
Accepting Networks of Non-inserting

Evolutionary Processors

Jürgen Dassow1 and Victor Mitrana2,�

1 Faculty of Computer Science, University of Magdeburg
P.O.Box 4120, 39016 Magdeburg, Germany

dassow@iws.cs.uni-magdeburg.de
2 Faculty of Mathematics, University of Bucharest

Str. Academiei 14, 70109 Bucharest, Romania
Department of Information Systems and Computation

Technical University of Valencia,
Camino de Vera s/n. 46022 Valencia, Spain

mitrana@fmi.unibuc.ro

Abstract. In this paper we consider four variants of accepting networks
of evolutionary processors with in-place computations, that is the length
of every word in every node at any step in the computation is bounded
by the length of the input word. These devices are called here accept-
ing networks of non-inserting evolutionary processors (ANNIEP shortly).
The variants differ in two respects: filters that are used to control the
exchange of information, i.e., we use random context conditions and reg-
ular languages as filters, and the way of accepting the input word, i.e., at
least one output node or all output nodes are nonempty at some moment
in the computation. The computational power of these devices is inves-
tigated. In the case of filters defined by regular languages, both variants
lead to the class of context-sensitive languages. If random context con-
ditions are used for defining filters, all linear context-free languages and
some non-semilinear (even over the one-letter alphabet) can be accepted
with both variants. Moreover, some closure properties of the classes of
languages ANNIEPs with random context filters are also given.

1 Introduction

The origin of networks of evolutionary processors (NEP for short) is a basic ar-
chitecture for parallel and distributed symbolic processing, related to the Con-
nection Machine [9] as well as the Logic Flow paradigm [7], which consists of
several processors, each of them being placed in a node of a virtual complete
graph, which are able to handle data associated with the respective node. All
the nodes send simultaneously their data and the receiving nodes handle also
simultaneously all the arriving messages, according to some strategies, see, e.g.,
[8,9]. Similar ideas may be met in other bio-inspired models like membrane sys-
tems [16], evolutionary systems [4], or models from Distributed Computing area

� Work supported by the Alexander von Humboldt Foundation.

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 187–199, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

188 J. Dassow and V. Mitrana

like parallel communicating grammar systems [15], networks of parallel language
processors [3].

In a series of papers (see [14] for an early survey) one considers that each node
may be viewed as a cell having genetic information encoded in DNA sequences
which may evolve by local evolutionary events, that is point mutations. Each
node is specialized just for one of these evolutionary operations. Furthermore,
the data in each node are organized in the form of multisets of words (each word
appears in an arbitrarily large number of copies), and all the copies are processed
in parallel such that all the possible events that can take place do actually take
place. Obviously, the computational process just described is not exactly an
evolutionary process in the Darwinian sense. But the rewriting operations we
have considered might be interpreted as mutations and the filtering process
might be viewed as a selection process. Recombination is missing but it was
asserted that evolutionary and functional relationships between genes can be
captured by taking only local mutations into consideration [17].

In [13] one presents a characterization of the complexity class NP based on
accepting networks of evolutionary processors (ANEP for short). This charac-
terization is extended in [12] to PSPACE and P. The work [10] discusses how
ANEPs can be considered as problem solvers. In [11], one shows that every recur-
sively enumerable language can be accepted by an ANEP with 24 nodes. More
precisely, one proposes a method for constructing, for every NP-language, an
ANEP of size 24 deciding that language in polynomial time. While the number
of nodes of this ANEP does not depend on the language, the other parameters
of the network (rules, symbols, filters) depend on it.

From a computational point of view it is of interest to consider ANEPs with
in-place computations, that is the length of every word in every node at any
step in the computation is bounded by the length of the input word. This is
our main reason to consider here some variants of networks of evolutionary pro-
cessors without insertion nodes, called here accepting networks of non-inserting
evolutionary processors, ANNIEP shortly. The differences between the variants
of ANNIEPs consist in the filters and in the way of accepting the input word.

Besides accepting networks of evolutionary processors, generating networks
of such processors have been investigated (see [2], [5], [14]). In the paper [6],
the generative power of networks where only two types of point mutations are
allowed for the nodes have been investigated. In case of non-inserting processors
one only gets the set of all finite languages. This paper presents the counterpart
for accepting networks, where the situation is completely different.

We study the computational power of accepting networks of non-inserting
processors. In the case of filters defined by regular languages, both variants
of accepting lead to the same class of languages, namely the class of context-
sensitive languages. If random context conditions are used for defining filters,
all linear context-free languages and some non-semilinear (even over the one-
letter alphabet) can be accepted with both variants. Therefore the power of
accepting networks is much greater than that of generating networks (both with
non-inserting processors). Moreover, some closure properties of the classes of

Accepting Networks of Non-inserting Evolutionary Processors 189

languages accepted by ANNIEPs with filters defined by random context condi-
tions are also discussed.

