
Integrating Logical Reasoning and Probabilistic

Chain Graphs

Arjen Hommersom, Nivea Ferreira, and Peter J.F. Lucas

Institute for Computing and Information Sciences,
Radboud University Nijmegen, Nijmegen, The Netherlands

{arjenh,nivea,peterl}@cs.ru.nl

Abstract. Probabilistic logics have attracted a great deal of attention
during the past few years. While logical languages have taken a central
position in research on knowledge representation and automated rea-
soning, probabilistic graphical models with their probabilistic basis have
taken up a similar position when it comes to reasoning with uncertainty.
The formalism of chain graphs is increasingly seen as a natural proba-
bilistic graphical formalism as it generalises both Bayesian networks and
Markov networks, and has a semantics which allows any Bayesian net-
work to have a unique graphical representation. At the same time, chain
graphs do not support modelling and learning of relational aspects of a
domain. In this paper, a new probabilistic logic, chain logic, is developed
along the lines of probabilistic Horn logic. The chain logic leads to rela-
tional models of domains in which associational and causal knowledge are
relevant and where probabilistic parameters can be learned from data.

1 Introduction

There has been a considerable amount of work in the field of artificial intelli-
gence during the past two decades on integrating logic and probability theory.
This research was motivated by perceived limitations of both formalisms. Logic
has for long acted as the common ground for almost all research on knowledge
representation, reasoning and learning in artificial intelligence; yet, uncertainty
cannot be handled easily in logic. Probabilistic graphical models take probability
theory as their foundation; they have been proposed as formalisms for statistical
learning and for reasoning with uncertainty. Although their associated graphi-
cal representation allows specifying relationship among objects in the domain of
discourse such that it is possible to reason about their statistical dependences
and independences, probabilistic graphical models are essentially propositional
in nature, and they lack the representational richness of logics.

Several researchers have proposed probabilistic logics that merge those two
types of languages in an attempt to redress their individual shortcomings. A va-
riety of such languages is now available, each of them adopting a different view
on the integration. Unfortunately, it appears that all of the available frame-
works are still restricted in one way or the other. In particular, the available

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 548–563, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Integrating Logical Reasoning and Probabilistic Chain Graphs 549

languages either support representing Bayesian-network-like independence in-
formation or Markov-network-like independence information. In this paper, we
describe a probabilistic first-order language that is more expressive than similar
languages developed earlier, in the sense that the probabilistic models that can
be specified and reasoned about have Bayesian and Markov networks as special
cases. This new probabilistic logic is called chain logic. This paper addresses the
representation and reasoning aspects of chain logic as well as parameter learning
of chain logic theories.

The organisation of this paper is as follows. In Section 2 we provide an
overview of the basic notions of Horn clauses and chain graphs. Section 3 con-
tains an introduction to the chain logic language, with details on its syntax and
semantics. In Section 4, we focus on learning the parameters of chain logic the-
ories. In Section 5 the most important related work is introduced and a detailed
comparison to this is provided. Finally, Section 6 presents our conclusions.

2 Preliminaries

The work discussed in this paper builds upon two separate branches of research:
(i) probabilistic graphical models, and (ii) abductive logic. We start by sum-
marising the basic facts about probabilistic graphical models, in particular chain
graph models. This is followed by a review of central notions from abductive
logic. Both frameworks act as the foundation for chain logic as developed in the
remainder of the paper.

2.1 Chain Graphs

A chain graph (CG) is a probabilistic graphical model that consists of labelled
vertices, that stand for random variables, connected by directed and undirected
edges. This representation allows chain graphs to be considered as a framework
that generalises both directed acyclic graph probabilistic models, i.e., Bayesian
networks, and undirected graph probabilistic models, i.e., Markov networks [4].
The definitions with respect to chain graphs given in this paper are in accordance
with [5].

Let G = (V,E) be a hybrid graph, where V denotes the set of vertices and
E the set of edges, where an edge is either an arc (directed edge), or a line
(undirected edge). Let indexed lower case letters, e.g., v1 and v2, indicate vertices
of a chain graph. We denote an arc connecting two vertices by ‘→’ and a line
by ‘−’. Consider two vertices v1 and v2. If v1 → v2 then v1 is a parent of v2. If
v1− v2 then v1 (v2) is a neighbour of v2 (v1). The set of parents and neighbours
of a vertex v are denoted by pa(v) and ne(v), respectively.

A path of length n in a hybrid graph G = (V,E) is a sequence of distinct
vertices v1, . . . , vn+1, such that either vi − vi+1 ∈ E, vi → vi+1 ∈ E, or vi ←
vi+1 ∈ E. A directed path is a path which includes at least one arc, and where all
arcs have the same direction. A cycle is a path where the first and last vertex are
the same. A chain graph is a hybrid graph with the restriction that no directed
cycles exist.

