program. The generation requests suggest a
finite set of possible object identifiers and a finite set of attribute values, in order to get
finitely many models. Examples of GR for customer and bill are:

type customer --> c1; c2. type bill --> b1; b2. %i
att_rec([customer], c1,V) if V=rec(0,ted), %ii
att_rec([customer], c2,V) if V=rec(1,mary), att_rec([bill],B,V)
if member(V,[rec(12.3), rec(10.5)]), ...

By %i, we fix a finite set of possible oids, while %ii gives a finite set of “witness-choices”
for the existential variable v of the clause %ec. The TODLV component replaces the
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existential formula with a disjunction over the witness-choices, as shown in the clauses
%c4 of the following DLV-Complex program:

of(obj(C),o(X)) :- is_class([C],tid([C])), of(C,X). ... %c1
object([C],o(X)) v -object([C],o(X)) :- of(C,X),is_class([C],tid([C])).
link([C1,C2], A, o(X), o(Y)) v -link([C1,C2],A, o(X), o(Y)))) :-

is_association([C1,C2],A), object([C1],o(X)), object([C2],o(Y)).
...
is_class([bill],tid([bill])). ... %c2
is_association([customer,bill], ass([customer,bill],charged)).
....
of(customer,c1). of(customer,c2). of(bill,b1). of(bill,b2). %c3
....
att_rec([customer],c1,rec(0,john)). att_rec([customer],c2,rec(1,mary)).%c4
att_rec([bill], B, rec(12.3)) v att_rec([bill], B, rec(10.5)) :-

object([bill],o(B)). ...

Clauses c1 are the DLV-Complex translation of trel (we use of(C,X) as “X is of type
C”), excluding %ec. Clauses c2 comes from the ISP-encoding, c3 from the generation
requests for the oids and c4 from the existential clause %ec and the related genera-
tion requests. We remark that TODLV does not perform grounding, which is left to
DLV-Complex. Type and annotation reconstruction play a central role, since they en-
force the correct grounding of polymorphic clauses. For example, the annotations of
is association clauses of c2 are used to instantiate the type-variables C1, C2 in the
link-clause.

Finally we launch DLV-Complex with the above program, and we get back a set
of stable models that represent the possible snapshots. Such models can be visual-
ized as object diagrams using BOUML or a graphical tool. Here we show a snapshot
that is consistent with the given specifications, yet does not fit with our expectations.

c0: Customer

b1: Bill

r1: SurfRecord

b0: Bill

r0: SurfRecord

c1: Customer

p: Provider

This would suggest some problem in the
modeling phase. Here, customer c0 is as-
sociated with b0, and r1, while c1 is asso-
ciated with b1 and r0. This is surprising
since, for instance, r1 is the surfrecord of
c0, but r1 and c0 refer to different bills.
This brings about very well the useful-
ness of lightweight formal methods and
model validation in particular. One could
do all sort of heavy functional verifica-
tion via interactive theorem proving only
to discover that the initial model was under-specified and required further constraints.
Without some clever notion of proof reuse, this would have meant a lot of wasted effort.

We conclude with a final comment concerning the intermediate language DLVExi.
It has been introduced to enhance the expressive power of DLV-Complex, in order to
define different representations of UML, of which trel is an example, minimizing
the impact on the XMI2DLVEXI and TODLV components and on the GR language
and its semantics. In particular, we have developed a functional representation tfun of
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the associations, not explained here for lack of space. The tfun representation drasti-
cally reduces the number of the generated isomorphic snapshots. For example, without
generating the attributes, with 1 provider and at most 2 customers we have 100 snap-
shots with trel, while only 6 with tfun. The non isomorphic snapshots are 4.

4 Related and Future Work

Animation tools for UML diagrams such as state-chart, activity etc. are a commercial
enterprise. Among academics, the USE tool [6] claims to be the only one supporting
automatic SG; differently from us, SG requires the user to write Pascal-like procedures
in a dedicated language. The issue of isomorphic models does not seem to be addressed
and the performances of USE are very sensitive to the order of objects and attribute
assignments [1]. Other animation and validation tools support different languages. Al-
loy [7] is based on first-order relational logic. The Alloy Analyzer compiles a formula
in the Alloy language into quantifier-free booleans and feed to a SAT solver. According
to [1], the Alloy Analyzer is the leading system for generation of instances of invari-
ants, animation of the execution of operations and checking of user-specified properties.
However, Alloy is not formally object-oriented, nor does it support UML and OCL.

We have described the design and implementation of MSG, a tool using ASP for
MBT in the context of model validation of UML+OCL class diagrams. While the sys-
tem is not yet ready to be released our preliminary experiments have shown that it
compares favourably with the functionalities and the statistics reported in [1] w.r.t. our
main “competitor”, USE. Our main theoretical contribution has been the introduction
of an intermediate language and of a representation of UML class diagrams tailored to
the fully automatic generation of non isomorphic snapshots.

Future work include engineering the implementation, but also improve the represen-
tation, especially w.r.t. cyclic structures: the functional encoding yields rational terms.
Possible approaches are coinductive techniques or identifying isomorphic graphs via
classes of equivalence w.r.t. oid and link names, using a nameless representation. We
plan to integrate one of the available compilers for OCL and address validation of
pre/post conditions of methods supporting both forward and backward animation.
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Abstract. We present results about the logical consequence test under
classical logic w.r.t. the Theory of Parameterized Complexity and Com-
putation [1]. We show how a normal logic program P can partitioned in
subset of clauses such that we can define an algorithm proving sets of
atoms which complexity is bounded by a relation exponential in terms of
a fixed parameter k and polynomial on the original size of the problem,
namely the size of P . As example of application we study the model
checking problem w.r.t. the P-Stable semantics.

1 Introduction

In this paper, we study the P-Stable model checking problem to provide effi-
cient methods for its implementation. We present some new results based on
the application of modular evaluation techniques to our approach, which allow
for further efficiency improvements by splitting the process of P-Stable model
checking. Our approach is motivated by the theory of parameterized computa-
tion (TPC), for an extensive survey of the argument refer for example to the
work of Chen [1]. A previous result which relates Logic Programming, Stable
semantics and TPC can be found in the work of Gottlob et al. [11]. We do not
provide an introduction about logic programming semantics and their relations
with different types of logics, the interested reader can find an extensive survey
of the subject in the following papers [5,3,10,2,6,7].

2 Background

A vocabulary L is a set of elements that we call atoms. A literal is an atom,
a, or the negation of an atom ¬a. Given a set of atoms {a1, ..., an}, we write
¬{a1, ..., an} to denote the set of atoms {¬a1, ...,¬an}. A normal clause, C, is
denoted: a ← l1, . . . , ln, where n ≥ 0, a is an atom, and each li is a literal. When
n = 0 the clause is an abbreviation of the atom a. Sometimes, we denote a clause
C by a ← B+, ¬B−, where B+ contains all the positive body atoms and B−

contains all the negative body atoms. We also use body(C) to denote B+ ∪¬B−.
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A normal program P is a finite set of normal clauses, formally a normal program
is a conjunction of its normal clauses.

The following is a program example that we call EXA:

e ← c. c ← e.

a ← ¬b, c. b ← ¬a,¬e.
d ← b.

We denote by LP the the set of atoms that occur in P. We denote by HEAD(P )
the set {a|a ← B+, ¬B− ∈ P}. Let P be a program and M a set of atoms. We
write P |= M if the conjunction of the atoms in M is a logical consequence of
P . When M is the empty set the conjunction is interpreted as the formula �
(the true constant). Note that P |= ∅ is true for every program P .

We will make a general assumption. Let P be program, then for every atom
x that occurs in LP then x ∈ HEAD(P ). We can always add some tautologies
of the form x ← x , for certain atoms x, in order to ensure this property.

Given L, an interpretation IL is a boolean function with domain L. As usual,
we use interpretations to evaluate logical formulas. Sometimes, when the domain
is understood, we drop the subscript of the interpretation. A model M of a
program P is an interpretation, such that each formula in P evaluates to true.
Given two interpretations IL1 , JL2 such that L1 ⊆ L2, we say that JL2 extends
IL1 if for every x ∈ L1, I(x) = J(x). In this case, we also say that IL1 is the
restriction of JL2 w.r.t IL1 . Since interpretations are functions, and functions
are sets (a set of pairs) we can apply the union of two interpretations. Clearly
if both interpretations are defined over disjoint domains, then the union is an
interpretation with domain equal to the union of the domains of their respective
interpretations. Finally, given a set of atoms M and a vocabulary L where M ⊆
L. We define the interpretation IM

L as:

IM
L (x) =

{
1 if x ∈ M
0 if x ∈ L \ M

The P-Stable semantics is defined in terms of a fixed point operator and classical
logic [3].

Definition 1. Let P be a normal program and M be a set of atoms. We define:

RED(P,M) = {h ← B+,¬(B− ∩M) | h ← B+,¬B− ∈ P}

Definition 2. Let P be a normal program and M be a set of atoms. We say
that M is a p-stable model of P if RED(P,M) |= M and IM

L is a model of P .

Let us consider again our example EXA, and let M be {b, d}. Then one can
verify that M is a p-stable model of P . First, observe that M is a model of P .
Note that RED(P,M) is:
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e ← c. c ← e.

a ← ¬b, c. b ← .

d ← b.

It is easy to check that RED(P,M) |= b ∧ d.

3 Reductions

In this section we state a set of results w.r.t. programs proving atoms. These
results constitute the basis for the formulation of a general algorithm for the test
of logical consequence which will be given in the next section.

Definition 3. Let P be a program and M,N be set of atoms. We define:
REDp(P,M) = {a ← B+ \M, ¬B− : a ← B+, ¬B− ∈ P,B− ∩M = ∅}.
REDn(P,M) = {a ← B+, ¬B− : a ← B+, ¬B− ∈ P,B+ ∩M = ∅}.
REDU(P,M,N) = REDn(REDp(P,M), N).

Consider again example EXA. Let M = {a, c} and N = {b, e}. Then, we have

REDp(EXA,M) : e ← . REDn(EXA,N) : e ← c.

c ← e. a ← ¬b, c.
a ← ¬b. b ← ¬a,¬e.
d ← b.

REDU(P,M,N) : e ← .

a ← ¬b.

For reason of space we present in this section only the major result of our study.

Theorem 1. Let P1, P2 two normal programs. Let M = {w : P1 |= w} and
N = {w ∈ L(P1) : P1 �|= w}). Suppose the following conditions holds:

1. For every atom x, x ∈ L(P1) then x /∈ Head(P2).
2. For every atom z that occurs negated in P1 then z ∈ M .
3. For every atom z that occurs negated in P2 and z ∈ L(P1) then z ∈ M .
4. Let y be any atom.

Then P1 ∪ P2 |= y iff P1 ∪REDU(P2,M,N) |= y.

In the following, we assume the following notation by default. If P1, P2 are pro-
grams, M,N sets of atoms. Then, M1 = M ∩ HEAD(P1), N1 = N ∩ L(P1),
M2 = M ∩HEAD(P2), and N2 = N ∩ L(P2).

Corollary 1. Let P1, P2 two normal programs. Let L be the set of atoms that
occur in P1 ∪ P2. Suppose that for every atom x ∈ Head(P2) then x does not
occur in P1. Let M be a set of atoms such that M ⊆ L. Let N = L \ M . For
every atom z that occurs negated in P then z ∈ M . Let IL be the interpretation
defined as I(x) = 1 iff x ∈ M . Assume that I models P1∪P2. Then P1∪P2 |= M
iff P1 |= M1 and REDU(P2,M1, N1) |= M2.
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4 Relevant Modules of a Program

A program P induces a notion of dependency between atoms from LP as we
now define.

Definition 4. Let r be a normal clauses, a ∈ H(r) and b ∈ B(r). We say that
a depends immediately on b.

For our example EXA, e depends immediately on c, c depends immediately on
e and so on.

The two place relation depends on is the transitive closure of depends
immediately on. For instance, in example EXA, we have that d depends on c.

We define an equivalence relation ≡ between atoms of LP as follow: x ≡ y
iff x = y or (x depends-on y and y depends-on x). We write [x] to denote the
equivalent class induced by the atom x. We use rel to the the partial order
induced by ≡ on its equivalent classes. So, [x] rel [y] iff y depends-on x. For
every program, we can always define a linear order among our equivalent classes
by applying a topological sort. We use ≤ to denote such total order. Call an
atom to of order 0 , if [a] is minimal in ≤. If, for some atom a, the maximal
order of the atoms of which a depends is n, then a is called to be of order n+1.
We say that a program P is of order n if n is the maximum order of its atoms.
For i, 0 ≤ i ≤ n, we define Ai as the set of atoms of order i. For our example
EXA, A0 = {e, c}, A1 = {a, b}, A2 = {d}.

We can break a program P (of order n) into the disjoint union of programs
Pi (0 ≤ i ≤ n ) such that Pi is the set of rules such that the head of each atom
if of order i (with respect to P ). We say that P0...Pn are the relevant modules
of P . Consider again our program EXA:

Our linear order is {e, c} ≤ {a, b} ≤ {d}. Then, we have

EXA0 : e ← c. EXA1 : a ← ¬b, c. EXA2 : d ← b

c ← e. b ← ¬a,¬e.

Definition 5. Let P1, ..., Pn be a partition of relevant modules of a program P .
Then Mi is defined as M ∩HEAD(Pi). Ni is defined as HEAD(Pi)\Mi. MMi

is defined as
⋃

1≤j≤i Mj. NNi is defined as
⋃

1≤j≤i Nj.

We can now formalize an algorithm for the test of logical consequence using
the result of Corollary 1 and the partition of a program in relevant modules. In
Algorithm 1 we assume already done all the polynomial preprocessing phase of
finding the relevant modules and building a topological order [4].

Theorem 2. Let P be a normal logic program and M ⊆ L(P ) a set of atoms
such that for every atom z that occurs negated in P then z ∈ M . Let {P1, . . . , Pn}
be the partition of relevant modules of P , we define k = |L(Pmax)|, where Pmax ∈
{P1, . . . , Pn} is such that |L(Pmax)| ≥ |L(Pi)| for i = 1, . . . , n. Let IL be the
interpretation defined as I(x) = 1 iff x ∈ M . Let assume that I models P . Then,
Algorithm 1 with P , M and {P1, . . . , Pn} as input performs in time O(n2k +
(nk)2).
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input : A normal logic program P , a set of atoms M ⊆ L(P ) such that for
every atom z that occurs negated in P then z ∈ M and such that
there exist an interpretation IM

L modeling P . A partition
{P1, . . . , Pn} of relevant modules of P in topological order.

output: TRUE if P |= M , FALSE if P � M .

for i ← 1 to n do

Pi ← REDU(Pi, MMi−1, NNi−1);
if Pi � Mi then

return FALSE;
end

end
return TRUE;

Algorithm 1. Test for logical consequence

Observe that if the given k is small the algorithm is efficient. For a given program
P , we also say that the program has parameter k. If k is a given constant we
let Ck the class of of programs such that the parameter of each program in Ck

is less or equal to k. Then the decision problem of whether P |= M (where M
satisfies the restrictions of the last theorem) is polynomial time computable.

5 Deciding Whether M Is a P-Stable Model of a Normal
Program

We study the problem w.r.t. the less general Corollary 1 because more interesting
from the point of view of Definition 2. Let consider the following normal program:

P : a ← not b. (1) d ← e. (5)
b ← a. (2) d ← not e. (6)
b ← c. (3) e ← d. (7)
a ← not d. (4) c ← not e, c. (8)

We can individuate for P the following partition in relevant modules: P1 =
{(1), (2), (3), (4)}, P2 = {(5), (6), (7)}, P3 = {(8)}. We have P2 ≤ P1, P2 ≤ P3,
P3 ≤ P1. Consider the following P-Stable semantics decision problem. Let P be
a program in Ck. Let M be a set of atoms, such that M ⊆ L, where L is the
vocabulary of P . Is M a P-Stable model of P?

We can state the following result:

Theorem 3. The P-Stable semantics k-decision problem is polynomal time com-
putable.

Given the above program P and the set of atoms M = {e, d, b} we can verify
that IM

L is a model of P . Given the topological order [P2, P3, P1] of the relevant
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modules of P , we can test if RED(P,M) |= M by testing if: P2 |= {e, d},
REDU(P3, {e, d}, ∅) |= ∅ and REDU(P1, {e, d}, {c} |= {b}.

6 Conclusions

We presented an algorithm for the test of logical consequence exploiting the
subdivision of a program in relevant modules. Such an algorithm has a com-
putational complexity bounded by a relation exponential in a parameter k and
polynomial in the size of the input. We showed an example of application w.r.t.
P-Stable semantics.
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Abstract. This paper studies a default logic for social reasoning in mul-
tiagent systems. A social default theory is a collection of default theories
with which each agent reasons and behaves by taking attitudes of other
agents into account. The semantics of a social default theory is given
as social extensions which represent the agreement of beliefs of individ-
ual agents in a society. We show the use of social default theories for
representing social attitudes of agents and for reasoning in cooperative
planning and negotiation among multiple agents.

1 Introduction

In a multiagent society, individual agents are requested to act interactively with
other agents. Any problem, which is not solved by a single agent, could be solved
cooperatively by exchanging information or sharing resources. It is usually the
case, however, that an agent does not always have exact information of other
agents. In this case, an agent performs default reasoning on belief states of other
agents. For instance, suppose that two agents 1 and 2 live in the same apartment
and share a car. The agent 1 usually uses the car for shopping if the agent 2
does not use it. The agent 2, on the other hand, normally uses the car to go to
a school for picking up her child if the agent 1 does not use it. In this situation,
the action of one agent depends on the action of another agent, but each agent
does not know the exact plan of another agent. One day, the agent 1 plans to
go shopping around noon. She knows that the agent 2 usually uses the car in
the afternoon, then she goes to a parking lot. If she finds a car at the parking,
she can use it; otherwise, she gives up shopping or waits for the agent 2 to come
back. In this example, the agent 1 performs default reasoning on the behavior
of another agent and takes an action.

A default theory [6] provides a logic for representing and reasoning with in-
complete belief of an agent, so that it is natural to represent incomplete beliefs
of multiple agents as a collection of default theories. In this case, an individual
default theory contains default assumption on the beliefs of other agents as well
as assumption on his/her own belief. A default theory has an extension which
represents a collection of beliefs of an agent. In the presence of multiple de-
fault theories, the notion of extensions would be extended to those representing
beliefs consented by every agent. To construct a logic for default reasoning in
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multiagent systems, this paper introduces the framework of social default the-
ories . We show the use of social default theories for representing a variety of
social attitudes of individual agents, and for reasoning in cooperative planning
and negotiation among multiple agents.

2 Social Default Theory

In this paper we consider theories represented by a propositional logic language.
Every propositional atom has an annotation representing an agent identifier.
For a propositional variable p in the language and an integer i, pi is called an
annotated atom. An annotated formula is inductively defined as follows: (i) An
annotated atom pi is an annotated formula. (ii) If α is an annotated formula, so
is ¬α. (iii) If α and β are annotated formulas, so are α ∨ β, α ∧ β, α ⊃ β, and
α ≡ β. The meanings of logical connectives are the same as those in classical
logic. Annotation is introduced to distinguish beliefs among different agents, so
the meaning of a formula, pi ∨ qi for instance, is equivalent to the formula p∨ q
that is a belief of the agent i. Note that two annotated atoms pi and pj represent
different formulas, so pi∧¬pj is consistent as far as i �= j. An annotated formula α
in which every atom in α has the annotation i is called an i-annotated formula.
An annotated formula is simply said a formula hereafter. F is the set of all
formulas in the language, and Fi represents the set of all i-annotated formulas
(Fi ⊆ F). A multiagent society is a finite set of agents. Formally, a society is
represented by a social default theory defined as follows.

Definition 1. (social default theory) A social default theory (SDT, for short)
S is a tuple of theories (Δ1, . . . , Δm, Γ ) defined as follows.1

1. Each Δi (1 ≤ i ≤ m) is a default theory which is a finite set of default rules
δ = α:β1,...,βn

γ where α ∈ F and γ ∈ Fi, and for each 1 ≤ j ≤ n there
is some 1 ≤ k ≤ m such that βj ∈ Fk. α, β1, . . . , βn, and γ are called a
prerequisite, justifications and a consequent , respectively. A default rule δ is
called a social default rule if its justifications contain at least one formula
βj ∈ Fk such that k �= i. A default rule :

γ is identified with the formula γ.
2. Γ is a finite set of default rules such that each default rule in Γ has the

consequent γ = false. Any default rule in Γ is called a social constraint .

Each default theory Δi in S represents the set of beliefs of an individual agent in
the society. By contrast, Γ represents constraints that each agent must obey in
the society. Informally, the default rule δ means that “if an agent i believes α, and
each of β1, . . . , βn is consistently assumed with respect to the beliefs of agents
k (1 ≤ k ≤ m), then the agent i believes γ”. Note that in Δi the prerequisite
and the justifications of any default rule may contain beliefs of other agents as
well as beliefs of the agent i, while the consequent only contains beliefs of the
agent i. Beliefs of other agents in the prerequisite represent strong conditions
which affect the application of the default rule, while those in the justification
represent weak conditions to reach the conclusion.
1 We define a default theory as in [5].
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Example 1. Compare Δ1 = { ¬anti-smoker3:
smoke1 } and Δ2 = { :¬anti-smoker3

smoke2 }. In
Δ1 the agent 1 smokes if it is known that the agent 3 is not an anti-smoker. In
Δ2, on the other hand, the agent 2 smokes unless the agent 3 is known to be an
anti-smoker. In this sense, the social attitude of the agent 1 is more considerate
than that of the agent 2.

Thus, SDTs can represent different social attitudes of agents. In this paper, a
default theory Δi is identified with an agent i, and an SDT S is identified with a
society. If the set of social constraints is empty, (Δ1, . . . , Δm, ∅ ) is simply written
as (Δ1, . . . , Δm ). In an SDT S = (Δ1, . . . , Δm, Γ ), the notion of extension for
each Δi (1 ≤ i ≤ m) is defined as usual [6]. A default theory Δi is consistent if
it has a consistent extension; otherwise, it is inconsistent. An SDT S is rational
if every Δi is consistent. In an SDT an individual agent would have its own
extensions, while the society would also have extensions.

Definition 2. (social extension) A set E of formulas is a social extension of an
SDT S = (Δ1, . . . , Δm, Γ ) if E is an extension of the default theory

⋃m
i=1 Δi∪Γ .

A social extension represents a collection of beliefs of individual agents, which
are consented by each agent and accord with constraints in the society.

Example 2. The car-sharing example in the introduction is represented by the
SDT S = (Δ1, Δ2) where Δ1 = { shopping1, shopping1 : use car1,¬use car2

use car1 } and
Δ2 = { school2, school2: use car2,¬use car1

use car2 }. Then, S has two social extensions:
E1 = Th({ shopping1, school2, use car1 }) and E2 = Th({ shopping1, school2,
use car2 }), which represent two possibilities of using a shared car.

Note that in Example 2 if (Δ1, Δ2) is replaced with (Δ′
1, Δ

′
2, Γ ) where Δ′

1 =
{ shopping1, shopping1 : use car1

use car1 }, Δ′
2 = { school2, school2: use car2

use car2 }, and
Γ = { use car1∧use car2:

false }, (Δ′
1, Δ

′
2, Γ ) has no social extension. In fact,

Th({ shopping1, school2, use car1, use car2 }) is the extension of Δ′
1 ∪Δ′

2, but
is not the extension of Δ′

1 ∪ Δ′
2 ∪ Γ . Thus, social constraints are effective to

eliminate useless extensions. Note also that if (Δ1, Δ2) in Example 2 is replaced
with (Δ′

1, Δ2), (Δ′
1, Δ2) has the single social extension E1. In this situation, Δ′

1
does not take care of the usage of the car by the agent 2, and in this sense, the
agent 1 is self-interested. A default theory Δi tends to be more self-interested
if it contains less social default rules. When a society consists of self-interested
agents, it is hard to reach an agreement. (Δ′

1, Δ
′
2, Γ ) represents such a situation.

Proposition 1. For any social extension E of a rational SDT S, there is an
extension G of some Δi in S such that (E ∩ Fi) ⊆ G.

Proposition 1 represents that a social extension includes a part of beliefs of some
individual agents. This reflects the situation that belief or desire of individual
agents are often suppressed in a society. The existence of a single agent which is
self-interested and inconsistent, would eliminate social extensions.

Proposition 2. Let S be an SDT such that some Δi in S is inconsistent and
contains no social default rule. Then S has no social extension.
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To make an agreement, some agents can form a party by excluding those who
have no interaction with them. This is also effective to isolate agents who are
self-interested and inconsistent. For an SDT S = (Δ1, . . . , Δm, Γ ), let SP =
(Δ1, . . . , Δl, Γ

′) (l ≤ m) where every default rule in Δi (1 ≤ i ≤ l) and Γ ′

contains no formula from Fk (l + 1 ≤ k ≤ m).

Proposition 3. If an SDT S has a social extension E, SP has a social extension
G such that E ∩ (F1 ∪ · · · ∪ Fl) = G.

The converse of Proposition 3 does not hold in general.

3 Social Reasoning by SDT

3.1 Cooperative Planning

In cooperative planning, multiple agents are supposed to have a common goal
to be accomplished, and they build a joint plan by working cooperatively.

Definition 3. (cooperative planning framework) A cooperative planning frame-
work is defined as a tuple (S,A, ω), where S = (Δ1, . . . , Δm, Γ ) is an SDT,
A ⊆ F1 ∪ · · · ∪ Fm is a set of actions , and ω ∈ F is a goal . Given (S,A, ω), let
Γω = Γ ∪ { :¬ ω

false }. Then, a set Φ ⊆ A is a solution of a cooperative planning
framework (S,A, ω) if

⋃m
i=1 Δi ∪ Γω has an extension E such that Φ = E ∩ A.

In cooperative planning, a common goal is given as a constraint to be satisfied
in a society, and each agent computes their role of actions to achieve the goal.

Example 3. A robot 1 has a blue block and another robot 2 has a red block.
There is a yellow block on the floor. The goal is to put the blue block on the
yellow one, and to put the red block on the blue one. To achieve the goal, these
two robots make a cooperative plan. Each robot can sense the change of the
block world. The situation is represented by the cooperative planning framework
(S,A, ω) with S = (Δ1, Δ2, Γ ) where

Δ1 = { X on Y 1
(T )∧Z to X1

(T ) :¬W to X2
(T ),Z on X1

(T+1)

Z on X1
(T+1)

,
has X1

(T ) : X to Y 1
(T )

X to Y 1
(T )

,

X on Y 2
(T ) : X on Y 1

(T )

X on Y 1
(T )

,
X on Y 1

(T ) : X on Y 1
(T+1)

X on Y 1
(T+1)

, has blue1
(0), yellow on floor1

(0) }.

Here, uppercase letters represent variables which are shorthand of their in-
stances, and (T ) means time steps. In Δ1 the first rule represents that if a
block X is on Y and the robot 1 moves another block Z to the location of X ,
and if it is assumed that the robot 2 does not move another block W to the
location of X , the block Z is normally put on the block X at the next time step.
The second rule says if a robot 1 has a block X then the robot can take an action
of moving X to the location of Y . The third rule represents that if a block X is
put on a block Y by the robot 2, the robot 1 can recognize the situation. The
fourth rule represents the inertial rule: if a block X is on Y at time T and it is
consistent to assume the existence of X on Y at time T + 1, it is indeed at that
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location. The fifth fact represents that the robot 1 has a blue block and the sixth
fact represents that the yellow block is on the floor at the time 0. Δ2 has default
rules similar to Δ1 such that agent identifiers 1 and 2 of Δ1 are exchanged, and
Δ2 has the fact has red2

(0) instead of has blue1
(0) in Δ1. Γ is used for specifying

state constraints in planning, but here we put Γ = ∅ for simplicity.
The set of actions is put A = {X to Y 1

(T ), X to Y 2
(T ) } where variables repre-

sent their instances. If the goal ω is to be achieved at time 3, it is represented as

Γω = { : ¬ ( red on blue1
(3) ∧ blue on yellow1

(3) ∧ red on blue2
(3) ∧ blue on yellow2

(3))
false }, which

states that two robots recognize the goal to be accomplished at time 3: red block
is on the blue one which is on the yellow one. A solution of a plan then becomes
Φ = { blue to yellow1

(1), red to blue2
(2) }, which represents that the robot 1 moves

the blue block to the location of the yellow block at time 1, and the robot 2 moves
the red block to the location of the blue block at time 2.

3.2 Negotiation

In negotiation, individual agents have their own goals and make a deal to ac-
complish them. Here we consider negotiation between two agents.

Definition 4. (negotiation framework) A (one-to-one) negotiation framework
is defined as a tuple (S, ω1, ω2), where S = (Δ1, Δ2, Γ ) is an SDT, ω1 ∈ F1 and
ω2 ∈ F2 are goals of agents 1 and 2, respectively. Put Δω

i = Δi ∪ { :¬ωi

false}.

In contrast to cooperative planning, each agent (or at least one of two agents) has
its own goal in a negotiation framework. If an agent i has no goal, put ωi = true.
Two agents negotiate with each other to achieve their own goals. If a proposal
is made by an agent, the opponent agent decides whether it is acceptable or
not. If it is unacceptable, the opponent tries to make a counter-proposal . A
negotiation proceeds by exchanging and evaluating mutual proposals until it
reaches a (dis)agreement. Suppose two agents Ag1 and Ag2, and its negotiation
framework (S, ω1, ω2). When Ag1 has its goal, a negotiation proceeds according
to the following protocol.

1. If Δω
1 is inconsistent and Δω

1 ∪{φ} has a consistent extension for some φ ∈ F2,
Ag1 makes a proposal φ to Ag2.

2. If Δ2 has an extension E such that E ∪ {φ} is consistent, Ag2 returns the
proposition acceptφ to Ag1. Else if for some ψ ∈ F1, Δ2 ∪ {ψ} has an exten-
sion G such that G ∪ {φ} is consistent, Ag2 returns a counter-proposal ψ to
Ag1. Otherwise, Ag2 returns the proposition rejectφ to Ag1.

3. If the response made by Ag2 is acceptφ, the negotiation ends in success.
Else if the response is rejectφ, Ag1 seeks another condition φ′ ∈ F2 to
satisfy Step 1. If any condition exists, repeat Step 2; if nothing exists, the
negotiation ends in failure. Otherwise, repeat Step 2 for evaluating ψ in Δ1.

4. Iterate Step 2 and Step 3 until one of the agents gets a response of acceptφ
for some φ (negotiation succeeds) or rejectφ for any φ (negotiation fails).
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Example 4. A buyer agent 1 wants to buy a PC with a discount price. She has
no cash and wants to pay by card. A seller agent 2 sells a PC with a normal
price, but a discount price is applied if the buyer pays by cash or accepts a used
PC. The situation is represented by a negotiation framework (S, ω1, ω2) where

Δ1 = {¬pay cash1, discount2:
buy1 },

Δ2 = { :normal2

normal2 ,
:¬discount2

¬discount2 ,
discount2:
¬normal2 ,

pay cash1:discount2

discount2 , used pc1:discount2

discount2 }.
The buyer has the goal ω1 = buy1, then the agent 1 starts negotiation. As
Δω

1 ∪{ discount2 } has a consistent extension, the agent 1 proposes φ = discount2

to the seller. As Δ2 has no extension which is consistent with {φ}, the seller
cannot accept φ as it is. The agent 2 then seeks a condition to accept it. Since
Δ2∪{pay cash1} has an extension which is consistent with {φ}, the seller returns
the counter-proposal ψ = pay cash1 to the agent 1. The buyer does not accept
the proposal ψ because Δ1 ∪ {ψ} is inconsistent. Then, the agent 1 returns
rejectψ to the agent 2. In return to this, the agent 2 seeks another condition
and finds ψ′ = used pc1 as a counter-proposal. As Δ1 has an extension which is
consistent with {ψ′}, the buyer accepts the proposal ψ′ and sends acceptψ′ to
the agent 2. Then, negotiation succeeds.

4 Related Work

There are some work studying default logic in distributed environments. Baral
et al. [1] consider the problem of combining multiple default theories. Given a
set {Δ1, . . . , Δn} of default theories and a set IC of integrity constraints as first-
order formulas, they compute maximal subsets of the combination Δ1 ∪· · ·∪Δn

which are consistent with IC. Their goal is to resolve inconsistencies that may
arise by combining different default theories. Ryzko and Rybinski [7] introduce
distributed default logic to realize distributed problem solving in multiagent sys-
tems. The purpose is computing extensions of a default theory by its partitions
using a distributed algorithm. Brewka et al. [2] introduce contextual default
systems (CDS) as a tuple (Δ1, . . . , Δn) of contextual default theories. Here,
contextual default theories corresponds to default theories of our Definition 1.
Compared with SDT, CDS has no notion of social constraints in its syntax. In se-
mantics, contextual extensions of CDS are defined as tuples of extensions of indi-
vidual theories, which is different from social extensions in SDT. Moreover, CDS
does not exhibit its application to cooperative planning or negotiation. Sakama
[8] uses default logic to represent weak belief of an agent, which could be aban-
doned during negotiation. He uses super normal defaults of the form :γ

γ for this
purpose, but does not use other types of default rules in negotiation. Buccafurri
and Caminiti [3] introduce a social logic program (SOLP) which has rules of the
form: head ← [selection condition]{body}, where selection condition specifies
social conditions concerning either the cardinality of communities or particular
individuals satisfying the body. SDT is different from SOLP in both language
and semantics. In particular, SOLP does not have social constraints which de-
scribe regulations in a society. Using the connection to logic programming [4],
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a subclass of SDT is represented by a collection of logic programs and social
extensions are computed as answer sets of such programs. A number of studies
provide logical frameworks for negotiation or cooperative planning. The purpose
of this paper is not only formulating particular social reasoning, but providing
a logic for representing and reasoning about social attitudes of multiple agents.
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Abstract. Normal Form Nested (NFN ) programs have recently been introduced
in order to allow for enriching the syntax of disjunctive logic programs under the
answer sets semantics. In particular, heads of rules can be disjunctions of con-
junctions, while bodies can be conjunctions of disjunctions. Different to many
other proposals of this kind, NFN programs may contain variables, and a no-
tion of safety has been defined for guaranteeing domain independence. More-
over, NFN programs can be efficiently translated to standard disjunctive logic
programs (DLP ).

In this paper we present the tool nfn2dlp, a compiler for NFN programs,
which implements an efficient translation from safe NFN programs to safe DLP
programs. The answer sets of the original NFN program can be obtained from the
answer sets of the transformed program (which in turn can be obtained by using
a DLP system) by a simple transformation. The system has been implemented
using the object-oriented programming language Ruby and Treetop, a language
for Parsing Expression Grammars (PEGs). It currently produces DLP programs
in the format of DLV. The separate script nfnsolve uses DLV as a back-end
to compute answer sets for NFN programs. Thus, combining the two tools we
obtain a system which supports the powerful NFN language, and is available for
experiments.

1 Introduction

Disjunctive logic programming under the answer set semantics (DLP , ASP ) has been
acknowledged as a versatile formalism for knowledge representation and reasoning dur-
ing the last decade. The heads (resp. the bodies) of DLP rules are disjunctions (resp.
conjunctions) of simple constructs, viz. atoms and literals. In [1], we proposed Normal
Form Nested programs that are an extension of Disjunctive Logic Programs with vari-
ables. In particular the head of an NFN rule is a formula in disjunctive normal form;
while the body is a formula in conjunctive normal form. We provided also a polynomial
translation from NFN programs to DLP programs. The main idea of the algorithm is
to introduce new atoms in order to rewrite conjunctions appearing in the head of the
rules and disjunctions appearing in the bodies. This result allows for evaluating NFN
programs using DLP systems, such as DLV [2], GnT [3], or Cmodels3 [4].

In this paper we describe a tool implementing the efficient translation from safe
NFN programs to safe DLP programs presented in [1], called nfn2dlp. The system

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 477–482, 2009.
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provides an NFN parser and safety checker, and an efficient translation to an equiv-
alent DLP program. The output program is in the format of DLV, state-of-the-art im-
plementation for disjunctive logic programs under the answer set semantics, and thus
allows for effective answer set computation of NFN programs. A second tool, called
nfnsolve, automates this procedure and directly computes answer sets for NFN pro-
grams by translating them into DLP programs (in the same way as nfn2dlp), and then
invoking DLV on them, filtering out all symbols that have been introduced during the
translation to produce the answer sets of the input NFN programs.

2 Normal Form Nested Programs

In this section, we briefly introduce syntax, semantics and safety of NFN programs.
For a more detailed discussion, we refer to [1].

Syntax. We consider a first-order language without function symbols. NFN programs
are finite sets of rules of the form

C1 ∨ . . . ∨ Cn :- D1, . . . , Dm. n,m ≥ 0

where each of C1, . . . , Cn is a positive basic conjunction (a1, . . . , an) of atoms
a1, . . . , an and each of D1, . . . , Dm is a basic disjunction (l1 ∨ . . . ∨ ln) of literals
l1, . . . , ln. The parentheses around basic conjunctions and disjunctions may be omitted.
C1 ∨ . . . ∨ Cn is the head, and D1, . . . , Dm is the body of a rule. An NFN program is
called standard if all basic conjunctions and disjunctions are singleton literals.

In our experience, the need for going beyond DLP arises relatively often in real
world applications. As an example, we recall a consistent query answering setting from
[1]: According to [5], a global relation p(ID, name, surname, age) (for persons) with
a key-constraint on the first attribute ID is “repaired” by intensionally deleting one
of them whenever two tuples would share the same key. In DLP, this is done by the
following rules (p denotes deleted tuples, p′ the resulting consistent relation).

p(I,N, S, A) ∨ p(I,M, T, B) :- p(I,N, S, A), p(I,M, T, B), N �= M.
p(I,N, S, A) ∨ p(I,M, T, B) :- p(I,N, S, A), p(I,M, T, B), S �= T.
p(I,N, S, A) ∨ p(I,M, T, B) :- p(I,N, S, A), p(I,M, T, B), A �= B.
p′(I, N, S, A) :- p(I,N, S, A), not p(I,N, S, A).

The first three DLP rules can be written as a single NFN rule.

p(I,N, S, A) ∨ p(I, M, T, B) :- p(I,N, S, A), p(I,M, T, B), (N �= M ∨ S �= T ∨ A �= B).

Safety. Let r be an NFN rule. A variable X in r is restricted if there exists a positive
basic disjunction D in the body of r, such that, for each a ∈ D, X occurs in a; we also
say that D saves X and X is made safe by D. A rule is safe if each variable appearing
in the head and each variable that appears in a negative body literal are restricted. An
NFN program is safe if each of its rules is safe.

Safe programs have the important property of domain independence, that is, their
semantics is invariant with respect to the given universe (as long as it is large enough).



nfn2dlp and nfnsolve: Normal Form Nested Programs Compiler and Solver 479

Semantics. We consider ground instantiations of NFN programs with respect to a
given universe. When considering safe NFN programs, the Herbrand universe is suffi-
cient. An interpretation for a safe NFN program P can therefore be denoted as a subset
of the Herbrand base. The satisfaction of ground rules by interpretations is defined in
the classical way, interpreting rules as implications. An interpretation that satisfies a
program is called a model.

The reduct of a ground programP with respect to an interpretation I , denoted by P I ,
is obtained by (1) deleting all false literals w.r.t. I from rule bodies, and (2) deleting
all rules s.t. any basic disjunction becomes empty after (1). An interpretation I is an
answer set for P iff I is a subset-minimal model for P I . We denote the set of answer
sets for P by AS(P ).

3 An Efficient Translation from NFN to DLP

In this section we will review the rewriting algorithm rewriteNFN from [1], to which
we refer for a more detailed description. The basic structure of rewriteNFN is shown in
Fig. 1. The input for rewriteNFN is a safe NFN program P and it builds and eventually
returns a safe standard DLP program, PDLP . The algorithm transforms one rule at a
time. For each NFN rule, it constructs one major rule, which maintains the structure of
the NFN rule, replacing complex head and body structures by appropriate labels. Head
and body of the major rule are built independently by means of functions buildHead
and buildBody, respectively, which will be described in the sequel of this section. These
functions may also create a number of auxiliary rules, for defining labels and auxiliary
predicates which are needed mostly for guaranteeing safety of the transformed program.

3.1 Head Transformation

Function buildHead is comparatively lightweight and replaces non-singular nested
structures by fresh label atoms. For each head conjunction C of a rule r containing
more than one atom, a label atom with the fresh predicate name auxhr

C and all variables
in C is created in its place. In order to act as a substitute for C, the function also creates
auxiliary rules auxhr

C(. . .) :- C. and ai :- auxhr
C(. . .). for each ai ∈ C. The safety of

the auxiliary rules is straightforward, and the safety of the major rule is guaranteed by
the safety of the original NFN program and the body transformation described next.

begin rewriteNFN
Input: NFN program P
Output: DLP program PDLP .
var B: conjunction of literals; H : disjunction of atoms;

PDLP := ∅;
for each rule r ∈ P do

H := buildHead(H(r), PDLP );
B := buildBody(B(r), PDLP );
PDLP := PDLP ∪ {H :- B.};

return PDLP ;

Fig. 1. Algorithm rewriteNFN
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3.2 Body Transformation

More care has to be taken in function buildBody. Since not all variables in a safe NFN
rule body have to be restricted, just replacing body disjunctions by labels as for NFN
heads may result in an unsafe auxiliary rule because of an unrestricted variable. If the
variable in question occurs only in its body disjunction, it can be safely dropped from
the label atom, but if this variable occurs also elsewhere in the rule, the values it repre-
sents must match in each of its occurrences, while in some occurrences the variable may
not be bound to any value. Therefore, buildBody focuses on shared variables, where a
variable X is shared in a rule r, if it appears in two different body disjunctions of r, or
if X appears in both head and body of the rule.

For creating the body of the major rule, buildBody replaces each body disjunction D
of a rule r containing more than one literal by a label atom auxr

D(V1, . . . , Vn), where
auxr

D is a fresh symbol and V1, . . . , Vn are the shared variables of r occurring in D.
An auxiliary rule for defining auxr

D(V1, . . . , Vn) is added for each literal in D, where
variables not occurring in a literal are replaced by the special constant #u, representing
that the respective variable is not bound in this occurrence. Moreover, if the literal is
negative, some new universe atoms (see [1]) are added to the body defining the label
atom, which in turn are defined by appropriate auxiliary rules. Since #u has to match
with any other constant, matching has to be made explicit in the body of the major rule
by adding dedicated atoms, which are also defined by auxiliary rules.

3.3 Properties of the Algorithm

Let P a safe NFN program, PDLP = rewriteNFN(P ), and AN and AD be the sets
of predicate symbols that appear in P and in PDLP , respectively (AN ⊆ AD). Then,
there is a bijection between AS(PDLP ) and AS(P ) such that J ∈ AS(PDLP ) iff J ∩
AN ∈ AS(P ). As mentioned previously, all rules generated by rewriteNFN are safe.
Moreover, the complexity of the algorithm is a small polynomial.

4 Systems nfn2dlp and nfnsolve

Algorithm rewriteNFN, along with an NFN parser and safety checker has
been implemented as a front-end to DLP systems. Currently, the syntax of
the system DLV is supported, but the implementation is decoupled from DLV
and can easily be modified for supporting other DLP systems such as GnT
or Cmodels3. The resulting tools, called nfn2dlp (for translating only) and
nfnsolve (for additionally invoking a DLP backend), are publicly available at
http://www.mat.unical.it/software/nfn2dlp/ . In the following we
provide some information about issues in the implementation mainly of nfn2dlp.
Moreover, we give a description of the usage of nfn2dlp and nfnsolve.

4.1 Implementation of nfn2dlp and nfnsolve

The tools nfn2dlp and nfnsolve have been implemented using the language Ruby
[6], an object-oriented language rooted also in functional and scripting languages.

http://www.mat.unical.it/software/nfn2dlp/
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Both tools exploit an NFN parser, implemented using the tool treetop [7], which
provides a parser generator for Parsing Expression Grammars (PEGs) [8] for Ruby.
PEGs are a novel concept for parser specification, which look similar to classical gram-
mars but differ in semantics; most importantly these grammars avoid ambiguity.

The tools rely on a code base which has been constructed using an object-oriented
design: For all language constructs, such as atoms, literals, basic disjunctions, basic con-
junctions and rules, appropriate Ruby classes exist, and the respective objects are created
during parsing. The safety check has been implemented as a method of the rule class.

Moreover, two classes for handling rewriting have been defined, RewriteHead and
RewriteBody, respectively. These classes contain as attributes the respective NFN
structure (head and body, respectively), a corresponding DLP structure for constructing
the major rule, and a set of auxiliary DLP rules. The methods of these classes effectively
implement buildHead and buildBody.

For nfnsolve, all predicate symbols of the NFN program are collected during
parsing, which are then used to filter the answer sets of the rewritten program computed
by the external solver (exploiting the -filter option of DLV), which then represent
precisely the answer sets of the NFN program.

Both nfn2dlp and nfnsolve provide a basic commandline interface, which we
overview in Sections 4.2 and 4.3.

4.2 Using nfn2dlp

The interface of nfn2dlp is via the command-line. By default, nfn2dlp reads the
files provided as arguments, treats their contents as one NFN program, analyzes its
well-formedness and safety, and eventually translates it into a DLP program, which
will be provided on standard output.

Example 1. Consider the program P represented in the text file ex.nfn as

a, b(X) :- c(X) ∨ d(X,Y ). c(1). d(2, 3).

In order to test for safety and to transform P into a DLP program, we issue

$ nfn2dlp.rb ex.nfn

on the command line. Since the program is safe, the rewritten program is printed on
standard output:

a :- auxh1 0(X). b(X) :- auxh1 0(X). auxh1 0(X) :- a, b(X). c(1).
aux1 0(X) :- c(X). aux1 0(X) :- d(X, Y ). auxh1 0(X) :- aux1 0(X). d(2, 3).

The answer sets of the NFN program can be computed by pipelining the output into
DLV using the command

$ nfn2dlp.rb ex.nfn | DLV --
yielding answer set {c(1), d(2, 3), a, auxh1 0(1), auxh1 0(2), b(1), b(2), aux1 0(1),
aux1 0(2)}. The answer sets of the original NFN program P can be obtained by fil-
tering on the original predicates in P :

$ nfn2dlp.rb ex.nfn | DLV -- -filter=a,b,c,d
yielding the answer set {c(1), d(2, 3), a, b(1), b(2)}.
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4.3 Using nfnsolve

Also nfnsolve possesses a command-line interface. As nfn2dlp, nfnsolve reads
the files provided as arguments, and treats their contents as oneNFN program, analyzes
its well-formedness and safety, and eventually translates it into a DLP program. In
addition, it invokes DLV as a backend. The location of the DLV executable can be
specified following option -d or alternatively --dlv, the default being DLV in the
path. Moreover, additional options can be passed on to DLV by means of the option
--dlvoptions; care should be taken that those options should form one word for
the shell, which means that usually those options should be quoted.

Example 2. Continuing Example 1 and program P represented in file ex.nfn, we can
issue (provided that the default DLV is an executable in the path):

$ nfnsolve.rb ex.nfn
DLV [build BEN/Oct 11 2007 gcc 4.1.2]

{c(1), d(2,3), a, b(1), b(2)}

If the DLV executable is to be invoked as ./d and if this executable is to be passed
options -silent (suppressing the banner with version and compiler information) and
-nofacts (not printing facts), we issue and obtain:

$ nfnsolve.rb -d ./d --dlvoptions ’-silent -nofacts’
ex.nfn
{a, b(1), b(2)}
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Abstract. We present DLV-Complex, an extension of the DLV system that fea-
tures the support for a powerful (possibly recursive) use of functions, list and set
terms in the full ASP language with disjunction and negation.

Any computable function can be encoded in a rich and fully declarative KRR
language, ensuring termination on all programs belonging to the recently intro-
duced class of finitely-ground programs; furthermore, termination can be “a pri-
ori” guaranteed on demand by means of a syntactic restriction check that ensures
a finite-domain property.

The system, which is already successfully used in many universities and re-
search institutes, comes also equipped with a rich library of built-in functions and
predicates for the manipulation of complex terms.

1 System Language

A term is either a simple term or a complex term. A simple term is either a constant or a
variable. A complex term is either a functional, a list or a set term. If t1 . . . tn are terms,
then complex terms are defined as follows.

• A functional term is defined as f(t1, . . . , tn), where f is a function symbol (func-
tor) of arity n.

• A list term can be of the two forms:
− [t1, . . . , tn], where t1, . . . , tn are terms;
− [h|t], where h (the head of the list) is a term, and t (the tail of the list) is a list

term.
• A set term is defined as: {t1, . . . , tn}, where {t1, . . . , tn} do not contain any

variable.