2 Some Notations and Definitions

Throughout the paper we assume that the reader is familiar with the basic
notions of the theory of formal languages. We here only recall some notation
and notions as they are used in the paper.

An alphabet is a finite and nonempty set of symbols. The cardinality of a finite
set A is written card(A). Any sequence of symbols from an alphabet V is called
word over V . The set of all words over V is denoted by V ∗ and the empty word
is denoted by ε. A language over V is a subset of V ∗.

The length of a word x is denoted by |x| while alph(x) denotes the (with
respect to inclusion) minimal alphabet W such that x ∈ W ∗. A morphism h :
V ∗ −→ U∗ is said to be literal if |h(a)| = 1 for all a ∈ V ; it is weak literal
if |h(a)| ≤ 1 for all a ∈ V . In other words a (weak) literal morphism is called
(weak) coding.

Let V be an alphabet. We say that a rule a → b, with a, b ∈ V ∪ {ε} is a
substitution rule if both a and b are not ε; it is a deletion rule if a �= ε and b = ε.
The set of all substitution and deletion rules over an alphabet V are denoted by
SubV and DelV , respectively. Given a rule σ as above and a word w ∈ V ∗, we
define the following actions of σ on w:

• If σ ≡ a→ b ∈ SubV , then σ∗(w) =
{{ubv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

σr(w) =
{{ub : w = ua},
{w}, otherwise σl(w) =

{{bv : w = av},
{w}, otherwise

• If σ ≡ a→ ε ∈ DelV , then σ∗(w) =
{{uv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

σr(w) =
{{u : w = ua},
{w}, otherwise σl(w) =

{{v : w = av},
{w}, otherwise

The action α ∈ {∗, l, r} expresses the way of applying a substitution or deletion
rule to a word, namely at any position (α = ∗), in the left (α = l), or in the right
(α = r) end of the word, respectively. For every rule σ, any action α ∈ {∗, l, r},
and any L ⊆ V ∗, we define the α-action of σ on L by σα(L) =

⋃
w∈L

σα(w).

Given a finite set of rules M , we define the α-action of M on the word w and
the language L by:

Mα(w) =
⋃

σ∈M

σα(w) and Mα(L) =
⋃

w∈L

Mα(w),

respectively.

190 J. Dassow and V. Mitrana

If θV ∗ −→ {0, 1} is a predicate and L ⊆ V ∗, we write:

θ(L) = L ∩ θ−1(1).

We are interested in some special predicates. For two disjoint subsets P and F
of an alphabet V , a regular set R over V , and a word x over V , we define the
predicates

θs,P,F (x) = 1 if and only if P ⊆ alph(x) and F ∩ alph(x) = ∅,
θw,P,F (x) = 1 if and only if alph(x) ∩ P �= ∅ and F ∩ alph(x) = ∅,

θR(x) = 1 if and only if x ∈ R.

The first two predicates are based on random context conditions defined by the
two sets P (permitting contexts/symbols) and F (forbidding contexts/symbols).
Informally, the first condition requires (s stands for strong) that all permitting
symbols are and no forbidding symbol is present in x, while the second (w stands
for weak) is a weaker variant such that at least one permitting symbol appears
in x but still no forbidding symbol is present in x. We call these two predicates
random context predicates. The third predicate asks for membership in a regular
set, and is called a regular predicate.

A non-inserting evolutionary processor over V is a tuple (M,ϕ, ψ), where:

– M is a set of either substitution or deletion rules over the alphabet V ; for-
mally, M ⊆ SubV or M ⊆ DelV . The set M represents the set of evolution-
ary rules of the processor. As one can see, a processor is “specialized” in one
evolutionary operation, only.

– ϕ is the input predicate, while ψ is the output predicate of the processor.
Informally, these two predicates work as filters. A word w can enter or leave
the processor, if it satisfies the predicate ϕ or ψ, respectively.

We are interested in two types of processors, random context non-inserting evo-
lutionary processor over V (or short rcNIEPV) and regular non-inserting evolu-
tionary processor over V (or short regNIEPV). These processors are defined by
the requirement that,

– for an rcNIEPV , both predicates are of the form θs,P,F or of the form θw,P,F

for certain subsets P and F of V ,
– for an regNIEPV , both predicates are of the form θR for some regular set
R ⊆ V ∗.

