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Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
E-mail: {marko.grobelnik,dunja.mladenic}@ijs.si

John Shawe-Taylor
University College London
Gower St., London, WC1E 6BT, UK
E-mail: jst@cs.ucl.ac.uk

Library of Congress Control Number: 2009933615

CR Subject Classification (1998): I.2, H.2.8, H.3, G.3, H.5, G.2, I.7

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-04179-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04179-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12753031 06/3180 5 4 3 2 1 0



Preface

The year 2008 was the first year that the previously separate European Con-
ferences on Machine Learning (ECML) and the Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD) were merged into a uni-
fied event. This is a natural evolution after eight consecutive years of their being
collocated after the first joint conference in Freiburg in 2001. The European
Conference on Machine Learning (ECML) traces its origins to 1986, when the
first European Working Session on Learning was held in Orsay, France followed
by the second European Working Session on Learning held in Bled, the locati-
on of this year’s ECML PKDD 2009 conference. The European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD) was first
held in 1997 in Trondheim, Norway. Over the years, the ECML/PKDD series
has evolved into one of the largest and most selective international conferences in
machine learning and data mining, the only one that provides a common forum
for the two closely related fields. In 2009, ECML PKDD conference was held
during September 7–11 in Bled, Slovenia.

The conference used a hierarchical reviewing process. We nominated 26 Area
Chairs, each of them responsible for one sub-field or several closely related rese-
arch topics. Suitable areas were selected on the basis of the submission statistics
for ECML PKDD 2008 and from last year’s International Conference on Machi-
ne Learning (ICML 2008) and International Conference on Knowledge Discovery
and Data Mining (KDD 2008) to ensure a proper load balance among the Area
Chairs. A joint Program Committee (PC) was nominated consisting of some 300
renowned researchers, mostly proposed by the Area Chairs. In order to make best
use of the reviewing capabilities we initially only requested that two reviews be
sought. However, in the event of an inconsistency between the two assessments
a third review was requested. Papers receiving two very positive reviews were
considered for inclusion in the two special issues of Machine Learning and Data
Mining and Knowledge Discovery appearing in time for the conference. A fur-
ther review was also sought for these papers in order to assess their suitability to
appear in journal form. Aleksander Kolcz was the Best Papers Chair responsible
for overseeing the selection of papers for these special issues.

ECML PKDD 2009 received 679 abstract submissions resulting in a final total
of 422 papers that were submitted and not withdrawn during the reviewing
process. Based on the reviews, and on discussions among the reviewers, the
Area Chairs provided a recommendation for each paper with a ranking of the
borderline papers. The three Program Chairs made the final program decisions
after merging the opinions of the 26 Area Chairs.

All accepted papers were of equal status with an oral presentation, poster pre-
sentation and 16 pages in the proceedings, with the exception of those accepted
for the special issues of journals that were only allocated a single page abstract
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in the proceedings. We have selected a total of 106 papers of which 14 were be
equally divided between the two special issues. The acceptance rate for all pa-
pers is therefore 25%, in line with the high-quality standards of the conference
series. It is inevitable with such a low acceptance rate that some good papers
were rejected and we hope that authors of these papers were not discouraged by
their disappointment. We are, however, confident that the accepted papers are
of a high quality, making a very exciting and stimulating conference. In addition
to research papers, 15 demo papers were accepted, each having 4 pages in the
proceedings and demo of the system during the poster session. In addition to the
paper and poster/demo sessions, ECML PKDD 2009 also featured five invited
talks, ten workshops, six tutorials, and the ECML PKDD discovery challenge
and industrial track. The selection of Invited Speakers covered a broad range
from theoretical to leading application-orientated research. Together they made
a very strong addition to the conference program. We are grateful to Shai Ben-
David (University of Waterloo, Canada), Nello Cristianini (University of Bristol,
UK), Mark Greaves (Vulcan Inc.), Rosie Jones (Yahoo! Research), Ralf Stein-
berger (European Commission - Joint Research Centre) for their participation
in ECML PKDD 2009. The abstracts of their presentations are included in this
volume.

This year we continued to promote an Industrial Track chaired by Marko
Grobelnik (Jožef Stefan Institute, Slovenia) and Nataša Milić-Frayling (Micro-
soft Research, Cambridge, UK) consisting of selected talks with a strong indu-
strial component presenting research from the area covered by the ECML PKDD
conference. We have also included a Demonstration Track chaired by Alejandro
Jaimes Larrarte, providing a venue for exciting exemplars of applications of novel
technologies.

As in recent years, the conference proceedings were available on-line to con-
ference participants during the conference. We are grateful to Springer for ac-
commodating this access channel for the proceedings.

As in previous years we will continue with the recently established tradition
of videorecording the event, ensuring an enduring record of the event made ac-
cessible at http://videolectures.net/. Mitja Jermol is the Video Chair overseeing
this aspect of the organization.

This year’s Discovery Challenge was coordinated by Andreas Hotho together
with Folke Eisterlehner and Robert Jäschke. It involved three tasks in the area
of tag recommendation.

We are all indebted to the Area Chairs, Program Committee members and
external reviewers for their commitment and hard work that resulted in a rich
but selective scientific program for ECML PKDD 2009. We are particularly gra-
teful to those reviewers who helped with additional reviews at a very short notice
to assist us in a small number of difficult decisions. We further thank the Work-
shop and Tutorial Chairs Ravid Ghani and Cédric Archambeau for selecting
and coordinating the ten workshops and six tutorials that accompany the con-
ference; the workshop organizers, tutorial presenters, and the organizers of the
discovery challenge, the Industrial and Demonstration Tracks; the Video Chair;
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the Publicity Chair David Hardoon; and Richard van de Stadt and CyberChair-
PRO for highly competent and flexible support when confronted by novel featu-
res in our handling of the papers. Special thanks are due to the Local Chair, Tina
Anžič, for the many hours spent ensuring the success of the conference. Finally,
we are grateful to the Steering Committee and the ECML PKDD community
that entrusted us with the organization of the ECML PKDD 2009.

Most of all, however, we would like to thank all the authors who trusted
us with their submissions, thereby contributing to the main yearly European-
focussed international event in the life of our expanding research community.

June 2009 Dunja Mladenić
Wray Buntine

Marko Grobelnik
John Shawe-Taylor
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Erik Štrumbelj
Jan Struyf
Ilija Subašić
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Harnessing the Strengths of Anytime Algorithms for Constant Data
Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Philipp Kranen and Thomas Seidl

Identifying the Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Matthijs van Leeuwen, Jilles Vreeken, and Arno Siebes

Two-Way Analysis of High-Dimensional Collinear Data . . . . . . . . . . . . . . . 33
Ilkka Huopaniemi, Tommi Suvitaival, Janne Nikkilä,
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Carlotta Domeniconi

Communication-Efficient Classification in P2P Networks . . . . . . . . . . . . . . 83
Hock Hee Ang, Vivekanand Gopalkrishnan, Wee Keong Ng, and
Steven Hoi

A Generalization of Forward-Backward Algorithm . . . . . . . . . . . . . . . . . . . . 99
Ai Azuma and Yuji Matsumoto



Table of Contents – Part I XXI

Mining Graph Evolution Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Michele Berlingerio, Francesco Bonchi, Björn Bringmann, and
Aristides Gionis

Parallel Subspace Sampling for Particle Filtering in Dynamic Bayesian
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Eva Besada-Portas, Sergey M. Plis, Jesus M. de la Cruz, and
Terran Lane

Adaptive XML Tree Classification on Evolving Data Streams . . . . . . . . . . 147
Albert Bifet and Ricard Gavaldà
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Theory-Practice Interplay in Machine Learning – 
Emerging Theoretical Challenges 

Shai Ben-David 

University of Waterloo, Canada 

Abstract. Theoretical analysis has played a major role in some of the most 
prominent practical successes of statistical machine learning. However, main-
stream machine learning theory assumes some strong simplifying assumptions 
which are often unrealistic. In the past decade, the practice of machine learning 
has led to the development of various heuristic paradigms that answer the needs 
of a vastly growing range of applications. Many useful such paradigms fall be-
yond the scope of the currently available analysis. Will theory play a similar 
pivotal role in the newly emerging sub areas of machine learning? 

In this talk, I will survey some such application-motivated theoretical  
challenges. In particular, I will discuss recent developments in the theoretical 
analysis of semi-supervised learning, multi-task learning, “learning to learn”, 
privacy-preserving learning and more. 
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Are We There Yet? 

Nello Cristianini 

University of Bristol, UK   

Abstract. Statistical approaches to Artificial Intelligence are behind most suc-
cess stories of the field in the past decade. The idea of generating non-trivial 
behaviour by analysing vast amounts of data has enabled recommendation sys-
tems, search engines, spam filters, optical character recognition, machine trans-
lation and speech recognition. As we celebrate the spectacular achievements of 
this line of research, we need to assess its full potential, its limitations and its 
position within the larger scheme of things. What are the next steps to take to-
wards machine intelligence? 
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The Growing Semantic Web 

Mark Greaves 

Vulcan Inc., USA  

Abstract. From its beginnings in 2004, the data available on the web in Seman-
tic Web formats has typically been both eclectic and relatively small, and 
closely linked the interests of particular researchers. In the past year, however, 
the quantity and scope of data published on the public semantic web has ex-
ploded, and the size of the semantic web is now measured in the billions of as-
sertions. It is a significant and growing resource for applications which depend 
on web-based resources for some or all of their knowledge. With this massive 
increase in quantity and scope come many opportunities, as well as the usual is-
sues of scale on the web: inconsistency, mapping problems, incompleteness and 
data variability. This talk will cover the history and current state of the Seman-
tic Web and the Linked Data Cloud, describe some of the uses to which web-
based semantic data is currently put, and discuss prospects for the 
ECML/PKDD community to leverage this growing web of data. 
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Privacy in Web Search Query Log Mining  

Rosie Jones 

Yahoo!, Inc, USA 

Abstract. Web search engines have changed our lives - enabling instant access 
to information about subjects that are both deeply important to us, as well as 
passing whims. The search engines that provide answers to our search queries 
also log those queries, in order to improve their algorithms. Academic research 
on search queries has shown that they can provide valuable information on di-
verse topics including word and phrase similarity, topical seasonality and may 
even have potential for sociology, as well as providing a barometer of the popu-
larity of many subjects. At the same time, individuals are rightly concerned 
about what the consequences of accidental leaking or deliberate sharing of this 
information may mean for their privacy. In this talk I will cover the applications 
which have benefited from mining query logs, the risks that privacy can be 
breached by sharing query logs, and current algorithms for mining logs in a way 
to prevent privacy breaches. 
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Highly Multilingual News Analysis Applications 

Ralf Steinberger  

European Commission - Joint Research Centre, Italy  

Abstract. The publicly accessible Europe Media Monitor (EMM) family of ap-
plications (http://press.jrc.it/overview.html) gather and analyse an average of 
80,000 to 100,000 online news articles per day in up to 43 languages. Through 
the extraction of meta-information in these articles, they provide an aggregated 
view of the news; they allow to monitor trends and to navigate the news over 
time and even across languages. EMM-NewsExplorer additionally collects his-
torical information about persons and organisations from the multilingual news, 
generates co-occurrence and quotation-based social networks, and more. All 
EMM applications were entirely developed at, and are being maintained by, the 
European Commission’s Joint Research Centre (JRC) in Ispra, Italy. 

The applications make combined use of a variety of text analysis tools,  
including clustering, multi-label document classification, named entity recogni-
tion, name variant matching across languages and writing systems, topic detec-
tion and tracking, event scenario template filling, and more. Due to the high 
number of languages covered, linguistics-poor methods were used for the de-
velopment of these text mining components. See the site http://langtech.jrc.it/ 
for technical details and a list of publications.  

The speaker will give an overview of the various applications and will then 
explain the workings of selected text analysis components.  

 



Combining Instance-Based Learning and Logistic

Regression for Multilabel Classification�

Weiwei Cheng and Eyke Hüllermeier

Department of Mathematics and Computer Science

University of Marburg, Germany

{cheng,eyke}@mathematik.uni-marburg.de

Abstract. Multilabel classification is an extension of conventional

classification in which a single instance can be associated with multi-

ple labels. Recent research has shown that, just like for conventional

classification, instance-based learning algorithms relying on the nearest

neighbor estimation principle can be used quite successfully in this con-

text. However, since hitherto existing algorithms do not take correlations

and interdependencies between labels into account, their potential has

not yet been fully exploited. In this paper, we propose a new approach

to multilabel classification, which is based on a framework that unifies

instance-based learning and logistic regression, comprising both methods

as special cases. This approach allows one to capture interdependencies

between labels and, moreover, to combine model-based and similarity-

based inference for multilabel classification. As will be shown by exper-

imental studies, our approach is able to improve predictive accuracy in

terms of several evaluation criteria for multilabel prediction.

Reference

1. Cheng, W., Hüllermeier, E.: Combining Instance-Based Learning and Logis-

tic Regression for Multilabel Classification. Machine Learning (2009) DOI:

10.1007/s10994-009-5127-5

� This is an extended abstract of an article published in the machine learning journal

[1].
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On Structured Output Training:

Hard Cases and an Efficient Alternative�

Thomas Gärtner and Shankar Vembu

Fraunhofer IAIS, Schloß Birlinghoven, 53754 Sankt Augustin, Germany

{thomas.gaertner,shankar.vembu}@iais.fraunhofer.de

State-of-the-art structured prediction algorithms can be applied using off-the-
shelf tools by implementing a joint kernel for inputs and outputs, and an algo-
rithm for inference. The kernel is used for mapping the data to an appropriate
feature space, while the inference algorithm is used for successively adding vi-
olated constraints to the optimisation problem. While this approach leads to
efficient learning algorithms for many important real world problems, there are
also many cases in which successively adding violated constraints is infeasible.
As a simple yet relevant problem, we consider the prediction of routes (cyclic
permutations) over a given set of points of interest. Solving this problem has
many potential applications. For car drivers, prediction of individual routes can
be used for intelligent car sharing applications or help optimise a hybrid vehicle’s
charge/discharge schedule. We show that state-of-the-art structured prediction
algorithms cannot guarantee polynomial runtime for this output set of cyclic
permutations.

Despite these hardness results, we show that efficient formulae for ‘super-
structure’ counting can be derived and propose an alternative structured output
training algorithmbased on these counting formulae. By deriving ‘super-structure’
counting formulae for various combinatorial structures, we show that our approach
subsumes many machine learning problems including multi-class, multi-label and
hierarchical classification.Furthermore, our approachcanbeused for training com-
plex combinatorial output sets for which the assumptions made in the literature
do not hold. We empirically compare our algorithm with state-of-the-art general
and special purpose algorithms on different structures. For multi-label and hier-
archical classification, inference is trivial and our experiments demonstrate that
our approach is competitive or better than the state-of-the-art. For route predic-
tion, inference is hard and we focus on the training part of the algorithms, i.e., on
synthetic data we compare the policy estimated by our approach to the policy es-
timated by SVM-Struct using approximate inference.
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1. Gärtner, T., Vembu, S.: On Structured Output Training: Hard Cases and an Efficient

Alternative. Machine Learning (2009) DOI: 10.1007/s10994-009-5129-3

� This is an extended abstract of an article published in the machine learning journal

[1].

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, p. 7, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Sparse Kernel SVMs via Cutting-Plane

Training�

Thorsten Joachims and Chun-Nam John Yu

Cornell University, Dept. of Computer Science, Ithaca, NY 14853 USA

{tj,cnyu}@cs.cornell.edu

While Support Vector Machines (SVMs) with kernels offer great flexibility and
prediction performance on many application problems, their practical use is often
hindered by the following two problems. Both problems can be traced back to the
number of Support Vectors (SVs), which is known to generally grow linearly with
the data set size [1]. First, training is slower than other methods and linear SVMs,
where recent advances in training algorithms vastly improved training time.
Second, since the prediction rule takes the form h(x) = sign

[∑#SV
i=1 αiK(xi, x)

]
it is too expensive to evaluate in many applications when the number of SVs is
large.

This paper tackles these two problems by generalizing the notion of Support
Vector to arbitrary points in input space, not just training vectors. Unlike Wu et
al. [2], who explore making the location of the points part of a large non-convex
optimization problem, we propose an algorithm that iteratively constructs the
set of basis vectors from a cutting-plane model. This makes our algorithm, called
Cutting-Plane Subspace Pursuit (CPSP), efficient and modular. We analyze the
training efficiency and the solution quality of the CPSP algorithm both theo-
retically and empirically. We find that its classification rules can be orders of
magnitude sparser than the conventional support-vector representation while
providing comparable prediction accuracy. The sparsity of the CPSP represen-
tation not only makes predictions substantially more efficient, it also allows the
user to control training time. Especially for large datasets with sparse feature
vectors (e.g. text classification), the CPSP methods is substantially faster than
methods that only consider basis vectors from the training set.

Acknowledgments. This work was funded in part under NSF award IIS-
0713483.

References

1. Steinwart, I.: Sparseness of support vector machines. JMLR 4, 1071–1105 (2003)

2. Wu, M., Schölkopf, B., Bakir, G.H.: A direct method for building sparse kernel

learning algorithms. JMLR 7, 603–624 (2006)

3. Joachims, T., Yu, C.-N.J.: Sparse Kernel SVMs via Cutting-Plane Training. Machine

Learning (2009), DOI:10.1007/s10994-009-5126-6

� This is an extended abstract of an article published in the machine learning journal

[3].

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, p. 8, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Hybrid Least-Squares Algorithms for

Approximate Policy Evaluation�

Jeff Johns, Marek Petrik, and Sridhar Mahadevan

Department of Computer Science

University of Massachusetts Amherst

{johns,petrik,mahadeva}@cs.umass.edu

Abstract. The goal of approximate policy evaluation is to “best” rep-

resent a target value function according to a specific criterion. Different

algorithms offer different choices of the optimization criterion. Two pop-

ular least-squares algorithms for performing this task are the Bellman
residual method, which minimizes the Bellman residual, and the fixed
point method, which minimizes the projection of the Bellman residual.

When used within policy iteration, the fixed point algorithm tends to

ultimately find better performing policies whereas the Bellman residual

algorithm exhibits more stable behavior between rounds of policy itera-

tion. We propose two hybrid least-squares algorithms to try to combine

the advantages of these algorithms. We provide an analytical and geo-

metric interpretation of hybrid algorithms and demonstrate their utility

on a simple problem. Experimental results on both small and large do-

mains suggest hybrid algorithms may find solutions that lead to better

policies when performing policy iteration.
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Abstract. Uncertainty sampling is an effective method for performing

active learning that is computationally efficient compared to other active

learning methods such as loss-reduction methods. However, unlike loss-

reduction methods, uncertainty sampling cannot minimize total misclas-

sification costs when errors incur different costs. This paper introduces

a method for performing cost-sensitive uncertainty sampling that makes

use of self-training. We show that, even when misclassification costs are

equal, this self-training approach results in faster reduction of loss as a

function of number of points labeled and more reliable posterior proba-

bility estimates as compared to standard uncertainty sampling. We also

show why other more naive methods of modifying uncertainty sampling

to minimize total misclassification costs will not always work well.
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Abstract. We examine the class of multi-linear polynomial representa-

tions (MLR) for expressing probability distributions over discrete

variables. Recently, MLR have been considered as intermediate represen-

tations that facilitate inference in distributions represented as graphical

models.

We show that MLR is an expressive representation of discrete distri-

butions and can be used to concisely represent classes of distributions

which have exponential size in other commonly used representations,

while supporting probabilistic inference in time linear in the size of the

representation.

Our key contribution is presenting techniques for learning bounded-

size distributions represented using MLR, which support efficient prob-

abilistic inference. We propose algorithms for exact and approximate

learning for MLR and, through a comparison with Bayes Net represen-

tations, demonstrate experimentally that MLR representations provide

faster inference without sacrificing inference accuracy.

Keywords: Learning Distributions, Multi-linear Polynomials, Proba-

bilistic Inference, Graphical Models.
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Abstract. This paper analyzes the application of a particular class of

Bregman divergences to design cost-sensitive classifiers for multiclass

problems. We show that these divergence measures can be used to es-

timate posterior probabilities with maximal accuracy for the probabil-

ity values that are close to the decision boundaries. Asymptotically, the

proposed divergence measures provide classifiers minimizing the sum of

decision costs in non-separable problems, and maximizing a margin in

separable MAP problems.

Keywords: Cost sensitive learning, Bregman divergence, posterior class

probabilities, maximum margin.
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Abstract. We propose a new, recursive model to generate realistic

graphs, evolving over time. Our model has the following properties:

it is (a) flexible, capable of generating the cross product of weighted/

unweighted, directed/undirected, uni/bipartite graphs; (b) realistic, giv-

ing graphs that obey eleven static and dynamic laws that real graphs

follow (we formally prove that for several of the (power) laws and we

estimate their exponents as a function of the model parameters); (c)

parsimonious, requiring only four parameters. (d) fast, being linear on

the number of edges; (e) simple, intuitively leading to the generation

of macroscopic patterns. We empirically show that our model mimics

two real-world graphs very well: Blognet (unipartite, undirected, un-

weighted) with 27K nodes and 125K edges; and Committee-to-Candidate

campaign donations (bipartite, directed, weighted) with 23K nodes and

880K edges. We also show how to handle time so that edge/weight ad-

ditions are bursty and self-similar.

1 Introduction

Study of complex graphs such as computer and biological networks, the link
structure of the WWW, the topology of the Internet, and recently with the
widespread use of the Internet, large social networks, has been a vital research
area. Many fascinating properties have been discovered, such as small and shrink-
ing diameter [2,20], power-laws [5,11,16,24,22,28,29,20], and community struc-
tures [12,13,27]. As a result of such interesting patterns being discovered, and
for many other reasons which we will discuss next, how to find a model that
would produce synthetic but realistic graphs is a natural question to ask. There
are several applications and advantages of modeling real-world graphs:

– Simulation studies: if we want to run tests for, say a spam detection al-
gorithm, and want to observe how the algorithm behaves on graphs with
different sizes and structural properties, we can use graph generators to pro-
duce such graphs by changing the parameters. This is also true when it is
difficult to collect any kind of real data.

– Sampling/Extrapolation: we can generate a smaller graph for example for
visualization purposes or in case the original graph is too big to run tests

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 13–28, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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on it; or conversely to generate a larger graph for instance to make future
prediction and answer what-if questions.

– Summarization/Compression: model parameters can be used to summarize
and compress a given graph as well as to measure similarity to other graphs.

– Motivation to understand pattern generating processes: graph generators give
intuition and shed light upon what kind of processes can (or cannot) yield the
emergence of certain patterns. Moreover, modeling addresses the question of
what patterns real networks exhibit that needs to be matched and provides
motivation to figure out such properties.

Graph generator models are surveyed in [4]. Ideally, we would like a graph gen-
erator that is:

1. simple: it would be easy to understand and it would intuitively lead to the
emergence of macroscopic patterns.

2. realistic: it would produce graphs that obey all the discovered “laws” of
real-world graphs with appropriate values.

3. parsimonious: it would require only a few number of parameters.
4. flexible: itwould be able to generate the cross product ofweighted/unweighted,

directed/undirected and unipartite/bipartite graphs.
5. fast: the generation process would ideally take linear time with respect to

the number of edges in the output graph.

In this paper we propose RTG, for Random Typing Generator. Our model uses a
process of ‘random typing’, to generate source and destination node identifiers,
and it meets all the above requirements. In fact, we show that it can generate
graphs that obey all eleven patterns that real graphs typically exhibit.

Next, we provide a survey on related work. Section 3 describes our RTG
generator in detail. Section 4 provides experimental results and discussion. We
conclude in Section 5. Appendix gives proofs showing some of the power-laws
that the model generates.

2 Related Work

Graph patterns: Many interesting patterns that real graphs obey have been
found, which we give a detailed list of in the next section. Ideally, a generator
should be able to produce all of such properties.

Graph generators: The vast majority of earlier graph generators have focused
on modeling a small number of common properties, but fail to mimic others.
Such models include the Erdos & Renyi model [8], the preferential attachment
model [3] and numerous more, like the ‘small-world’, ‘winners don’t take all’,
‘forest fire’ and ‘butterfly’ models [31,26,20,22]. See [4] for a recent survey and
discussion. In general, these methods are limited in trying to model some static
graph property while neglecting others as well as dynamic properties or cannot
be generalized to produce weighted graphs.
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Random dot product graphs [17,32] assign each vertex a random vector in some
d-dimensional space andan edge is put between twovertexeswith probability equal
to the dot product of the endpoints. This model does not generate weighted graphs
andbydefinition onlyproduces undirected graphs. It also seems to require the com-
putation of the dot product for each pair of nodes which takes quadratic time.

A different family of models is utility-based, where agents try to optimize
a predefined utility function and the network structure takes shape from their
collective strategic behavior [10,9,18]. This class of models, however, is usually
hard to analyze.

Kronecker graph generators [19] and their tensor followups [1] are successful
in the sense that they match several of the properties of real graphs and they
have proved useful for generating self-similar properties of graphs. However, they
have two disadvantages: The first is that they generate multinomial/lognormal
distributions for their degree and eigenvalue distribution, instead of a power-law
one. The second disadvantage is that it is not easy to grow the graph incremen-
tally: They have a fixed, predetermined number of nodes (say, Nk, where N is
the number of nodes of the generator graph, and k is the number of iterations);
where adding more edges than expected does not create additional nodes. In
contrast, in our model, nodes emerge naturally.

3 Proposed Model

We first give a concise list of the static and dynamic ‘laws’ that real graphs obey,
which a graph generator should be able to match.

L01. Power-law degree distribution: the degree distribution should follow a
power-law in the form of f(d) ∝ dγ , with the exponent γ < 0 [5,11,16,24]

L02. Densification Power Law (DPL): the number of nodes N and the number
of edges E should follow a power-law in the form of E(t) ∝ N(t)α, with
α > 1, over time [20].

L03. Weight Power Law (WPL): the total weight of the edges W and the num-
ber of edges E should follow a power-law in the form of W (t) ∝ E(t)β , with
β > 1, over time [22].

L04. Snapshot Power Law (SPL): the total weight of the edges Wn attached to
each node and the number of such edges, that is, the degree dn should follow
a power-law in the form of Wn ∝ dθ

n, with θ > 1 [22].
L05. Triangle Power Law (TPL): the number of triangles Δ and the number of

nodes that participate in Δ number of triangles should follow a power-law
in the form of f(Δ) ∝ Δσ, with σ < 0 [29].

L06. Eigenvalue Power Law (EPL): the eigenvalues of the adjacency matrix of
the graph should be power-law distributed [28].

L07. Principal Eigenvalue Power Law (λ1PL): the largest eigenvalue λ1 of the
adjacency matrix of the graph and the number of edges E should follow a
power-law in the form of λ1(t) ∝ E(t)δ, with δ < 0.5, over time [1].