Some functional terms, referred to as built-in functions, are predefined, and have a
fixed meaning. Syntactically, their functors are prefixed by #. Such kind of functional
term is supposed to be substituted by the value resulting from the application of the
functor to its arguments, according to some predefined semantics. For this reason built-
in functions are also referred to as interpreted functions.1

If t1, . . . , tk are terms, then p(t1, . . . , tk) is an atom, where p is a predicate of fixed
arity k ≥ 0; by p[i] we denote its i-th argument. Atoms prefixed by # are instances

1 The system herein presented provides a number of interpreted functions, including arithmetic
operations and list and set manipulation functions.
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of built-in predicates. Such kind of atoms are evaluated as true or false by means of
operations performed on their arguments, according to some predefined semantics.2

A literal l is of the form a or not a, where a is an atom; in the former case l is
positive, and in the latter case negative. A rule r is of the form α1 ∨ · · · ∨ αk :-
β1, . . . , βn, notβn+1, . . . , notβm. where m ≥ 0, k ≥ 0; α1, . . . , αk and β1, . . . , βm

are atoms. We define H(r) = {α1, . . . , αk} (the head of r) and B(r) = B+(r)∪B−(r)
(the body of r), where B+(r) = {β1, . . . , βn} (the positive body of r) and B−(r) =
{not βn+1, . . . , not βm} (the negative body of r). If H(r) = ∅ then r is a constraint;
if B(r) = ∅ and |H(r)| = 1 then r is referred to as a fact.

A rule is safe if each variable in that rule also appears in at least one positive literal in
the body of that rule. For instance, the rule p(X,f(Y, Z)) :- q(Y ), not s(X). is not safe,
because of both X and Z . From now on we assume that all rules are safe and there is
no constraint.3 An ASP program is a finite set P of rules. As usual, a program (a rule, a
literal) is said to be ground if it contains no variables.

A thorough discussion about the semantics, based on the notion of Answer Set pro-
posed in [1], can be found in [2].

2 Knowledge Representation with DLV-Complex

The main strength point of DLV-Complex, besides all those shared with DLV [3], is the
featured language, that includes a full usage of function symbols and a native support
for list and set terms. Function symbols, and other complex terms, allow to aggregate
atomic data, manipulate complex data structures and generate new symbols (value in-
vention). This paves the way to a more natural knowledge representation.

Example 1. The term notify(delete(F)) in the atom request(S, I, notify

(delete(F)), T 0) is a functional term. Other examples of functional terms are
father(X) and mother(X) in the atom family trio(X, father(X), mother

(X)), or f(g(a)) in the atom p(f(g(a))).

Lists can be profitably exploited in order to explicitly model collections of objects
where position matters, and repetitions are allowed.

Example 2. The term [a,d,a] in the atom palindromic([a,d,a]) is a list term.
Other examples of list terms are [jan,feb,mar], or [jan,feb|[mar,apr,may,
jun]], or [[jan,31]| [[feb,28],[mar,31],[apr,30],[may,31],[jun,

30]]].

Set terms are used to model collections of data having the usual properties associated
with the mathematical notion of set. They satisfy idempotence (i.e., sets have no dupli-
cate elements) and commutativity (i.e., two collections having the same elements but
with a different order represent the same set) properties.

2 The system herein presented provides some simple built-in predicates, such as the comparative
predicates equality, less-than, and greater-than (=, <, >), list and set predicates like #member,
#subset.

3 Under Answer Set semantics, a constraint :- B(r) can be simulated through the introduction
of a standard rule fail :- B(r), not fail, where fail is a fresh predicate not occurring elsewhere
in the program.
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Example 3. The term {john,carl,ann,mary} in the atom seatAt(1,{john,carl,
ann, mary}) is a set term. Other examples of set terms are {red,green,blue},
or {[red,5], [blue,3],[green,4]}, or {{red,green},{red,blue},{green,
blue}}. It is worth remembering that duplicated elements are ignored, thus the terms
{red,green,blue} and {green, red,blue,green} actually represent the same set.

In the following we illustrate the usage of DLV-Complex as a tool for knowledge rep-
resentation and reasoning, by means of some examples.4

Example 4. Suppose that a system administrator wants to model the following security
policy about file deletion: ‘A certain subject (a person, an agent,..) S is permitted to
delete a file F if at a time T0 she/it sends a request to a target institution I , notifying the
intention of deleting F , and there are no explicit request from I to S to retain F in the
next ten units of time’. The following rule can be used to naturally express this policy
thanks to proper functional terms.

permitted(S,delete(F ), T1) :- request(S, I, notify(delete(F )), T0),
not requestInBetween(I,S, retain(F ), T0, T1),
T1 = T0 + 10.

Example 5. We show now how lists can be used to model strings of characters. Let us
consider the following facts:

word([a, d, a]). word([g, i, b, b, i]). word([a, n, n, a]).

The following rule:

palindromic(X) :- word(X), #reverse(X) = X.

allows to easily deduce words that are palindromic by using the interpreted function
#reverse for inverting the order of the elements in a list, and the built-in predicate ‘=’
for comparison. The program consisting of the two rules above would have the unique
following answer set:

{palindromic([a, d, a]), palindromic([a, n, n, a])}.

Example 6. Let us consider the famous “Towers of Hanoi” puzzle [5]. Assume that
a possible move is represented by the predicate possible move, featuring three at-
tributes: the first represents the move number, the second the state of the three stacks
before applying the current move, and the last the state of the three stacks after the
move has been applied. Then, we can encode a possible move from the first stack to the
second stack by means of the following rule:

possible move(#succ(I), towers([X|S1], S2, S3), towers(S1, [X|S2], S3)) :-
possible state(I, towers([X|S1], S2, S3)),
legalMoveNumber(I), legalStack([X|S2]).

Roughly, the top element of the first stack can be moved on top of the second stack if:
(i) the current state for stacks is admissible, i.e. this state can be reached after applying

4 Full encodings for problems presented in Example 6 and Example 7 can be found at [4].
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a sequence of “I” moves(possible state(I,towers([X|S1],S2,S3))); (ii) the
number “I” is in the range of allowed move numbers (legalMoveNumber(I)); (iii)
the new resulting configuration for the second stack is legal, i.e. there is no larger disc
on top of a smaller one (legalStack([X|S2])).

It is worth noting the use “à la Prolog” ([Head|Tail]) for lists, and the role of the
interpreted function #succ, whose meaning is straightforward.

Example 7. If facts like: sons( someone, {son1, ..., sonn}) model the association be-
tween a parent and her/his sons, one can make the transitive closure and obtain the
names of all descendants of someone by means of the following rules:

ancestor(A,Ss) :- sons(A, Ss).
ancestor(A,#union(Ds, Ss)) :- ancestor(A,Ds), #member(S,Ds),

sons(S, Ss).

where the first argument of the predicate “ancestor” represents the name of a person
(ancestor) and the second argument represents the set of names of descendants of this
person. The first rule says that all sons of A are descendants of A. The second rule says
that if Ds are descendants of A, S belongs to the set of descendants Ds, and Ss is
the set of all sons of S, then the set resulting from the union of the sets Ds and Ss is
also a set of descendants for A. The second rule makes use of the interpreted function
#union and the built-in predicate #member, which have intuitive meaning.

Example 8. Let us imagine that the administrator of a social network wants to increase
the connections between users. In order to do that, (s)he decides to propose a con-
nection to pairs of users that result, from their personal profile, to share more than
two interests. If the data about users are given by means of EDB atoms of the form
user(id, {interest1, . . . , interestn}), the following rule would compute the set of
common interests between all pairs of users:

sharedInterests(U1, U2, #intersection(S1, S2)) :-user(U1, S1), user(U2, S2), U1 �= U2.

where the interpreted function #intersection takes as input two sets and returns their
intersection. Then, the predicate selecting all pairs of users sharing more than two in-
terests could be defined as follows:

proposeConnection(pair(U1, U2)) :- sharedInterests(U1, U2, S), #card(S) > 2.

Here, the interpreted function #card returns the cardinality of a given set, which is
compared to the constant 2 by means of the built-in predicate “>”.

3 Implementation and Usage

As previously stated, the system herein presented has been built on top of the state-
of-the-art ASP system DLV [3]. The support for complex terms has been achieved by
means of a proper rewriting strategy.
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Fig. 1. System Architecture

Figure 1 shows an overview of the system architecture. At first, the program is pro-
cessed by a rewriting module, which removes all complex terms and introduces a num-
ber of instances of predefined built-in predicates (described below). Since the evaluation
of an ASP program with complex terms is not guaranteed to terminate in general [6], the
rewritten program is passed to a module (that can be bypassed on demand) that checks
the membership to a class that is “a priori” known to be computable, namely the class
of finite-domain programs, recently introduced in [2]. Finally, the rewritten program is
given as input to DLV, that deals with the built-in predicates introduced in the rewriting
phase by means of the framework defined in [7].5

The DLV-Complex core (consisting of the aforementioned modules) can also link, at
run-time, a library of list and set manipulation functions and predicates, if required by
the original ASP program being evaluated.

We briefly illustrate in the following how the rewriting module acts in presence of
functional terms. Firstly, any functional term t = f(X1, . . . , Xn), appearing in some rule
r ∈ P , is replaced by a fresh variable F ; then, one of the following atom is added to
B(r):

- #function pack(f,X1, . . . , Xn, F ) if t appears in H(r);
- #function unpack(F, f, X1, . . . , Xn) if t appears in B(r).

This transformation is applied to the rule r until no functional terms appear in it any-
more. The arguments of the #function pack/unpack built-ins are:

1. the fresh variable F representing the whole functional term;
2. the function symbol f ;
3. all of the arguments: X1, . . . , Xn for the original functional term.

Therefore, an instance of the #function pack built-in predicate is in charge of build-
ing a functional term, starting from a functor and its arguments, while an instance of

5 The DLV-EX system, discussed in [8,7], allows the definition of custom built-in atoms in the
#p(t1, . . . , tn) syntactic form.
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the #function unpack built-in predicate unfolds a functional term in order to give
values to its arguments. Hence, the former built-in predicate binds the F variable, pro-
vided that all other terms are already bound; the latter binds (or checks the values, in
case they are already bound) the X1, . . . , Xn variables according to the binding for the
F variable (the whole functional term).

Example 9. The rule: p(f(f(X))) :- q(X, g(X,Y )). will be rewritten as follow:

p(F1) :- #function pack(F1, f, F2), #function pack(F2, f, X),
q(X, F3), #function unpack(F3, g, X, Y ).

Note that rewriting the nested functional term f(f(X)) requires two #function pack
atoms in the body: (i) for the inner f function having X as argument and (ii) for the
outer f function having as argument the fresh variable F2, representing the inner func-
tional term.

List and set terms are treated by means of proper “pack/unpack” built-in predicates,
that act analogously to what described above, with some minor adjustments, such as
a flag used in order to identify the kind of list term to be managed (comma-separated
enumeration or “à la prolog”).

3.1 Usage

DLV-Complex per se is a command-line tool (as usual, for a brief list of command-line
options, specify “-help”). In addition to the DLV standard ones (the reader may refer to
the official DLV documentation [9]), some options are available in order to modify the
behavior of the system in presence of complex terms.

A finite-domain syntactic checker is enabled by default. If the user is confident that
the program can be grounded in finite time (that is it belongs to the class of finitely-
ground programs), then she can skip the finite-domain check. This can be done by
specifying the command-line option -nofdcheck. Another way that lead to the guar-
antee of termination is the choice of a maximum allowed nesting level N for functional
terms, via the command-line option -MAXNL=<N>.

The system comes equipped with a rich library of list and set manipulation func-
tions. This library actually contains the definition of many interpreted functions and
predicates; in order to exploit them, the logic program must contain, in the preamble, a
line that tells the system to include the library itself.

Example 10. Let’s suppose that we have a file named palindromic.dl, contain-
ing the program reported in Example 5. Since the program exploits the #reverse

interpreted function, we must also add a very first line with the instruction
#include<ListAndSet>.

If the palindromic.dl file is placed in the same folder as the DLV-Complex
executable (let it be dlv-complex), and the list and set library is placed in the
/usr/mylib folder we can invoke the system by the following command line:6

$ dlv-complex palindromic.dl -silent -nofacts -libpath=/usr/mylibs/

6 We suppose to work on a Linux-like platform. The system behaves analogously on other
platforms.
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4 Conclusions

We have presented the DLV-Complex system, an extension of the DLV system that
features the support for functions, list and set terms in the full ASP language with
disjunction and negation.

DLV-Complex is already successfully used in many universities and research insti-
tutes, and it is already exploited for some real-world applications; for instance, in [10]
it is used for the computation of minimum cardinality diagnoses, and functional terms
are here employed to replace existential quantification.

The system, which is free for non-commercial use, is available for download at [4].
The library for list and set terms manipulation is available for free download as well,
together with a reference guide, a tutorial and a number of examples. For any further
detail about system options and synopsis the reader is referred to such documentation.
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Abstract. We propose an approach to distributed Answer Set Solving based on
Message Passing. Our approach aims at taking advantage of modern ASP solvers
rather than proposing a genuine yet involved parallel ASP solver. To this end, we
rely upon a simple master-worker architecture in which each worker amounts to
an off-the-shelf ASP solver augmented with a separate communication module
being only lightly connected to the actual solver. The overall communication is
driven by the workers’ communication modules, which asynchronously exchange
messages with the master. We have implemented our approach and report upon
an empirical study demonstrating its computational impact.

1 Introduction

Despite the progress of sequential Answer Set Solving technology, only little advance-
ment is observed in the parallel setting. This is deplorable in view of the rapidly growing
availability of clustered, multi-processor, and/or multi-core computing devices. We ad-
dress this shortcoming and furnish a distributed approach to ASP solving by focusing
on the parallelization of search. Our approach builds upon the Message Passing Inter-
face (MPI; [1]), realizing communication and data exchange between computing units
via message passing. Interestingly, MPI abstracts from the actual hardware and lets us
execute our system on clusters as well as multi-processor and/or multi-core machines.

We aim at a simple and transparent approach in order to be able to take advantage
of the high performance offered by modern off-the-shelf ASP solvers. To this end, we
have chosen a simple master-worker architecture, in which each worker consists of an
ASP solver along with an attached communication module. The solver is linked to its
communication module via an elementary interface requiring only marginal modifica-
tions to the solver. All major communication is initiated by the workers’ communication
modules exchanging messages with the master in an asynchronous way.

2 Distributed Answer Set Solving

We have implemented our approach in C++ using MPI [1]. The resulting system is
called claspar, alluding to its underlying ASP solver clasp [2]. Although we tried to
keep our design generic, we took advantage of some design features of clasp, whose
basic search procedure can be outlined by means of the following loop [3]:
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loop
propagate // compute deterministic consequences
if no conflict then

if all variables assigned then return variable assignment
else decide // choose a non-deterministic consequence

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit

At first, the closure under deterministic consequence operations is computed. Then,
four cases are distinguished. In the first one, a non-conflicting complete assignment
is returned. In the second case, an unassigned variable is non-deterministically chosen
and assigned. Or at last, a conflict is encountered. All assignments made before the first
non-deterministic choice constitute the top-level. Hence, a top-level conflict indicates
unsatisfiability. Otherwise, the conflict is analyzed and learned in form of a conflict con-
straint. Then, the algorithm backjumps by undoing a maximum number of successive
assignments so that exactly one literal of the constraint is unassigned.

The clasp solver extends the static concept of a top-level by additionally providing
a dynamic variant referred to as root-level [3]. As with the top-level, conflicts within
the root-level cannot be resolved given that all of its variable assignments are precluded
from backtracking. We build upon this feature for splitting the search space. Splitting
is accomplished according to a so-called guiding path [4], the sequence of all non-
deterministic choices. Given a root-level i−1, a guiding path (v1, . . . , vi−1, vi, . . . , vn)
can be divided into a prefix (v1, . . . , vi−1) of non-splittable variables and a postfix
(vi, . . . , vn) of splittable variables. We can split the search space at the first split-
table variable by incrementing the root-level by one and dissociating a guiding path
composed of the first i−1 variables and the complement of the ith variable, yielding
(v1, . . . , vi−1, vi). Note that the local assignment remains unchanged, and only the root-
level is incremented to i. We have chosen to split at the first splittable variable because,
first, this results in cutting off the largest part of the search space and, second, this way
the backjumping is least restricted.

Upon enumerating answer sets, (locally) using the scheme in [5], the assignment can
contain complements of non-deterministically assigned variables of previously enumer-
ated answer sets. Such complementsu1, . . . , uj indicate that the search spaces for answer
sets containing (v1, . . . , vi−1) and at least one of u1, . . . , uj have already been explored,
while vi or vi may have belonged to already enumerated answer sets. In order to avoid
repetitions, it is thus important to pass guiding path (v1, . . . , vi−1, u1, . . . , uj, vi) in re-
sponse to a split request. This refinement for repetition-free answer set enumeration is
implemented in claspar.

Finally, clasp incorporates constraint database simplifications wrt variables assigned
at the top-level. In particular, conflict constraints can lead to top-level assignments, in
which case the corresponding variables are eliminated from all resident constraints. The
root-level plays a crucial role for whether such simplifications are applied, as variables
assigned at or below the root-level but beyond the top-level are not subject to simplifi-
cation. This feature is also inherited by claspar setting the root-level to the number of
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variables in a guiding path. As a consequence, conflicts and resulting assignments due
to a nonempty guiding path (or subproblem, respectively) do not involve simplification,
while top-level assignments independent of the guiding path lead to simplifications.

3 Communication

Our approach to distribution builds upon message passing, accounting for communica-
tion and data exchange. For the sake of simplicity, we have adopted a classical master-
worker model. While the purpose of the single master is to handle the overall message
exchange, each worker amounts to an ASP solver enhanced by message handling ca-
pacities. The workers constitute the active components, initiating all requests, while the
master mainly reacts by processing the workers’ requests.

Master. The main task of the master is the reception and transmission of search
(sub)problems. To accomplish this, the master divides its assigned workers into a set
of active and inactive workers. The active workers, i.e., workers assigned a not yet pro-
cessed guiding path, are arranged in a queue ordered by a workload parameter. On the
other hand, the inactive workers have either finished processing their guiding paths or
have not yet been assigned any.

At the beginning, the search space has to be distributed among the workers. As ini-
tially all workers are inactive, the master receives a work request from each worker.
The first incoming work request obtains the empty guiding path, representing the entire
search space. It is then successively split and distributed among the other workers.

The overall routine of the master is driven by load balancing. A work request by a
worker normally results in a split request to another worker. The split request is sent
to a worker with putatively high workload, namely, to one with a short guiding path.
Notably, each worker determines whether and/or how often it is asked (and thus in-
terrupted) for work. The master merely maintains its priority queue according to the
information supplied by the workers.1 When a subproblem is returned to the master by
a split response, it is forwarded to the first worker in the request queue or put into a
cache to allow for immediate response to the next work request. Apart from the guiding
path, a split response also contains information on the workload of the sending worker.

Whenever all workers are inactive and the cache is empty, the given problem is found
to be unsatisfiable. As soon as the requested number of answer sets is computed or
unsatisfiability is established, the master asks all workers to gather runtime statistics
and to then terminate. Once all statistics are received, they are aggregated and printed
before the master terminates itself.

Worker. Our worker design is driven by the desire to minimize modifications to the
given ASP solver while keeping the overall approach as simple as possible. To this end,
we attach a module handling communications, providing an interface reacting to in-
coming messages during search. The interface is used at the end of the conflict analysis
in the solver loop given in Section 2. This is the only change done to the ASP solver at
hand (except for redirecting its output operations).

1 Currently, this information consists of the length of the initial guiding path and the number of
choices made by the worker’s ASP solver since the guiding path was received.
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However, in general, the worker’s communication module has two modes of opera-
tion. When out of work (no guiding path received yet or completed subproblem), the
first mode cares about raising a work request and launching its ASP solver with the guid-
ing path obtained from the master. Notably, upon such a response, claspar reuses the
previously learnt clauses and heuristic information like variable activities. The second
mode addresses split requests. For this purpose, the communication module is equipped
with a heuristic function for deciding whether a guiding path is extracted from the ASP
solver. If so, a guiding path is sent to the master (accompanied with some information
on the workload). The current strategy is to return the shortest guiding path.

If the worker decides not to split its search space, it can signal to retry later or to
send no further split requests. Once an answer set is found, the worker sends it to the
master. In the case of unsatisfiability, conflict constraints accumulated over time may
eventually yield a top-level conflict that is also signaled to the master, which then asks
all workers to send their statistics and to terminate.

4 Experiments

Our experiments consider claspar2 (0.1.0) based on clasp (1.0.5); they ran under MPI
(mpich2-1.0.7) on the cluster described at http://www.cs.uni-potsdam.de/
bs/research/labs/highland.html, each individual run restricted to 900s time
and 2GB RAM per worker. Each solver instance of claspar was run with the default
settings of clasp (except for the second group of PigeonHole benchmarks).

Table 1 summarizes benchmark results capturing the scaling capacities of claspar.3

We consider a master run on a single machine plus increasing numbers of workers run-
ning on machines with double cores (and thus at most two MPI processes per machine).
The single worker setting amounts to that of a serial run of clasp: the same number
of choices and conflicts are obtained for each run, and the message passing overhead
leads to an increase in execution time of less than one percent. We have selected popular
benchmark classes for evaluating our approach. Among them, BlockedQueens-sat are
satisfiable and terminated after an answer set was obtained. All remaining benchmarks
are unsatisfiable and thus necessitate a complete traversal of the search space. Each set-
ting is described by the sums of times,4 and timeouts over all underlying instances.5

Moreover, we give the relative speedup wrt the single worker setting and indicate the
efficiency by normalizing the speedup with the number of workers in each setting. In
general, we observe a steady increase in speedup although the efficiency goes down with
more workers due to greater overhead. An unsteady speedup is observed on the class
of satisfiable benchmarks. Even though the search for one answer set can be boosted
by lucky strikes, it is surprising to see that 8 workers performed better than 16. This is
different on the unsatisfiable instances in BlockedQueens-unsat that show a steady yet
suboptimal speedup. The GraphColoring benchmarks are taken from this year’s ASP

2 Available at http://potassco.sourceforge.net
3 The detailed table is available at http://www.cs.uni-potsdam.de/claspar
4 Timeouts are taken as maximum time, viz., 900s.
5 A tarball containing all benchmark instances is available at the URL given in Footnote 3.

http://www.cs.uni-potsdam.de/bs/research/labs/highland.html
http://www.cs.uni-potsdam.de/bs/research/labs/highland.html
http://potassco.sourceforge.net
http://www.cs.uni-potsdam.de/claspar


494 E. Ellguth et al.

Table 1. Scaling claspar from 1 to 16 workers

claspar 0.1.0 1 worker 2 workers 4 workers 8 workers 16 workers

Benchmark BlockedQueens-sat (7 instances)
Time (Timeouts) 678.82 (0) 444.06 (0) 248.47 (0) 99.74 (0) 116.23 (0)
Speedup (Efficiency) 1.00 (1.00) 1.53 (0.76) 2.73 (0.68) 6.81 (0.85) 5.84 (0.37)

Benchmark BlockedQueens-unsat (9 instances)
Time (Timeouts) 1528.72 (0) 1223.84 (0) 649.57 (0) 401.74 (0) 191.31 (0)
Speedup (Efficiency) 1.00 (1.00) 1.25 (0.62) 2.35 (0.59) 3.81 (0.48) 7.99 (0.50)

Benchmark GraphColoring (20 instances)
Time (Timeouts) 18000 (20) 16993.80 (18) 12841.70 (11) 9910.80 (6) 7063.68 (3)
Speedup (Efficiency) 1.00 (1.00) 1.06 (0.53) 1.40 (0.35) 1.82 (0.23) 2.55 (0.16)

Benchmark PigeonHole (2 instances)
Time (Timeouts) 975.66 (0) 988.66 (1) 469.45 (0) 190.48 (0) 153.20 (0)
Speedup (Efficiency) 1.00 (1.00) 0.99 (0.49) 2.08 (0.52) 5.12 (0.64) 6.37 (0.40)

Benchmark PigeonHole-norestarts (2 instances)
Time (Timeouts) 984.67 (1) 587.38 (0) 293.10 (0) 169.63 (0) 85.32 (0)
Speedup (Efficiency) 1.00 (1.00) 1.68 (0.84) 3.36 (0.84) 5.80 (0.73) 11.54 (0.72)

Table 2. Scaling claspar’s enumeration of answer sets within 900s from 1 to 16 workers

claspar 0.1.0 1 worker 2 workers 4 workers 8 workers 16 workers

Benchmark ClumpyGraphs (12 instances)
Models 83,866,664 153,764,698 312,272,614 610,673,252 1,247,804,500
Speedup (Efficiency) 1.00 (1.00) 1.83 (0.92) 3.72 (0.93) 7.28 (0.91) 14.88 (0.93)

competition. Here the speedup values are insignificant because one worker alone can-
not even solve a single instance. However, increasing the number of workers leads to
a steady decrease of timeouts, demonstrating that distribution can make a difference.
Finally, we consider the well-known PigeonHole example, spanning a very uniform
search tree. The default behavior of claspar allows solver instances to restart, which has
a negative effect on the individual and thus global solver performance. Once restarts are
inhibited, reasonable speedups are obtained.

Finally, we consider in Table 2 how claspar scales regarding the enumeration of
answer sets. For this, we substitute runtimes by the number of answer sets obtained
within 900s. We consider Hamiltonian cycles in ClumpyGraphs, a benchmark designed
in [6] for showing the advantage of conflict-driven learning ASP solvers. We observe
that the distribution of search incurs only minor overhead in claspar’s efficiency, and
the speedup closely follows the number of workers. This nicely demonstrates the com-
putational impact of distributed ASP solving.

5 Discussion

We proposed a simple approach to distributed ASP solving based on the well-known
Message Passing Interface. To this end, we rely upon a master-worker architecture in
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which each worker amounts to an off-the-shelf ASP solver augmented with a separate
communication module being only lightly connected to the actual solver. The simplicity
is pragmatically best reflected by the fact that claspar changes less than a dozen lines
of code in clasp while adding another ∼350 lines for handling distribution.

Our approach differs from existing work in several respects. In fact, it provides the
first distributed version of an ASP solver using conflict-driven learning. Unlike this,
existing distributed ASP solvers rely on classical backtracking schemes that provide a
much tighter control over the search space. Second, our approach endows each solver
instance with great independence, principally allowing for a variety of different ASP
solvers at the same time. Although the platypus framework [7,8] also aims at a certain
genericity, this applies only to the deterministic part of the solvers, while distributed
search is controlled by platypus itself. The approach of [9,10] goes even further in
building a genuine parallel solver based on sequential ASP solver smodels.

Acknowledgments. This work was partially funded by DFG grant SCHA 550/8-1.
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Abstract. Probabilistic conditionals are a powerful means for express-
ing uncertain knowledge. In this paper, we describe a system imple-
mented in Java performing probabilistic reasoning at optimum entropy.
It provides nonmonotonic belief change operations like revision and up-
date and supports advanced querying facilities including diagnosis and
what-if-analysis.

1 Introduction

Conditionals of the form “if A then B with probability x” use the well-studied
mathematical foundation of probability theory for expressing uncertain know-
ledge. The MEcore system implements reasoning over probabilistic conditional
knowledge bases by employing the concept of optimum entropy [1,2,3]. Besides
providing the core functionalities needed for probabilistic reasoning at optimum
entropy, the main objective of MEcore is to support advanced belief manage-
ment operations like revision, update, diagnosis, or what-if-analysis in a most
flexible and easily extendible way. MEcore can be looked upon as the realization
of an intelligent agent being able to accept knowledge from the environment and
to change her own epistemic state in the light of new information. In this pa-
per, we briefly sketch the background of probabilistic conditional logic, provide
a system walkthrough by means of a small example, and provide an overview of
MEcore’s implementation.

2 Probabilistic Logic and Optimum Entropy in a Nutshell

We start with a propositional language L, generated by a finite set Σ of (binary)
atoms a, b, c, . . .. The formulas of L will be denoted by uppercase Roman letters
A,B,C, . . .. For conciseness of notation, we will omit the logical and -connector,
writing AB instead of A∧B, and overlining formulas will indicate negation, i.e.
A means ¬A. Let Ω denote the set of possible worlds over L; Ω will be taken here
simply as the set of all propositional interpretations over L and can be identified
� The research reported here was supported by the Deutsche Forschungsgemeinschaft
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with the set of all complete conjunctions over Σ. For ω ∈ Ω, ω |= A means that
the propositional formula A ∈ L holds in the possible world ω. By introducing
a new binary operator |, we obtain the set (L | L) = {(B|A) | A,B ∈ L} of
(unquantified) conditionals (or rules) over L. (B|A) formalizes “if A then B” and
establishes a plausible, probable, possible etc connection between the antecedent
A and the consequent B. The set SenC contains all probabilistic conditionals (or
probabilistic rules) of the form (B|A)[x] where x is a probability value x ∈ [0, 1].

To give appropriate semantics to conditionals, they are usually considered
within richer structures such as epistemic states. Besides certain (logical) know-
ledge, epistemic states also allow the representation of e.g. preferences, beliefs,
assumptions of an intelligent agent. In a quantitative framework, most appre-
ciated representations of epistemic states are provided by probability functions
(or probability distributions) P : Ω → [0, 1] with

∑
ω∈Ω P (ω) = 1. Thus, in this

setting, the set of epistemic states we will consider is EpState = {P | P : Ω →
[0, 1] is a probability function}. The probability of a formula A ∈ L is given by
P (A) =

∑
ω|=A P (ω), and the probability of a conditional (B|A) ∈ (L | L) with

P (A) > 0 is defined as P (B|A) = P (AB)/P (A), the corresponding conditional
probability. Conditionals are interpreted via conditional probability. So the sat-
isfaction relation |=C ⊆ EpState × SenC of probabilistic conditional logic is
defined by P |=C (B|A) [x] iff P (B|A) = x.

A central notion for the optimum entropy is the cross-entropy Hce(P ′, P )
between two distributions P ′, P that can be taken as a directed (i. e. asymmet-
ric) information distance [3]. Given a set R of probabilistic conditionals and a
distribution P , MinCEnt(P,R) denotes the unique distribution satisfying R and
having minimum cross-entropy to P , i. e. MinCEnt(P,R) solves the minimization
problem [1,2,3]

arg min
P ′ |=C R

Hce(P ′, P ) =
∑
ω

P ′(ω) log
P ′(ω)
P (ω)

(1)

3 Walkthrough by Example

We will demonstrate the purpose and the application of the MEcore system by
a small example. This example will show (in the actual MEcore input syntax)
how to build a knowledge base and how to perform some of the knowledge
management operations, which are all be based on an epistemic state currState.
For a larger application example from the medical domain see [4].

Building Up the Knowledge Base. In this example, we want to model
some (uncertain) knowledge about a person being a student (s), young (y), and
unmarried(u). We start with defining the corresponding propositional variables:

(1) var −> s, y, u;

We can express that 70% of unmarried people are young and that 80% of students
are young by defining a set of probabilistic conditionals, i. e. probabilistic rules:

(2) kbase := ((y|u)[0.7], (y|s)[0.8]);
In this probabilistic knowledge base kbase e. g. the rule (y|u)[0.7] can be read as
“If a person is unmarried, then this person is young with a probability of 0.7”.
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Initializing an Epistemic State. The knowledge base kbase contains all the
(uncertain) knowledge we have about the relations between students, young, and
unmarried people. Of course, this knowledge is incomplete, e. g. we cannot di-
rectly answer queries like “What is the probability of a student being unmarried?”
denoted by (u|s). To answer such queries, we need a full epistemic state (i. e.
probability distribution) that represents our knowledge. In general, there is an
unlimited number of epistemic states which represent some given (incomplete)
knowledge. From these possible epistemic states we want to choose the one which
is as unbiased as possible, i. e. the one that does not unnecessarily presuppose
any additional information apart from the explicitly given knowledge kbase, and
therefore represents this knowledge most faithfully. By making use of the con-
cept of optimum entropy, such a most unbiased epistemic state can be uniquely
determined. Since the entropy of a probability distribution delivers a measure for
the “indeterminateness” of the distribution, the most unbiased epistemic state
is exactly that one which has the maximum entropy of all epistemic states sat-
isfying the given knowledge. It is well-known [1,2] that this maximum entropy
distribution is identical to the distribution satisfying the given knowledge and
having minimal cross-entropy to the uniform distribution P= that assigns the
same probability to all worlds, thus representing complete ignorance.

The MEcore system allows inductive probabilistic reasoning by computing a
full probability distribution from the knowledge base via the maximum entropy
method. This distribution serves as the initial epistemic state and its building is
called by the command:

(3) currState := epstate.initialize(kbase);

In our example, MEcore computes P ∗ = MinCEnt(P=, kbase) as given in the
following table and assigns it to currState:

ω P ∗(ω) ω P ∗(ω) ω P ∗(ω) ω P ∗(ω)
syu 0.1950 syu 0.1758 syu 0.0408 sy u 0.0519
syu 0.1528 syu 0.1378 s yu 0.1081 s y u 0.1378

Querying an Epistemic State. Once an epistemic state has been calculated,
we can ask any queries about the relations between students, young, and unmar-
ried people, determining the corresponding beliefs holding in currState. The
antecedent and the consequent of a conditional can be arbitrary formulas, e. g.
(y|u& s), “What is the probability that unmarried students are young?” (where
“&” denotes logical conjunction). MEcore can also handle named sets of queries
so that they can be reused later on:

(4) someQueries := ((u|s), (y|u& s));
(5) currState.query(someQueries);

MEcore returns (u|s)[0.5087] and (y|u& s)[0.8270]. The answer to the second
query shows that in the current epistemic state it is believed that the probability
of an unmarried student to be young is 0.8270, expressing the joint influences of
both rules in kbase in an information-theoretic optimal way.

Belief Change: Updating an Epistemic State. MEcore provides the be-
lief change operator update to processes new knowledge about an evolving world,
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i. e. it enables us to adjust an epistemic state to new, (possibly) changed know-
ledge. To determine a unique updated epistemic state, the principle of minimum
cross-entropy (see Sec. 2) is used. The updated epistemic state is determined
by calculating the unique distribution MinCEnt(P,R) which has the minimal
information distance to the current distribution P and which satisfies the new
knowledge R. Thus, the updated epistemic state results from the previous one
by modifying it only as much as necessary (in terms of the entropy measure) to
incorporate the new knowledge.

Continuing our example, suppose that some time later we learn that the rela-
tionship between students, unmarried, and young people has changed. Now, the
probability that a student is young has increased to 0.9 and we get to know that
young people are unmarried with a probability of 0.85. Therefore, we must up-
date our current epistemic state with this new information to
MinCEnt(currState, (u|y)[0.85], (y|s)[0.9])):

(6) currState.update((u|y)[0.85], (y|s)[0.9]);
(7) currState.query(someQueries);

This gives us the following result:
ω P ∗(ω) ω P ∗(ω) ω P ∗(ω) ω P ∗(ω)
syu 0.3304 syu 0.0583 syu 0.0190 sy u 0.0242
syu 0.2331 syu 0.0411 s yu 0.1293 s y u 0.1646

Asking someQueries again, the probabilities (u|s)[0.8090] and (y|u& s)[0.9456]
are higher than before. In particular, based on the new information, the be-
lief that students are unmarried has increased, and it is now believed that the
probability of an unmarried student to be young is 0.9456.

4 Components of the MEcore System

Figure 1 illustrates the essential functionalities of the MEcore system. All be-
lief change and reasoning operations make use of a probability distribution as
representation of the current epistemic state. A new epistemic state is initialized
by a set of probabilistic conditionals (kbase in our example). Certain operations
can be performed on an epistemic state, as depicted in Fig. 1. The required
parameters of each operation are also denoted there, where knowledge, addi-
tional knowledge, changed knowledge, and assumptions are sets of probabilistic
conditionals, whereas queries are sets of unquantified conditionals, and evidence
resp. diagnoses are sets of quantified resp. unquantified (simple) formulas.

Some of the operations not covered by our example are: revise, which in-
corporates additional knowledge by maintaining previous knowledge; margin,
which outputs the marginal distribution with respect to some given variables;
whatif, which facilitates a what-if-analysis in terms of “What would be the prob-
ability of queries if the assumptions held?”, and diagnosis, which determines
the probability of diagnoses given some factual evidence.

One of MEcore’s advanced features is to handle multiple epistemic states.
Therefore, every epistemic state is assigned to a unique identifier (currState in
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Fig. 1. Functionalities of the MEcore system and operations on epistemic states

our example), i. e. an epistemic state is referenced via its identifier. A scenario
with multiple epistemic states comes up if the copy operation is used to duplicate
an epistemic state, i. e. an independent copy is assigned to another identifier. This
can be very useful for experimenting, e. g. to compare a modified epistemic state
with a previously created copy to analyze certain changes in detail.

Moreover, for practical applications, there are flexible file management oper-
ations e. g. for the execution of script files or for loading knowledge base files.
For more details of MEcore’s operations and their background information,
see [5,2]. MEcore is implemented in Java [5]. In its current version, it uses a
straight-forward, direct implementation of a well-known MinCEnt algorithm and
provides a very powerful and flexible interface.

Computation of MinCEnt. MEcore computes the distribution
MinCEnt(P,R) in an iterative way; a detailed description of the used al-
gorithm can be found in [6]. In principle, the algorithm iterates over all rules
in R in a cyclical order. In each iteration step, only one rule is considered
and the current distribution (starting with P ) is appropriately adjusted to
satisfy the considered rule. It can be shown that this iterative process converges
to MinCEnt(P,R). Although MEcore’s current representation operating on
the full probability distribution has to cope with the exponential size in the
number of variables, it is still efficient enough to handle knowledge bases with
20 variables in about 30 seconds.

The User Interface. The present version of MEcore can be controlled by a
text command interface or by scripts, i. e. text files that allow the batch pro-
cessing of command sequences. These scripts and the text interface use a pro-
gramming language-like syntax that allows to define, manipulate and display
variables, propositions, rule sets and epistemic states. Hence, one is able to use
both previously defined rule sets and rules that are entered just when they are
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needed, and combinations of both. The ability to manipulate rule sets, to auto-
mate sequences of updates and revisions, and to output selected (intermediate)
results for comparing, yields a very expressive command language. This com-
mand language is a powerful tool for experimenting and testing with different
setups. All core functions of the MEcore system are also accessible through a
software interface (in terms of a Java API). So MEcore can easily be extended
by a GUI or be integrated into another software application.

5 Related Work and Conclusions

The aim of the MEcore project is to implement subjective probabilistic rea-
soning, as it could be performed by agents, making various belief operations
possible. In particular, it allows changing of beliefs in a very flexible way by
taking new, complex information into account.

There are other systems performing inferences in probabilistic networks, es-
pecially in Bayesian networks. One system built upon such network techniques
to implement reasoning at optimum entropy is the expert system shell Spirit

[7]. Graph based methods are known to feature a very efficient representation of
probability distributions via junction trees and hypergraphs, whereas MEcore
works on a model based representation of probabilities, which is not feasible if the
number of variables gets very large. Since MEcore’s MinCEnt implementation
is independent from the actual representation of the distribution, the system can
orthogonally be extended by a more sophisticated kind of representation, e. g.
by junction trees [8], which we plan to do in the future. However, efficient meth-
ods of restructuring probabilistic networks needed for complex belief changes as
provided by MEcore still have to be developed.
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Abstract. We report on recent advancements in the development of grounder
Gringo for logic programs under answer set semantics. Like its relatives, DLV
and Lparse, Gringo has in the meantime reached maturity and offers a rich mod-
eling language to program developers. The attractiveness of Gringo is fostered by
the fact that it significantly extends the input language of Lparse while supporting
a compatible output format, recognized by many state-of-the-art ASP solvers.

1 Introduction

Answer Set Programming (ASP; [1]) is an attractive paradigm for knowledge repre-
sentation and reasoning. On the one hand, its popularity is due to the availability of
efficient off-the-shelf solvers (cf. [2]). But equally or even more important under the as-
pect of usability is its rich modeling language, including first-order variables, function
symbols, aggregates, etc. In fact, search problems are in ASP usually modeled in a uni-
form way by means of a data part, called instance, and a general part, called encoding
(cf. [3,4,5,6,7]). The computation of answer sets, corresponding to problem solutions,
is then typically performed in two phases: first, grounding the encoding on the problem
instance, and second, solving the resulting propositional program.

In contrast to the multitude of available solvers, the field of ASP grounders is still
underrepresented. To the best of our knowledge, there are only three popular grounders,
namely, (the grounding component of) DLV [8], Lparse [9], and Gringo [10]. While
DLV processes the grounding result internally or prints it as text, the numerical output
format of Lparse and Gringo is recognized by many state-of-the-art ASP solvers. In
view of this transparency from the solver side and the progress made since the first
description of Gringo [11], Gringo has become a real alternative to Lparse. In particular,
the attractiveness of Gringo is fostered by the fact that it significantly extends the input
language of Lparse, providing advanced modeling features to ASP programmers. This
paper reports on such new features of Gringo, potentially useful for ASP applications.

2 Modeling Features

The input language of Gringo is designed to be in large parts compatible to the one of
Lparse [9], so that the majority of Lparse programs can still be grounded with Gringo.
Assuming basic familiarity with Lparse, we focus our description on extensions avail-
able in Gringo and also mainly take Lparse as the grounder to contrast with.
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λ-Restricted Programs [11]. The class of programs processable with Gringo is a proper
superclass ofω-restricted programs [12] accepted by Lparse. The underlying idea is that
all relevant ground instances of a rule (that is, ground instances whose bodies can po-
tentially be true wrt an answer set) are implicitly given if, for each variable in the rule,
we find some atom in the positive rule body such that its predicate’s relevant ground
instances are known. As the basic grounding algorithm of Gringo works rule-wise, the
latter is the case when all rules with the predicate occurring in the head have already
been instantiated. In fact, before beginning with instantiation, Gringo computes an or-
dering such that all rules with a predicate in the head are completely processed before
the predicate is used to restrict variable domains in other rules where it occurs in the
positive body. Notably, Gringo imposes no additional restrictions, such as being definite
or stratified, on the rules to be ordered. To see this, consider the following example [10]:

zig(0) :- not zag(0). zig(1) :- not zag(1).
zag(0) :- not zig(0). zag(1) :- not zig(1).

zigzag(X,Y) :- zig(X), zag(Y). zagzig(Y,X) :- zigzag(X,Y).

Here, Gringo first looks at the (ground) rules with zig/1 and zag/1 in the head, and
so it determines that 0 and 1 are all argument values for which the predicates can hold
wrt answer sets. This is used to restrict ground instances of X and Y in the rule with
zigzag/2 in the head, which in turn restricts X and Y in the rule with zagzig/2.
Hence, Gringo grounds the above program without complaints, while Lparse rejects
it because of not being ω-restricted. In order to use Lparse, we would have to add a
domain predicate, saying that X and Y must be 0 or 1, to the bodies of the last two
rules. Of course, such information would be redundant, and thus λ-restrictedness helps
to write more focused programs, concentrating on the relevant information within rules.

Uninterpreted Functions. The input language of Gringo allows for using functions in
the heads and bodies of rules, and unification is applied for instantiating variables in
uninterpreted functions. For instance, this enables Gringo to ground the program:

parent(joan,mother(jane)). female(Y) :- parent(X,mother(Y)).
parent(joan,father(john)). male(Y) :- parent(X,father(Y)).

Though Lparse also tolerates uninterpreted functions, it internally handles them like
interpreted (arithmetic) functions, and so it refuses to instantiate Y in the above program.
For modeling, the full support of uninterpreted functions by Gringo can be beneficial.

Conditions. Conditions are indicated by “:” in the input languages of Lparse and
Gringo. Their purpose is to instantiate “local” variables on the left-hand side with val-
ues for which (a set of) literals over domain predicates on the right-hand side holds
(cf. [9,10]). For illustration, consider the following program:

od(1). ne(1).
ev(2). pr(2).

od(3). pr(3).
and_1 :- pr(X) : od(X). % and_1 :- pr(1), pr(3).
and_2 :- ne(X) : od(X) : not pr(X). % and_2 :- ne(1).
and_3 :- not ev(X) : ev(X) : not pr(X). % and_3.
or(X) : od(X). % or(1) | or(3).
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For comparison, the ground rules qualified by the rules with conditions are provided in
comments. First, observe that Gringo expands conditions in the bodies of rules into con-
junctions of the required length, while disjunction is used for conditions in rule heads.
Furthermore, default negation via not can be used on the right-hand side and, in rule
bodies, also on the left-hand side of a condition. A particular case is illustrated by the
rule with head and 3, where the left-hand side is the negation of an atom on the right-
hand side. In this situation, the set of literals on the right-hand side must be unsatisfied
by all of its ground instances, as it happens with the above rule, or the expansion of
the condition is immediately unsatisfied. This phenomenon can be exploited for testing
whether certain properties do not hold wrt all ground instances of a set of literals. Com-
paring with conditions in Lparse yields that it accepts only the rule with head and 1,
while neither negative literals nor occurrences in rule heads are supported. To illustrate
the usefulness of the latter, let us consider a disjunctive encoding of N -Coloring:

#const n=3.
col(X,C) : C = 1..n :- node(X).
% col(X,1) | ... | col(X,n) :- node(X).
:- col(X,C), col(Y,C), edge(X,Y).

To keep the encoding general, we make use of a constant n for defining the number
of available colors. All values from 1 to n can successively be assigned to C in the
condition of the first rule. Hence, we obtain a disjunction ranging over all colors for
each node X. Without this opportunity, it is more involved to make use of disjunction
for arbitrary N . In fact, as the length of the required disjunction is open (illustrated also
by the uncommented rule), other ways of encoding it would have to be used instead.

Aggregates. Aggregates (and associated comparison operations), like the ones sup-
ported by DLV [13] or cardinality and weight constraints of Lparse [9], permit a
compact representation of (numerical) constraints on sets of literals. The aggregates
currently supported by Gringo are: #count, #sum, #times, #avg, #min, #max,
#even, and #odd. Each aggregate applies to either a set of literals, enclosed in curly
brackets, or a multiset of literals with associated weights, enclosed in square brackets,
where 1 is used as a default for omitted weights. The result of applying an aggregate
can be compared to a lower bound (−∞ if omitted) and an upper bound (∞ if omitted)
in order to obtain a truth value. The only exceptions to this are #even and #oddwhose
meanings are fixed independently of bounds. Before we illustrate individual aggregates,
we note that [14] provides a general semantics for them. An objective of Gringo is to
respect this semantics as far as possible, with the modification of applying “choice se-
mantics” [15,16] instead of minimization to atoms occurring positively in an aggregate
being the head of a rule. However, some compromises are needed for compatibility to
the output format of Lparse, supporting only #count and #sum (all other aggregates
are compiled into them), and only non-negative weights in #sum aggregates (negative
weights are eliminated by translation [15]). As a consequence, compliance with the
“choice version” of the semantics in [14] is only guaranteed if dependencies through
#avg as well as #sum and #times aggregates with negative weights are not subject to
(positive) recursion, i.e., an atom appearing in such an aggregate in a rule body should
not be defined (directly or indirectly) by any atom occurring positively in the rule head.
Now illustrating the available aggregates, we begin with the ones familiar from Lparse:
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1 #count {a, not b, c} 2. % 1 {a, not b, c} 2.
1 #count {a,a, not b, c} 2. % 1 {a, not b, c} 2.

2 #sum [a=1, not b=1, c=2] 3. % 2 [a=1, not b=1, c=2] 3.
2 #sum [a, not b, c,c] 3. % 2 [a=1, not b=1, c=2] 3.

The above (ground) facts specify #count and #sum aggregates. In comments, we
provide their notations in terms of cardinality and weight constraints, also accepted
by Gringo for compatibility to Lparse. Note that Gringo properly deals with the set
semantics of #count and multisets of #sum, while Lparse turns a,a as in the second
fact into a=2. However, given that the above facts contain negative literal not b (in the
head), Lparse would not accept them either. Such restrictions do not apply to Gringo,
capable of handling negative literals in aggregates occurring as rule heads. The next
examples demonstrate the use of the further aggregates supported by Gringo:

2 #times [a=1, not b=2, c=3] 3.
2 #times [a, not b,not b, c,c,c] 3.

% 2 #times [a=1, not b=1, c=1] 3.

2 #avg [a=3, not b=1, c=0] 2.
2 #avg [a,a, not b=2]. % 2 #avg [a=1, a=1, not b=2].

2 #min [a=1, not b=2, c=3] 2.
2 #min [a, not b,not b, c,c,c] 2.

% 2 #min [a=1, not b=1, c=1] 2.

2 #max [a=1, not b=2, c=3] 2.
2 #max [a, not b,not b, c,c,c] 2.

% 2 #max [a=1, not b=1, c=1] 2.

#even {a, not b, c}. #odd {a, not b, c}.
#even {a,a, not b, c}. #odd {a,a, not b, c}.
% #even {a, not b, c}. % #odd {a, not b, c}.