We want to stress from the very beginning that the evolutionary processor we
discuss here is a mathematical object only and the biological hints presented in
the introduction are intended to explain in an informal way how some biological
phenomena are sources of inspiration for our mathematical computing model.
We denote the set of non-inserting evolutionary processors over V by NIEPV .

An accepting network of non-inserting evolutionary processors (ANNIEP for
short) is a 8-tuple Γ = (V, U,G,N, α, xIn, Out), where:

Accepting Networks of Non-inserting Evolutionary Processors 191

– V and U are the input and network alphabet, respectively, satisfying V ⊆ U .
– G = (XG, EG) is an undirected graph without loops with the set of vertices
XG and the set of edges EG. G is called the underlying graph of the network.

– N : XG −→ NIEPV is a mapping which associates with each node x ∈ XG

the evolutionary processor N(x) = (Mx, ϕx, ψx).
– α : XG −→ {∗, l, r} is a mapping which associates with each node a type

of action; α(x) gives the action mode of the rules of node x on the words
existing in that node.

– xIn ∈ XG is the input node of Γ .
– Out ⊂ XG is the set of output nodes of Γ .

An ANNIEP is a random context ANNIEP or regular ANNIEP if all its non-
inserting evolutionary processors are random context or regular non-inserting
evolutionary processors, respectively.

We say that card(XG) is the size of Γ . A configuration of an ANNIEP Γ
as above is a mapping C : XG −→ 2V ∗

f which associates a finite set of words
with every node of the graph. A configuration may be understood as the sets of
words which are present in any node (or in the associated prozessor) at a given
moment. Given a word z ∈ V ∗, the initial configuration of Γ on z is defined by
C

(z)
0 (xIn) = {z} and C(z)

0 (x) = ∅ for all x ∈ XG \ {xIn}.
A configuration can change either by an evolutionary step or by a communica-

tion step. When changing by an evolutionary step, each component C(x) of the
configuration C is changed in accordance with the set of evolutionary rules Mx

associated with the node x and the way of applying these rules α(x). Formally,
we say that the configuration C′ is obtained in one evolutionary step from the
configuration C, written as C =⇒ C′, iff

C′(x) = Mα(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends
one copy of each word it has, which is able to pass the output filter of x, to all
the node processors connected to x and receives all the words sent by any node
processor connected with x provided that they can pass its input filter.

Formally, we say that the configuration C′ is obtained in one communication
step from configuration C, written as C � C′, iff

C′(x) = (C(x) − ψx(C(x))) ∪
⋃

{x,y}∈EG

(ψy(C(y)) ∩ ϕx(C(y))) for all x ∈ XG.

Note that words that cannot pass the output filter of a node remain in that node
and can be further modified in the subsequent evolutionary steps, while words
that can pass the output filter of a node but cannot pass the input filter of any
node are lost.

Let Γ be an ANNIEP, the computation of Γ on the input word z ∈ V ∗ is a
sequence of configurations C(z)

0 , C
(z)
1 , C

(z)
2 , . . ., where C(z)

0 is the initial configu-
ration of Γ on z, C(z)

2i =⇒ C
(z)
2i+1 and C(z)

2i+1 � C(z)
2i+2, for all i ≥ 0. Note that the

configurations are changed by alternative steps. By the previous definitions, each

192 J. Dassow and V. Mitrana

configuration C(z)
i is uniquely determined by the configuration C(z)

i−1. A compu-
tation halts (and it is said to be weak (strong) halting) if one of the following
two conditions holds:

(i) There exists a configuration in which the set of words existing in at least
one output node (all output nodes) is non-empty. In this case, the computation
is said to be a weak (strong) accepting computation.

(ii) There exist two identical configurations obtained either in consecutive
evolutionary steps or in consecutive communication steps.

The language weakly (strongly) accepted by Γ are defined as:

Lwa(Γ) = {z ∈ V ∗ | the computation of Γ on z is a weak accepting one}
Lsa(Γ) = {z ∈ V ∗ | the computation of Γ on z is a strong accepting one}.

In the theory of networks some types of underlying graphs are common like rings,
stars, grids, etc. Networks of evolutionary words processors, seen as language
generating or accepting devices, with underlying graphs having these special
forms have been considered in several papers, see, e.g., [14] for an early survey.
We focus here on complete ANNIEPs i.e., ANNIEPs having a complete under-
lying graph. Therefore, in what follows we replace the graph G in the definition
of an ANNIEP by the set of its nodes usually denoted by χ.

Moreover, we present an evolutionary network by its nodes x and the param-
eters corresponding to x, where instead of ϕβ,PIx,FIx and ψβ,POx,FOx , in case of
random context processors, and instead of ϕRx and ϕR′

x for regular processors,
we only mention PIx, F Ix, POx, FOx, β and Rx, R

′
x, β, respectively.