L08. small and shrinking diameter: the (effective) diameter of the graph should
be small [2] with a possible spike at the ‘gelling point’ [22]. It should also
shrink over time [20].
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L09. constant size secondary and tertiary connected components: while the ‘giant
connected component’ keeps growing, the secondary and tertiary connected
components tend to remain constant in size with small oscillations [22].

L10. community structure: the graph should exhibit a modular structure, with
nodes forming groups, and possibly groups within groups [12,13,27].

L11. bursty/self-similar edge/weight additions: Edge (weight) additions to the
graph over time should be self-similar and bursty rather than uniform with
possible spikes [7,14,15,22].

Zipf introduced probably the earliest power law [33], stating that, in many nat-
ural languages, the rank r and the frequency fr of vocabulary words follow a
power-law fr ∝ 1/r. Mandelbrot [21] argued that Zipf‘s law is the result of opti-
mizing the average amount of information per unit transmission cost. Miller [23]
showed that a random process also leads to Zipf-like power laws. He suggested
the following experiment: “A monkey types randomly on a keyboard with k
characters and a space bar. A space is hit with probability q; all other charac-
ters are hit with equal probability, (1−q)

k . A space is used to separate words”.
The distribution of the resulting words of this random typing process follow a
power-law. Conrad and Mitzenmacher [6] showed that this relation still holds
when the keys are hit with unequal probability.

Our model generalizes the above model of natural human behavior, using
‘random typing’. We build our model RTG (Random Typing Generator) in three
steps, incrementally. In the next two steps, we introduce the base version of the
proposed model to give an insight. However, as will become clear, it has two
shortcomings. In particular, the base model does not capture (1) homophily, the
tendency to associate and bond with similar others- people tend to be acquainted
with others similar in age, class, geographical area, etc. and (2) community
structure, the existence of groups of nodes that are more densely connected
internally than with the rest of the graph.

3.1 RTG-IE: RTG with Independent Equiprobable Keys

As in Miller’s experimental setting, we propose each unique word typed by the
monkey to represent a node in the output graph (one can think of each unique
word as the label of the corresponding node). To form links between nodes, we
mark the sequence of words as ‘source’ and ‘destination’, alternatingly. That is,
we divide the sequence of words into groups of two and link the first node to the
second node in each pair. If two nodes are already linked, the weight of the edge
is simply increased by 1. Therefore, if W words are typed, the total weight of the
output graph is W/2. See Figure 1 for an example illustration. Intuitively, ran-
dom typing introduces new nodes to the graph as more words are typed, because
the possibility of generating longer words increases with increasing number of
words typed.

Due to its simple structure, this model is very easy to implement and is indeed
mathematically tractable. If W words are typed on a keyboard with k keys and
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T1 ab a 1

T2 bba ab 1

T3 b ab 1

T4 a b 1

T5 ab a 1…   …        …    …   

a b S

a ab b SS

p qp

p p qq

q

p p

p
p

ab a bba ab b ab a b ab a

Fig. 1. Illustration of the RTG-IE. Upper left: how words are (recursively) generated

on a keyboard with two equiprobable keys, ‘a’ and ‘b’, and a space bar; lower left:

a keyboard is used to randomly type words, separated by the space character; upper

right: how words are organized in pairs to create source and destination nodes in the

graph over time; lower right: the output graph; each node label corresponds to a unique

word, while labels on edges denote weights

a space bar, the probability p of hitting a key being the same for all keys and
the probability of hitting the space bar being denoted as q=(1− kp):

Lemma 1. The expected number of nodes N in the output graph G of the RTG-
IE model is

N ∝W−logpk.

Proof: In the Appendix. ��
Lemma 2. The expected number of edges E in the output graph G of the RTG-
IE model is

E ≈ W−logpk ∗ (1 + c′logW ), for c′ =
q−logpk

−logp
> 0.

Proof: In the Appendix. ��
Lemma 3. The in(out)-degree dn of a node in the output graph G of the RTG-
IE model is power law related to its total in(out)-weight Wn, that is,

Wn ∝ d−logkp
n

with expected exponent −logkp > 1.

Proof: In the Appendix. ��
Even though most of the properties listed at the beginning of this section are

matched, there are two problems with this model: (1) the degree distribution
follows a power-law only for small degrees and then shows multinomial charac-
teristics (See Figure 2), and (2) it does not generate homophily and community
structure, because it is possible for every node to get connected to every other
node, rather than to ‘similar’ nodes in the graph.
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Fig. 2. Top row: Results of RTG-IE (k = 5, p = 0.16, W = 1M). The problem with

this model is that in(out)-degrees form multinomial clusters (left). This is because

nodes with labels of the same length are expected to have the same degree. This can

be observed on the rank-frequency plot (right) where we see many words with the

same frequency. Notice the ‘staircase effect’. Bottom row: Results of RTG-IU (k = 5,

p = [0.03, 0.05, 0.1, 0.22, 0.30], W = 1M). Unequal probabilities introduce smoothing

on the frequency of words that are of the same length (right). As a result, the degree

distribution follows a power-law with expected heavy tails (left).

3.2 RTG-IU: RTG with Independent Un-Equiprobable Keys

We can spread the degrees so that nodes with the same-length but otherwise
distinct labels would have different degrees by making keys have unequal prob-
abilities. This procedure introduces smoothing in the distribution of degrees,
which remedies the first problem introduced by the RTG-IE model. In addition,
thanks to [6], we are still guaranteed to obtain the desired power-law character-
istics as before. See Figure 2.

3.3 RTG: Random Typing Graphs

What the previous model fails to capture is the homophily and community struc-
ture. In a real network, we would expect nodes to get connected to similar nodes
(homophily), and form groups and possibly groups within groups (modular struc-
ture). In our model, for example on a keyboard with two keys ‘a’ and ‘b’, we
would like nodes with many ‘a’s in their labels to be connected to similar nodes,
as opposed to nodes labeled with many ‘b’s. However, in both RTG-IE and
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a b S
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b
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b
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b

S

b*- b*b*- a* b*- S
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a b S

b* b*b* a*
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b* S
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aS-aSaS-ab*

aa*-aSaa*-
ab*

ab*-aSab*-
ab*

b*- b*b*- a* b*- S

S - a* S - b* S - S

a b S

a

b

papbβ
prob(a*,a*) = 
pa – prob(a*,b*) 
– prob(a*,S) 

pbqβpbpaβ

paqβ

prob(b*,b*) = 
pb – prob(b*,a*) 

pa

pbb

S

pbqβ

qpbβqpaβ

pbpaβ – prob(b*,S) 

prob(S,S) = 
q – prob(S,a*) 
– prob(S,b*) 

pb

q

pa pb q

(a) first level (b) recursion (c) communities

Fig. 3. The RTG model: random typing on a 2-d keyboard, generating edges (source-

destination pairs). See Algorithm 1. (a) an example 2-d keyboard (nine keys), hitting a

key generates the row(column) character for source(destination), shaded keys terminate

source and/or destination words. (b) illustrates recursive nature. (c) the imbalance

factor β favors diagonal keys and leads to homophily.

RTG-IU it is possible for every node to connect to every other node. In fact, this
yields a tightly connected core of nodes with rather short labels.

Our proposal to fix this is to envision a two-dimensional keyboard that gener-
ates source and destination labels in one shot, as shown in Figure 3. The previous
model generates a word for source, and, completely independently, another word
for destination. In the example with two keys, we can envision this process as
picking one of the nine keys in Figure 3(a), using the independence assumption:
the probability for each key is the product of the probability of the correspond-
ing row times the probability of the corresponding column: pl for letter l, and
q for space (‘S’). After a key is selected, its row character is appended to the
source label, and the column character to the destination label. This process
repeats recursively as in Figure 3(b), until the space character is hit on the first
dimension in which case the source label is terminated and also on the second
dimension in which case the destination label is terminated.

In order to model homophily and communities, rather than assigning cross-
product probabilities to keys on the 2-d keyboard, we introduce an imbalance
factor β, which will decrease the chance of a-to-b edges, and increase the chance
for a-to-a and b-to-b edges, as shown in Figure 3(c). Thus, for the example that
we have, the formulas for the probabilities of the nine keys become:

prob(a, b) = prob(b, a) = papbβ , prob(a, a) = pa − (prob(a, b) + prob(a,S)),

prob(S, a) = prob(a,S) = qpaβ , prob(b, b) = pb − (prob(b, a) + prob(b, S)),

prob(S, b) = prob(b, S) = qpbβ , prob(S,S) = q − (prob(S, a) + prob(S, b)).

By boosting the probabilities of the diagonal keys and down-rating the proba-
bilities of the off-diagonal keys, we are guaranteed that nodes with similar labels
will have higher chance to get connected. The pseudo-code of generating edges
as described above is shown in Algorithm 1.

Next, before showing the experimental results of RTG, we take a detour
to describe how we handle time so that edge/weight additions are bursty and
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self-similar. We also discuss the generalizations of the model in order to produce
all types of uni/bipartite, (un)weighted, and (un)directed graphs.

Algorithm 1. RTG
Input: k, q, W , β
Output: edge-list L for output graph G
1: Initialize (k + 1)-by-(k + 1) matrix P with cross-product probabilities

2: // in order to ensure homophily and community structure
3: Multiply off-diagonal probabilities by β, 0 < β < 1

4: Boost diagonal probabilities s.t. sum of row(column) probabilities remain the same.

5: Initialize edge list L

6: for 1 to W do
7: L1, L2 ← SelectNodeLabels(P )

8: Append L1, L2 to L

9: end for
10:

11: function SelectNodeLabels (P ) : L1, L2

12: Initialize L1 and L2 to empty string

13: while not terminated L1 and not terminated L2 do
14: Draw i,j with probability P (i, j)
15: if i ≤ k, j ≤ k then
16: Append character ‘i’ to L1 and ‘j’ to L2 if not terminated

17: else if i ≤ k, j=k + 1 then
18: Append character ‘i’ to L1 if not terminated

19: Terminate L2

20: else if i=k + 1, j ≤ k then
21: Append character ‘j’ to L2 if not terminated

22: Terminate L1

23: else
24: Terminate L1 and L2

25: end if
26: end while
27: Return L1 and L2

28: end function

3.4 Burstiness and Self-Similarity

Most real-world traffic as well as edge/weight additions to real-world graphs have
been found to be self-similar and bursty [7,14,15,22]. Therefore, in this section we
give a brief overview of how to aggregate time so that edge and weight additions,
that is ΔE and ΔW, are bursty and self-similar.

Notice that when we link two nodes at each step, we add 1 to the total weight
W . So, if every step is represented as a single time-tick, the weight additions are
uniform. However, to generate bursty traffic, we need to have a bias factor b> 0.5,
such that b-fraction of the additions happen in one half and the remaining in the
other half. We will use the b-model [30], which generates such self-similar and
bursty traffic. Specifically, starting with a uniform interval, we will recursively
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subdivide weight additions to each half, quarter, and so on, according to the
bias b. To create randomness, at each step we will randomly swap the order of
fractions b and (1 − b).

Among many methods that measure self-similarity we use the entropy plot [30],
which plots the entropy H(r) versus the resolution r. The resolution is the scale,
that is, at resolution r, we divide our time interval into 2r equal sub-intervals, com-
pute ΔE in each sub-interval k(k = 1 . . . 2r), normalize into fractions pk = ΔE

E ,
and compute the Shannon entropy H(r) of the sequence pk. If the plot H(r) is lin-
ear, the corresponding time sequence is said to be self-similar, and the slope of the
plot is defined as the fractal dimension fd of the time sequence. Notice that a uni-
form Δ distribution yields fd=1; a lower value of fd corresponds to a more bursty
time sequence, with a single burst having the lowest fd=0: the fractal dimension
of a point.

3.5 Generalizations

We can easily generalize RTG to model all type of graphs. To generate undirected
graphs, we can simply assume edges from source to destination to be undirected
as the formation of source and destination labels is the same and symmetric.
For unweighted graphs, we can simply ignore duplicate edges, that is, edges
that connect already linked nodes. Finally, for bipartite graphs, we can use two
different sets of keys such that on the 2-d keyboard, source dimension contains
keys from the first set, and the destination dimension from the other set. This
assures source and destination labels to be completely different, as desired.

4 Experimental Results

The question we wish to answer here is how RTG is able to model real-world
graphs. The datasets we used are:
Blognet: a social network of blogs based on citations (undirected, unipartite and
unweighted with N=27, 726; E=126, 227; over 80 time ticks).
Com2Cand: the U.S. electoral campaign donations network from organizations
to candidates (directed, bipartite and weighted with N=23, 191; E=877, 721;
and W=4, 383, 105, 580 over 29 time ticks). Weights on edges indicate donated
dollar amounts.

In Figures 4 and 5, we show the related patterns for Blognet and Com2Cand
as well as synthetic results, respectively. In order to model these networks, we
ran experiments for different parameter values k, q, W , and β. Here, we show the
closest results that RTG generated, though fitting the parameters is a challenging
future direction. We observe that RTG is able to match the long wish-list of static
and dynamic properties we presented earlier for the two real graphs.

In order to evaluate community structure, we use the modularity measure
in [25]. Figure 6(left) shows that modularity increases with smaller imbalance
factor β. Without any imbalance, β=1, modularity is as low as 0.35, which
indicates that no significant modularity exists. In Figure 6(right), we also show
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(a) diameter (b) components (c) degrees (d) TPL

(e) DPL (f) entropy ΔE (g) λ1PL (h) EPL

(a) L08 diameter (b) L09 components (c) L01 degree distr. (d) L05 TPL

(e) L02 DPL (f) L11 entropy ΔE (g) L07 λ1PL (h) L06 EPL

Fig. 4. Top two rows: properties of Blognet: (a) small and shrinking diameter; (b)

largest 3 connected components; (c) degree distribution; (d) triangles Δ vs number

of nodes with Δ triangles; (e) densification; (f) bursty edge additions; (g) largest 3

eigenvalues wrt E; (h) rank spectrum of the adjacency matrix. Bottom two rows:

results of RTG. Notice the similar qualitative behavior for all eight laws.

the running time of RTG wrt the number of duplicate edges (that is, number of
iterations W ). Notice the linear growth with increasing W .

5 Conclusion

We have designed a generator that meets all the five desirable properties in the
introduction. Particularly, our model is
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(a) diameter (b) components (c) degree distr. (d) SPL

(e) D(W)PL (f) entropy ΔW(E) (g) λ1PL (h) EPL

(a) L08 diameter (b) L09 components (c) L01 degree distr. (d) L04 SPL

(e) L02, L03 D(W)PL (f) L11 entropy ΔW(E) (g) L07 λ1PL (h) L06 EPL

Fig. 5. Top two rows: properties of Com2Cand; as opposed to Blognet, Com2Cand is

weighted. So, different from above we show: (d) node weight vs in(inset: out)degree; (e)

total weight vs number of edges(inset); (f) bursty weight additions(inset); Bottom two

rows: results of RTG. Notice the similar qualitative behavior for all nine laws.
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Fig. 6. Left: modularity score vs. imbalance factor β, modularity increases with de-

creasing β. For β=1, the score is very low indicating no significant modularity. Right:

computation time vs. W, time grows linearly with increasing number of iterations W.
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1. simple and intuitive, yet it generates the emergent, macroscopic patterns
that we see in real graphs.

2. realistic, generating graphs that obey all eleven properties that real graphs
obey - no other generator has been shown to achieve that.

3. parsimonious, requiring only a handful of parameters.
4. flexible, capable of generating weighted/unweighted, directed/undirected,

and unipartite/bipartite graphs, and any combination of the above.
5. fast, being linear on the number of iterations (on a par with the number of

duplicate edges in the output graph).

Moreover, we showed how well RTG can mimic some large, real graphs. We have
also proven that an early version of RTG generates several of the desired (power)
laws, formulated in terms of model parameters.
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Appendix

Consider the following setting: W words are typed on a keyboard with k keys
and a space bar, the probability of hitting a key p being the same for all keys and
probability of hitting the space bar being denoted as q=(1− kp), in the output
graph G of the RTG-IE model:
Lemma 1. The expected number of nodes N is

N ∝W−logpk.

Proof. Given the number of words W , we want to find the expected number of
nodes N that the RTG-IE graph consists of. This question can be reformulated
as follows: ”Given W words typed by a monkey on a keyboard with k keys and
a space bar, what is the size of the vocabulary V ?” The number of unique words
V is basically equal to the number of nodes N in the output graph.

Let w denote a single word generated by the defined random process. Then,
w can recursively be written as follows: “w : ciw|S”, where ci is the character
that corresponds to key i, 1 ≤ i ≤ k, and S is the space character. So, V as a
function of model parameters can be formulated as:

V (W ) = V (c1, Wp) + V (c2, Wp) + . . . + V (ck, Wp) + V (S)

= k ∗ V (Wp) + V (S) = k ∗ V (Wp) +
{ 1, 1− (1− q)W

0, (1− q)W

where q denotes the probability of hitting the space bar, i.e. q = 1 − kp. Given
the fact that W is often large, and (1− q) < 1, it is almost always the case that
w=S is generated; but since this adds only a constant factor, we can ignore it
in the rest of the computation. That is,

V (W ) ≈ k ∗ V (Wp) = k ∗ (k ∗ V (Wp2)) = kn ∗ V (1)

where n = logp(1/W ) = −logpW . By definition, when W=1, that is, in case
only one word is generated, the vocabulary size is 1, i.e. V(1)=1. Therefore,

V (W ) = N ∝ kn = k−logpW = W−logpk.
��

The above proof shown using recursion is in agreement with the early re-
sult of Miller [23], who showed that in the monkey-typing experiment with k
equiprobable keys (with probability p) and a space bar (with probability q), the
rank-frequency distribution of words follow a power law. In particular,

f(r) ∝ r−1+logk(1−q)−1 = rlogkp.
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Fig. 7. (a) Rank vs count of vocabulary words typed randomly on a keyboard with k
equiprobable keys (with probability p) and a space bar (with probability q), follow a

power law with exponent α = logkp. Approximately, the area under the curve gives

the total number of words typed. (b) The relationship between number of edges E and

total weight W behaves like a power-law (k=2, p=0.4).

In this case, the number of ranks corresponds to the number of unique words,
that is, the vocabulary size V . And, the sum of the counts of occurrences of all
words in the vocabulary should give W , the number of words typed. The total
count can be approximated by the area under the curve on the rank-count plot.
See Figure 7(a). Next, we give a second proof of Lemma 1 using Miller’s result.

Proof. Let α = logkp and C(r) denote the number of times that the word with
rank r is typed. Then, C(r) = crα, where C(r)min = C(V ) = cV α and the
constant c = C(V )V −α. Then we can write W as

W = C(V )V −α

(
V∑

r=1

rα

)
≈ C(V )V −α

(∫ V

r=1
rαdr

)
= C(V )V −α

(
rα+1

α + 1

∣∣∣V
r=1

)
= C(V )V −α

(
1

−α− 1
− 1

(−α− 1)V −α−1

)
≈ c′V −α.

where c′ = C(V )
−α−1 , where α < −1 and C(V ) is very small (usually 1). Therefore,

V = N ∝ W− 1
α = W−logpk.

��
Lemma 2. The expected number of edges E is

E ≈ W−logpk ∗ (1 + c′logW ), for c′ =
q−logpk

−logp
> 0.

Proof. Given the number of words W , we want to find the expected number of
edges E that the RTG-IE graph consists of. The number of edges E is the same
as the unique number of pairs of words. We can think of a pair of words as a
single word e, the generation of which is stopped after the second hit to the space
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bar. So, e always contains a single space character. Recursively, “e : cie|Sw”,
where “w : ciw|S”. So, E can be formulated as:

E(W ) = k ∗ E(Wp) + V (Wq) (1)

V (Wq) = k ∗ V (Wqp) +
{ 1, 1− (1− q)Wq

0, (1− q)Wq (2)

From Lemma 1, Equ.(2) can be approximately written as V (Wq) = (Wq)−logpk.
Then, Equ.(1) becomes E(W ) = k ∗ E(Wp) + cWα, where c = q−logpk and
α = −logpk. Given that E(W=1)=1, we can solve the recursion as follows:

E(W ) ≈ k ∗ (k ∗ E(Wp2) + c(Wp)α) + cWα

= k ∗ (k ∗ (k ∗ V (Wp3) + c(Wp2)α) + c(Wp)α) + cWα

= kn ∗ V (1) + kn−1 ∗ c(Wpn−1) + kn−2 ∗ c(Wpn−2)α + . . . + cWα

= kn ∗ V (1) + cWα((kpα)n−1 + (kpα)n−2 + . . . + 1)

where n = logp(1/W ) = −logpW . Since kpα = kp−logpk = 1,

E(W )≈kn∗V (1)+n ∗ cWα =k−logpW +c
−log 1

W

−logp
W−logpk =W−logpk(1+c′logW )

where c′ = c
−logp = q−logpk

−logp > 0.
��

The above function of E in terms of W and other model parameters looks like
a power-law for a wide range of W . See Figure 7(b).

Lemma 3. The in/out-degree dn of a node is power law related to its total
in/out-weight Wn, that is,

Wn ∝ d−logkp
n

with expected exponent −logkp > 1.

Proof. We will show that Wn ∝ d−logkp
n for out-edges, and a similar argument

holds for in-edges. Given that the experiment is repeated W times, let Wn denote
the number of times a unique word is typed as a source. Each such unique word
corresponds to a node in the final graph and Wn is basically its out-weight, since
the node appears as a source node. Then, the out-degree dn of a node is simply
the number of unique words typed as a destination. From Lemma 1,

Wn ∝ d−logkp
n , for − logkp > 1.

��
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In many application domains, events are naturally organized in a hierarchy.
Whether events describe human activities, system failures, coordinates in a trajec-
tory, or biomedical phenomena, there is often a taxonomy that should be taken into
consideration. A taxonomy allow us to represent the information at a more general
description level, if we choose carefully the most suitable level of granularity.

Given a taxonomy of events and a dataset of sequences of these events, we
study the problem of finding efficient and effective ways to produce a compact
representation of the sequences. This can be valuable by itself, or can be used
to help solving other problems, such as clustering.

We model sequences with Markov models whose states correspond to nodes in
the provided taxonomy, and each state represents the events in the subtree under
the corresponding node. By lumping observed events to states that correspond
to internal nodes in the taxonomy, we allow more compact models that are easier
to understand and visualize, at the expense of a decrease in the data likelihood.

We formally define and characterize our problem, and we propose a scalable
search method for finding a good trade-off between two conflicting goals: maxi-
mizing the data likelihood, and minimizing the model complexity. We implement
these ideas in Taxomo, a taxonomy-driven modeler.

Taxomo receives a database of sequences of symbols, and a taxonomy over
those symbols. An initial Markov model is created for the sequences without
considering the taxonomy, and then refine it iteratively by merging states driven
by the taxonomy. The likelihood of the data given a new model generated by
this merging procedure, can be computed directly from the likelihood of the
data given the model before the merging. This yields a fast model evaluation
method that can explore many configurations in a short time. We also implement
efficient strategies that guide the search process. We apply Taxomo in two
different domains, query-log mining and mining of moving-object trajectories.
The empirical evaluation confirms the feasibility and usefulness of our approach.

This is an extended abstract of an article published in the Data Mining and
Knowledge Discovery journal [1].
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Abstract. Subgroup discovery is a Knowledge Discovery task that aims

at finding subgroups of a population with high generality and distribu-

tional unusualness. While several subgroup discovery algorithms have

been presented in the past, they focus on databases with nominal at-

tributes or make use of discretization to get rid of the numerical at-

tributes. In this paper, we illustrate why the replacement of numerical

attributes by nominal attributes can result in suboptimal results. There-

after, we present a new subgroup discovery algorithm that prunes large

parts of the search space by exploiting bounds between related numer-

ical subgroup descriptions. The same algorithm can also be applied to

ordinal attributes. In an experimental section, we show that the use of

our new pruning scheme results in a huge performance gain when more

that just a few split-points are considered for the numerical attributes.
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Abstract. Anytime algorithms have been proposed for many different

applications e.g. in data mining. Their strengths are the ability to first

provide a result after a very short initialization and second to improve

their result with additional time. Therefore, anytime algorithms have so

far been used when the available processing time varies, e.g. on varying

data streams. In this paper we propose to employ anytime algorithms on

constant data streams, i.e. for tasks with constant time allowance. We in-

troduce two approaches that harness the strengths of anytime algorithms

on constant data streams and thereby improve the over all quality of the

result with respect to the corresponding budget algorithm. We derive

formulas for the expected performance gain and demonstrate the effec-

tiveness of our novel approaches using existing anytime algorithms on

benchmark data sets.

The goal that was set and reached in this paper is to improve the

quality of the result over that of traditional budget approaches, which

are used in an abundance of stream mining applications. Using anytime

classification as an example application we show for SVM, Bayes and

nearest neighbor classifiers that both our novel approaches improve the

classification accuracy for slow and fast data streams. The results con-

firm our general theoretic models and show the effectiveness of our ap-

proaches. The simple yet effective idea can be employed for any anytime

algorithm along with a quality measure and motivates further research

in e.g. classification confidence measures or anytime algorithms.
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Most, if not all, databases are mixtures of samples from different distributions. In 
many cases, however, nothing is known about the source components of these mix-
tures. Therefore, many methods that induce models regard a database as sampled 
from a single data distribution. Models that do take into account that databases actu-
ally are sampled from mixtures of distributions are often superior to those that do not, 
independent of whether this is modelled explicitly or implicitly. 

Transaction databases are no different with regard to data distribution. For the pro-
totypical example, supermarket basket analysis, one also expects a mixture of differ-
ent buying behaviours. Households of retired people buy different collections of items 
than households with young children, although overlap may exist. By extracting both 
the groups of people and their corresponding buying patterns, a company can learn a 
lot about its customers. 

But, what does “different buying behaviour” mean? It certainly does not mean that 
the different groups should buy completely different sets of items. Also, it does not 
mean that these groups cannot have common frequent item sets. Rather, it means that 
the characteristics of the sampled distributions are different. This may seem like a 
play of words, but it is not. Sampled distributions of transaction data can be character-
ised precisely through the use of a pattern-based compressor. 

We introduce two MDL-based algorithms that follow orthogonal approaches to 
identify the components in a transaction database. The first follows a model-based 
approach, while the second is data-driven. Both are parameter-free: the number of 
components and the components themselves are chosen such that the combined com-
plexity of data and model is minimised. Further, neither prior knowledge on the dis-
tributions nor a distance metric on the data is required.  