550 A. Hommersom, N. Ferreira, and P.J.F. Lucas

If there is a line between every pair of vertices in a set of vertices, then this
set is named complete. A clique is a maximally complete subset. Now, consider
the graph obtained from a chain graph by removing all its arcs. What are left
are vertices connected by lines, called chain components ; the set of all chain
components is denoted here by C.

Associated to a chain graph G = (V,E) is a joint probability distribution
P (XV) that is faithful to the chain graph G, i.e., it includes all the independence
information represented in the graph. This is formally expressed by the following
chain graph Markov property:

P (XV) =
∏

C∈C
P (XC | Xpa(C)) (1)

with V =
⋃
C∈C C, and where each P (XC | Xpa(C)) factorises according to

P (XC | Xpa(C)) = Z−1(Xpa(C))
∏

M∈M(C)

ϕM (XM) (2)

given that M(C) is the complete set in the moral graph1 obtained from the
subgraph GC∪pa(C) of G. The functions ϕ are non-negative real functions, called
potentials ; they generalise joint probability distributions in the sense that they
do not need to be normalised. Finally, the normalising factor Z is defined as

Z(Xpa(C)) =
∑

XC

∏

M∈M(C)

ϕM (XM) (3)

As a Bayesian network is a special case of a chain graph model, Equation (1)
simplifies in that case to:

P (XV) =
∏

v∈V
P (Xv | Xpa(v)) (4)

which is the well-known factorisation theorem of Bayesian networks [5]. In this
case, the chain components are formed by a family of random variables. There-
fore, for each of those random variables the distribution is defined as the condi-
tional probability function of this variable, given the value of its parents. Note
that according to Equation (1), chain graphs can also be interpreted as a directed
acyclic graph of chain components.

2.2 Abduction Logic

Abduction logic is defined as a special variant of function-free Horn logic, where
the syntax of Horn clauses is slightly modified, and logical implication, ‘←’, is
given a causal interpretation. Abduction clauses have the following form:

D ← B1, . . . , Bn : R1, . . . , Rm

1 Moralisation encompasses: (1) adding lines between unconnected parents of a chain
component, and (2) conversion of arcs into lines by ignoring their directions.

Integrating Logical Reasoning and Probabilistic Chain Graphs 551

where the predicates of the atoms D and Bi are at least unary and the atoms
Rj , called templates, express relationships among variables, where at least one
variable appearing in the atoms D and Bi occurs in at least one template Rj . An
example illustrating this representation is shown below (Example 1). Atoms that
do not occur as head of a clause are called assumables. From a logical point of
view, the ‘:’ operator has the meaning of a conjunction; it is only included in the
syntax to allow separating atoms that are templates from non-template atoms.
The basic idea is to use atoms D and Bi to introduce specific variables, later
interpreted as random variables, and the templates Rj to represent relations
among those variables. Other variables can be introduced to define additional,
logical relationships among objects, or to define generic properties.

Let T be a set of abduction clauses, called an abductive theory in this paper.
Then, concluding a formula ψ from the theory is denoted by T � ψ (when using
model theory) and T � ψ (when using deduction or proof theory).

Throughout this paper, we will write Ψ ′ as the set of ground instances of Ψ ,
where Ψ is a set of formulae. For example, A is the set of all assumables and we
use A′ to denote the set of ground instances of A.

For abduction logic a special type of logical reasoning has been proposed,
called abduction, which is defined in terms of model theory or deduction using
so-called explanations : “a entails b” allows inferring a as an explanation of b.
Given a set of atoms O, interpreted as observations, then these observations are
explained in terms of the abductive theory and a set of assumables.

Definition 1. An explanation of a set of atoms O based on the pair 〈T,A〉 is
defined as a set of ground assumables E ⊆ A′ satisfying the following conditions:

– T ∪ E � O, and
– T ∪ E is consistent, i.e., T ∪ E � ⊥.

A minimal explanation E of O is an explanation whose proper subsets are not
explanations of O. The set of all minimal explanations is denoted by ET (O).

Example 1. Suppose that we have the following piece of medical knowledge. In-
fluenza (I) causes coughing (C), where coughing is known as a possible cause for
hoarseness (H). In addition, coughing is known to be associated with dyspnoea
(shortness of breath) (D), although a clear cause-effect relationship is missing.
Dyspnoea restricts the oxygen supply to the blood circulation; the resulting low
oxygen saturation of the blood will turn the skin to colour blue (B), which is a
condition called cyanosis. This qualitative knowledge is represented by the causal
network shown in Fig. 1. The associated abductive theory T is the following:

I(x)←: rI(x)
C(x)← I(y) : rC,I(x, y), rC,D(x, z)
D(x)← I(y) : rC,I(z, y), rC,D(z, x)
H(x)← C(y) : rH,C(x, y)
B(x)← D(y) : rB,D(x, y)