For aggregates over repeated literals and omitted weights, semantically equivalent
counterparts are provided in comments. With multisets, repeated literals appear also
repeatedly in the output of Gringo, while the effect of such repetitions depends on
the aggregate at hand. As regards the #avg aggregate, a=2 contributes one and a,a
two addends to the numerator and denominator, respectively, in the average calculation.
Also note that the meanings of a=2 and a,a are different from one another in #times,
#min, and #max aggregates. Finally, as #even and #odd determine the parity of the
number of (true) literals in sets, repeated literals are collapsed into one. Though not
demonstrated above, aggregates (and associated comparison operations) can also be
used in rule bodies. In addition to comparing aggregate results to bounds, Gringo sup-
ports assigning the result to a variable, as exemplified in the following program:

q(X) :- X = #sum [p(Y) : p(Y) : Y #mod 2 != 0 = Y]. p(1..3).

Such assignments of aggregate results are also possible with DLV (cf. [17]), but not in
Lparse. Their main application is to identify deterministic properties of instances that
can be calculated from the stratified part of a program [10].
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Runtime Options. The default output format of Gringo is the same as the one of
Lparse [9]. Via (experimental) option --aspils, the output is printed in one of the
normal forms of ASPils, an intermediate format proposed in [18]. As with Lparse, op-
tion --text (or -t) makes Gringo print ground rules in human-readable text format.
In addition, option --debug can be provided to investigate internal representations of
(non-ground) rules during grounding. Via --const (or -c), also available in Lparse,
occurrences of a constant can be replaced with another term, e.g., beneficial with N -
Coloring as encoded above. For disjunctive programs, in particular, “head-cycle-free”
ones, option --shift replaces disjunction in rule heads with default negation in rule
bodies, so that solvers for non-disjunctive ASP can be applied. To improve efficiency, if
an input program is already ground, it can be signaled to Gringo via option --ground.
This allows Gringo to avoid unnecessary yet non-negligible overhead, which is useful,
e.g., for running in a mode similar to category SCore of the first ASP system competi-
tion [2]. Note that any occurrences of variables are considered as syntax errors if Gringo
expects an input program to be ground. The binder-splitting technique [11], applied by
default, can be switched off via option --bindersplit; this is mainly to admit ex-
perimental comparisons. Finally, options --ifixed and --ibase enable Gringo to
ground incremental programs, written for iClingo [19] and containing meta-directives
#base, #cumulative, and #volatile [10].

3 Discussion

We have presented relevant features of grounder Gringo (version 2.0.3), significantly
extending the functionalities of Lparse. Gringo constitutes an integral part of Potassco,
the Potsdam Answer Set Solving Collection bundling tools for ASP, for which sources
(and binaries) are publicly available at http://potassco.sourceforge.net.
In addition to its executable, Gringo comes as library. As such, it is used inside ASP
systems Clingo, iClingo, and Clingcon, all belonging to the Potassco suite. However,
due to supporting the output format of Lparse, Gringo is not limited to work only in in-
tegrated tools, but can be used as a front-end for many state-of-the-art ASP solvers. Re-
cent applications modeled and grounded with Gringo include [20,21,22,23,24]. For the
future, we plan to integrate grounding techniques beyond rule-wise working ones and,
accordingly, to relax the required input program properties (currently λ-restrictedness).
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Abstract. We summarize the salient features of the current version of the answer
set solver clasp, focusing on the progress made since version RC4 of clasp. Apart
from enhanced preprocessing and search-supporting techniques, a particular em-
phasis lies on advanced reasoning modes, such as cautious and brave reasoning,
optimization, solution projection, and incremental solving.

1 Introduction

The solver clasp for Answer Set Programming (ASP; [1]) is based upon advanced
Boolean constraint solving technology. The theoretical foundations and basic algo-
rithms underlying clasp can be found in [2,3]. It is freely available as open source
package at [4]. This paper reports on the progress made since the first system descrip-
tion of clasp [5] covering the features of version RC4: it mainly dealt with an empirical
evaluation of clasp’s features related to conflict-driven nogood learning, comparing var-
ious strategies for restarts, nogood deletion, and decision heuristics. In the meantime,
clasp won the solving categories SCore and SLparse at the first ASP system competi-
tion and is currently participating in the second one. Also, clasp qualified for this year’s
final round of the industrial Satisfiability checking (SAT) competition and competed in
SAT-Race 2008 as well as in the 2007 Pseudo-Boolean (PB) evaluation1.

2 Features

This section describes the major features of version 1.2.1 of clasp added since RC4.

Reasoning Modes. As almost all ASP solvers, clasp relies on a grounder providing a
representation of a propositional logic program. Its major input format is Lparse out-
put, provided by either Lparse [6] or Gringo [7]. Although clasp’s primary use case is
the computation of a given number of answer sets, it also allows for computing the sup-
ported models of a logic program (via command line option --supp-models). As
detailed below, in either case, options --cautious and --brave permit comput-
ing the intersection and union, respectively, of the respective types of models. Finally,
the --dimacs option allows for using clasp as a SAT solver computing the classical
models of a propositional formula supplied in DIMACS format.

� Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.
1 Thanks to Gayathri Namasivayam and Mirosław Truszczyński, University of Kentucky.
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Preprocessing. At the beginning, a propositional logic program is subject to extensive
preprocessing [8]. The idea is to simplify a logic program while identifying equiva-
lences among its relevant constituents. These equivalences are then used for building
a compact representation of the program (in terms of Boolean constraints). Notably,
sometimes preprocessing is able to turn a non-tight program into a tight one (cf. [9]).
Preprocessing is configured via option --eq, taking an integer value fixing the number
of iterations. Once a program has been transformed into a set of Boolean constraints, it
is subject to further preprocessing, mostly borrowed from the area of SAT [10]. SAT-
based preprocessing is invoked with option --sat-prepro and further parameters.
However, care must be taken when adapting such techniques from SAT because prepro-
cessing must not eliminate variables that are relevant to the unfounded set checker or
that occur in optimize statements or weight rules.

Dedicated Propagation. Not all parts of a logic program are turned into nogoods by
clasp (in its default setting). Rather clasp employs specialized propagation algorithms
and has a dedicated implementation for cardinality and weight constraints [11]. These
are particular count and sum aggregates offered by Lparse and Gringo. As detailed
in [11], their treatment involves a dedicated, source-pointer-based unfounded set algo-
rithm that computes loop nogoods only on demand, while aiming at lazy unfounded
set checking and backtrack-freeness. Although per default all cardinality and weight
constraints are subject to dedicated propagation, their treatment can be configured
through option --trans-ext. Propagation with loop nogoods is influenced by op-
tion --loops controlling their creation.

Model Enumeration. Different ways of enumerating models are supported by clasp.
In fact, solution enumeration is non-trivial in the context of backjumping and no-
good learning. A popular approach consists in recording solutions as nogoods and
exempting them from nogood deletion. Although clasp supports this via option
--solution-recording, it is prone to blow up in space in view of an exponen-
tial number of solutions in the worst case. Unlike this, the default enumeration algo-
rithm of clasp runs in polynomial space [3]. Both approaches also allow for projecting
solutions on a subset of atoms [12]; invoked with --project and configured via
the well-known directives #hide and #show of Lparse and Gringo. For example,
the program consisting of the choice rule {a,b,c}. has eight (obvious) answer sets.
When augmented with directive #hide c., still eight solutions are obtained, yet in-
cluding four duplicates. Unlike this, invoking clasp with --project yields only four
duplicate-free solutions. This option is of great practical value whenever one faces over-
whelmingly many answer sets, involving solution-irrelevant variables having a proper
combinatorics. As regards implementation, it is interesting to note that clasp offers a
dedicated interface for enumeration. This allows for abstracting from how to proceed
once a model was found and thus makes the search algorithm independent of the con-
crete enumeration strategy. One further strategy implemented via the enumeration in-
terface consists of computing the intersection or union of all answer sets of a program
(via --cautious and --brave, respectively). Rather than computing a set of (pos-
sibly) exponentially many answer sets, the idea is to compute a first answer set, record
a constraint eliminating it from further solutions, then compute a second answer set,
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strengthen the constraint to represent the intersection (or union) of the first two answer
sets, and to continue in this way until no more answer sets are obtained. This process in-
volves computing at most as many answer sets as there are atoms in the input program.
Either the cautious or the brave consequences are then given by the atoms captured by
the final constraint.

Optimization. Another application-oriented feature is optimization. As common in
Lparse-like languages, an objective function is specified by a sequence of #minimize
and #maximize statements. For finding optimal solutions, clasp offers several op-
tions. First, clasp allows for computing one or all (--opt-all) optimal solutions.
Second, the objective function can be initialized via --opt-value. The latter turns
out to be useful when one is interested in computing consequences belonging to all
optimal solutions (in combination with --cautious). One starts with a search for
an optimum and then re-launches clasp by bounding its search with the value of the
optimum. Doing the latter with --cautious yields all consequences true in all op-
timum answer sets. On applications, it turned out to be very useful to optimize using
the option --restart-on-model (making clasp restart after each (putative) mini-
mum solution) in order to ameliorate the convergence to an optimum solution. Again,
optimization is implemented via the aforementioned enumeration interface. When a so-
lution is found, the optimization constraint is updated by the corresponding value. Then,
the decision level invalidating the updated constraint is identified and backtracked; if the
constraint is violated on the top-level, search terminates. Furthermore, it is worth men-
tioning that clasp also propagates over optimization statements. For this, optimization
statements are themselves stored as Boolean constraints [5] in the solver. As such, they
can derive (and provide reasons for) implications during unit propagation.

Restarts. The robustness of clasp is boosted by advanced restart strategies. Apart from
the policies already discussed in [5], namely, geometric, fixed-interval, and Luby-style
policies, a nested policy, first used in picosat [13], is meanwhile also offered by clasp.
This policy takes three parameters x, y, z and makes restarts follow a two dimensional
pattern that increases geometrically in both dimensions. The geometric restart sequence
x ∗ yi is repeated when it reaches an outer limit z ∗ yj , where i counts the number of
restarts and j how often the outer limit was hit so far. Usually, restart strategies as
listed above are based on a global number of conflicts. Moreover, clasp features local
restarts [14]. Here, one counts the number of conflicts at each decision level in order to
localize the measure of difficulty. For this, we maintain a counter c(d) for each decision
level d. When a new decision level d is created, c(d) is set to the global number of
conflicts. When backtracking to level d, a restart is only initiated if the difference be-
tween the global number of conflicts and c(d) is now larger than the strategy-dependent
threshold. It is worth noting that despite the fact that recent SAT solvers use rather
aggressive restart strategies (cf. Section 3), clasp still defaults to a more conservative
geometric policy because this performs better on our ASP-specific benchmarks.

Progress Saving. Another search-related feature of clasp is progress saving, as de-
scribed in [15]. The idea is as follows. On backjumping (or restarting), the values of
variables whose assignment is about to be erased are saved for all but those variables as-
signed on the last decision level. The saved values are then used during decision making.
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That is, when a variable for which a value was saved is selected by the decision heuris-
tic, it is assigned to that value. The intuition behind this strategy is that the assignments
made prior to the last decision level did not lead to a conflict and may have satisfied
some subproblem. Hence, repeating those assignments may help to avoid solving sub-
problems multiple times. Progress saving is invoked with option--save-progress;
its computational impact depends heavily on the structure of the application at hand.

Application Programming Interface. A major yet internal feature of clasp is that it
can be used in a stateful way. That is, clasp may keep its state, involving program
representation, learned constraints, heuristic values, etc, and be invoked under addi-
tional (temporary) assumptions and/or by adding new atoms and rules. The correspond-
ing interfaces are fundamental for supporting incremental ASP solving as realized in
iClingo [16], a combination of Gringo and clasp for incremental grounding and solv-
ing. Furthermore, they allow for solving under assumptions [17]; an important feature
that is, for example, used in our parallel ASP solver claspar [18].

3 Fine-Tuning

Advanced Boolean constraint solving technology adds a multitude of degrees of free-
dom to ASP solving. For instance, currently, clasp has roughly 40 options, half of which
control the search strategy. Although considerable efforts were taken to find default pa-
rameters for optimizing robustness and speed, the default setting still leaves room for
drastic improvements on specific benchmark classes by fine-tuning the parameters. The
question arises how to deal with this vast “configuration space” and how to conciliate it
with the idea of declarative problem solving. Currently, there seems to be no alternative
to manual fine-tuning when addressing highly demanding application problems.

As rules of thumb, we usually start by investigating the following options:

--heuristic: Try VSIDS instead of clasp’s default BerkMin-style heuristic.
--sat-prepro: SAT-based preprocessing works best on tight programs with few

cardinality and weight constraints. It should (almost) always be used if extended
rules are transformed into nogoods (via --trans-ext).

--restarts: Try aggressive restart policies, like Luby-256 or the nested policy, or
try disabling restarts, whenever a problem is deemed to be unsatisfiable.

--save-progress: Progress saving typically works nicely if the average back-
jump length (or the #choices/#conflicts ratio) is high (≥10). It usually performs
best if combined with aggressive restarts.

--trans-ext: Applicable if the program contains extended rules, that is, rules in-
cluding cardinality and weight constraints. Try at least the dynamic transformation.

The impact of simple fine-tuning can be seen on the following examples. As
shown in [19], clasp times out on satisfiable 4-Coloring problems. However, with
--save-progress, clasp solves all instances in less than 2 sec (the average back-
jump length is >60). For another example, consider the benchmark WeightBounded-
DominatingSet from the second ASP competition. The default configuration of clasp
results in six timeouts, all of which vanish once aggressive restarts are used. Similar
effects are observed on application problems featuring yet different characteristics.
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Although such fine-tuning may greatly improve the efficiency of clasp, it is hard
to accomplish for an unpracticed user, and after all it takes us away from the ideals
of declarative problem solving. To this end, we advocate an extension of clasp, called
claspfolio, that maps benchmark features to solver configurations (via machine learning
techniques). It is interesting future work to see whether this allows for an automatic
selection of effective parameter settings.

4 Discussion

Since its inception in 2007, clasp has become an efficient, full-fledged ASP solver. Be-
yond its computational power, it meanwhile features various reasoning modes that make
it an attractive tool for knowledge representation and reasoning. This is witnessed by
an increasing number of applications relying on clasp or derivatives as reasoning en-
gine, e.g., [20,21,22,23,24,25]. clasp constitutes a central component of Potassco, the
Potsdam Answer Set Solving Collection bundling tools for Answer Set Programming
developed at the University of Potsdam. An extension of clasp, called claspD [26],
allows for dealing with disjunctive ASP programs. Meanwhile, the family has grown
and two new systems, Clingo and iClingo [16], have emerged. Clingo is a monolithic
combination of clasp and Gringo. iClingo is an ASP system that allows for dealing
incrementally with parametrized problems, as encountered for instance in bioinformat-
ics, planning, and model checking. The latest addition to the family is Clingcon [27],
augmenting Clingo with (non-Boolean) constraint processing capacities. Also, there is
a distributed version of clasp, called claspar [18], designed for running on clusters with
MPI. Sources (and binaries) of our systems are publicly available at [4].

Acknowledgments. This work was partially funded by DFG under Grant SCHA 550/8-1
and by the GoFORSYS project under Grant 0313924.
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Abstract. We present an implementation of the general language of
stable models proposed by Ferraris, Lee and Lifschitz. Under certain con-
ditions, system f2lp turns a first-order theory under the stable model
semantics into an answer set program, so that existing answer set solvers
can be used for computing the general language. Quantifiers are first
eliminated and then the resulting quantifier-free formulas are turned into
rules. Based on the relationship between stable models and circumscrip-
tion, f2lp can also serve as a reasoning engine for general circumscriptive
theories. We illustrate how to use f2lp to compute the circumscriptive
event calculus.

1 Introduction

One advantage of classical logic over logic programs is that the former allows us
to encode knowledge in a complex formula, which is often more convenient than
encoding in conjunctive normal form only. While the input languages of answer
set solvers have evolved to allow various constructs for facilitating encoding
efforts, such as choice rules, cardinality constraints and aggregates, the syntax is
still limited to rule forms and does not allow quantifiers and connectives nested
arbitrarily as in classical logic.

Recently, there have been some efforts in lifting the syntactic restriction by
extending the stable model semantics to arbitrary first-order formulas, under
which an answer set program is viewed as the conjunction of the implications
corresponding to the rules [1,2]. The generality of the language allows to view
choice rules and cardinality constraints as abbreviations of first-order formulas
without involving grounding [3].

System f2lp
1 is a step towards implementing this general language. It trans-

lates an arbitrary first-order formula under the stable model semantics into an
answer set program. By calling existing answer set solvers on the resulting pro-
gram, we can compute Herbrand stable models of a first-order formula. The
system extends the previous version described in [4], which computes stable
models of an arbitrary propositional formula. The translation implemented in
f2lp is based on the following recent theoretical results.
1 http://reasoning.eas.asu.edu/f2lp

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 515–521, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



516 J. Lee and R. Palla

– Every first-order formula is strongly equivalent to its prenex form [4, Theo-
rem 2] and can be also rewritten as a universal formula under certain condi-
tions at the price of introducing new predicate constants [5, Proposition 3].

– Every quantifier-free formula (including propositional formula) is strongly
equivalent to a logic program [6,7,4].

We expect that f2lp will facilitate encoding efforts. It can also serve as a tool for
computing general circumscriptive theories, in view of the relationship between
the stable models and circumscription described in [5]. We illustrate how f2lp

can be used for computing circumscriptive event calculus [8,9], whose syntax is
not necessarily in the rule form. System circ2dlp [10] is another implementation
of circumscription using answer set solvers, which can even handle prioritized
circumscription and allows varied constants. On the other hand, f2lp allows
more general syntax.

2 Review: Stable Models for First-Order Formulas

We follow the definition of a stable model from [2], a journal version of [1]. The
definition is also reproduced in [11]. There stable models are defined using “stable
model operator SM” with “intensional predicates,” similar to circumscription.

Let p be a list of distinct predicate constants p1, . . . , pn other than equality.
For any first-order sentence F , by SM[F ;p] we denote the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where u is a list of n distinct predicate variables u1, . . . , un. Expression u < p
stands for a formula expressing that u is “stronger than” p, defined same as in
circumscription. Formula F ∗(u) is defined recursively.

– pi(t)∗ = ui(t) for any tuple t of terms;
– F ∗ = F for any atomic F that does not contain members of p;
– (F �G)∗ = (F ∗ �G∗), � ∈ {∧,∨};
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (QxF )∗ = QxF ∗, Q ∈ {∀, ∃}.

A model of F (in the sense of first-order logic) is stable (relative to the set p of
intensional predicates) if it satisfies SM[F ;p]. Let σ(F ) be the signature consist-
ing of the object, function and predicate constants occurring in F . If F contains
at least one object constant, an Herbrand interpretation of σ(F ) that satisfies
SM[F ;p] where p is the list of all predicate constants occurring in F , is called
an answer set of F . The answer sets of a logic program Π are defined as the
answer sets of the FOL-representation of Π (i.e., the conjunction of the universal
closures of implications corresponding to the rules). It turns out that this defi-
nition, applied to the syntax of logic programs, is equivalent to the traditional
definition of answer sets based on grounding and fixpoint construction [1].
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3 Quantifier Elimination

Given a set of formulas, f2lp first eliminates all quantifiers and then applies the
transformation defined in [7] that turns the resulting quantifier-free formulas
into logic program rules. In this section we describe how quantifier elimination
is done in f2lp.

Obviously, if the domain is known and finite, quantifiers can be replaced with
multiple disjunctions and conjunctions. For instance, consider the formula

r ∧ ¬∃x(p(x) ∧ q(x)) → s (1)

occurring in a program that contains n object constants {a1, . . . , an}. Replacing
∃x(p(x)∧q(x)) with multiple disjunctions and then turning the result into a logic
program yields 2n rules. Also this translation is not modular as it depends on the
underlying domain, so that the multiple disjunctions need to be updated when
the domain changes. Alternatively, we can introduce a new predicate constant p′,
and turn (1) into

s ← r,not p′

p′ ← p(x), q(x)

which does not involve grounding so that the translation is not dependent on
the domain.

Under the general stable model semantics, maximal negative occurrences of ∃
and maximal positive occurrences of ∀ in the formula can be dropped in view
of the fact that the standard prenex normal form conversion turns such occur-
rences into outermost ∀ while preserving strong equivalence [4]. As shown in the
example above, positive occurrences of ∃ can be eliminated using new predicate
constants if the quantified formula is in the scope of negation. This condition
is further generalized in the proposition below. We say that an occurrence of a
predicate constant in a formula F is strictly positive if that occurrence is not
in the antecedent of any implication. (For instance, in (p → q) → r, only r has
a strictly positive occurrence.) About a formula F , we say that it is negative
on a tuple p of predicate constants if members of p have no strictly positive
occurrences in F [11]. The following proposition is a slight generalization of [5,
Proposition 3] in view of Theorem on Double Negations from [11].

Proposition 1. Let F be a sentence, let p be a list of distinct predicate constants
and let q be a predicate constant that does not belong to the signature of F . For
any positive occurrence of a subformula ∃xG(x,y) of F where y is the list of all
free variables in ∃xG(x,y), let F ′ be the formula obtained from F by replacing
that occurrence with ¬¬q(y). If the occurrence of G(x,y) is in a subformula of F
that is negative on p, then the models of

SM[F ′ ∧ ∀xy(G(x,y) → q(y));p, q]

restricted to the signature of F are precisely the models of SM[F ;p].

Negative occurrences of ∀ can also be eliminated using the proposition by first
rewriting ∀xG as ¬∃x¬G.
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For example, ∃x(p(x) ∧ q(x)) in formula (1) is contained in a negative for-
mula (relative to any set of intensional predicates). According to Proposition 1
SM[(1); p, q, r, s] has the same models as

SM[(r ∧ ¬¬¬p′ → s) ∧ ∀x(p(x) ∧ q(x) → p′); p, q, r, s, p′]

if we disregard p′.
These ideas lead to the following procedure for quantifier elimination, which

is implemented in f2lp.

Definition 1. Given a formula F , repeat the following until there are no occur-
rences of quantifiers remaining:

Select a maximal occurrence of QxG(x,y) in F where Q is ∀ or ∃ and y is the
list of all free variables in QxG(x,y).

(a) If Q is ∃ and the occurrence of QxG(x,y) in F is negative, or if Q is ∀ and
the occurrence of QxG(x,y) in F is positive, then set F to be the formula
obtained from F by replacing the occurrence of QxG(x,y) with G(z,y) where
z is a new variable.

(b) If Q is ∃ and the occurrence of QxG(x,y) in F is positive, then set F to be

F ′ ∧ (G(x,y) → pG(y))

where F ′ is the formula obtained from F by replacing the occurrence of
QxG(x,y) with ¬¬pG(y) where pG is a new predicate constant.

(c) If Q is ∀ and the occurrence of QxG(x,y) in F is negative, then set F to be
the formula obtained from F by replacing the occurrence of QxG(x,y) with
¬∃x¬G(x,y).

4 f2lp Implementation

Formulas can be encoded in the language of f2lp using the following ASCII
characters.

Symbol ¬ ∧ ∨ → ⊥ � ∀xyz ∃xyz
ASCII - & | -> false true ![X,Y,Z]: ?[X,Y,Z]:

f2lp turns a formula into the corresponding lparse program.2 The usual lparse

encoding is also allowed in f2lp: it is simply copied to the output. The lparse

programreturned by f2lp can be passed to ASP grounders and solvers that accept
lparse language. While function symbols are allowed in the input language of
f2lp, it is left to the grounder to handle them.

The current version of f2lp does not check if the condition to apply quantifier
elimination (Proposition 1) is satisfied, which is left to the users. Also f2lp does
not check if the given formula is safe (according to [3]), and may turn a safe
formula into an unsafe program. For instance, f2lp turns the safe formula
2 http://www.tcs.hut.fi/Software/smodels
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p(X) -> ((q(Y)->r(Y)) | s(X)).

into an unsafe program

r(Y)|s(X) :- q(Y),p(X).
s(X) :- {not q(Y)}0,not r(Y),p(X).

However, this may not be a serious limitation since we usually declare variables
using the #domain directive in lparse language, which is the same as appending
domain predicates to the body of each rule.

5 Computing Circumscriptive Theories

Kim et al. [5] show that for a certain class of formulas called “canonical,” cir-
cumscription and the general stable model semantics coincide. This allows f2lp

to be used for computing circumscription of canonical formulas. For example,
consider the formula

F = ∃x(p(x) ∧ r(x)) → q(b)

and the intensional predicates {p, q}. According to [5], the formula is “canonical”
relative to {p, q} so that CIRC[F ; p, q] is equivalent to SM[F ; p, q], and further-
more to SM[F ∧ ∀x(r(x) ∨ ¬r(x)); p, q, r]. Formula F ∧ ∀x(r(x) ∨ ¬r(x)) can be
encoded in the language of f2lp (In addition, let us assume that the domain is
{a, b, c}):

objects(a;b;c).
#domain objects(X).
?[X]:(p(X)&r(X)) -> q(b).
{r(X)}.

Canonical theories cover a wide range of action formalisms based on circum-
scription, such as circumscriptive event calculus. Here we illustrate how to use
f2lp to compute an event calculus description.

A circumscriptive event calculus domain description is defined as

CIRC[Σ ; Initiates ,Terminates ,Releases ] ∧ CIRC[Δ ; Happens ] ∧ Ξ (2)

where Σ, Δ, Ξ are first-order sentences such that all positive occurrences of ∃xG
in these formulas are contained in subformulas that are negative on {Initiates ,
Terminates ,Releases ,Happens}. Theorem 1 from [5] shows that this theory can
be turned into

SM[Σ ∧Δ∧Ξ ∧Choice(p \ {Initiates ,Terminates ,Releases ,Happens});p] (3)

where p is the set of all predicates occurring in the description. (By Choice(p) we
denote the conjunction of “choice formulas” ∀x(p(x) ∨ ¬p(x)) for all predicate
constants p in p where x is a list of distinct object variables whose length is the
same as the arity of p.) Note that the condition on Σ, Δ, Ξ above satisfies the
condition for eliminating existential quantifiers in Proposition 1.
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In view of Theorem 1 from [5], f2lp can be used for computing the models
of (2). To compute the models, a user can encode

Σ ∧Δ ∧ Ξ ∧ Choice(p \ {Initiates ,Terminates ,Releases ,Happens})
in (3) in the language of f2lp, and run f2lp to turn it into an answer set
program. For instance, an action precondition axiom (in Ξ) for the Blocks World
can be encoded in f2lp as

T < maxstep & happens(pickUp(X),T)

-> holdsAt(clear(X),T) & X != table & -?[Y]:holdsAt(holding(Y),T).

(“picking up X is possible only if X is clear, the agent is not already holding
another object and the object being picked up is not the table.”)

f2lp turns the axiom into the following rules.

holdsAt(clear(X),T) :- T<maxstep,happens(pickUp(X),T).
:- {not holdsAt(holding(NV1),T)}0,T<maxstep,happens(pickUp(X),T).
:- X=table,T<maxstep,happens(pickUp(X),T).

A full encoding of the Blocks World in the language of f2lp is available on the
f2lp webpage (Footnote 1).
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Abstract. We present the first version of our ASP solver ASPeRiX that
implements a new approach of answer set computation. The main speci-
fity of our system is to realize a forward chaining of first order rules
that are grounded on the fly. So, unlike all others available ASP systems
ASPeRiX does not need a pregrounding processing.

1 Introduction

When someone uses Answer Set Programming (ASP) to represent and solve a
problem, (s)he writes a first order normal logic program such that its stable
models [4], also called answer sets, represent the solutions of the problem. To
compute the answer sets, traditional ASP systems proceed in two steps. The
program with variables is first given to a grounder which builds a propositional
version by instantiating all rules with all constants occurring in the program.
Then, a solver takes this ground program and computes the answer sets.

Following our approach of answer set computing [5], we have implemented
in C++ a new ASP solver called ASPeRiX1. Its innovative strategy escapes the
pregrounding phase since it applies a forward chaining of first order rules that
are grounded on the fly during the computation of the answer sets.

2 Description of ASPeRiX

ASPeRiX deals directly with any normal logic program containing rules with vari-
ables, function symbols and arithmetic calculus. The only syntactic restriction is
the safety of rules, ie: all variables occurring in a rule must occur in its positive
body. To avoid the possible problem of infinite Herbrand universe due to function
symbols and arithmetic calculus, the user can pass to ASPeRiX the command line
parameters -F k to limit to k the number of nestings in functional terms and
-N k to limit the set of numbers to [−k, . . . , k].

The search procedure of ASPeRiX [5] follows a forward chaining that alternates
two steps : a monotonic propagation phase applying the largest possible number
of rules instances, and a choice point applying an instance of a non monotonic
rule. These inferences build incrementally two atom sets IN and OUT repre-
senting atoms occurring or not in the solution.
1 Available at http://www.info.univ-angers.fr/pub/claire/asperix

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 522–527, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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At each step, some ground instances of rules are built by unifying atoms of
the positive body with atoms occurring in IN and propagating this unifier in the
head and the negative body. In order to limit the number of these unifications,
ASPeRiX uses dependencies between predicates. If a is an atom, we note pred(a)
the predicate of a, the notation is extended to atom sets. The dependency graph
of a program P is a graph whose nodes are predicates occurring in P and arcs
are {(p, q) | ∃r ∈ P, p = pred(head(r)), q ∈ pred(body(r))}. We say that a
predicate p depends on q if there is a path from p to q in the dependency graph.
Predicates are grouped according to maximal strongly connected components
(scc for short) of the graph. Components are themselves ordered as 〈C1, ..., Cn〉
such that if i < j then no predicate in Ci depends on some predicate in Cj . In
the following we denote rules from a scc C the rules whose head predicate is in
C. In ASPeRiX, the rules considered in order to be eventually applied come from
the current scc, knowing that the first one is C1.

In the propagation phase, to apply a monotonic rule consists in adding in IN
its ground head provided that its ground body is included in IN . On its side, the
choice point step adds in IN the ground head of a non monotonic rule such that
its ground positive body is included in IN , and no atom in its ground negative
body occurs in IN . It also adds to OUT all the ground negative body of the
rule. All along the search process, the condition IN ∩OUT = ∅ is checked and
if it is violated a backtrack is done. The last applied non monotonic rule is then
retracted and its negative body is added as a new constraint in order to record
that this rule has to be blocked.

When neither propagation nor choice point is possible in one scc, all predicates
from it are said solved and the next scc in the order defined above becomes the
current one. To be solved for a predicate p means that all rules concluding p are
exhausted or, in other words, that the extension of p (i.e., the set of all atoms
whose predicate is p belonging to IN) is entirely known. In this case, for every
propositional atom a such that pred(a) = p, a �∈ IN ⇒ a ∈ OUT . Note that if
all predicates appearing in the negative body of a rule are solved, the rule can
be considered as a monotonic one and be completely processed by propagation
without leading to a choice point. By this way, only truly non monotonic first
order rules can generate choice points. In particular, if the program is stratified,
the propagation phase is enough to compute the only answer set.

Our approach implies that all atoms in IN are supported, in the sense that
they result from the application of a sequence of rules, each of them having its
positive body included in IN when it is fired. But in special case of rule instances
r such that the head is in OUT , the positive body is included in IN and the
negative body is restricted to a singleton {b1} with b1 �∈ IN ∪ OUT , one can
conclude that b1 must be true otherwise contradiction occurs. ASPeRiX uses this
information by keeping a set MBT of atoms that must be true. These atoms can
be used for propagation, in order to prune the search space. But they are not
supported yet and thus can not be used as such for generating choice points.
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Let us take P1 =

⎧⎨
⎩

n(1). (r2) a(X) :- n(X), not b(X).

(r1) n(X+1) :- n(X). (r3) b(X) :- n(X), not a(X).

(r4) c(X) :- n(X), not b(X+1).

⎫⎬
⎭

processed by ASPeRiX with option -N 2. For the dependency graph of P1 the
scc are: 〈C1 = {n}, C2 = {a, b}, C3 = {c}〉. At the beginning, IN = {n(1)} and
OUT = ∅. A propagation step completely processes rule r1: n(X) is unified with
n(1), and n(2) is added in IN , then n(X) is unified with n(2) but X + 1 = 3 is
out of range of accepted integers [−2, . . . , 2] for this example. C1 is thus entirely
computed, and n is solved. In scc C2, there is nothing to propagate and we
do the first choice point, for instance rule r2 where n(X) is unified with n(1).
b(1) is then added to OUT and a(1) is added to IN . It does not allow new
propagation and a second choice point takes place: rule r2 where n(X) is unified
with n(2), b(2) is then added to OUT and a(2) is added to IN . Instances of r3
can not be chosen because, for each instance of n(X) in IN , the corresponding
a(X) is also in IN and thus r3 is blocked. So, C2 is entirely computed and a
and b are solved. In scc C3, a propagation step is enough to treat r4: the rule
is considered as a monotonic one because b is solved. It can be applied only for
X = 1 (b(2) �∈ IN) and c(1) is added to IN . Finally, the first answer set is
{n(1), n(2), a(1), a(2), c(1)}. If an other answer set is asked, we backtrack on the
last choice point, here a(2):- n(2), not b(2). by retracting a(2) and c(1)
from IN and b(2) from OUT and adding :- not b(2). in the program. This
leads to add b(2) in MBT . Then a new choice is done: r3 with X = 2 that leads
to move b(2) from MBT to IN and to obtain a second answer set.

3 Evaluation of ASPeRiX

In the following we give some results of evaluation of ASPeRiX highlighting its
adequacy to some particular problems. In no case it is a deep evaluation, but the
results reported below illustrate that our system is operational and very efficient
on certain classes of problem2. Since we want to compare our system to others
by taking into account the two steps of ASP computation (grounding and solv-
ing), we have formed the following couples of systems : Lparse 1.1.1+Smodels
2.32 [9,8], Gringo 2.0.3+Clasp 1.2.1 [3,2], DLV Oct 11 2007 [6] or its exten-
sion DLV-complex[1] supporting recursive functions, lists and sets, and GASP [7].

Let Pbirds be a program encoding a taxonomy about flying (f) and non flying
(nf) birds (b) such penguins (p), super penguins (sp) and ostriches (o).

Pbirds =

⎧⎨
⎩

p(X) :- sp(X). b(X) :- p(X). b(X) :- o(X).

f(X) :- b(X), not p(X), not o(X). f(X) :- sp(X).

nf(X) :- p(X), not sp(X). nf(X) :- o(X).

⎫⎬
⎭

In fact, Pbirds contains also also the atoms encoding N birds with 10% of os-
triches, 20% of penguins whose half of them are super penguins. And let Plocstrat

be the following locally stratified program.

2 In addition, we have submitted ASPeRiX to the second ASP competition
http://www.cs.kuleuven.be/~dtai/events/ASP-competition.

http://www.cs.kuleuven.be/~dtai/events/ASP-competition


The First Version of a New ASP Solver : ASPeRiX 525

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100000  200000  300000  400000  500000

se
c

number of birds

CPU time

Lparse Smodels
Gringo Clasp

DLV
GASP

ASPeRiX

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100000  200000  300000  400000  500000

M
B

number of birds

Memory Usage

Lparse Smodels
Gringo Clasp

DLV
GASP

ASPeRiX

Results for Pbirds.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 100  200  300  400  500

se
c

N

CPU time

Lparse Smodels
Gringo Clasp

DLV
GASP

ASPeRiX

 0

 50

 100

 150

 200

 250

 300

 350

 100  200  300  400  500

M
B

N

Memory Usage

Lparse Smodels
Gringo Clasp

DLV
GASP

ASPeRiX

Results for Plocstrat.

Fig. 1. Comparative evaluation of ASPeRiX

Plocstrat =

⎧⎨
⎩

p(1). ... p(N).

a(X) :- p(X), not b(X). aa(X,Y) :- a(X), p(Y), not a(Y).

b(X) :- p(X), not a(X). bb(X,Y) :- b(X), p(Y), not b(Y).

⎫⎬
⎭

The CPU time and the memory usage needed to compute the unique answer set
of Pbirds and one answer set of Plocstrat are summarized in Fig. 1. For a strati-
fied program, as Pbirds, well-founded semantics coincides with the stable model
semantics. So we have also used the system XSB [10], a logic programming and
deductive database system that is able to compute the well-founded semantics
of a program. But, for 100000 birds XSB needs more than 500 seconds to end.

The preceding examples illustrate the ability of ASPeRiX to manage very
efficiently (locally) stratified programs. On their side, for a definite or stratified
program, all traditional grounders do not generate all ground instances of rules
but compute in fact the answer set of the program and the solver has nothing
to do (except to read the input and it can be very time consuming). On the
contrary, for Plocstrat that is only locally stratified, a solver is necessary to deal
with predicates a and b. But, once the choices are made, a and b are solved
and the rest of the program becomes stratified and can be easily evaluated
by ASPeRiX. But, seeing instantiation as a pretreatment forces the traditional
grounders to generate all ground instances of rules for aa and bb and the used
memory quickly becomes prohibitive. GASP, which builds a CSP at each local
grounding step, is not either efficient for this last example.
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Table 1. CPU time of computation for Hanoi tower problem

original encoding modified encoding
DLV-complex ASPeRiX DLV-complex ASPeRiX

NbD = 4 NbM = 15 3.7 0.08 3.8 0.14
NbM = 30 10.7 0.34 11 0.14
NbM = 60 25.8 0.84 27 0.14

NbD = 5 NbM = 31 61 0.6 62 1.02
NbM = 40 94 1.2 97 1.02
NbM = 50 134 2.2 137 1.03

NbD = 6 NbM = 63 1377 12.4 1412 16
NbM = 80 > 2000 28 > 2000 16.1

NbM = 100 > 2000 51 > 2000 16.4

To illustrate the ability of ASPeRiX to manage function symbols we
treat the Hanoi tower problem as it is encoded for DLV-complex3. For
this system the problem is encoded by a disjunctive logic program but
only one rule has a disjunction in head: move(I,towers(S1,S2,S3)) v
nomove(I,towers(S1,S2,S3)):-.... For ASPeRiX we have translated this rule
in a pair of non-disjunctive rules: move(I,towers(S1,S2,S3)) :- ..., not
nomove(I,towers(S1,S2,S3)) and nomove(I,towers(S1,S2,S3)):-..., not
move(I,towers(S1,S2,S3)).. Since ASPeRiX does not treat (yet) specifically
lists we have substituted terms like [4,3,2,1] by l(4,l(3,l(2,l(1,nil)))),
l being the functor for list. In Table 1 we report under the title original encoding
the performances of DLV-complex and ASPeRiX to compute one answer set (and
the only one if it exists) of this program. NbD is the number of disks in the
problem and NbM is the maximum number of moves that are allowed to move
all disks from the first rod to the third. The least value of NbM is 2NbD − 1
since it is the minimum number of moves required to achieve the goal. We can see
that ASPeRiX outperforms DLV-complex but the performances of both systems
are deteriorated by the presence of useless possible moves (beyond the 2NbD − 1
required).

Under the title modified encoding in Table 1 we report results for the same
programs modified by the adding of a default negation in the body of rules
generating all possible moves. The role of this default negation is to block the
applicability of rules when the global goal is satisfied and then to not gener-
ate useless possible moves. DLV-complex does not take advantage of this new
encoding because of the a priori generation of numerous rules that can not be
discarded during the pregrounding since only the answer set semantics justifies
their cancellation. On its side ASPeRiX takes advantage of this encoding4 by not
dealing with blocked rules when the goal is reached and then the computation
time remains the same even if the number of possible moves is too large.

3 All encodings used here are available at ASPeRiX home page.
4 We also use this kind of schema to limit the computation of recursive functions in [5].
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4 Conclusion

In this paper we have presented the first version of our new ASP solver ASPeRiX.
It has been developed under a strategy radically different from that of traditional
solvers. To summarize, ASPeRiX deals with first order rules with function sym-
bols, does not require a grounder and is rule-oriented. It has proved its efficiency
(in term of performances and power of knowledge representation) on particular
classes of problems: (locally) stratified programs, programs with big numbers
and arithmetic calculus (because we have not to ground rules with all existing
numbers but only those useful, see [5]) and some programs with calculus that
need to or can be dynamically bound during the search (like Hanoi example).
In the future, we plan to improve our system in two directions. First, by bet-
ter taking into account ASP semantics, we may integrate better propagation
strategies, earlier detection of unsatisfiable constraints, intelligent backtracking
in order to prune more efficiently the search space. Second, on the side of the
software development, we may improve our grounding techniques, first order rule
management and tuples handling. We may also envisage to allow some built-in
predicates in the rules in order to help the debugging process in ASP.
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Abstract. The task of an information integration system is to combine data re-
siding at different sources, providing the user with a unified view of them, called
global schema. Simple data integration scenarios have been widely studied and
efficient systems are already available. However, when some constraints are im-
posed on the quality of the global data, the integration process becomes difficult
and, often, it may provide ambiguous results. Important research efforts have
been spent in this area, but no actual system efficiently implementing the corre-
sponding techniques is available yet. This paper is intended to be a step forward
in this direction; it proposes a new data integration system, based on Answer Set
Programming (ASP) and many optimizations, allowing to carry out consistent
query answering (CQA) over massive amounts of data.

1 Introduction

The task of an information integration system is to combine data residing at different
sources, providing the user with a unified view of them, called global schema. Users
formulate queries over the global schema, and the system suitably queries the sources,
providing an answer. Users are not obliged to have any information about the sources.

Recent developments in IT such as the expansion of the Internet have made avail-
able to users a huge number of information sources, generally autonomous, heteroge-
neous and widely distributed: as a consequence, information integration has emerged
as a crucial issue in many application domains, e.g., distributed databases, cooperative
information systems, data warehousing, or on-demand computing.

However, information integration is, in general, an extremely complex task. Both
state-of-the-art commercial software solutions (e.g., [1]) and academic systems (see
e.g. [2,3] for a survey) fulfill only partially the ambitious goal of integrating information
in complex application scenarios. Moreover, comprehensive, formal methodologies and
coherent tools for designing information integration systems are still missing.

The main objectives a data integration system should address are the following:

1. A comprehensive information model, through which the knowledge about the
integration domain can be easily specified. The possibility of defining expressive
integrity constraints (ICs) over the global schema, the precise characterization of
the relationship between global schema and the local data sources, the formal defi-
nition of the underlying semantics, as well as the use of a powerful query language,
are mandatory for the specification of complex integration applications.
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2. Capability of dealing with data that may result inconsistent with respect to
global ICs. Even if some solutions to the problem of query answering for incon-
sistent data (e.g., [3,4,5]) have been already proposed, they did not produce so far
effective and scalable system implementations, mainly due to the high computa-
tional complexity of the problem.

3. Advanced information integration algorithms; these should provide a formal
correspondence between the data integration system and the expected query an-
swers, especially in the handling of inconsistent data.

4. Mass-memory-based evaluation strategies. In fact, real world scenarios involve
massive amounts of data; thus, techniques that require all-in-memory evaluations
would not provide the needed scalability.

The system proposed in this paper is an attempt to address the above issues; it starts from
the experience we gained in the INFOMIX [6] project to overcome some limitations ex-
perienced in real-world scenarios. In fact, it is based on Answer Set Programming (ASP)
and exploits datalog-based methods for answering user queries, which are sound and
complete with respect to the semantic of query answering. This guarantees meaningful
data integration and solves issue 1. It incorporates a number of optimization techniques
that “localize” and limit the inefficient computation, due to the handling of inconsisten-
cies, to a very small fragment of the input. This allows obtaining fast query-answering,
even in such a powerful data-integration framework, thus solving issue 2. The problem of
consistent query answering (CQA) is reduced to cautious reasoning on disjunctive data-
log programs, which allows to effectively compute the query results precisely, by using
state-of-the-art disjunctive datalog systems. The formal query semantics is captured also
in presence of inconsistent data. This solves issue 3. Finally, the system adopts DLVDB

[9,11] as internal query evaluation engine, which allows for mass-memory evaluations
and distributed data management features, and solves issue 4.

In the following sections we introduce some details on the key components of the
system and its overall architecture.

2 Key System Components

In our setting, a data integration system I is a triple 〈G,S,M〉, where G is the global
schema, which provides a uniform view of the information sources to be integrated, S is
the source schema, which comprises the schemas of all the sources to be integrated, and
M is the mapping establishing a relationship between G and S. G may contain integrity
constraints (ICs). M is a Global-As-View (GAV) mapping [5], i.e., M is a set of logi-
cal implications ∀x1 · · · ∀xn.ΦS(x1, . . . , xn) ⊃ gn(x1, . . . , xn), where gn is a relation
from G, n is the arity of gn, ΦS is a conjunction of atoms on S and x1, . . . , xn are the
free variables of ΦS . Each global relation is thus associated with a union of conjunctive
queries (UCQs).Both G and S are assumed to be represented in the relational model,
whereas M is represented as a set of datalog rules.

As an example consider a bank association that desires to unify the databases of two
branches. The first database models managers by using a table man(code, name) and
employees by a table emp(code, name), where code is a primary key for both tables.
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The second database stores the same data in table employees(code, name, role). Sup-
pose that the data has to be integrated in a global schema with two tables: m(code),
and e(code, name), having both code and name as keys and the inclusion dependency
m[code] ⊆ e[code], indicating that manager codes must be employee codes. GAV map-
pings are defined as follows:

e(C,N) :− emp(C,N). e(C,N) :− employee(C,N, ).

m(C) :− man(C, ). m(C) :− employee(C, ,man).

If emp stores (e1, john), (e2,mary), (e3, willy), man stores (e1, john), and
employees stores (e1, ann,man), (e2,mary,man), (e3, rose, emp), it is easy to
verify that, while the source databases are consistent w.r.t. local constraints, the global
database obtained by evaluating the mappings violates the key constraint on e (e.g. both
john and ann have the same code e1 in table e). Basically, when data are combined in
a unified schema with its own integrity constraints the resulting global database might
be inconsistent; any query posed on an inconsistent database would then produce an
empty result.

In this context, user queries must be re-modelled according to the mappings and vi-
olated constraints, in order to compute consistent answers, i.e. answers which consider
as much as possible of correct input data. This task is accomplished in our system by
the CQA Rewriter component.

Another key component of the system is the Query Evaluator, which is in charge of
actually evaluating, over source databases, the queries posed over the global schema.
These two key components are described in some detail in the following subsections.

2.1 CQA Rewriter

In the field of data-integration several notions of consistent query answering have been
proposed (see [3] for a survey), depending on whether the information in the database is
assumed to be correct or complete. Basically, the incompleteness assumption coincides
with the open world assumption, where facts missing from the database are not assumed
to be false. In our system, we assume that sources are complete; as argued in [8], this
choice strengthens the notion of minimal distance from the original information.1 More-
over, there are two important consequences of this choice: integrity restoration can be
obtained by only deleting tuples; and, computing CQA for conjunctive queries remains
decidable even for arbitrary sets of denial constraints and inclusion dependencies [8].

More formally, given a global schema G and a set C of integrity constraints, let
DB and DBr be two global database instances. DBr is a repair [8] of DB w.r.t. C, if
DBr satisfies all the constraints in C and the instances in DBr are a maximal subset
of the instances in DB. Basically, given a conjunctive query Q, consistent answers
are those query results that are not affected by axioms violations and are true in any
possible repair [8]. Thus, given a database instance DB and a set of constraints C, a
conjunctive query Q is consistently true in DB w.r.t. C if Q is true in every repair of

1 It is worth noting that, in relevant cases like denial constraints, query results coincide for both
correct and complete information assumptions.
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DB w.r.t. C. Moreover, if Q is non-ground, the consistent answers to Q are all the
tuples t such that the ground query Q[t] obtained by replacing the variables of Q by
constants in t is consistently true in DB w.r.t.C. Note that, in this setting, the problem of
computing consistent answers to queries in the case of denial constraints and inclusion
dependencies (the most common schema constraints) belongs to the ΠP

2 complexity
class [8]. The CQA Rewriter, takes as input a conjunctive query Q, a set of integrity
constraints C, and a global database DB and builds both an ASP program Πcqa and a
query Qcqa, such that: Q is consistently true in DB w.r.t. C iff Qcqa is true in every
answer set of Πcqa, in symbols: Πcqa |=c Qcqa.

Just to show an example on how the rewriter works, consider the example introduced
previously; the program obtained by rewriting the global constraints is:

e(X,Y ) ∨ e(X,Z) :− e(X,Y ), e(X,Z), Y <> Z.
e(X,Y ) ∨ e(Z, Y ) :− e(X,Y ), e(Z, Y ), X <> Z.

er(X,Y ) :− e(X,Y ),not e(X,Y ).
mr(X) :− m(X), er(X, ).

Here, the disjunctive rules guess atoms to be cancelled for satisfying key constraints,
whereas the following rules remove atoms violating also referential integrity constraints,
and build repaired relations. Note that the minimality of answer sets guarantees that
deletions are minimized. This sub-program is then fed along with the mappings and the
user query to the query evaluator (see next Section).

Suppose now that we ask for the list of manager codes; since both mr(e1) and
mr(e2) are in all the answer sets of the resulting program, both m(e1) and m(e2)
are derived as the consistent answers.