Experiments show that highly characteristic components are identified. Both algo-
rithms are evaluated on basis of total compressed sizes and component purity, but we 
also look at (dis)similarities between the components and their characteristic patterns. 
The results show that both our orthogonal methods identify the components of the da-
tabase. Visual inspection confirms that characteristic decompositions are identified. 
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Abstract. We present a Bayesian model for two-way ANOVA-type

analysis of high-dimensional, small sample-size datasets with highly cor-

related groups of variables. Modern cellular measurement methods are a

main application area; typically the task is differential analysis between

diseased and healthy samples, complicated by additional covariates re-

quiring a multi-way analysis. The main complication is the combination

of high dimensionality and low sample size, which renders classical multi-

variate techniques useless. We introduce a hierarchical model which does

dimensionality reduction by assuming that the input variables come in

similarly-behaving groups, and performs an ANOVA-type decomposition

for the set of reduced-dimensional latent variables. We apply the methods

to study lipidomic profiles of a recent large-cohort human diabetes study.

Keywords: ANOVA, factor analysis, hierarchical model, metabolomics,

multi-way analysis, small sample-size.
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of High-Dimensional Collinear Data. Data Mining and Knowledge Discovery (2009)

DOI: 10.1007/s10618-009-0137-2

� This is an extended abstract of an article published in the Data Mining and Knowl-

edge Discovery journal [1].
�� The project was funded by Tekes MASI program. I.H., T.S and S.K belong to the

Adaptive Informatics Research Centre and Helsinki Institute for Information Tech-

nology. I.H. is funded by the Graduate School of Computer Science and Engineering.

S.K is partially supported by EU FP7 NoE PASCAL2, ICT 216886.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, p. 33, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cis.hut.fi/projects/mi/


W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, p. 34, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

A Fast Ensemble Pruning Algorithm  
Based on Pattern Mining Process∗  

Qiang-Li Zhao, Yan-Huang Jiang, and Ming Xu 

School of Computer Science, National University of Defense Technology, 
Changsha, Hunan Province, PR. China 

zhao-qiangli@163.com, yhjiang@nudt.edu.cn 

Abstract. Ensemble pruning deals with the reduction of base classifiers prior to 
combination in order to improve generalization and prediction efficiency. Exist-
ing ensemble pruning algorithms require much pruning time. This paper pre-
sents a fast pruning approach: PMEP (Pattern Mining based Ensemble Pruning). 
In this algorithm, the prediction results of all base classifiers are organized as a 
transaction database, and FP-Tree structure is used to compact the prediction 
results. Then a greedy pattern mining method is explored to find the ensemble 
of size k. After obtaining the ensembles of all possible sizes, the one with the 
best accuracy is outputted. Compared with Bagging, GASEN, and Forward  
Selection, experimental results show that PMEP achieves the best prediction 
accuracy and keeps the size of the final ensemble small, more importantly, its 
pruning time is much less than other ensemble pruning algorithms.  

Keywords: PMEP (Pattern Mining based Ensemble Pruning), FP-Tree, Bag-
ging, back-propagation neural network.  
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Abstract. Subgroup discovery aims at finding subsets of a population whose
class distribution is significantly different from the overall distribution. It has
previously predominantly been investigated in a two-class context. This paper in-
vestigates multi-class subgroup discovery methods. We consider six evaluation
measures for multi-class subgroups, four of them new, and study their theoreti-
cal properties. We extend the two-class subgroup discovery algorithm CN2-SD
to incorporate the new evaluation measures and a new weighting scheme inspired
by AdaBoost. We demonstrate the usefulness of multi-class subgroup discov-
ery experimentally, using discovered subgroups as features for a decision tree
learner. Not only is the number of leaves of the decision tree reduced with a fac-
tor between 8 and 16 on average, but significant improvements in accuracy and
AUC are achieved with particular evaluation measures and settings. Similar per-
formance improvements can be observed when using naive Bayes.

1 Introduction

Rule induction is a common form of machine learning and data mining often used in
classification and association rule learning. Classification rule learning is a predictive
task aimed at constructing a set of rules, based on training examples and their observed
features, to predict the class of unseen future examples. Association rule learning, on
the other hand, is a form of descriptive induction aimed at the discovery of individual
rules that express interesting patterns in data.

In classification rule learning a target concept is pre-defined and so the search heuris-
tic is usually some form of accuracy. On the other hand, in descriptive rule learning no
target concept is given and the heuristic function evaluates measures of interestingness
and unusualness in the data, e.g. support and confidence. Subgroup discovery can be
seen as being halfway between predictive and descriptive rule learning, as there is a
target concept but the goal of subgroup discovery is not necessarily to achieve high
accuracy. Rather, the target concept helps us to achieve a trade-off between accuracy
and interestingness. In [1] this trade-off was achieved using weighted relative accuracy,
but their CN2-SD algorithm is restricted to two classes. In this paper we extend the ap-
proach to more than two classes, and perform an extensive study of different measures
for multi-class subgroup discovery. To the best of our knowledge, multi-class subgroup
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discovery was previously only studied by Klösgen [2, 3], who proposed two of the
multi-class measures we study in this paper but did not compare them experimentally.

Our goal in this paper is to investigate methods that allow multi-class subgroup dis-
covery. Our main contribution is a systematic study of possible heuristics for multi-
class subgroup discovery, including theoretical analysis and experimental evaluation.
We show that a careful choice of heuristic and learning setting results in the discov-
ery of significant subgroups, in a reasonable amount of time, that have high predictive
power and can be used to build classification models that are an order of magnitude
smaller.

The paper is organized as follows. In Section 2 we introduce the general framework
of rule learning for subgroup discovery and describe CN2-SD as well as improvements
leading to our CN2-MSD rule learner. Section 3 introduces and analyses six multi-class
subgroup evaluation measures. An empirical evaluation of multi-class subgroup discov-
ery for feature construction over 20 UCI data sets is presented in Section 4. Section 5
considers related work, and we discuss possible future work and conclude the paper in
Section 6.

2 Rule Learning for Subgroup Discovery

Let T be a training set of examples labelled by n classes C1, . . . ,Cn. We denote the total
number of examples in the training set by E and the number of examples belonging to
class Ci by Ei. The number of examples in T covered by a subgroup b is denoted by e,
and the number of examples belonging to Ci and covered by b is denoted by ei. This
notation is summarised in Table 1; all evaluation measures considered in this paper are
based on numbers in such a contingency table.

A heuristic is defined as an n-dimensional function Rn → R such that h(e1, ...,en)
represents the quality of subgroup b, where ei are as in Table 1. We will often abbrevi-
ate this to h(b) if no confusion can arise. We will use the terms heuristic and evaluation
measure interchangeably in the rest of the paper. Following [4], we will use the follow-
ing definition for comparing the different heuristics.

Definition 1 (Compatibility and Antagonism [4] ). Two heuristic functions h1 and h2

are compatible iff for all subgroups b1, b2: h1(b1) > h1(b2) ⇐⇒ h2(b1) > h2(b2). h1

and h2 are antagonistic iff for all subgroups b1, b2: h1(b1) > h1(b2) ⇐⇒ h2(b1) <
h2(b2). h1 and h2 are equivalent (h1 ∼ h2) if they are either compatible or antagonistic.

Table 1. Notational conventions for the frequencies in a multi-class contingency table tabulating
examples covered or not covered by a given subgroup b

Subgroup b Complement b̄
Class 1 e1 E1−e1 E1

... ... ... ...
Class n en En−en En

e E−e E
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The intuition is that equivalent heuristics order the search space in the same way, even if
they differ in numerical value. For instance, h(x) ∼ E

n h(x), since E and n are constants
for a given data set. However, h(x) �∼ E

E−e h(x), since e depends on the subgroup.
CN2 is a rule induction algorithm that can be applied to propositional data sets for

inducing classification rules [5, 6]. A propositional data set can be thought of as a sin-
gle database table with rows representing examples and columns representing features.
CN2 consists of two main algorithms: the search algorithm that performs beam search1

in order to find a single rule and the covering algorithm that repeatedly executes the
search for rules until all examples are covered. The search algorithm searches the rule
space top-down, evaluating the quality of rules using precision (the relative frequency
of positives among the examples covered). A rule takes the form of (head ← body)
where the body is a conjunction of body literals and the head is a single head literal
indicating a class. A literal takes the form of (feature Op value) where Op can be one
of the following three operators: >, < or =.

CN2 can apply a significance test to each rule being learned. If there is a regularity
unlikely to have occurred by chance, then the rule is regarded as significant. Further-
more, a minimum evaluation threshold can be used as a stopping criterion. When a rule
achieves an evaluation value lower than this threshold, the search is pruned.

CN2 can induce rules in two forms: ordered list of rules and unordered set of rules.
In the former, the search algorithm finds the best rule in the current set of training ex-
amples. The rule predicts the class with the highest frequency among the examples it
covers. All examples covered by the newly induced rule are removed before starting
another search iteration. The rule search is repeated until all the examples are cov-
ered. In the unordered setting, the main algorithm is iterated for each class in turn.
For each induced rule, only covered examples belonging to the class being learned are
removed.

CN2-SD is an extension of CN2 particularly geared towards subgroup discovery [1].
In subgroup discovery, one wants to find independent rules that may overlap. To that
end, CN2-SD implements two major changes compared to CN2: replacing precision as
a search heuristic with weighted relative accuracy or WRAcc (see Definition 2 in the
next section), and the use of a weighted covering algorithm. While in the original cov-
ering algorithm examples are removed once they are covered by a rule, in the weighted
covering algorithm examples are never removed but their weight is decreased accord-
ing to one of two schemes: additive or multiplicative. Let wt(x) denote the weight of
example x after being covered by t rules: in the additive method we have wt(x) = 1

1+t
while in the multiplicative method wt(x) = γt ,0 < γ < 1.

The use of a weighting scheme, particularly the multiplicative weights, is related
to the use of weights in AdaBoost [7], where an example x at time t is re-weighted
according to wt(x) = wt−1(x)e−αt p; here, wt−1(x) is the current weight, αt = 1

2 ln 1−εt
εt

with εt < 0.5 representing the error of the current hypothesis, and p is either 1 or −1
reflecting a correct or an incorrect prediction respectively. To obtain an update rule that
is independent of the current hypothesis we set p = 1 and εt = Emin, the size of the

1 In beam search, the k most promising candidate hypotheses are considered instead of all pos-
sible candidate hypotheses for efficiency reasons.
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minority class, which gives wt(x) = wt−1(x)
√

Emin
E−Emin

. We therefore extended CN2-SD

with an option to set the γ parameter for multiplicative weights to
√

Emin
E−Emin

.

Another improvement in CN2-MSD, our version of CN2-SD for more than two
classes, is the use of inequality with nominal values. Like CN2, CN2-SD uses only
equality when constructing a new literal for a nominal feature, e.g. feature = val,
whereas CN2-MSD also considers literals of the form feature �= val. Experiments sug-
gest that the use of inequality slightly improves AUC as well as the accuracy.

3 Heuristics for Multi-class Subgroup Discovery

In this section we investigate possible heuristics for multi-class subgroup discovery. We
start with considering multi-class versions of weighted relative accuracy in Section 3.1,
followed by a consideration of other measures that are inherently multi-class in Sec-
tion 3.2. In Section 3.3 we consider the question whether a subgroup or its complement
is the more interesting one.

3.1 Multi-class Versions of Weighted Relative Accuracy

Weighted relative accuracy was defined in a binary classification context [8]: here, we
adapt it such that a given class Ci is taken as positive and all other classes together as
the negative class. The idea is that the rule accuracy (which is actually the precision
ei
e ) should be taken relative to the accuracy obtained by always guessing Ci ( Ei

E ), and
weighted by the rule’s coverage ( e

E ).

Definition 2 (Weighted Relative Accuracy [8]). The weighted relative accuracy of

subgroup b for class Ci is defined as WRAcci(b) = e
E

(
ei
e −

Ei
E

)
= ei

E −
e
E

Ei
E .

Previous research [9, 10, 11, 12] has investigated methods of multi-class classification.
The methods usually decompose a multi-class problem into several binary problems
either by considering all pairwise combinations of classes (one-vs-one) or considering
each class against the union of the other classes (one-vs-rest). One model is trained for
each binary problem and, according to the chosen method, the classification for an un-
seen example is determined based on a competition of these binary models. It has been
shown by [12, 10] that it is computationally expensive to perform the classification in
such a manner because it requires O(n) comparisons for each example to be classified.
We are interested in obtaining a single final model, thus avoiding the computational
costs of multiple binary comparisons during the classification phase.

The first idea might be to simply average W RAcci over all classes. However, this will
fail due to the following simple result.

Lemma 1. ∑n
i=1 WRAcci(b) = 0.

Proof. ∑n
i=1 W RAcci(b) = ∑n

i=1
e
E

(
ei
e −

Ei
E

)
= e

E

[
∑n

i=1
ei
e −∑n

i=1
Ei
E

]
= e

E [1−1] = 0.

This justifies the use of the absolute value in the following definition.
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Definition 3 (Multi-class WRAcc). The (one-vs-rest) multi-class weighted relative ac-
curacy is defined as MW RAcc(b) = 1

n ∑n
i=1 |WRAcci(b)|.

Clearly, in a two-class setting, MWRAcc(b) = |WRAcci(b)| for i = 1,2.
Rather than taking an unweighted average, we may want to take a weighted average

using the class prior.

Definition 4 (Weighted Multi-class WRAcc). The (one-vs-rest) weighted multi-class
weighted relative accuracy is defined as WMW RAcc(b) = ∑n

i=1
Ei
E |WRAcci(b)|.

We can also define a one-vs-one version.

Definition 5 (One-vs-One Multi-class WRAcc). The one-vs-one multi-class weighted
relative accuracy is defined as follows:

MW RAcc1vs1(b) =
1

n(n−1)

n

∑
i=1

n

∑
j=1; j �=i

|WRAcci j(b)|

where W RAcci j(b) = ei+e j
Ei+E j

(
ei

ei+e j
− Ei

Ei+E j

)
.

Note that, while WRAcci(b̄) = −WRAcci(b), for the multi-class versions defined here
we have MW RAcc(b̄) = MW RAcc(b) and similar for the other measures.

We can further understand the similarities and differences between these heuristics
by reducing them to simpler equivalent forms.

Theorem 1. MWRAcc∼ ∑n
i=1 |eiE− eEi|.

Proof. MW RAcc = 1
n ∑n

i=1 | e
E

(
ei
e −

Ei
E

)
|= 1

nE2 ∑n
i=1 |eiE− eEi| ∼ ∑n

i=1 |eiE− eEi|.

Theorem 2. WMW RAcc∼ ∑n
i=1 Ei|eiE− eEi|.

Proof. WMW RAcc = ∑n
i=1

Ei
E |

e
E

(
ei
e −

Ei
E

)
|= 1

E3 ∑n
i=1 Ei|eiE−eEi|∼∑n

i=1 Ei|eiE−eEi|.

Theorem 3. MWRAcc1vs1 ∼ ∑n
i=1 ∑n

j=i+1
|eiE j−e jEi|
(Ei+E j)2 .

Proof. Notice that WRAcci j(b) =−WRAcc ji(b). Then,

MW RAcc1vs1 =
1

n(n−1)

n

∑
i=1

n

∑
j=1; j �=i

|W RAcci j|=
2

n(n−1)

n

∑
i=1

n

∑
j=i+1

|WRAcci j|

∼
n

∑
i=1

n

∑
j=i+1

ei + e j

Ei + E j
| ei

ei + e j
− Ei

Ei + E j
|

=
n

∑
i=1

n

∑
j=i+1

|ei (Ei + E j)−Ei (ei + e j) |
(Ei + E j)2 =

n

∑
i=1

n

∑
j=i+1

|eiE j− e jEi|
(Ei + E j)2

Thus, the key term in each of these heuristics is of the form |eiE− eEi| for one-vs-rest
measures and |eiE j− e jEi| for one-vs-one measures, possibly with weights depending
on the size of the classes.
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3.2 Other Multi-class Subgroup Evaluation Measures

In this section we consider other ways of evaluating the frequencies observed in an
n-by-2 contingency table.

One possibility is to consider two random variables: B is a binary variable indicating
whether or not a random example is in the subgroup, and L is an n-ary variable indi-
cating which class applies to that example. Given a contingency table, the marginal and
joint entropies of these random variables are then as follows:

H(L) = −
n

∑
i=1

Ei

E
log

Ei

E

H(B) = − e
E

log
e
E
− E− e

E
log

E− e
E

H(L,B) = −
n

∑
i=1

(
ei

E
log

ei

E
+

Ei− ei

E
log

Ei− ei

E

)

We can then define their mutual information in the usual way: MI(L,B) = H(L) +
H(B)−H(L,B). Mutual information tells us how much knowledge about one variable
would be increased by knowing the value of the other. The higher the mutual infor-
mation, the more interesting the distribution of classes amongst the subgroup and its
complement is.

Definition 6 (Mutual Information). The mutual information score of a subgroup b is
defined as follows:

MI(b) =
n

∑
i=1

(
ei

E
log

ei

E
+

Ei− ei

E
log

Ei− ei

E

)
−

n

∑
i=1

Ei

E
log

Ei

E
− e

E
log

e
E
− E− e

E
log

E− e
E

Alternatively, we can use the Chi-squared test to decide whether L and B are statistically
independent. Assuming that the data in Table 1 represents the observed frequencies, the
expected values under the null hypothesis of independence of columns and rows can
be calculated from the marginal frequencies. E.g., the expected value of ei is eEi

E . The
Chi-squared statistic is then the sum of the squared differences between observed and
expected frequencies divided by the expected frequencies.

Definition 7 (Chi-Squared). The Chi-squared score of a subgroup b is defined as fol-
lows:

Chi2(b) =
n

∑
i=1

(
[ei− Eie

E ]2
Eie
E

+
[(Ei− ei)− Ei(E−e)

E ]2

Ei(E−e)
E

)

Chi-squared has a wide range of uses including feature selection [13].
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Finally, we consider a decision tree splitting criterion based on the Gini index. Con-
sider calculating the utility of a binary split in a multi-class context. A splitting criterion
calculates the decrease in impurity when going from parent to children. The impurity of
the children is calculated as the weighted average of their individual impurities, using
the relative frequency of examples covered by the child as weight. The Gini index cal-
culates the impurity of a node as 1

n ∑n
i=1 pi (1− pi), where pi is the relative frequency of

examples of class Ci.

Definition 8 (Gini-split). The Gini-split score of a subgroup b is defined as follows:

GS(b) =
1
n

n

∑
i=1

Ei (E−Ei)
E2 − 1

n

n

∑
i=1

e
E

ei (e− ei)
e2

− 1
n

n

∑
i=1

E− e
E

(Ei− ei)((E−Ei)− (e− ei))

(E− e)2

Theorem 4. Chi2 = ∑n
i=1

[eiE−eEi]2
eEi(E−e) .

Proof. Chi2 = ∑n
i=1

[ei−
eEi
E ]2

eEi
E

+ [(Ei−ei)−
Ei(E−e)

E ]2
Ei(E−e)

E

= 1
E ∑n

i=1
[eiE−eEi]2

eEi
+ [EiE−eiE−EiE+eEi]2

Ei(E−e)

= 1
E ∑n

i=1[eiE− eEi]2
(

1
eEi

+ 1
Ei(E−e)

)
= 1

E ∑n
i=1[eiE− eEi]2

Ei(E−e+e)
eE2

i (E−e)
= ∑n

i=1
[eiE−eEi]2
eEi(E−e) .

Theorem 5. GS∼ ∑n
i=1

[eEi−eiE]2

e(E−e) .

Proof. GS = 1
n ∑n

i=1
Ei(E−Ei)

E2 − e
E

ei(e−ei)
e2 − E−e

E
(Ei−ei)[(E−Ei)−(e−ei)]

(E−e)2 = 1
nE ∑n

i=1
Ei(E−Ei)

E

− ei(e−ei)
e − (Ei−ei)[(E−Ei)−(e−ei)]

E−e = 1
nE2 ∑n

i=1
[eEi−eiE]2

e(E−e) ∼ ∑n
i=1

[eEi−eiE]2
e(E−e) .

If the i-th term in Chi2 is xi, the i-th term in GS is equivalent to Eixi. We can therefore
consider GS to be a class-weighted version of Chi2. This shows that, in general, Chi2 �∼
GS, thereby negatively answering an open question in [4]. They proved the equivalence
in the binary case, and conjectured that this would extend to more than two classes.

Theorem 6 (Equivalence of binary Chi-squared and Gini-split [4]). For n = 2
classes, Chi2 ∼GS.

Proof. First of all, e1E− eE1 = e1 (E1 + E2)− (e1 + e2)E1 = e1E2− e2E1. By symme-
try, e2E−eE2 = e2E1−e1E2. Therefore, [e1E−eE1]2 = [e2E−eE2]2 = [e1E2−e2E1]2.

It follows that Chi2 =
(

1
E1

+ 1
E2

)
[e1E2−e2E1]2

e(E−e) = E
E1E2

[e1E2−e2E1]2

e(E−e) . On the other hand,

GS = 1
2E2

2[e1E2−e2E1]2

e(E−e) = E1E2
E3 Chi2.

It is interesting to note that our proof of Theorem 6 is much more succinct than the one
given in [4]. It appears the multi-class notation is beneficial here.

Measures similar to Chi2 and GS were used previously in the Explora system [2, 3].
Explora is an interactive knowledge discovery system that incorporates several search
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strategies, refinement methods and evaluation functions. If we distinguish Klösgen’s
definitions by a subscript Kl, we can show the equivalence between our Chi2 and GS
measures and Klösgen’s as follows:

GSKl(b) =
e
E

E−e
E

n

∑
i=1

(
ei

e
− Ei

E

)2

=
e

E− e

n

∑
i=1

(
e2

i

e2 +
E2

i

E2 −
2eiEi

eE

)
=

e
E2 (E− e)

n

∑
i=1

e2E2
i + e2

i E2−2eieEi

e2 =
1

E2

n

∑
i=1

[eEi− eiE]2

e(E− e)
=

1
n

GS(b)

Chi2Kl(b) =
1

E2

n

∑
i=1

[eEi−eiE]2

e(E−e)
Ei
E

=
1
E

n

∑
i=1

[eEi− eiE]2

eEi (E− e)
=

1
E

Chi2(b)

Although our definitions of Chi2 and GS are not equal to Klösgen’s definitions they are
indeed equivalent, hence Chi2 ∼Chi2Kl and GS ∼ GSKl .

3.3 Sign of a Subgroup

In two-class subgroup discovery a subgroup correlates positively with one class if
and only if its complement correlates negatively with the other class. This can eas-
ily be established by, e.g., the sign of WRAcci(b); we generally restrict attention to
the subgroup that has positive weighted relative accuracy for the designated positive
class. For the multi-class case we propose a criterion for determining whether a sub-
group or its complement is the more interesting one based on conditional entropy.
We have H(L|B = b) = ∑n

i=1
ei
e log ei

e , the entropy of the left column of the contin-
gency table; and similarly H(L|B = b̄) = ∑n

i=1
Ei−ei
E−e log Ei−ei

E−e . The sign of the sub-
group is then sign(H(L|B = b̄)−H(L|B = b)). If the amount of uncertainty remain-
ing about L assuming B = b is smaller than when assuming B = b̄, then the sign of
H(L|B = b̄)−H(L|B = b) is positive, favouring b over b̄.

4 Empirical Evaluation

We performed extensive experiments to test the behaviour of the six subgroup evalua-
tion measures defined in the previous section, as well as the usefulness of multi-class
subgroup discovery for feature generation in a classification context. We used 20 UCI
data sets [14], which are listed in Table 2. Numerical attributes with more than 100 dis-
tinct values have been discretised. Our implementation of CN2-MSD is an adaptation
of the CN2-SD implementation provided by the authors of [1], which was implemented
in Java as part of the Weka data mining workbench [15]. Six different settings have been
applied as follows:

– setting 0: unweighted covering;
– setting 1: multiplicative weights, γ = .25;
– setting 2: multiplicative weights, γ = .5;
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Table 2. UCI data sets used for the experiments. CMC stands for Contraceptive Method Choice
while WPBC stands for Wisconsin Prognostic Breast Cancer.

Dataset Name #exs. # attrs. # cls. Dist.
1 Abalone 4176 9 3 1527, 1342 and 1307
2 Balance-scale 624 5 3 288, 288 and 48
3 Car 1727 7 4 1209, 384, 69 and 65
4 CMC 1472 10 3 628, 511 and 333
5 Contact-lenses 24 5 3 15, 5 and 4
6 Credit 589 16 2 383 and 306
7 Dermatology 365 35 6 112,72, 60, 52, 49 and 20
8 Glass 213 11 6 76, 69, 29, 17, 13 and 9
9 Haberman 305 4 2 224 and 81

10 Hayes-roth 131 5 3 51, 50 and 30
11 House-votes 434 17 2 267 and 167
12 Ionosphere 350 34 2 224 and 126
13 Iris 150 5 3 50, 50 and 50
14 Labor 57 17 2 37 and 20
15 Mushroom 8123 23 2 4208 and 3915
16 Pima-indians 767 9 2 500 and 267
17 Soybean 683 36 19 92, 2 × 91, 88, 2 × 44, 9 × 20, 16, 15, 14 and 8
18 Tic-Tac-Toe 957 10 2 625 and 332
19 WPBC 197 34 2 150 and 47
20 Zoo 100 18 7 40, 20, 13, 10, 8, 5 and 4

Table 3. Average number of subgroups found on 20 UCI data sets using different heuristics and
settings

Setting MW RAcc1vs1 MW RAcc W MWRAcc MI Chi2 GS average
0 5.70 6.25 5.95 6.90 6.80 7.15 6.46
1 9.20 10.05 9.50 14.55 13.55 14.25 11.85
2 11.50 12.15 12.30 20.30 20.65 20.70 16.27
3 16.65 16.40 17.00 26.20 27.90 28.05 22.03
4 14.50 15.30 15.65 30.10 31.00 31.10 22.94
5 10.40 9.60 9.40 15.30 15.55 17.00 12.88

Average 11.33 11.63 11.63 18.89 19.24 19.71

– setting 3: multiplicative weights, γ = .75;
– setting 4: additive weights; and

– setting 5: multiplicative weights, γ =
√

Emin
E−Emin

.

The significance and minimum evaluation threshold parameters were fixed to 0.95 and
0.01, respectively.

The first result concerns the number of subgroups found (as reported in Table 3). It is
clear that the WRAcc-based methods find significantly fewer subgroups than the other
three. Weighted covering clearly helps in finding more subgroups. Additive weights and
multiplicative weights with large γ (i.e., slow decay of the weights) result in the most

subgroups. Setting γ =
√

Emin
E−Emin

gives performance similar to small to medium fixed γ .
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Fig. 1. Accuracies and AUCs of the multi-class subgroup discovery methods compared with the
J48 control learner (bold line). For each setting, performances outside the vertical bar are signifi-
cantly better (bottom) or worse (top) than the control.