552 A. Hommersom, N. Ferreira, and P.J.F. Lucas

I

C D

H B

rI

rC,I

rH,C

rB,D

rC,D

Fig. 1. Causal network model of causal and associational knowledge about influenza

where each of the variables has {f, t} as domain. It now holds that:

T ∪ {rI(t), rH,C(t, t), rC,I(t, t), rC,D(t, t)} � H(t)

and T ∪ {rI(t), rH,C(t, t), rC,I(t, t), rC,D(t, t)} � ⊥.
The intuition behind the syntax of abduction clauses, such as C(x) ← I(y) :

rC,I(x, y), rC,D(x, z), is that C(x) ← I(y) expresses the potential existence of a
causal relation between the referred atoms, here I(y) and C(x). Note that I(y)
also appear in the clause D(x) ← I(y) : rC,I(z, y), rC,D(z, x), following the fact
that I is the parent of the chain component CD. Templates Rj , e.g. rC,I(x, y),
expresses whether the relationship actually does or does not hold. When there
are no atoms to the left of the ‘:’ operator, such as in the clause I(x)←: rI(x),
the template represents a root node or an association with no parents.

3 Chain Logic

In this section, the chain logic language is formally defined. This paves the way
for the next section where we will focus on learning.

3.1 Language Syntax

The formalism presented in this section is inspired by probabilistic Horn logic
as introduced by Poole in [1]. For the sake of simplicity, we assume here finite
domain specifications (infinite domains are briefly mentioned in Section 6). Fur-
thermore, the unique names assumption holds for the different constants of the
domain.

Chain logic (CL) extends abduction logic as described in Section 2.2 by inter-
preting templates as representing uncertain events. The actual definition of the
uncertainty is done by means of a weight declaration. This is of the form

weight(a1 : w1, . . . , an : wn) (5)

where ai represents an atom and wi ∈ R
+
0 . The set of atoms appearing in such

declarations are the assumables A. Here we require that the atoms in a weight
declaration share the same variables. Furthermore, we require that a ground
atom a – which is an instance of one of the assumables – does not appear as an
instance of another assumable in another weight declaration. The weight decla-
ration defines conjunctions of atoms that are mutually exclusive and exhaustive.

Integrating Logical Reasoning and Probabilistic Chain Graphs 553

Therefore, together with the above elements, a CL specification also includes
integrity constraint statements, i.e., clauses of the form

⊥ ← ai, aj (6)

for any pair ai and aj appearing in the same weight declaration where i �= j. Such
clauses are implicit in all of our given examples. We also allow the addition of
another set of constraints referring to a pair of assumables appearing in different
weight declarations, as seen in the example below.

Example 2. Consider the description given in Example 1. Uncertainty is defined
by replacing the templates by potential functions. For the abductive theory in
this example:
ϕCI ı ı̄
c 8 2
c̄ 1 10

ϕCD d d̄
c 18 2
c̄ 5 2

ϕHC c c̄
h 0.6 0.1
h̄ 0.4 0.9

ϕBD d d̄
b 0.3 0.001
b̄ 0.7 0.999

ϕI
ı 0.1
ı̄ 0.9

This example can be represented in chain logic using the following abduction
clauses:

I(x)←: ϕI(x)
C(x)← I(y) : ϕCI(x, y), ϕCD(x, z)
D(x)← I(y) : ϕCI(z, y), ϕCD(z, x)
H(x)← C(y) : ϕHC(x, y)
B(x)← D(y) : ϕBD(x, y)
⊥ ← ϕCI(x, y), ϕCD(x̄, z)

Furthermore, we can associate weights to the assumables according to the po-
tential functions. For instance,

weight(ϕCD(t, t) : 18, ϕCD(t, f) : 2, ϕCD(f, t) : 5, ϕCD(f, f) : 2)

In order to be able to probabilistically interpret a CL theory T , a number of
assumptions are added to those of abduction logic: (i) the theory is acyclic; (ii)
the rules for every ground non-assumable represented in T ′ are covering, i.e.,
there is always a rule whose assumable holds; (iii) the bodies of the rules in T ′

for an atom are mutually exclusive; (iv) there is a set of ground assumables,
one from every grounded weight declaration, consistent with T . As in Poole’s
probabilistic Horn logic, these assumptions are not intended to be enforced by
the system: it is up to the modeller to comply to these requisites. Under this
condition, we can then guarantee the probabilistic properties of the theory.

3.2 Semantics and Reasoning

The interpretation of chain logic theories T is done in terms of possible world
semantics for the ground case.