For x ∈ {wa, sa} and y ∈ {rc, reg}, by Lx(yANNIEP) we denote the set of
all languages which can be accepted by yANNIEPS.

The following two notions will be very useful in the sequel. If h is a one-to-
one mapping from U to W and Γ = (V, U, χ,N, α, xIn, Out) is an ANNIEP,
then we denote by Γh the ANNIEP Γh = (h(V), h(U), χ, h(N), α, xIn, Out),

where by h(N) we mean h(N)(x) = (h(Mx), ϕβ,h(PIx),h(FIx), ψβ,h(POx),h(FOx))
for every x ∈ χ, provided that N(x) = (Mx, ϕ

β,PIx,FIx , ψβ,POx,FOx). Further,
h(a → b) = h(a) → h(b) for any evolutionary rule a → b. Now, given two
ANNIEPs Γi = (Vi, Ui, χi, Ni, αi, x

i
In, Outi), i = 1, 2, χ1 ∩ χ2 = ∅, we denote by

Γ1�Γ2 = (V1, U1∪U2, χ1∪χ2, N, α, x
1
In, Out2), where ◦ |χi= ◦i for all ◦ ∈ {N,α}

and i = 1, 2.

3 Computational Power of Regular ANNIEPs

We start with a relation between the strong and weak acceptance modes.

Theorem 1. Lwa(regANNIEP) ⊆ Lsa(regANNIEP).

Proof. Let L ∈ Lwa(regANNIEP). Then L = Lwa(Γ) for some regular AN-
NIEP Γ = (V, U, χ,N, α, xIn, Out). Let N(x) = (Mx, ϕ

Rx , ψR′
x) for a node x of

Accepting Networks of Non-inserting Evolutionary Processors 193

χ. Without loss of generality we may assume that Mx = ∅ for all x ∈ Out. We
now construct the regular ANNIEP

Γ ′ = (V, U ∪ {Z}, χ ∪ {xOut}, N ′, α′, xIn, {xOut}),
where N ′(x) = N(x) for x ∈ χ \Out, and

y : {a→ Z | a ∈ U}, Ry, Z
∗, α′(y) = ∗ for y ∈ Out,

xOut : ∅, Z∗, ∅, α′(xOut) = ∗.
Obviously, if there is a non-empty node y of Out in some configuration of Γ ,
then y contains some word in some configuration of Γ ′, too. If this word is ε,
then ε is not changed and sent to xOut. If the word in y is non-empty, then all
its letters are replaced by Z (note that it cannot leave the node as long as it still
contains letters different than Z) and it is send to xOut. Conversely, if a word
eventually arrives in xOut, then it contains only Z’s which means that it was in
a node from Out at some previous step. Thus Γ ′ accepts the same language as
Γ does. Moreover, since the set of output nodes of Γ ′ is a singleton, we have
Lwa(Γ) = Lwa(Γ ′) = Lsa(Γ ′). �

Note that we have shown a stronger result than given in Theorem 1 because
we have shown that the number of output nodes of an ANNIEP accepting in the
weak mode can be decreased to one only.

We now compare the families of languages generated by ANNIEPs with the
family of context-sensitive languages denoted here by L(CS).

Theorem 2. L(CS) ⊆ Lwa(regANNIEP).

Proof. Let L be a context-sensitive language. Then L = L(G) for some context-
sensitive grammar G = (N,T, P, S) in Kuroda normal form, i.e., all its rules are
of the form A → a, A → BC and AD → BC with A,B,C,D ∈ N and a ∈ T .
Let P ′ be the set of rules of the form A→ BC and AD → BC. For every p ∈ P ′

with its right-hand side BC we set

Rp = (N ∪ T)∗{Bp}(N ∪ T)∗,
R′

p = (N ∪ T)∗{BpCp}(N ∪ T)∗,
R′′

p = (N ∪ T)∗{Cp}(N ∪ T)∗

and R =
⋃

p∈P ′
Rp. We construct the ANNIEP Γ = (T, U, χ,H, α, xIn, {xOut})

with

U = N ∪ T ∪ {Bp, Cp | p = AD → BC or p = A→ BC},
χ = {xIn, xOut} ∪ {p, p′, p′′ | p ∈ P ′},

xIn : MxIn , (N ∪ T)∗, R, α = ∗
MxIn = {a→ A | A→ a ∈ P} ∪ {B → Bp | p = AD → BC or p = A→ BC},