It is important to point out that our rewriting procedure has been devised in such a
way that the evaluation of produced ASP programs is complexity-wise optimal accord-
ing to the complexity classification of constraints and queries of [8]. Indeed, polyno-
mial, co-NP and ΠP

2 queries are dealt with by exploiting normal (stratified) programs,
head-cycle-free, and non-head-cycle-free programs, respectively.

2.2 Query Evalutator

The core query evaluation engine of our integration system is DLVDB [9]. It is a DLP
evaluator born as a database oriented extension of the well known DLV system [10]. It
has been recently extended [11] for dealing with unstratified negation, disjunction and
external function calls.

The main peculiarities of DLVDB related to the data integration system are:

• It allows the handling of (possibly distributed) massive amounts of data; in fact,
it exploits ODBC connections to link the ASP program to database relations and
implements an evaluation strategy working mostly onto the database, where input
data reside. More precisely, it carries out the grounding of the logic program com-
pletely on the DBMS, and then loads in main memory only the minimal amount
of data necessary for the generation of stable models, thus handling disjunction
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and unstratified negation. With respect to the data integration setting, this strat-
egy perfectly fits the system’s needs; in fact, if input data is “clean” and no global
constraints are violated, the query answering process can be completed during the
grounding, and no data must be loaded in main memory. On the contrary, if some
constraint is violated, only conflicting data must be loaded in main memory; this
amount of data is usually much smaller than the overall input size.

• GAV mappings defining the integration system can be directly evaluated without
further elaboration; this provides a direct correspondence between what the de-
signer specifies and what the system should evaluate. This simplifies the application
of optimization and rewriting techniques.

• DLVDB extends ASP with external function calls; this is, in general, particularly
suited for solving inherently procedural sub-tasks. External functions must be de-
fined as stored functions in the database coupled with DLVDB . In the context of data
integration, the possibility of calling external functions provides rich capabilities in
cleaning input data. In fact, it allows to embed, in a declarative setting, purely pro-
cedural tasks such as string manipulation. As an example, consider the integration
of two databases representing dates in different formats: one as dd/mm/yy, and the
other one as mm/dd/yy. In order to guarantee consistency in the integrated database,
one of these representations must be transformed and this can be easily carried out
by string manipulation. This procedurally simple task would be tedious in a purely
declarative setting.

• DLVDB embodies some query-oriented optimization strategies, like magic-sets,
query unfolding, and static filtering (see [12] for a survey), capable of significantly
improving query evaluation performances. In the context of data integration, such
optimizations find their perfect application when queries contain constants, since
they allow to “localize” the computation and drastically reduce the amount of data
to reason about.

3 The Integration System

The general architecture of the proposed system is shown in Figure 1. It is intended to
simplify both the integration system design and the querying activities by exploiting a
user-friendly GUI. Specifically, at design time, the user can:

• Graphically design the global schema and the mappings (which we recall are ex-
pressed by UCQs) between global relations and source schemas.

• Specify data transformation rules on source data; these can be implemented by
suitable functions defined in the working database as stored functions.

• Specify global constraints, in order to define quality parameters that global inte-
grated data must satisfy.

At query time, the user can exploit a QBE-like interface to express queries over the
global schema; these are internally expressed in datalog as UCQs. The “plain” query
is then elaborated by the CQA Rewriter which takes into account both mappings and
global constraints to express the query over the sources and to handle inconsistencies
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Fig. 1. System Architecture

possibly involving the query answers; the output of the CQA Rewriter is then a (possi-
bly disjunctive) datalog program which is fed to the Optimizer for further elaboration.
The Optimizer applies rewriting strategies which aim at pushing down selections di-
rectly onto the sources and at “localizing” over conflicting data as much as possible
of the needed reasoning. Finally, the optimized program is fed to the Query Evaluator
(DLVDB) which executes the grounding phase totally on the DBMS and loads in main-
memory only data strictly necessary to resolve conflicts. The output of this evaluation
is then the query answer, which is proposed graphically back to the user.
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1 General Information

GORGIAS-C is a system implementing a logic programming framework of argumenta-
tion that integrates together preference reasoning and constraint solving.

The framework of argumentation with preference reasoning [1,2] was first imple-
mented in the GORGIAS system1 which has mainly been used in the multi-agent domain
[2,3,4], medical informatics [5] and network security [6].

We have extended this framework and the GORGIAS system to integrate constraint
solving at the representation and argumentation level of the framework. GORGIAS-C
is the first framework and system that we are aware of that links argumentation with
domain constraints.

In GORGIAS-C problems are expressed in the combined language of Logic Program-
ming with Priorities and Constraint Logic Programming (CLP) [7] thus allowing us to
address problems with large computational domains while at the same time exploit-
ing the high expressive power of the framework to capture complex requirements and
preferences.

Technically, GORGIAS-C is implemented as a modular meta-interpreter on top of the
object-oriented Logtalk preprocessor2 [8] with SWI-Prolog3 and its CLP(FD) library
[9] but can be used with other Prolog interpreters with CLP supported by Logtalk.

Furthermore, thanks to this modularity, GORGIAS-C is easy to extend, allowing re-
searchers of the domain to prototype new extensions of the argumentation framework.

2 Description of the System

GORGIAS-C computes answers to queries asked on a logic program with priorities
on rules and domain constraints on variables. It also allows, as GORGIAS, the use of
abductive predicates as a special kind of argumentation. The general format of such a
program is as follows.

1 http://www2.cs.ucy.ac.cy/~nkd/gorgias/
2 http://logtalk.org/
3 http://www.swi-prolog.org/
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Rules. Rules are labeled logic programming rules of the form:

rule(Label, Head, Body).

where, Label is a term for referencing the rule and Head is a positive or negative logic
program literal (with negation applied using the operator neg/1 on positive atoms).
Body is a list containing positive or negative logic program literals, or domain con-
straints over variables in the rule.

A special case of these rules, where the Head is an atom on the special predicate
prefer/2, is used to define the priorities between the rules of the program. Both ar-
guments of prefer(label1,label2) are labels of rules, denoting that the the first
is preferred over the second. For the implementation of GORGIAS-C, these two rules
need to have contradictory conclusions.

Abducibles. Abducible predicates are declared as such with the following construct:

abducible(Predicate).

where Predicate is a user-defined predicate name.
Abducible predicates can be partially defined in the program with rules whose head

refers to them. Integrity constraints (ICs) [10] on an abducible predicate can be specified
with a rule whose head is the negation of an abducible and whose body is the condition
under which the abducible cannot be assumed.

Domain Constraints. Domain constraints usable within GORGIAS-C are the ones
available in the underlying constraint solver. In the SWI-Prolog’s CLP(FD) library, they
are finite domain constraints like #>=, #=, #\= or #\, #\/, #==>. In other Prolog inter-
preters with CLP, other types of constraints can be used (e.g. over reals). As mentioned
above these are used in the body of the logic program rules.

Easing Development. GORGIAS-C proposes some facilities to ease the development
of programs:

– ::/1 and ::/2 to call predicates directly using the underlying Logtalk interpreter
preventing argumentation on them: they are explained in the tutorial on the website

– complement/2 to specify complementarity between logic program literals, ex-
tending the notion of negation

For example, complement(give(Object, Time), keep(Object, Time)) means
that give/2 and keep/2 are contradictory and thus we cannot build arguments with
both and arguments for one can potentially attack arguments for the other.

2.1 Computing Answers

Given a program as defined above and a query ∃Q(X), GORGIAS-C computes an an-
swer of the form 〈Δ,A,C〉 where:

1. Δ is a set of program rules used to conclude an argument for Q.
2. A is a (possibly empty) set of abducible hypotheses (literals on abducible predi-

cates) needed for Δ to conclude Q.
3. C is a set of domain constraints on X and variables in Δ ∪A.
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An answer 〈Δ,A,C〉 fulfils the following conditions:

1. C is satisfiable.
2. For every valuation σ of C:

(a) Δσ is admissible: consistent and attacking all its attacking arguments
(b) Δσ ∪Aσ |= Qσ .

The precise definition of attacks is given in [11,2]. Informally, a set of rules (an ar-
gument) attacks another argument if they have a complementary conclusion and the
attacking argument renders its rules of higher priority than the rules of the attacked
argument or at least not of lower priority.

The rules in an answer form an argument for the query, giving not only the rules that
derive it but also the rule priorities that make the answer preferred over contrary ones.
The set A contains information (that is missing from the program due to the incom-
pleteness of the abducible predicates) needed for the arguments in Δ to be enabled. The
constraints C impose necessary restrictions on the cases (variables) of the arguments
needed in order for the argument to admissibly conclude the query, as described above.

The set of domain constraints C are computed by integrating within the argumenta-
tion reasoning a new (symmetric) attacking relation where any two domain constraints
c1 and c2, which together are non-solvable, attack each other. This works together with
the underlying domain constraint solving to ensure that the computed constraints C are
solvable.

The classical Tweety example (extended to allow for incomplete knowledge on the
relation bird/1) can be represented in GORGIAS-C (and GORGIAS since this example
does not involve domain constraints) as follows:

rule(r1(X), fly(X), [bird(X)]).
rule(r2(X), neg(fly(X)), [::penguin(X)]). abducible(bird(_)).
rule(r3(X), bird(X), [::penguin(X)]). penguin(tweety).
rule(pr1(X), prefer(r2(X), r1(X)), []).

GORGIAS-C answers the query fly(leon)and neg(fly(tweety)) respectively with
<{r1(leon)},{bird(leon)},{}> and <{r2(tweety), f1},{},{}>. An answer
for fly(tweety) cannot be built as the argument given by the second rule, r2, for the
contrary conclusion, is stronger thanks to pr1 and thus cannot be counter-attacked.

A second example where we use the new constraint handling facility of GORGIAS-C
is the following:

rule(r1(P), buy(P), [::offer(OP), P #> OP]). offer(27).
rule(r2(P), neg(buy(P)), [::offer(OP), P #>= OP + 5]).
rule(pr1(P), prefer(r2(P),r1(P)), []). top-price(30).

The answer to the query buy(P) is <{r1(P)},{},{P in 28..31}>, because to pre-
vent r2 to be preferred over r1, P must be greater than the last offer of 27 and less
than the last offer plus 5: 31. The resulting domain of 28..31 for the variable P was
computed by applying the constraint P #> 27 together with the application of negating
the constraint P #>= 27 + 5.

If we then add the rules rule(r3(P), neg(buy(P)), []). and
rule(pr2(P), prefer(r3(P),r1(P)), [::top-price(Top), P #> Top]).
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The answer to the query buy(P) is <{r1(P)},{},{P in 28..30}>, the resulting
domain was computed by applying the constraint P #> 27 together with the applica-
tion of negating each of the constraints P #> 30 and P #>= 27 + 5.

Hence, GORGIAS-C uses, like GORGIAS, rules and abduction to conclude goals,
and in addition finds domains of finite domain variables where these are applicable.
Furthermore, to ensure that there are no stronger opposing arguments, GORGIAS-C will
find variables domains that make potential opposing arguments inapplicable or prevent
them from being stronger.

2.2 Implementation

GORGIAS-C is implemented as a modular meta-interpreter for its logic programs on
top of Logtalk using SWI-Prolog and its CLP(FD) library and has successfully been
used with ECLIPSe4 with CLP over reals.

Using the features of Logtalk for object and component-based programming [12],
GORGIAS-C is a modular meta-interpreter, consisting of:

– A Logtalk’s category that implements:

• The core resolution algorithm consisting of interleaving phases of attacks and
defences.

• The reduction of the constraint domains by using the underlying constraint
solver at key points of the computation.

– Categories for the ‘modules’ implementing different aspects of this framework,
called by the core algorithm when needed:

• ‘LPWNF’ for attacks based on priority rules.
• ‘Abducible’ for attacks and resolution based on abduction.
• ‘CLP’ for attacks based on domain constraints.

Core. The core algorithm alternates two phases of attack and defence on a set of rules.
For every attack possible on the set, a defence against it (a counter-attack) is found and
added to the set. This is the recursively applied to the original extended set until it is
admissible, i.e. it defends against every attack and does not attack itself.

More specifically, when querying the system this will first resolve the query, resulting
on an initial set Δ0 that concludes the query. Then it will extend Δ0 by finding all
attacks on it, and for each of them, find a counter-attack to add to Δ0. If it can not
counter-attack an attack, then the computation fails and backtracks to the last choice-
point.

Domain Constraints. When constraints are present in an attack on Δ0, to defend it
GORGIAS-C will construct counter-attacks by negating the constraints in the attacks to
make them inapplicable.

To be able to negate them, these constraints should be reifiable (which means that
we can reflect their truth value into boolean values represented by 0 and 1).

We can also note that, because GORGIAS-C only relies on the fact that constraints
must be reifiable:

4 htt://www.eclipse-clp.org

htt://www.eclipse-clp.org
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– It can use all reifiable constraints added to the constraint solver by users.
– It can use any constraint solver (other than finite domain ones) that uses reifiable

constraints (such as the IC library of ECLIPSe).

3 Applying the System

Argumentative programs are embedded in Logtalk’s objects importing the core category
and other needed ‘modules’. Depending on what is enabled, the Logtalk preprocessor
will generate the smallest Prolog code, with the possibility to enable a debugging trace
of the argumentation process.

Querying Programs. Once the user’s program is loaded we can call the predicate
prove(Query,Delta) to compute an answer to the query Query, by unifying Delta
with a set of rules labels and assumed abducibles, and an associated constraint store
maintained by the underlying constraint solver. Variables in this answer can then be
labeled with the different algorithms provided by the constraint solver.

Methodology. Writing an argumentative program is a task requiring different skills.
Apart from the (constraint) logic programming background, the following will help.

Typically, programs written for GORGIAS-C (and GORGIAS) can be separated into
2 or more layers. The first one would be composed of rules for and against some con-
clusion of interest to the user, using negation or ‘complement’ predicates in heads. The
second one would be composed of preference rules that the user wants to apply when
the rules of the first layer come into conflict. And so on, if the second layer contains
conflicting preferences.

Abduction is used to model facts for which there is incomplete knowledge, but, above
all, can be used to model the solution of a problem: rules are used to construct the
solution (as assumed abducibles) and ICs enforce properties on the solution.

4 Evaluating the System: Performance and Expressiveness

In term of performance, compared to Prolog, GORGIAS-C adds two overheads: the
monotonic resolution (meta-interpretation) and the argumentative process of construct-
ing attacks and counter-attacks while maintaining the constraint store. But at the same
time, GORGIAS-C provides a declarative expressiveness available through abduction
and preferences combined with CLP.

Classical constraint problems (e.g. N-Queens, Graph Colouring) can be resolved us-
ing GORGIAS-C, not exploiting its argumentative aspects but only the underlying con-
straint solver. Thus they will only suffer from the monotonic resolution overhead which
is negligible according to benchmarks made with the N-Queens example. Compared to
Prolog and Logtalk, times for one solution are unchanged with 10, 15, 20 or 25 queens

Abduction was used in planning and scheduling problems: advantages of the ap-
proach is well covered in [13]. Applications presented in this paper were ported to
GORGIAS-C and presented equivalent performances for job-shop 20x5, 10x10 and
20x10 when using ECLIPSe.
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Preference reasoning has been used with GORGIAS in autonomous agents to specify
interaction rules or protocols, and policies for negotiation processes, but also in network
security to specify firewall policies. This kind of applications can be extended to handle
large computational domains with the help of domain constraints. Pricing and firewall
policies are currently being worked on: constraints should simplify the programs and
improve performances in some problems by moving complex computations from the
Prolog interpreter to the constraint solver.

After adding domain constraints to preferences-enabled problems, we will investi-
gate the addition of preferences to constraint solving problems and study the benefits
and performance that GORGIAS-C will have. For example, planning and scheduling
problems could benefit from priorities to guide the search, by reducing the domains of
the solutions based on criteria such as action costs or job importance.

5 Obtaining the System

GORGIAS-C can be found on its website at http://dev.crazydwarves.org/
trac/Gorgias, together with sample examples of its use, applications and bench-
marks.
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Abstract. In most styles of music, composition is governed by a set of rules. We
demonstrate that approaching the automation and analysis of composition declar-
atively, by expressing these rules in a suitable logical language, powerful and
expressive intelligent composition tools can easily be built. This paper describes
the use of answer set programming to construct an automated system, named
ANTON, that can compose both melodic and harmonic music, diagnose errors in
human compositions and serve as a computer-aided composition tool.

1 Introduction

In this paper we investigate the use of declarative logic programming in the automatic
composition of music. We show that it is possible to use Answer Set Programming
(ASP) [2] to create ab initio short musical pieces that are both melodic and harmonic.
Our system, ANTON, named in honour of our favourite composer of the second Vien-
nese School, is presented as both a design and as a practical working system, showing
that rule-based declarative systems can be effectively used. We report on our experience
in using ASP for this system, and indicate a number of potentially exciting directions in
which this system could develop, both musically and computationally. This paper pro-
vides a summary ANTON 1.0. More detail can be found in [4]. The full system is publi-
cable available from http://www.cs.bath.ac.uk/˜mjb/anton/ and a selec-
tion of compositions can be found at http://dream.cs.bath.ac.uk/Anton

2 Algorithmic Composition

One can distinguish between improvisation systems and composition systems. In the
former the note selection progresses through time, without detailed knowledge of what
is to come. In practice this is informed either by knowing the chord progression or
similar musical structures [7], or using some machine listening. However in this paper
we are concerned with composition, so the process takes place out of time, and we can
make decisions in any order.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 542–547, 2009.
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A common problem in musical composition can be summarised in the question
“where is the next note coming from?”. For many composers over the years the an-
swer has been to use some process to generate notes. It is clear that in many pieces
from the Baroque period simple note sequences are being elaborated in a fashion we
would now call algorithmic. It is usual to credit Mozart’s Musikalisches Würfelspiel
(Musical Dice Game) [8] as the oldest classical algorithmic composition1. This form of
composition is in essence stochastic, a system of algorithmic composition that leads to
Xenakis’s oeuvre.

There is a variety of different approaches to algorithmic composition, including
chaotic processes, and Markov chains [9]. We also note the variation of the accompa-
nist, where either the chord structure and style is known in advance, or using machine-
listening techniques follows a melody.

A more recent trend is to cast the problem as one of constraint satisfaction. For ex-
ample, PWConstraints [12] is an extension for IRCAM’s Patchwork, a Common-Lisp-
based graphical programming system for composition. It uses a custom constraint solver
employing backtracking over finite integer domains. OMSituation and OMClouds are
similar and were more recently developed for Patchwork’s successor OpenMusic. A
detailed evaluation of them can be found in [1], where the author gives an example
of a 1st-species counterpoint (two voices, note against note) after [10] developed with
Strasheela, a constraint system for music built on the multi-paradigm language Oz. Our
musical rules however implement the melody and counterpoint rules described by [16],
which we believe give better musical results.

It should also be noted that these algorithmic systems compose pieces of music in
either a melodic or a harmonic fashion, and are frequently associated with computer-
based synthesis. The system we propose is different as it deals with both simultaneously
in an integrated fashion.

Systems that for instance harmonise Bach chorales start with a melody for which
at least one valid harmonisation exists2, and the program attempts to find one; this
problem is clearly soluble. This differs significantly from our system: as we generate
the melody and harmonisation together, the requirement for harmonisation affects the
melody. The system is also capable of other modes of operation including computer
aided composition and diagnosis of existing pieces.

3 ANTON

ANTON applies ASP techniques to compositional rules to produce an algorithmic com-
position system. AnsProlog is used to write a description of the rules that govern the
melodic and harmonic properties of a correct piece of music; in this way the program
works as a model for music composition that can be used to assist the composer by
suggesting, completing and verifying short pieces.

The composition rules are modelled so that the AnsProlog program defines the re-
quirements for a piece to be musically valid, and thus every answer set corresponds to
a different valid piece. To generate a new piece the composition system simply has to

1 Although there is some doubt if the game form is really his.
2 If we may so characterise Bach.
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% Every choosen note must be in the key
#const err nik="Choosen note not in key".
reason(err nik).
error(P,T,err nik) :- choosenNote(P,T,N), chromatic(N,C), not key(C).

% The last two notes of a minor scale are dependant on
% direction upwards the last two are 10,12
error(P,T + 1,err ism) :- choosenNote(P,T + 1,N), chromatic(N,9), upAt(P,T), keyMode(minor).

% Parts can only ever meet at a single point, and this
% can only happen once.
haveMet(P,T+1) :- choosenNote(P,T,N), choosenNote(P+1,T,N), not haveMet(P,T), part(P+1).
haveMet(P,T+1) :- haveMet(P,T).

% At every time step the note must change.
% It changes by stepping (moving one note in the scale) or leaping (moving more than one note)
% Upwards or downwards
1 { stepAt(P,T), leapAt(P,T) } 1 :- T != t.
1 { downAt(P,T), upAt(P,T) } 1 :- T != t.

% Leaps can only use consonant intervals)
1 { leapBy(P,T,LS) : leapSize(LS) : LS > 0 } 1 :- leapUp(P,T).

% When a part leaps up by I, the note at time T+1
% is I steps higher than the current note
choosenNote(P,T + 1,N + L) :- choosenNote(P,T,N), leapAt(P,T), leapBy(P,T,L), note(N + L).

Fig. 1. An ANTON fragment

generate an (arbitrary) answer set. Fig. 1 presents a simplified fragment of the
AnsProlog program used in ANTON. The model is defined over a number of time
steps, given by the variable T. The key proposition is chosenNote(P,T,N)which rep-
resents the concept “At time T, part P plays note N”. To encode the options for melodic
progress (“the tune either steps up or down one note in the key, or it leaps more than one
note”), choice rules are used. To encode the melodic limits on the pattern of notes and
the harmonic limits on which combinations of notes may be played at once, constraints
are included.

To allow for verification and diagnosis, each constraint is given an error message, as
shown in Fig. 1. These error-atoms are in a way used as constraints. Depending on
how the system is used, composition or diagnosis, you will either be interested in those
pieces that do not result in errors at all, or in an answer set that mentions the error mes-
sages. For the former we simply specify the constraint :- error(P,T,R). effectively
making any error rule into a constraint. For the latter we include the rules: errorFound
:- error(P,T,R). and :- not errorFound. requiring that an error is found (i.e.
returning no answers if the diagnosed piece is error free).

By adding constraints on which notes can be included, it is possible to specify part or
all of a melody, harmony or complete piece. This allows ANTON to be used for a number
of other tasks beyond automatic composition. By fixing the melody it is possible to use it
as an automatic harmonisation tool. By fixing part of a piece, it can be used as computer
aided composition tool. By fixing a complete piece, it is possible to check its confor-
mity with the rules, for marking student compositions or harmonisations. Alternatively
we could request the system to complete part of a piece. In order to do so, we provide
the system with a set of AnsProlog facts expressing the mode (major, minor, etc.), the
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notes which are already fixed, the number of notes in the piece, the configuration and the
number of parts.

We provide a number of output formats: CSOUND [5] with a suitable selection of
sounds, text, AnsProlog facts or the LILYPOND score language. Other output formats
can easily be created and plugged into the system.

4 Evaluation

Musical Evaluation. Musical evaluation is difficult to encapsulate. Pieces by ANTON

have been played to a number of musicians, who apart from the rhythmic deficiency
considered later have agreed that it is valid music. The interested reader can find exam-
ples on the web3, but here in figure 2 we present a few fragments in the Dorian mode
that ANTON composed especially for this paper; the audio and score can be found in
the same location as the other works. This piece was chosen to show that the musical
rules are for more than just major and minor scales, and can create in various modes.

Fig. 2. Fragments in the Dorian Mode by ANTON

Technical Evaluation. The AnsProlog programs used in ANTON contains less than
200 lines (not including comments, empty lines and user defined pieces) and encodes
28 melodic and harmonic rules. It should be noted that ANTON’s 200 lines of code (800
including all support scripts and translators) contrast with the 8000 lines in Strasheela
[1] and 88000 in Bol [3], making it in our opinion easier to understand.

We performed a number of tests to assess the practicality of using answer set pro-
gramming as the underlying technology of a composition system. Table 1 contains
the times taken by a number of answer set solvers (SMODELS [14], SMODELS-IE [6],
SMODELSCC [17], CMODELS [13] and CLASP [11]) to compose a solo or duet of a
given length. LPARSE [15] and GRINGO were used to ground the programs. Grounding
with the former typically took around 30-60 seconds while the later only needed 0.5-12
seconds. Grounding time is omitted from the results reported in the tables.

3 http://dream.cs.bath.ac.uk/Anton

http://dream.cs.bath.ac.uk/Anton
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Table 1. Time taken (in seconds) for a number of solvers generating a solo and duet pieces

smodels 2.32 smodels-ie 1.0.0 smodelscc 1.08 cmodels 3.75 clasp 1.0.5
Length Default Restarts Default Restarts No lookahead w/ zchaff w/ MiniSAT Default

Solo

4 1.02 1.03 0.09 0.09 1.17 0.33 0.39 0.22
6 2.43 2.43 0.38 0.38 2.58 0.64 0.85 0.46
8 5.16 5.16 1.03 1.04 4.94 1.06 1.62 1.01

10 12.25 11.72 2.58 2.59 8.55 1.54 2.63 1.33
12 28.25 46.13 8.08 15.14 11.36 2.42 4.04 2.27
14 40.62 140.00 10.50 43.54 18.78 3.14 6.05 3.48
16 101.05 207.25 29.40 69.53 27.94 4.01 9.40 4.62

Duet

4 3.77 3.77 0.31 0.32 4.08 1.18 1.26 0.77
6 10.36 11.24 1.89 1.89 13.90 2.17 2.81 1.60
8 54.64 77.10 14.71 21.84 26.07 3.88 5.93 3.73

10 Time out Time out Time out 500.26 78.72 9.51 11.12 9.34
12 Time out Time out Time out Time out 103.81 14.50 18.14 16.84
14 Time out Time out Time out Time out 253.92 32.41 32.34 25.59
16 Time out Time out Time out Time out 452.38 82.64 49.29 29.63

All times where recorded using a 2.4GHz AMD Athlon X2 4600+ processor, running
a 64 bit version of OpenSuSE 10.3. All solvers were built in 32 bit mode. Each run was
limited to 20 minutes of CPU time and 2Gb of RAM. The AnsProlog programs used
are available from the same location as ANTON.

The results show that ANTON, when using the more powerful solvers, is sufficiently
fast to be used as a component in an interactive composition tool, although further work
would be needed to support real time generation of music. It is also interesting to note
that the only solvers able to generate longer sequences using two parts all implement
clause learning strategies, suggesting that the problem is particularly susceptible to this
kind of technique.

Why ASP? While music appreciation is matter of personal taste, musicologists use
sets of rules which determine to which style a musical composition belongs or whether
a piece breaks. These sets of rules also govern the composition. So an intuitive and
obvious way for automatic composition is to encode these rules and use a rule based al-
gorithm to produce valid music compositions. This natural and simple way of encoding
things is show in terms of speed of development, roughly 2 man-months, sophistica-
tion of the results, the amount of code (about 200 lines of code) and flexibility; we
can not only easily encode different styles but the same application not only for auto-
mated composition but also diagnosis and human assisted composition. Furthermore,
we automatically gain from any improvements in the underlying solver.

5 Future Work

An obvious extension to the composition of duets is to expand this to three and four
parts, by adding inner voices. It should perhaps be noted that inner voices obey different
rules, and these await implementation.

So far we have only considered a particular style of Western music, Renaissance
Counterpoint. However the framework should be applicable to other styles, especially
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formal ones. Given the musical knowledge of the team and collaborators, we are con-
sidering applying ANTON to Twelve Tone and Hindustani musics.

In real life pieces some of the rules are sometimes broken. This could be simulated
by one of a number of extensions to answer set semantics (preferences, consistency
restoring rules, defensible rules, etc.). However how to systematise the knowledge of
when it is acceptable to break the rules and in which contexts it is ‘better’ to break them
is an open problem.

The major deficiency in ANTON version 1.0 is the lack of rhythm, as all parts play
all the time (with no rests), with notes of equal duration, which, while usual in some
styles, stands in the way of a whole range of interesting variety. We have plans and
some theory in this area.
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Abstract. Norms and regulations play an important role in the governance of hu-
man society. Social rules such as laws, conventions and contracts prescribe and
regulate our behaviour, however it is possible for us to break these rules at our
discretion and face the consequences. By providing the means to describe and
reason about norms in a computational context, normative frameworks may be
applied to software systems allowing for automated reasoning about the conse-
quences of socially acceptable and unacceptable behaviour. In this paper, we out-
line our mathematical formulation for normative frameworks and describe how
its semantics can be represented in ASP, thus enabling the construction of models
of normative systems that can be subjected to formal verification and that can act
as functional repositories of normative knowledge for the software components
that participate in them.

1 Introduction

Normative frameworks are provide a mechanism to capture and reason about “correct”
and “incorrect” behaviour within a certain context. The participants of a normative
framework are governed by social norms and regulations. The framework monitors the
permissions, empowerment and obligations of their participants and generate violations
when norms are not adhered to. Information of the norms and the effects of participants
actions is stored in the state of the framework. The constant change of the state over
time as a result of these actions provides participants information about each others
behaviour. The information can also be used by the designer to verify the normative
structures of the framework. In this paper we will only look mainly at the latter.

We do not include an extensive and detailed case for the purpose and value of nor-
mative frameworks here—this can be found in [2] and [1]— as this paper focuses on
applications of answer set programming and because of the need for brevity. What we
will present is: (i) an outline of a formal event-based model of the specification of
normative frameworks that captures all the essential properties, namely empowerment,
permission, obligation and violation (ii) a summary of its formal translation to ASP that
is sound and complete (essentially a long mechanical case analysis which not included
here), resulting in a decidable and executable model of an normative frameworks that
can be used for querying and verification.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 548–553, 2009.
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2 The Normative Model

The components of a normative framework are events, which change the states and
fluents, that characterize the state. The framework defines the interplay between these
concepts over time and we here give the syntax and semantics.

2.1 Syntax

We define a normative framework as a 5-tuple I := 〈E ,F , C,G, Δ〉 consisting of a set
of events E , a set of fluents F , a set of causal rules C, a set of generation rules G and an
initial state Δ.

Events E . Each normative framework defines a set of event symbols e ∈ E , each of
which denotes a type of event that may occur. We identify two disjoint subsets, Eex

consisting of exogenous events and Einst consisting of normative events.

– Exogenous events Eex: consists of events that fall outside the scope of the
normative framework. These may include agent communication events such as
tell(a, b, yes) (a tells b “yes”) and other externally-defined events, such as time-
outs. The exogenous events are in effect the interface to the normative framework.
It is the responsibility of the designer of the specification to define this set carefully.

– Normative events Einst: that in contrast to exogenous events are those events that
are generated within the normative framework as a, possibly indirect, consequence
of an exogenous event.

We identify two disjoint subsets of normative events: normative actions, Eact

that capture significant changes in normative state, and violation events, Eviol de-
noting points at which violations have occurred. The set of violation events is
defined such that it contains at least one violation event corresponding to each nor-
mative action and each exogenous event: ∀e ∈ Eact ∪ Eex : viol(e) ∈ Eviol. Spec-
ifications may also define additional violation events not directly associated with
particular exogenous or normative actions. Violation and sanction play an impor-
tant role in the specification of normative frameworks. Violations may arise either
from explicit generation, from the occurrence of a non-permitted event, or from
the failure to fulfil an obligation. In these cases sanctions that may include obliga-
tions on violating agents or other agents and/or changes in agents’ permission to
do certain actions, may then be expressed as consequences of the occurrence of the
associated violation event in the subsequent normative state.

Normative Fluents F . We now turn to the definition of the normative state which
we model through the definition of a set of fluent properties. We make a distinction
between normative fluents, which express normative properties of the state such as per-
missions, powers and obligations, and domain fluents which correspond to properties
which are specific to the normative framework itself. In both cases we model fluents as
propositions which may be true or false in a given normative state. We define the set
D to include all normative framework-specific fluents which may be true in the norma-
tive state. The set of normative fluents is broken down into sets of fluents for powers,
permissions and obligations as follows:
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– W : A set of normative power fluents of the form pow(e) : e ∈ Eact where each
power proposition denotes the capability of some action e to be brought about in
the normative framework.

– P : A set of event permission fluents: perm(e) : e ∈ Eact ∪ Eex, where each per-
mission proposition denotes that it is permitted for action e to be brought about.
We do not define a proposition for “forbidden” but just treat it as the absence of
permission for that event to be brought about.

– O: A set of obligations, of the form obl(e, d, v) with e ∈ E , d ∈ E , v ∈ Eviol. The
presence of an obligation fluent in the normative state denotes that event e should
occur before the (deadline) event d or violation v will be generated.

The set of states, Σ, of an normative framework is defined as: Σ = 2F
∗

but not all of
these states may be reachable. Rules in the normative framework may have an effect
in multiple normative states, and this effect may be conditional on the normative state.
In order to qualify the effect of normative rules over a specific set of states, we define
a language X of state formulae that allows us to specify to which normative states the
rule may apply. The set of state formulae is defined as: X = 2F∪¬F

Causal Rules C. Each normative framework has a relation C that describes which
fluents are initiated and terminated by the performance of a given action in a state
matching some expression. The function is expressed as C : X ×E → 2F × 2F , where
the first set in the range of the function describes which fluents are initiated by the given
event and the second those fluents terminated by the event. We use the notation C↑(φ, e)
to denote the fluents which are initiated by the event e in a state matching φ and C↓(φ, e)
to denote those fluents which are terminated by event e in a state matching φ.

Generation Rules G. Each normative framework defines an event generation function
G which describes when the performance of one event counts-as, or generates, another:
G : X ×E → 2Einst . The generation of events may be conditional on some properties in
the normative state, and one event may generate multiple (consequent) events. It should
be noted that this relation describes explicitly specified relationships between events
in the normative framework. There are cases when events may be generated which
are not in this relation, for instance in the case of unsatisfied obligations. Additionally
this function represents cases where event generation may occur, however as normative
events require empowerment, they will only be generated when this property holds.

Initial State Δ. Each normative framework defines the set Δ ⊆ F that denotes the set
proposition that shall hold when the normative framework is created.

2.2 Semantics

Due to space restrictions, we are only able to provide an informal overview of our se-
mantics for normative frameworks. A full discussion with definitions can be found in
[2]. The semantics of this framework is defined over a sequence, called traces, of ex-
ogenous events. Starting from the initial state, each exogenous event will be responsible
for a state change, i.e. a set fluent of additions and deletions. Using the event generation
function, the transitive closure of all events that count as this exogenous event are being
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obtained. Add to this set of events, all violations of events that were not permitted and
obligations that were not fulfilled and we have the set of all events whose consequences
will result in the new state. Using the consequence relation on this set of events, we
obtain all fluents that need to be initiated and deleted from the current state in order
to obtain the new state. So with each trace, we can associate a sequence of states. The
combination of the two is referred to as a model or history. When verifying norma-
tive frameworks we are interested in finding out whether these models and traces have
certain properties. To provide designer support for normative frameworks, we need a
computation tools that can compute all traces/models or those that have specific fea-
tures. In the next section, we demonstrate that ASP can be such a tool.

3 ASP Implementation

We summarize the representation of a normative framework in ASP through reference
to the framework components identified earlier and a case-by-case translation of the
mathematical model into an ASP representation. A crucial aspect of the model is how
we have chosen to represent time and its relationship with the predicate holdsat/2 to
represent the truth of a particular fluent at a particular time. Time in this representation
is linked to state transitions. Time zero is part of the initial state.

If the causal relation initiates a fluent, we want it to hold at the next time instant. A
consequence of this representation of time is that unless explicit action is taken, a fluent
does not hold at the next time instant, that is, the maintenance of inertia requires action.
These two issues are addressed in this way:

f ∈ F∗ holdsat(f, T1) ← initiated(f, T), instant(T),
instant(T1), next(T, T1).

f ∈ F∗ holdsat(f, T1) ← holdsat(f, T),
not terminated(f, T), instant(T),
instant(T1), next(T, T1).

Events cause the evolution of the normative state through the generation relation, thus
an exogenous event is observed and its occurrence is added to the normative state:

eex ∈ Eex occurred(eex, T) ← observed(eex, T), instant(T),
instant(T1), next(T, T1).

To model conditions on the state we use the auxiliary function EX :

EX(x1 ∧ x2 ∧ . . . xn, ti)
def≡ EX(x1, ti), EX(x2, ti), . . . EX(xn, ti)

EX(¬f, ti)
def≡ not EX(f, ti)

EX(f, ti)
def≡ holdsat(f, ti)

Thus, in the first of the following rules, the empowered event e2 is added to the norma-
tive state through conventional generation as a result of the occurrence of e1 and in the
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second, the event e1 is added as a result of the occurrence of the violation event e2, in
both cases subject to a condition φ1:

e1 ∈ E , φ ∈ X ,
e2 ∈ G(φ, e1),
e2 ∈ Eact

⎫⎬
⎭ occurred(e2, T) ← occurred(e1, T), EX(φ, T),

holdsat(pow(e2), T), instant(T).

e1 ∈ E , φ ∈ X ,
e2 ∈ G(φ, e1),
e2 ∈ Eviol

⎫⎬
⎭ occurred(e1, T) ← occurred(e2, T), EX(φ, T),

instant(T).

Violations arise when there is either an event that is not permitted (the first rule below)
or the deadline event of an obligation (second rule):

e ∈ Eact ∪ Eex occurred(viol(e), T) ← occurred(e, T),
not holdsat(perm(e), T), instant(T).

obl(e, d, v) ∈ O occurred(v, T) ← holdsat(obl(e, d, v), T),
occurred(d, T), instant(T).

The causal relation, covering the initiation and termination of fluents arising from some
normative state, is captured in the following two rules:

e ∈ E , φ ∈ X ,
f ∈ C↑(φ, e)

}
initiated(f, T) ← occurred(e, T), EX(φ, T).

e ∈ E , φ ∈ X ,
f ∈ C↓(φ, e)

}
terminated(f, T) ← occurred(e, T), EX(φ, T),

instant(T).

Obligations are removed (terminated) subject to the occurrence of either the event nec-
essary to satisfy the obligation or the deadline event associated with the obligation2:

obl(e, d, v) ∈ O terminated(obl(e, d, v), T)← occurred(e, T), instant(T).
obl(e, d, v) ∈ O terminated(obl(e, d, v), T)← occurred(d, T), instant(T).

3.1 Traces and Queries

The purpose of constructing a (event-driven) model of a normative framework is to
be able to test it in various ways through querying and this in turn depends on the
construction of all the traces of events that could arise between one state and another.
Thus query formulation and trace construction are intimately tied up. However, before
traces can be generated, the program must be grounded, which means being explicit
about the meaning of time instants and precisely how many there are, which in turn
determines the length of the trace. For time instants ti : 0 ≤ i ≤ n, we define the
following three rules: instant(ti)., next(ti, ti+1). and final(tn). denoting each
ground instant of time, relative order and final state, respectively.

1 Note that for violations, we do not need to verify that they are empowered.
2 See violations above for how the deadline event is then translated into a violation.
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The general trace program generates answer sets containing all possible combina-
tions of n exogenous events, but by the addition of further constraints, the answer sets
can be limited to those containing changes, being either the initiation or termination of
fluents. We define an effective transition as:

changed(T) ← initiated(F, T), not holdsat(F, T),
ifluent(F), instant(T).

changed(T) ← terminated(F, T), holdsat(F, T),
ifluent(F), instant(T).

so that something changes at time instant T (indicated by changed(T)) because there
is either a fluent F which does (not) hold at time instant T which is initiated/terminated
at time instant T. Of these, the valid states are those in which in which something has
changed and the rest are discarded. This can further be enhanced to select traces of up
to length n, but for the sake of space, those details are also not included here.

4 Extensions and Conclusions

So far we have written of a single normative framework and its model. However, there
are two motivations to address the concept of several interacting normative frameworks:
(i) one is that for design modularity, it is attractive to focus on small self-contained
frameworks as well as in so doing enabling re-use, while (ii) another is that in the
real world actors are typically simultaneously governed by many such frameworks.
The technical details of this formalization and the notion of power and permission of
one framework over another appear in [3]. The important point from the perspective
of this paper is the ease with which such models can be combined by virtue of the
ASP representation, so that given the necessary linkages between frameworks, their
combination can be processed in just the same way as a single framework definition
and subsequently a model for the combination is constructed that can answer queries
about events and states in their combination.

The normative framework we have presented is designed to capture the essence of
regulated environments and through the use of ASP enables its expression in a form
that allows the construction of a computable model that can then be subjected to queries
through the traces it admits. Subsequently, we have developed a high level action lan-
guage to specify normative frameworks and a complementary query language.
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Abstract. This paper presents the Total Optimisation using Answer Set Technol-
ogy (TOAST) system, which can be used to generate optimal code sequences for
machine architectures via a technique known as superoptimisation. Answer set
programming (ASP) is utilised as the modelling and computational framework
for searching over the large, complex search spaces and for proving the functional
equivalence of two code sequences. Experimental results are given showing the
progress made in solver performance over the previous few years, along with an
outline of future developments to the system and applications within compiler
toolchains.

1 Introduction

Within the field of compiler development the term optimisation is something of a mis-
nomer. Compilers typically use a series of templates to generate machine level instruc-
tions from the parse tree of the target program. An optimisation phase [1] then attempts
to improve this code (with respect to both size and performance) by applying a set
of transforms, reductions and equivalences. In many modern compilers, this results in
significant improvements but it is very unlikely to produce optimal sequences of in-
structions; and if it does, it will not be able to determine that they are indeed optimal.
To further complicate matters, it is often not clear which order these improvement tech-
niques should be applied as they may enable or inhibit further improvements. The cur-
rent order of application in most compilers is a result of experience and trial and error
rather than design.

In a relatively narrow, but significant range of applications, this approach to code
generation is not sufficient. In the inner loops of high-performance computing tasks,
performance critical system libraries, many embedded applications [6] and even the
templates used for code generation within compilers [5] (both conventional and Just
In Time (JIT) compilers within virtual machines), if it is possible to generate optimal
code, then it would be desirable to do so.

Superoptimisation [8] is an approach that views code generation for loop-free seg-
ments of code as a combinatorial search problem. Thus by utilising appropriate search
techniques it is possible to generate genuinely optimal instruction sequences. The Total
Optimisation using Answer Set Technology (TOAST) system uses answer set program-
ming (ASP) [3] as a computational framework to solve the superoptimisation search
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problem. A model of the machine architecture is created in AnsProlog and answer set
solvers are used to generate and verify candidate optimal instruction sequences. In this
way, developments in solver technology can thus directly improve the performance of
the superoptimiser. The flexibility of AnsProlog also allows arbitrary constraints to be
added to the search with minimal effort, something that is very difficult in the case of
procedural superoptimisers, but of huge importance, as it allows a superoptimiser to be
used to augment its own set of constraints. For reasons of compactness, this paper does
not include a description of the answer set semantics or ASP; an in-depth description
can be found in [3].

2 Superoptimisation

Massalin [8] coined the term superoptimisation to refer to an alternative approach to
code generation for short, loop-free sections of machine code. Rather than starting with
crude, template-generated code and running multiple improvement passes, a superop-
timiser starts with the specification of a function and performs a directed search for a
sequence of instructions that meets this specification.

Superoptimisation naturally decomposes into two tasks: searching for candidate se-
quences that meet a reduced set of conditions and then verifying that they meet the
required specification. The raw search space of possible sequences of a given length is
at least exponential in the number of instructions; potentially factorial if the order of
inputs to the sequence is considered. However, a number of constraints and heuristics
exist that can considerably reduce the space that has to be searched. For example, if an
instruction computes a commutative function (such as addition) then only one ordering
of inputs needs to be considered; likewise, if instructions can be reordered then only
one ordering need by searched. Handling the size and complexity of this space is the
current limit on superoptimiser performance.

Despite significant potential, superoptimisation has received relatively little research
within the field of code generation and optimisation. Recent work [5] has utilised a
range of techniques to handle the large search spaces involved in superoptimisation,
including automatic theorem proving [7] and satisfiability testing [2], showing the vi-
ability of the approach for specific application areas. However, a major deficiency of
the existing superoptimising implementations is that there is no guarantee of optimal-
ity. Due to the significant computational burden of proving the functional equivalence
of two non-trivial sequences of code, most of the existing implementations use a repre-
sentative test to shortcut the verification, or timeout and discard sequences that take too
long to verify.

3 The TOAST System

The TOAST provably optimal code generation system consists of modular interacting
components that generate answer set programs and parse answer sets, with a controlling
interface that utilises these components to generate a shorter, superoptimised version
of the original input sequence. A preliminary version of the TOAST system was first
presented in [4].
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in: v32
in: v32
inst: land i1 i2
inst: add i1 1
inst: add i1 2
inst: sub i0 3
out: v32

Listing 1. A program in TOAST input format

3.1 Architecture

The TOAST system supports multiple processor types, with processor specific informa-
tion stored in a description file which provides meta-information about the processor, as
well as which instructions are available. The TOAST system currently supports the fol-
lowing architectures: MIPS R2000, SPARC V7 and SPARC V8, with more proposed.
Porting to a new architecture is simple and takes between a few hours and a week,
depending on how many of the instructions used have already been modelled.

TOAST accepts programs in an assembly language-like format as input. These are
used as the target of the search, to find the shortest sequence of instructions that has
the same output. The example given in Listing 1 defines a program of four instructions,
with two 32 bit inputs and one 32 bit output.

We assume that the cost of each instruction in the input program is the same; for
RISC-like processors where there are no cache or memory issues, and no pipeline
breaks this is a fair simplifying assumption. In the case of minimising memory taken by
the instruction stream, as might be used in mobile devices, this is the correct measure.

A set of vectors, binary values for each bit of each input, are generated in ASP. This
give a set of vectors for each possible path through the input code. The input program is
then ‘run’ with these vectors to generate constraints, giving the ‘correct’ values of the
outputs for each set of vectors.

By using the input vectors and output constraints (essentially start and end values),
we search for candidate sequences of length one, two, and so on, up to one less than the
length of the input sequence. The set of instruction sequences given by this necessarily
contains any optimal sequences, but may contain extra sequences that only give the
correct output for one particular set of inputs. Thus once a candidate set has been found,
TOAST searches within this candidate set, picking new vectors each time, until either
the the set of candidates is empty, in which case the search moves on to the next length,
or until the set of candidates stabilises.

When one or more candidate is found, they have to be verified for equivalence to the
original sequence, over all inputs. Searching can generate a large amount of candidate
sequences, so two verification steps are performed: an initial representative heuristic
test and a full equivalence test. pre-verify is a fast heuristic that uses a directed set of
vectors to perform a fast representative verify on the two programs. If pre-verify returns
false, then the candidate is discarded (i.e. it is definitely not equivalent); if true, then
a full verify must be performed to prove full equivalence. Empirical evidence suggests
that the pre-verify heuristic is important in quickly discarding invalid sequences, but it
is still necessary to validate a sequence with a full verify, as it is possible to generate
cases which can pass the heuristic, but will fail the full verification.
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value(C,T,B) :- istream(C,P,land,R1,R2,none), pc(C,P,T), value(C,R1,B),
value(C,R2,B), register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

-value(C,T,B) :- istream(C,P,land,R1,R2,none), pc(C,P,T), not value(C,T,B),
register(R1), register(R2), colour(C), position(C,P),
time(C,T), bit(B).

symmetricInstruction(land).

Listing 2. Logical AND (land) instruction encoded in AnsProlog

As noted in Section 2, the number of combinations covered by search is factorial in
the length of the sequences. In practise this is handled by a series of calls to a solver
with progressively increasing program sizes. Likewise verify searches for a refutation
in a space of combinations that is exponential in the number of input bits; effectively a
co-NP task and handled by a single invocation of a solver.

One key recent development is the buildMultiple tool which uses TOAST to build
and refine a series of additional constraints which augment the search component. It is
based on the observation that an optimal sequence of instructions will not contain a sub-
optimal instruction sequence. The search component of TOAST is used to generate a set
of all possible instructions sequences of a given length using a fixed number of inputs.
These are then superoptimised using TOAST; if they are sub-optimal or equivalent to
another sequence then they are abstracted to form additional constraints. Although this
procedure is time consuming, it produces very strong sets of constraints and only ever
needs to be run once for a given architecture. Critically, it shows a key advantage of us-
ing ASP; the flexibility to add extra constraints without changing the search algorithm.
With a procedural system, buildMultiple would simply not be possible.

3.2 AnsProlog Encodings

TOAST uses AnsProlog to model the integer processing unit of the target processors.
The majority of the model is at bit level, with AnsProlog rules relating input bits of an
instruction to the output bits.

The instruction sequence is represented as a series of facts, or in the case of search-
ing, a set of choice rules. These literals are then used by the instruction definitions to
control the value literals that give the value of various registers within the processor.
If the literal is in the answer set, the given bit is taken to be a 1, if the classically-negated
version of the literal is in the answer set then it is a 0. An example instruction definition
for a logical AND (land) is given in Listing 2. Note the use of negation as failure to
reduce the number of rules needed and the declaration that AND is symmetric, which
is used to reduce the search space.