Definition 2. Let P be a set of predicates of the language. Then a possible world
is a tuple w = 〈D,ω, p̂〉 where

554 A. Hommersom, N. Ferreira, and P.J.F. Lucas

– D is a set of ground terms of the language
– ω : A′ → R+

0 is a function which assigns a weight to ground assumables A′

– p̂ : Dn → {true, false} is a valuation function, for each p ∈ P.

Truth of formulae is then inductively defined as usual except that an atom a is
false if there are clauses a ← b1 and a ← b2 in T and both b1 and b2 are true.
Furthermore, we have:

w |= weight(a1 : w1, . . . , an : wn)
iff ∃i w |= ai and ∀j �= i w �|= ajand ∀i ω(ai) = wi

which expresses that exactly one assumable is true in a weight declaration.

As a convenience, for arbitrary theories, we write w |= T , whenever for all
groundings of T , denoted by T ′, we have w |= T ′. The set of all possible worlds
denoted W , for which we define a joint probability distribution.

Definition 3. Let PT be a non-negative real function of W that is defined as
follows:

PT (w) =
{

1
Z

∏
a∈A′ ω(a) if w |= T

0 otherwise

where Z =
∑
w∈{w|w|=T}

∏
a∈A′ ω(a).

Clearly, the function PT obeys the axioms of probability theory, as each weight is
larger than or equal to 0 and, given that there is a set of consistent assumables
consistent with T , there is at least one possible world for T , thus, it follows
that

∑
w∈W PT (w) = 1. Therefore, it is a joint probability distribution; PT

is sometimes abbreviated to P in the following. A probability for a formula
conjunction ϕ can be derived by marginalising out the other atoms, i.e., P (ϕ) =∑

w|=ϕ P (w).
These definitions provide the means to reason logically, at the same time

assigning probabilities to conjunctive formulae in the language. An alternative
way to look at the reasoning process, however, is in terms of explanations of
observations, as defined above, which will be considered next.

We define a hypothesis as a conjunction of ground instances, one for each
assumable of a grounded weight declaration. The set of all such hypotheses is
denoted byH. The set of consistent hypotheses, with respect to T will be denoted
by CH, i.e., CH = {H ∈ H | T ∪H � ⊥}.
Proposition 1. The joint probability distribution over the set of hypotheses is
as follows:

PT (H) =
{

1
Z

∏
a∈H ω(a) if H ∈ CH

0 otherwise

where Z =
∑
H∈CH

∏
a∈H ω(a).

Given T , a minimal explanation E of some formula ψ is equivalent to a dis-
junction of hypotheses, i.e., E ≡ ∨

iHi with Hi ∈ H. As all Hi are mutually
exclusive, it follows that:

Integrating Logical Reasoning and Probabilistic Chain Graphs 555

PT (E) = PT (
∨

i

Hi) =
∑

i

PT (Hi)

which assigns a probability to minimal explanations. In order to assign a prob-
ability to a formula using explanations, we have the following result.

Theorem 1. Under the assumptions mentioned in Section 3.1, if ET (ψ) is the
set of minimal explanations of the conjunction of atoms ψ from the chain logic
theory T , then:

PT (ψ) =
∑

E∈ET (ψ)

P (E)

Proof. This follows exactly the same line of reasoning of [1, page 53, proof of
Theorem A.13]. ��
This result shows that P is indeed a probability distribution over conjunctions
of formulae if we use the definition of PT above. Other probabilities can be cal-
culated on the basis of these types of formulae, such as conditional probabilities.
Below, we will sometimes refer to the resulting probability distribution by PT in
order to stress that we mean the probability calculated using Definition 3.

Example 3. Reconsider the uncertainty specification concerning influenza as de-
scribed in Example 2. Consider here that we are interested in calculating the
P (B(t)) (i.e., the probability of B being true). Recalling the definitions provided
in Section 2.2, we obtain the minimal explanations for B(t), i.e., ET (B(t)) as the
set with the (8) members such as:

{ϕBD(t, t), ϕCD(t, t), ϕCI(t, t), ϕI(t)}
{ϕBD(t, t), ϕCD(t, t), ϕCI(t, f), ϕI(f)}

...

We can then sum over the hypotheses that are consistent with these explanations.

P (B(t)) =
∑
e∈ET (B(t)) P (e)

= Z−1(0.3 · 18 · 8 · 0.1 + . . .) = 27.7/Z

Similarly, we can find that P (B(f)) = 88.0/Z, so Z = 115.7 and thus P (B(t)) ≈
0.24.