p : {C → Cp}, Rp, R
′
p, α = ∗ for p = AD → BC or p = A→ BC,

194 J. Dassow and V. Mitrana

p′ : {Bp → A}, R′
p, R

′′
p , α = ∗ for p = AD → BC or p = A→ BC,

p′′ :
{{Cp → D}, R′′

p , (N ∪ T)∗, α = ∗ for p = AD → BC,
{Cp → ε}, R′′

p , (N ∪ T)∗, α = ∗ for p = A→ BC,

xOut : ∅, {S}, {S}, α = ∗.
The network simulates a derivation in G backwards. Let w be the input word;
we claim that for any word z ∈ (N ∪ T)+ in xIn at any computation step we
have that z =⇒∗ w in G. Initially, this assertion is true as w lies in xIn. Assume
that a word z ∈ (N ∪ T)+ is in the node xIn at some step. If we apply a rule
a → A to z, the new word remains in xIn and the assertion holds for this new
word.

Now assume that we apply B → Bp to z for a rule p = AD → BC. Then the
obtained word z′ = z1Bpz2, where z = z1Bz2, is sent to the node p, where some
C is replaced by Cp. If BpCp is not a subword, then the word cannot go out from
this node; moreover any word further obtained from this word can never go out
from the node p. If BpCp is a subword, the word is sent out to the node p′, where
Bp is replaced by A. This new word is sent out to p′′. There Cp is either replaced
by D, provided that p = AD → BC, or deleted provided that p = A → BC.
Finally, the obtained word, say z′, is sent to xIn. Altogether, we started with
z = vBCu and obtained z′ = vADu, which implies that z′ =⇒ z =⇒∗ w.

Moreover, since a word only reaches xOut, if it is S, we infer that a word is
weakly accepted by Γ if and only if it is generated by G. Thus Lwa(Γ) = L(G).

�

Theorem 3. Lsa(regANNIEP) ⊆ L(CS).

Proof. For an ANNIEP Γ = (V, U, χ,N, α, xIn, Out), we construct a linearly
bounded automaton, which accepts Lsa(Γ). We do not give a complete formal
construction; we only give an informal description of the automaton and leave
the details of the construction to the reader.

Let r = card(Out). The automaton has r tapes, and on each tape it nonde-
terministically follows the itinerary of a copy of the input word. The states are
vectors of size 2r, each ith entry, 1 ≤ i ≤ r, being associated with the node
containing the word on the tape i, and each ith entry, r + 1 ≤ i ≤ 2r, being
0 or 1 that indicates whether the node associated with the (i − r)th entry has
finished its task on the word on tape i (in this case the entry is 1) or not. Ini-
tially, all tapes contain the input word w, the first r entries of the initial states
are associated with the input node xIn, and the last r entries are 0.

Let us now consider an arbitrary configuration of the automaton: the first r
elements of the current state state are associated with the nodes x1, x2, . . . xr ,
the last r elements are 0, and on the i-th tape, 1 ≤ i ≤ r, the word wi stands.
Now the automaton performs on each tape i the following actions:

– Changes the word wi according to an application of a rule in Mxi ; let vi be
the result.

– Checks whether vi can pass the output filter of xi. In the non-affirmative
case the automaton blocks the computation. In the affirmative case, the

Accepting Networks of Non-inserting Evolutionary Processors 195

automaton changes the ith entry of the state into an entry associated with
the node yi, which is a nondeterministically chosen node among the nodes
of χ \ {xi}.

– Check whether vi can pass the input filter of yi. In the non-affirmative case
the automaton blocks the computation. In the affirmative case, the i+r entry
becomes 1. From now on, no move is observed on the ith tape and no change
is made for the entries i and i + r, until all the entries r + 1, r + 2, . . . , 2r
are 1.

– Checks whether the state with the last r entries 1 has its first r entries
associated with all output nodes of Γ . In the affirmative case the automaton
accepts the input; otherwise it changes the last r entries into 0 and resumes
the actions explained above.

It is rather plain that the automaton accepts Lsa(Γ). Since in any evolutionary
step one deletes or substitutes one letter, the length of the words on any tape is
bounded by the length of the input word. Thus the workspace of this automaton
is linearly bounded. �

By the Theorems 1, 2 and 3, we get immediately the following two statements.

Corollary 1

1. Lwa(regANNIEP) = Lsa(regANNIEP) = L(CS).
2. Every language in LX(regANNIEP), X ∈ {wa, sa}, can be weakly/strongly
accepted by a regANNIEP Γ such that the action mode of every node of Γ is ∗. �

4 Computational Power of Random Context ANNIEPs

We start with two statements that immediately follows from Theorems 1 and 3.