In order to evaluate the quality and utility of the induced subgroups, we use them
as features for a decision tree learner. We use the Weka implementation of C4.5 which
is called J48, with default parameters. 10-fold cross-validated accuracy and AUC are
recorded on each data set, for J48 run directly on the original data set (labelled J48
in our result tables) and J48 run using subgroups as features, where the subgroups are
learned using CN2-MSD with one of the six evaluation heuristics (labelled with that
heuristic in the table), and for each of the six settings.

For space reasons we only report averages over all 20 data sets in Tables 4 and 5 (all
subsequent tables can be found in the Appendix). Average accuracies and AUCs have
limited meaning because the values are not necessarily commensurate across data sets,
and so we also report the average rank (1 is best, 7 is worst) of a method across all data
sets. We use the Friedman test on these average ranks (p = 0.10) with Bonferroni-Dunn
post-hoc test to check significance against J48 as a control learner. The Friedman test
records wins and losses in the form of ranks, but ignores the magnitude of these wins
and losses, which is considered more appropriate when comparing multiple classifiers
on multiple data sets; see [16] for more details. A graphical illustration of the post-
hoc test results is given in Fig. 1. For each setting the corresponding critical difference
diagram is shown vertically. So, for instance, in setting 4 both MI and GS perform
significantly better than J48, and in setting 5 MWRAcc1vs1 performs significantly worse
than J48.

Tables 6-8 show the results for number of leaves, number of nodes in the tree and the
model construction times. As can be seen, the average tree has roughly between 8 and
16 times fewer leaves when trained with subgroups as features, compared with standard
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Fig. 2. Number of leaves and model construction times of the multi-class subgroup discovery
methods compared with the J48 control learner (bold line)
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Fig. 3. Accuracies and AUCs of the multi-class subgroup discovery methods compared with the
naive Bayes control learner (bold line)
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J48, and roughly between 6 and 12 times fewer nodes. This comes, of course, at the
expense of considerable additional execution time. Fig. 2 shows this graphically (the
ranks in Tables 6 and 7 are equal and therefore the two graphs for number of leaves and
number of nodes are identical).

Finally, we report accuracy and AUC results using naive Bayes as the learner (Fig. 3).
The results are similar as for J48, although differences between evaluation measures are
less pronounced. Tables 9-11 show the average accuracies, AUCs and model construc-
tion times of the multi-class subgroup discovery methods compared with naive Bayes
as a control classifier.

Our conclusions from these experiments are that the multi-class subgroup evaluation
measures considered in this paper can be divided into two groups. The WRAcc-based
measures result on average in much fewer subgroups (although the model construction
time is not significantly reduced). If the subgroups are used for prediction, the additional
subgroups learned by MI and particularly Chi2 and GS result in additional predictive
power compared to the base learner. A consistently good performer is GS in combi-
nation with multiplicative weights, γ = 0.25 (setting 1) or additive weights (setting 4).
Given that setting 4 is an order of magnitude slower, we finally settle on setting 1 as our
recommendation. This combination achieves significantly higher predictive power than
the base learners, building trees that on average have 11 times fewer leaves.

5 Related Work

As discussed earlier, CN2-MSD is an upgrade of the CN2-SD rule learner [1] which
learns two-class subgroups and was in turn based on the CN2 inductive rule learner
[5, 6]. More details about CN2 and CN2-SD were given in Section 2. Our three multi-
class Weighted Relative Accuracy versions are multi-class adaptations of the two-class
Weighted Relative Accuracy that originated in [8] and was incorporated in CN2-SD.

Mutual information is used to measure dependencies between random variables. Mu-
tual information is appropriate for assessing the information content of features in com-
plex classification tasks. It has been used for feature selection [17, 18]. The difference
between the usage of MI in [17, 18] and CN2-MSD is that CN2-MSD uses MI to eval-
uate a combination of one or more features, rather than comparing single features. MI
as used in [18] also differs from our approach in that it selects features that maximise
the MI with respect to a single class but not all the classes. In addition, CN2-MSD only
assesses the constructed feature and its complement while this is not the case in the
other two approaches due to having different goals.

Chi-squared has been used widely as a statistical significance test in various con-
texts including classification and rule learning. Chi-squared was found useful for fea-
ture selection [13]. The original CN2-SD uses a Chi-squared significance test to filter
a nominated subgroup in case it yields a value lower than a certain minimum value.2

CN2-MSD implements the Chi-squared as a heuristic function similarly to the Explora
system [2].

Gini-split is well-known in decision tree learning as a splitting criterion based on the
Gini index that evaluates the decrease in impurity when going from parent to

2 The minimum significance value is set by the user.
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children. Gini-split is traditionally used in the divide and conquer (DAQ) paradigm
where the learning algorithm divides the entire training set recursively according to a
new selected literal. An example can not be covered by more than one rule or leaf in
the final model. CN2-MSD, however, uses Gini-split in the separate and conquer (SAC)
paradigm as it implements a sequential covering algorithm (and its weighted version).
In SAC, single or multiple rules are learned iteratively and the examples covered by
the learned rules are removed from the training set before proceeding to the next it-
eration until no examples are left or a stopping criterion met. In covering algorithms,
a subset of the training examples (or weighted training examples) is used to construct
rules iteratively. An example could be covered by more than one rule or leaf in the final
model. Induction systems that implement SAC are less conservative in their learning
model than the ones that implement DAC due to their ability to explore a larger search
space [19].

Explora is an interactive knowledge discovery system for databases [2, 3]. Explora
was designed to support analysts in finding new knowledge about a domain. It can be
used for predictive learning as well as descriptive learning. Explora is a complex system
that incorporates various search strategies (exhaustive or heuristic), refinement methods
and evaluation functions for binary and multi-class prediction. Explora can also work
with relational data. It can be viewed as a generic pattern discovery system in relational
data mining.

Another system related to CN2-MSD is called PRIM [20]. PRIM finds subregions
of the instance space within which the value of the (continuous) output variable is con-
siderably larger or smaller than its average value over the entire space. PRIM searches
for these subregions by top-down specialisation followed by a bottom-up generalisation
on the induced subgroups. Further criteria are needed to ensure capturing subgroups of
reasonable size. One of the advantages of using WRAcc is that it captures the the gen-
erality of the subgroup e

E and its relative accuracy ei
e −

Ei
E in a single score. While CN2

uses a greedy refinement strategy on partial candidate hypotheses, PRIM examines all
possible solutions which makes it unsuitable for large datasets.

The work of [4] provided us with the basis for the theoretical analysis of multi-class
subgroup evaluation measures. Two-class Weighted Relative Accuracy, Chi-squared
and Gini-split were discussed and analysed in [4] and their ROC isometrics visually and
analytically compared. Unfortunately, a full n-class ROC analysis requires n(n− 1)/2
dimensions, and so it is hard – if not impossible – to visualise multi-class evaluation
measures through their ROC isometrics.

6 Conclusions

In this paper we upgraded existing approaches for two-class subgroup discovery to han-
dle more than two classes. We defined six multi-class subgroup evaluation measures and
investigated their properties theoretically and experimentally. While multi-class sub-
group discovery is an interesting task in its own right, located between predictive and
descriptive learning, we have also shown that – if the additional computational cost can
be justified – the learned subgroups lead to additional predictive power. In effect, the
decision trees learned branch on more complex multivariate conditions, and the naive
Bayes classifier relaxes its assumptions of statistical independence.
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In future work we plan to study whether subgroup discovery can be exploited in
other predictive tasks, such as probability estimation and regression. We also aim to
investigate multi-class subgroup discovery in a relational context. Furthermore, we will
focus on reducing the computational overhead of subgroup discovery.
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Appendix: Detailed Experimental Results

Table 4. Accuracies (ranks in brackets) of a decision tree learner using subgroups as features,
averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc W MWRAcc MI Chi2 GS J48
0 75.11 (5.08) 76.95 (4.65) 77.90 (4.28) 77.40 (3.42) 78.24 (3.27) 79.87 (3.00) 81.21 (4.30)
1 76.90 (4.78) 78.40 (4.88) 79.95 (4.55) 78.14 (3.80) 80.47 (3.20) 81.85 (2.63) 81.21 (4.17)
2 76.75 (4.92) 78.80 (4.95) 80.52 (3.92) 80.19 (3.73) 81.37 (3.25) 81.34 (3.10) 81.21 (4.13)
3 77.85 (4.47) 78.95 (4.45) 80.31 (4.55) 80.03 (4.10) 81.08 (3.30) 81.64 (3.00) 81.21 (4.13)
4 76.63 (4.75) 78.83 (4.55) 80.34 (4.45) 80.33 (3.95) 81.33 (3.02) 81.48 (3.02) 81.21 (4.25)
5 75.28 (5.13) 77.70 (4.33) 79.05 (4.28) 78.94 (3.52) 79.42 (3.35) 79.96 (3.23) 81.21 (4.17)

Table 5. AUCs (ranks in brackets) of a decision tree learner using subgroups as features, averaged
over 20 UCI data sets

Setting MW RAcc1vs1 MWRAcc W MWRAcc MI Chi2 GS J48
0 0.83 (4.85) 0.85 (4.15) 0.86 (3.90) 0.86 (3.83) 0.86 (3.70) 0.87 (3.35) 0.84 (4.22)
1 0.86 (4.63) 0.86 (4.60) 0.87 (4.10) 0.87 (4.10) 0.88 (3.05) 0.88 (3.15) 0.84 (4.38)
2 0.85 (4.67) 0.86 (4.67) 0.86 (4.20) 0.88 (3.42) 0.88 (3.45) 0.88 (3.45) 0.84 (4.13)
3 0.86 (4.35) 0.86 (4.42) 0.86 (4.28) 0.86 (4.22) 0.88 (3.42) 0.88 (3.13) 0.84 (4.17)
4 0.85 (4.75) 0.85 (5.05) 0.86 (4.60) 0.87 (3.65) 0.88 (3.00) 0.88 (2.83) 0.84 (4.13)
5 0.85 (4.92) 0.85 (4.33) 0.86 (4.35) 0.87 (3.58) 0.87 (3.42) 0.87 (3.25) 0.84 (4.15)

Table 6. Numbers of leaves (ranks in brackets) of a decision tree learner using subgroups as
features, averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc WMW RAcc MI Chi2 GS J48
0 7.55 (2.95) 8.30 (3.48) 8.05 (3.20) 8.25 (4.10) 9.45 (3.67) 9.40 (4.05) 122.05 (6.55)
1 8.65 (3.30) 10.00 (3.30) 9.15 (3.52) 9.85 (3.52) 9.25 (3.50) 11.00 (4.28) 122.05 (6.58)
2 8.45 (2.77) 9.50 (2.90) 10.45 (3.52) 9.20 (3.80) 11.30 (4.38) 11.35 (4.08) 122.05 (6.55)
3 11.80 (3.25) 11.00 (2.90) 13.05 (3.77) 11.70 (3.63) 11.95 (3.85) 13.00 (4.15) 122.05 (6.45)
4 8.80 (2.80) 10.90 (2.77) 12.40 (3.50) 13.90 (4.25) 12.00 (4.05) 12.75 (4.17) 122.05 (6.45)
5 10.45 (3.23) 8.90 (3.13) 7.70 (3.10) 11.60 (3.88) 11.60 (3.98) 14.55 (4.17) 122.05 (6.53)

Table 7. Tree sizes (ranks in brackets) of a decision tree learner using subgroups as features,
averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc WMW RAcc MI Chi2 GS J48
0 14.10 (2.95) 15.60 (3.48) 15.10 (3.20) 15.50 (4.10) 17.90 (3.67) 17.80 (4.05) 162.05 (6.55)
1 16.30 (3.30) 19.00 (3.30) 17.30 (3.52) 18.70 (3.52) 17.50 (3.50) 21.00 (4.28) 162.05 (6.58)
2 15.90 (2.77) 18.00 (2.90) 19.90 (3.52) 17.40 (3.80) 21.60 (4.38) 21.70 (4.08) 162.05 (6.55)
3 22.60 (3.25) 21.00 (2.90) 25.10 (3.77) 22.40 (3.63) 22.90 (3.85) 25.00 (4.15) 162.05 (6.45)
4 16.60 (2.80) 20.80 (2.77) 23.80 (3.50) 26.80 (4.25) 23.00 (4.05) 24.50 (4.17) 162.05 (6.45)
5 19.90 (3.23) 16.80 (3.13) 14.40 (3.10) 22.20 (3.88) 22.20 (4.03) 28.10 (4.22) 162.05 (6.42)
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Table 8. Model construction times (ranks in brackets) of a decision tree learner using subgroups
as features, averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc W MWRAcc MI Chi2 GS J48
0 5.93 (3.83) 6.40 (4.88) 6.61 (4.65) 6.33 (3.77) 6.67 (4.60) 6.46 (5.28) 0.23 (1.00)
1 21.73 (3.92) 22.61 (4.13) 20.22 (3.30) 27.80 (4.63) 32.40 (5.30) 33.57 (5.72) 0.23 (1.00)
2 43.00 (3.83) 40.36 (3.50) 42.80 (3.65) 51.36 (5.28) 45.68 (5.28) 41.39 (5.47) 0.23 (1.00)
3 90.32 (3.33) 83.43 (3.25) 89.39 (3.83) 106.30 (5.00) 105.01 (5.97) 104.17 (5.63) 0.23 (1.00)
4 232.41 (3.67) 238.21 (3.08) 232.53 (3.92) 147.71 (5.47) 158.16 (5.42) 167.92 (5.42) 0.23 (1.00)
5 100.99 (4.17) 111.30 (4.15) 105.34 (3.58) 99.43 (5.15) 67.40 (4.85) 70.05 (5.10) 0.23 (1.00)

Table 9. Accuracies (ranks in brackets) of a naive Bayes learner using subgroups as features,
averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc W MWRAcc MI Chi2 GS NB
0 73.76 (4.53) 75.08 (4.30) 75.42 (4.60) 76.31 (3.80) 76.78 (3.60) 78.82 (2.90) 79.86 (4.28)
1 75.74 (5.15) 77.49 (4.75) 79.32 (4.42) 78.39 (3.48) 80.04 (2.98) 81.44 (2.88) 79.86 (4.35)
2 75.39 (4.92) 77.73 (4.58) 79.79 (3.80) 79.37 (3.48) 80.51 (3.27) 79.83 (3.73) 79.86 (4.22)
3 75.63 (4.42) 77.20 (4.38) 79.58 (3.77) 78.85 (3.42) 79.22 (3.83) 79.39 (3.98) 79.86 (4.20)
4 74.98 (4.72) 77.02 (4.47) 79.18 (4.10) 78.24 (3.40) 77.66 (3.88) 78.37 (3.75) 79.86 (3.67)
5 74.99 (4.88) 77.14 (4.28) 78.25 (4.42) 78.47 (3.38) 78.03 (3.73) 79.27 (3.13) 79.86 (4.20)

Table 10. AUCs (ranks in brackets) of a naive Bayes learner using subgroups as features, averaged
over 20 UCI data sets

Setting MW RAcc1vs1 MWRAcc W MWRAcc MI Chi2 GS NB
0 0.83 (5.03) 0.86 (4.42) 0.86 (4.70) 0.87 (3.73) 0.87 (3.60) 0.88 (2.92) 0.88 (3.60)
1 0.87 (4.85) 0.88 (4.90) 0.89 (4.25) 0.89 (3.70) 0.90 (3.17) 0.90 (2.88) 0.88 (4.25)
2 0.87 (4.95) 0.88 (4.83) 0.89 (4.03) 0.90 (3.77) 0.91 (3.08) 0.90 (3.15) 0.88 (4.20)
3 0.88 (4.83) 0.88 (4.70) 0.89 (4.22) 0.89 (3.65) 0.90 (3.25) 0.90 (3.13) 0.88 (4.22)
4 0.87 (4.47) 0.88 (4.92) 0.89 (4.30) 0.90 (3.60) 0.90 (3.40) 0.90 (2.98) 0.88 (4.33)
5 0.86 (5.03) 0.87 (4.40) 0.87 (4.60) 0.89 (3.23) 0.89 (3.55) 0.89 (3.35) 0.88 (3.85)

Table 11. Model construction times (ranks in brackets) of a naive Bayes learner using subgroups
as features, averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc W MWRAcc MI Chi2 GS NB
0 6.13 (3.92) 6.38 (4.53) 6.53 (3.95) 6.82 (4.45) 6.97 (5.13) 6.27 (5.03) 0.05 (1.00)
1 21.34 (3.85) 21.17 (4.03) 21.62 (4.03) 27.14 (4.33) 30.06 (5.25) 32.01 (5.53) 0.05 (1.00)
2 40.80 (4.08) 41.21 (3.50) 42.54 (3.50) 50.33 (5.25) 44.47 (5.17) 42.89 (5.50) 0.05 (1.00)
3 86.51 (3.42) 84.38 (3.63) 89.06 (3.35) 107.75 (5.00) 104.10 (5.70) 113.92 (5.90) 0.05 (1.00)
4 218.62 (3.35) 228.58 (3.60) 242.22 (4.13) 135.36 (5.22) 163.41 (5.28) 160.14 (5.42) 0.05 (1.00)
5 96.66 (3.90) 97.59 (3.92) 99.19 (4.22) 94.14 (4.92) 69.53 (5.13) 70.79 (4.90) 0.05 (1.00)
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Abstract. Relational Learning (RL) has aroused interest to fill the gap

between efficient attribute-value learners and growing applications stored

in multi-relational databases. However, current systems use general-

purpose problem solvers that do not scale-up well. This is in contrast with

the past decade of success in combinatorics communities where studies of

random problems, in the phase transition framework, allowed to evaluate

and develop better specialised algorithms able to solve real-world appli-

cations up to millions of variables. A number of studies have been pro-

posed in RL, like the analysis of the phase transition of a NP-complete

sub-problem, the subsumption test, but none has directly studied the

phase transition of RL. As RL, in general, is Σ2 − hard, we propose a

first random problem generator, which exhibits the phase transition of

its decision version, beyond NP. We study the learning cost of several

learners on inherently easy and hard instances, and conclude on expected

benefits of this new benchmarking tool for RL.

1 Introduction

Even though the expressiveness of (supervised) Relational Learning (RL), also
known as Inductive Logic Programming (ILP), is attractive for many modern
applications1, such as life sciences, environmental sciences, engineering, natural
language processing or arts (see also [1]), RL has to face the well-known trade-off
between expressivity and efficiency.

From the efficiency perspective, one of the major obstacles is search efficiency,
and several authors have acknowledged that a step forward would be in the de-
sign of novel search techniques (e.g. [2,1]). RL, as a sub-domain of symbolic
learning, has been cast more than 25 years ago as search into a state space[3]:
given a hypothesis space defined a priori, identified by its representation lan-
guage, find a hypothesis consistent with the learning data. This seminal pa-
per, relating symbolic learning to search in a state space, has enabled machine
learning to integrate techniques from problem solving, operational research and
combinatorics: greedy search in FOIL, beam search in ICL, breadth-first search
in Aleph, ’A’ search in PROGOL, IDA (Iterative-Deepening A) search in MIO

1 http://www-ai.ijs.si/~ilpnet2/apps/index.html

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 51–66, 2009.
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to name a few systems2. Besides very few exceptions, all systems are rooted in
the generate-and-test paradigm [4] and therefore rely on general-purpose search
strategies.

This approach has to be contrasted with the important progress, made during
the past few years, in the performance of specialised SAT or CSP solvers, which
can deal with problems’ sizes that are orders of magnitude larger than those re-
search communities would expect to solve only a decade ago. This progress has
been driven by studies of randomly generated problem instances, in the phase
transition framework, where hard to solve instances can be reliably generated, in-
dependently from the solver used. This framework relies on the conjecture that a
phase transition in the probability of solubility of NP-complete problems can be
exhibited along so-called order parameters and that the phase transition region
contains the most difficult problem instances, those on which the computational
complexity shows an exponential increase in the problem size [5,6,7]. This tool
allows to design benchmark datasets to point out and filter “bad” algorithms,
and to promote “good” algorithms which are close to the “easy-hard-easy” com-
plexity resolution pattern, standard nowadays [8,9,10]. Since then, it has been
strongly developed in many combinatorics domains and has changed the way
search algorithms are empirically evaluated. This has lead to new designs of
search algorithms, from incomplete to complete solvers and from deterministic
to randomised solvers (see e.g. [11]).

We think that RL, as a combinatorics field, must follow the same path and
study learning as a decision problem in the phase transition (PT) framework in
order to re-new and improve its algorithmic approach to answer the new chal-
lenges of modern applications. As the consistency problem is at the core of the
Statistical Learning Theory, notably studied in the PAC framework (see [12,13]
for details), the PT framework will be able to go beyond the worst-case com-
plexity analysis and allow to study the behaviour of learning algorithms in the
“average” or “typical” complexity case. Most importantly, it is also at the core
of learners’ optimisation algorithms, typical of real-world systems: optimisation
procedures are obtained by adding branch-and-bound techniques, or treated as
subsequent decision problems3. This a fortiori is true in RL where almost all
noise-resistant learners are relaxation of this problem [15], therefore studying
this problem will benefit search strategies for learning.

Machine Learning has known several developments in the study of phase tran-
sition phenomena since the early 90s. The first works were in neural networks
[16,17,18,19] and studied the phase transition of the generalization error, where
the number of examples are shown as order parameters. Other works studied the
impact of the phase transition of the solubility probability of the NP-complete
subsumption test, a sub-problem of Relational Learning, on the generalisation

2 Relevant information on these systems can be found at

http://www-ai.ijs.si/~ilpnet2/systems
3 This latter strategy, for instance, is used to solve pseudo-boolean constraints, an

optimisation version of SAT: one of the best pseudo-boolean solver, Minisat+ is

based on the SAT solver Minisat [14].

http://www-ai.ijs.si/~ilpnet2/systems
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error [20] and heuristic search [21]. However, as surprising as it may seem, the
phase transition framework strongly developped in combinatorics has almost not
been imported to the realm of symbolic learning. To the best of our knowledge,
the only work along this line has been done by Ruckert et al. [22] who exhib-
ited the phase transition of the probability of solubility of a learning problem,
the k-term DNF consistency problem, a well-known NP-complete problem [13],
showing that the number of variables, the number of positive and negative ex-
amples were order parameters.

RL is arguably harder than attribute-value learning, like k-term DNF learn-
ing, which has been formalised by Gottlob et al. [23] who showed that the sim-
ple bounded ILP consistency problem, which will be discussed in later, is Σ2-
complete. This is one class higher in the polynomial hierarchy than NP-complete
(or Σ1-complete) problems. Some authors [24,25], have conjectured that a phase
transition could be exhibited further up the polynomial hierarchy and therefore
that this framework could be useful to other PSPACE problems. This was sup-
ported by results on planning and QBF-2 (Quantified Boolean Formulas with
two alternating quantifiers, see also [26]).

In this paper, we show that this also holds true for the bounded ILP con-
sistency problem and we present two main results. First, we exhibit the phase
transition of the probability of solubility of the bounded ILP consistency prob-
lem, with the number of positive and negative examples as order parameters.
Second, we exploit this framework as a benchmarking tool to evaluate for the first
time learning algorithms on inherently hard and inherently easy problems, from a
complexity point of view. We evaluate classical complete relational learners found
in the learning systems Aleph [27], Progol [28] and Propal [29]: informed search
algorithms such as Best-First Top-down Generate-and-Test (BESTF-TGT), A-
search Top-down Generate-and-Test (A-TGT), and non-informed ones, such as
Breadth-First Top-down Generate-and-Test and Data-Driven (BF-TGT and BF-
TDD), Depth-First Top-Down Generate-and-Test (DF-TGT). We also use a lgg-
based learner: Depth-First Bottom-up Data-Driven (DF-BDD).

The expected benefit is the same as for other combinatorics domains: (1) point-
ing out particularly bad algorithms; (2) importing and adapting the best search
strategies developed in other domains; (3) developing a unified framework for the
empirical evaluation of learners, not only based on real-world applications (as this
is always necessary), but also on problems with controlled complexity; (4) under-
standing scaling-up problems acknowledged in Relational Learning (see e.g. [2])
by studying their behaviour on inherent hard instances in the phase transition;
and last (5) finding ways to generate hard instances to understand the problem’s
complexity and to provide challenging benchmark datasets [30,31].

The paper is organised in the following manner. Section 2 presents background
information about relational learning and search strategies, as well as main results
on the phase transition framework in combinatorics and the “easy-hard-easy”pat-
tern. Section 3 describes the random problem instance generator, which has been
already proposed to study the bounded ILP consistency problem in [21], although
they did not study its PT as they did not investigate the relevant parameters for
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this work. Next, section 4 shows that RL exhibits a phase transition of the proba-
bility of solubility and therefore can be used to reliably assess inherent complexity
of learning problems. This is used in section 5 to evaluate and discuss the behaviour
of popular complete learners on inherently hard and inherently easy problems. Fi-
nally, section 6 discusses the expected benefit of the development of the phase tran-
sition framework in RL and conclude on future works.

2 Background

2.1 Relational Learning

In machine learning, we are given a learning set E = E+ ∪ E−, with positive
and negative examples of the unknown target concept, drawn from an example
language Le, a hypothesis language Lh, a generality relation named subsump-
tion test ≥ which relates Le and Lh and partially order the hypotheses. After
[3], (symbolic) learning is defined as search in Lh. The problem, known as the
consistency problem, is to find a hypothesis h ∈ Lh such that h is consistent with
the data. A given hypothesis h is consistent iff it is complete: ∀e+ ∈ E+, h ≥ e+

and correct: ∀e− ∈ E−, h �≥ e−.
In this article, we study a typical instance of this problem in relational learn-

ing, known as the ILP consistency problem for function-free Horn clauses [23]:
givenLe, a language of function-free ground Horn clauses,Lh, a language of (non-
recursive) function-free Horn clauses and an integer l polynomial in |E+ ∪E−|,
does there exist h ∈ Lh with no more than l literals such that h logically im-
plies each element in E+ and none element in E−. In such hypothesis space, the
logical implication is equivalent to θ-subsumption4 which is NP-complete and
therefore decidable [32]. This result implies that relational learning is higher
than attribute-value learning in the polynomial hierarchy. [23] proved that this
problem is ΣP

2 -complete (or equivalently NPNP ): the search is NP-complete
and it is guided by the subsumption test which is NP-complete.