Flow control rules define which instruction will be ‘executed’ at a given time step
by controlling the program counter (pc) literal. As ASP programs may need to simulta-
neously model multiple independent code streams (for example, when trying to verify
their equivalence), all literals are tagged with the abstract property ‘colour’. The inclu-
sion of the colour(C) literal in each rule then allows copies to be created for each
code stream during instantiation. In most cases, when only one code stream is used,
only one value of colour is defined and only one copy of each set of rules is produced;
the overhead involved is negligible. An example encoding is shown in Listing 3.
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haveJumped(C,T) :- jump(C,T,J), colour(C), time(C,T), jumpSize(C,J).
pc(C,PCV+J,T+1) :- pc(C,PCV,T), jump(C,T,J), colour(C), position(C,PCV),

time(C,T), jumpSize(C,J).
pc(C,PCV+1,T+1) :- pc(C,PCV,T), not haveJumped(C,T), colour(C),

position(C,PCV), time(C,T).
pc(C,1,1).

Listing 3. Flow control rules encoded in AnsProlog

Flag control rules model the setting and checking of processor flags such as carry,
overflow, zero and negative; although generally only used for controlling conditional
branches and multi-word arithmetic, these flags are a source of many superoptimised
sequences [8].

4 Benchmarks

Benchmarks for the two main tasks of the TOAST system are given: searching for
candidate sequences and then verification of two sequences to show full equivalence
for all inputs.

The tests1 are for the SPARC V8 [9], a 32 bit RISC architecture family. All tests
were run on quad-core Intel 2.8GHz Xeon E5462 processors with 32GB RAM, run-
ning a variant of Scientific Linux. Programs were ground with GRINGO (2.0.0) and
tested with the following four solvers: CLASP, SMODELS, SMODELS-IE and SUP; all
tools were built in 32 bit mode. None of the AnsProlog programs generated within the
TOAST system require disjunction, aggregates or any other non-syntactic extensions.
All programs generated by the TOAST system are tight.

The search test (sequence4) attempts to find shorter optimal sequences for a four
instruction program, with two 32 bit inputs, as given in Listing 1. This sequence was
selected as an example of an optimal sequence that cannot be improved via superop-
timisation, giving an approximate ceiling on the performance of the system. Programs
ss1 to ss4 are searches over the spaces of 1 to 4 instructions respectively.

We performed two types of verification tests: one is which the two programs are
(non-trivially) the same, returning zero answer sets (verifytest1); and the second in
which the two programs differ on only one set of inputs, hence returning one answer
set (verifytest2). In these tests, we amended the input programs to demonstrate that the
TOAST system is able to verify sequences for 8 bit, 16 bit and 32 bit architectures.

Table 1 presents timings for the search and verify tests, with solver time outs oc-
curring after 100 hours. These results demonstrate that we are able to superoptimise
sequences for 32 bit architectures, while the projected growth figures suggest that a
fully verified build-once architecture library is feasible as is done in buildMultiple.

5 Future Work

The results in Table 1 show a significant improvement from the initial benchmarks pro-
vided in [4]. Some of this is due to improvements in hardware, although the majority
of the improvement is due to the progress made in answer set solvers, particularly the

1 Available online from: http://www.cs.bath.ac.uk/tom/toast/

http://www.cs.bath.ac.uk/tom/toast/
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Table 1. Timings (in sec) for TOAST search and verify tests for SPARC V8

sequence4 verifytest1 verifytest2
Solver ss1 ss2 ss3 ss4 8 bit 16 bit 32 bit 8 bit 16 bit 32 bit
clasp-1.1.1 123.20 105.72 578.37 12355.16 0.46 0.48 15.81 0.31 0.37 8.67
smodels-2.32 123.25 266.17 6880.87 - 0.18 11.33 - 0.20 4.75 -
smodels-ie-1.0.0 123.21 281.60 1983.94 - 0.20 11.08 - 0.21 4.79 -
sup-0.2 123.22 103.46 768.36 - 0.40 3.38 - 0.15 0.14 8.70
Atoms 853 1411 2098 2941 904 2212 6940 1030 1526 2518
Rules 42740 118779 238212 410902 1622 4870 17122 3591 6591 12583

inclusion of techniques from SAT solvers, notably clause learning. This demonstrates
one of the advantages of ASP; that improvements in solver performance directly benefit
applications using them, and that more advanced solvers can be ‘plugged-in’ with min-
imal integration needed. Our approach incorporates the concept of a full verification
rather than a plausibility test as is done in other systems, taking the need for a human
out of the operation.

Making use of these advances in solver technology and the flexibility of ASP (es-
pecially with buildMultiple), it is hoped that TOAST can be built into a competitive
superoptimising system. Key application areas are seen in improving the quality of
templates and peephole optimisers used in both conventional and JIT compilers.
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Abstract. The purpose of this paper is to provide a brief overview of how logic
programming technology has been used by our team in addressing the problem
of tertiary protein structure determination. The proposed approach tackles the
problem from the perspective of viewing protein structure as a folding of protein
sequences in a discrete representation of space (a crystal lattice structure). Logic
programming and constraint programming technologies can be effectively used
to provide an elegant and effective solution.

1 Introduction

In recent years, we have witnessed the rapid growth of a new research area, whose
results have already made a profound impact [22] on traditional disciplines such as
biology, chemistry, medicine, and agriculture—here denoted globally as “Bio.” This
area, known as Bioinformatics, uses algorithms and methodologies developed by com-
puter scientists to solve challenging problems in “Bio” areas. In turn, the emerging
problems in these areas have produced stimuli for computer scientists to develop new
algorithms and methods. Bioinformatics, in broad terms, deals with the use of compu-
tational techniques to organize and extract knowledge from biological data; bioinfor-
matics has successfully addressed problems in areas like recognition and analysis of
DNA sequences, biological systems simulations, prediction of the spatial conformation
of biological polymers, and ontological analysis of biomedical knowledge.

Logic programming has already asserted itself as a strong technology for bioin-
formatics. Logic programming environments have been developed, either to serve the
needs of specific applications or to provide general frameworks for bioinformatics de-
velopment (e.g. [8,24]). In particular, the search capabilities provided by logic program-
ming provide a natural platform for addressing combinatorial problems—which occur
frequently in biomedical research areas.

In this paper, we overview our work in the area of logic programming applications
to the problem of protein structure prediction. We address the problem of tertiary struc-
ture prediction using ab initio techniques [28], from the perspective of folding a protein

� The research has been partially supported by the FIRB Project RBNE03B8KK.
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sequence in a discretized representation of the three-dimensional space (viewed as a
crystal lattice structure), optimizing an objective function which is related to the poten-
tial energy function of the resulting configuration. In the rest of this paper we briefly
introduce this challenging problem and give an overview of our results.

2 The Protein Structure Prediction Problem

The Primary structure of a protein is a linked sequence of amino acids. There are 20
types of amino acids—each commonly identified by a distinct letter. For the scope of
this paper, the primary structure of a protein can be simply viewed as a string s1 · · · sn

with si ∈ {A, . . . , Z} \ {B, J,O, U,X,Z}.
The Tertiary Structure (or native state) of a protein is a 3D conformation associ-

ated to the primary structure. The protein structure prediction problem is the problem
of predicting the tertiary structure of a protein, given its primary structure. Local 3D
conformations, called α-helices and β-sheets, are often present in a protein native state.
The set of these local structures is typically referred to as secondary structures. We do
not discuss in this paper the quaternary structure, which is the arrangement of several
folded proteins in a more general complex.

Figure 1 shows an abstract representation of the conformation of protein 1FVS: on
the left a full atom view and on the right a cartoon representation obtained by linking
the Cα atoms (intuitively, the central atoms of each amino acid). This picture highlights
a 4-strands β-sheet, plotted with cyan (light gray), and two α-helices in red (dark gray).
At the bottom, the primary sequence, viewed as a sequence of amino acids, is reported.

When modeling the protein structure prediction problem, we impose physical con-
straints to the conformations. Let us denote with D the set of admissible points in the 3D
space where an amino acid can be placed. Let c, d be two fixed distances. For two points
p, q ∈ D, we say that next(p, q) holds if and only if |p − q| = d. d is related to 3.8Å,
namely the distance between two consecutive Cα in the primary sequence. We define
the Boolean function contact as follows: contact(p, q) = 1 if and only if |p − q| ≤ c.
A folding of a n-element primary sequence is a function ωn : {1, . . . , n} −→ D satis-
fying the following properties: (1) for all 1 ≤ i, j ≤ n, if i �= j then ωn(i) �= ωn(j),
and (2) for all 1 ≤ i < n, it holds that next(ωn(i), ωn(i + 1)).

arevilavhgmtcsactntintqlralkgvtkcdislvtnecqvtydnevtadsikeiiedcgfdceilrd

Fig. 1. Primary and Tertiary structures (all-atoms and Cα–Cα structure) of Protein 1FVS
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Let Pot be a function that maps pairs of amino acids to integer numbers; the function
estimates the energy contribution of a pair of amino acids that are in contact. The free
energy of a folding ωn, denoted by E(ωn), is computed as follows:

E(ωn) =
∑

1 ≤ i < n
i + 2 ≤ j ≤ n

contact(ωn(i), ωn(j)) · Pot(si, sj)

The protein structure prediction problem (PSP) is the problem of determining the fold-
ing(s) ωn that minimize E(ωn). The problem contains some symmetries that can be
avoided by symmetry breaking search (see, e.g., [2]). The simplest way to remove sym-
metries is to fix the positions ωn(1) and ωn(2) of the first two amino acids.

Two main approximations can be made: (1) space: the set of admissible points, and
(2) energy: the details of the Pot function used. Lattice-based models are realistic ap-
proximations of the set of the admissible points for the Cα atoms of a protein [27].
Lattices are 3D graphs with repeated patterns; e.g., the face centered cube (FCC) lattice
is defined as: D = {(x, y, z) ∈ N3 : x+ y+ z is even}, E = {(p, q) ∈ D2 : |p− q| =√

2}. In this case, d =
√

2 (that corresponds to 3.8Å), while c is set to 2 (∼ 5.4Å, a
reasonable distance for considering in contact two non conscutive amino acids).

The contact energy contribution Pot assigns a (positive or negative) value to a pair
of aminoacids in contact. In literature, there are proposals with aminoacids clusterized
into 2 classes: the HP model [18], into 4 classes: the HPNX model [4], or into 20 classes
(one for each aminoacid): the 20 × 20 model [6].

3 Related Work

The HP model [18] divides amino acids in two categories: hydrophobic (H) and polar
(P). Two hydrophobic amino acids in contact contribute −1 to the energy. The other
contacts are not relevant. Even with these simplifications, the problem of determining
the optimal folding in the simplest lattice structure (D = N2, E = {(p, q) ∈ D2 :
|p− q| = 1}, and c = d = 1) is NP-complete, as originally proved in [9]. In particular,
given a sequence made of symbols P and H, determining the existence of a folding with
at least k contacts between occurrences of the symbol H is a NP-complete problem. In
these simple settings, this problem has been encoded in Answer Set Programming [20].

Backofen and Will solved this problem using constraint programming techniques,
for sequences of length 160 and more on the FCC lattice [3,1,2]. Efficiency is obtained
using symmetry breaking and introducing the notion of core. Basically, the patterns
of optimal configurations of H amino acids in contact are pre-computed. This kind
of approach is not suitable to versions of the problem where a more detailed energy
model is used or where additional structural constraints (e.g., known α-helices and β-
sheets) are introduced. In [4], they consider an energy model in which amino acids
are partitioned in four categories. Other researchers (e.g., [26]) provide approximated
solutions to the same problem using local search and refined meta-heuristics.

Barahona and Kripphal provided a constraint based solution to the problem on a
more general space model (off-lattice cubes). They also considered proteins docking
and developed the tool Chemera, which is extensively used by by biochemists [23,5].
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4 Our Contribution

In our research, we focused on the use of the FCC model to discretize the 3D space,
and the 20 × 20 energy model [6], more precise than the HP model.

CLP(FD) encoding. In [19] we encoded the problem using the library clpfd of SICStus
Prolog. Since contact energy is not suitable to predict α-helices and β-sheets in the
FCC lattice, we pre-computed secondary structure elements using other well-known
tools. The results of these pre-computations have been introduced as constraints within
the main code. In this first encoding the number of admissible angles for secondary
structure elements was too limited. We relaxed this limitation in [10], where a more
general and precise handling of secondary structure constraints has been implemented.
However, the exponential growth of the search space w.r.t. the protein length made
impossible to explore the whole search space for proteins of length greater than 30/40.
Therefore, we proposed an ad-hoc labeling search strategy with biologically motivated
heuristics and we introduced a data structure (the potential matrix) that allowed us to
reduce calculations during this phase. This approach was later extended by relaxing
some constraints and developing alternative search heuristics [11].

In all these approaches, we used a dual representation of the tertiary structure: a
cartesian one, based on the set of points, and a polar one, based on the torsional an-
gles generated by the protein during the folding. The cartesian representation is useful
for defining the notion of self-avoiding walk and the notion of constraint-based energy
function. The polar representation simplifies the encoding of secondary structure con-
straints. However, a significant number of additional constraints needs to be introduced
to manage the conversion between the two representations, and this has a significant
impact on the scalability—for large proteins (e.g., length 60 or higher), the constraint
solver quickly exhausts its memory. The polar representation was abandoned in later
stages of the research [13], and secondary structure constraints were encoded directly
using cartesian constraints. The consequence of this choice is the loss of the chirality
property of helices, but the overall definition becomes simpler and more scalable.

In the same paper, we also developed a novel search heuristics (Bounded Block
Fail—BBF). The list of variables is dynamically split into blocks of k variables, that
are labeled at the same time. When the variables in the block Bi are instantiated to a
tentative solution, the search moves to the successive block Bi+1, if any. If the labeling
of the block Bi+1 fails, the search backtracks to the block Bi. If the number of times
that Bi+1 has failed is below a certain threshold, then the process continues, by generat-
ing one new solution for Bi and re-entering the labeling of the block Bi+1. Otherwise,
the heuristics generates a failure for Bi and backtracks to Bi−1. The key idea is that
small local changes do not significantly change the protein shape. When the search has
attempted a sufficiently large number of similar conformations without success, it is
better to abandon that search branch.

Ad-hoc constraint solver. In [12] we developed an ad-hoc constraint solver writ-
ten in C, named COLA (COnstraint solving on LAttices). Previously, each 3D point
was viewed as a triple of FD variables 〈X,Y, Z〉. In COLA, instead, the lattice point
is an elementary element, associated with a 3D domain (a box). We developed and
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Table 1. Running time of the various approaches on some small proteins

ID–n [19] [10] [11] [13] [16]
1LE3–16 1m 43s 1.6 s 25.3 s 1.2 s 0.2 s
1ZDD–34 13m 16 s 7m 26 s 1m 14 s 2m 18 0.4 s
2GP8–40 30m 36 s 9.9 s (*) 7h 42 m 1m 12s 0.16 s
1ENH–54 40m 45 s 40m 24s (*) >10h 9h 46m 1 m 20 s

implemented ad-hoc constraint propagation techniques and the BBF heuristics. This
approach, which also was parallelized to enhance scalability, was presented in [16].

Just to give an idea of the evolution of our proposals, we report the running times
of the systems on the prediction of some small proteins in Table 1. Timings have been
recomputed on an AMD Opteron 2.2GHz Linux machine, using SICStus Prolog 4.0.4
for the first 4 columns and COLA 2.1 for the last one. The solutions found with differ-
ent techniques are not always the same, but (save for the first column related to a too
strict encoding) they have comparable energy and shape. More importantly, the solu-
tions are very close to the real tertiary structure (see original papers for details). The
times marked by a (*) are lower than [11] and [13], since some extra strong struc-
tural constraints among secondary structure were added. Observe that [16] improves
those results even without extra information. The protein 1FVS of Figure 1 is pre-
dicted by COLA 2.1 with BBF in less than one hour. All codes are available from
www.dimi.uniud.it/dovier/PF.

Towards generalization and integration. The ab-initio approach used by COLA is
still computationally infeasible when applied to proteins with more than hundred amino
acids. Only the presence of other types of partial information—e.g., known folds for
sub-blocks extracted from the Protein Data Bank (PDB)—can significantly speed-up
the search. This is indeed what is done by other predictors (e.g., ROSETTA [25]), where
partial information is extracted from PDB from similar structures/substructures, and
only small subsequences need to be arranged in 3D space.

We started a systematic study about global constraints needed in a solver for struc-
ture predictions on lattice models. We studied the definition and the complexity of test-
ing satisfiability and applying propagation for the constraints alldifferent, contiguous,
self avoiding walk, alldistant, chain, and rigid block in [14]. These global constraints
are currently incorporated in COLA, which processes additional information coming
from known proteins and from partial predictions. We also investigated a global con-
straint that accounts for partial information coming from protein density maps [15].

We have also studied how to use model checking results for analyzing the folding
process [17], and how to model the protein folding problem as a planning problem
using a variant of the well-known action description language B [21]. An approach to
the protein folding problem using Agent-Based simulation has been proposed in [7].

5 Conclusions

This work represents a typical use of logic programming paradigm for problem solving.
The problem can be encoded easily and solutions (for small inputs) can be computed

www.dimi.uniud.it/dovier/PF
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by built-in mechanisms of (constraint) logic programming. Heuristics and alternative
encodings can be easily programmed and tested. When the encoding becomes stable,
enhanced performance can be obtained using less declarative methods.
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12. Dal Palù, A., Dovier, A., Pontelli, E.: A Constraint Logic Programming Approach to 3D
Structure Determination of Large Protein Complexes. In: Sutcliffe, G., Voronkov, A. (eds.)
LPAR 2005. LNCS (LNAI), vol. 3835, pp. 48–63. Springer, Heidelberg (2005)
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in CLP(FD). In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 255–270.
Springer, Heidelberg (2007)

22. Johnson, G.: All Science is Computer Science. The New York Times (3/25/2001)
23. Krippahl, L., Barahona, P.: PSICO: Solving Protein Structures with Constraint Programming

and Optimisation. Constraints 7, 317–331 (2002)
24. Mungall, C.: Biomedical Logic Programming Integration Toolkit,

http://www.blipkit.org
25. Simons, K., Bonneau, R., Ruczinski, I., Baker, D.: Ab initio protein structure prediction of

CASP III targets using ROSETTA. Proteins: Struct. Fund. Genet. 3, 171–176 (1999)
26. Shmygelska, A., Hoos, H.H.: An ant colony optimisation algorithm for the 2D and 3D hy-

drophobic polar protein folding problem. BMC Bioinformatics 6(30) (2005)
27. Skolnick, J., Kolinski, A.: Reduced models of proteins and their applications. Polymer 45,

511–524 (2004)
28. Zhang, Y.: Progress and Challenges in Protein Structure Prediction. Curr. Opin. Struct.

Biol. 18(3) (2008)

http://www.blipkit.org
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Abstract. This note summarizes the use of Answer Set Programming to solve
various computational problems to infer phylogenetic trees and phylogenetic net-
works, and discusses its applicability and effectiveness on some real taxa.

1 Introduction

Cladistics (or phylogenetic systematics), developed by Willi Hennig [1], is the study
of evolutionary relations between species based on their shared traits. Represented di-
agrammatically, these relations can form a tree whose leaves represent the species, in-
ternal vertices represent their ancestors, and edges represent the genetic relationships
between them. Such a tree is called a “phylogenetic tree” (or a “phylogeny”). We con-
sider reconstruction of phylogenies as the first step of reconstructing the evolutionary
history of a set of taxa (taxonomic units). The idea is then to reconstruct (temporal) phy-
logenetic networks, which also explain the contacts (or borrowings) between taxonomic
units, from the reconstructed phylogenies.

We studied both steps using Answer Set Programming: the first step is studied in
[2,3,4], and the second step is studied in [5,6]. We call our ASP-based approach to
phylogenetic tree and phylogenetic network reconstruction as PHYLO-ASP. We illus-
trated the applicability and effectiveness of PHYLO-ASP for the historical analysis of
languages, and to the historical analysis of parasite-host systems.

Histories of individual languages give us information from which we can infer prin-
ciples of language change. This information is not only of interest to historical linguists
but also of interest to archaeologists, human geneticists, physical anthropologists as
well. For instance, an accurate reconstruction of the evolutionary history of certain lan-
guages can help us answer questions about human migrations, the time that certain arti-
facts were developed, when ancient people began to use horses in agriculture [7,8,9,10].

Parasites occur worldwide, causing malnutrition, sickness, and even sometimes the
death of their hosts. Historical analysis of parasites gives us information on where they
come from and when they first started infecting their hosts. The phylogenies of par-
asites, with the phylogenies of their hosts, and with the geographical distribution of
their hosts, can be used to understand the changing dietary habits of a host species,
to understand the structure and the history of ecosystems, and to identify the history
of animal and human diseases. This information allows predictions about the age and
duration of specific groups of animals of a particular region or period, identification of
regions of evolutionary “hot spots” [11], and thus can be useful to assess the importance
of specific habitats, geographic regions, and biotas—all the plant and animal life of a
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particular region—and areas of critical genealogical and ecological diversity [12,11].
Identification of the most vulnerable members of a community by this way allows us to
make more reliable predictions about the impacts of perturbations (natural or caused by
humans) on ecosystem structure and stability [12].

With PHYLO-ASP, we studied evolutionary history of 7 Chinese dialects based on
15 lexical characters, and 24 Indo-European languages based on 248 lexical, 22 phono-
logical and 12 morphological characters. Some of the phylogenetic trees and networks
computed by PHYLO-ASP are plausible from the point of view of historical linguistics.
We also studied evolutionary history of 9 species of Alcataenia (a tapeworm genus)
based on their 15 morphological characters. Some of the phylogenetic trees and net-
works computed by PHYLO-ASP are plausible from the point of view of coevolution—
the evolution of two or more interdependent species each adapting to changes in the
other, and from the point of view of historical biogeography—the study of the geo-
graphic distribution of organisms.

This note summarizes the use of PHYLO-ASP to solve various computational prob-
lems related to the inference of phylogenetic trees and phylogenetic networks, and dis-
cusses its applicability and effectiveness on some real taxa.

2 Phylogeny Reconstruction

A phylogenetic tree (or phylogeny) for a set of taxa is a finite rooted binary tree 〈V,E〉
along with two finite sets I and S and a function f from L× I to S, where L is the set
of leaves of the tree. The set L represents the given taxonomic units whereas the set V
describes their ancestral units and the set E describes the genetic relationships between
them. The elements of I are usually positive integers (“indices”) that represent, intu-
itively, qualitative characters, and elements of S are possible states of these characters.
The function f “labels” every leaf v by mapping every index i to the state f(v, i) of the
corresponding character in that taxonomic unit.

A character i ∈ I is compatible with a phylogeny (V,E, L, I, S, f) if there exists a
function g : V × {i} → S such that

(C1) for every leaf v of the phylogeny, g(v, i) = f(v, i);
(C2) for every s ∈ S, if the set Vis = {x ∈ V : g(x, i) = s} is nonempty then the

digraph 〈V,E〉 has a subgraph with the set Vis of vertices that is a rooted tree.

A character is incompatible with a phylogeny if it is not compatible with that phylogeny.
The computational problem we are interested in is, given the sets L, I , S, and the

function f , to build a phylogeny (V,E, L, I, S, f) with the maximum number of com-
patible characters. This problem is called the maximum compatibility problem. It is
NP-hard even when the characters are binary [13]. We solve the maximum compat-
ibility problem, by means of the following decision problem: given sets L, I , S, a
function f from L × I to S, and a nonnegative integer n, decide the existence of a
phylogeny (V,E, L, I, S, f) with at most n incompatible characters. In [2,4], we de-
scribe this decision problem as an ASP program whose answer sets correspond to such
phylogenies.
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3 Phylogenetic Network Reconstruction

A contact between two taxonomic units can be represented by a horizontal edge added
to a pictorial representation of a “temporal phylogeny”—a phylogeny along with a func-
tion τ from vertices of the phylogeny to real numbers denoting the times when these
taxonomic units emerged (Fig. 1). The two endpoints of the edge are simultaneous
“events” in the histories of these communities. An event can be represented by a pair
v↑t, where v is a vertex of the phylogeny and t is a real number.

A finite set C of contacts defines a (temporal) phylogenetic network 〈V ∪VC , EC〉—
a digraph obtained from T = 〈V,E〉 by inserting the elements v↑t of the contacts from
C as intermediate vertices and then adding every contact in C as a bidirectional edge.
We say that a set C of contacts is simple if the endpoints of all lateral edges are different
from the vertices of T , and each lateral edge subdivides an edge of T into exactly two
edges.

About a simple set C of contacts (and about the corresponding phylogenetic network
〈V ∪ VC , EC〉) we say that it is perfect if there exists a function g : (V ∪ VC) ×
I → S such that the function g extends f from leaves to all internal nodes of the
phylogenetic network, and that every state s of every character i could evolve from
its original occurrence in some “root” (i.e., every character i is compatible with the
phylogenetic network).

We are interested in the problem of turning a temporal phylogeny into a perfect
phylogenetic network by adding a small number of simple contacts. For instance, given
the phylogeny in Fig. 1(a), the single contact {B↑1750, D↑1750} is a possible answer.

It is clear that the information included in a temporal phylogeny is not sufficient
for determining the exact dates of the contacts that turn it into a perfect phylogenetic
network. To make this idea precise, let us select for each v ∈ V \ {R} a new symbol
v↑, and define the summary of a simple set C of contacts to be the result of replacing
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each element v↑t of every contact in C with v↑. Thus summaries consist of 2-element
subsets of the set V ↑= {v↑ : v ∈ V \ {R}}. For instance, the summary of the set of
contacts of Fig. 1(b) is {{B↑, D↑}}.

An IPSTN problem (for “Increment to Perfect Simple Temporal Network”) is defined
by a phylogeny 〈V,E, I, S, f〉 and a function v �→ (τmin(v), τmax(v)) from the vertices
of the phylogeny to open intervals. A solution to the problem is a set of 2-element
subsets of V ↑ that is the summary of a perfect simple set of contacts for a temporal
phylogeny 〈V,E, I, S, f, τ〉 such that, for all v ∈ V , τmin(v) < τ(v) < τmax(v).

In [6], we describe IPSTN problem as an ASP program. We solve IPSTN problems
in two steps: use an ASP system to compute summaries so that every character is com-
patible with the phylogenetic network, and then use a constraint programming system
to check, for each of summary, whether the corresponding contact occurs within the
given time intervals.

4 Experimental Results

We applied PHYLO-ASP to three sets of taxa: Chinese dialects, Indo-European lan-
guages, and Alcataenia (a tapeworm genus) species. For each taxa and a given integer
n, first we computed all phylogenies with at most n incompatible characters, iteratively
with a script as follows: at iteration i, compute the i’th phylogeny with the input pro-
gram, and then add to the input program a constraint that prevents generation of the an-
swer sets that describe the i’th phylogeny. After that, we identified the phylogenies that
are plausible. For the Chinese dialects and Indo-European languages, the plausibility of
phylogenies depends on the linguistics and archaeological evidence; for Alcataenia, the
plausibility of the phylogeny we compute is dependent on the knowledge of host phy-
logeny (e.g., phylogeny of the seabird family Alcidae), chronology of the fossil record,
and biogeographical evidence. Then, for each plausible phylogeny, we computed phy-
logenetic networks that require minimum number of lateral edges, and identified the
plausible ones.

Experiments with Chinese dialects. We considered the Chinese dialects Xiang, Gan,
Wu, Mandarin, Hakka, Min, and Yue. We used the dataset, originally gathered by Xu
Tongqiang and processed by Wang Feng, described in [14]. In this dataset, there are 15
lexical characters; each character has 2–5 states.

After preprocessing this dataset, we computed 33 phylogenies with 6 incompatible
characters, and we found out that there is no phylogeny with less than 6 incompatible
characters. These phylogenies are presented in [4]. The sub-grouping of the Chinese
dialects is not yet established. However, many specialists agree that there is a Northern
group and a Southern group. That is, for the dialects we chose in our study, we would
expect a (Wu, Mandarin, Gan, Xiang) Northern grouping and a (Hakka, Min) South-
ern grouping. (It is not clear which group Yue belongs to.) We identified 5 plausible
phylogenies with respect to this hypothesis.

For each plausible phylogeny, we reconstructed phylogenetic networks. We observed
that, among these phylogenies, two of them require at least 2 lateral edges (representing
borrowings between Gan and Wu, and between (Mandarin, Wu) and Min) to turn into
a plausible perfect phylogenetic network.
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Experiments with Indo-European languages. We applied PHYLO-ASP to reconstruct
the evolutionary history of the Indo-European language groups Balto-Slavic (BS), Italo-
Celtic (IC), Greco-Armenian (GA), Anatolian (AN), Tocharian (TO), Indo-Iranian (IIR),
Germanic (GE), and the language Albanian (AL). We used the dataset assembled by Don
Ringe and Ann Taylor [15], with the advice of other specialist colleagues. There are 282
informative characters in this dataset, each with 2–22 states.

After preprocessing this dataset, we computed 45 phylogenies with at most 20 in-
compatible characters, taking into account the given domain-specific information (e.g.,
Anatolian is the outgroup for all the other subgroups, Albanian cannot be a sister of
Indo-Iranian or Balto-Slavic). Out of these 45 phylogenies, 34 are identified by Don
Ringe as plausible from the point of view of historical linguistics. These phylogenies
are presented in [4]. The most plausible one with 16 incompatible characters is (AN,
(TO, (IC, ((GE, AL), (GA, (IIR, BS)))))).

Based on this phylogeny, and given some time intervals for each node in the phy-
logeny, we reconstructed 3 plausible temporal phylogenetic networks with 3 lateral
edges, taking also into account some domain-specific information (e.g., a contact be-
tween IC and BA is unlikely because the former was spoken in western Europe, while
the Balts were probably confined to a fairly small area in northeastern Europe).

Experiments with Alcatenia species. We used PHYLO-ASP to reconstruct the evo-
lutionary history of 9 species of Alcataenia—a tapeworm genus whose species live
in alcid birds (puffins and their relatives): A. Larina, A. Fraterculae, A. Atlantien-
sis, A. Cerorhincae, A. Pygmaeus, A. Armillaris, A. Longicervica, A. Meinertzhageni,
A. Campylacantha. We used the dataset described in [16]. In this dataset, there are 15
characters, each with 2–3 states.

After preprocessing this dataset, we computed 18 phylogenies, with 5 incompati-
ble characters, for Alcataenia, taking into account some domain-specific information
(e.g., the outgroup for all Alcataenia species is A. Larina). For the plausibility of the
phylogenies for Alcataenia, we consider the phylogenies of its host Alcidae (a seabird
family) and the geographical distributions of Alcidae. For instance, according to host
and geographic distributions over the time, diversification of Alcataenia is associated
with sequential colonization of puffins (parasitized by A. Fraterculae and A. Cerorhin-
cae), razorbills (parasitized by A. Atlantiensis), auklets (parasitized by A. Pygmaeus),
and murres (parasitized by A. Armillaris, A. Longicervica, and A. Meinertzhageni). This
pattern of sequential colonization is supported by the phylogeny of Alcidae in [17]. Out
of the 18 trees we computed, only two are consistent with this pattern. Each plausible
tree needs 3 lateral edges to turn into a perfect phylogenetic network.

5 Conclusion

We have briefly described the use of ASP to reconstruct the evolutionary history of a set
of taxonomic units (as in [5,3,6,2,4]), calling this ASP-based approach to phylogenetic
systematics as PHYLO-ASP. We have discussed the applicability and effectiveness of
PHYLO-ASP with three sets of taxa: Indo-European languages, Chinese dialects, and
Alcatenia species. Our ongoing work involves extending PHYLO-ASP to analyze and
compare phylogenetic trees and networks [18,19].
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Abstract. Identifying maternal and paternal inheritance is essential to be able to
find the set of genes responsible for a particular disease. However, due to tech-
nological limitations, we have access to genotype data (genetic makeup of an
individual), and determining haplotypes (genetic makeup of the parents) experi-
mentally is a costly and time consuming procedure. With these biological moti-
vations, we study haplotype inference—determining the haplotypes that form a
given set of genotypes—using Answer Set Programming; we call our approach
HAPLO-ASP. This note summarizes the range of problems that can be handled
by HAPLO-ASP, and its applicability and effectiveness on real data in compari-
son with the other existing approaches.

1 Introduction

Each genotype (the specific genetic makeup of an individual) in a diploid organism has
two copies, one from the mother and one from the father. These two copies are called
haplotypes, and they combine to form the genotype. The genetic information contained
in haplotypes can be used for early diagnosis of diseases, detection of transplant re-
jection, and creation of evolutionary trees. However, although it is easier to access
to the genotype data, due to technological limitations, determining haplotypes exper-
imentally is a costly and time consuming procedure. With these biological motivations,
researchers have been studying haplotype inference—determining the haplotypes that
form a given set of genotypes—by means of some computational methods.

One haplotype inference problem that has been extensively studied is Haplotype
Inference by Pure Parsimony (HIPP) [1]. This problem asks for a minimal set of hap-
lotypes that form the given genotypes; the decision version of HIPP is NP-hard [1,2].
HIPP has been studied with various approaches, such as, HYBRIDIP (based on integer
linear programming) [3], HAPAR (based on a branch and bound algorithm) [4], SHIPS

(based on a SAT-based algorithm) [5], RPOLY (based on pseudo-boolean optimization
methods) [6].

Another haplotype inference problem that has been studied so far is Haplotype Infer-
ence from Present-Absent Genotype (HIPAG) [7,8]; it is a variation of HIPP that takes
into account biallelic genotypes only, possibly with missing information, and domain-
specific information, like haplotype patterns observed for some specific gene family.
HIPAG has been studied by [7] with a greedy algorithm (HAPLO-IHP); [9] studies
a variation of HIPAG for polyallelic and polyploid genotypes but does not take into
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account domain-specific information, and computes a solution using a SAT-based algo-
rithm (SATLOTYPER).

Recently, we have presented a novel approach to solving both sorts of haplotype in-
ference problems, HIPP and HIPAG, and their variations, using Answer Set Program-
ming (ASP) [8]; this ASP-based approach to haplotype inference is called HAPLO-ASP.
We have extended the applicability of HAPLO-ASP, thanks to its expressive represen-
tation language, to solve also variations of HIPP and HIPAG where we can specify
preferences over parts of haplotypes by assigning weights to their sites/alleles in accor-
dance with their importance, and/or where we can consider polyallelic and polyploid
genotypes. This note summarizes the range of problems handled by HAPLO-ASP, and
its applicability and effectiveness on real data in comparison with the other approaches.

2 Haplotype Inference by Pure Parsimony

Haplotype Inference by Pure Parsimony (HIPP) [1] asks for a minimal set of haplotypes
that explain the given genotypes. The decision version of HIPP (i.e., deciding that a set
of k haplotypes that explain the given genotypes exists) is NP-hard [1,2].

A standard definition of the concept of two haplotypes “explaining” a genotype ap-
pears in [1]. According to this definition, we view a genotype as a vector of sites, each
site having a value 0, 1, or 2; and a haplotype as a vector of sites, each site having a
value 0 or 1. The values 0 and 1 (called alleles) correspond to complementary bases,
like C and G. The sites correspond to single nucleotide polymorphisms (SNPs). A site
of a genotype is ambiguous if its value is 2; and resolved otherwise. Two haplotypes h1
and h2 form (explain) a genotype g if for every site j the following hold: if g[j] = 2
then h1[j] = 0 and h2[j] = 1 or h1[j] = 1 and h2[j] = 0; if g[j] = 1 then h1[j] = 1
and h2[j] = 1; and if g[j] = 0 then h1[j] = 0 and h2[j] = 0. For instance, the genotype
20110 can be explained by the haplotypes 10110 and 00110.

We consider the following decision version of HIPP:

HIPP-DEC Given a set G of n genotypes each with m sites, and a positive integer
k, decide whether there is a set H of at most k unique haplotypes such that each
genotype in G is explained by two haplotypes in H .

Erdem and Türe have presented in [8] an ASP program that describes HIPP-DEC. An
instance of HIPP can be solved with that ASP program, by trying various values for k
(the number of unique haplotypes explaining the given genotypes). HAPLO-ASP com-
putes an approximate lower bound l for k and an upper bound u for k, using ASP, and
tries to find the optimal value for k by a binary search between l and u. The computation
of such a lower bound and upper-bound is discussed in [8].

3 Haplotype Inference from Present-Absent Genotype

Haplotype Inference from Present-Absent Genotype (HIPAG) is another haplotype in-
ference problem, which asks for the minimal set of haplotypes “compatible” with the
given genotypes. Both haplotypes and genotypes can be viewed as vectors, as in HIPP.
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In this problem, each site of a haplotype takes one of the two values 0 or 1 specifying the
presence/absence of a particular gene. Sites of genotypes are biallelic; the value of each
site is a pair of numbers from {0, 1, ?}. For instance, (1, ?)(1, ?)(1, 1) is a genotype.

For a genotype g of the form (g11, g12)...(gm1, gm2), let us denote by g1 the vector
g11g21...gm1 and by g2 the vector g12g22...gm2. We say that two alleles i and j are com-
patible if they are identical or if one of them is ?. Two haplotypes h1 and h2 are compat-
ible with a genotype g, all with m sites, if, for every site j, h1[j] is compatible with one
of the two alleles, g1[j] or g2[j], and h2[j] is compatible with the other. For instance, the
haplotypes 011 and 111 are compatible with (1, 0)(1, 1)(1, 1) and (1, ?)(1, ?)(1, 1) but
not with (1, ?)(1, 0)(1, 1). Note that, we can discard the sites with missing information
while computing a solution for HIPAG.

We consider the following decision version of HIPAG:

HIPAG-DEC Given a set G of n genotypes each with m biallelic sites, and a positive
integer k, decide that there is a set H of at most k unique haplotypes such that each
genotype in G is compatible with two haplotypes in H .

We have shown that HIPAG-DEC is also NP-complete.
[8] discusses how to describe HIPAG-DEC as an ASP program. Then an instance

of HIPAG can be solved with that ASP program, by trying various values for k, as in
HIPP instances.

4 Other Variations of Haplotype Inference

HAPLO-ASP can solve also variations of HIPP and HIPAG where we can specify
domain-specific information (like haplotype patterns observed for some gene family),
preferences over parts of haplotypes by assigning weights to their sites/alleles in accor-
dance with their importance in detecting the cause of a disease, and/or where we can
consider polyallelic and polyploid genotypes. In the following, we will briefly discuss
these problems.

Observed Haplotype Patterns. In haplotype studies of some gene families, sometimes
some patterns may be observed. For instance, [7] derived three patterns of haplotypes
for the family of KIR genes of Caucasian population, from the observations in KIR
haplotype studies like [10]. These patterns may help generating more accurate haplo-
types, if included in the computation of haplotypes. Such domain-specific information
can be described by an ASP program, as described in [8], and, during computation of
haplotypes, it can be given to the answer set solver as an input in a separate program
file.

Weighted Haplotype Inference. In some populations, some sites/alleles may have a
more significant role in identifying, for instance, the cause of a disease, and thus have
a larger weight. With this motivation, we have studied modified versions of HIPP and
HIPAG: Weighted Haplotype Inference by Pure Parsimony (WHIPP) and Weighted
Haplotype Inference from Present-Absent Genotype (WHIPAG). We have studied the
decision versions of WHIPP and WHIPAG and presented them in ASP. We have been
testing HAPLO-ASP on some real data.
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Haplotype Inference with Polyallelic and Polyploid Genotypes. In the haplotype in-
ference problems above, every genotype is explained by two haplotypes (since the in-
dividuals are diploid) and every genotype has at most two kinds of alleles (e.g., in
HIPAG, the genes are biallelic). However, there are many species, like some varieties
of the potato (e.g., Solanum tuberosum), with polyploid and polyallelic genes in nature,
where every genotype is explained by more than two haplotypes, and each genotype
consists of more than two kinds of alleles. Haplotype Inference from Polyallelic and
Polyploid Genotype (HIPPG) extends HIPAG to such polyallelic and polyploid geno-
types. We have studied the decision version of HIPPG and presented it in ASP. We
have tested HAPLO-ASP on some real data for cultivated potato genes (described in
[11]), and obtained promising results as in [9].

5 Experimental Results for HIPP and HIPAG

We have implemented a haplotype inference system, also called HAPLO-ASP, based
on the ASP-based approach above; it is a PERL script including system calls to an-
swer set solvers. HAPLO-ASP is available at http://people.sabanciuniv.edu/
˜esraerdem/haplo-asp.html. We have performed two groups of experiments us-
ing this system [8].

In these experiments, the executable for SHIPS is obtained from their authors. RPOLY

(executables) and HAPLO-IHP (source files) are available at their web pages. We use
the versions of these systems available on January 28, 2008. In the experiments, as their
search engines, RPOLY uses MINISAT+ (Version 1.0), SHIPS uses MINISAT (Version
2.0), and HAPLO-ASP uses CMODELS (Version 3.74) with LPARSE (Version 1.0.17) and
MINISAT (Version 2.0). In our experiments, we have used a workstation with 1.5GHz
Xeon processor and 4x512MB RAM, running Red Hat Linux(Version 4.3).

Experimenting with HIPP Problems. In these experiments, we have compared HAPLO-
ASP with the other state-of-the-art haplotype inference systems, RPOLY [6] (based on
pseudo-boolean optimization methods) and SHIPS [5] (based on a SAT-based algo-
rithm); these systems can solve HIPP problems only. We have excluded from our ex-
periments the systems based on integer linear programming (ILP), such as HYBRIDIP
[3], and HAPAR [4] (based on a branch and bound algorithm) since RPOLY and SHIPS

perform much better than these systems [5,6].
We have experimented with 334 instances of HIPP, used also in the experiments

of [3,5,6]: 40 instances generated using MS of [12] (20 uniform, 20 nonuniform), 294
real instances (24 hapmap, 90 abcd, 90 ace, 90 ibd). (These datasets are explained in
detail in the cited articles above.) All problem instances are simplified by eliminating
duplicates (of genotypes and haplotypes) as described in [5,6] before our experiments.
For each haplotype inference system we have assigned 1000 sec.s of CPU time to solve
each problem. Table 1 shows the number of problem instances solved by each system.
According to this table, HAPLO-ASP solves the most number of problems (332 out of
334 problems). RPOLY aborts for only one problem that HAPLO-ASP solves, but in
most of the problems for which it computes a solution in 1000 sec.s it is faster than
HAPLO-ASP by a magnitude of up to 300.

http://people.sabanciuniv.edu/~esraerdem/haplo-asp.html
http://people.sabanciuniv.edu/~esraerdem/haplo-asp.html
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Table 1. Number of problems solved, with a timeout of 1000 sec.s for each problem

Group of # of # of problems solved
problems problems SHIPS HAPLO-ASP RPOLY

abcd 90 90 90 90
ace 90 90 90 90

hapmap 24 24 23 23
ibd 90 78 89 88

unif 20 20 20 20
nonunif 20 20 20 20

Both SHIPS and HAPLO-ASP use MINISAT as their search engine. Usually the
propositional theory prepared for MINISAT by SHIPS is smaller than the one prepared
by HAPLO-ASP.

Experimenting with HIPAG Problems. We have compared HAPLO-ASP with the hap-
lotype inference system HAPLO-IHP [7] with respect to the computation time and the
accuracy of generated haplotypes. We have considered the accuracy measure of [8] to
check how much the inferred haplotypes match the original ones. HAPLO-IHP is based
on statistical methods and it can compute approximate solutions to instances of HIPAG
only. The other haplotype inference systems can not solve HIPAG.

We have experimented with one of the data sets generated by Yoo et. al for 17 KIR
genes of Caucasian population. This data set contains 200 genotypes with 14 biallelic
sites. Yoo et al. derived three patterns of haplotypes for this family of genes from the
observations in KIR haplotype studies like [10]. As in our experiments with HIPP prob-
lems, we have first simplified this data set by eliminating the duplicates, and modified
the haplotype patterns accordingly. After eliminating the two genotypes that do not
match any patterns, the simplified data set contains 28 genotypes with 11 sites. Without
the given haplotype patterns, no solution can be found in 30 minutes by HAPLO-IHP;
whereas HAPLO-ASP finds 11 haplotypes in 57.08 CPU sec.s, with the accuracy rate
0.702 (by performing a binary search between 1 and 56.) With the given haplotype
patterns, HAPLO-IHP finds 19 haplotypes compatible with the given genotypes in 9.1
CPU sec.s, with the accuracy rate 0.732; whereas HAPLO-ASP finds 11 haplotypes in
640 CPU sec.s, with the accuracy rate 0.768. Here 640 sec.s include 1.4 sec.s to infer
the set of haplotypes (for k = 11), and 631 sec.s to verify its minimality (for k = 10).
HAPLO-ASP computes an exact solution to HIPAG, whereas HAPLO-IHP computes
an approximation with a greedy algorithm; this explains the difference between the
computation times as well the higher accuracy rate of HAPLO-ASP’s solution.

6 Conclusion

We have briefly described HAPLO-ASP, an ASP-based approach to solving various
haplotype inference problems, such as HIPP and HIPAG, possibly by taking into
account the given domain-specific information. We have also discussed the range of
problems that can be handled by HAPLO-ASP: some of these problems (WHIPP
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and WHIPAG) allow us to specify preferences over parts of haplotypes by assign-
ing weights to their sites/alleles in accordance with their importance; and some prob-
lems (HIPPG) allow us to handle polyallelic and polyploid genotypes. HAPLO-ASP
is the first haplotype inference approach/system that can solve all these variations of
haplotype inference. For some of these problems (HIPP, HIPAG, HIPPG), we have
illustrated the applicability and effectiveness of HAPLO-ASP on some real data, in
comparison with the other existing approaches.
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Abstract. Although knowing the operating systems running in a net-
work is becoming more and more important (mainly for security reasons),
current operating system discovery tools are not sufficiently accurate to
acquire the information in a fully automated way. Many design choices
explain this lack of accuracy, but they all come down to a poor knowledge
representation scheme. In this paper, we study how answer set program-
ming can be used to guide the design of a knowledge-oriented operating
system discovery tool. The result is significantly more accurate than to-
day’s state of the art tools.

1 Introduction

Knowing which Operating Systems (OSes) are running in a network is increas-
ingly important from a security point of view [2]. As networks are growing larger
and more dynamic, it becomes essential to develop tools to automatically gather
such knowledge. Operating System Discovery (OSD) tools rely on idiosyncrasies
in the communication behavior of the computers to identify specific OSes. These
idiosyncrasies exist because communication protocols are often under-specified,
leaving OS vendors the freedom to implement the behavior of their choice, see
Example 1.

Example 1 (OS Identification Based on a TCP Syn Packet). When two
computers want to communicate together using the TCP protocol they must first
open a TCP connection (TCP handshake). Opening a TCP connection requires
sending a TCP Syn packet. One of the fields in a TCP Syn packet is the Time To
Live (TTL). The TCP protocol specification RFC 791 suggests an initial TTL
value of at least 40. As a result, not all OS vendors use the same initial TTL
value: Linux uses 64, MacOS uses 255, most Windows versions use 128, but
Windows NT 3.51 uses 32.

Several tools exist to identify operating systems. Unfortunately, they are highly
inaccurate [2]. This inaccuracy can be explained by three design choices:

– No memory: this prevents the use of past information to narrow down the
current deduction.

– Packet-by-packet approach: this does not allow modeling complex communi-
cation patterns that require more than one packet (e.g., stimulus-response).

– No reasoning: this results in unfocussed search.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 579–584, 2009.
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Basically, these limitations are the result of an inadequate knowledge representa-
tion scheme. In this paper, we discuss a new OSD tool with a strong knowledge
representation module which is implemented using answer set programming.
This results in a significant improvement over today’s state of the art tools.

2 Background on Operating System Discovery

Passive OSD tools simply listen to the network and deduce information from
the recorded packets. In particular, they do not probe a machine to check how
it reacts in a specific situation. An example of a passive OSD test follows from
Example 1; since TCP Syn packets are used as part of normal communications,
a passive tool can wait for such a packet and analyze it.

The main problem with this approach is that the information may not be
available when needed. It also seems obvious that passive tools should monitor
the network and update their knowledge base on a continuous basis. However,
existing tools simply analyze packets one by one and try to guess the OS based
solely on the current packet, regardless of any other information that could have
been known beforehand.

Active OSD tools, on the other hand, can directly probe a machine to identify
its OS, depending on the reaction of the target to the synthesized stimuli. For
instance, they can initiate a TCP handshake (i.e., with a SYN) and analyze the
way the target responds (e.g., what value is used as a TTL in the SYN/ACK).
Another possibility is to stimulate the target with a semantically malformed
packet (e.g., with a SYN/FIN packet1) and analyze how it behaves. Since the
stimulus is malformed, there is no standard way to respond and each OS may
respond differently.