Abductive reasoning establishes the relevant variables for the computation of
a marginal probability, i.e., it selects the portion of the chain graph that is
relevant. Consider once again our running example. By asking if B is true, we
obtain through the rule B(x)← D(y) : ϕBD(x, y) that D influences B. In terms
of the graph, this means that we walk the arc in reverse direction, i.e., from
effect to explaining cause, from B to D. We now look at the rules which have D
as head, selecting D(x)← I(y) : ϕCI(z, y)∧ϕCD(z, x). From the potential ϕCD
in this clause, the existence of the association between C and D is established.
From the presence of potential ϕCI we – indirectly – recover and include also

556 A. Hommersom, N. Ferreira, and P.J.F. Lucas

I

C D

H B

ϕI

ϕC,I

ϕH,C

ϕB,D

ϕC,D

Fig. 2. The direction of reasoning about B is denoted with a dashed line. The nodes
that represent variables that are abduced over and the variables that are relevant
in the explanation are highlighted. Parts of the graph that are not relevant for the
computation of P (B) are not considered.

the influence of I on C. From the presence of predicate I(y) we can proceed
to including also the potential ϕI , which (as seen previously) is also important
for the correct probabilistic computation. This process is graphically depicted in
Fig. 2.

Example 4. Consider that we are interested in the probability of P (I(t) | B(t)).
This probability can be obtained by the having P (I(t)∧B(t)) divided by P (B(t)).
The calculation of P (B(t)) was shown in Example 3. By calculation the minimal
explanations for I(t) ∧ B(t), we obtain that P (I(t) ∧ B(t)) = 4.5/Z ≈ 0.04, so
it follows that P (I(t) | B(t)) ≈ 0.04

0.24 ≈ 0.16. Note that the prior probability for
I(t) is 0.1, so the evidence B(t) has increased the probability for influenza.

3.3 Specification of Chain Graphs

In this section, we present the formal relation between chain graphs with discrete
random variables and chain logic. For the sake of simplicity, we focus on chain
graphs with binary variables, i.e., the set of constants is {t, f}, although the
theory generalises to arbitrary arities. Complementary constants are denoted
with a bar, i.e., t̄ = f and f̄ = t.

The translation from a chain graph G to a chain logic theory T is as follows.
First, introduce for each potential function ϕM a corresponding predicate ϕM
and define a weight declaration containing ϕM (c0, . . . , cn) : w if ϕM (XM =
(c0, . . . , cn)) = w, for all possible instantiations (c0, . . . , cn) of XM . Second, we
model the structure of the chain graph in chain logic. Consider a vertex v in G.
For each component C ∈ C of G, there is a set of potential functions defined
on the moral graph of the sub-graph GC∪pa(C) which contains v or one of the
parents of C. This set of potential functions is denoted by ΦG(C, v). For every
vertex v, we have the following formula in T :

V (x)←∧{V ′(xv′) | v′ ∈ pa(C)} :∧{ϕM (x1, . . . , x, . . . , xn) | ϕM ∈ ΦG(C, v)}
and we ensure that each of the predicates defined for the same random variable
shares that variable in the formula. However, this is not strictly necessary as
different values for the same random variable in a component is also disallowed
by the integrity constraints.

Integrating Logical Reasoning and Probabilistic Chain Graphs 557

The integrity constraints are defined as follows. If we have two potential func-
tions, namely an n-ary ϕM (. . . , v, . . .) and an m-ary ϕ′

M (. . . , v, . . .), i.e., which
share a variable v in the same chain component (i.e., not between chain compo-
nents), then we add the following formula to T :

⊥ ← ϕM (x0, . . . , x, . . . , xn), ϕ′
M (x′0 . . . , x̄, . . . , x

′
m)

for each variable that they share. As mentioned earlier, this ensures we do not
generate explanations which have inconsistent assignments to the random vari-
ables within the same chain component.

In the following theorem, we establish that probabilities calculated from the
chain logic theory correspond to the chain graph semantics.

Theorem 2. Suppose v1, . . . , vn are vertices in a chain graph, with T as the
corresponding chain logic theory by the translation described above, then:

P (Xv1 = c1, . . . , Xvn = cn) = PT (V1(c1), . . . , Vn(cn))

Proof. There is only one minimal explanation of V1(c1) ∧ · · · ∧ Vn(cn), namely
ϕM (cM0 , . . . , cMm) for all potential functions in cliques in the moral graphs of chain
components with their parents, such that the constants filled into the potential
functions correspond to the values for each of the random variables.

The explanation describes exactly one hypothesis. Denote this as h. As the
potential functions are related to exactly one component, we have the following
equation:

∏

a∈h
ω(a)

=
∏

C∈C

∏

ϕC
j (cj

0,...,c
j
n)∈h

ϕCj (Xvj
0

= cj0, . . . , Xvj
n

= cjn)

=
∏

C∈C

∏

M∈M(C)

ϕM (XM) (7)

where ϕC are potential functions defined for component C and M(C) are the
complete sets in the moral graph from the sub-graph GC∪pa(C).