Theorem 4

1. Lwa(rcANNIEP) ⊆ Lsa(rcANNIEP).
2. Lsa(rcANNIEP) ⊆ L(CS). �

We do not know whether the second inclusion is proper or equality holds. Thus
we give some further relations to other known language families inside L(CS)
and some closure properties which give some more information about the classes
Lwa(rcANNIEP) and Lsa(rcANNIEP).

Theorem 5

1. Lwa(rcANNIEP) includes the class of linear context-free languages.
2. Lwa(rcANNIEP) contains non-semilinear languages.

Proof. 1. Let G = (N,T, S, P) be a linear context-free grammar; without loss of
generality we may assume that the following conditions hold:

196 J. Dassow and V. Mitrana

– Every rule in P is of one of the following three forms: A → aB, A → Ba,
A→ a, where A,B ∈ N and a ∈ T ,

– If both rules A→ aC and B → Db belong to P , then A �= B,
– The set of nonterminals N of G is {A1, A2, . . . , An} for some n ≥ 1 and

S = A1,
– There is no rule A→ aA or A→ Aa for any A ∈ N and a ∈ T .
We construct the following ANNIEP with the input alphabet T , the working

alphabet U = T ∪ {ai, a
′
i | 1 ≤ i ≤ n} ∪ {Z}, and only one output node xOut.

xIn :

⎧⎪⎪⎨
⎪⎪⎩

M = {a→ a1 | a ∈ T },
P I = T, FI = {ai | a ∈ T, 1 ≤ i ≤ n},
PO = ∅, FO = T,
α = ∗, β = w,

xOut :

⎧⎪⎪⎨
⎪⎪⎩

M = ∅,
P I={Z}, F I=U \ {Z},
PO = U,FO = ∅,
α = ∗, β = s,

If there exists Ai → aAj ∈ P for some a ∈ T and 1 ≤ j �= i ≤ n, then the node
xi is defined by

xi :

⎧⎪⎪⎨
⎪⎪⎩

M = {ai → a′j | Ai → aAj ∈ P},
P I = {ai | a ∈ T }, F I = U \ {ai | a ∈ T },
PO = {a′j | a ∈ T, 1 ≤ j �= i ≤ n}, FO = ∅,
α = l, β = w,

If there exists Ai → Aja ∈ P for some a ∈ T and 1 ≤ j �= i ≤ n, then the node
xi is defined by

xi :

⎧⎪⎪⎨
⎪⎪⎩

M = {ai → a′j | Ai → aAj ∈ P},
P I = {ai | a ∈ T }, F I = U \ {ai | a ∈ T },
PO = {a′j | a ∈ T, 1 ≤ j �= i ≤ n}, FO = ∅,
α = r, β = w,

Moreover, we set

x′i :

⎧⎪⎪⎨
⎪⎪⎩

M = {aj → ai | a ∈ T, 1 ≤ j �= i ≤ n},
P I = {a′i | a ∈ T }, F I = ∅,
PO = {ai | a ∈ T }, FO = {aj | a ∈ T, 1 ≤ j �= i ≤ n},
α = ∗, β = w,

for 1 ≤ i ≤ n,

x̄i :

⎧⎪⎪⎨
⎪⎪⎩

M = {a′i → ε | a ∈ T },
P I = {a′i | a ∈ T }, F I = {aj | a ∈ T, 1 ≤ j �= i ≤ n},
PO = {ai | a ∈ T }, FO = {a′i | a ∈ T },
α = l, β = w,

for 1 ≤ i ≤ n,

x̃i :

⎧⎪⎪⎨
⎪⎪⎩

M = {a′i → ε | a ∈ T },
P I = {a′i | a ∈ T }, F I = {aj | a ∈ T, 1 ≤ j �= i ≤ n},
PO = {ai | a ∈ T }, FO = {a′i | a ∈ T },
α = r, β = w,

for 1 ≤ i ≤ n,

y :

⎧⎪⎪⎨
⎪⎪⎩

M = {ai → Z | Ai → a ∈ P, a ∈ T, 1 ≤ i ≤ n},
P I =

⋃n
i=1{ai | a ∈ T }, F I = U \ (

⋃n
i=1{ai | a ∈ T }),

PO = {Z}, FO = ∅,
α = r, β = w,

Accepting Networks of Non-inserting Evolutionary Processors 197

The general idea of this construction is that for every 1 ≤ i ≤ n, the following
statement holds:

Fact: If S =⇒t uAiv =⇒+ uwv = z for some t ≥ 0, with |z| = m, then
hi(w) ∈ (C(z)

2m(t+1)+2t(xi)∩C(z)
2m(t+1)+2t(y)), where hi is a literal morphism from

T to {ai | a ∈ T } defined by h(a) = ai for any a ∈ T .
This fact can be proved by a standard induction argument on t. Now, if

t = m− 1, then w is reduced to a letter from T , say a, therefore after the word
ai is transformed into Z in the node y, it arrives in xOut and the computation
halts successfully. This means that z is accepted by the network.