The main problem with active OS discovery is the large amount of traffic gen-
erated to discover the OS. As no single test can determine the OS with certainty,
it is necessary to come up with a sequence of tests. Most active tools simply ex-
ecute all available tests. To prevent generating too much traffic, they limit the
number of tests available. Active tools do not take advantage of the information
freely available on the network (i.e. normal network communications), instead,
they rely entirely on the execution of their tests.

Every limitation of current OSD tools is related to the absence of a solid
knowledge representation scheme. This results in a significant lack of accuracy.

3 Using ASP for OSD

Building a knowledge-oriented OSD tool will provide three enhancements:

– Unify the passive and active techniques in a single hybrid approach.
– Enhance the passive module with a memory.

1 Such a packet is malformed since it simultaneously requests both the initialization
and the termination of a TCP connection.
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– Enable reasoning for test selection in the active module, to reduce the num-
ber of tests executed.

The hybrid approach works as follows: Initially, we consider that each computer
can run any OS. Then, as traffic is seen for a specific computer, we update its set
of possible OSes by eliminating OSes that cannot generate the traffic observed
(passive module). Finally, when a user needs information about a particular
computer and the knowledge base does not contain enough information, active
tests are executed in order to obtain the missing information (active module).

To achieve our objectives, we needed a knowledge representation language
that:

– Is declarative (an order independent), to allow automatically generating the
program from a database of OS fingerprints.

– Supports disjunction, as more than one OS can generate a specific event.
– Supports non-monotonic reasoning, when new events are obtained, we need

to eliminate some previously possible OSes.
– Supports reasoning about action and change (active module).

Below we discuss the ASP description of both the passive and active modules.
We use the DLV engine in our implementation. See [1] for more information.

3.1 Passive Module

The passive module has two components. An Intensional Database (IDB) which
is a set of ASP rules linking communication patterns with their corresponding
OSes. And an Extensional Database (EDB) consisting of a set of ASP facts
representing the observed network events.

3.1.1 Passive IDB
Figure 1 presents a fragment of our IDB. The weak constraint in line 2 states
that, unless necessary, one machine should not be assigned two different operat-
ing systems in a single answer set (each answer set will correspond to a possible
assignment of OSes for the computers).

The set of rules in the TCP Syn group represents different behaviors for the
sender of the first packet of a TCP handshake, see Example 1. The predicate
tcp(X,Y,Xport, Y port,DF, F lags, TTL) represents a TCP packet sent from X
through port Xport to Y on port Y port where DF indicates whether or not the
“Don’t Fragment” bit is set, Flags lists the TCP flags that are set (SYN, ACK,
RST, ...), and TTL contains the time to live.

3.1.2 Passive EDB
Every time a network packet is captured, a corresponding fact is added to the
EDB. That way, the information provided by a packet is combined to the one
provided by other packets, allowing to narrow down the set of possible OSes.

Example 2 (passive module). Suppose the only packet captured so far is a
TCP SYN packet from 10.1.1.6 to 10.1.1.1 with the DF bit set and a TTL of 64;
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%One IP should not correspond to two different OSes
:∼ os(X,Y), os(X,Z), Z != Y.
%TCP Syn
os(X,linuxRH5 2) :- tcp(X, , , ,no,syn,64).
os(X,win2k) ∨ os(X,winXP) :- tcp(X, , , ,yes,syn,128).
os(X,sunOS) ∨ os(X,linuxRH7 1) ∨ os(X,macOS) ∨ os(X,linuxRH8 0) ∨

os(X,freeBSD5 0) :- tcp(X, , , ,yes,syn,64).

Fig. 1. Some Rules for Passive OS discovery

this is represented by the fact tcp(ip10 1 1 6, ip10 1 1 1, 3952, 80, yes, syn, 64).
The program has two answer sets and the OS for 10.1.1.6 is either win2k or
winXP.

The weak constraint is flexible enough to differentiate between OS ambiguity
and multiple OSes hidden behind a single IP address (e.g. due to NAT).

To avoid a combinatorial explosion of answer sets, we maintain one EDB file
for each monitored IP address. Moreover, we evaluate the program for every 100
packets gathered. After each evaluation, we drop those packets and replace them
with a logical formula, in the EDB, summarizing the information acquired so far.
After Example 2, we would replace the packet with the following summary:

os(ip10 1 1 6, win2k) ∨ os(ip10 1 1 6, winXP ).

3.2 Active Module

When a query is made to the system and the current knowledge is not sufficient
to answer it, the job of the active module is to select relevant tests to be exe-
cuted. After the execution of those tests, the knowledge base will have enough
information to answer the query. Here, we use ASP’s planning abilities to select
tests based on the query and the current knowledge state.

The active module has two components. IDB is a set of ASP rules describing
the effect of executing the tests and EDB is a set of ASP facts describing the
current knowledge state as well as the query (i.e., the goal).

3.2.1 Active IDB
A fragment of our actual intensional database for the active module is presented
in Figure 2. The first four rules define the test outcome interpretation module;
their meaning is as follows2:

1) if an association of IP address to OS 〈I,OS〉 explicitly does not hold before
the execution of a test, it will not hold after its execution;

2) if an association 〈I,OS〉 holds before the execution of a test and the outcome
of this test confirms that possibility, 〈I,OS〉 will still hold after the execution
of the test;

2 The predicate holds/3 expresses the possible OSes at each state, while possible/3
denotes what is possible with respect to the outcome of a test.
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%Test Outcome Interpretation
1) -holds(I,OS,τ1) :- -holds(I,OS,τ ), τ < τ1.
2) holds(I,OS,τ1) :- holds(I,OS,τ ), next(τ ,τ1), possible(I,OS,τ1).
3) holds(I,OS,τ1) :- holds(I,OS,τ ), next(τ ,τ1), not actionExecuted(I,τ ).
4) -possible(I,OS,τ ) :- not possible(I,OS,τ ).
%T8 - The TCP SynAck test
oT8A(I,τ1) v oT8B(I,τ1) v oT8C(I,τ1) v oT8D(I,τ1) :-

next(τ ,τ1), execute(testT8,I,τ ).

%oT8A (OS is mac or sun)
possible(I,macOS,τ1):- oT8C(I,τ1).
possible(I,sunOS,τ1):- oT8C(I,τ1).
%oT8B (OS is linux Red Hat5.2)
possible(I,linuxRH5 2,τ1):- oT8A(I,τ1).
...

Fig. 2. Some Rules for Active OS Discovery

3) all associations 〈I,OS〉 that are true remain true when no test is executed;
4) what is not explicitly said to be possible by the outcome of a test should be

considered impossible.

The last part of Figure 2 describes the possible outcomes of the active test T 8. If
T 8 is executed against I at time T , this will cause at least (and exactly) one of
the predicates oT 8A(I, τ1), oT 8B(I, τ1), oT 8C(I, τ1), or oT 8D(I, τ1) to be true
(oT 8A denotes outcome A of test T 8). Each outcome then provides the OSes
that are possible after the execution of T 8. For instance, MacOS and SunOS are
the only possible explanations of outcome A for T 8.

3.2.2 Active EDB
The EDB contains a description of the current3 state of knowledge which is a
set of facts of the form holds(I,X, 0) where X ranges over the set of currently
possible OSes for machine I. The EDB also contains a representation of the
query. For instance, to make sure that after the execution of at most 5 tests
we know the actual OS of a given machine, i.e., the set of possible OSes is a
singleton, we could use this constraint

: −#count{X : holds(I,X, 5)} > 1.

4 Experimental Results

To compare our new OSD tool, called HOSD, with other existing tools, we
measure their ability to answer the following query:“Does the OS of a computer
belong to a given set Θ of OSes?” This query is extremely useful from a security
3 At the time the query is made.
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Table 1. Experimental Results

OSD Tools SinFP Siphon Nmap p0f ettercap Xprobe HOSD

%Good Answers 4.3% 6.0% 12.1% 20.6% 21.2% 33.2% 83.3%

point of view: to test if a target is vulnerable to a specific attack. See [2] for
more details on this experiment4.

Our experiment was done using 95 different OSes installed in virtual machines.
We used 5,761 queries, each with a different initial state of knowledge (i.e. a
traffic trace from which the tool can deduce the OS) or a different goal (i.e. the
given set Θ). Table 1 gives the percentage of queries correctly answered by each
tool. HOSD clearly provides a significant improvement over current OSD tools.
The good results of HOSD are mainly explained by the enhancements related
to its knowledge-oriented approach. These enhancements specifically address the
limitations of current OSD tools as mentioned in Section 2.

4.1 Time Benchmark

One of the main concerns with our ASP implementation is the running time. On
the 5,761 runs mentioned above, the passive module runs fast enough on average
(386ms), but the worst case (16s) is problematic. The active module runs quite
slowly both on average (9s) and in the worst case (25s), but this was expected
as we are doing planning to avoid executing useless tests.

5 Discussion

ASP was instrumental in the quick development of our tool as it provided a very
intuitive way to describe the reasoning related to OS discovery.

We are currently working on optimizing our implementation, basically by
replacing full planning with heuristics in the active module. We are also working
to encode more complex OSD phenomena, such as DHCP leases, using ASP.
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Abstract. In recent years there has been growing interest in solutions
for the delivery of clinical care for the elderly, due to the large increase
in aging population. Monitoring a patient in his home environment is
necessary to ensure continuity of care in home settings, but this activity
must not be too invasive and a burden for clinicians. We prototyped
a system called SINDI (Secure and INDependent lIving), focused on i)
collecting data about the person and the environment through Wireless
Sensor Networks (WSN), and ii) reasoning about these data both to
contextualize them and to support clinicians in understanding patients’
well being as well as in predicting possible evolutions of their health.

1 Overview

The life-expectancy in several countries continues to grow, but people who live
longer tend to be in a state in which chronic conditions substantially cripple
their quality of life and their autonomy.

Future Independent Living systems should go beyond data collection to fo-
cus on assisting caregivers in understanding health evolution and enhancing au-
tonomy of monitored patients. We refer to an intelligent monitoring system as
a monitoring system that is able to reason about gathered data and support
decisions. Most of the pervasive systems for healthcare proposed so far use a
probabilistic approach to behaviour analysis and activity recognition aimed at
enhancing autonomy [1]. These approaches are sometimes coupled with logic-
based planning techniques. When we talk about intelligent monitoring, though,
we refer to a different (potentially complementary) view of artificial intelligence
applied to home healthcare. In our view, expressive knowledge representation and
reasoning techniques are needed to analyse the context and to understand health
evolution. In the SINDI system we address this issue by using non-monotonic
logical reasoning in a two-step inference process: i) summarizing and correlating
sensor data in a consistent interpretation of the context in which the person
lives in terms of clinical profile, environment, movements, and ii) predicting pos-
sible evolutions of the person’s health in order to devise effective preventive
strategies.
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The logical framework of Answer Set Programming (ASP) [2] is well suited
to deal with similar complex knowledge representation and reasoning tasks, in
that it overcomes most of the limitation of previous logic programming systems
such as Prolog. Compared to pure statistical approaches, logic inference based
on ASP is highly expressive and computationally more performant because it
can deal with first-order representations, which are much richer than the propo-
sitional ones characterizing probabilistic inference. Furthermore, ASP can deal
with incomplete information and commonsense reasoning using defaults. Car-
dinality and weight constraints together with program optimization techniques
can also be used to model different degrees of uncertainty [3,4,5].

In the remainder of this paper we will describe how ASP-based Knowledge
Representation and Reasoning supports Wireless Sensor Networks technologies
in the SINDI Intelligent Monitoring system.

2 Context Data: Acquisition and Interpretation

Wireless Sensor Networks (WSNs) [6] consist of nodes that are capable of in-
teracting with the environment by sensing or controlling physical parameters.
These networks are the enabling technology for acquiring all possible information
about the context in which the user lives.

Data gathered by the sensors are processed and aggregated according to spe-
cific algorithms for feature analysis, features are then processed by the ASP
program and made available at the upper levels. The SINDI’s context model
aims at being generic and computationally rich at the same time, being based
on a high level description of the home environment in terms of rooms, areas,
objects, properties, relations and observations mapped into a set of logic predi-
cates to be manipulated by the inference engine for health assessment [7]. The
information flow is illustrated in Figure 1.
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In the context of home monitoring, the more intuitively relevant aspects of a
context are where you are, who you are (clinical profile and personal informa-
tion), which resources you are using, what you are doing and when [8,9].

In order to represent this information, SINDI’s context model considers four
entities on the first level: the Person entity, the Room entity, the Area entity and
the Object entity. A small subset of generic1 spatial relations among entities are
also defined, such as in, under, on, near.

All the other pieces of information are at a second level and can be indexed by
the primary context because they are attributes of the entities at the primary level.

Values of both attributes and spatial relations (except the inclusion of an area
in a room which is static) are dynamic and need to be associated to an interval
of time. In this way, the reasoning system can take into account their dynamic
evolution in context interpretation.

Reasoning about the collected data is used to better characterize movements
and to localize the person in the areas of the house. If we consider SINDI’s
localization component , given proximity values with a certain accuracy P and
defined over (possibly overlapping) time intervals Ti, Tj, the ASP program takes
all available sensor data as input and identifies all possible consistent sequences
of moves across rooms and areas. Logical rules for disambiguation state that, by
default, proximity to an area A of a room R in a temporal segment T1,T2 is
given by the fact that a signal has been received from the corresponding node in
that temporal segment. This holds unless there is a more reliable signal received
in the same interval from another node. This other signal determines proximity
unless additional contextual data make it invalid (e.g. a mat sensor indicating
pressure in a different area A1 of room R1) and in case several of these data are
available, a measure of reliability can be used to identify the best solution.

The high level representation of the collected data is automatically mapped
into logic predicates resulting in a set of facts which is combined with the ASP
logic program. Besides disambiguation, context interpretation is also a crucial
phase in understanding basic behaviours that may be important for health as-
sessment. Results are used to evaluate meaningful aspects of the elderly care as
detailed in Section 3.

3 Reasoning Support for Intelligent Monitoring

In order to support caregivers in understanding and controlling the patient’s
health-evolution in his home environment, the reasoning component of the SINDI
system uses the results of context interpretation in two reasoning steps: static
and dynamic evaluations of significant aspects of the patient’s quality of life
(referred to as indicators) and prediction of possible evolutions of the patient’s
health state to plan appropriate preventive strategies. To do this, SINDI uses a
knowledge representation model of health described in Section 3.1.
1 The term “generic” here refers to the fact that they refer to relative spatial position

of two entities, no matter where they are in the physical space. This results in greater
generality in that we do not need an absolute physical description of the environment.
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3.1 Knowledge Representation: SINDI’s Model of Health

SINDI’s Model of Health formalizes medical knowledge and correlations between
indicators and health-related factors (referred to as items)2. A careful analysis
of health care in home settings suggests that items can be classified into three
classes: i) functionalities, evaluated in terms of functional disabilities; ii) daily
activities, evaluated in terms of level of dependence in performing daily activities
and iii) risks, representing complex aspects of the elderly care.

The relation between items and indicators is the following: each indicator can
contribute to the evaluation of one or more items; items are correlated by depen-
dency relations3 indicating how the value of an item may impact values of other
items and how. The reasoning tasks detailed in Section 3.2 are performed by an-
alyzing the graph of dependencies connecting an item I with related indicators
as well as with other items.

3.2 Reasoning Tasks: Evaluation, Prediction and Prevention

Evaluation. At each reasoning cycle, results of the context interpretation pro-
cess are used to infer consistent absolute and differential evaluations of indi-
cators and items. In general, absolute evaluation of items is available only as
inputs from caregivers according to results of specific tests. As for indicators,
their absolute evaluations can be based on i) results of specific evaluation
by clinicians (e.g. hearing functionalities), results of data aggregation (e.g.
quality of movement), results of ad-hoc logic rules (e.g. quality of sleep). Dif-
ferential evaluations are obtained, when possible, as a measure of the value
increase or decrease derived by comparing values at the current inference
cycle with values at the previous inference cycle and it has four possible
outcomes: worsening, improvement, no substantial change, undefined. Given
that different kinds of potentially contradictory dependencies are allowed
in SINDI’s knowledge model, the combination of such influences of several
indicators Indi on item I so as to provide a coherent differential evaluation
for I is not always possible and the evaluation process returns a partially
labelled graph as output. The following reasoning step of SINDI starts from
this incomplete information and uses the computational power of the ASP
framework in order to predict possible evolutions in terms of differential eval-
uations of items that have not been labeled as a result of the evaluation task
and provide a qualitative analysis of results.

Prediction. is identified as the identification of plausible effects of certain
changes in items’ values on values of unlabeled items; intuitively, this is done
by considering all possible consistent values for the missing information ac-
cording to SINDI’s logic model of dependencies between items; prediction
makes it possible to act before major symptoms and to plan appropriate
short- and long-term interventions, thus reducing risks. Prediction involves

2 Indicators and Items have been identified according to the medical practice in health
assessment of the elderly [10] and encoded in our declarative framework [11].

3 Dependency relations are specified by knowledge engineers and medical experts.
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several subtasks: i) contextualization, referred to as the correlation of con-
text evaluation results with the clinical profile of the person; ii) local pre-
diction, combining results of contextualization with medical dependencies
to generate all total consistent labeling of the dependency graph resulting
from evaluation and iii) local explanation referred to as the identification
of all possible minimal set of dependency arcs that may justify the worsen-
ing of a person’s health (provided as a result of the prediction task). These
tasks are local processes rather than a case-based ones, in that they take
into account results of reasoning under particular clinical and environmental
conditions.

Prevention. Prevention [12] is referred to as all those interventions (feedback)
that may keep health changes within safe boundaries. The combination of
inference results (prediction) and context-related knowledge about the per-
son and the environment is used to determine i) what should be provided
as feedback, ii) in which form and iii) when. The content of the feedback
is determined according to the medical literature (evidence-based studies)
and encoded in the system. When the system determines a set of feedback
actions that should be performed at a given time, they are qualitatively ana-
lyzed in order to infer which action is more urgent. A reaction to a feedback,
when detected, is logged to be used at a later time. Exploring this history,
caregivers can improve the way feedback actions are performed and identify
the most effective communication patterns.

4 Preliminary Evaluation

So far we have run the full system for short periods of time (days) in a mock-up
environment without real users. Our preliminary evaluation took into account
how SINDI addresses most of the expected requirements [11].

The combination, in the reasoning process, of different sources of informa-
tion (sensors, medical knowledge, clinical profile, user defined constraints) that
change over time makes the system more reliable (i.e. much better able to dis-
ambiguate situations, thus reducing false positives) and adaptive (e.g. easily
extended on the face of new available information). The modularity, espressivity
and computational efficiency of the ASP framework make us strongly believe it
is a good logic programming paradigm for automated reasoning in knowledge-
intensive domains. In the first implementation of our system we evaluated ASP
programs by using Gringo as grounder [13] and the Clasp solver [5] as inference
engine4. Security and privacy are guaranteed by the use of security standards
and techniques and the use of off-the-shelf components in SINDI considerably
reduces overall costs.

Research-wise we are considering the problems of the encoding and integra-
tion of the appropriate medical knowledge and the use of apparently inconsis-
tent prediction results to discover missing dependencies in the initial medical
knowledge.
4 http://potassco.sourceforge.net/
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Application-wise, given the high variability among trials and studies address-
ing prediction and prevention issues, it is still difficult to extract a coherent
picture of what leads to disability and to develop coherent prevention strategies.
In this respect, our system has the potential to automatically collect a mas-
sive amount of data in oder to evaluate context-related prediction patterns and
effective communication strategies for prevention.

These aspects are being concretely taken into account in the context of a real
deployment of SINDI in a geriatrics hospital.
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{leone,ricca}@mat.unical.it

2 Exeura Srl, Via Pedro Alvares Cabrai - C.da Lecco 87036 Rende (CS), Italy
salvatore.iiritano@exeura.com

Abstract. Even if the industrial exploitation of the DLV system has started very
recently, DLV already has a history of applications on the industrial level. The
most valuable applications from a commercial viewpoint are those in the area
of Knowledge Management. They have been realized by the company EXEURA
s.r.l. - a spin-off company of the University of Calabria having a branch also in
Chicago - with the support of the DLVSYSTEM s.r.l.. DLV applications in this
area have not been realized directly, but through some specializations of DLV
into Knowledge Management (KM) products for Text Classification, Information
Extraction, and Ontology Representation and Reasoning. After briefly describing
these KM products, we report on their recently-released successful applications.

1 Introduction

Answer Set Programming (ASP) [2,3] is a powerful logic programming language. In its
general form, allowing for disjunction in rule heads [1] and nonmonotonic negation in
rule bodies, ASP can represent every problem in the complexity class ΣP

2 and ΠP
2 (under

brave and cautious reasoning, respectively) [4]. The high knowledge modeling power of
ASP, and the availability of efficient ASP systems, has implied a renewed interest in this
formalism in recent years, due to the need for representing and manipulating complex
knowledge, arising in Artificial Intelligence as well as in other emerging areas, like
Knowledge Management and Information Integration.

One of the most relevant ASP systems is DLV [13]. The DLV system is the product
of more than twelve years of research and development and is the state-of-the-art im-
plementation of disjunctive ASP. DLV is widely used by researchers all over the world,
and it is competitive, also from the viewpoint of efficiency, with the most advanced
ASP systems. Indeed, at the First Answer Set Programming System Competition [5]
DLV won in the Disjunctive Logic Programming category; and DLV finished first also
in the general category MGS (Modeling, Grounding, Solving — also called royal com-
petition, which is open to all ASP systems). Importantly, DLV is profitably employed in
many real-word applications, and has stimulated quite some interest also in industry. In
the following, we report on the most valuable applications of DLV, which are industri-
ally developed by the company EXEURA s.r.l., a spin-off company of the University of
Calabria, with the support of the DLVSYSTEM s.r.l., another spin-off company main-
taining the system. Actually, many DLV applications have not been realized directly,
but through some specializations of the system in products for Text Classification, In-
formation Extraction, and Ontology Representation and Reasoning.
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In this paper, we first describe the DLV-based Knowledge Management products,
we then overview some successful applications of these products, and we briefly report
also on some further applications exploiting DLV directly. The described applications
fall in many different domains, including Team Building in a Seaport, E-Tourism, E-
Government, etc..

2 DLV-Based Commercial Systems

The three main industrial products of Exeura s.r.l. that are strongly based on the DLV
system are, namely: OntoDLV [6,7], OLEX [8,9], HıLεX [10,11]. OntoDLV is an on-
tology management and reasoning system; OLEX is a document classification system;
and, HıLεX is an information extraction system. In the following, we provide a brief
description of the main features of those systems.

OntoDLV. Traditional ASP in not well-suited for ontology specifications, since it does
not directly support features like classes, taxonomies, individuals, etc. Moreover, ASP
systems are a long way from comfortably enabling the development of industry-level
applications, mainly because they lack important tools for supporting programmers.
Both the above-mentioned issues were addressed in OntoDLV [6,7] a system for ontolo-
gies specification and reasoning. Indeed, OntoDLV implements a powerful logic-based
ontology representation language, called OntoDLP, which is an extension of (disjunc-
tive) ASP with all the main ontology constructs including classes, inheritance, relations,
and axioms. OntoDLP is strongly typed, and includes also complex type constructors,
like lists and sets. Importantly, OntoDLV supports a powerful interoperability mecha-
nism with OWL, allowing the user to retrieve information from external OWL Ontolo-
gies and to exploit this data in OntoDLP ontologies and queries.

Using OntoDLV, domain experts can create, modify, store, navigate, and query on-
tologies thanks to a user-friendly visual environment; at the same time, application de-
velopers can easily implement knowledge-intensive applications embedding OntoDLP
specifications using a complete Application Programming Interface (API) [12]. More-
over, OntoDLV facilitates the development of complex applications in a user-friendly
visual environment; it is endowed with a robust persistency-layer for saving information
transparently on a DBMS, and it seamlessly integrates the DLV system [13].

OLEX. The OntoLog Enterprise Categorizer System (OLEX) [8,9] is a corporate clas-
sification system supporting the entire content classification life-cycle, including docu-
ment storage and organization, ontology construction, pre-processing and classification.
OLEX exploits a reasoning-based approach to text classification which synergically
combines: (i) ontologies for the formal representation of the domain knowledge; (ii)
pre-processing technologies for a symbolic representation of texts and (iii) ASP as cat-
egorization rule language. Logic rules, indeed, provides a natural and powerful way to
encode how document contents may relate to ontology concepts.

More in detail, the main task of OLEX is text categorization, which is is the task
of assigning documents to predefined categories on the basis of their content. To this
end, in the system, ontologies are exploited for modeling the domain knowledge; and,
with each concept of a given ontology is associated a specific ASP program (containing
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the classification rules) that is used to recognize concepts in a text. Classification rules
can be either manually specified or automatically determined [9]. Clearly, the system
has to pre-process the input documents in order to produce a logic representation of
their content. The OLEX pre-processor performs the following tasks: Pre-Analysis and
Linguistic Analysis. The former consists of document normalization, structural analysis
and tokenization; whereas the latter includes lexical analysis, which determines the
Part of Speech (PoS) of each token, reduction (elimination of the stop words), and
frequency analysis. The output of the pre-processing phase for a document is a set of
facts modeling its content. The obtained facts are then fed into the DLV system together
with the classification rules to compute an association between the processed document
and ontology concepts.

HıLεX. [10,11] is an advanced system for ontology-based information extraction from
semi-structured and unstructured documents. In practice, HıLεX implements a semantic
approach to the information extraction problem by exploiting: (i) ontologies as knowl-
edge representation formalism; (ii) a general document representation model able to
unify different document formats (html, pdf, doc, ...); and, (iii) the definition of a for-
mal attribute grammar able to describe, by means of declarative rules, objects/classes
w.r.t. a given ontology.
HıLεX is based on OntoDLP for describing ontologies, since this language perfectly

fits the definition of semantic extraction rules. Regarding the unified document repre-
sentation, the idea is that a document (unstructured or semi-structured) can be seen as a
suitable arrangement of objects in a two-dimensional space. Each object has its own se-
mantics, is characterized by some attributes and is located in a two-dimensional area of
the document called portion. A portion is defined as a rectangular area univocally iden-
tified by four cartesian coordinates of two opposite vertices. Each portion “contains”
one or more objects and an object can be recognized in different portions.

The language of HıLεX is founded on the concept of ontology descriptor. A “descrip-
tor” looks like a production rule in a formal attribute grammar, where syntactic items are
replaced by ontology elements, and where extensions for managing two-dimensional
objects are added. Each descriptor allows us to describe: (i) an ontology object in or-
der to recognize it in a document; or (ii) how to “generate” a new object that, in turn,
may be added in the original ontology. Note that an object may also have more than
one descriptor, thus allowing one to recognize the same kind of information when it
is presented in different ways. It is worth noting that, most of the existing information
extraction approaches do not work in a semantical way and they are not independent of
the specific type of document they process. On the contrary, the approach implemented
in HıLεX allows for recognizing, extracting and structuring relevant information form
heterogeneous sources.

3 Some Commercial Applications

In this Section, we report a brief description of a number of applications developed by
Exeura s.r.l. which employ the commercial products based on DLV.
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Team Building in the Gioia-Tauro Seaport. The port authority of Gioia Tauro is
employing a system, based on OntoDLV, for the automatic generation of the teams of
employees. The problem here is to produce an optimal allocation of the available per-
sonnel of the international seaport of Gioia Tauro in such a way that the right processing
of the shoring cargo boats is guaranteed at the minimum cost. To this end several con-
straints have to be satisfied, concerning the size and the slot occupied by cargo boats,
the allocation of each employee (e.g. each employee might be employed in several roles
of different responsibility, roles have to be played by the available units by possibly ap-
plying a round-robin policy, etc.), etc.. The system can build new teams or complete the
allocation automatically when the roles of some key employees are fixed manually.

In this application, the domain is modeled by exploiting OntoDLV, and a set of suit-
ably defined reasoning modules is exploited for finding the desired allocation. In this
application, the pure declarative nature of the language allowed for refining and tuning
both problem specifications and encodings together while interacting with the stake-
holders of the seaport. It is worth noting that, the possibility of modifying (by editing
text files) in a few minutes a complex reasoning task (e.g. by adding new constraints),
and testing it “on-site” together with the customer is a great advantage of our approach.

E-Tourism. IDUM is an e-tourism system developed in the context of the project
“IDUM: Internet Diventa Umana” funded by the administration of the Calabria Region.
The IDUM system helps both employees and customers of a travel agency in finding the
best possible travel solution in a short time. It can be seen as a “mediator’ system finding
the best match between the offers of the tour operators and the requests of the turists.
More in detail, in the IDUM system, behind the web-based user interface, there is an
intelligent core that exploits an OntoDLV ontology for both modeling the domain of
discourse (i.e., geographic information, user preferences, and touristic offers, etc.) and
storing the available data. The ontology is automatically populated by extracting the
information contained in the touristic leaflets produced by tour operators and received
by the travel agency attached to email messages. It is worth noting that, the received
e-mails are human-readable, and the details are often contained in email-attachments
of different format (plain text, pdf, gif, or jpeg files) and structure that might contain
a mix of text and images. The HıLεX system allows for automatically processing the
received contents, and to populate the ontology with the data extracted from touristic
leaflets. Once the information is loaded on the ontology, the user can perform an intel-
ligent search for selecting the holiday packages that best fit his needs. Basically, IDUM
tries to mimic the behavior of the typical employee of a travel agency by running a set
of specifically devised logic programs that reason on the information contained in the
ontology. The result is a system that is able to search in a huge database of automati-
cally classified offers. IDUM combines the speed of computers with the knowledge of
a travel agent.

Automatic Itinerary Search. In this application, a web portal conceived for better
exploiting the whole transportation system, including both public and private compa-
nies, of the Italian region Calabria. The user can ask for the automatic construction of a
complete itinerary from a given place to another in the region, and the system provides
it with several possible solutions depending on both the available resources and user-
selected options (e.g., preferred mean, preferred transportation company, minimization
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of travel distances and/or travel times etc.) The system is very precise, it tells you where
and what time to catch your bus/train, where to get off and transfer, how long your trip
will take, walking directions etc. This service was implemented by exploiting an On-
toDLV ontology that models all the available transportation means, their timetables, and
a map with all the streets, bus stops, railways and train stations etc. A set of specifically
devises ASP programs are used to build the required itineraries.

e-Government. In this field, an application of the OLEX system was developed, in
which legal acts and decrees issued by public authorities are classified. The system em-
ployes an ontology based on both TE.SE.O (Thesaurus of the Senato della Repubblica
Italiana), an archive that contains a complete listing of words arranged in groups of
synonyms and related concepts regarding juridical terminology employed by the Italian
Parliament, and a set of categories identified by analyzing a corpus of 16,000 documents
of the public administration. The system was validated with the help of the employees
of the Calabrian Region administration, and it performed very well by obtaining an
f-measure of 92% and a mean precision of 96% in real-world documents.

e-Medicine. OLEX was employed for developing a system able to classify automati-
cally case histories and documents containing clinical diagnoses. The system was com-
missioned, with the goal of conducting epidemiological analyses, by the ULSS n.8
(which is, a local authority for health services) of the area of Asolo, in the Italian region
Veneto. Basically, available case histories are classified by the system in order to help
the analysts of the ULSS while browsing and searching documents regarding specific
pathologies, supplied services, or patients living in a given place etc. The application
exploits an ontology of clinical case histories based on both the MESH (Medical Sub-
ject Headings) ontology and ICD9-CM a system employed by the Italian Ministry of
the Heath for handling data regarding medical services (e.g. X-Rays analyses, plaster
casts, etc.). The analyzed documents are stored in PDF documents and contain medical
reports, hospital discharge forms, clinical analysis results etc. Classification rules were
manually devised and taken into account, beside the extracted linguistic information,
also the metadata contained in the case history forms. The system has been deployed
and is currently employed by the personnel of the ULSS of Asolo.

4 Other Applications

The European Commission funded a project on Information Integration, which pro-
duced a sophisticated and efficient data integration system, called INFOMIX, which
uses DLV at its computational core [14]. The powerful mechanisms for database
interoperability, together with magic sets [15,16] and other database optimization tech-
niques, which are implemented in DLV, make DLV very well-suited for handling in-
formation integration tasks. And DLV (in INFOMIX) was succesfully employed to
develop in a real-life integration system for the information system of the University of
Rome “La Sapienza” The DLV system has been experimented also with an application
for Census Data Repair [17], in which errors in census data are identified and eventu-
ally repaired. DLV has been employed at CERN, the European Laboratory for Particle
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Physics, for an advanced deductive database application that involves complex knowl-
edge manipulation on large-sized databases. The Polish company Rodan Systems S.A.
has exploited DLV in a tool for the detection of price manipulations and unauthorized
use of confidential information, which is used by the Polish Securities and Exchange
Commission. In the area of self-healing Web Services, moreover, DLV is exploited for
implementing the computation of minimum cardinality diagnoses [18].
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Abstract. Configurable on chip multiprocessor systems combine advantages of
task-level parallelism and the flexibility of field-programmable devices to cus-
tomize architectures for parallel programs, thereby alleviating technological lim-
itations due to memory bandwidth and power consumption. Given the huge size
of the design space of such systems, it is important to automatically optimize
design parameters in order to facilitate wide and disciplined explorations. Be-
ing a combinatorial problem, system design can be modeled and solved as such,
but the amount of parameters renders the problem difficult to solve for large in-
stances. However, as the synthesis problem usually exhibits structure, Answer
Set Programming (ASP), for which solvers utilizing techniques from the propo-
sitional satisfiability domain are available, can be effectively employed. This pa-
per presents a design flow based on ASP that uses the solver clasp as back-end
engine. Synthesis experiments demonstrate the effectiveness of the approach.

1 Design Flow

The input to the flow in Figure 1 is a parallel program, and optionally information on
task periods. The application is simulated and analyzed to obtain inter-task data traf-
fic and task precedence information. This information is used to specify an instance of
an Integer Linear Programming (ILP) problem or an ASP program. Similar to related
work in this area, the other input to the design flow is information on available process-
ing elements and communication networks, as well as their costs and constraints. In
our approach, the design space is not pre-constrained, and the problem dimensions are
not ranked, which ensures the optimality of solutions. For realtime systems, it is often
sufficient to meet timing constraints so that the interest is not to find the fastest solution.
In such situations, the flow can be used to find the smallest system instead.

The solution obtained from an ILP/ASP solver is used to generate an abstract descrip-
tion of the system, which is passed to further tool chains described in [1] to generate the
configuration bit-stream. Because post-synthesis results could deviate from initial cost
models used, new cost models can optionally be extracted after placement and routing
to start a new iteration.
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Fig. 1. Architecture Synthesis Flow

2 ASP Approach

For specifying synthesis in ASP, we build upon the ILP model proposed in [2, 3] and
convert existing ILP instances into ASP programs. The general problem is to map a
number of concurrent tasks on processors and communication resources such that hard
space constraints are satisfied, while the throughput or the overall execution time of
a parallel program is subject to optimization. We use the following notations: Ii ∈
{I0, . . . , In} is a task in a parallel program, Jj ∈ {J0, . . . , Jm} is a processor in an
Intellectual Property (IP) library, and Ck ∈ {C0, . . . , Cp} is a communication resource
in an IP library. Boolean variables xij are used to indicate whether a task Ii is mapped
on processor Jj in a synthesized multiprocessor system.

To represent linear constraints of 0-1 ILP instances in ASP, we use weight con-
straints [4] having the general form:

l [ �0 = w0, �1 = w1, . . . , �n = wn ] u. (1)

In (1), literals �0, �1, . . . , �n are associated with weights w0, w1, . . . , wn. The lower
bound l and upper bound u can be omitted, in which case they are identified with −∞
and ∞, respectively. Given this, a weight constraint (1) represents linear (in)equality
l ≤ �0 ∗w0 + �1 ∗w1 + · · · + �n ∗wn ≤ u. Notably, weights and bounds of weight
constraints are integers, while ILP usually admits rational numbers. If not mentioned
otherwise, we deal with this by rounding l as well as w0, w1, . . . , wn up and u down
when translating ILP to weight constraints. In principal, rounding can change the se-
mantics of a constraint, but it was unproblematic in our application.

In what follows, we describe how ASP programs are derived from ILP instances. To
begin with, for each task Ii, the associated task mapping constraint [2] is given by

1 [ xi0 = 1, xi1 = 1, . . . , xim = 1 ] 1. (2)

Such constraints stipulate that each task is mapped on exactly one processor Jj .
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Processor sharing constraints [2] on program sizes sij of tasks and program mem-
ory sj of a processor Jj are specified as

[ x0j = s0j , x1j = s1j , . . . , xnj = snj ] sj . (3)

The omission of a lower bound in (3) reflects that we admit Jj to remain unallocated,
while the upper bound makes sure that the memory capacity of Jj is not exceeded.

The area constraint for processors on an FPGA can be specified in terms of three
linear constraints [2]. The first one forces a Boolean variable vj to be true if at least one
task is mapped on processor Jj :

[ x0j = 1, x1j = 1, . . . , xnj = 1, vj = −(n + 1) ] 0. (4)

The second constraint stipulates vj to be false when Jj remains unallocated:

[ x0j = −1, x1j = −1, . . . , xnj = −1, vj = 1 ] 0. (5)

Finally, the third constraint connects areas (coefficients aj) required by processors Jj

on an FPGA with the available area AJ on the FPGA:

[ v0 = a0, v1 = a1, . . . , vm = am ] AJ . (6)

Note that, if a0+a1+· · ·+am > AJ , it is not permissible to allocate all of the available
processors.

We next consider network resources, needed whenever two communicating tasks
Ii1 , Ii2 are mapped on different processors Jj1 , Jj2 for i1 < i2 and j1 �= j2. Such a
situation is indicated by an auxiliary atom αi1i2j1j2 , defined by the following rule:

αi1i2j1j2 ← xi1j1 , xi2j2 . (7)

Given this, the next constraint stipulates another auxiliary atom λi1i2 to be true precisely
when communicating tasks Ii1 , Ii2 require a communication resource:

0 [αi1i2j0j1 =1, αi1i2j0j2 =1, . . . , αi1i2jmjm−2 =1, αi1i2jmjm−1 =1, λi1i2 =−1 ] 0. (8)

The following constraints then stipulate exactly one communication resource Ck to be
allocated for distributed communicating tasks Ii1 , Ii2 , and yk indicates allocation ofCk:

0 [ z0i1i2 = 1, z1i1i2 = 1, . . . , zpi1i2 = 1, λi1i2 = −1 ] 0. (9)

[ zki1i2 = 1, yk = −1 ] 0. (10)

For a communication resource allocation, the next constraints finally check that the
capacity Mk of Ck as well as the available FPGA area AC for communication infras-
tructure, where a coefficient ak gives the area required by Ck , are not exceeded:

[ zki1i2 = 1, zki1i3 = 1, . . . , zkin−2in = 1, zkin−1in = 1 ] Mk. (11)

[ y0 = a0, y1 = a1, . . . , yp = ap ] AC . (12)

Furthermore, we consider scheduling feasibility constraints [3], where a parameter
Fgj ∈ {0, 1} indicates whether any group G = {Ig0 , Ig1 , . . . , Igl

} of tasks can be
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mapped on a processor Jj without violating realtime constraints. The fact that all tasks
in G are mapped on the same processor and the feasibility requirement are combined in
the following rule:

1 [ Mgj = 1 ] Fgj ← xg0j , xg1j , . . . , xglj . (13)

Note that an atom Mgj is derived when all tasks in the group are mapped on Jj , and
when each task in the group can meet its deadline. In the worst case, all nonempty
groups of tasks in the power set of I are considered in (13), so that the cardinality of I
is critical for the problem size. Avoiding such space blow-up is a subject to the future
(cf. Section 4).

Finally, we turn our attention to the objective function to be minimized, dealing with
scheduling costs of largest groups mapped on processors [3]. For a group G mapped
on processor Jj and associated super-groups indicated by Ms1j , . . . ,Mshj , we use the
next rule to derive γgj precisely when G is the largest group mapped on Jj :

γgj ← Mgj , not Ms0j , not Ms1j , . . . , not Mshj . (14)

The objective function can now be stated in terms of a minimize statement [4]:

minimize [ . . . , xij = Tij , . . . , γgj = (T ′
gj ∗ tj + Oj),

. . . , zki1i2 = (Lk ∗Di1i2 + τk ∗ pk ∗Bi1i2), . . . ]. (15)

Note that, when optimizing in makespan mode, the weights Tij expressing task execu-
tion times are set to zero for tasks Ii not on any critical path. Similarly, weights T ′

gj ∗ tj
and Oj representing scheduling and operating system overhead are set to zero when the
corresponding group G contains no critical task. Weights Lk ∗Di1i2 and τk ∗ pk ∗Bi1i2

represent data transfer latency and network arbitration overhead [2], respectively.
Notably, it is important to recognize that the weights in (15) cannot simply be rounded

up (as with constraints) because doing so disrupts the cost structure of a problem unless
small time units are used. However, using such small units can result in huge numbers,
which can easily overflow the computation of the value of the objective function. Instead
of time units, we thus use processor cycles, normalized by the slowest processor and
the smallest weight occurring in the objective function.

3 Comparison of Synthesis Results

We applied conflict-driven learning ASP solver clasp [5], embedded into ASP system
clingo [6] (version 2.0.2), to synthesis problems translated from ILP. Previous empirical
investigations [5] have shown that learning solvers perform well, at least for structured
problems like the ones on synthesis. For comparison, we used ILP solver lp solve [7]
(version 5.5.0.14). We conducted experiments with five applications described in [2]:
filtering (FIR), Derivation, Simpson’s method, N-Body problem, and matrix Inversion.
Figure 2 summarizes runtimes for synthesis scenarios using 16 processors and 5 com-
munication resources for increasing number of tasks from 4 to 22. All benchmarks
were run on a machine equipped with a 1.66GHz T5500 processor and 2048Mb of
main memory, using a timeout of 28,800 seconds.
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(a) FIR (b) Derivation

(c) Simpson (d) N-Body

(e) Inversion

Fig. 2. ASP-ILP Comparison: Increasing the number of tasks

All columns that terminate at the boundary of 28,800s in Figure 2 indicate that a
suboptimum solution was found. Columns that exceed the boundary, i.e., those which
touch the 100,000s line, indicate that no solution was found by timeout. Otherwise,
optimum solutions were obtained. The results show that ASP-based synthesis outper-
forms ILP for 4 to 12 tasks. Beyond that region, ILP-based synthesis is either faster or
at least finds a suboptimum solution by timeout. A closer look however showed that,
when ASP-based synthesis performs badly, then most of the runtime is spent on reading
ASP programs. In fact, in almost all cases where clingo timed out, clasp did not get any
chance to start searching. The reason was that, when reading large ASP programs gen-
erated for greater number of tasks, clingo was running out of memory and swapped. As
scheduling feasibility (13) is mainly responsible for the observed file size explosion, a
more compact representation of it would likely enable scaling up ASP-based synthesis.

4 Summary and Conclusion

We have presented a method for automated architecture synthesis of FPGA multipro-
cessor systems using ASP. We showed that ASP-based synthesis has a great potential for
solving difficult system design problems. Our continuing work addresses the compact
representation of scheduling feasibility constraints to avoid file size explosion. More-
over, as our ASP programs were obtained from existing ILP instances, we made use of
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available ASP solving technology, but not (yet) of knowledge representation capacities
of ASP. Future work includes the development of direct ASP solutions for automated
synthesis, building on a uniform encoding and grounding.
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and under Grant SCHA 550/8-1.
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Abstract. Optimal scheduling policies for multicore platforms have been
the holy grail of systems programming for almost a decade now. In this
paper, we take two instances of the optimal multicore scheduling prob-
lem, the dual-core and the quad-core instances, and attempt to solve
them using Answer Set Programming. We represent the problem using
a graph theoretic formulation, whereby finding the minimum edge cover
of a weighted graph aids us in finding an optimal multicore schedule. We
then use an answer set solver to obtain answer sets of varying sizes for
our formulation. While a polynomial time algorithm for finding the min-
imum edge cover of a weighted graph exists in imperative languages and
is suitable for dual-core processors, our approach uses ASP techniques
to solve both the dual-core and quad-core versions of this problem. We
discuss some optimizations to reduce execution runtime, and conclude
by discussing potential uses of our application.

Keywords: ASP, clingo, multicore, scheduling, edge cover.

1 Introduction

Multicore processors have established themselves as the de facto standard in
computing today. The problem of optimally scheduling applications on multicore
platforms to maximize performance remains wide open even today, with many
possible solutions being proposed over the last decade.

Background: Moore’s Law posits that the maximum possible number of tran-
sistors on an integrated circuit doubles every eighteen months. This law ground
to a halt for uniprocessors in the last few years, due to coming up against sev-
eral physical barriers, such as the speed of light and heat constraints. Increasing
the number of cores on a processor is one way to maintain Moore’s law and
uphold the performance curve. Performance gains were subsequently realized at
the substantial price of requiring additional parallelism from programs. This, in
turn, has created new challenges in the field of multicore computing, the most
prominent of which is the optimal scheduling problem.
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Processor Composition: Modern processors are comprised of several components.
Uniprocessors consist of a single core that runs on these components and uses
them exclusively. Multicore processors, by definition have more than one core
on a physical processor. Having multiple cores leads to contention for on-chip
resources such as caches. When an application suffers a cache miss, some data
present in the cache is evicted. If an application evicts data belonging to another
co-scheduled application running on the same processor, it negatively affects the
other application, because the latter application now has to re-fetch its data
back into the cache. In this fashion, two co-scheduled applications can negatively
impact each other.

In this paper, we attempt to find an optimal schedule for two types of multi-
core processors, dual-core and quad-core. Our test applications are taken from
the SPEC CPU 2006 suite of benchmarks[4], both CINT and CFP. For the
dual-core case, each application is run offline against all others to measure per-
formance effects. This gives all possible pairs of co-schedules and performance
impacts. Since running all possible sets of four applications was not feasible, the
quad-core problem uses simulated performance impact data. It should be noted
that our application generates an optimal schedule based on this a priori data
but cannot itself be directly used as a real scheduler in an operating system.

2 Optimal Scheduling

What makes scheduling applications on a multicore platform difficult is the
impact co-scheduled applications have on each other. Performance is usually
measured with the Instructions Per Cycle (IPC) metric, which measures how
many instructions a processor can execute per clock cycle. The goal of multicore
scheduling is to optimally schedule simultaneously executing applications on all
cores of a multicore processor, such that the performance degradation is mini-
mized, usually attained by minimizing contention for shared resources[5]. Unfor-
tunately, even if all possible combinations of co-scheduled applications and their
deleterious effects were known beforehand, optimal scheduling for more than 2
cores on a processor is an NP-complete problem.

In this paper, we focus on dual-core processors and quad-core processors. For
the dual-core case, each processor in our test system has two cores, with the
overall system composed of a varying number of processors. Finding an optimal
co-schedule thus involves finding pairs of applications that can be concurrently
run together with minimal IPC degradation. The quad-core case is similar, with
varying numbers of processors consisting of four cores. In this case, the opti-
mal solution consists of quartets of applications that can be run together with
minimal performance impact.

A polynomial time algorithm to find an optimal schedule exists for the dual-
core case, but like our approach, it requires complete a priori knowledge of
the applications and all possible co-schedules and performance impacts. It too
requires that the problem be formulated using graph theory, which is the next
step in our solution.
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2.1 Problem Formulation

First, we consider the dual-core case. If we consider applications as nodes and the
co-scheduled IPC degradation as the cost of an edge between two nodes, then it is
straightforward to create a graph that embodies the optimal scheduling problem.
In Figure 1(a), we see that there are four applications: A, B, C and D. An
edge between two nodes has a cost equal to the IPC degradation suffered when
the two applications represented by the nodes are co-scheduled. In the figure,
running applications A and B together results in a performance degradation of
13, while running applications A and C instead will result in a performance
degradation of 17.
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Fig. 1. Optimal groupings

Figure 1(a) gives us an insight into the dual-core optimal scheduling problem:
finding an optimal schedule with a minimal degradation is equivalent to finding
a minimum cost edge cover for the given graph. Since an edge cover includes
all nodes, we can guarantee that all applications will be scheduled. Finding the
minimum cost edge cover will give us a set of edges that cover all vertices and
have the lowest possible cost, i.e., the least IPC degradation possible. Thus,
for the dual-core processor case, finding a minimal edge cover is tantamount to
finding an optimal schedule. From Figure 1(a), we see that a minimum edge
cover is {AD, BC} with a total cost of 15.

In the quad-core case, since there are no edges between applications, but
rather quadruplets of applications, as seen in Figure 1(b), the edge cover is less
useful. The one concept we do borrow from the edge cover theory is to select
combinations of four vertices, such that all the vertices in the graph are covered.
Additionally, no two combinations can have common vertices. From there, we
find the combinations with minimal performance impacts, thereby resulting in
a minimal cost optimal schedule.

Having expressed the optimal scheduling problem graph theoretically, the next
step is to encode it using Answer Set Programming and solve it.