Let Z =
∑

H∈CH

∏
a∈H ω(a). Since there are no integrity constraints between

variables in chain components (i.e., combinations of consistent potential func-
tions which are in different chain components are consistent), we have that:

Z =
∑

H∈CH

∏

a∈H
ω(a)

=
∏

C∈C

∑

h∈CH(C)

∏

ϕC
j

ϕCj (Xvj
0

= cj0, . . . , Xvj
n

= cjn)

=
∏

C∈C
Z(Xpa(C)) (8)

558 A. Hommersom, N. Ferreira, and P.J.F. Lucas

where CH(C) is the set of consistent hypotheses (w.r.t. T) restricted to the
potential functions in that chain component. Then, the equivalence follows in
the following way:

P (Xv1 = c1, . . . , Xvn = cn)
=(factorisation)

∏
C∈C P (XC | Xpa(C))

=(factorisation)
∏
C∈C Z

−1(Xpa(C))
∏
M∈M(C) ϕM (XM)

× (∏
C∈C Z

−1(Xpa(C))
) ∏

C∈C
∏
M∈M(C) ϕM (XM)

=(Eq. 8) Z
−1

∏
C∈C

∏
M∈M(C) ϕM (XM))

=(Eq. 7) Z
−1

∏
a∈w ω(a)

=(def. PT) PT (V1(c1), . . . , Vn(cn))

��
As we have shown in Section 3.2 that PT adheres to the axioms of probability
theory, chain graphs and the translated chain logic theory agree on all prob-
abilities. This result shows that chain graphs can be translated to chain logic
specifications. The converse is also true: all chain logic theories, which adhere
to the assumptions of Section 3.1, correspond to a chain graph as a fully con-
nected Markov network models and the associated probability distributions. This
is not a minimal independence map of the underlying probability distribution
in general, although conditional independence statements can be obtained by
comparing explanations between formulae. As we are only able to represent di-
rect causal links and indirect association, we conjecture that we have the same
expressiveness in this logic as in chain graphs.

4 Learning Chain Graph Parameters

While observables and assumables make up the core of chain logic, determin-
ing the probabilistic parameters of assumables using observations stored in a
database D is one of the essential tasks of learning in chain logic. Basically, the
goal is to estimate weights of the assumables in a CL theory related to CGs.
In general, it is not possible to easily estimate the potentials from data as they
might have a complex dependency to the rest of the graph. However, if the in-
dividual components are triangulated, the factorisation can be stated in terms
of marginal probabilities over the variables in a clique.

The proposed algorithm for determining the parameters is inspired by the use
of a junction tree for probabilistic inference. The reason for this is that a junction
tree provides sufficient information about the interactions between assumables,
i.e., when they influence the same observables. Junction trees, with required
properties such as the running intersection property, are only guaranteed to exist
when the graph is triangulated, so we restrict ourselves to this case. Let O be the
set of grounded non-assumables, which are the observations. As a convenience
we write NO with O ⊆ O for the number of tuples of D that contain O. In the
following, we will assume that all o ∈ O are present in database D.

Integrating Logical Reasoning and Probabilistic Chain Graphs 559

Algorithm 1. Learn CL parameters
Require: chain logic theory T , assumables A′, observables O, database D

for a ∈ A′ do
Effect(a)← {o ∈ O | ∃H ∈ CH : T ∪H |= o and T ∪ (H \ {a}) �|= o}
Rel(a)← {o ∈ O | ∀H ∈ CH: a ∈ H ∧ T ∪H |= Effect(a) implies T ∪H |= o}

end for
V ← A′

E ← {(a, a′) ∈ A′ ×A′ | Rel(a) ∩ Rel(a′) �= ∅}
JG← (V, E) with separator set Rel(a) ∩ Rel(a′) associated to every edge (a, a′)
let the weight of an edge in JG be the cardinality of its separator set
J ← spanning tree of maximal weight of JG
DJ← any directed tree of J
for a ∈ A′ do

let S be the union of separators of a with its parents in DJ
ω̂(a)← NEffect(a)∪S/NS

end for

The learning procedure is described in Algorithm 1. It will first identify ef-
fects of assumables (Effect), which are those observables that are implied by
the assumables, possibly together with other assumables. Then, indirect relation
(Rel) are identified, which are those observables that are always included in the
derivation to the effects from an assumable. The latter can be used to build
up a junction tree, where variables are instantiated for a particular value. From
this structure, weights of the assumables can be learned. The properties of junc-
tion trees ensure that joint distribution corresponds to the relative frequency of
observables, i.e., we have the following, general, result.

Theorem 3. Given a chain logic theory T with associated (moralised, trian-
gulated) chain graph G and database D, then after running Algorithm 1, the
resulting weight declaration described by ω̂ and T will be such that:

PT (O) =
NO
N∅

(9)

for all possible observations O ⊆ O.