On the other hand, if C(z)
0 , C

(z)
1 , C

(z)
2 , . . . , C

(z)
p is an accepting computation

on z and hi(w) ∈ (C(z)
t (xi) ∩ C

(z)
t (y)) for some t < p, then the derivation

S =⇒∗ uAiv =⇒+ uwv = z holds in G, which concludes the proof of the first
statement of the theorem.

2. The network with the nodes defined by:

xIn :

⎧⎪⎪⎨
⎪⎪⎩

M = {a→ ā},
P I = {a}, F I = {ā, ã},
PO = {ā}, FO = ∅,
α = ∗, β = s,

x1 :

⎧⎪⎪⎨
⎪⎪⎩

M = {a→ ã},
P I = {ā}, F I = {ã},
PO = {ã}, FO = ∅,
α = ∗, β = s,

x2 :

⎧⎪⎪⎨
⎪⎪⎩

M = {ā→ ε},
P I = {ā, ã}, F I = ∅,
PO = {ã}, FO = ∅,
α = ∗, β = s,

x3 :

⎧⎪⎪⎨
⎪⎪⎩

M = {ã→ a′},
P I = {ã}, F I = {ā},
PO = {a′}, FO = {ã},
α = ∗, β = s,

x4 :

⎧⎪⎪⎨
⎪⎪⎩

M = {a′ → a},
P I = {a′}, F I = {a, ā, ã},
PO = {a}, FO = {a′},
α = ∗, β = s,

xOut :

⎧⎪⎪⎨
⎪⎪⎩

M = ∅,
P I = {ā}, F I = {a, ā, ã},
PO = {ā}, FO = ∅,
α = ∗, β = s,

weakly accepts the non-semilinear language {a2n | n ≥ 0}. Indeed, the compu-
tation of this netwok on every input is divided in two phases. In the first phase,
the input word looses one occurrence of a and changes another one to a′ by
visiting the nodes xIn, x1, x2, x3. This process resumes until no occurrence of a
is observed in the current word. There are three possiblities: (1) it contains only
a’s, (2) it contains only a’s excepting an occurrence of ā, (3) it equals ā. Now
the second phase of the computation starts. In the first case, the word enters
x4 where all a’s are transformed into original a’s and the first phase resumes
from xIn with a word that is exactly twice shorter than the word present in the
input node in the beginning of the previous first phase. In this case, we have
checked whether the length of that word was an even number. In the second
case listed above, the computation cannot continue anymore, hence the network
will eventually halt without accepting. In the third case, the computation halts
accepting the input word. This means that the length of the input word could
be divided iteratively by 2 until the result was one, hence the length of the input
word was a power of 2. �

198 J. Dassow and V. Mitrana

Theorem 6
1. The class Lwa(rcANNIEP) is closed under boolean union, literal morphism,
inverse weak literal morphism, mirror image.
2. The class Lsa(rcANNIEP) is closed under boolean intersection, literal mor-
phism, inverse weak literal morphism, concatenation, mirror image.

Proof. 1. We give an informal proof for union that can be easily formalized by
the reader. Let Γ1 and Γ2 be to ANNIEPs; we construct a new ANNIEP Γ
that contains three subnetworks. In the input node of the first subnetwork, an
arbitrary symbol of the input word is substituted by either its primed copy or its
barred copy. All words containing a primed symbol are received by a specific node
while those containing a barred symbol are received by another specific node.
All symbols of the words arrived in these two nodes are replaced by their primed
and barred copies, respectively. When this process is finished, each of the two
nodes contains only one word. The word containing primed symbols only is given
as an input word to the subnetwork formed from Γ1 modified accordingly. The
other word is processed analogously by the subnetwork formed from Γ2 modified
accordingly. The set of output nodes of Γ is the union of the sets of output nodes
of Γ1 and Γ2 modified accordingly. Clearly, Lwa(Γ) = Lwa(Γ1) ∪ Lwa(Γ2).