3 Expressing the Problem in ASP

Answer Set Programming (ASP) is a form of logic programming, which uses
declarative syntax to solve problems. We follow the usual ASP technique of
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writing the problem description in a declarative language such as lparse[3], which
is then fed to an ASP solver such as smodels [3].

The Paths, Trees and Flowers[2] algorithm by Edmonds can be used to find
minimal edge covers in polynomial time, but its iterative specification precludes
it from easily being used by ASP solvers. We used clingo[1] as our ASP solver.

3.1 Clingo

clingo, like other ASP solvers uses the generate and test strategy, which requires
that the solver generate all possible answer sets to the problem, then discard
those answer sets that do not meet the constraints set by the original prob-
lem. For the dual-core case, the performance degradation data was presented to
clingo in the form corun(A,B,n) where A and B are benchmarks from the
suite, and n is the performance degradation resulting from running A and B
together. Similarly,the quad-core case presented clingo with data in the form
corun(A,B,C,D,n) where A, B, C and D are benchmarks from the suite, and n
is the performance degradation resulting from simultaneously running A along
with B,C and D. Our formulation accepts these co-runs as the input of the prob-
lem and then builds a solution from them. For the dual-core case with n cores,
our implementation generates all possible edge covers by selecting all

(
n
2

)
edges

and rejecting those combinations of edges that do not touch all vertices, i.e. are
not edge covers. The minimize keyword is then used to select the minimal edge
cover from these edge covers. The implementation and test data for this paper
can be found at http://www.sfu.ca/~vka4/multicore_asp.zip.

Our implementation works for varying numbers of dual-core and quad-core
processors, i.e. it can be used to find optimal schedules for simultaneously run-
ning applications on these processors. For both the dual-core and quad-core case,
we are able to find optimal schedules for up to 16 applications co-scheduled si-
multaneously. The key difference is that the dual-core schedule will consist of
pairs of applications, with each pair co-scheduled on a dual-core processor, while
the quad-core schedule will consist of quartets of applications, with each quartet
co-scheduled on a quad-core processor.

3.2 Optimizations

Our brute-force implementation takes exponential time in the number of nodes,
as we shall see in the next section. Clingo has several optimizations related to
pruning and searching which can result in a significant speedup. To determine
if any of these optimizations would result in a quicker execution time, we ran
clingo on an edge cover of size 6 for the dual-core case, with several different
optimizations and measured the runtime of each. These optimizations did not
affect the output of a minimal edge cover, except for the −−cautious flag, which
resulted in a non-minimal edge cover.

Of all the different optimizations we tried, the one with the smallest execution
time that was also correct was the −−save−progress flag. It dropped the execu-
tion time for the 6-edge case from 513 seconds to 83 seconds. We tried several

http://www.sfu.ca/~vka4/multicore_asp.zip
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combinations of the most promising optimization switches, hoping for reduced
execution times. However, none of the combinations resulted in a smaller time
footprint, leaving us with the −−save−progress flag as the best optimization to
use in the rest of the project.

3.3 Results

All tests were run on a machine with eight Pentium IV Xeon X5365 cores and 8
GB of RAM. The system ran Linux 2.6 as its operating system, with the prebuilt
binary of clingo 2.03 for the x86-Linux platform being used in our experiments.

Figure 2 shows the time taken to find the minimum edge cover for the dual-core
case, the size of the search space and the pruning done by clingo, for minimum
edge covers of varying sizes. The vertical axis is logarithmic in scale and shows
us that finding the optimal schedules for up to 14 applications can be done in a
reasonable period of time, not exceeding five minutes. However, when we move
up to 16 applications (eight dual-core processors), finding an optimal schedule
takes around ten hours. While we were not able to complete the run to find a
minimum edge cover for 10 edges, we can estimate that it would take a long
time, approximately ten years.

Similarly, the quad-core approach also showed analogous time increases. Find-
ing an optimal schedule for 8 nodes took under a second, while finding optimal
quartets for 12 nodes took around a minute. However, the 16-node case is ex-
pected to take around 4 days, based on our estimations.

The observed exponentially increasing time isn’t surprising, given the worst-
case exponential time behaviour of the underlying ASP solver, along with the
fact that our approach is brute force.

4 Conclusion

In this paper, we have shown how two instances of the optimal multicore schedul-
ing problem can be represented in a form amenable to being solved by Answer
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Set Programming. We used ASP tools to solve as large an instance of the prob-
lem as currently feasible. ASP solvers use elegant formalizations and powerful
pruning mechanisms to narrow a large search space, but have their limits in the
face of exponential, combinatorial blowup.

An optimal schedule is beneficial in many ways, besides the obvious. If an
optimal schedule can be generated in a relatively short period of time, it can
actually be used for scheduling long-term jobs. While this window of usage re-
mains narrow, an optimal schedule has other theoretical uses. Many scheduler
implementations often compare their performance to current system schedulers
in operating systems such as Solaris and Linux. The system schedulers in these
operating systems are agnostic of optimal schedules themselves. Having an op-
timal schedule provides a reliable measuring-point, by which to gauge all other
scheduler implementations.

Our implementation finds optimal schedules based on real performance data.
While gathering this data for the quad-core case or higher is prohibitive in terms
of time, it is certainly possible for the dual-core case. Despite the exponential
blowup for larger versions of the dual-core and quad-core scheduling problem,
our implementation is efficient enough to be used for current, realistic scenarios
involving fewer processors.

With some work, our current implementation could be modified to find op-
timal schedules for n-core processors as well. The next step in the hierarchy
would be a six-core or eight-core processor, even though the former is only just
appearing in the mainstream processor market today. Finding optimal sched-
ules involving sets of six or eight applications co-scheduled together could be
done with our implementation, provided some parameters and constraints were
changed.

Acknowledgments. We thank Dr. Alexandra Fedorova for her help and the
gracious use of the SPEC CPU 2006 benchmarks and systems equipment.
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Abstract. A major goal of AI are powerful reasoning capabilities which
empower the development of advanced knowledge processing systems. To
this end, current research is focused on information and knowledge in-
tegration, addressing the needs that emerge in the realm of the World
Wide Web and future information systems. Following Wiederhold’s medi-
ator concept, powerful knowledge mediation is envisioned that fruitfully
exploits LPNMR technology, as already done in the data integration con-
text. Realizing this vision raises in turn challenging issues for research.

1 The Knowledge Mediation Vision

The IT developments of the last decade have rapidly changed the possibilities for
data and knowledge access. The World Wide Web and the underlying Internet
provide a backbone for the information systems of the 21st century, which will
possess powerful reasoning capabilities that enable one to combine various pieces
of information, stored in heterogeneous formats and with different semantics.

To fully exploit the wealth of knowledge, information from plain sources and
software packages with plain semantics will have to be mixed with semantically
rich sources like domain ontologies, expert knowledge bases, temporal reasoners
etc. in a suitable manner, bridging the gap between different sources. However,
more than simple integration of data and knowledge, as it is targeted in current
research (and has been targeted in the KR area since decades, cf. [1]), is desirable.
In fact, mediation of data and knowledge, which provides services at an abstract
level that go far beyond technical aspects of integration, and take aspects such
as situatedness, social context, and goals of a user into account. The vision of
powerful knowledge mediation is not new, and goes back at least to Wiederhold’s
classic paper [2], and ramifying efforts like the Knowledge Interchange Format
(KIF). Yet, like many visions of AI, it has not yet materialized satisfactorily.

We imagine that tools and techniques from the logic programming and non-
monotonic reasoning area are very helpful to help realizing this vision, and that
in fact nonmonotonic features, working with defaults and implicit assumptions
are inherent to intelligent mediation.
� Work supported by the Austrian Science Fund (FWF) projects P20841 and the

Vienna Science and Technology Fund (WWTF) project ICT08-020.
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2 Where We Are

Driven by the need to combine (possibly heterogenous) knowledge bases, nu-
merous proposals were made to solve this problem, and extensions of declarative
KR formalisms were conceived that allow to access external data and knowledge
sources; LPNMR technology was fruitfully deployed to data integration cf. [3].

A recent framework are nonmonotonic multi-context systems (MCSs) [4],
which allow for a principled integration of different logic-based formalisms. An
MCS (C1, . . . , Cn) comprises information in contexts Ci = (Li, kbi, bri) of an
abstract “logic”Li, a knowledge base in Li, and a set bri of bridge rules

p ← (r1 : p1), . . . , (rj : pj),not (rj+1 : pj+1), . . . ,not (rm : pm)
where p and pi are from the language of Li resp. Lri , which specify the informa-
tion flow between the contexts depending on presence or absence of the pi in the
local belief sets of the contexts. Such MCS have a global-state semantics based
on LP-like rules, and generalize previous work on monotonic context systems by
the Trento School around Giunchiglia and Serafini.

MCS empower the combination of “typical” monotonic KR logics like De-
scription Logics, and nonmonotonic formalisms like ASP or Default Logic, but
also formal argumentation systems; given the very abstract notion of “logic”, a
wide range of other formalisms can be accommodated as well. However, while a
formal tool at the technical level, MCSs are far from solving integration, yet the
mediation problem at a semantic level, simply because high level integration and
mediation featured are not reflected in the framework. Extensions are possible,
and even bootstrapping might help to arrive at richer systems.

This is exemplified by Argumentation Context Systems (ACSs) presented at
this conference, which specialize and generalize MCSs at the same time. In con-
trast to a general MCS, an ACS is homogeneous as all reasoning components are
of the same type, viz. Dung-style argumentation frameworks [5]. On the other
hand, an ACS context (called module M1) may influence another M2 much
stronger than in an MCS; M1 may directly affect M2’s KB and reasoning mode,
by invalidating arguments or attack relationships in M2’s argumentation frame-
work, and by determining the semantics to be used by M2. This is achieved by a
designated language to “configure” the argumentation framework dynamically.

In addition, ACSs feature an integration-oriented mediation service, by special
mediator components in the modules which manage inconsistencies. A mediator
collects the information coming in from connected modules and turns it into a
consistent configuration for its module, using a pre-specified consistency handling
method. Different such methods allow to model a range of scenarios, from strictly
hierarchical to more “democratic” forms of decision making.

3 Where to Go

In order to materialize the long term vision of powerful knowledge mediation
systems on the basis of LPNMR technology, clearly a lot of efforts must be
devoted to solve the many problems that arise in this context. We think that work
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on ensembles of (possibly non-monotonic) knowledge sources (be it knowledge
bases, modules, contexts etc), that are connected through well-defined interfaces,
is an important direction. Among the issues that need attention are:

– Distributed execution platforms. Currently, we lack platforms that can effi-
ciently run an ensemble of knowledge sources. Here, aspects like communi-
cation media and cost play a role.

– Inconsistency management. Inconsistency in an MCS may arise through the
interaction at a global level, perhaps by mediation itself. Novel mechanisms
to handle this are needed (e.g., avoidance, or recognition and resolution).

– Interpretation/transformation of vocabularies. The ubiquitous problem of
aligning different terminology and models should be solved at the mediation
level. Especially, bridge rules may take advantage of such services.

– Communication and interaction between entities. Beyond mere information
flow, modules may engage in more involved communication according to well-
defined protocols. Mediators in particular may maintain data connections to
various modules, relaying and controlling the knowledge exchange.

– Text analysis and understanding. Knowledge sources may be unstructured,
and to elicit logical structure and meaning from text so that it can be ren-
dered in an MCS context is desirable.

– Combining quantitative and qualitative uncertainty. While current MCS are
geared to qualitative uncertainty, means for a quantitative account of uncer-
tainty are needed, as well as for the combination of the two.

– Preference and goal handling. Knowledge integration and mediation does not
end in itself but serves a user. Situatedness, preferences and goals of a user
must be adequately respected; current MCSs provide no support for this.

Many of these issues are not new, and existing results and technology may be
taken up and advanced. Text analysis and understanding using LPNMR tech-
nology is a particular challenge that received attention recently.

We are investigating how to extend MCSs (not necessarily based on argumen-
tation), with (limited) mediation components to a generalization of both MCS
and ACS. This will be an important step forward, yet many more steps remain.
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The use of ASP in agents has been advocated since long, with ASP mainly taking the
form of Action Description Languages. These kind of ASP-based languages were first
introduced in [1] and [2] and have been since then extended and refined in many subse-
quent papers by several authors. Action Description Languages are formal models used
to describe dynamic domains, by focusing on the representation of effects of actions.
In particular, an action specification represents the direct effects of each action on the
state of the world, while the semantics of the language takes care of all the other aspects
concerning the evolution of the world (e.g., the ramification problem).

The first approaches have been extended in many ways, recently also in order to
cope with, interpret, and recover from, exogenous events and unexpected observations.
In this direction we mention [2], [3], and the very recent work presented in [4]. In
this work, an architecture (called AAA) is described where both the description of the
domain’s behavior and the reasoning components are written in Answer Set Program-
ming, selected because of its ability to represent various forms of knowledge including
defaults, causal relations, statements referring to incompleteness of knowledge, etc. An
AAA agent behaves according to the Observe-Think-Act model proposed in the seminal
paper [5], which works as follows. An agent:

(1) observes the world, explains the observations, and updates its knowledge base;
(2) selects an appropriate goal, G;
(3) finds a plan (sequence of actions) to achieve G;
(4) executes part of the plan, updates the knowledge base, and goes back to step 1.

Unexpected observations are coped with by hypothesizing the undetected occurrence of
exogenous actions. In [6], this notion of an agent is extended to enable communication
between agents through the introduction of special named sets of fluents known as
“requests”.

In other directions, we mention a different line of work, focusing upon modeling
agent decisions in an extended ASP by means of game theory [7]. In [8,9] and other
papers by the same group, ASP is exploited to model dynamic updates of an agent’s
knowledge base. Also, we are aware of ongoing work about modeling properties of
multi-agent systems in ASP.

Despite this corpus of work is technically and conceptually very well-developed, the
view of an agent based upon having an ASP program as its “core” does not appear to
be fully convincing. One reason is that the basic feature of ASP, which is that a pro-
gram may have several answer sets that correspond to alternative coherent views of the
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world, is in our opinion not fully exploited. Another reason is that the architecture out-
lined above appears to be too rigid with respect to the other approaches to defining agent
architectures in computational logic, among which one has to mention at least MetateM,
3APL, AgentSpeak, Impact, KGP and DALI [10,11,12,13,14,15,16,17,18] (for a recent
survey the reader may refer to [19]). All these architectures, and their operational mod-
els, are in practice or at least in principle more dynamic and flexible. If we consider
for instance the KGP [17,18] architecture, we find many modules (“capabilities”) and
many knowledge bases, integrated by control theories that can be interchanged accord-
ing to the agent’s present context and tasks. In KGP, capabilities are supposed to be
based upon abductive logic programming [20] but the architecture might in principle
accommodate modules defined in different ways.

We believe that an “ideal” agent architecture should exploit the potential of inte-
grating several modules/components representing different behaviors/forms of reason-
ing, with these modules possibly based upon different formalisms. The “overall agent”
should emerge from dynamic, non-deterministic combination of these behaviors that
should occur also in consequence of the evolution of the agent’s environment. There-
fore, in our view an important present and future direction of ASP is that of being able to
encapsulate ASP programs into modules suitable to be integrated into an overall agent
program, the latter expressed in whatever language/formalism. There is a growing cor-
pus of literature about modules in ASP. However, the existing approaches mainly refer
to traditional programming techniques and to software engineering methodologies (for
a review of the state of the art the reader may refer to [21] and to the references therein).
To the best of our knowledge, except for the approach of [22] in the context of action
theories, there is no existing approach which is specifically aimed at the agent realm.

We are convinced that modularization of ASP is possible under various perspective.
A first perspective is that of “Reactive ASP modules”, aimed at defining complex re-
action strategies to cope with external events and decide what to do, independently of
overall planning strategies. A second particularly relevant perspective is that of “Modal
ASP modules”, that should exploit the multi-model nature of answer set semantics to
allow for reasoning about possibility and necessity in agents, at a comparatively low
complexity. From the implementation point of view, we are confident upon the inte-
gration of such modules into logic-based agent architectures being easily feasible in
conceptually clear ways, e.g., by adopting blackboards that should act as input/output
structures. The forms of reasoning which would be made possible are interesting, and
allow for real applications at a comparatively low complexity, which implies satisfac-
tory efficiency assuming a reasonable size of modules.
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Preamble. The inception of Answer Set Programming (ASP) can be marked by
the appearance of the stable model semantics [GL88], something over 20 years
ago. The roots of ASP in turn can be traced to work in nonmonotonic reasoning,
notably Default Logic [Rei80]. With the advent of efficient ASP solvers, as exem-
plified by smodels [NS97] and dlv [ELM+97], there was a great deal of interest
and excitement over the application of ASP (broadly taken) to various problems,
along with its use as a modelling tool. Indeed, applications have been proposed
in a wide variety of fields, including bioinformatics, configuration, database in-
tegration, diagnosis, hardware design, insurance industry applications, model
checking, phylogenesis, planning, security protocols, and high-level control of
the US space shuttle [Sch08]. In concert with these applications, there has been
a widespread flowering of ASP solvers built on various technologies [DVB+09].

With these successes, attention has turned to the application of ASP to other
interesting and challenging problems. Since it can be argued (or at least taken
as a position for debate) than any research in CS should be with an eye to
eventual practical application, the question of the application of ASP can be
seen as obliquely asking, What is the potential role of ASP in AI/CS/the world
at large?

Applying ASP. Broadly, and for purposes of discussion,1 we can consider three
non-exclusive and non-exhaustive areas of application: to other areas of AI, to
areas of interest in mathematics, and to “real world” problems. Consider each
in turn:

ASP and AI: To consider the role of ASP in AI is to essentially ask about the
suitability of ASP for providing general KR languages. Certainly, earlier surveys
such as [BG94, DB96] regarded Knowledge Representation and Reasoning as the
principal focus of ASP, as implicitly does [Bar03].

Two points can be made in this regard. First, the trend with respect to appli-
cations is away from KR. Witness, for example, the problem suite in [DVB+09],
which would seem to not have a great deal to do with KR.2 As well, as imple-
mentations have developed and evolve, enhancements have been added to the
1 which is to say this classification shouldn’t be taken too seriously.
2 For a perhaps unfair comparison, consider in contrast the Challenge Problems for

Commonsense Reasoning at www-formal.stanford.edu/leora/commonsense

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 616–618, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



What Next for ASP? (A Not-Entirely-Well-Informed Opinion) 617

language; these can be declarative (e.g. aggregates and cardinality constraints)
or procedural (e.g. adding options to control search). In the latter case, repre-
sentational force is lost, in favour of procedural gain. Second, and counter to the
first point, research in ASP on KR can nonetheless be regarded as alive and well,
given work on strongly related topics such as action languages and causal rep-
resentations, and representations of interesting domains using such formalisms
(e.g. [AEL+04]). This suggests of course the potential role of ASP as a target
language for higher-level encodings of problems.3

ASP and mathematics: Most of the challenge problems for ASP are from graph
theory, combinatorics, or number theory. This arguably reflects the shift in em-
phasis toward solving constraint problems (or maybe just the prevalence of toy
problems from these areas). Regardless, most proposed applications seem to lie
in these areas, one way or another. So one possibility is to attempt to solve spe-
cific open problems in mathematics via ASP. One example is determining the
fifth Schur number;4 a second is suggested at the conclusion of this article.

ASP and “real world” problems: This of course is a highly interesting, difficult,
and potentially important long-term use of ASP. There are various impediments
that need to be addressed; in particular, current implementations would need
to scale up in various ways. Grounding is clearly a bottleneck. As well, there
is a need for a general programming methodology, and perhaps a better under-
standing of the relation between problem type and search strategy. Similarly
there would seem to be a need for programming environments and tools for the
construction of large programs. Work on locality (perhaps involving conditional
independence structures) and structuring blocks of rules would be useful. Cer-
tainly if similar work in KR (e.g. [Mor98]) is anything to go by, such applications
promise to be messy.

A Modest Proposal. A specific problem area that falls into the second cate-
gory above, yet may have practical application while skirting issues concerning
scalability and software engineering, is that of balanced incomplete block designs
(BIBD) [CD06]. Roughly a BIBD is a set X and a collection of subsets of X ,
called blocks, such that each block is the same size and each element of X appears
in the same number of blocks. Hence BIBDs come with a compact, austere, the-
oretical specification. They also have significant real world application, as they
are fundamental in experimental design, and have applications in software test-
ing and cryptography. They encompass a large class of problems, and include
as subareas Steiner triple systems, finite projective planes, and Latin squares.
3 This also suggests an interesting project, comparing the two leading logic program-

ming paradigms via their respective ease (or lack thereof) for representing action
formalisms: The University of Toronto action group translates the situation calculus
into PROLOG typically, while action languages may be translated into extended
logic programs.

4 I’ve shamelessly cribbed this example from Torsten Schaub’s position paper, who in
turn credits it to Mirek Truszczyński.
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Moreover, they would seem ideally suitable for ASP encodings, as the general
problem for BIBDs is to find a solution for a given set of parameters or show
that no solution exists.
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Traditionally, Logic Programming and related Non-monotonic Reasoning for-
malisms have mainly been applied to “hard” AI problems, such as planning,
scheduling, constraint solving, belief revision, etc. In the real world of software
engineering, however, these hard problems are vastly outnumbered by more mun-
dane tasks. A significant part of software that is written today consists of appli-
cations that any reasonably experienced programmer could write in a couple of
weeks, using whatever imperative language happens to be the industry standard
du jour.

A typical example of this kind of applications is so-called configuration soft-
ware. The idea is here that there a number of allowable configurations—say of a
computer system, or of a server network, or a study program, or a life insurance,
or a bicycle, or so on—and that the user must be guided through a number
of choices that will eventually result in the configuration that is best suited to
his desires. Programming such an application poses no great challenges, neither
conceptually nor computationally. The main source of complexity here lies in
the domain knowledge concerning valid configurations: this might imply com-
plex dependencies, which could be tedious to encode in an imperative language,
especially if the application is also supposed to proactively narrow down the
options still available to the user, as more and more choices are made.

While such applications might seem trivial in comparison to the great open
problems of AI, we believe that computational logic might also have an interest-
ing role to play here. The goal is in this context not to accomplish the previously
impossible, but rather to do existing things better. By leveraging the expressive
knowledge representation capabilities of logic, such applications could be written
more easily, in less lines of “code”, and hopefully considerably quicker—maybe
even in days rather than weeks. An additional advantage is that once domain
knowledge has been declaratively expressed, it can also be reused for different
applications in the same domain. For instance, a specification of the require-
ments for a schedule of courses at some university might be used at the start
of the semester to produce a full schedule, but it might also be used later—by
a different UI front-end—to help a secretary adapt the schedule to unforseen

� Joost Vennekens is a post-doctoral researcher of FWO-Vlaanderen.
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circumstances, such as an absent teaching assistent or urgent maintenance in
some class room.

The setting of configuration software is somewhat different from the setting
traditionally considered in LP, though, and therefore it comes with its own set
of requirements. For instance, solving a scheduling problem is a task that is
typically performed off-line and on a reasonably good machine. Configuration
software, on the other hand, is interactive, and might be running on a web-
server, together with who knows how many other threads. So, the computational
requirements are much more stringent in this case. There is also good news,
however, and that is that configuration software does not need to be complete.
Because it runs interactively, it is not absolutely necessary that all consequences
of a user’s choice are immediately shown on-screen; if one is missed at first, it
will still eventually be detected after the user has filled in more of the form.

This kind of lightweight interactive applications, therefore, seems to call for
anytime algorithms, that may only be approximative and offer no guarantees of
completeness, but do run fast in limited memory and will provide useful output
even when interrupted before completion. These requirements are rather incom-
patible with the ground-and-solve approach that most Answer Set Programming
systems currently take. An integrated “ground on demand” approach would be
much more suited.

In [6], we have presented an algorithm that could work well in such cases. The
roots of this algorithm lie in the IDP-system [3]. This is a model expansion system
[4] for the language FO(·), an extension of first-order logic with, among others,
a LP-based representation of inductive definitions. IDP is a quite competitive
system, which ranked fourth in the global ranking of the second ASP competition
[2]. It uses a standard ground-and-solve architecture, in which the grounder
already performs a number of logical propagation steps that attempt to minimize
the size of the grounding. This propagation algorithm has been extended to a
polytime approximate reasoning algorithms for full FO(·) [6]. In [5], we have
used this algorithm to develop an FO(·) framework for the implementation of
configuration software.

Approximation is not the only way of providing inference algorithms that
are able to deal with the strict computational requirements of interactive soft-
ware. In certain contexts, it might also be sometimes possible to exploit com-
putations that have previously been carried out off-line. A prime example is
railroad scheduling: the regular timetables are computed far in advance, but if
some technical failure occurs, the schedule has to be quickly adapted online,
possibly in interaction with an engineer. This can only be accomplished if the
existing schedule is leveraged as much as possible and only minimal changes
are applied—instead of a “from skratch” model generation system, we therefore
need an incremental model revision approach. [1] outlines one such algorithm.

In summary, we believe that, in addition to the traditional “hard” AI problems
that have been tackled, there are many “easy” problems in software engineering
that could benefit from a declarative approach. However, this calls for different
inference algorithms, which satisfy the requirements of interactiveness by means
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of anytime approximation, or by leveraging as much as possible the result of com-
putations that were previously performed off-line. The development and further
refinement of such algorithms is a useful step towards increasing the impact that
logic formalisms have on the everyday life of software engineers world-wide.
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1 Introduction

The advent of ASP has reinvigorated the field of logic programming. ASP has a
simple syntax, which from the beginning appealed logic programmers—thanks
also to its similarity to Prolog’s syntax. ASP has a well-understood declarative
semantics, which can adequately capture non-monotonicity. ASP benefits from
good implementations, which guarantee an adequate level of efficiency and reflect
the declarative nature of the paradigm—differently from the case of Prolog,
where there is a disconnect between declarative semantics and the implementa-
tion of its operational semantics.

In this presentation, we would like to draw on our personal experiences in
comparative development of applications using both ASP and other declarative
paradigms, and use these to indicate what we believe are strong directions of
development for future generations of ASP languages and systems.

2 Applications

Applications of ASP range over a wide spectrum. Since its inception, ASP has
found a natural application in the domain of knowledge representation and rea-
soning (e.g., planning, legal reasoning, abduction, expert systems) [1].

The continuous improvements of efficiency of ASP solvers enabled this
paradigm to become an effective alternative to solve constraint satisfaction prob-
lems, such as timetabling, scheduling, configuration problems, and NP-complete
problems on graphs [4].

Recently, other emerging applications that require both representation expres-
siveness and good execution performance have emerged, in areas like bioinfor-
matics, semantic web, and music composition [6,2,9]. Whenever the problem has
limited requirements in terms of numerical computations (e.g., Boolean prob-
lems), the behavior of ASP systems is excellent. Instead, if problems require
extensive use of arithmetic operations with large integers or with floating point
numbers, other techniques are currently more promising.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 622–624, 2009.
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3 Language Extensions

We have witnessed several proposals for extensions of the basic ASP language
(i.e., standard normal logic programs) with various features, often dictated by
the needs of specific applications. Two relevant directions being pursued are:

– The introduction of forms of aggregations and set/multiset-based reasoning.
– The introduction of capabilities for numerical reasoning.

Recently, several interesting proposals have been put forward describing syn-
tactic and semantic extensions addressing these problems (e.g., new semantics
for aggregates, numerical constraints, abstract constraints), yet there is still a
lack of general agreement and a relatively limited exploration of implementation
issues [10,8].

4 Solvers Integration

ASP is good for certain classes of applications (e.g., dealing with inferential rea-
soning, abduction, non-monotonicity, Boolean constraint satisfaction problem)
but inadequate for other types of reasoning or other levels of expressiveness. For
example, even the simple problem of determining the minimal length plan for a
planning problem is beyond the reach of standard ASP systems, while a simple
loop around the execution of a planner would be sufficient to solve the problem.
This suggests the need for:

– Embedding ASP within other popular declarative paradigms (e.g., Prolog).
– Embedding other declarative paradigms within ASP (e.g., constraint pro-

gramming).

Limited forms of these types of extensions have been proposed, e.g., DLV with
external predicates, iClingo [5]. Interesting solutions in this direction include
also the recent proposals on modular ASP [7].

This perspective would also contribute to enable ASP to join the ongoing large
scale integration efforts in the domain of constraint satisfaction/optimization. In
this realm, a new community has been emerging with the aim of integrating the
knowledge and the solving capabilities of various paradigms, such as integer
linear programming, constraint programming, and of other techniques coming
from artificial intelligence (such as local search).

ASP technology should be part of this overall unifying project.

5 Execution Models

Although successful for a series of applications, the traditional execution model
for ASP is inadequate for others:

– ASP computations are bottom-up, and this makes it hard to employ the
user’s intention in guiding the search for solutions.
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– ASP computations are mostly viewed as black box computations, with lim-
ited opportunities for interaction (e.g., user-defined heuristics) and commu-
nication.

– ASP computations requires a grounding stage.

Other applications require different execution models; in particular, we have
often encountered the need for:

– Avoiding grounding, or at least not performing the whole grounding step at
once [3];

– Top down computations, or at least computation models that are capable of
focusing on specific goal(s);

– Introducing user-defined heuristics and programmable search strategies.

These alternative execution models will, in turn, enable a wide range of other
extensions, such as integration with finite domain constraints (or constraints
over reals) and parallel execution models.

All these alternatives should co-exist within a unique ASP framework, al-
lowing the programmer to select the most appropriate options for each specific
application.
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ICLP 2007. LNCS, vol. 4670, pp. 286–301. Springer, Heidelberg (2007)

9. McIlraith, S., Son, T.: Adapting Golog for Composition of Semantic Web Services.
In: KRR, pp. 482–496. AAAI/MIT Press (2002)

10. Mellarkod, V., Gelfond, M.: Integrating Answer Set Reasoning with Constraint
Solving Techniques. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008.
LNCS, vol. 4989, pp. 15–31. Springer, Heidelberg (2008)



ASP: The Future Is Bright
A Position Paper

Marina De Vos

Department of Computer Science
University of Bath,

BATH BA2 7AY, UK
mdv@cs.bath.ac.uk

In the twenty years since the creation of the stable model semantics[4] for logic pro-
grams and inclusion of both classical and negation as failure, answer set programming
(ASP)[1] has grown from a small fledgeling field within logic programming to a matur-
ing field of its own. In this extended abstract we discuss some future application areas
for ASP and theoretic and implementational problems that need to be addressed in or-
der to make them feasible. With the increase in efficiency of the answer set solvers and
a better understanding of the formalism, its advantages and disadvantages, more appli-
cations areas for ASP are found. While traditional application domains were mainly
in the knowledge representation and reasoning area, we now also see more and more
applications in areas were competitors like SAT or CSP were considered better alterna-
tives. We believe, these current applications are just the tip of the iceberg. In years to
come, we will see more and more successful applications plus further expansion and
improvements on existing applications.

In recent years we have seen a lot of ASP activity in the fields of the semantic web
and web-services with specific workshops dedicated to the topic1. We believe that these
fields hold more potential for years to come. For example, ASP could also be used for
match-making and service coordination and orchestration.

Another application area of ASP is multi-agent systems. In most cases this was al-
ways on the more theoretical side of applications. To our knowledge, nobody has used
ASP to construct a running multi-agent system where the agents use ASP for reasoning
purposes. With our current solvers, we should be able to provide such a system.

ASP has also be applied in wide variety of other domains like planning, diagno-
sis, language-evolution, policy-design, bio-informatics, compiler optimisation, music
composition, security, cryptography and game design. Most of these application are in
a prototype phase, demonstrating that ASP could be of value in this domain and are
slowly making their way to conferences and journals in the domain they are addressing.
By doing some domain experts will get to know ASP and its capabilities. In time this
will lead to them pointing ASP researchers to similar problems in the same domain.
So in the medium term, we believe we can look forward to more ASP applications in
bio-informatics, e-health, medicine, e-government and engineering.

Normally we refer to ASP as a problem solving paradigm. We model the problem as
an ASP program such that the answer sets correspond to the solutions of this problem.

1 http://events.deri.at/alpsws2006/
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But some applications also perform use what could be referred to as content generation.
In this case we are doing something subtly, but importantly, different; we are using a
solver to generate representative objects given a specification. This is more knowledge
presentation, since the language is not only used to describe the objects but also to come
up with a computational description. This opens a new range of possibilities for ASP.
What is needed is consistent, sensible background content, which is currently hard to
generate in large amounts as at the moment it is done by humans, which is expensive and
slow. Music, games, virtual worlds and puzzle magazines would just a few examples.

With the current state-of-the-art solvers, our theoretical understanding and a wide va-
riety of ASP applications, we believe that ASP technology should become marketable.
As a community we should move beyond the proof of concepts and simple prototypes
we have and make people use them. While making existing and new applications mar-
ketable will push the boundaries of our solver implementations and the underlying the-
ory in ways we cannot foresee at the moment, a number of novel research avenues
already clear.

In order to move to a marketable technology, we need solvers to be a single, coherent,
push button tool. The implementation needs to be robust, documented, maintained and
integrated. We need to go from talking about things starting with “this is answer set
semantics” to “this is the tool that can solve your problems“.

Linked in with this are questions of methodology and education. How do we use
these tools, how do we teach others to use these tools? While other successful applica-
tions can bring ASP into the spotlight of a certain domain, it is also important for do-
main experts to use ASP for themselves. At presents, ASP provides little programming
support tools for both novices and expert programmers alike. To make writing applica-
tions more easy for both domain experts and ASP programmers alike, we believe that
we need a software methodology and development environments specifically tailored
for ASP. The last few years work has started in this direction with modules, debuggers
and prototypes of IDEs. Another approach to making ASP technology more accessibly
outside the community is to provide domain specific front-ends, in much the same way
as has been done for action domains. At present, writing answer set programs relies on
experience and trial and error. It is often not clear why a certain encoding works better
or more efficient than another. To provide more consistent implementations, we need a
better understanding of encodings and how solvers react to them. When understood, we
could move to a more encompassing methodology for answer set programming.

There is also the question of standardisation. Standardisation is the commons of the
scientific world, everyone benefits from having standardised tools but no one wants to
compromise and put time towards doing so. Efforts are being made to standardise. The
draft intermediate format presented at NMR’08[3] was a good step forward and the
work should be continued. Language extensions could be a serious problem when it
comes to language extensions. It is hard for a whole community to agree on special
purpose constructs. An interesting theoretical question is when a construct should be
implemented natively and when to emulate/translate it.

While solvers have become faster, grounding is still a bottleneck. While grounding
on the fly would be very welcome, we believe it will be some time before a theoretical
solution will be found for this.
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In ASP, variables are used for two distinct, and largely separate processes. Some vari-
ables are templates; creating multiple copies of rules, the values given to these variables
are effectively just labels and some variables carry actual semantic value. We should be
able to identify, automatically (to a fairly high degree of accuracy) which variables are
which. Semantic variables can be handled in an unground fashion such as CSP style
finite domains (if the domains are big enough, if they are small instantiation is probably
a better strategy). This would vastly reduce the size of the instantiation and will give
corresponding speed ups due to caching effects, etc.

To improve the usability of ASP, we need move away from implementation tricks.
When there is a trade off between clarity of expression and speed of implementation,
we should add to the tools (probably via unground preprocessing) to convert the clear
version to the faster version automatically. A good example is the automatic removal of
instantiation symmetries.

While our solvers have become much more efficient over the years, especially with
the introduction of clause learning[2, 6], we believe that further increases are possi-
ble and needed for applications, especially for ASP applications that require real-time
performance. With more machines becoming multi-core with shared memory, solvers
need to be able to take advantage of these architectures. Having transparent portability
to parallel architectures would be a big selling point. Platypus[5] has already shown that
linear or super linear speed ups are not only theoretically possible but also in practice.

In this paper, we argued that ASP has a lot of potential when it comes to marketable
applications but that there is still some work ahead of us to make that happen. As re-
searchers we should rise to the challenge.

Acknowledgements. The author would like to thank Martin Brain and Owen Cliffe for
their input and comments on the earlier versions of this document.
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Abstract. We have recently started a couple of spin-off companies which aim at
exploiting ASP, and the DLV system in particular, in real-world applications. We
briefly report on the first experiences, evidentiating the positive aspects of ASP
which allowed us to develop some successful applications, and some obstacles
which should be overcome to improve ASP systems, and make them best suited
for industry-level applications.

1 Principal Classes of DLV Applications

The industrial exploitation of the ASP system DLV [1] is explored by two spin-off
companies of University of Calabria, namely, EXEURA s.r.l. and DLVSYSTEM s.r.l..
EXEURA developes products and applications in the area of Knowledge Management,
also exploiting DLV; while DLVSYSTEM developes and maintains the DLV system.

Looking at the way how the ASP system is used, we can group our applications in
three main classes:

1. Knowledge Management products incorporating DLV as the computational core;
2. Artificial intelligence applications, characterized by
3. the high complexity of the underlying computational problem; Advanced deductive

database applications, characterized by a large amount of data.

The first class contains the three industrial products of Exeura s.r.l., namely, OntoDLV
(ontology management) [2,3], OLEX (document classification) [5,4], and HıLεX (in-
formation extraction) [6,7], incorporating the DLV system as the computational core.
OntoDLV is an ontology management and reasoning system; OLEX is a document clas-
sification system; and, HıLεX is an information extraction system. The large number of
real-world applications that have been developed on top of these systems can be seen
as “indirect” DLV applications.

The third class contains, for instance, the DLV application developed at CERN (the
European Laboratory for Particle Physics) involving knowledge manipulation on large-
sized databases, together with the Automatic Itinerary Search, developed for the Gov-
ernment of the Calabria Region.

The most interesting Team Building application, developed for the port authority of
the Gioia-Tauro Seaport, belongs to the second class.

Information Integration applications, like INFOMIX [8], are somehow across the
second and the third class, since they need to solve a computationally hard task (CONP-
complete) on a large amount of input data.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 628–630, 2009.
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2 ASP Strengths for Applications

In the “Society of Knowledge” there is an increasing need of methods and tools for
knowledge representation and management. The high knowledge-modeling power and
the inference capabilities of ASP can be profitably used to satisfy this need.

Killer ASP applications exploit the distinguishing features of ASP, like Variables,
Default Negation, Disjunction, and Reasoning (rules and inference). Importantly, the
high expressiveness of ASP allows us to often encode the applications “directly” in
ASP, with a very limited usage of an host (imperative) language (if any).

The availability of an executable specification-language allows us to speed-up the
specification phase, and obtain a very fast prototyping. For instance, in the Team Build-
ing application for the Seaport of Gioia Tauro, a key problem was the clarification of
very complex specifications that the user was unable to formalize. We went to the Sea-
port of Gioa Tauro with DLV on the laptop, and, thanks to the high-level language
of DLV, we could immediately encode the complex constraints with the users, let the
user check the results of the execution, and refine the constraints. In this way, we could
quickly formalize the specifications, have them cross-checked and approved by the user,
and rapidly obtain a prototype. Also the easy way to access the databases was important
here, since we could immediately retrieve the data and simulate the real executions.

It is worth remarking that the key factor for the success of this application was not
the DLV efficiency, rather it was the expressiveness of the ASP language and the ease
of use of the ASP system DLV.

In our opinion, it is very unlikely that ASP will be exploited in industry for solving
combinatorial problems because of its major efficiency. Even if we convince people to
use a logic-based approach, then lower-level formalisms, like SAT or CSP, will likely be
more efficient and preferred to ASP on this basis. Obviously, the ASP systems should
be efficient enough to support the applications, but ASP should exploit the major ex-
pressiveness of its knowledge representation language, its advanced reasoning features,
and the ease of use.

3 Lessons Learned and Challenges

While develping applications, we have learned many useful lessons.
Average engineers are unable to write (correct and efficient) ASP Programs. We

need, above all, suitable ASP programming methodologies, to drive the design of ASP
programs, together with debugging techniques, and methodologies to optimize ASP
programs. We need also some tools for ASP programmers, ASP programming environ-
ments, debuggers, and friendly interfaces.

Applications programs are frequently easy (stratified or nearly such), but have
often to deal with huge amount of data. We need to further improve the ASP instan-
tiators, bringing in more from database technologies, designing partial evaluation tech-
niques which avoid a full instantiation (like Magic Sets [9,10]) or perform grounding
“on demand”.

Input data often reside on databases or on the web. We need to empower ASP sys-
tems with suitable mechanisms for the interoperability with both DBMSs and with
OWL/RDF systems.
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ASP misses some “practical” linguistic features: (1) Data Types (both data and meth-
ods) for floating-point number, strings, dates, etc. (2) Other aggregate functions (e.g.,
Average); (3) Complex terms like Lists and Sets. Moreover, adding some application
specific functions is often needed and should be allowed.

Finally, ASP systems are often used as the “intelligent” kernel of complex systems.
Application Programming Interfaces (API) together with mechanisms and tools for in-
teroperability are definitely needed.

References

1. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

2. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: OntoDLV: an
ASP-based system for enterprise ontologies. Journal of Logic and Computation (2009)

3. Ricca, F., Leone, N.: Disjunctive Logic Programming with types and objects: The DLV+

System. Journal of Applied Logics 5(3), 545–573 (2007)
4. Rullo, P., Policicchio, V.L., Cumbo, C., Iiritano, S.: Effective Rule Learning for Text Catego-

rization. IEEE Transactions on Knowledge and Data Engineering - TKDE-2007-07-0386.R3
5. Cumbo, C., Iiritano, S., Rullo, P.: OLEX - A Reasoning-Based Text Classifier. In: Alferes,

J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 722–725. Springer, Heidelberg
(2004)

6. Ruffolo, M., Manna, M.: HiLeX: A System for Semantic Information Extraction from Web
Documents. In: ICEIS (Selected Papers). LNBIP, vol. 3, pp. 194–209. Springer, Heidelberg
(2008)
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Rising from strong theoretical foundations in Logic Programming and Nonmonotonic
Reasoning, Answer Set Programming (ASP) came to life as a declarative problem solv-
ing paradigm [1,2,3] in the late nineties. The further development of ASP was greatly
inspired by the early availability of efficient and robust ASP solvers, like smodels [4]
and dlv [5]. The community started modeling with ASP and a first milestone was the
conception of TheoryBase [6] providing a systematic and scalable source of bench-
marks stemming from combinatorial problems. Although the scalability of such bench-
marks is of great value for empirically evaluating systems, the need for application-
oriented benchmarks was early perceived. The demand for systematic benchmarking led
to the Dagstuhl initiative and with it the creation of the web-based benchmark archive
asparagus [7]. This repository has in the meantime grown significantly, mainly due to
the two past ASP competitions [8,9], and contains nowadays a whole variety of different
types of benchmarks, although it is still far from being comprehensive.

Meanwhile, the prospect of ASP has been demonstrated in numerous application
scenarios.1 A highlight among them is arguably the usage of ASP for the high-level
control of the space shuttle [10]. What makes this application so special is the fact that
it was solving an application problem in a real-world environment. Although we still
need many more elaborated proofs of concept, showing how ASP addresses different
application scenarios, solving such real(-world) problems is yet another issue. Let me
approach this by answering some preliminary questions.

What is a real problem? Such a problem could be an unsolved combinatorial or math-
ematical problem. Also, it could stem from an application that is traditionally solved
with different methods. In either case, the problem is not academic anymore, but rather
about producing an effective solution. To accomplish this, we have to switch to a pro-
duction mode,2 that is, the process of organizing the production of a solution to truly
challenging problems. This mode of operation goes (currently) quite beyond conceptual
modeling and benchmarking that most of us are used to so far.

Why should we solve real problems? Apart from the fact that the prospect of doing
so partly nourishes our right of existence, real problems are a tremendously fruitful
source of new research questions. For instance, concepts like cardinality and weight
constraints [11], magic set transformations [12], constraint additions to ASP [13,14],

� Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.
1 See http://www.kr.tuwien.ac.at/research/projects/WASP and/or
http://www.cs.uni-potsdam.de/˜torsten/asp for an overview.

2 This term goes back to Marxist theory and has been adopted in informatics in various ways.
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or projection [15], had never been pushed so hard without a real problem driving their
development. In other words, making our hands dirty inspires our brain!

Where do we find real problems? One source are open problems known to academia.
For instance, deciding the fifth Schur number.3 In fact, the benchmarking repository of
the Automated Theorem Proving community used to contain unsolved challenge prob-
lems that were a driving force for the development of theorem provers. And after all,
they made it into the New York Times by proving Robbins’ conjecture.4 Actually, in-
teresting challenge problems are often simply down the hall, sitting on your colleagues’
desks. Getting interested in their problems, makes them discover ASP and exhibits us to
non-artificial problems. The least expected result is a proof of concept or a benchmark
suite, the greatest is to make a difference with ASP!

How do we solve real problems? To begin with, one still starts with a proof of con-
cept addressing a toy version of the actual problem. If this scales and the solution is
satisfactory, one just hit the jackpot. Unfortunately, this never happens (to me) and
brings us back to the aforementioned production mode of ASP. The dilemma is that we
must address real problems in order to further develop ASP as a tool for addressing real
applications. This vicious cycle makes current production processes far from ideal and
dominated by pragmatics, and often not even addressable by means of ASP only.

Thefirstbottleneck in theASPproduction mode is theencoding.Thishasbecomea true
art and often the initial, rather declarative problem specification bears little resemblance
with the final stream-lined encoding reducing combinatorics. This also applies to auto-
matically generated encodings. This is not to say that the final encoding is not indicative
but it needs quite some experience to be produced. Moreover, the optimization of encod-
ings is also tightly connected to the target ASP system, and in particular, its grounding
component. It makes quite a difference whether the grounder relies on domain predicates
or not, and whether it provides special-purpose methods, like constraint handling tech-
niques or unification for avoiding grounding large domains. Clearly, this track leaves the
idea of declarative problem solving behind and the burden of optimizing encodings has
to be partly taken off the user and handled (semi-)automatically in the long run.

The second bottleneck is the configuration of the actual ASP solver. Modern ASP
solvers relying on Boolean constraint technology offer a manifold arsenal of param-
eters for controlling the search for answer sets. For instance, clasp has roughly forty
options [16], half of which control the search strategy. Choosing the right parameters
often makes the difference between being able to solve a problem or not. But again
this takes us away from the idea of declarative problem solving and automatic methods
must be conceived for partially relieving this second burden.5

As a matter of fact, the two aforementioned bottlenecks are not regarded as prob-
lematic in the SAT community. Rather encodings are often presented to a solver at its
convenience and industrial problems are solved with particular parameter settings (eg.
aggressive restart strategies). This marks a true difference in the philosophy of both
communities.

3 Thanks to Mirosław Truszczyński for pointing this out.
4 http://www.nytimes.com/library/cyber/week/1210math.html
5 For instance, a first such prototype is claspfolio using machine learning techniques for mapping

problem features to solver parameters.
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Finally, it is surprising that the lack of software engineering tools is yet not even an
issue in ASP’s production mode. The reason is simply that the production mode in ASP
is up to now accomplished by experts in ASP and no end users. This lack will become
a true bottleneck once ASP would principally be ready for real applications.

So, let’s make our hands dirty and get inspired!
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Abstract. The strength of answer set programming (ASP) lies in solving compu-
tationally challenging problems declaratively, and hopefully efficiently. A similar
goal is shared by two other approaches, SAT and Constraint Programming (CP).
As future applications of ASP hinge on its underlying solving techniques, in this
note, I will briefly comment on the related techniques, and argue for the need
of ASP systems to integrate with state-of-the-art techniques for constraint solv-
ing, and in general to serve as the core reasoning engine to glue other logics and
reasoning mechanisms together.

1 Constraint Solving Paradigms

Started in the field of Operations Research, an optimization/search problem can be spec-
ified in forms of mathematical expressions, and an implemented system is responsible
for efficient computation of solutions.

A similar goal is shared by SAT and CP. In this note, by CP, I mean the systems
that implement the Constraint Satisfaction Problem (CSP). This includes various CSP
packages and CP languages developed by the CSP/CP community, and Constraint Logic
Programming over finite domains (CLP(FD), or just CLP).

SAT in a simple language, and SAT solvers are generally regarded as black-boxes. A
standard language plus the state-of-the-art DPLL architecture allows the SAT research
to focus on a small number of issues, and (it is often said) a competitive SAT solver can
be implemented under a thousand lines of code. Revolutionized by Chaff around 2000,
there are now standard techniques for complete SAT solvers, including activity-based
heuristics, the (right) conflict analysis mechanism, two-watched literals, and restarts.

As the underlying solving techniques have a direct impact on potential applications,
let’s recall the parallels between SAT and ASP. ASP may be said as a variant of SAT,
though a very distinct one. While SAT deals with clauses, ASP expresses Clark’s pred-
icate completion satisfying loop formulas [6]. This parallel is so striking that the loop
formulas are rarely needed in practical applications. In fact, a huge majority of nor-
mal programs written for benchmarks and applications are just 2-literal programs [4],
where a (ground) rule consists of at most two literals. In this case, completion can be
translated to clauses rather directly. It is therefore not a surprise that the key techniques
in more recent improvements to ASP solvers are largely adopted from those of SAT and
related techniques. This trend is expected to continue.