Proof (sketch). If the assumable a models the potential function of some clique,
then the set Rel(a) contains the nodes of that clique. Furthermore, JG is iso-
morph to a junction graph of the underlying chain graph G. According to [6,
Theorem 1], then J will be a junction tree of G. Because of the equivalence
between reasoning in chain logic and chain graphs, we have:

P (xV) =
∏

C

∏

M∈M(C)

ω̂(ϕM)

(see Eq. 7). Since ω̂(ϕM) = NM/NS where S is some separator, it follows that

∏

C

∏

M∈M(C)

ω̂(ϕM) =

∏
C

∏
M∈M(C)NM

R

560 A. Hommersom, N. Ferreira, and P.J.F. Lucas

where R amounts to the product of the frequency of separators on the edges.
Then, observe that all separators of the graph are there iff they are in R as each
separator appears exactly once in an edge of a junction tree.

Finally, by application of [7, Lemma 1] and [8, proposition 12.3.2], this fre-
quency coincides exactly with the frequency interpretation of P (XV), i.e., coin-
cides with the relative frequency of the data. ��
Example 5. Reconsider the chain graph of Fig. 2. By logical reasoning, it can
be shown that: Rel(ϕI(t)) = {I(t)}, Rel(ϕCI(t, t)) = {C(t), I(t)}, etc, which
gives the following graph (here shown with quantified variables to visualise the
similarity to regular junction graphs):

ϕI(x)

ϕCI(y, x)

ϕHC(z, y) ϕCD(y, v)

ϕBD(w, v)

I(x)

C(y) C(y)

C(y)

D(v)

A tree can be obtained from this graph by removing any of the edges from the
loop in the undirected graph. In fact, it does not matter which one to choose as,
if there is a loop, then the separators are all the same set of variables. Equation 9
implies that for chain logic it is irrelevant which one is chosen, but some are more
closely related to the original graph as others. For example, if we take ϕI(x) as
a root, then ϕCI(y, x) is a conditional probability, as in the original graph. If,
on the other hand we take ϕI(x) as a leaf, then its weight will be 1 and thus
ϕCI(y, x) will be the joint probability of C and I, given its parent.

In order to obtain the interpretation of the original graph, we adapt Algo-
rithm 1 by choosing DJ as the maximum weight spanning tree such that there
is an arc from a to a′ iff s(a, a′) ∈ Effect(a) and s(a, a′) �∈ Effect(a′), where
s(a, a′) denotes Rel(a) ∩ Rel(a′), i.e., whenever an assumable a′ does not ex-
plain an observable it is related to, which means it must be conditioned on this
observation. For triangulated chain graphs, it can be proven that such a tree
exists.

Example 6. In the example above, we thus take the tree with arrows between
ϕI and ϕCI , and between ϕCI and ϕCD, giving, e.g., the following tree:

Integrating Logical Reasoning and Probabilistic Chain Graphs 561

ϕI(x)

ϕCI(y, x)

ϕHC(z, y) ϕCD(y, v)

ϕBD(w, v)

I(x)

C(y) C(y) D(v)

The learning algorithm will then, e.g., learn that:

ϕCD(x, y) = N{C(x),D(y)}/NC(y)

which corresponds to exactly the relative frequencies associated to variables in
the original chain graph showing the relation between the two formalisms for
learning.

Relational domains can be represented, and thus learned about using the same
machinery, as long as the modeller ensures properties characterised by the class
of triangulated chain graphs.

5 Comparison

Probabilistic Horn logic was originally proposed by Poole in [1]. It offers a frame-
work that was shown to be as powerful as Bayesian networks, yet it has the ad-
vantage that it is a first-order language that integrates probabilistic and logical
reasoning in a seamless fashion. Besides some changes in the terminology (such
as using weight declarations in place of disjoint ones), the main differences in
terms of syntax is the set of integrity constraints allowed and the probabilis-
tic information captured in each formalism. Weights can sum up to any value,
enabling the formalisation of potential functions instead of a (normalised) prob-
ability distribution. Furthermore, in our case, by allowing the use of extra in-
tegrity constraints, we are able to establish dependences among instantiations
of hypotheses.

Those differences extend Poole’s approach and allow us to obtain a more
generic probabilistic model, being crucial for the representation of chain graph
models. The graphical representation associated with a Bayesian network does
not offer a unique way to represent the independence information, which makes
the interpretation of Bayesian networks cumbersome. In contrast, an advantage
of using chain graphs as underlying model is representing associations (e.g.,
coughing and dyspnoea in Example 1), which cannot be defined in Bayesian

562 A. Hommersom, N. Ferreira, and P.J.F. Lucas

networks. In fact, chain graphs can capture the class of equivalent Bayesian
networks. By using potential functions we can represent the quantitative influ-
ence between variables in a clique. The additional integrity constraints guarantee
that instantiations of those potentials functions appear consistently in each ex-
planation. Despite such differences, we still share with Poole’s approaches some
assumptions and similar results, for instance, with respect to the probability
densities defined over the theory.