A central idea in symbolic learning is the use of a generality partial
order between hypotheses to guide the resolution of the consistency problem [3].
Mitchell refines the search strategy into the generate-and-test (GT) and data-
driven (DD) strategies. Virtually all GT algorithms are top-down, as it appeared
early that a bottom-up approach would start with a too specific hypothesis to be
efficiently guided by a heuristic function (see [33] for details). In this paradigm,
the top-down refinement operator, noted ρ, is only based on the structure of the
hypothesis space, independently of the learning data: Let h ∈ Lh : ρ(h) = {h′ ∈
Lh|h ≥ h′}.

Therefore, generate-and-test algorithms have to deal with many refinements
that are not relevant with respect to the discrimination task. They only rely on
the evaluation function to prune the irrelevant branches. On the contrary, the
top-down DD (TDD) strategy searches the space of hypotheses that are more

4 Let C, D two clauses. C θ-subsumes D, noted C ≥θ D iff there exists a substitution

θ such that Cθ ⊆ D.
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general than or equal to a given positive example, named the seed example, and
uses negative examples to prune irrelevant branches in the refinement graph.
Formally, the TDD refinement operator is defined as a binary operator: Let h ∈
Lh, e− ∈ E− : ρ(h, e−) = {h′ ∈ Lh|h ≥ h′ and h′ �≥ e−}.

As opposed to a TGT approach, a TDD approach can therefore compensate
for a poor evaluation function by using the learning data [29]. Moreover, some
TDD strategies make the most of the negative instances in order to select infor-
mative negative examples, e.g. near-misses according to Winston. Dually to the
TDD strategy, the Bottom-up Data Driven (BDD) strategy relies on positive ex-
amples to guide its generalisation step. Its BDD refinement operator, noted δ is
given as follows: Let h ∈ Lh, e+ ∈ E+ : δ(h, e+) = {h′ ∈ Lh|h ≤ h′ and h′ ≥ e+}.

This strategy has been first formalised by [34], who made the link between
generalisation in learning and lowest-upper bound (lub) in lattice theory. Such
an operator, also known as least-general generalisation (lgg) or most-specific gen-
eralisation (msg), has known several theoretic developments [35,12,36] but has
been seldom used in learning systems, whose the best-known system is probably
GOLEM [37].

2.2 Phase Transition and “Easy-Hard-Easy“ Pattern

Phase transition is a term originally used in physics to describe the changes
of state of matter [38]. Even though originally referring to gas, liquid, or solid,
within the framework of thermodynamics, it is used, by extension, to describe
an abrupt and suddenly change in one of the parameters describing the state
(in thermodynamic sense) of an arbitrary system. Thus, the transition from
ferromagnetic to paramagnetic state, the emergence of super-fluidity, changing
the type of crystal (with broken symmetry), or denaturation transition of DNA
are characterised as phase transitions. A well-known example in everyday life is
water, which is boiling (at normal pressure) at 100 oC. At the transition point
there is a coexistence of liquid water and vapor (a “first order” phase transition).
When plotting the density as a function of the temperature, a jump at the tran-
sition temperature can be observed. In this example, using physics terminology,
density corresponds to the order parameter, whereas temperature corresponds
to the external parameter of the phase transition. Notice that, in computer sci-
ences, the term order parameter is used instead of external parameter, and we
will keep this terminology in the following.

The phase transition of the probability of NP-complete decision problems,
and beyond, certainly is the most studied phase transition framework in Com-
puter Sciences as it has important consequences in practice on the average search
complexity [5,39,7,8,9,40,41,25,42,43]. The so-called order parameters allow to
wander from an under-constrained region, named the “yes” region, where this is
almost surely a solution, to an over-constrained region, named the “no” region,
where there is almost surely no solution. In between, the phase transition region
contains the most difficult problem instances, those on which the computational
complexity shows an exponential increase in the problem size, independently of
the solver used [5,6,41,7]. The under-constrained problems from the “yes” region
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Fig. 1. Typical “easy-hard-easy” pattern [10]. Solid line shows median solution cost

for dynamic backtracking and dashed line shows probability of a solution as a func-

tion of assignments to a pair of variables in random CSP that are considered to be

inconsistent(number of no-goods).

appear to be easily soluble, as there are many solutions. This is the same for
over-constrained problems from the “no” region as it is easy to prove that they
are insoluble. These findings have been corroborated on several problems, with
different types of algorithms, and it is considered that the problem instances
appearing in the phase transition are inherently hard, independently of the al-
gorithms used. In the “yes” and “no” regions, the easy ones, the complexity
appears to be very dependent of the algorithm. There are, in these regions, some
problems exceptionally hard, whose complexity dominates the complexity of in-
stance problems in the phase transition region for certain types of algorithms
[9,41,40]. In other words, a “good” algorithm when studied along the three dif-
ferent regions has to exhibit an average complexity following the so-called “easy-
hard-easy” pattern. Such a typical pattern is shown in figure 1, from [10]. The
search cost varies as a function of a given order parameter (refereed as nogoods)
for a class of problems, independent of particular search algorithms.

The interest of the framework is two-fold as it gives a way to empirically assess
the efficiency of algorithms on classes of problems whose inherent complexity is
controlled by order parameters, and as finding ways to generate hard instances
for a problem is important to understand the complexity of the problem [43,30].
We present in the next section the model RLPG for the bounded ILP consistency
problem that we will use to exhibit the PT.

3 Random Generator for Relational Learning Problem

A learning problem instance in this model is denoted RLPG(k, n, α, N, Pos, Neg).
The parameters k, n, α, N are related to the definition of the hypothesis and exam-
ple spaces. Pos and Neg are the number of positive and negative examples respec-
tively. The first four parameters are defined in order to ensure that a subsumption
test between a hypothesis and an example during search encode a valid CSP prob-
lem following the model RB for random CSP [43]. We recall their meaning and
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Table 1. Example of a random learning problem generated with RLPG, with no solu-

tion

⊥ p0(A) ← p1(A, B, C), p2(A,B, D), p3(A,C, D)

+ p0(e1) ← p1(e1, b, c), p2(e1, c, d), p3(e1, e, f)

− p0(e2) ← p1(e2, c, f), p2(e2, d, e), p3(e2, d, c)

Table 2. Example of a random learning problem generated with RLPG, with a solution

⊥ p0(A) ← p1(A, B, C), p2(A, B,D), p3(A,C, D)

+ p0(e1) ← p1(e1, b, c), p2(e1, d, e), p3(e1, e, e)
− p0(e2) ← p1(e2, b, b), p2(e2, e, e), p3(e2, e, c)

focus on the last two parameters, which were not studied before and which will
be shown to be order parameters of the phase transition of the ILP consistency
problem.

k ≥ 2 denotes the arity of each predicate present in the learning language, n ≥ 2
the number of variables in the hypothesis space, α the domain size for all variables
as being equal to nα, and finally, N the number of literals in the examples built on a
given predicate symbol. Given k and n, the size of the bottom clause of the hypoth-
esis space Lh is (n

k ), and encodes the largest constraint network of the underlying
CSP model. Each constraint between variables is encoded by a literal built on a
unique predicate symbol. Lh is then defined as the power set of the bottom clause,
which is isomorphic to a boolean lattice. Its size is 2(n

k ).
Learning examples are randomly drawn, independently and identically dis-

tributed, given k, n, α and N . Their size is N.(n
k ). Each example defines N

literals for each predicate symbol. The N tuples of constants used to define
those literals are drawn uniformly and without replacement from the possible
set of (nα

k ) tuples.
As an illustration, table 1 shows a random RLPG(2, 3, α, 1, 1, 1) problem, with

α such that nα = 5. The first line shows the bottom-most element of the hypothe-
sis space, which encodes all binary constraints between 3 variables. The next two
lines show the positive and the negative example, respectively, allowing only one
matching of a given predicate symbol (as N = 1). The search space is of size 23

and consists of all hypotheses built with the same head as the bottom clause, and
with a subset of its body as body. In such a space, it is easy to see that there is
no solution, given that no hypothesis subsumes the positive example without sub-
suming the negative example.Whereas the problem illustrated in table 2 accepts
the following clause as solution: p0(A)← p2(A, B, D), p3(A, C, D).

4 Number of Positive and Negative Examples as Order
Parameters

In this section, we study the effect of the number of positive and negative ex-
amples on the solubility probability of the ILP consistency problem. If we refer
to the previous section, RLPG is parametrised with 6 parameters but we only
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study the last two, Pos and Neg, as the effect of the other parameters have
already been studied in [21] for constant number of positive and negative exam-
ples. Here, we focus on few settings for these parameters, with k = 2, n = 5 and
n = 6, to study different problem sizes, α = 1.4 and N = 10. The choice of these
parameters ensures that we do not generate trivially insoluble problems (see [25]
for details), but also various experiments, not shown here, indicated that they
were representative of the phase transition behaviour of the ILP consistency
problem. In all experiments below, statistics were computed from a sample of
500 learning problems, solved with a complete learner.

We start by varying both Pos and Neg. Figure 2 shows the solubility prob-
ability of the ILP consistency problem when Pos = Neg are varied from 1 to
15, for n = 5 and n = 6. As we can see, when the number of examples is small,
there is almost surely a consistent hypothesis, and when the number is large, it
is almost surely impossible to find a consistent hypothesis. The cross-over point,
where the probability of solubility is about 0.5, is around 4 for n = 5 and 5 with
n = 6. It is not surprising that it increases with bigger problems. For n = 5,
the hypothesis space size is 210 and 215 for n = 6. We could not conduct exper-
iments for larger values of n as the hypothesis space grows too fast in RLPG.
For instance, n = 7 sets a hypothesis space of size 221, which cannot be handled
by our complete solver. In the future, it would be interesting to modify RLPG
to specify the size of the bottom clause and then draw the number of variables
accordingly.

We study now the phase transition along the number of positive examples,
for constant values of Neg. Figures 3 and 4 show the phase transition when Pos
varies from 1 to 25, for n = 5 and n = 6 respectively. With no positive examples,
the bottom element of the search space is solution, but as Pos increases, complete
hypotheses get more general and eventually subsume a negative example. The
transition becomes sharper as Neg increases, which is not surprising as the subset
of correct hypotheses shrinks as Neg increases. The second order parameter is
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the number of negative examples Neg but it is not shown here because of the
space requirements. The plots essentially exhibit the same profile.

5 Evaluating Complete Learners

We evaluate complete learners representative of the search strategies described
in section 2.1. As non-informed searches, we use the Breadth-First TGT search
(BF-TGT) and the Depth-First TGT search (DF-TGT). As informed searches,
we use the A TGT search (A-TGT) and the Best-First TGT search (BESTF-
TGT). Informed search makes use of an evaluation function to minimise, whose
general form is f = g + h. g is defined as the cost from the start to the current
hypothesis and h as an estimation of the distance from the current hypothesis
to the goal. We define A-TGT according to the Progol system: g is defined as
the length of the current hypothesis and h as the difference between the number
of negative examples and the number of positive examples. In our context, as
all positive examples must be subsumed, it simplifies to the number of negative
examples. BESTF-TGT is not biased towards shorter hypotheses and defines
g = 0. We refer to [27,28] for details about their implementations.

The next learning strategy we study is the one used in the TDD learner
Propal. This is an incomplete learner as it performs a beam search guided by
the Laplace function. So we set Propal with a beam of unlimited size, which
basically turns down to a non-informed Breadth-First search (BF-TDD). The
only difference is that when the solution is reached at a level of the search, it
will be the first picked up at the next level. Note also that, as an incomplete
learner, it does not have an optimal refinement operator, like the other learners,
and may evaluate the same hypothesis several times.

The last learning strategy is Depth-First BDD (DF-BDD), based on Plotkin’s
lgg operator, and we refer to [36] for implementation details. Briefly, starting
from the bottom element, the algorithm generalises the current hypothesis to
subsume each positive example in turn, until it outputs a consistent hypothesis,
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or until it proves that no correct hypothesis subsumes all positive examples.
Note that as the hypothesis space is not a lattice, which is the case here under
θ-subsumption as the hypothesis space is finite, the lgg operator outputs all
possible generalisations on subsequent backtracks.

We evaluate complete RL learners on random problem instances whose inher-
ent complexity is controlled by the order parameter of the PT. We plot their
search cost as a function of the order parameter to compare their complexity
pattern to the standard “easy-hard-easy” pattern, as it is an indication of search
efficiency (see section 2.2). As the consistency problem in RL is Σp

2 -complete
(see section 2.1), the search cost measurement has to take into account both the
cost of the exploration of the hypothesis space and the cost of the consistency
check. We propose to measure both the number of backtracks of the subsump-
tion procedure and the time in milliseconds needed to solve a learning problem.
The former measure is relevant for GT approaches, as the cost of the refine-
ment operator is negligible compared to the subsumption cost, and it reflects
the number of evaluated hypotheses. This is also the case for DF-BDD, as the
lgg operator uses the subsumption test to find the common generalisations of
two given clauses. However, it is not appropriate for BF-TDD which is based
on the Propal system. Propal delegates the computation of refinements to a
Weighted CSP solver [29] whose cost does not translate into backtracks of the
subsumption test. It would be interesting to propose a relevant cost measure for
all RL learners, independently on the implementation but we leave it for future
research. Thus, we use the resolution time as cost measure for this strategy, and
although it does not allow a direct comparison with other approaches, it is still
relevant to study its expected cost pattern.

All experiments are done using instances from RLPG(k, n, α, N, Pos, Neg),
with k = 2, n = 5 and n = 6 to study different problem sizes, α = 1.4 and
N = 10. Additional experiments using different parameter values (not shown
here) have been conducted and result in similar findings. In the following figures
every plot is averaged over 500 randomly drawn learning problems.

Figure 5 shows the results obtained with A-TGT, for n = 6. We can see that
the easy problems resolution from the “yes” region follows the standard pattern.
The superposition of the solubility probability plot shows the PT region. The
cost sharply increases as soon as the solubility probability is no longer 1 (when
both the number of positive and negative examples are greater than 3). This
increase stops when the probability gets close to 0. However, the plot does not
reach a maximum right after the PT. This is indicative of a bad search algorithm,
as the backtracking cost keeps increasing, as the number of examples increases,
in the region theoretically easy, dominating then the cost in the PT.

We are going to see that this behaviour is typical of the top-down approaches:
interestingly, in the “no” region, extra examples do not help enough pruning the
hypothesis space to compensate the increase in subsumption cost of those extra
examples.

For various percentiles, figure 6 shows that BF-TGT, as a non-informed search
strategy, is costly very early in the “yes” region. However, after the PT, A-TGT
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Fig. 5. Backtracking cost using A-TGT

strategy for various percentiles and prob-

ability of solubility, for n = 6

 0

 5000

 10000

 15000

 20000

 25000

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

C
os

t

Number of examples

25th percentile
50th percentile
75th percentile

Fig. 6. Backtracking cost using BF-TGT

strategy for various percentiles, for n = 6
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Fig. 7. Backtracking cost using DF-TGT

strategy for various percentiles, for n = 6
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Fig. 8. Backtracking cost using DF-BDD

strategy for various percentiles for n = 5

and BF-TGT are about equivalent: they cannot cope with an increasing number
of examples, and the cost in the “no” region dominates the cost in the PT region.

In the “yes” region, DF-TGT behaves better than BF-TGT. This is partic-
ularly true in the “yes” region where there are a lot of solutions. In that case,
to keep specialising a complete hypothesis leads almost surely to a consistent
hypothesis. DF-TGT is as good as A-TGT in this region, but when they get
closer to the PT, A-TGT performs better. Its heuristic function prioritizes hy-
potheses which discriminate negative examples the most and this seems to lead
to consistent hypotheses faster. In the “no” region, we see again that DF-TGT
degenerates as A-TGT and BF-TGT.

In figure 8, we show results for the data-driven search, DF-BDD, first on
problems of size n = 5. It gets close to the standard pattern for the “yes’ region
problems. We note however that for higher percentiles (e.g. the median) the
algorithm has a non negligible cost even for 1 positive and 1 negative example.
Moreover, the superposition of the solubility plot shows the cross-over point
of the PT between 4 and 5 examples and that the complexity peak is slightly
shifted to the right with respect to this point, which indicates that DF-BDD’s
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Fig. 9. Backtracking cost using DF-BDD

strategy for various percentiles, for n = 6
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cost pattern is close to the “easy-hard-easy” pattern. Also, we see that for all
percentiles, the cost slowly decreases after the PT. We can say that this algorithm
is a good search algorithm, although some improvements can be done.

Figure 9 shows results for the same algorithm, but on larger problems, with
n = 6. The cross-over point is now around 5, and DF-BDD’s behaviour gets
closer to the standard pattern in the “yes” region. Although there is a minimum
cost (6000 backtracks as median cost), certainly due to the naive implementation
of the lgg refinement operator, this cost does not vary much in the “yes” region.
Among all tested algorithms, it is the only one exhibiting the “easy-hard-easy”
pattern.

Figure 10 summarises the backtracking cost of the search algorithms dis-
cussed above, with the addition of BESTF-TGT. The results are clear: all GT
approaches are interesting for problems with many solutions but are partic-
ularly bad when there are few or no solutions. Moreover, either informed or
non-informed search strategies, they all have the same profile in this latter case,
which is an interesting point to detail in the future. Conversely, DF-BDD, al-
though penalised in the “yes” region, is more efficient in those problems with
few or no solutions, with a decrease in cost as the number of examples increases.

The complexity analysis limited to the number of backtracks of the subsump-
tion test is not enough for this study because it does not take into account
the cost of the refinement operators for all approaches, such as for BF-TDD (see
above). We then complete it by plotting the resolution time of BF-TDD in figure
11. Although the search cost cannot be directly compared, we see that it behaves
similarly to the other top-down approaches. In the “yes” region, the TDD op-
erator cannot compensate the breadth-first search with its smaller branching
factor, and therefore behaves like BF-TGT. After the exponential increase in
cost on the inherent hard instances, the cost keeps increasing as the number of
examples grows in the “no” region. The penalty here is that the number of calls
to the Weighted CSP solver to compute a near-miss is proportional to the num-
ber of negative examples. This is clearly too costly and the trade-off between
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Fig. 11. Time cost using BF-TDD strategy for various percentiles, for n = 6

the quality of the near-miss and the reduction of the search space has to be
evaluated.

6 Conclusion

Although Relational Learning has been cast, more than 25 years ago, as search,
it has known very few developments from the search strategy point of view and
most learners rely on general-purpose solvers. This is a strong limitation to its
applicability on many modern applications, as it prevents RL to scale-up well.
On the other hand, important progress has been made in other combinatorics
communities, such as SAT and CSP, in the development of efficient specialised
solvers, through the study of random NP-complete problem generators in the
phase transition framework. RL has a higher complexity, being Σ2-hard in the
general case. However, we argue that this framework will benefit RL, based on
the conjecture that the phase transition can be exhibited further up the polyno-
mial hierarchy. We show that this conjecture holds true with the bounded ILP
consistency problem, a Σ2-complete problem, representative of RL problems.
We propose a first simple random generator that exhibits a phase transition
in the problem’s solubility, with the number of positive and negative examples
as order parameters. We used this framework to generate benchmark datasets
with controlled complexity, based on conjectures linking the probability of prob-
lem solubility with inherent problem hardness. First, this study shows that all
well-known top-down relational algorithms, rooted either in the generate-and-
test or the data-driven paradigm, are bad as they fail to exhibit the standard
“easy-hard-easy” pattern. Their complexity tend to increase with the number
of examples, although the extra examples do not change the solubility of the
problem, and therefore they exhibit an “easy-hard-hard” pattern. This has to
be contrasted with DF-BDD, a lgg-based learner, which does not perform as well
on the easy problems in the “yes” region, but well on the easy problems of the
“no” region, as well as in the phase transition compared to the other algorithms.
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This study shows that search strategies standard in RL lag behind what is
considered state of the art in other combinatorics communities. It is clear that
this study does not take into account all the dimensions of learning problems:
optimization instead of consistency, presence of noise, etc. However, the first idea
is to understand the complexity landscape of learning problems and to define
order parameters to control this complexity. The most important advantage of
the proposed approach to evaluate algorithm complexity is that contrary to re-
sults obtained directly on real-world applications, which hardly transpose when
the size of the problems change of scale, the phenomena observed with few vari-
ables are the same as those observed with thousands of variables. We hope that
it will enable RL and ILP to import and/or develop better search algorithms,
to eventually benefit to better scaling relational learners. For instance, we plan
to investigate lgg-based learning algorithms, which have been seldom used in
learning systems but seem to be efficient solvers.
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29. Alphonse, É., Rouveirol, C.: Extension of the top-down data-driven strategy to

ILP. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS

(LNAI), vol. 4455, pp. 49–63. Springer, Heidelberg (2007)

30. Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfiability problem:

A survey. In: DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, pp. 1–17. American Mathematical Society (1997)

31. Xu, K., Li, W.: Many hard examples in exact phase transitions. Theor. Comput.

Sci. 355(3), 291–302 (2006)

32. Gottlob, G.: Subsumption and implication. Information Processing Letters 24(2),

109–111 (1987)

33. Fürnkranz, J.: A pathology of bottom-up hill-climbing in inductive rule learning.

In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI),

vol. 2533, pp. 263–277. Springer, Heidelberg (2002)

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph


66 E. Alphonse and A. Osmani

34. Plotkin, G.: A note on inductive generalization. In: Machine Intelligence, pp. 153–

163. Edinburgh University Press (1970)

35. Valiant, L.G.: A theory of the learnable. In: ACM Symposium on Theory of Com-

puting (STOC 1984), Baltimore, USA, pp. 436–445. ACM Press, New York (1984)

36. Kietz, J.U.: A comparative study of structural most specific generalisations used

in machine learning. In: Proc. Third Workshop on ILP, pp. 149–164 (1993)

37. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Proc. of the 1st

Conference on Algorithmic Learning Theory, Ohmsma, Tokyo, Japan, pp. 368–381

(1990)

38. Paskal, Y.I.: The meaning of the terms phase and phase transition. Russian Physics

Journal 31(8), 664–666 (1988)

39. Selman, B., Levesque, H.J., Mitchell, D.: A new method for solving hard satisfiabil-

ity problems. In: Proc. of the Tenth National Conference on Artificial Intelligence,

Menlo Park, California, pp. 440–446 (1992)

40. Gent, I.P., Walsh, T.: Easy problems are sometimes hard. Artificial Intelli-

gence 70(1–2), 335–345 (1994)

41. Davenport, A.: A comparison of complete and incomplete algorithms in the easy

and hard regions. In: Workshop on Studying and Solving Really Hard Problems,

CP 1995, pp. 43–51 (1995)

42. Smith, B.M.: Constructing an asymptotic phase transition in random binary con-

straint satisfaction problems. Theoretical Computer Science 265(1–2), 265–283

(2001)

43. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfac-

tion: Easy generation of hard (satisfiable) instances. Artif. Intell. 171(8-9), 514–534

(2007)



Topic Significance Ranking of LDA Generative

Models

Loulwah AlSumait1, Daniel Barbará1, James Gentle2,
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Abstract. Topic models, like Latent Dirichlet Allocation (LDA), have

been recently used to automatically generate text corpora topics, and to

subdivide the corpus words among those topics. However, not all the esti-

mated topics are of equal importance or correspond to genuine themes of

the domain. Some of the topics can be a collection of irrelevant words, or

represent insignificant themes. Current approaches to topic modeling per-

form manual examination to find meaningful topics. This paper presents

the first automated unsupervised analysis of LDA models to identify

junk topics from legitimate ones, and to rank the topic significance. Ba-

sically, the distance between a topic distribution and three definitions

of “junk distribution” is computed using a variety of measures, from

which an expressive figure of the topic significance is implemented using

4-phase Weighted Combination approach. Our experiments on synthetic

and benchmark datasets show the effectiveness of the proposed approach

in ranking the topic significance.

1 Introduction

Probabilistic Topic Modeling (PTM) is an emerging Bayesian approach to sum-
marize data, such as text, in terms of (a small set of) latent variables that
correspond (ideally) to the underlying themes or topics. It is a statistical gener-
ative model that represents documents as a mixture of probabilistic topics and
topics as a mixture of words. Among the variety of topic models proposed, La-
tent Dirichlet Allocation (LDA) [4] is a truly generative model that is capable
of generalizing the topic distributions so that it can be used to generate unseen
documents as well. The completeness of the generative process for documents
is achieved by considering Dirichlet priors on the document distributions over
topics and on the topic distributions over words.

The setting of the number of latent variables K is extremely critical and di-
rectly effects the quality of the model and the interpretability of the estimated
topics. Models with very few topics would result in broad topic definitions that
could be a mixture of two or more distributions. On the other hand, models
with too many topics are expected to have very specific descriptions that are

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 67–82, 2009.
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Table 1. The Reuters: examples of topics estimated by LDA

Class Top Words
coffee export, coffee , quota , product , market , price , Brazil
ship ship , gulf , attack , Iran , American , oil , tanker , water

oil/crude oil , price, barrel , crude (0.045), increase, product , petroleum , energy
Na was , report , official, any , did , said , ask , told , made , comment , time
Na two , on , three , five, six, four , month, seven, eight

uninterpretable [8]. Since the actual number of underlying topics is unknown
and there is no definite and efficient approach to accurately estimate it, the
inferred topics of PTM does not always represent meaningful themes. For exam-
ple, Table 1 lists five topics discovered by LDA when run on the Reuters-21578
dataset with K set to 50. It can be seen that the first three topics correspond
to legitimate classes of the data. However, the last two topics are collections of
insignificant words that are meaningless to the thematic structure of Reuters
corpus.

Although LDA is heavily investigated and cited in the literature, none of the
research provided an automatic analysis of the discovered topics to validate their
importance and genuineness. Almost all the previous work manually examines
the output to identify genuine topics in order to justify their work. Some work
[10] computed the average distance of word distributions between all pairs of
topics to measure how distinct they are. However, this figure evaluates the model
in general and not the individual topics. In addition, the distance of a topic
from the others does not provide any insight on the significance of the semantic
content of the topic. Other approaches have used the probability of the topic
as an indication of its importance [6,1]. However, as will be seen later, some
meaningless topics that consist of common words across documents with different
content can have a high probability.

This paper introduces a novel approach to automatically rank the LDA topics
based on their semantic importance and, eventually, identify junk and insignifi-
cant topics. The idea is to measure the amount of insignificance that an inferred
topic carries in its distribution by measuring how “different” the topic distribu-
tion is from a “junk” distribution. In this work, three definitions of Junk and
Insignificant (J/I) topics are introduced. To quantify the difference between an
estimated topic and a J/I distribution, a number of distance measures are used.
Based on a Weighted Combination of multi-criteria decision analysis, this pa-
per introduces a novel unsupervised quantification of the topic significance. Our
experiments on synthetic and benchmark datasets show the effectiveness of the
proposed topic significance ranking, and its ability to identify junk and insignif-
icant topics. To the best of our knowledge, this is the first attempt to evaluate
and rank topic significance of PTM models.