If h : V −→ U is a literal morphism and Γ is an ANNIEP with the input
alphabet V , then let Γ ′ be the ANNIEP with the input alphabet U formed
by two subnetworks as follows. In the input node of the first subnetwork, each
symbol b of the input word is substituted by a symbol a′ such that a′ is a copy
of a ∈ V that does not appear in V ∪ U and h(a) = b. When all symbols of
the input word were substituted, all the words obtained are sent to the input
node of the subnetwork formed from Γ modified accordingly. It is plain that
h(Lwa(Γ)) = Lwa(Γ ′). The construction for the closure under inverse weak
literal morphism is pretty similar and left to the reader.

The closure under mirror image follows pretty simple; it suffices to interchange
all the action modes l and r of the nodes.

2. The closure under intersection, literal morphism and inverse literal mor-
phism follows similarly to the previous case. Note the fundamental role played
by the strong acceptance in the case of intersection. �

It is known that every recursively enumerable language can be written as
the image of the intersection of two linear languages through a weak literal
morphism. Therefore, the following statement is a consequence of the second
statement of Theorem 4 and Theorem 6:

Corollary 2
1. Every recursively enumerable language is the weak literal morphic image of a
language in Lsa(ANNIEP).
2. Lsa(ANNIEP) is not closed under weak literal morphism. �

5 Final Remarks

As we showed in this note, the computational power of ANNIEPs is very dif-
ferent than that of generating networks of non-inserting processors. The role of

Accepting Networks of Non-inserting Evolutionary Processors 199

evolutionary operations in generating networks of evolutionary processors, that is
generating networks with nodes specialized in all three evolutionary operations,
in two operations out of these three and in only one operation, was considered
in [1]. A similar investigation on ANEPs has already started.

References

1. Alhazov, A., Dassow, J., Rogozhin, Y., Truthe, B.: Personal communication
2. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.: Networks of evolution-

ary processors. Acta Informatica 38, 517–529 (2003)
3. Csuhaj-Varj, E., Salomaa, A.: Networks of parallel language processors. In: Păun,

G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218,
pp. 299–318. Springer, Heidelberg (1997)

4. Csuhaj-Varj, E., Mitrana, V.: Evolutionary systems: a language generating device
inspired by evolving communities of cells. Acta Informatica 36, 913–926 (2000)

5. Csuhaj-Varjú, E., Mart́ın-Vide, C., Mitrana, V.: Hybrid NEPs are computationally
complete. Acta Informatica 41, 257–272 (2005)

6. Dassow, J., Truthe, B.: On the power of networks of evolutionary processors. In:
Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 158–169.
Springer, Heidelberg (2007)

7. Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing.
In: Artificial Intelligence and Information-Control Systems of Robots, vol. 94,
pp. 31–40. World Scientific, Singapore (1994)

8. Fahlman, S., Hinton, G., Seijnowski, T.: Massively parallel architectures for AI:
NETL, THISTLE and Boltzmann Machines. In: Proc. AAAI National Conf. on
AI, pp. 109–113. William Kaufman, Los Altos (1983)

9. Hillis, W.: The Connection Machine. MIT Press, Cambridge (1985)
10. Manea, F., Mart́ın-Vide, C., Mitrana, V.: On the size complexity of universal ac-

cepting hybrid networks of evolutionary processors. Mathematical Structures in
Computer Science 17, 753–771 (2007)

11. Manea, F., Mitrana, V.: All NP-problems can be solved in polynomial time by
accepting hybrid networks of evolutionary processors of constant size. Information
Processing Letters 103, 112–118 (2007)

12. Manea, F., Margenstern, M., Mitrana, V., Perez-Jimenez, M.: A new characteri-
zation of NP, P, and PSPACE with accepting hybrid networks of evolutionary
processors (submitted)

13. Margenstern, M., Mitrana, V., Perez-Jimenez, M.: Accepting hybrid networks of
evolutionary systems. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004.
LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)

14. Mart́ın-Vide, C., Mitrana, V.: Networks of evolutionary processors: results and
perspectives. In: Molecular Computational Models: Unconventional Approaches,
pp. 78–114. Idea Group Publishing, Hershey (2005)

15. Păun, G., Sntean, L.: Parallel communicating grammar systems: the regular case.
Annals of University of Bucharest, Ser. Matematica-Informatica 38, 55–63 (1989)

16. Păun, G.: Computing with membranes. Journal of Computer and System
Sciences 61, 108–143 (2000)

17. Sankoff, D., et al.: Gene order comparisons for phylogenetic inference: evolution of
the mitochondrial genome. In: Proceedings of the National Academy of Sciences of
the United States of America, vol. 89, pp. 6575–6579 (1992)

	Accepting Networks of Non-inserting Evolutionary Processors
	Introduction
	Some Notations and Definitions
	Computational Power of Regular ANNIEPs
	Computational Power of Random Context ANNIEPs
	Final Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