Bayesian logic programs [2] have similar limitations as probabilistic Horn logic;
in addition, they are only proposed as formalisms to specify Bayesian networks in
a logical way and reasoning is done in the generated Bayesian networks. Further-
more, the framework of Markov logic networks [3] has been proposed as a power-
ful language based on first-order logic to specify Markov networks. Yet, Markov
networks are seen by researchers in probabilistic graphical models as the weakest
type of such models, as much of the subtleties of representing conditional inde-
pendence cannot be handled by Markov networks. In fact, formulae in Markov
logic can only model associations between literals, whereas causal knowledge
cannot be represented, for instance, between coughing and hoarseness. Further-
more, despite its expressive power, Markov logic is a generative language, i.e.,
specifications are translated into the corresponding graphical model on which
reasoning is then performed in a standard fashion. The aim of the presented re-
search was to design an expressive probabilistic logic that supports probabilistic
reasoning and learning guided by the structure of the logic.

6 Final Considerations

In this paper we presented a simple, yet powerful, language for representing,
reasoning with and learning generic chain graph models. Besides being able
to incorporate both Bayesian and Markov network models as special cases, we
maintain a strong relation between logical and probabilistic reasoning.

Our language still presents some restrictions. First, we use finite set of con-
stants, which prohibits the use of continuous variables. For Markov logic net-
works, it has been shown that special cases of such networks can be extended
to infinite domains by defining a Gibbs measure over sets of interpretations
for logical formulae [9]. A similar approach could be taken here by defining
a measure over the set of consistent states. Another limitation is the acyclicity
assumption, which restricts the explicit representation of undirected graphs com-
ponents. Even though we require certain assumptions for a sound probabilistic
interpretation, weakening acyclicity seems feasible [10].

While we have shown in this paper that chain logic is powerful enough to de-
fine, reason, and learn about chain graphs, we have no strong reason to suspect
that chain logic is restricted to this class of probabilistic graphical models. Al-
though chain graphs form a fairly general class of probabilistic graphs, it might
be the case that the language is applicable to a broader set of graphs. Also, mod-
elling the independence implied in chain logic theories into a graphical model is
an open question that will be investigated further.

Integrating Logical Reasoning and Probabilistic Chain Graphs 563

With respect to learning, we have presented in this paper parameter learning
of chain graph theories. Learning the structure of such graphs will be a subject
of further research, but techniques from the inductive logic programming have
been successful for learning Bayesian logic programs [11]. We believe similar
ideas can be applied for learning chain logic theories.

Acknowledgements

The first and last author have been supported by the OCTOPUS project under
the responsibility of the Embedded Systems Institute. This project is partially
supported by the Netherlands Ministry of Economic Affairs under the Embed-
ded Systems Institute program. The second author acknowledges the support
through the B-Screen project funded by the Netherlands Organisation for Sci-
entific Research (NWO) under BRICKS/FOCUS grant number 642.066.605.

References

1. Poole, D.: Probabilistic Horn abduction and Bayesian networks. AI Journal 64(1),
81–129 (1993)

2. Kersting, K., de Raedt, L.: Bayesian logic programs. Technical Report 151, Insti-
tute for Computer Science - University of Freiburg, CoRR cs.AI/0111058 (2001)

3. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–
136 (2006)

4. Pearl, J.: Probabilistic Reasoning in Inteligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, San Francisco (1988)

5. Lauritzen, S.L.: Graphical Models. Clarendon, Oxford (1996)
6. Jensen, F., Jensen, F.: Optimal junction trees. In: Uncertainty in Artificial Intelli-

gence (1994)
7. Bouckaert, R.R., Studený, M.: Chain graphs: Semantics and expressiveness. In:

Froidevaux, C., Kohlas, J. (eds.) ECSQARU 1995. LNCS, vol. 946, pp. 69–76.
Springer, Heidelberg (1995)

8. Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wiley, Chich-
ester (1990)

9. Singla, P., Domingos, P.: Markov logic in infinite domains. In: Proc. of UAI 2007,
pp. 368–375. AUAU Press (2007)

10. Poole, D.: The independent choice logic for modelling multiple agents under un-
certainty. AI Journal 94(1–2), 7–56 (1997)

11. Kersting, K., de Raedt, L.: Towards combining inductive logic programming with
bayesian networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI),
vol. 2157, pp. 118–131. Springer, Heidelberg (2001)

	Integrating Logical Reasoning and Probabilistic Chain Graphs
	Introduction
	Preliminaries
	Chain Graphs
	Abduction Logic

	Chain Logic
	Language Syntax
	Semantics and Reasoning
	Specification of Chain Graphs

	Learning Chain Graph Parameters
	Comparison
	Final Considerations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