The rest of this paper is organized as follows. An overview of the problem
definition and notations including a brief description of the Latent Dirichlet
Allocation (LDA) topic model is given in Section 2. Section 3 introduces three
definitions of J/I distributions and lists three distance measures by which the
difference of the estimated topics of PTM from the J/I topics is computed. Then,
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the proposed Topic Significance Ranking (TSR) approach is defined in Section
4 followed by the experimental results that we obtained from applying the TSR
on simulated and real data. Our final conclusions and future work are discussed
in Section 6.

2 Problem Definition

LDA is a hierarchical Bayesian network that represents the generative model of a
corpus of documents [4]. LDA assumes the standard bag-of-words representation,
where each document d is represented as a vector of counts with W components,
where W is the size of the dictionary. The documents of the corpus are modeled
as mixtures over K topics each of which is a multinomial distribution over the
dictionary of words. Each topic, φ(k), is drawn from a Dirichlet with parameter
β, while each document, θ(d) , is sampled from a Dirichlet with parameter α.
For each word token i in document d, a topic assignment zi is sampled from
θ(d) which is introduced to represent the responsibility of a particular topic in
using that word in the document. Then, the specific word xi is drawn from
φ(zi). An exact estimation of φ(k) and θ(d) is found to be intractable [4], thus
approximations such as Gibbs sampling [6] and variational inference [4] are used.

To identify genuine themes from the LDA estimated topics, the following
learning setting is considered. Given a dataset of D documents with a total of
N token words and W unique terms, a topic model T is generated from fitting
its parameters, φ and θ, to the dataset assuming that the number of topics is
set to K. The matrix θ is a D ×K parameter matrix in which each row θ(d) is
the multinomial distribution of document d. The matrix φ consists of W × K
parameters in which each column φ(k) represents the multinomial distribution
of topic j 1. Thus, the parameters in φ and θ indicate the relative importance
of words in topics (i.e. φw,k = p(w|k)) and the relative importance of topics in
documents (i.e. θd,k = p(k|d)), respectively.

In practice, a topic model T includes different sets of “Junk and Insignificant”
(J/I) topics. A junk topic is an “uninterpretable topic that picks out idiosyncratic
word combinations” [8]. An insignificant topic is a topic that consists of general
words, known as “background words”, which are commonly used in general or
across a broad range of documents within each corpus/domain [5]. For domain
experts and text miners, the content of these topics is low in significance and
often meaningless.

To identify J/I topics, the approach is to define a decision criterion C as the
distance D of the topic from a common J/I topic description Ω. If the distance is
large, then this would provide a fair indication of the topic significance. However,
if the distance of a topic to the J/I distribution is small, then the topic is more
likely to be irrelevant to the domain structure.

1 The notation φ(k) (θ(d)) is used to indicate the topic (document) distribution. To

refer to a particular probability value, this is noted by φw,k (θd,k).
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3 Junk/Insignificance Based Decision Criteria

This section introduces the J/I topic definitions and the distance measures that
are used to evaluate the significance of a topic distribution.

3.1 Junk/Insignificance Topic Definitions

Uniform Distribution Over Words (W-Uniform). Aligning with the Zipf
law for words [7], a genuine topic is expected to be modeled by a distribution
that is skewed toward a small set of words, called “salient words”, out of the
total dictionary. A topic distribution under which a large number of terms are
highly probable is more likely to be insignificant or “junk”.

To illustrate this, the number of salient terms of topics estimated by LDA on
the 20-Newsgroups dataset is computed. These words are defined to be the ones
that have the highest conditional probability under a topic k. For each estimated
topic, the number of salient words for which the total conditional probability is
equal to some percentage, X , of the topic probability is counted. Then, these
counts are averaged over all the topics. Table 2 lists the average and percentage
of salient words for X ranged from 60% to 100%. The values are reported for
experiments done with K set to 40 components.

It can be seen that most of the topic density corresponds to less than 3% of the
total vocabulary. In fact, when X = 100%, the average value was biased toward
a set of extreme topics that have nonzero probability for the whole dictionary.
When these topics were excluded from the average, the percentage of words
dropped from 52% to 3.9%. This value is given in the table between parenthesis.
Such topics are more likely to be junk topics that are irrelevant to the domain.

Under this frame, an extreme version of a junk topic will take the form of a
uniform distribution over the dictionary. This topic, which is named W-Uniform,
is the first junk definition in this paper. Formally, W-Uniform is a junk topic,
ΩU , in which all the terms of the dictionary are equally probable

P (wi|ΩU ) =
1
W

, ∀i ∈ {1, 2, . . . , W} (1)

The degree of “uniformity”, U , of an estimated topic, φ(k), can be quantified by
computing its distance from the W-Uniform junk distribution, ΩU . The com-
puted distance will provide a reasonable figure of the topic significance. The

Table 2. 20-Newsgroups: average and percentage of terms and documents that hold

X percent of the topic density estimated by LDA

D × W X Average # of
terms

%age of
dictionary

Average # of
docs

%age of total
docs

11269 × 53795 60% 227.25 0.42% 544.25 4.82%
70% 342.7 0.64% 856.2 7.6%
80% 521.35 0.97% 1382.9 12.27%
90% 846.3 1.6% 2442.95 21.7%
100% 28026.5 (2085.1) 52% (3.9%) 8538.8 (5202) 75.8% (46.1%)
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larger the distance is, i.e. the farther a topic description is from the uniform dis-
tribution over the dictionary, the higher its significance is, and vise versa. Other
definitions of junk topics are given next.

The Vacuous Semantic Distribution (W-Vacuous). The empirical distri-
bution (the total word frequencies of the whole sample) is a convex combination
of the probability distributions of the underlying themes that reveals no signif-
icant information if taken as a whole. A distribution of a real topic is expected
to have a unique characteristic rather than a mixture model. Thus, the closer
the topic distribution is to the empirical distribution of the sample, the less its
significance is expected to be.

So, the second junk topic, namely the vacuous semantic distribution (W-
Vacuous), is defined to be the empirical distribution of the sample set. It is
equivalent to the marginal distribution of words over the latent variables. The
probability of each term wi under the W-Vacuous (ΩV) topic is given by

p(wi|ΩV) =
K∑

k=1

p(wi|k)p(k) (2)

where p(wi|k) = φi,k, by definition, and p(k) is the probability of the topics
under the PTM which can be computed from

p(k) =
∑D

d=1 θd,k

N
(3)

In order to detect junk topics, the “vacuousness” decision criterion of a topic, V ,
is measured by computing the distance between the estimated distribution and
the W-Vacuous. Lower V distances correspond to distributions with probability
mixture models that represent insignificant topics.

The Background Distribution (D-BGround). The previous two definitions
of junk topics are characterized by their distribution over words. However, inves-
tigating the distribution of topics over documents would identify another class
of insignificant topics. In real datasets, well defined topics are usually covered in
a subset (not all) of the documents. If a topic is estimated to be responsible of
generating words in a wide range of documents, or all documents in the extreme
case, then it is far from having a definite and authentic identity. Such topics are
most likely to be constructed of the background terms, which are irrelevant to
the domain structure.

Table 2 also provides the average and percentage of documents in which X
percent of the topic density appears. In general, topics are inclined to appear
heavily in a small subset of documents. Yet, nearly half of the topics are esti-
mated to appear in a much larger fraction of documents, and in the extreme, in
the whole the dataset. Examples of such topics are given in Table 3, in addition
to examples of “normal” topics that appear in fewer documents.

To show reasonable significance for consideration, a topic is required to be far
(enough) from being a “background topic”, which can be defined as a topic that



72 L. AlSumait et al.

Table 3. 20-Newsgroup: examples of background and legitimate topics

TopicID
(Class)

Top Words

9(NA) edu writes article cs apr cc michael andrew bitnet colorado cmu ohio acs cwru au
36(NA) university information research national april center washington san california dr
4(space) space nasa gov earth launch moon orbit satellite shuttle henry lunar flight mission
5(Crypt) encryption government clipper chip technology key law phone security escrow

has a nonzero weight in all the documents. In the extreme case, the background
topic (D-BGround) is found equally probable in all the documents. Formally,
under the D-BGround topic, ΩB, the probability of each document dm is given
by

p(dm|ΩB) =
1
D

, m ∈ {1, 2, . . . , D}. (4)

The distance between a topic and the D-BGround topic would determine how
much “background” does it carry and, ultimately, grade the significance of the
topic. Thus, given a topic k, defined as a distribution over documents

ϑ(k) = (θ1,k . . . θd,k . . . θD,k), (5)

then the background, B, of a topic is measured by computing the distance of the
topic distribution over documents from the D-BGround.

3.2 Distance Measures

Kullback-Leibler (KL) Divergence. The KL-Divergence DKL is a distance
measure that is defined based on the KL-divergence (or relative entropy) [2].
Thus, using DKL, the distance of the topic distribution over words φ(k) from
W-Uniform ΩU and W-Vacuous ΩV , and the distance of the topic distribution
over documents ϑ(k) from D-BGround ΩB can be computed as follows

UKL
k = DKL(φ(k), ΩU ) (6)
VKL

k = DKL(φ(k), ΩV) (7)
BKL

k = DKL(ϑ(k), ΩB) (8)

Cosine Dissimilarity. The cosine dissimilarity DCOS is a distance measure
that is constructed based on the cosine similarity [9]. Similar to the DKL in
Equations (6), (7), and (8), the cosine distance is used to measure the unifor-
mity (UCOS

k ), vacuousness (VCOS
k ), and background (BCOS

k ) of topic k based
on the cosine angle between the inferred topic vector and the W-Uniform, W-
Vacuous, and D-BGround vectors, respectively. A cosine distance of value 0 (1)
corresponds to completely related (unrelated) topics.

Correlation Coefficient. The correlation coefficient distance measure DCOR
is a dissimilarity measure that is based on the correlation coefficient statistic [9].
The uniformity (UCOR

k ), vacuousness (VCOR
k ), and background (BCOR

k ) of topic
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k under the correlation-based distance is computed by measuring the correlation
between the topic distribution and the W-Uniform, W-Vacuous, and D-BGround
vectors, respectively. The distance is bounded by the closed interval [0, 2], where
independent and negatively related topics will result in distances greater than
or equal to one. This fits with the definition of our problem since semantic
relatedness between topics is evinced by positive correlations only.

4 Topic Significance Ranking

Due to the uncertainty that surround the data and the statistical modeling,
it is very appealing to have an expressive quantitative measure of the topic
significance that can assist in discriminating genuine topics from J/I ones.

In this paper, three different categories of topic significance criteria are defined
each of which is quantified by a variety of distance measures. The objective is
to construct a qualitatively representative figure of the topic significance by
combining the information from these “multi-criteria measures” to form a single
index of evaluation based on a “Weighted Linear Combination” (WLC) decision
strategy [3].

WLC is a simple technique that is widely used in the area of multi-criteria
decision analysis [3]. The simplest form of WLC evaluates each topic by the
following formula

Ak =
Nm∑
m=1

ΨmSm,k (9)

where Nm is the number of different measures to be combined, and Ψm is the
weight of the measure in the total score, and Sm,k is the score of the kth topic
with respect to the mth measure. Because of the different scales upon which
these criteria are measured, it is necessary that the measures be standardized
before combination.

In this work, a 4-phase weighted combination approach is introduced. The
idea is to use the computed measurements to construct both the scores Sm,k and
weights Ψm of the different criteria. To do so, two “standardization procedures”
are performed in the first phase to transfer each distance measure from its true
value into two standardized scores, one is a relative score of the distances and the
other is a weight value between 0 and 1. Then, the standardized measurements of
each topic within each J/I definition are combined into a single figure during the
intra-criterion phase. In the third phase, two different techniques of “Weighted
Combination” (WC) are performed to combine the J/I scores to construct a
weight and a total score for each topic from which the final rank of the topic
significance is computed. The following subsections describe each phase of the
TSR in further details.

4.1 Standardization Procedure

Given the distance measures m, where m ∈ {KL, COR, COS}, under each J/I
definition criterion C, where C ∈ {U ,V ,B}, and for each topic k, the first phase
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is concerned with linearly transforming each distance value into a standardized
score, denoted Ćm

k , that maintains the relative order of distance magnitude with
respect to the other topics instead of the original raw value.

To construct both the scores Sm,k and weights Ψm for each of the criteria, two
standardization procedures are used. The first, re-scales the scores based on the
weight of each score with respect to the total score over all topics. This is given
in the form

Ć1m

k = Cm
k ×

∑K
j=1,j �=k Cm

j∑K
j=1 Cm

j

. (10)

The fraction in Equation (10) is a normalized weight of the topic distance.
The second standardization procedure is the score range procedure that uses

the minimum and maximum values as scaling points for standardization. This
is given by

Ć2m

k =
Cm

k − Cm
min

Cm
max − Cm

min
(11)

where Cm
min (Cm

max) is the minimum (maximum) distance value measured by the
distance measure m under the criterion C. While the first standardization rescales
the raw measures to a relatively smaller range, the score range procedure bounds
the resulted scores between zero and one. The former will be used as the topic
score in the final TSR while the latter is used as the weight.

4.2 Intra-criterion Weighted Linear Combination

Before computing the rank of topic significance, it is required to combine the
different distance measures within each J/I criterion into a single figure. Thus,
the second phase of the topic ranking performs a Weighted Linear Combination
(WLC) of the standardized scores of the distance measures as given in Equation
(9). The weights Ψm in the equation determine the contributions of the distance
measures in the total score. In this work, all the attributes under each criterion
are assumed to weigh equally. Thus, the intra-criterion WLC is given by the
mean score of the three distance measures.

So, given the standardized scores of the three distance measures under cri-
terion C for topic k, i.e. ĆKL

k , ĆCOR
k , and ĆCOS

k , then, the WLC score of the
criterion C for topic k is given by

Sc
k =

ĆKL
k + ĆCOR

k + ĆCOS
k

3
. (12)

Substituting the two standardized scores Ć1m

k and Ć2m

k in Equation (12) results
in two scores S1c

k and S2c
k. Under each standardized procedure, a topic will have

three intra-WLC scores Su
k , Sv

k , and Sb
k based on the uniformity, vacuousness,

and the background criteria, respectively.



Topic Significance Ranking of LDA Generative Models 75

4.3 Inter-criterion Weighted Combination

In this phase, a Weighted Combination2 (WC) is performed over the scores
computed in phase two. This involves assigning a weight, Ψ̂c, to each criterion
C in order to adjust its contribution in the final ranking. However, two different
WC techniques are used to combine the scores and the weights.

The first WC technique is based on Equation (10) and uses the standardized
score of the background criterion as a weight for the uniformity and vacuousness
scores as follows

Ŝk = Ŝ1
b

k

(
Ψ́uS1u

k + Ψ́vS1v
k

)
(13)

where Ψ́u (Ψ́v) is the weight of the Uniformity (Vacuousness) criterion in the score

and Ŝ1
b

k is the rank (or weight) of the topic background. The rank is computed

by substituting the intra-criterion score of topic background, Ś1
b

k, for Ćm
k in

Equation (11). So, the background indicator is used to weigh the uniformity and
vacuousness of the topic’s word distribution by the uniformity of its distribution
over the documents.

The second technique is performed over the intra-criteria scores that are based
on the score range standardization procedure (Equation 11). This is done by a
simple application of the WLC in Equation (9) as follows

Ψ̂k = ΨuS2u
k + ΨvS2v

k + ΨbS2b
k (14)

where Ψc is the weight of the criterion C in the score Ψ̂k. These weights are
assumed to sum to 1 so that the total score remains bounded between zero and
one.

4.4 The Final Topic Significance Score

To compute the final rank, the score in Equation (13) is considered the total
topic score while the normalized weight in Equation (14) is used as the weight
of the topic score. Thus, the final rank of the topic significance is given by

TSRk = Ψ̂k × Ŝk. (15)

5 Experimental Design

The proposed post analysis to rank the significance of the topics in probabilistic
models is evaluated on synthetic and real data. An LDA Gibbs sampler topic
model is first used to learn the model parameters using the corpus of documents.
The resulted topics are evaluated against the ground truth for the simulated data
and the 20Newsgroups, and subjectively by investigating the topics and checking
their significance for all the datasets. All experiments were implemented using
2 Since the weights and scores are constructed from the computed distances, this phase

(and the one that follows) are no longer linear.
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Table 4. Topic distributions of the simulated data

TopicID k1 k2 k3
TopicName River Bank Factory
Topic %age 33% 34% 33%
↓Dictionary p(wi|k1) p(wi|k2) p(wi|k3)
river 0.37 0 0
stream 0.41 0 0
bank 0.22 0.28 0
money 0 0.3 0.07
loan 0 0.2 0
debt 0 0.12 0
factory 0 0 0.33
product 0 0 0.25
labor 0 0 0.25
news 0.05 0.05 0.05
reporter 0.05 0.05 0.05

a modified version of the “Matlab Topic Modeling Toolbox”, authored by Mark
Steyvers and Tom Griffiths3.

The weights of the different criteria in Equations (13) and (14) are first tuned
using four different sets of documents that were generated from the synthetic
data under different settings of K. The weights that resulted in the best ranking
based on the ground truth are then fixed for the real datasets. Hence, the weights
of the topic uniformity and vacuousness in Equation (13) (Ψ́u and Ψ́v) are set to
0.6 and 0.4, respectively, while they are assigned to equal values, Ψu, Ψv = 0.25,
in Equation (14) and the background weight Ψb is set to 0.5.

There are four datasets that are used in the experiments.

Simulated Data. The synthetic dataset consists of 6 samples of 16 documents
that have been generated from three static equally weighted topic distributions.
On average, the document size was 16 words. Table 4 shows the dictionary and
topic distributions of the data. The dataset is configured such that shared words
(background words) exists between subsets of topics, e.g. money and bank, and
among all the topics, e.g. news and reporters. Given each sample of documents,
LDA was run to estimate the topics.

In some experiments, fake junk topics were deliberately injected before com-
puting the topic ranks. These topics were randomly sampled from the J/I topic
distributions ΩU and ΩV and are denoted as Utopic and Vtopic, respectively.

20Newsgroups. The 20 Newsgroups data set is a collection of approximately
20,000 newsgroup documents, partitioned across 20 different newsgroups4. Some
of the newsgroups are very closely related to each other (e.g. comp.sys.ibm.
pc.hard ware / comp.sys.mac.hardware), while others are highly unrelated
(e.g misc.forsale / soc.religion.christian). Data preprocessing included the re-
moval of stop and rare words. The final dataset consisted of 1,359,612 word
tokens and a dictionary size of 46191 terms.
3 The Topic Modeling Toolbox is available at:

psiexp.ss.uci.edu/research/programs data/toolbox.htm
4 The dataset is available at http://people.csail.mit.edu/jrennie/20Newsgroups/.
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Table 5. TSR of simulated data without (left) and with (right) injected J/I topics

Without injected J/I topics
ID Topic Distribution Ŝ Ψ̂ TSR
3 river stream 3.263 0.766 2.491
4 factory labor production 3.602 0.653 2.377
1 money loan debt 2.260 0.486 1.09
5 reporter bank 0.502 0.3673 0.191
2 bank news 0.212 0.246 0.05

With injected J/I topics
ID Topic Distribution Ŝ Ψ̂ TSR
4 river stream 3.4 0.8 2.7
5 production factory labor 3.3 0.8 2.7
3 money loan debt 2.4 0.7 1.6
2 bank 1.5 0.5 0.8
1 reporter news 0.9 0.7 0.7

Vtopic 1.7 0.2 0.3
Utopic 0.14 0.03 0

NIPS Proceedings. The NIPS set consists of the full text of the 13 years of
proceedings from 1988 to 2000 Neural Information Processing Systems (NIPS)
Conferences5. The data was preprocessed for down-casing, removing stopwords
and numbers, and removing the words appearing less than five times in the
corpus. The data set contains 1,740 research papers, 13,649 unique words, and
2,301,375 word tokens in total.

5.1 Experimental Results

The Topic Significance Ranking algorithm was first evaluated on the simulated
data. Table 5 lists the topics discovered by LDA with K set to 5 along with
their total TSR rankings. The listed TSR is the average rank of the topic over
six different samples. The topics are ordered by their significance index. It can
be seen that the proposed ranking method is able to properly rank the topics
based on their true significance. Both fake and true junk topics such as Topic 5
and 2 had the lowest ranks, while legitimate topics such as Topics 3 (k1), 4 (k3)
and 1 (k2) have gained the highest ranks.

The rank of the topic, in general, depends on the amounts of background
words that its distribution carries. For example, Topic k2 (money bank loan) is
ranked lower than the other topics because both the “money” and ”bank” terms
are shared between more than one theme.

The proposed TSR is also tested using the 20Newsgroups dataset. Table 6
lists the distribution of topics that received the highest (lowest) TSR index. To
determine the class of each topic and compare the results with the ground truth,
an F1 measure (pF1) is computed based on a “probabilistic Contingency Table”
(pCT ) of size C×K, where C is the number of classes. The table is constructed
based on the document-topic distribution and the document labels. By consid-
ering the X topics with the highest probability under each document, an entry
pCT (i, j) in the table is the average probability that the topic j appeared in
documents of class i. Then, the F1 measure is computed based on the contin-
gency table pCT . A class is then assigned to the topic that has the highest pF1
measure . Table 6 lists the classes under which each topic had the highest pCT
entry. The class that is assigned to the topic, i.e. the pF1 measure of the class

5 The original dataset is available at the NIPS Online Repository.

http://nips.djvuzone.org/txt.html.
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document under that topic is the highest, are marked by *. Nearly half of the
topics, e.g. 10, 32, and 34, did not get a high pF1 index for any class, while three
topics (7, 12, and 23) had the highest pF1 measures for, and hence assigned to,
more than one class.

It can be seen that the TSR rank matches the pF1 measure in 6 of the 10
highest ranked topics and 6 of the lowest ranked topics. For example, the dis-
tribution of topic 4 is focused on the “space” theme which matches the pF1
measure of the class “space” that has assigned the highest index for the class
under that particular topic. Furthermore, the TSR is able to highly rank topics
that better represent a class even though the corresponding pF1 index is not
the highest. Topics 11 and 37 are examples of such topics. Although the classes
“talk.politics.misc” and “comp.graphics” were assigned to topics 35 and 25, re-
spectively, based on the pF1 measure, the word-distribution of topics 11 and 37
better represent the class semantics, see Table 6. Thus, the TSR does a better
unsupervised judgment based on the topic distributions only.

When examining the lowest ranked topics, the most insignificant topics had a
very low and approximately identical pF1 indexes for most, and sometimes all,
of the classes. The word distribution of these topics clearly include a large set of
background words, e.g. email header terminology (re, edu, ca), greeting words
(topics 32 and 10), verbs (topic 16), and names of people and organizations
(topic 34). The rest of the list included topics that had a high pF1 measure for
one or more class, like topics 18, 19, and 21, or had been assigned a class, like
topics 25 and 35. While an explanation regarding the latter topics was given
earlier, the former topics illustrate another interesting observations. First, topic
18 contains the background words of the two religion related classes. As the TSR
is high for topic 12 which better describes the underlying theme in more specific
terms, it correctly identifies topic 18 as a background topic by assigning a low
rank to it. The same explanation can be given for topic 25.

On the other hand, the class “misc.forsale” introduced a different behavior.
First, the class is clearly heterogenous by its nature and involves a lot of shared
words with other classes, particularly autos, electronics and computer-related
classes. Thus, the topic is expected to have a large variance and heavy tailed
distribution which makes it dominated for lower significance ranking. In addition,
it can be seen that topic 19 provides a closer description for the class than topic
35. In fact, 294 documents (50.5%) of the class had topic 19 as the highest topic,
compared to 11 documents for topic 35. However, the pF1 measure of topic 19
is less than the pF1 of topic 35 because the average relative importance of the
latter topic in the class documents (0.5) is higher than the former topic (0.2).
Although topic 35 is focused on political themes, the words “black” and “white”
could be responsible of attracting the “forsale” documents into this topic. As a
result, the topic’s vacuous significance index is clearly affected.

The proposed TSR showed similar outcomes when tested on NIPS dataset.
Table 7 lists the NIPS topics that gained the highest and lowest 10 indexes. The
most significant topics clearly correspond to genuine themes of NIPS. Examples
include reinforcement learning (30), speech recognition (41), image processing
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Table 6. The 20Newsgroups: distribution and class of the 10 highest and lowest ranked

topics

ID Topic class (pF1 measure) TSR
Highest Ranked Topics

12 god jesus christ christian bible christians hell faith
lord paul believe

soc.religion.christian*(0.121)
talk.religion.misc*(0.112)

19.06

11 president money think going stephanopoulos tax
don insurance pay care working clinton jobs bill

talk.politics.misc(0.1) 16.76

39 file output program entry section check line build ok
read

comp.windows.x(0.073)
comp.sys.ibm.pc.hw(0.071)

16.1

37 edu software image graphics ftp version pub data
images package

comp.graphics(0.074)
comp.windows.x(0.072)

14.17

20 turkish armenian armenians war turkey armenia so-
viet today greek genocide history

talk.politics.mideast*(0.198) 13.05

27 window server display widget mit application motif
set manager sun

comp.windows.x*(0.176) 12.99

17 la period st play pts power pp chicago gm flyers buf-
falo van mon

rec.sport.hockey(0.156) 12.91

6 god believe say true truth question exist reason ev-
idence religion existence argument atheism atheists

alt.atheism*(0.106)
soc.religion.christian(0.111)

12.57

4 space nasa gov earth launch moon orbit satellite
shuttle henry lunar

sci.space*(0.144) 12.40

23 drive scsi mb disk hard card system bit mac drives
speed bus mhz apple

comp.sys.ibm.pc.hw*(0.134)
comp.sys.mac.hw*(0.105)

12.146

Lowest Ranked Topics
32 thanks mail uk ac help advance fax university look-

ing email hi appreciated
2.89

10 edu writes article ca apr news uiuc think don cso
heard sorry

3.53

24 com writes article apr netcom hp opinions att ibm
mark wrote

4.02

34 org edu chris david john scott mil navy ed jeff robert 4.06
16 don think re want going say things ll thing let ve

doesnot maybe
4.14

35 black white edu virginia sex article sexual cover gay
writes

misc.forsale*(0.128)
talk.politics.misc*(0.118)

4.27

18 church think catholic thought true mean christian
order group religion

talk.religion.misc(0.097)
soc.religion.christian(0.086)

4.33

25 problem problems find line try ve help tried lines
don

comp.graphics*(0.185)
comp.sys.mac.hw(0.108)

4.407

19 price buy offer sale sell interested cd shipping printer
asking sound condition apple cost computer

misc.forsale(0.084)
comp.sys.mac.hardware(0.074)

4.47

21 writes science think system theory objective moral
don morality article

sci.med(0.111)
alt.atheism(0.106)

4.59

(43), and neuroscience (10). On the other hand, common terms across NIPS
publications have been grouped by LDA in distinguished topics and have received
the lowest significance rankings, see Table 7.