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 634–636, 2009.
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The expectations of ASP are somewhat different from those of SAT. The goal of
declarative knowledge representation and problem solving calls for a wider scope of
investigation, from grounding to incorporation of disjunction, functions, aggregates,
abstract constraints, probabilities, etc. While SAT mainly focuses on a uniform but low
level language, ASP attempts to address declarative knowledge representation from all
angles. As a result, ASP languages are more expressive and easier to use.

As a variant of SAT, ASP is also weak on the handling of numeric constraints and
some of the computational tasks that seem to have a natural mapping to constraints
in the sense of CP, e.g., for scheduling tasks. Let me cite two examples. One is the
Channel Routing Problem proposed by Neng-Fa Zhou for the 2nd ASP Competition;
for a typical weight program encoding, ASP solvers are competitive for unsatisfiable
instances, but for satisfiable ones the best ASP solvers are orders of magnitude slower
than a B-Prolog solution. Although grounding in this case is a significant factor, the
statement still holds even if the grounding time is discounted.1 Another representative
example is the so-called Newspapers Problem, which schedules a number of readers to
finish reading a number of papers at an earliest possible time, where the key constraints
are that no reader can read more than one paper at a time and no paper can be read by
more than one reader at a time. For a weight program encoding, grounding can be done
fairly efficiently. But for the computation of answer sets, ASP solvers can be orders of
magnitude slower than a typical CLP implementation (e.g., Sicstus Prolog2).

In comparison, CP possesses powerful modeling features, typically in the form of
global constraints and a rich set of constraint handling techniques. However, besides the
tuning issues associated with various domain reduction techniques, a problem for CP is
the lack of a standard language, or the lack of consensus of what such a language should
be. A constraint is a relation, but how such a relation is defined in a language may differ
in different implementations. Although some uniformity is agreed upon for CLP(FD),
there are some difficulties for how such (possibly recursively) defined relations may
be decomposed into a constraint store. In my experience, this had made it harder to
program in CLP than in ASP, at least for ordinary users.3 Furthermore, some problems
do not seem to have a natural encoding in CP. One example is the planning problem,
where the current practice (cf. [2]) is to specify a skeleton of a plan, which is a list of
states each of which consists of fluents that either hold or do not hold in the state. One
may argue that reasoning with constraints over {0, 1}-domains is not the strength of a
CP’s search engine.

For a recent comparative study on SAT vs. CP, see [1].

2 An Embedded Approach

To summarize the discussion so far, we conclude that (1) For declarative problem solv-
ing, ASP stands out as a very promising approach, but the underlying solver techniques
may continue to draw lessons from SAT and related techniques; and (2) ASP can benefit
from integrating with other techniques especially from constraint solving.

1 The findings reported here were discovered experimentally by Rei Thiessen.
2 The experiments were due to Guohua Liu.
3 The author has taught CLP in a senior undergraduate course and ASP in a graduate course.
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Thanks to the formulation of logic programs with abstract constraints [7] and the
recent extension to handle arbitrary abstract constraints [10], one framework for such an
integration may already be laid out. Essentially, constraints of all sorts, whenever they
can be specified by a domain and a set of admissible solutions, can be embedded into a
logic program. Such a constraint may be pre-defined/built-in, or a global constraint that
comes with a special dedicated propagator or an efficient solver.

The problem of integrating user-defined constraints into ASP is trickier. One ap-
proach is to design a new ASP language, where interface predicates can be explicitly
defined by the user, or identified by the system [8]. In the approach of [5], the user
writes a logic program with functions which is translated to an instance of CSP so that
the answer sets can be computed by a CSP solver. One immediate benefit is that CSP
facilities, such as global constraints, become accessible to ASP. It remains to be seen
whether the approach can be lifted to a model of integration.

In theory, the embedded approach is powerful enough to embed anything that can
be expressed as constraints. For example, it is recently discovered that the approach
of [3] to embed description logics into ASP can be seen as a case of logic programs
with constraint atoms under the default approach of [9]. The idea of the embedded
approach is closely related to that of CLP Scheme and the more recent development
on Satisfiability Modulo Theories. I fully anticipate that future ASP systems will be
capable of embedding various logics and reasoning facilities, thus serving as the core
reasoning engine to glue various reasoning mechanisms together.
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Abstract. This paper reports on the Second Answer Set Programming Competi-
tion. The competitions in areas of Satisfiability checking, Pseudo-Boolean con-
straint solving and Quantified Boolean Formula evaluation have proven to be a
strong driving force for a community to develop better performing systems. Fol-
lowing this experience, the Answer Set Programming competition series was set
up in 2007, and ran as part of the International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR). This second competition, held
in conjunction with LPNMR 2009, differed from the first one in two important
ways. First, while the original competition was restricted to systems designed for
the answer set programming language, the sequel was open to systems designed
for other modeling languages, as well. Consequently, among the contestants of
the second competition were a CLP(FD) team and three model generation sys-
tems for (extensions of) classical logic. Second, this latest competition covered
not only satisfiability problems but also optimization ones. We present and dis-
cuss the set-up and the results of the competition.

1 Introduction

In many real-life problems, we search for objects of complex nature — plans, sched-
ules, assignments. Several research areas within computer science, operations research
and mathematics are concerned with the development of systems that compute such
objects from their specifications. Researchers in these areas design and study languages
to describe objects of interest, as well as algorithms to extract them from these descrip-
tions. Depending on the language and the area, such objects are called “answer sets”,
“valuations”, “structures”, “interpretations”, “functions” or “arrays”. Answer Set Pro-
gramming (ASP), propositional Satisfiability (SAT) and Constraint Programming (CP)
are arguably the three most prominent areas developing such languages and techniques.

In the context of logic, it is often the case that once constraints on objects to search
for are given as formulas (rules), models of the resulting theory determine answers to
the search problem — objects satisfying the constraints. For instance, each model of
a theory specifying a scheduling domain typically defines a correct schedule. Thus,

E. Erdem, F. Lin, and T. Schaub (Eds.): LPNMR 2009, LNCS 5753, pp. 637–654, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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a model generator applied to such a theory will solve the corresponding scheduling
problem. This idea of model generation as a declarative problem solving paradigm has
been pioneered in the area of ASP [1,2,3].

ASP has three fundamental characteristics: a modeling language based on the syn-
tax of logic programs, the use of the answer set semantics [4] to interpret programs
in that language, and a problem-solving methodology in which a program is written
so that its answer sets provide solutions. ASP has its origins in Logic Programming
(LP) [5,6], in particular in the attempts in the 1980s to develop a declarative semantics
for logic programs with negation and to turn this logic into a formalism suitable for
knowledge representation. Gelfond and Lifschitz sought inspiration in nonmonotonic
reasoning [7,8] and proposed to interpret logic programs as special default theories un-
der the semantics of Reiter [8]. Based on this view, they developed the stable model
semantics for logic programs [9], and extended it later to the answer set semantics for
disjunctive logic programs with classical negation [4], which is the core ASP language
today.

The area made a major leap in 1997, when the first two systems to compute an-
swer sets of logic programs were developed: dlv [10] and smodels [11]. These systems
demonstrated that effective tools for processing answer set programs are possible. Fol-
lowing that, in 1999, Marek and Truszczyński [1] and Niemelä [2] proposed answer set
computation as a new declarative problem solving paradigm, and Lifschitz dubbed the
area answer set programming [12]. It turned out that a rich class of problems could be
modeled elegantly as answer set programs according to this paradigm. That became a
strong driving force for the development of fast computational techniques in ASP, and
for studies of practical applications where the ASP tools could be used effectively.

Experience in areas concerned with checking propositional or Pseudo-Boolean (PB)
satisfiability and evaluating Quantified Boolean Formulas (QBF) shows that a program-
ming competition gives an effective incentive to the research community to work on
developing better performing systems. ASP sought to emulate that experience. The first
preliminary competitions for ASP systems were held in 2002 and 2005 at two Dagstuhl
meetings [13]. In 2007, the First Answer Set Programming System Competition [14]
was organized as part of LPNMR. That competition consisted of four tracks. In three
tracks, solvers were tested on prespecified answer set programs. In the SCore-v and
SCore tracks, input consisted of a ground logic program, respectively with and without
disjunction; in the SLparse track, the programs used lparse’s output language (includ-
ing aggregates). In the fourth track, called Model, Ground, Solve (MGS), contestants
encoded problems in a language of their choice. Ten teams competed. The clasp solver
won the SCore and SLparse tracks, and the competition version of dlv won in SCore-v
and MGS.

In the past two years, some important developments have occurred in ASP. First,
as it is clear from the results of the second ASP competition (see Section 5), exist-
ing systems have improved considerably, both in available language features and in the
speed of the solvers. In addition, new systems have been built, and more teams com-
peted. Clearly, the first ASP competition has had its desired effect! Second, the ASP
community has been gradually opening up to other domains. The fields of SAT [15],
SAT Modulo Theories (SMT) [16], CP [17] and, in some way, also Abductive Logic
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Programming (ALP) [18] are in one key respect very close to ASP. Namely, the ASP
declarative problem solving paradigm does not depend on the answer set programming
language but applies to and, in fact, has been used with other declarative languages too.
For example, Mitchell and Ternovska [19] proposed to use model expansion (a form of
model generation) for (extensions of) first-order logic as a declarative problem solving
paradigm for NP search problems. (Ground) abduction in ALP is similar to model gen-
eration [18], and integrations of ALP and CLP have been used for planning, scheduling
and constraint solving problems [20,21]. Moreover, workshops organized by the ASP
community such as Answer Set Programming and Other Computing Paradigms (AS-
POCP), held in conjunction with the International Conferences on Logic Programming
in Udine in 2008 and Pasadena in 2009, and Logic and Search (LaSh), held in Seattle in
2006 and Leuven in 2008, explicitly aimed to bring together researchers from all fields
that share the problem solving methodology based on model generation.

The Second Answer Set Programming Competition, organized in conjunction with
LPNMR 2009, further fortified this trend. Having a competition that would be open not
only to the ASP community but also to the communities of SAT, LP, CP, etc. was an
important objective of the program committee, and a key condition for accepting the
charge of organizing it put forth by the members of the Knowledge Representation and
Reasoning (KRR) group at the K.U. Leuven. The underlying idea was that only such
an open competition can lead to progress and result in new insights into the strengths of
different technologies in the context of diverse applications. An important ramification
was that the competition had to be restricted to the Model and Solve track, as only that
mode allows teams using tools based on different languages and logics to compete. On
the other hand, the scope of the competition was expanded to include not only decision
problems but also optimization ones.

The first step in organizing the competition was to collect benchmarks — specific
problems together with sets of instances. Many researchers contributed, and we grate-
fully acknowledge their efforts. In total, we received 38 benchmarks, nine of which were
optimization problems. Most benchmarks came from ASP researchers, some came from
the Constraint Logic Programming (CLP) [22] community. We split these benchmarks
into four categories: the P decision class consisting of polynomially solvable decision
problems, the NP decision class consisting of decision problems in NP not known to be
polynomially solvable, the global decision class consisting of all problems in the first
two groups and of one Σp

2 -complete problem and, finally, the optimization class.
The competition was a success. Sixteen teams competed, with nine of them for the

first time! Twelve teams used the ASP language and tools. The call for participation
to other communities had limited success. Three teams, Enfragmo, IDP and amsolver,
used model generators/expanders for first-order logic extended with aggregates, arith-
metic and, in the case of IDP and amsolver, also with inductive definitions. However,
the amsolver team competed only on eight benchmarks. One team, BPSolver-CLP(FD),
led by Neng-Fa Zhou, used the CLP(FD) solver B-Prolog. There were no SAT, PB nor
SMT participants, but SAT, PB or SMT solvers were used in many systems.

It is important to note that the second ASP competition had a policy of openness
about benchmark solutions (programs encoding problem specifications). Several teams
made their codes publicly available, allowing other teams to profit from their efforts.
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For example, at least eight teams used the benchmark solutions by the Potassco team
available at [23].

The paper is organized as follows. In the next section, we give an outline of the com-
petition and specify its format. In Section 3, we discuss the collection of benchmarks,
the ranking system and the competition platform. In Section 4, we introduce the teams
that competed. We present the results in Section 5. Finally, we close by summarizing our
experience and outlining potential future improvements. For more detailed information
on the results of this competition, we refer to [24].

2 Outline of the Competition

The second ASP competition had one track, referred to as Model and Solve, and in-
cluded both decision and optimization problems.

The first step of the competition was a call for submitting benchmark problems. This
call was sent to research communities of ASP, LP, SAT and CP. Benchmark authors
were invited to provide an (informal) problem description, input and output predicates,
a set of instances and a checker program to verify the correctness of solutions (see
Section 3 for details).

Contributed benchmarks were then evaluated by the organizers and the program
committee (from now on referred to simply as organizers). The overall benchmark pool
was a mixture of many diverse decision problems and several optimization problems.
There were fundamental differences between decision benchmarks, and some seemed
to favor particular types of systems quite strongly. To understand better which features
were useful for particular types of problems, the organizers decided to split decision
benchmarks into the following sub-categories:

Decision-in-P class: Problems that can be solved in polynomial time. While they are
simple, the challenge is the sheer size of the instances requiring highly optimized
grounding techniques.

Decision-in-NP class: Problems that are in NP but are not known to be in P. They are
the problems that require highly effective search algorithms.

Decision-global class: Problems from the previous two groups and one Σp
2 -complete

problem, the well-known Strategic Companies problem. The goal of this category
is to evaluate solving systems with respect to both their grounding and search ef-
fectiveness on a broad range of problems of varying complexity.

In the competition, each team was to solve each benchmark problem for several in-
stances. To this end, each team had to submit a script for each benchmark on which the
team wanted to compete. This script was to call the solver and apply it to the benchmark
encoding and a problem instance given through standard input. During the competition,
this script was called repeatedly for each instance of the benchmark.

For both decision and optimization problems, a problem instance was represented as
a sequence of atomic clauses (an atom followed by a period) over predicates from the
input vocabulary. The output depended on the type of problem:

Decision problems: The script should write the following to standard output:
– UNSATISFIABLE, if the instance has no solution.
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– A sequence of atomic clauses in the output vocabulary, if the instance is satis-
fiable. Such a sequence should represent a ”witness” to the satisfiability of the
instance, that is, it should be the set of atoms over the output predicates in an
answer set or model (for first-order logic formalisms) determining a solution
for the instance. The format is the same as with the input except that it must
not contain line breaks.

– UNKNOWN, if the solver decides to give up before timeout.

Optimization problems: The script should output the following:
– UNSATISFIABLE, in case of an unsatisfiable instance.
– A series of witnesses of the search problem, if the instance is satisfiable. The

format of a witness is the same as for decision problems. Witnesses are sepa-
rated by line breaks. The last (and hopefully best) witness is considered as the
generated solution.

– OPTIMUM FOUND, if the instance is satisfiable and the solver can ascertain
the optimality of the last produced witness.

Remark. The use of separate scripts for different benchmarks gives teams the freedom
to fine-tune parameter settings to specific benchmarks, or even to use different solvers.
During the installation phase of the competition, this raised some controversy among
the participants. Our point of view is that for an open competition, there is no option
but to offer this freedom. For example, a SAT team should have the freedom to develop
for each benchmark a program to compute the CNF theory corresponding to an in-
stance. However, only two teams, Potassco and BPSolver-CLP(FD) made extensive use
of the facility to tune systems towards benchmarks. Potassco used various grounders
and solvers, with different parameter settings. The BPSolver-CLP(FD) team used B-
Prolog’s control structures to implement various labeling strategies. Other teams used
the same combination of systems and parameters for all decision problems and for all
optimization problems. This distinction is relevant for the interpretation of the compe-
tition results and will be taken into account in Section 5.

3 Benchmarks

The collected benchmarks constitute the result of efforts by many researchers, mostly
from the ASP community; some were provided by the BPSolver-CLP(FD) team. The
author(s) of a benchmark problem provided us with the following information:

– a clear non-ambiguous (informal) problem description,
– a specification of the input and output vocabulary,
– for optimization problems, an integer-valued cost function to be minimized,
– a set of instances,
– a checker program to test the correctness of witnesses and, for optimization prob-

lems, to additionally compute the cost.

Verifying unsatisfiability of an NP-hard decision problem or optimality of a witness of
an NP-hard optimization problem is intractable in general (assuming the polynomial
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Table 1. Benchmarks of the Second Answer Set Programming Competition

Benchmark Class Contributors #Instances

HydraulicPlanning Decision,P M. Gelfond, R. Morales and Y. Zhang 15
HydraulicLeaking Decision,P M. Gelfond, R. Morales and Y. Zhang 15
CompanyControls Decision,P Mario Alviano 15
GrammarBasedInformationExtraction Decision,P Marco Manna 29
Reachability Decision,P Giorgio Terracina 15
BlockedNQueens Decision,NP G. Namasivayam and M. Truszczyński 29
Sokoban Decision,NP Wolfgang Faber 29
15Puzzle Decision,NP L. Liu, M. Truszczyński and M. Gebser 16
HamiltonianPath Decision,NP L. Liu, M. Truszczyński and M. Gebser 29
SchurNumbers Decision,NP L. Liu, M. Truszczyński and M. Gebser 29
TravellingSalesperson Decision,NP L. Liu, M. Truszczyński and M. Gebser 29
WeightBoundedDominatingSet Decision,NP L. Liu, M. Truszczyński and M. Gebser 29
Labyrinth Decision,NP Martin Gebser 29
GeneralizedSlitherlink Decision,NP Wolfgang Faber 29
HierarchicalClustering Decision,NP G. Namasivayam and M. Truszczyński 12
ConnectedDominatingSet Decision,NP G. Namasivayam and M. Truszczyński 21
GraphPartitioning Decision,NP G. Namasivayam and M. Truszczyński 13
Hanoi Decision,NP G. Namasivayam, M. Truszczyński and G. Terracina 15
Fastfood Decision,NP Wolfgang Faber 29
WireRouting Decision,NP G. Namasivayam and M. Truszczyński 23
Sudoku Decision,NP Neng-Fa Zhou 10
DisjunctiveScheduling Decision,NP Neng-Fa Zhou 10
KnightTour Decision,NP Neng-Fa Zhou 10
ChannelRouting Decision,NP Neng-Fa Zhou 11
EdgeMatching Decision,NP Martin Brain 29
GraphColouring Decision,NP Martin Brain 29
MazeGeneration Decision,NP Martin Brain 29
Solitaire Decision,NP Martin Brain 27
StrategicCompanies Decision,Σp

2 M. Alviano, M. Maratea and F. Ricca 17
GolombRuler Optimization Martin Brain 24
MaximalClique Optimization Johan Wittocx 29
15PuzzleOptimize Optimization L. Liu, M. Truszczyński and M. Gebser 16
TravellingSalespersonOptimize Optimization L. Liu, M. Truszczyński and M. Gebser 29
WeightBoundedDominatingSetOptimize Optimization L. Liu, M. Truszczyński and M. Gebser 29
LabyrinthOptimize Optimization Martin Gebser 28
SokobanOptimize Optimization Wolfgang Faber 29
FastfoodOptimize Optimization Wolfgang Faber 29
CompanyControlsOptimize Optimization Mario Alviano 15

hierarchy does not collapse). For this reason, checkers only had to test the correctness
of witnesses, and not of the answers UNSATISFIABLE or OPTIMUM FOUND.

Table 1 gives an overview of all benchmarks of the competition. For each problem,
the entry specifies the author(s), the category and the number of instances used in the
competition.

3.1 Detecting Errors

A team was disqualified for a benchmark as soon as an error was detected for one of the
benchmark instances. As we wrote before, checker programs did not test correctness
of UNSATISFIABLE and OPTIMUM FOUND. To check the correctness of those
answers, we used the following incomplete strategy. An erroneous UNSATISFIABLE
answer for an instance is reported if another solver finds a correct witness. An erroneous
OPTIMUM FOUND answer for an instance is reported if another solver finds a strictly
better solution. This method can only detect an erroneous UNSATISFIABLE answer
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if at least one solver finds a correct witness. A similar comment holds for erroneous
OPTIMUM FOUND answers.

3.2 Ranking System

Ranking on decision problems. The ranking system for the three decision problem
tracks is very similar to the one used in the first ASP competition. The primary criterion
is the number of instances solved. For each problem instance of each benchmark, the
teams are given a time bound of 600 seconds to solve the instance. Each participant is
assigned points according to the number of instances that can be solved within this time
bound. For each benchmark, a team is awarded points as follows:

– No points, if the solver makes an error on one of the instances of the benchmark.
– Otherwise, 20(S/N) points, where S is the number of instances solved by the team

and N is the number of instances of this benchmark that were solved by at least
one team.

This boils down to the weighted sum over solved instances, the weight of a solved
instance from a particular benchmark being 1/N , where N is the number of instances
of this benchmark that were solved by at least one team. By defining weights in this way
(normalizing with respect to the total number of instances solved within a benchmark),
the method prevents benchmarks with (very) many instances from dominating the score.

Ties are resolved by comparing actual running time where, for UNKNOWN an-
swers, the timeout time is taken as the running time. During the competition, system
failures frequently occurred, most often due to systems running out of memory. When
a system failure occurred on an instance, it was treated as an UNKNOWN answer and
assigned the timeout time as the running time.

Ranking on optimization problems. The ranking of teams on optimization problems
depends on the quality of the solution they find. We recall that each problem has a cost
function mapping a solution to an integer. Solutions with minimal cost are desirable for
each instance. The checker programs of the optimization problems not only check the
correctness of a witness for an instance, but also compute its cost. Teams are awarded
points proportionally to the distance between the cost of the returned solution and the
lowest cost of any solution found by any team. Ties are resolved according to the run-
ning time. Extra points are given to systems that correctly (or not incorrectly) return the
keyword OPTIMUM FOUND.

A team could earn 100 points per instance of a benchmark. These points were dis-
tributed as follows:

– No points, if the solver makes an error on one of the instances of the benchmark.
– 100 points, if the solver correctly outputs UNSATISFIABLE.
– If the solver produces a correct witness:

• it is awarded an initial 25 points;
• in addition, it can receive up to 50 points for the quality of the solution. Let

M be the lowest cost of a solution that was produced by any solver for this
instance. If the cost of the solution produced by the team is Q, then the team is
awarded 50(M/Q) points;
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• in addition, 25 points are awarded if the solver correctly outputs OPTIMUM
FOUND.

The ranking score for this category is a weighted sum of the earned points. The weight
for an instance in a benchmark is 1/N , where N is the number of solved instances
from that benchmark (by any team). This is done to prevent a disproportionate effect
benchmarks with many instances might otherwise have on the scores.

Global rankings. We also used two global rankings: one for all decision problems, and
another one for all decision and optimization problems. The weighting of individual de-
cision benchmarks within the global decision category is calculated in the same fashion
as described above. The global ranking awards each team a score that is the average
of its score for the global decision raking and its score for the optimization ranking
(divided by 100). This gives equal importance to both categories of the competition.

3.3 Competition Software and Platform

The competition was run on a pool of computers of the DTAI research group of the K.U.
Leuven. The system consisted of one network server through which participants could
login via ssh, one database server for storing state and results, and a pool of five identical
Linux machines reserved for the competition and only accessible through the network
server. One of these machines was reserved for participants to install and test solutions,
while the other four served for the actual testing of solvers on benchmark instances.
The system was installed and maintained by the system group of the Computer Science
Department of the K.U. Leuven, in particular Bart Swennen and Kris Vangeneugden.

The competition software was derived from software that had been developed for
De Vlaamse Programmeerwedstrijd1 (the Flemish Programming competition) by Pieter
Wuille (PhD student of DTAI). Pieter helped us greatly by adapting, maintaining and
running the benchmarking software for this competition.

The operation mode of the competition system can be sketched as follows. When
a team submits a benchmark solution to the competition server, the latter registers it
in its database. The competition software maintains identical copies of all submitted
solvers and benchmarks on the four competition machines. The tests of the instances
are controlled by the database server and four client processes that run on the four test
machines. Each client process requests a task from the database server. The task con-
sists of executing a submitted benchmark script on an instance. The database server
distributes the tasks and maintains their status and the obtained results. When a client
process is assigned a task, it executes it with limited time and memory. When the bench-
mark script returns a witness, the checker script is called on it. For optimization prob-
lems, the checker program is called on the last generated witness. The client process
collects all necessary data (time, correctness of witness, system error, timeout), sends
the data to the database server and requests a new task.

The five competition machines had identical hardware and software. The installed
Linux version was Kubuntu Hardy (8.04). The details of the hardware are: Dell OptiPlex
745 (1 CPU with 2 cores: GenuineIntel Intel(R) Core(TM)2 CPU 6600 2.40GHz), 4096 MB

1 http://www.vlaamseprogrammeerwedstrijd.be/?page=main
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RAM (4x1024 MB 667 MHz 1.5 ns), Disk capacity 160 GB (model ATA ST3160815AS 3.AD).
Although these machines have two cores, the choice was made to use only one core per
task and per computer. Thus, effective parallelism was impossible. Benchmark solutions
were executed with a timeout of 600 seconds and a memory limit of 2.79 GB RAM.

4 Competitors

Sixteen teams registered with participants from more than fifteen universities. Each
team was assigned a user account on a competition machine. Solvers and benchmark
solutions were installed from 1/4/2009 till 15/5/2009 (and later). Most participants did
not submit solutions for all benchmarks, often because of limitations of their systems.
For instance, only four teams proposed a solution for the Strategic Companies problem
(a Σp

2 -complete problem). Some groups submitted multiple systems: Potsdam joined
with two teams each using multiple systems, Helsinki (TKK) with three systems, and
a team uniting the forces of researchers at the universities of Kentucky and of Texas at
Tyler and at Microsoft also submitted three different systems.

The first ASP systems, dlv and (a direct descendant of) smodels, were still in the com-
petition and scored very well. The Smodels-IE solver is an updated version of smodels
developed at the University of Bath. A variety of languages and of solver techniques
were present in the competition. As for the languages, twelve teams used different di-
alects of ASP, three used extensions of first-order logic, and one team used B-Prolog
with CLP(FD) and a planning preprocessor.

Five teams (Potassco, DLV, Claspfolio, Smodels-IE, ASPeRiX) participated with
“native” ASP solvers, the one of ASPeRiX performing grounding on the fly, without a
separate grounder. Other teams used a variety of back-ends: existing or modified SAT
solvers (IDP, CMODELS, SUP, Enfragmo, LP2SAT+MINISAT, sabe), SMT solvers
(LP2DIFF+BCLT, LP2DIFF+YICES), a PB solver (pbmodels) and a new solver for
propositional logic with weight constraints (amsolver). Eight teams used the grounder
gringo and the benchmark solutions available at the Asparagus system [23].

Table 2. Participating teams and systems

Team Affiliation Language Systems

IDP K.U. Leuven, KRR FO(·) idp (gidl + minisatid)

Potassco U. of Potsdam ASP
clasp, claspd, gringo, clingo,
iclingo, clingcon, bingo

DLV U. of Calabria ASP dlv
Claspfolio U. of Potsdam ASP gringo + clasp
Smodels-IE U. of Bath ASP gringo + smodelsie
ASPeRiX U. of Angers ASP asperix
CMODELS U. of Texas at Austin ASP gringo + cmodels
SUP U. of Texas at Austin ASP gringo + sup

BPSolver-CLP(FD) International B-Prolog team CLP(FD) bprolog (tabling, CLP(FD), Bfd
mv )

Enfragmo Simon Fraser U., Computational Logic Laboratory FO(·) enfragmo (grounder + SAT solver)
LP2DIFF+BCLT Helsinki U. of Technology (TKK) ASP gringo + smodels + lp2diff + bclt
LP2SAT+MINISAT Helsinki U. of Technology (TKK) ASP gringo + smodels + lp2exp + minisat
LP2DIFF+YICES Helsinki U. of Technology (TKK) ASP gringo + smodels + lp2diff + yices
pbmodels U. of Kentucky, U. of Texas at Tyler, Microsoft ASP pbmodels (uses minisat+)
sabe U. of Kentucky, U. of Texas at Tyler, Microsoft ASP sabe (uses minisat)
amsolver U. of Kentucky, U. of Texas at Tyler, Microsoft FO(·) amsolver
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Table 3. Submitted benchmark solutions per team

Decision in P Decision in NP Σp
2 Optimization

Team H
yd

ra
ul

ic
Pl

an
ni

ng
H

yd
ra

ul
ic

L
ea

ki
ng

C
om

pa
ny

C
on

tr
ol

s
G

ra
m

m
ar

B
as

ed
In

fo
rm

at
io

nE
xt

ra
ct

io
n

R
ea

ch
ab

ili
ty

B
lo

ck
ed

N
Q

ue
en

s
So

ko
ba

n
15

Pu
zz

le
H

am
ilt

on
ia

nP
at

h
Sc

hu
rN

um
be

rs
T

ra
ve

lli
ng

Sa
le

sp
er

so
n

W
ei

gh
tB

ou
nd

ed
D

om
in

at
in

gS
et

L
ab

yr
in

th
G

en
er

al
iz

ed
Sl

ith
er

lin
k

H
ie

ra
rc

hi
ca

lC
lu

st
er

in
g

C
on

ne
ct

ed
D

om
in

at
in

gS
et

G
ra

ph
Pa

rt
iti

on
in

g
H

an
oi

Fa
st

fo
od

W
ir

eR
ou

tin
g

Su
do

ku
D

is
ju

nc
tiv

eS
ch

ed
ul

in
g

K
ni

gh
tT

ou
r

C
ha

nn
el

R
ou

tin
g

E
dg

eM
at

ch
in

g
G

ra
ph

C
ol

ou
ri

ng
M

az
eG

en
er

at
io

n
So

lit
ai

re
St

ra
te

gi
cC

om
pa

ni
es

G
ol

om
bR

ul
er

M
ax

im
al

C
liq

ue
15

Pu
zz

le
O

pt
im

iz
e

T
ra

ve
lli

ng
Sa

le
sp

er
so

nO
pt

im
iz

e
W

ei
gh

tB
ou

nd
ed

D
om

Se
tO

pt
im

iz
e

L
ab

yr
in

th
O

pt
im

iz
e

So
ko

ba
nO

pt
im

iz
e

Fa
st

fo
od

O
pt

im
iz

e
C

om
pa

ny
C

on
tr

ol
sO

pt
im

iz
e

IDP y y n y y y y y y y y y y y y y y y y y y y y y y y y y n y y y y y y y y n
Potassco y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y

DLV y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y
Claspfolio y y y y y y y y y y y y y y y y y y y y y y y y y y y y n y y y y y y y y y

Smodels-IE y y y n y y y y y y y y y y y y y y y y y y y y y y y y n y y y y y y y y y
ASPeRiX y y n y y y y y n y n n n n n n n y n n y y n y n n n n n n n n n n n n n n

CMODELS y y y y y y y y y y y y y y y y y y y y y y y y y y y y y n n n n n n n n n
SUP y y y y y y y y y y y y y y y y y y y y y y y y y y y y n n n n n n n n n n

BPSolver-CLP(FD) y y y y y y n y y y y y n y y y y y y y y y y y y y y y y y y y y y n n y y
Enfragmo y y y n y y n y y y y y n y y y y y y n y y y n y y n y n n y n n n n n n n

LP2DIFF+BCLT y y y n y y y y y y y y y y y y y y y y y y y y y y y y n n n n n n n n n n
LP2SAT+MINISAT y y y n y y y y y y y y y y y y y y y y y y y y y y y y n n n n n n n n n n
LP2DIFF+YICES y y y n y y y y y y y y y y y y y y y y y y y y y y y y n n n n n n n n n n

pbmodels y y n n y y y y y y y y n y y y y y y y y n y y y y y y n y n n n n n y n n
sabe y y n n y y y y y y y y n y y y y y y y y n y y y y y y n y n y n n n y n n

amsolver n n n n n y n n y y y n n n y y n n n n y n n n n y n n n n n n n n n n n n

The teams and their systems are summarized in Table 2. Many teams did not partic-
ipate on all benchmarks. Table 3 specifies the benchmarks on which teams competed.

5 Results

This section presents the results of the Second Answer Set Programming System Com-
petition. For each category of decision problems, we report the score of each team,
the number of solved instances, and the total time. For the optimization category, we
report the score and total time per participating team. In the rankings, distinction is
made between single-system and multi-system teams. The latter used multiple sys-
tems/parameter settings for different benchmarks and are marked by *. More statistics
and details are available at [24].

Before actually giving the results, we would like to warn the reader to be careful in
interpreting them. Below, we point out the most important issues:

– The score is a weighted sum of numbers of solved instances per benchmark. Solv-
ing an instance of a benchmark with a large number of instances has a smaller con-
tribution than solving one of a benchmark with fewer instances. Thus, it is possible
that one team solves more instances but has a smaller score than another team. The
weights were introduced to prevent benchmarks with many instances from domi-
nating the competition.
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– Most teams did not participate on all benchmarks. The only teams that participated
on all benchmarks are Potassco and DLV. When a benchmark solution was missing,
a team was assigned score 0 and 600 seconds time per instance. Consequently, the
rankings of teams for which benchmark solutions were missing may not give an
accurate account of the quality of their systems. We refer to [24] for detailed data
per benchmark.

– Fine-tuning a benchmark solution (for instance, by adding certain redundant con-
straints) may have a major impact on speed. Not all teams were in a position to
spend the same amount of time and care on this, which complicates an objec-
tive comparison between different solvers. This factor is not significant among the
teams that used the encodings available at [23]: Potassco, Claspfolio, CMODELS,
SUP, Smodels-IE, LP2DIFF+BCLT, LP2SAT+MINISAT and LP2DIFF+YICES.

5.1 Decision Problems: NP

Benchmarks in this track belong to NP and are not known to be in P. These problems
require that solvers search quickly through large search spaces.

The winners in this category are:

FIRST PLACE WINNER Potassco∗

SECOND PLACE WINNER Claspfolio FIRST SINGLE-SYSTEM TEAM

THIRD PLACE WINNER CMODELS SECOND SINGLE-SYSTEM TEAM

IDP THIRD SINGLE-SYSTEM TEAM

The ranking of all teams is provided in Figure 1. Figure 2 gives a comprehensive graph-
ical overview of the results of all systems. The x-axis represents the number of (solved)
benchmark instances, and the y-axis represents the maximum time needed for solving
one of these. To compute this plot, the instances solved by each team were ordered ac-
cording to running times, and a point (x, y) in the chart expresses that the xth instance
was solved in y seconds. The more to the right the curve of a team ends, the more
benchmark instances were solved within the allocated time and space.

Place Team Score #Solved Time

1 Potassco∗ 0.97 491 / 516 = 95% 021253
2 Claspfolio 0.89 451 / 516 = 87% 049513
3 CMODELS 0.85 434 / 516 = 84% 072283
4 IDP 0.83 409 / 516 = 79% 077428
5 LP2SAT+MINISAT 0.82 430 / 516 = 83% 075883
6 SUP 0.80 405 / 516 = 78% 083749
7 DLV 0.76 391 / 516 = 75% 100496
8 LP2DIFF+BCLT 0.73 378 / 516 = 73% 108715
9 LP2DIFF+YICES 0.72 373 / 516 = 72% 096989
10 Smodels-IE 0.61 309 / 516 = 59% 137300
11 Enfragmo 0.59 291 / 516 = 56% 156298
12 BPSolver-CLP(FD)∗ 0.57 274 / 516 = 53% 155559
13 pbmodels 0.44 214 / 516 = 41% 201563
14 sabe 0.40 203 / 516 = 39% 215250
15 amsolver 0.12 83 / 516 = 16% 265833
16 ASPeRiX 0.12 32 / 516 = 06% 293363

Fig. 1. Decision problems in NP: Ranking Fig. 2. Decision problems in NP: Plot
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Place Team Score #Solved Time

1 Potassco∗ 1.00 89 / 89 = 100% 00735
2 BPSolver-CLP(FD)∗ 1.00 89 / 89 = 100% 01342
3 DLV 1.00 89 / 89 = 100% 04861
4 Claspfolio 0.80 60 / 89 = 67% 17982
5 Smodels-IE 0.80 60 / 89 = 67% 18021
6 LP2SAT+MINISAT 0.80 60 / 89 = 67% 18270
7 SUP 0.80 60 / 89 = 67% 18606
8 LP2DIFF+BCLT 0.80 60 / 89 = 67% 18713
9 CMODELS 0.80 60 / 89 = 67% 19072

10 LP2DIFF+YICES 0.78 59 / 89 = 66% 18864
11 Enfragmo 0.76 57 / 89 = 64% 24157
12 ASPeRiX 0.69 66 / 89 = 74% 18051
13 IDP 0.54 41 / 89 = 46% 29594
14 sabe 0.41 31 / 89 = 34% 36426
15 pbmodels 0.38 29 / 89 = 32% 36656
16 amsolver 0.00 00 / 89 = 0% 53845

Fig. 3. Decision problems in P: Ranking Fig. 4. Decision problems in P: Plot

5.2 Decision Problems: P

Problems in this class are polynomially solvable. Difficulty in solving them stems from
the sheer size of the instances, which grounders may not be able to handle.

The winners in this category are:

FIRST PLACE WINNER Potassco∗

SECOND PLACE WINNER BPSolver-CLP(FD)∗

THIRD PLACE WINNER DLV FIRST SINGLE-SYSTEM TEAM

Claspfolio SECOND SINGLE-SYST. TEAM

Smodels-IE THIRD SINGLE-SYSTEM TEAM

The results for all teams are presented in Figure 3 and in Figure 4.

5.3 Decision Problems: Global

This track consists of all previous decision problems and one Σp
2 problem, the well-

known Strategic Companies problem.
The winners in this category are:

FIRST PLACE WINNER Potassco∗

SECOND PLACE WINNER Claspfolio FIRST SINGLE-SYSTEM TEAM

THIRD PLACE WINNER CMODELS SECOND SINGLE-SYSTEM TEAM

DLV THIRD SINGLE-SYSTEM TEAM

The global decision problem results are provided in Figure 5 and in Figure 6.

5.4 Optimization Problems

The competition included nine optimization problems. Most are optimization versions
of decision benchmarks, with the exception of Golomb Ruler and Maximal Clique.
Only nine of the sixteen teams submitted solutions to optimization problems.

The winners in this category are:
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Place Team Score #Solved Time

1 Potassco∗ 0.95 585 / 622 = 94% 029607
2 Claspfolio 0.84 511 / 622 = 82% 077780
3 CMODELS 0.82 498 / 622 = 80% 099721
4 DLV 0.81 497 / 622 = 79% 108448
5 LP2SAT+MINISAT 0.79 490 / 622 = 78% 104438
6 SUP 0.77 465 / 622 = 74% 112641
7 IDP 0.75 450 / 622 = 72% 117223
8 LP2DIFF+BCLT 0.72 438 / 622 = 70% 137713
9 LP2DIFF+YICES 0.70 432 / 622 = 69% 126138
10 BPSolver-CLP(FD)∗ 0.63 365 / 622 = 58% 165902
11 Smodels-IE 0.62 369 / 622 = 59% 165607
12 Enfragmo 0.60 348 / 622 = 55% 190741
13 pbmodels 0.42 243 / 622 = 39% 248505
14 sabe 0.39 234 / 622 = 37% 261961
15 ASPeRiX 0.21 98 / 622 = 15% 321700
16 amsolver 0.10 83 / 622 = 13% 329963

Fig. 5. Decision problems globally: Ranking Fig. 6. Decision problems globally: Plot

FIRST PLACE WINNER Potassco∗

SECOND PLACE WINNER Claspfolio FIRST SINGLE-SYSTEM TEAM

THIRD PLACE WINNER DLV SECOND SINGLE-SYSTEM TEAM

IDP THIRD SINGLE-SYSTEM TEAM

The results for the participating teams are presented in Figure 7 and in Figure 8.

5.5 Decision and Optimization Problems: Global

The goal of this track is to select the systems with widest applicability. Scores are
obtained as the average of the scores in the global decision and optimization categories
to give decision and optimization problems the same importance.

The winners in this category are:

Place Team Score Time

1 Potassco∗ 81.12 74317
2 Claspfolio 69.61 78333
3 DLV 61.04 92889
4 IDP 50.88 101081
5 Smodels-IE 49.88 103176
6 BPSolver-CLP(FD)∗ 35.8 113551
7 sabe 6.74 122848
8 Enfragmo 5.07 121598
9 pbmodels 1.19 135883

Fig. 7. Optimization problems: Ranking Fig. 8. Optimization problems: Plot



650 M. Denecker et al.

FIRST PLACE WINNER Potassco∗

SECOND PLACE WINNER Claspfolio FIRST SINGLE-SYSTEM TEAM

THIRD PLACE WINNER DLV SECOND SINGLE-SYSTEM TEAM

IDP THIRD SINGLE-SYSTEM TEAM

The combined results for decision and optimization problems are shown in Figure 9 and
in Figure 10.

Place Team Score Time

1 Potassco∗ 0.88 103925
2 Claspfolio 0.77 156113
3 DLV 0.71 201338
4 IDP 0.63 218304
5 Smodels-IE 0.56 268783
6 BPSolver-CLP(FD)∗ 0.49 279453
7 CMODELS 0.41 237661
8 LP2SAT+MINISAT 0.39 242378
9 SUP 0.38 250581

10 LP2DIFF+BCLT 0.36 275653
11 LP2DIFF+YICES 0.35 264078
12 Enfragmo 0.32 312339
13 sabe 0.23 384810
14 pbmodels 0.21 384388
15 ASPeRiX 0.10 459640
16 amsolver 0.05 467903

Fig. 9. Global category: Ranking Fig. 10. Global category: Plot

5.6 Summary of Results

The Potassco team of the University of Potsdam is the clear winner of the competition.
The team won in every category, and in all but the P track with a margin of around 10%.
Potassco won twenty of the thirty-eight benchmarks. This is the result of a large effort
for developing an excellent library of systems (clasp, claspd, gringo, clingo, iclingo,
clingcon, bingo) and intensive work of an experienced team on benchmark solutions
and parameter tuning. We congratulate the team on this success!

Potassco spent by far the most effort in fine-tuning their systems to each benchmark,
and this paid off. Given that the goal of declarative problem solving is to minimize the
effort of programmers, it is of equal interest to investigate the performance of teams
that used a single collection of systems with uniform parameter settings.

In all rankings except for the P decision track, the best single-system was Clasp-
folio2. Claspfolio ran gringo and the clasp solver whose settings were chosen from
instance features. On decision problems in P, the best team using a single setting for all
benchmarks is DLV. BPSolver-CLP(FD) also performed excellently on P problems.

As for the winners of individual benchmarks, we already mentioned that Potassco
won twenty. Five benchmarks were won by BPSolver-CLP(FD), and four by DLV.
Claspfolio and Smodels-IE each won two, and IDP, Enfragmo and amsolver one each3.

2 In fact, Claspfolio, just like CMODELS and SUP, used a different grounder for one benchmark.
We can ignore this here because they had a zero score for this benchmark.

3 This list does not include the multiple ex aequo winners of HydraulicLeaking and Hydraulic-
Planning.
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6 Discussion

The principal goals of this competition, namely, taking a snapshot of the state of the
art of declarative programming paradigms and fostering future improvements, are sim-
ilar to related competitions on SAT, PB, QBF, SMT, CP, etc. However, in contrast to
those and the first ASP competition held in 2007, the form of this competition, aim-
ing at openness towards alternative paradigms, was quite different. This manifests itself
in the fact that participants were allowed (and actually required) to provide their indi-
vidual modelings for the benchmarks used in the competition. In contrast to the other
competitions mentioned, the inputs to systems run in this competition were not fixed
by the organizers, except for the (arbitrarily chosen) format of problem instances. As
a consequence, the results of this competition may indicate trends on the simplicity or
difficulty of developing effective problem solutions using particular systems, but they
cannot provide a perfect picture of the efficiency of the systems themselves.

Several SAT, PB and SMT systems were involved in the competition, as back-ends
of ASP or FO(·) systems. Techniques from these areas are also applied in “native” ASP
solvers like those used by Potassco and Claspfolio. That there were no teams from these
areas in the competition, and only one team from CLP, may have different explanations.
These fields have their own, well-established competitions, while the ASP competition
is relatively recent and open to them only for the first time. Another explanation is that
the difficulty of modeling the benchmark problems was very high for them. We know
of one SAT team that considered to participate in the competition, but gave up because
of this reason. Despite the flexibility of CLP(FD) in modeling constraint problems,
BPSolver-CLP(FD) had difficulties in modeling certain benchmarks and did not submit
solutions for all of the planning problems. ASP and FO(·) appear to offer superior mod-
eling facilities, which is hardly surprising given that these languages were developed
for knowledge representation. On the other hand, BPSolver-CLP(FD) came in second
in the P track and won on three benchmarks of the NP track. This shows that tabling as
well as the constraint programming techniques featured in B-Prolog can be very useful
for some kinds of problems, in particular, those in which large domains would make
exhaustive grounding blow up in space. Other new entrants in the competition were
the FO-based systems IDP, Enfragmo and amsolver. IDP ended fourth in the NP and
global track but was less successful for P decision problems. Enfragmo and amsolver
performed very well on certain benchmarks but did not compete in enough benchmarks
to obtain a good ranking.

In their invited talks at LPNMR 2007, both Nicola Leone4 and Jack Minker5 ap-
pealed for using real-world application problems in the ASP competition. Although the
benchmarks of the current contest covered a variety of different modeling or compu-
tational aspects, only a few benchmarks came from such applications. This issue was
discussed with several contributors of benchmarks. The problem is not that there are
no real-world applications. In fact, the contrary is shown in the application summary
track of LPNMR 2009. But such real-world problems tend to be very complex, making
it harder for a contributor to describe the problem in an informal yet unambiguous way

4 http://lpnmr2007.googlepages.com/nicola-lpnmr07.pdf
5 http://lpnmr2007.googlepages.com/LPNMR-07.ppt

http://lpnmr2007.googlepages.com/nicola-lpnmr07.pdf
http://lpnmr2007.googlepages.com/LPNMR-07.ppt
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and to create suitable problem instances. Moreover, the effort of modeling such prob-
lems may become too high for some contestants. This problem is inherent to a Model
and Solve competition and does not occur in competitions where the formal theory is
given, as in the SAT competition or the categories SCore, SCore-v and SLparse of the
first ASP competition.

As motivated in Section 2, teams were free to fine-tune their solving systems towards
particular benchmarks. To this end, they could use a number of instances that were
available during the installation phase. Two teams effectively fine-tuned their systems
in this way. BPSolver-CLP(FD) may have no option than to do so, since the program-
mer needs to specify the search strategy in B-Prolog. Potassco took the opportunity to
test its library of systems and system parameters for controling preprocessing, heuris-
tics and restarts6. In the previous section, we therefore distinguished these teams from
the other single-system teams. Given that Claspfolio and Potassco used the same bench-
mark solutions and mostly the same technology, the competition gives a fairly accurate
account of the impact of Potassco’s effort on fine-tuning. Globally, Claspfolio lost 10%
on Potassco and it was outperformed by Potassco in a few benchmarks. On the one
hand, this shows that in the current state of the art, fine-tuning pays off and may be im-
perative to build hard real-world applications. On the other hand, the long term goal of
declarative problem solving is to allow a programmer to focus on the declarative prop-
erties of the problem and to relieve him or her of tedious control issues. The example
of Potassco and Claspfolio allows us to evaluate our current progress towards this goal.
In this respect, it is encouraging to see that globally, Claspfolio lost by only 10%.

We would like to end with some reflections and recommendations on the competi-
tion format. We believe that an open model and solve competition like this one fosters
cross-fertilization between different areas of declarative programming and gives valu-
able global information on the quality of modeling and solving technologies. On the
other hand, it does not allow for a precise and unbiased comparison of system perfor-
mance, due to the use of different encodings. To allow for more detailed and objective
comparisons, separate competitions are needed in which problem encodings are given
and fixed. This is the format used in the SAT competition and also in the SCore, SCore-
v and SLparse tracks of the previous ASP competition. In future competitions, it would
be of interest to have such tracks for both grounders and solvers. Such tracks will not
be accessible for areas that do not rely on grounding and solving. A further prerequi-
site is the availability of common input languages. As regards a grounder competition,
a common high-level fragment of ASP and FO(·) is currently lacking and should be
strived for. For an unbiased comparison of solvers, some low-level language similar to
DIMACS for SAT, Lparse for ASP or MNF for FO(·) would need to be selected.

A final recommendation concerns the participation of SAT teams or systems in the
competition. SAT technology is heavily used in ASP and FO(·). The model and solve
track would be a good occasion to compare different SAT systems in the context of typ-
ical ASP benchmarks. Participation of a SAT team can be made very easy by providing
a grounder to DIMACS, benchmark solutions in the language of the grounder and a
script translating SAT output into the competition format. The grounders of Enfragmo
and LP2SAT+MINISAT could be used for this purpose.

6 For details, see Potassco’s team webpage [24].
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