To verify the proposed approach to compute the ranks based on the judgments
of a variety of distance measures, TSR rankings based on individual distance
measures are constructed and compared to the proposed TSR. This is achieved
by ignoring the intra-criterion WLC phase and directly combining the standard-
ized distances for each of the individual measures separately. The resulted TRS
ranks are called TSR-KL, TSR-COS, and TSR-COR for the KL-divergence, co-
sine dissimilarity, and coefficient correlation based ranks, respectively. Table 8
shows the TSR rankings for the topics of the simulated data with injected J/I
topics. The topics are ordered by the TSR-KL rank. Given the true densities
of the topics (Table 4), it can be seen that ranks from individual measures do
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Table 7. The NIPS: distribution and ranks of the 10 highest and lowest ranked topics

ID Topic Ŝ Ψ̂ TSR
Highest Ranked Topics

30 state action policy function reinforcement actions optimal time algorithm 23.4 0.7 16.8
10 firing spike cell cells neurons time potential membrane rate neuron 22.9 0.7 16.6
41 speech recognition word system training hmm words context speaker acoustic 23.0 0.7 16.2
17 cells cell visual orientation cortex receptive cortical spatial field fields 21.6 0.7 16.1
31 analog circuit chip figure current output vlsi voltage input circuits 22.9 0.7 15.8
29 control motor trajectory arm forward feedback movement inverse hand 20.7 0.7 15.1
43 image images visual pixel vision pixels figure edge features texture 19.6 0.7 14.3
44 motion direction velocity field moving flow directions eeg time optical 18.7 0.7 13.9
24 node nodes tree rules rule trees structure set representation connectionist 18.7 0.7 13.5
18 neurons synaptic input activity synapses connections inhibitory figure excitatory 18.9 0.6 12.7

Lowest Ranked Topics
27 case order general simple form work theory fact section terms 3.7 0.2 0.7
11 rate convergence results values number large random size constant fixed 9.5 0.33 3.2
34 method problem function optimal methods estimation solution parameter based 9.8 0.3 3.5
46 performance set training results test table number data method experiments 11.3 0.3 3.7
35 system time data systems real block large applications computer user 10.9 0.3 3.9
14 network neural net systems information architecture processing work 10.3 0.5 4.8
21 input output layer inputs training weights outputs network back hidden 11.9 0.5 6.2
16 noise information distribution correlation variance gaussian function density 12.5 0.5 6.3
12 local space figure points map point dimensional regions global region 12.1 0.5 6.3
32 learning algorithm weight gradient error weights descent time update 15.0 0.5 7.1

Table 8. Synthetic data: the TSR based on individual distance measures compared to

the combined TSR

ID Topic TSR-KL TSR- COS TSR- COR TSR
3 money loan debt 2.05 0.32 0.71 1.60
4 river stream 2.01 0.37 0.60 2.70
2 bank 1.90 0.36 0.58 0.80
1 reporter news 1.83 0.34 1.48 0.70
5 production factory labor 1.82 0.39 0.89 2.70

Vtopic 0.85 0.45 0.46 0.30
Utopic 0.40 0.42 0.89 0.00

not always provide the correct judgment regarding the semantic significance of
the topics. In fact, the injected J/I topics “Vtopic” and “Utopic” have received
the highest ranks under TSR-COS, while topic “Utopic” was the highest ranked
topic under TSR-COR. In addition, based on the TSR-KL, topic 5, which corre-
sponds to the genuine theme k3, was ranked lower than other insignificant topics,
topic 1 (reporter news) and topic 2 (bank). Clearly, the intra-criterion WLC of
the distance measures strengthens the judgments of the individual measures and
provides a better representation of the topics’ semantic significance.

Similarly, testing on the 20Newsgroups has revealed similar findings. Table
9 lists the 10 highest significant topics from the 20Newsgroups based on the
TSR-KL rank. The table also shows the order of these topics under the cosine
dissimilarity (TSR-COS) ranking and the proposed TSR ranking. It can be seen
that the TSR-KL have introduced three topics to the list that are clearly not sig-
nificant based on their distribution and the pF1 measure. The TSR-COS agrees
with the TSR-KL in two of these J/I topics and introduces another insignificant
topic (topic 33: de ma pa um em ei el rs sg mu di) to the list. In addition, topics
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Table 9. The 20Newsgroups: the 10 highest ranked topics based on the TSR-KL

ID Topic class(pF1 measure) TSR TSR-
COS

37 edu software image graphics ftp version pub data
images package

comp.graphics(0.126)
comp.windows.x(0.110)

4 8

39 file output program entry section check line build ok
read

comp.sys.ibm.pc.hw(0.99)
comp.windows.x(0.97)

3 1

23 drive scsi mb disk hard card system bit mac drives
speed bus mhz memory controller pc board ram data
apple

comp.sys.ibm.pc.hw*(0.208)
comp.sys.mac.hw*(0.159)

10 9

31 list mail internet send information posting group
email faq news address message usenet

12 3

20 turkish armenian armenians war turkey armenia so-
viet today greek genocide history

talk.politics.mideast*(0.360) 5 14

27 window server display widget mit application motif
set manager sun

comp.windows.x*(0.252) 6 4

16 don think re want going say things ll thing let ve
doesnot maybe

36 39

11 president money think going stephanopoulos tax
don insurance pay care working clinton jobs bill

talk.politics(0.181) 2 11

12 god jesus christ christian bible christians hell faith
lord paul believe

talk.religion.misc*(0.206)
soc.religion.christian*(0.195)

1 18

8 db didn told home saw say don says going took re
started happened building room wanted wife

15 6

such as 5, 12, and 16 illustrate how the combined rank provide a better judgment
about the topic significance when compared to the individual measures.

6 Conclusion

In order to overcome the uncertainty that surrounds the outcome of a gener-
ative model, this paper presents a novel unsupervised analysis of Probabilistic
Topic Models (PTM) for Topic Significance Ranking (TSR) to automatically dis-
tinguish genuine topics from Junk and Insignificant (J/I) topics. The proposed
solution measures the distance of a topic from a set of J/I topic distributions us-
ing three different distance measures. A descriptive Topic Significance Ranking
is constructed by applying 4 levels of Weighted Combination decision strategy.
To the best of our knowledge, this work is the first attempt to automatically
evaluate the inferred topics of PTM to judge their semantic significance.

The proposed ranking approach was evaluated on simulated and real datasets.
The results are evaluated against the ground truth, when exists, and subjectively
by examining the topic distribution. The outcomes confirm the potential of the
proposed method as it is able to correctly highly rank the true topics while J/I
topics received low figures. The approach was also verified against less complex
ranking systems that depend on the judgment of a single distance measure.

To extend this work, we plan first to investigate the sensitivity of the approach
to the applied combination techniques and to the weight settings. In addition,
analyzing the effect of the number of components on the resulted rank is also
considered. Consequently, the rank can be extended to be used as an indicator
to adjust the setting of this critical parameter. The use of other J/I definition
criteria and/or distance measures is also under consideration. In addition, further
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analysis of the use of the TSR in visualizing the evolution of topics in streaming
text is planned.
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in P2P Networks
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Abstract. Distributed classification aims to learn with accuracy com-

parable to that of centralized approaches but at far lesser communication

and computation costs. By nature, P2P networks provide an excellent en-

vironment for performing a distributed classification task due to the high

availability of shared resources, such as bandwidth, storage space, and

rich computational power. However, learning in P2P networks is faced

with many challenging issues; viz., scalability, peer dynamism, asyn-

chronism and fault-tolerance. In this paper, we address these challenges

by presenting CEMPaR—a communication-efficient framework based on

cascading SVMs that exploits the characteristics of DHT-based lookup

protocols. CEMPaR is designed to be robust to parameters such as the

number of peers in the network, imbalanced data sizes and class distribu-

tion while incurring extremely low communication cost yet maintaining

accuracy comparable to the best-in-the-class approaches. Feasibility and

effectiveness of our approach are demonstrated with extensive experi-

mental studies on real and synthetic datasets.

1 Introduction

In recent years, peer-to-peer (P2P) networks have become increasingly popular
on the Internet. Due to the greatly improved availability and accessibility, P2P
networks are also emerging as excellent platforms for performing distributed data
mining tasks such as P2P data classification [1,2,3,4,5]. Distributed data mining
is important and useful to a broad range of real world applications. For example,
in a P2P content sharing system, user preferences such as types of files shared
can be mined to optimize delivery, and also to provide targeted advertising.
In media annotation tasks [6], users typically only produce tag information for
their own repositories. However, by employing P2P classification, peers are able
to collaboratively auto-annotate their repositories (at least partially) by learning
from the annotations of other peers.

While its potential is immense, mining in a P2P network is significantly more
difficult than mining on a centralized dataset. P2P classification has a number of
challenges [7] including scalability (Is the algorithm able to produce an acceptable
solution within an acceptable time given the large number of peers and large
amount of data?), peer dynamism (Is the algorithm robust enough to handle the
availability and unavailability of data as peers connect and disconnect from the

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 83–98, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



84 H.H. Ang et al.

network?), asynchronism (Is the algorithm able produce an acceptable solution
without performing global synchronization?).

Existing classification works in the P2P environment [1,2,3,4,5] have incurred
high communication cost either during model construction or the prediction
phase. This affects the scalability of the algorithms as the global data size and
the number of peers increases. In addition, these algorithms may not be robust
as their classification accuracy or computation and communication costs vary
widely across different situations; e.g., in networks with unbalanced data class
and size distribution.

In our previous work, we presented AllCascade [1], an approximate P2P clas-
sification algorithm based on cascading Reduced SVM (RSVM) [8] that greatly
reduces the size of generated models. While it achieves high accuracy, AllCascade
also incurs high communication and computation costs. In order to improve its
efficiency, we presented RandBag [2], an approach based on bagging. However,
RandBag is a non-deterministic approximation solution where accuracy and cost
(computation and communication) fluctuate from peer to peer and under differ-
ent situations.

In this paper, we observe that DHT-based P2P networks [9] have certain
properties that may be exploited to address the above problems. Based on these
properties, we design CEMPaR, a Communication Efficient Multiple Parameter
Robust framework. CEMPaR is a highly accurate P2P classification framework
that (a) produces deterministic prediction, (b) reduces redundancy in classifi-
cation model propagation, (c) achieves fault tolerance for a slight increase in
communication cost, and (d) balances computation loads.

To the best of our knowledge, this is the first work in the area of P2P classi-
fication that takes advantage of DHT-based P2P network. Through theoretical
and extensive empirical validation, we demonstrate that the proposed approach
is scalable, tolerant of peer dynamism, invariant to imbalanced distribution of
data size and class labels, and yields robust performance under varying condi-
tions. We also show, over several real and synthetic datasets, that the proposed
approach achieves comparable accuracy with the best-of-breed approaches for
significantly lower computation and communication costs.

The rest of this paper is organized as follows. Background and related work
are discussed in Section 2. The proposed approach is presented in Section 3,
and experimentally validated in Section 4. Finally, conclusions and directions
for future work are presented in Section 5.

2 Background and Related Work

A P2P network consists of N interconnected heterogeneous peers {p1, p2, . . . , pN},
where each peer pi holds a set of training data instances �i(xi, yi). Each instance
is described by a d-dimensional data vector xi ∈ Rd, and belongs to a specific
class yi ∈ Y. The objective of P2P classification is to efficiently learn from the
training data of all peers (� = N�i) in order to accurately predict the class label
of unlabeled data instances.
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DHT-based P2P Networks. DHT-based P2P networks are popular as they
provide efficient message routing for resource discovery. These approaches gen-
erally use consistent hashing—they assign each peer a unique identifier in the
identifier ring space. Chord [10]—a DHT-based lookup protocol, assigns identi-
fiers in the range from 0 to 2b, where b is the number of bits for the identifier key.
Using consistent hashing, identifier assignments remain unaffected by dynamic
peers who join/leave arbitrarily. Moreover, there is a high probability that peers
are well distributed in the identifier-ring space. As for data, they are hashed in
a similar process and allocated to the node whose identifier is closest to (but
not smaller than) the generated key. Each peer indexes a small number (b) of
other peers’ physical addresses. A resource can be found (or message routed)
using its key by recursively looking up peers’ indexes. This efficient divide-and-
conquer approach of the identifier-ring space requires a number of hops at most
logarithmic to the size of the network. The following is a key property of DHT
protocols.

Property 1. On a given DHT with a circular identifier key space (e.g., Chord),
whenever a message is sent to key i, if the peer with the key exists, the message
will be delivered to the peer; otherwise, it will be routed to the peer with the
next sequentially larger key (i.e., peer(k + x) where x > 0 and x is minimum).

2.1 P2P Classification

With the number of peers in a P2P network exceeding the hundreds or thousands,
P2P systems can be characterized as a massively distributed system requiring
very high scalability. Moreover, the data of peers may change frequently and
peers may join or leave the network anytime. Hence, P2P classification must be
dynamic and fault tolerant. Global synchronization is also not possible due to
the size of the network, latency and bandwidth cost [7].

Existing P2P classification approaches typically either perform local [4] or
distributed [1,2,5] learning. Local learning performs training locally without in-
curring any communication during the training phase. Luo et al. [4] proposed
building local classifiers using Ivotes [11] and performed prediction using a com-
munication optimal distributed voting protocol. Unlike training, the prediction
process requires the propagation of unseen data to most, if not all peers. This
incurs huge communication cost if predictions are frequent.

Distributed learning approaches not only build models from the local train-
ing data, but also collaboratively learn from other peers. As a trade-off to the
communication cost incurred during training, the cost of prediction can be sig-
nificantly reduced. Siersdorfer and Sizov [5] classified Web documents by propa-
gating SVM models built from local data among neighboring peers. Predictions
are performed only on the collected models, which incur no communication cost.

To reduce communication cost and improve classification accuracy, we have
proposed AllCascade [1] in an earlier work that performs a cascading of RSVM.
RSVM is able to significantly reduce the size of the local model. However, All-
Cascade requires massive propagation of the local models and the cascading
computation is repeated in all peers, wasting resources due to duplications.
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To reduce duplication, an improvement to AllCascade with bagging (Rand-
Bag) [2] was proposed. By locally cascading random k peers’ models and dis-
tributed voting with v random peers’ cascaded model, we simulated the effects of
bagging and reduce the duplication in training. The selection of k and v allows
one to control the trade-off between training and testing communication cost
while achieving satisfactory accuracy.

Due to its random components, RandBag may yield different prediction results
for the same test data from different peers at the same point in time (non-
deterministic). The sizes of collected data will also vary widely from peer to
peer, resulting in an unbalanced load. Moreover, optimization of the selection
process is impossible due to the large number of choices (

(
N
k

)
and

(
N
v

)
) and the

communication cost involved.

3 CEMPaR Framework

This section presents our proposed approach which exploits the advantages of
DHT lookup protocols to perform efficient and robust learning in P2P networks.

3.1 Communication Structure Overlay

To reduce peer interactions considerably, we introduce the notion of a super-peer
in the P2P network. The super-peers are dynamically selected from peers in the
P2P network such that each super-peer is a representative of a subset of peers
in the P2P network. Using super-peers, one is able to significantly reduce the
huge amount of P2P communication among peers. However, the difficulty is that
peers may not be able to locate their associated super-peers since peers in a P2P
network usually know only a small number of their own neighbors. To address
this challenge, we propose to apply DHT-based P2P network protocols [9] (e.g.,
Chord [10]) to facilitate the tasks of resource discovery and communication.
Below, we present an efficient communication overlay scheme built upon DHT-
based network protocols.

In our approach, the entire identifier ring space of a DHT-based network is
equally split into g groups (with consideration to peer distribution, load balanc-
ing, and ease for super-peer assignment) where group is formally defined below:

Definition 1. (Group) A group G is a contiguous subset of the identifier ring
space. Given that the identifier ring space is evenly splitted, the number of iden-
tifiers contained in each group is |G| = 2b/g, i.e., G = [(2b/g∗ i), (2b/g∗(i+1)))
for group i ∈ [0, g), where g the number of groups and b the number of bits for
an identifier key.

For each group, we need to assign a super-peer amongst the peers to represent
and manage the group. The super-peer assignment should be easily managed
and efficient for discovery by peers. By exploiting the property of DHT-based
network as shown in Property 1, we suggest a simple yet effective super-peer
assignment approach that is formally defined below:
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Definition 2. (Super-peer) Given a set of peers whose identifiers P are a
subset of an identifier group G in a DHT-based network, i.e., P ⊂ G, a super-
peer is the peer with the smallest identifier in P: sp = mini∈P i.

The above approach enables CEMPaR to easily and deterministically locate
super-peers using the DHT lookup service. In particular, by simply sending a
message to the smallest identifier of a group, we guarantee that the message will
be sent to the super-peer of the associated group, as shown in Theorem 1.

Theorem 1. For a set of peers P ⊂ G, a message sent to the smallest identifier
in group G, denoted as sg, will always be delivered to the super-peer of P with
time complexity of O(lg N).

Hence, in our approach, we allow only super-peers to receive models from other
peers and to make predictions on unseen test data for a classification task.

Remark. We note that the assumption that each group has at least one peer
whose identifier lies in the group’s identifier range may not always be satisfied;
e.g., when the number of peers in the P2P network is less than the number of
groups. However, it only affects the condition that the key of the super-peer must
lie in group G, it does not affect the delivery of a message to the super-peer,
as the identifier key overflows to the next group whose super-peer may be the
super-peer of more than one group. This exceptional situation is rectified by the
relocation process (discussed later) when a peer with an identifier id ∈ G joins.

By introducing the concepts of group and super-peer, we develop an efficient
communication scheme in CEMPaR that resolves two critical tasks: (1) discovery
of super-peers and (2) communication between peers. In particular, we offer two
efficient solutions that are built upon the DHT-based protocols below.

DiscoverSP(gid, irv)—This function uses the underlying DHT lookup protocol
to route the message containing information request vector irv and sender’s
physical address to the super-peer of group id gid using the first identifier of the
group. irv encodes the sender’s request for information such as physical address
of receiver, mean vector, class counts, and etc. This function incurs O(lg N)
messages which is optimal as opposed to a linear search of the identifier ring
costing O(N) (c.f. [10]). Hence, this function is best used when the physical
address of the recipient is unknown. The size of the message to be sent is very
small, which includes 1 byte for irv, and 5 bytes for the sender’s physical address.

SendMsg(rip, data)—This aims to send the message containing sender’s phys-
ical address, a set of content data; e.g., model, class count, mean vector, replica
list, and etc, directly to the recipient’s physical address rip. As the message is
sent directly to the recipient, it is optimal (O(1)) and is best for sending large
data. The size of the message to be sent includes 5 bytes for the sender’s physical
address and the size of the content.

3.2 Learning Modules

We now discuss core learning modules for performing training and prediction
tasks in our framework.
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3.2.1 Local Model Construction
We adopt RSVM [8] for training local models for peers in each group since
RSVM produces the training model containing support vectors that are at most
s percent of the total training data for a local dataset [1,2], which in turn caps
the overall communication and learning cost.

3.2.2 Model Propagation and Cascading
Following the local model construction is model propagation and cascading in
which peers send local models to super-peers and super-peers collect models
from peers and update the cascaded classification models.

One key issue for model propagation is to determine which super-peer should
a peer propagate its local model. A näıve way is to simply send the model to all
super-peers. Apparently, this is inefficient due to intensive communication and
computation cost. Ideally, we wish the local model be sent to the best super-
peers that results in the best global classification performance. Unfortunately, in
a P2P network, optimizing global classification performance is often intractable.

In practice, we want the cascaded models of the super-peers to be as diverse as
possible as in ensemble classification, the best classification performance is often
achieved when the models are diverse [12]. In addition, learning from previous
experience [2], we want to ensure that every super-peer maintains an (approxi-
mate) equal class and data size distribution. This is achieved by balancing the
load distribution and maintaining the natural class distribution of data on each
super-peer. Although natural class distribution may not produce the best clas-
sification results [13], it provides an overview of the global class distribution to
allow cost-sensitive learning. Finally, we also aim to reduce the overall redun-
dancy in computation and communication cost.

To this end, we propose a greedy approach for model propagation. When a peer
p is ready for propagation, it first collects information from all super-peers, includ-
ing the number of collected instances (for each class) and the mean vector of the
collected data (for each class) for each super-peer, via DiscoverSP. With the col-
lected data, for each class type, the super-peerwith the smallest instance count will
be chosen, and in the mean time, the instance from the local model that is closest
to the mean vector of the selected super-peer will be assigned. This process repeats
until all instances in all classes have been assigned. As the instances are assigned
in a disjoint manner, we avoid duplicate communication cost. Finally, the assigned
data are sent to super-peers by using SendMsg since peer p has already obtained
the physical address of all super-peers via DiscoverSP.

Note that to minimize the discrepancy of class count when multiple peers are
performing model propagation, peers can first calculate the class count to be as-
signed and send the counts to the super-peer via SendMsg before the assignment
of the support vectors. Once all support vectors are assigned, they are propa-
gated to the respective super-peers. Finally, the model propagation algorithm is
summarized in Algorithm 1.

Once the super-peers have received the models, in addition to merging the
newly collected instances with the super-peer’s cascaded model, each super-peer
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Algorithm 1. Model Propagation for peer pi.
input: number of groups g, local support vectors SVi

for j ← 0 to g − 1 do1

MV, CC, IP ← DiscoverSP(j, irv:¡mean vector (MV), class count (CC)¿);2

foreach class label y in Y do3

while SVy
i not ∅ do4

j ← group with the least count of class y in CC;5

sv ← closest support vector in SVy
i to MVj ;6

remove sv from SVi and add it to SVj ;7

update CCj ;8

for j ← 0 to g − 1 do9

SendMsg(IPj ,SVj);10

Algorithm 2. Model Cascading for super-peer si.
input : received model RMj , collected data CDi, cascaded model CMi, mean

vector MVi, class count CCi

output: CMi, MVi, CCi

CDi ← combine received model RMj with CDi ;1

CMi ← train SVM on local cascade model CMi ∪ received model RMj ;2

foreach class label y in Y do3

update CCy
i and MVy

i ;4

also updates the mean vector for the set of instances of each class and the
instance count of each class. The model cascading algorithm is summarized in
Algorithm 2.

Remark. In a stable network, the communication cost for the above model
propagation process is only O(m) where m is the total number of support vectors
of all local models. In practice, as a P2P network is in nature highly dynamic,
additional cost might be incurred to ensure correctness and robustness. We will
discuss issues of relocation and replication in subsequent parts.

3.2.3 Prediction
During prediction, since only g super-peers are performing data collection and
cascading the models, peers that need to predict unseen data simply sends the
test instances to these super-peers and then aggregate the votes returned by the
super-peers. However, it will incur heavy computational load on the super-peers.

Wepropose to replicate super-peers’ cascadedmodels (c.f. Section3.3).With the
replicas, peers requesting prediction first request the replica list (containing physi-
cal addresses of replicas) of super-peers via DiscoverSP. Then, for every replica, by
sending a ping message and with the reply from the replica (via SendMsg), a round
trip time (RTT) is obtained. The RTT measures the network distance from the ini-
tiating peer to the replica. The initiating peer will then send the test instances to
the nearest replica of each group. Once the replicas has finished predicting the test
instances, they will send their predictions back to the initiating peer via SendMsg.
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Algorithm 3. Prediction.
input : test instance ti, number of groups g
output: prediction yi

for j ← 0 to g − 1 do1

RL ← DiscoverSP(j,irv:¡replica list (RL)¿);2

foreach replica r ∈ RL do3

SendMsg(r,“ping”);4

PL ← select nearest replica of each group;5

for j ← 0 to g − 1 do6

Vj ← SendMsg(PLj ,ti);7

yi ← select class with most votes in V;8

The initiating peer then aggregates all votes to make the final prediction once all
replies are received. Communication is efficient as all the messages sent are based
on optimized communication functions. Finally, in order to reduce the communi-
cation of pinging replicas, caching of the RTT could be done for use in subsequent
prediction. The prediction algorithm is summarized in Algorithm 3.

3.3 Maintenance Modules

3.3.1 Relocation
Since peers in P2P networks are dynamic, to ensure that the newly elected super-
peer always hold the group’s latest cascaded model, it is necessary to relocate the
group’s cascadedmodel to the newly elected super-peer. As peers’ joining and leav-
ing are tracked by Chord, no effort on our part is needed to track the peer changes.

The relocation process is as follows. When a new peer joins the group with
the smallest identifier key within the group, it is elected as the new super-peer
and the data from the old super-peer are relocated to the new super-peer. As
the DHT network provides the physical address, in addition to the identifier key
of a new peer, the cascaded model can be relocated in an efficient manner via
the SendMsg function.

Although there are other options to ensure correctness of super-peers’ models,
relocation of models is preferred as it does not require any modification to the un-
derlying P2PDHT protocol and it keeps the propose approach simple and efficient.

3.3.2 Replication
In order for the proposed approach to be fault tolerant while reducing the load of
super-peers (during predictions), replication of the cascaded models is needed. To
create the replicas, we adopt a concept similar to the proposed proximity routing
of Chord, where each super-peer replicates the cascaded models to r successive
peers. Since the identifier assignment of the peers is totally random, it is very
likely that peers reside in different geographical locations; thus, speeding up the
access of neighboring peers. In addition, with multiple peers having the cascaded
models, the load of the super-peer for both communication and computation can
be reduced substantially. Moreover, it is unlikely that all the replicas from the
same group fail simultaneously.
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On the failure of a predecessor, a peer sends an election message to its super-
peer’s key. Given that the failed predecessor is a super-peer, the successive replica
will receive the election message and then assume the role of a super-peer until
departure from the network or the entrance of a new super-peer.

To ensure that r successive peers hold the latest cascaded model, replication
is performed by a super-peer when significant changes in the cascaded model is
made or if any of the r successive peers changes (tracked by Chord). A check on
the successive peers’ data is made before replicating to reduce redundancy.

Since Chord already maintains a list of sibling nodes (successive in the key val-
ues) with their physical address, tracking the changes of these successive peers is
trivial by simply retrieving the list from Chord (which does the actual job). Repli-
cation to the new successive peers (either newly joined or to replace a peer that has
left) will be handled by the super-peer. In addition, we note that peers will always
retain their collected data so as to reduce data propagation in the event of any
change in the super-peer or replicas. All communications are done in an efficient
manner using SendMsg as the physical address of all replicas are known.

3.4 Complexity Analysis

Here we analyze the complexity of computation and communication cost. To sim-
plify the analysis, we assume the size of the local data �i of all peers pi, i ∈ 1, . . . , N
is equal. We also assume that every peer will be using the same percentage s << 1
(s = 0.01 for our case) of their local dataset for building the RSVM which will
result in a model size of at most mi = s�i for a peer pi and the maximum size of
the cascaded models of the entire P2P network will be m =

∑N
1 mi.

3.4.1 Time Complexity Analysis
The time cost for model training is mainly composed of local model construction,
model partitioning, model cascading, and computation of mean vectors. The time
cost for the prediction phase mainly comprises the cost for super-peers to make
their predictions on test instances. A summary of the time complexity of the
training and prediction phases in CEMPaR follows.

With the following computational costs: (1) local model construction—O(�im
2
i )

for each peer, (2) model partitioning—O(gmi) for each peer, (3) computation of
mean vector—O(m/g) for each super-peer, and (4) model cascading—O((m/g)3)
for each super-peer. The worst case time complexity of training is therefore
O((m/g)3) given that all super-peers compute in parallel.

With SVM, the prediction cost incurred by each super-peer is O(mt/g). Hence,
this is the worst case time complexity when all super-peers predict in parallel.

3.4.2 Communication Cost Analysis
For communication cost, we note that compared to the transmission of data
instances, the cost of sending non-instance message such as irv (1 byte) and
physical address (5 bytes) is negligible. Therefore, we only examine the cost of
sending data instances. A summary of the communication complexity of training
and prediction phases in CEMPaR follows.
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Given the following communication cost: (1) mean vector—O(Ng), (2) local
model with relocation—O(m), and (3) replication—O(rm). The communication
cost for training is therefore O((r + 1)m).

As for each prediction task, the peer only needs to send the test instances to
the g super-peers/replicas; hence, the communication cost is O(gt)

Given that the computation cost of training for RandBag is O((km/N)3) [2],
it is comparable with CEMPaR, depending on the value of k (number of models
to collect for RandBag) and g, and is lower than approaches like centralized
SVM and RSVM and AllCascade whose computation cost of training is at least
O(m3). In addition, the communication cost of CEMPaR and RandBag (O(km))
differs by k and r + 1, and it is noted that k is required to be at least linear to
the number of peers N to ensure satisfactory while it can be observed that when
r = lg N , the chance of any group failing for CEMPaR is less than 0.01 when
N = 500 (good fault tolerance property). Hence, with consideration to both the
computation and communication cost, CEMPaR will be the preferred approach.

Finally, in terms of the prediction cost, AllCascade incurs no communication
cost although its training cost is very high. In addition, though the communi-
cation cost of prediction for RandBag (O(vt) where v is the number of voting
peers) and CEMPaR only differs by the factors g and v, from our empirical
evaluation, we observed that the value of g can be significantly smaller than v
to achieve satisfactory performance.

4 Experimental Results

We perform extensive experiments to show that our proposed approach: (a)
incurs significantly lower communication cost compared with other P2P classifi-
cation algorithms, (b) achieves accuracy comparable with other approaches, and
(c) is robust with respect to imbalanced data and class distribution, number of
peers, groups and failure of peers.

4.1 Experimental Setup

We simulate real world P2P problems with large sized datasets using the multi-
class Covertype dataset [14] and the Synthetic Classification Data Set Generator
(SCDS) 1. We created a Binary Covertype dataset from Covertype, with only
2 classes (class 2 against the rest). Using SCDS, we generated two datasets
with 1,000,000 instances each: Binary SCDS with 2 classes and 32 continuous
attributes, of which 4 are relevant, and Multi-class SCDS with 6 classes and 32
continuous attributes, of which 10 are relevant. In addition, 20 percent of the
attribute values and 20 percent of class labels are wrongly assigned to represent
noise in data. We used 500 peers for both Covertype datasets, and 900 peers for
both SCDS datasets so that each peer roughly has around 1000 data instances.
The dataset column of Table 1 summarizes the datasets used.
1 http://www.datasetgenerator.com

http://www.datasetgenerator.com
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SVM takes too long to train on large datasets, so we used SVM RSVM [8]
as the baseline centralized classification algorithm (implemented in C++). The
same RSVM code is also used in our proposed approach for building the local
model while the C-SVM [15,8] is used for model cascading. For approaches using
RSVM, one percent of the local data was used by every peer so that it has
sufficient data for building a representative model. All approaches also used
the RBF kernel and the γ and C values were chosen using the model selection
tool provided with LIBSVM based on one percent of stratified sampled data
from each of the datasets. Unless otherwise stated, for RandBag, the number of
cascading models k and number of voting peers v were set as 10% of the number
of peers N , and for CEMPaR, the number of groups g was chosen as 10. For all
experiments, 10-fold cross validation were performed and in addition, for each
fold, 50 independent runs were executed for RandBag and CEMPaR.

In order to compute the communication cost, we used the OverSim P2Pnetwork
simulator [16] with CEMPaR built on top of the Chord protocol [10] using default
settings. The P2P network initializes without any peer, and peers were made to
join one at a time until the maximum number of peers was reached and the net-
work was allowed to stabilize. This scheme was chosen to capture all the interme-
diate overhead cost that might be incurred. Communication cost is typically mea-
sured in terms of total size of data transmitted in the network and not actual time
taken [3]. Therefore, we report communication cost as total instances sent which is
the dominating component of data transmitted. Executables for the experiments
are available at http://www.cais.ntu.edu.sg/~vivek/pubs/cempar09.

Experiments were performed on a cluster of 16 machines, each with two Intel
Dual Core Xeon 3.0GHz processors, 4-GB RAM, connected by gigabit ethernet.

4.2 Accuracy

In these experiments, every dataset was equally partitioned among the peers, and
the class label was randomly distributed. The accuracy of the competing
approaches is presented in Table 1 and tested for statistical difference using the
Mann-Whitney-Wilcoxon (MWW) test with P >= 0.05. First, we observe that
CEMPaR is comparable to the centralized RSVM. Although centralized RSVM is
more accurate thanCEMPaRon theBinaryandMulticlassCovertypedatasets, the
difference isnot significant according toMWW.On theother hand,CEMPaR is sig-
nificantly superior on the Binary and Multiclass SCDS datasets by the same test.
Second, we note that CEMPaR is generally comparable to the other state-of-art
P2P approaches.Wefind thatAllCascadeperforms slightlybetter thanourmethod
(significant only for Binary and Multiclass SCDS). This is reasonable because All-
Cascade takes all local models for training the final cascaded model while we only
take a small portion of local models. Our approach is however significantly more
efficient thanAllCascade in termsof both timeandcommunication efficiency.Com-
pared with SVM ensemble, results of CEMPaR are always significantly different,
and better in three out of four datasets. Compared with the RandBag approach,
we can see that our approach is significantly better than RandBag (k = v = g) and
slightly worse than RandBag (k = v = 0.1N). However, the latter setting incurs

http://www.cais.ntu.edu.sg/~vivek/pubs/cempar09
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Table 1. Classification accuracy (equally partitioned data, random class distribution)

Dataset Centralized SVM All- RandBag RandBag
(Instances, Attributes, Classes) RSVM Ensemble Cascade k = v = 0.1N k = v = g CEMPaR
Binary Covertype (581K, 54, 2) 71.97% 52.35% 72.93% 69.29% 61.93% 68.99%

Multiclass Covertype (581K, 54, 7) 67.16% 46.41% 65.60% 67.27% 61.53% 64.27%
Binary SCDS (1M, 32, 2) 91.28% 92.01% 91.85% 91.82% 85.68% 91.62%

Multiclass SCDS (1M, 32, 6) 57.03% 58.99% 63.21% 60.92% 54.25% 60.60%
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Fig. 1. Communication cost vs number of peers

significantly higher communication cost for RandBag. This again validates the ef-
fectiveness of our method; i.e., excellent communication efficiency and competitive
classification performance.

4.3 Communication Cost

We used the binary SCDS dataset, and varied the number of peers from 100
to 900 with each peer having roughly 1000 instances. The total communication
cost incurred by various approaches on this problem is presented in Figure 1.
We observe that, for both model propagation and prediction (test data propa-
gation) tasks, our proposed approach incurs significantly lesser communication
cost compared to other approaches that need to perform the same tasks. Since
SVM ensemble does not perform model propagation and AllCascade does not
perform test propagation, they are not depicted in the corresponding plots. How-
ever, it may be noted that their communication costs; viz., test propagation cost
for SVM Ensemble and model propagation cost for AllCascade are far greater
than the proposed approach (around two orders of magnitude).

4.4 Sensitivity to Parameters

We studied the robustness of the competing approaches by varying data sizes
and class distributions on peers, number of peers, groups and failure of peers,
and evaluating the effect on classification accuracy and communication costs.

4.4.1 Data Size Distribution
We assigned the multi-class Covertype data to the peers by sampling the data
size from exponential, normal and uniform distributions. As the results show (in
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Figure 2(a) under Expo, Norm, Uniform), distribution of the local peer data does
not have any significant effect on classification accuracy of any of the approaches.

However, the effect on communication cost (see Figure 2(b)) reveals an inter-
esting point. The bar and line plot shows the average and standard deviation
(s.d.) of the number of instances collected by each peer respectively, when peer
data sizes are selected from non-equal distribution (exponential, normal and uni-
form). We notice that the s.d. of the instances collected for RandBag is signifi-
cantly larger than that of our proposed approach. In other words, for RandBag,
the number of instances collected by each peer varies widely, thus creating an
uneven load distribution. Whereas in our proposed approach, the number of in-
stances collected by each super-peer does not differ much (very small s.d.), thus
evenly distributing the load of model cascading among all super-peers, demon-
strating the effectiveness of the load distribution mechanism.

4.4.2 Class Distribution
The multi-class SCDS dataset was distributed equally among 900 peers with
each peer’s data belonging to 2 out of the 6 classes. This is a similar setting
to that of the photo annotation problem in P2P environment [6]. Compara-
tive accuracy results (see Figure 2(a) under Indep), show that contrary to the
SVM ensemble approach, both our approach and RandBag achieve an accuracy
comparable to centralized RSVM (57.06%). This demonstrates that cascade ap-
proaches are resilient to the class distribution of data, as representatives of many
peers are merged together, thus providing a solution based on all classes’ data.
Class distribution has no impact on communication cost.

4.4.3 Number of Peers (N)
Studying the results of Section 4.3, we find that the communication cost of
model propagation (Figure 1(a)) for all cascade approaches grows linearly to
the number of peers N , or more specifically, the amount of training data in
the P2P network. CEMPaR has the smallest factor, followed by RandBag and
AllCascade. In addition, note that the model propagation cost of CEMPaR (r =
0 and 6) includes the relocation cost, which contributes toward less than 12% of
the total propagation cost (for 900 peers).
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Fig. 3. Effect of number of groups and merged training size on classification accuracy

With respect to the communication cost for prediction (of a single test in-
stance) which is shown in Figure 1(b), CEMPaR incurs a cost linear to the
number of groups g (6 and 10) and constant to the number of peers, RandBag
and SVM Ensemble incur linear communication cost with respect to the num-
ber of peers p where the factor of the cost for RandBag is v/N and for SVM
Ensemble it is close to 1.

4.4.4 Number of Groups (g)
For this experiment, we varied the number of groups for all datasets. From the
classification accuracy plots (see Figure 3(a)), we observe that for all datasets,
as the number of groups increases, the classification accuracy first increases then
starts to decrease steadily. For both the Binary datasets, the best accuracy is
achieved for 6 groups, whereas for the multi-class SCDS dataset it is 4 and
for the multi-class Covertype dataset, it is between 20 to 40 (with little differ-
ences).

To get a better understanding, we present in Figure 3(b) the merged training
size of each super-peer for the different number of groups. We observed that in
general, as the size of the merged training set increases, accuracy also increases,
dropping slightly only when the number of groups approaches 2. However, the
multi-class Covertype dataset behaves slightly different where the accuracy peaks
at a smaller merged training size. This could be due to several reasons such as
diversity of the cascade models, so further investigations are needed to draw a
conclusion. For all datasets, we observe that the difference in accuracy between
the optimal and worst number of groups is less than 5%. From these findings,
we conclude that a sub-optimal choice on the number of groups does not have a
significant impact on the accuracy.

Note that the number of groups affects the relocation cost and is observed that
as the number of groups increases, the deviation of the relocation cost reduces
and starts to stabilize. Due to space constraint results are not presented.

As expected and as shown earlier (Figure 1(b)), the prediction cost (test
propagation) grows linearly with the number of groups. However, we observe
from the results that choosing the number of groups as a log function of the
number of peers greatly reduces the communication cost of prediction while
achieving satisfactory classification accuracy.
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4.4.5 Number of Replicas (r)
From Figure 1(a), we observe that the model propagation costs grows linearly
with the number of replicas. Since the number of replicas does not affect test
prediction cost (which only depends on g), here we study the effect of r on
fault-tolerance of the group, and on the load balancing during prediction. We
first simulated massive peer failure and varied the number of replicas to study
the probability of group failure. We also report the number of prediction tasks
performed by each super-peer/replica. Results of the fault tolerance and load
balancing experiments are presented in Figure 4 and 5 respectively.

Figure 4 demonstrates that with the increase in peer failure rate, classification
accuracy decreases. However, with the increase in the number of replicas, the
effect of the accuracy reduction is reduced. Figure 5 shows a bar and line plot
which demonstrate that as the number of replicas increases, the load handled
by each replica decreases exponentially. Results show that with only 6 replicas,
it is possible to maintain high accuracy with failure rate of up to 40%.

5 Conclusions

This paper proposes CEMPaR—a P2P classification framework that incurs low
communication costs and is extremely robust to data and network parameters.
CEMPaR utilizes the DHT networking protocol to efficiently and dynamically
elect super-peers, which are then used to build the classification model. The
resultant ensemble classifier which is based on cascading SVMs yields accuracy
comparable to the centralized learning algorithms, while incurring significantly
lesser communication cost than the existing P2P classification approaches. CEM-
PaR also manages to achieve good prediction load balancing and is fault-tolerant
at the expense of very little model replication among other peers.

While this paper demonstrates the benefits of using an SVM-based cascaded
learning approach, it must be noted that the CEMPaR framework can accom-
modate various learning strategies, including ensembles of different classifiers. It
would be interesting to study whether other learning approaches could retain the
benefits of the cascading SVM approach, especially robustness to data and class
distribution. Since CEMPaR uses DHT lookup for efficiency, it is restricted to
DHT-based P2P networks. However, given the popularity of this protocol, this
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is not much of a limitation. In future, we would like to explore the relation-
ship between the diversity of data and the number of groups chosen for optimal
accuracy and communication benefits. In addition, we would like to study and
address the issues of concept drift and peer data privacy.
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Abstract. Structured prediction has become very important in recent

years. A simple but notable class of structured prediction is one for

sequences, so-called sequential labeling. For sequential labeling, it is

often required to take a summation over all the possible output se-

quences, when estimating the parameters of a probabilistic model for

instance. We cannot make the direct calculation of such a summation

from its definition in practice. Although the ordinary forward-backward

algorithm provides an efficient way to do it, it is applicable to limited

types of summations. In this paper, we propose a generalization of the

forward-backward algorithm, by which we can calculate much broader

types of summations than the existing forward-backward algorithms. We

show that this generalization subsumes some existing calculations re-

quired in past studies, and we also discuss further possibilities of this

generalization.

1 Introduction

Many learning tasks in the real world involve complex structures, where there
are multiple, interrelated labels to be assigned. A simple but notable class that
involves structures is sequential labeling, where dependencies between labels
constitute a linear chain. A lot of classification or pattern recognition tasks on
natural language sentences, genes and the like can be formulated as sequential
labeling.

For sequential labeling, it is often required to take a summation over all the
possible output sequences. For example, the expectation-maximization (EM)
algorithm for Hidden Markov Models (HMMs) [1] requires expected frequencies
of hidden variables measured on the current model. Another example is the
calculation of the normalization constant, or partition function, for Conditional
Random Fields (CRFs) [2]. Gradient of the log-likelihood objective for CRFs
also involves model expectations of features. These calculations are originally
defined as summations over all the possible output sequences.

Such a naive definition of a summation is not suitable for practical computing
purposes in its own, because the number of the possible output sequences is
proportional to the exponential of the length of the input sequence in general.
The forward-backward algorithm provides a solution to get around this difficulty
when output sequences are well-structured. “Well-structuredness” means that

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 99–114, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. An example trellis

output sequences can be encoded in a trellis, in which the number of nodes
and arcs is proportional to a polynomial of the length of the input sequence.
For example, the trellis shown in Fig.1 encodes seven sequences. This algorithm
plays a crucial role in the aforementioned calculations. However, we would argue
that the scope of applicability of the ordinary forward-backward algorithm is
quite limited. The ordinary forward-backward algorithm is applicable to either
one of the following forms,

∑
y∈Y(x)

⎛⎝ ∏
c∈C(y)

φ(x, c)

⎞⎠ , (1)

or ∑
y∈Y(x)

⎛⎝ ∏
c∈C(y)

φ(x, c)

⎞⎠⎛⎝ ∑
c∈C(y)

f(x, c)

⎞⎠ , (2)

where Y(x) denotes the set of all the possible sequences for a given input se-
quence x, C(y) denotes the set of labels and adjacent pairs of labels appearing
in y, φ and f are complex-valued functions. Typically, φ represents a potential
function of the distribution, and f represents an indicator function or a feature
function.

We now want to derive an efficient algorithm applicable to much broader
types of summations than (1) and (2). The term “efficient” here means that
the computational cost is proportional not to the exponential of the length of
the input sequence, but to a polynomial of it. As a result of the generalization
proposed in this paper, we will derive an efficient algorithm applicable to the
following form.

∑
y∈Y(x)

⎛⎝ ∏
c∈C(y)

φ(x, c)

⎞⎠⎛⎝ ∑
c∈C(y)

f1(x, c)

⎞⎠n1

· · ·

⎛⎝ ∑
c∈C(y)

fK(x, c)

⎞⎠nK

, (3)

where f1, . . . , fK are K complex-valued functions, and n1, . . . , nK are non-
negative integers.

In the next section, we will formalize our algorithm and show its validity. We
will also give arguments in support of our estimation of its computational cost.
In Sect.3, we will show that some specializations of the proposed algorithm lead



A Generalization of Forward-Backward Algorithm 101

START STOP

(START,y1)

(START,y2)

(START,y3)

(START,y4)

y1

y2

y3

y4

y5 y6

y7

(y1,y5)

(y2,y5)

(y5,y6)

(y5,y7)

(y3,y6)

(y3,y7)

(y6,STOP)

(y7,STOP)

(y4,STOP)

Fig. 2. The directed acyclic graph for the trellis shown in Fig.1

to some specific algorithms introduced in past studies. In Sect.4, we will show
further possibilities of the algorithm. In Sect.5, we conclude this paper.

2 A Generalization of Forward-Backward Algorithm

In this section, we will formalize a generalization of the forward-backward algo-
rithm. In order to write down definitions and proofs, we utilize directed acyclic
graphs (DAG) instead of trellises. Consider a DAG G = (V, E). A node in G repre-
sents either a label or an adjacent label pair in the trellis, i.e., V :=

⋃
y∈Y(x) C(y).

An arc (u, v) ∈ E exists if and only if, for an adjacent label pair 〈y, y′〉 in the trel-
lis, u = y ∧ v = 〈y, y′〉 or u = 〈y, y′〉 ∧ v = y′. For the trellis shown in Fig.1,
the resulting DAG is shown in Fig.2. Hereafter, it is assumed that G has only one
node whose in-degree is zero, denoted by src(G). It is also assumed that G has only
one node whose out-degree is zero, denoted by snk(G). We abbreviate src(G) and
snk(G) to src and snk respectively if G is obvious from the context. It is straight-
forward to extend the following discussion to DAGs with multiple source and sink
nodes. Let Ψ(G) be the set of directed paths whose starting node is src(G) and
end node is snk(G). In this setting, summations over all the sequences in a trellis∑

y∈Y(x) is now rewritten as summations over the set of directed paths Ψ(G), i.e.,∑
π∈Ψ(G) . We can also replace any function defined on C(y), i.e., f(c) (c ∈ C(y))

with functions defined on V, i.e., f(v) (v ∈ V ). For the sake of simplicity, we treat
a directed path π in G as equivalent to the set of nodes appearing on π.

2.1 Standard Formulation

In this subsection, we will formalize an efficient algorithm to calculate summa-
tions of the form (3). Note that the summation

∑
y∈Y(G) in the original formu-

lation now becomes
∑

π∈Ψ(G) in the new formulation. Readers are requested to
read them as interchangeable.

Theorem 1 (Generalized Forward Algorithm). Consider a DAG G =
(V, E). Let fk (k = 1, . . . , K) be K complex-valued functions defined on V, and
φ be a complex-valued function defined on V. For a directed path π in G, let
Fk(π) :=

∑
v∈π fk(v) (k = 1, . . . , K), and Φ(π) :=

∏
v∈π φ(v). Then, for non-

negative integers n1, . . . , nK ,1

1 In this paper, we define 00 := 1.
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π∈Ψ(G)

Φ(π)F1
n1(π) · · ·FK

nK (π) = αn1,...,nK (snk) , (4)

where α is defined recursively along a topological order of V , as follows.

αn1,...,nK (src) := φ(src)f1
n1(src) · · · fK

nK (src) ,

αn1,...,nK (v) := φ(v)
n1∑

m1=0

[(
n1

m1

)
f1

m1(v) · · ·
nK∑

mK=0

[(
nK

mK

)
fK

mK (v)

×
∑

v′∈prev(v)

αn1−m1,...,nK−mK (v′)

]
· · ·

]
(v �= src) .

(5)

Here,
(

n
m

)
is the binomial coefficient, and prev(v) denotes the set of preceding

nodes of v, i.e., prev(v) := {x|(x, v) ∈ E}.

Proof. Hereafter, we will prove the following claim (6) from the recursive defi-
nition of α (5).

αn1,...,nK (v) =
∑

π∈Ψsrc→v(G)

Φ(π)F1
n1(π) · · ·FK

nK (π)
(∀v ∈ V

)
, (6)

where Ψu→v(G) (u, v ∈ V ) is the set of directed paths whose starting node is u
and end node is v. We utilize mathematical induction along a topological order
of V.

For v = src, (6) is obviously true from the definition of α (5).
Hereafter, for the sake of simplicity, we just refer to the case where there is

only one function for Fk, i.e., K = 1. We also restate F1 and n1 as F and n
respectively.

For a given v ∈ V, if we assume that (6) is true for ∀v′ ∈ prev(v), then

αn(v) = φ(v)
n∑

m=0

[(
n

m

)
fm(v)

∑
v′∈prev(v)

αn−m(v′)

]
(from the definition of α in (5))

= φ(v)
n∑

m=0

[(
n

m

)
fm(v)

∑
v′∈prev(v)

∑
π∈Ψsrc→v′(G)

Φ(π)Fn−m(π)

]
(from the inductive assumption (6) for ∀v′ ∈ prev(v))

=
∑

v′∈prev(v)

∑
π∈Ψsrc→v′(G)

[
φ(v)Φ(π)

n∑
m=0

(
n

m

)
fm(v)Fn−m(π)

]

=
∑

v′∈prev(v)

∑
π∈Ψsrc→v′(G)

φ(v)Φ(π) (f(v) + F (π))n

(∵ binomial theorem)

=
∑

π∈Ψsrc→v(G)

Φ(π)Fn(π) .

(7)
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So (6) appears to be true for v. Thus, (6) is true for ∀v ∈ V, including the case
v = snk, which is equivalent to (4) because Ψsrc→snk(G) = Ψ(G). We can also
provide the proof of (6) for the case where there are multiple indices for α in a
similar manner. ��
This theorem shows that recursive calculation of α leads to the calculation of
the left-hand side of (4). We call this recursive calculation (n1, . . . , nK)-th order
forward algorithm. It is worth noting that the specialization for the case K = 0,
i.e., the (0)-th order forward algorithm is equivalent to the forward procedure
of the ordinary forward-backward algorithm. Of course α0 is equivalent to the
ordinary forward variable (often denoted by α), too.

From the definition of α in (5), it is easy to show that the time complexity is
proportional to (|V |+ |E|) (n1+1)2 · · · (nK +1)2, assuming that

(
n
m

)
and fk

nk(v)
can be calculated in constant time.

In the ordinary forward-backward algorithm, we also calculate backward vari-
ables, that are often denoted by β. α(v)β(v)/φ(v) is the summation of Φ(π)
over the sequences appearing in the sub-trellis constrained on a node v. In
other words, we can regard α(v)β(v)/φ(v) as the marginal of Φ(π) on v. So,
for a function f́(v), summing up f́(v)α(v)β(v)/φ(v) on all nodes leads to the
summation of Φ(π)

∑
v∈π f́(v). This formulation is useful in the case where f́

is sparse, i.e., f́(v) = 0 for most of v ∈ V. Likewise, we can define general-
ized backward variables βn1,...,nK in a similar manner to the definition of α in
Th.1. A generalized forward variable αn1,...,nK (v) is equal to the summation of
Φ(π)F1

n1(π) · · ·FK
nK (π) in the sub-trellis prior to v (see (6)), and a generalized

β is equal to the summation of the same form in the sub-trellis posterior to
v. Thus, a proper combination of generalized α and β yields the summation of
Φ(π)F1

n1(π) · · ·FK
nK (π) over the sub-trellis constrained on v. In other words,

such a combination can be regarded as the marginal of Φ(π)F1
n1(π) · · ·FK

nK (π)
on v. So, we can make a similar discussion on a sparse function f́(v) in our gen-
eralization. This argument is formally summarized in the following theorem.

Theorem 2 (Generalized Forward-backward Algorithm). In addition to
the definitions of G, fk, Fk, φ, Φ, α in Th.1, let f́ be a complex-valued function
defined on V, and, for a directed path π in G, let F́ (π) :=

∑
v∈π f́(v). Then,∑

π∈Ψ(G)

Φ(π)F1
n1(π) · · ·FK

nK (π)F́ (π)

=
∑
v∈V

[
f́(v)

n1∑
m1=0

[(
n1

m1

)
· · ·

nK∑
mK=0

[(
nK

mK

)

× αm1,...,mK (v)βn1−m1,...,nK−mK (v)

]
· · ·

]]
,

(8)

where β is recursively defined along a reversed topological order of V, as follows.

βn1,...,nK (snk) :=

{
1 (n1, · · · , nK = 0) ,

0 otherwise ,
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βn1,...,nK (v)

:=
∑

v′∈next(v)

[
φ(v′)

n1∑
m1=0

[(
n1

m1

)
f1

m1(v′) · · ·

×
nK∑

mK=0

[(
nK

mK

)
fK

mK (v′)βn1−m1,··· ,nK−mK (v′)
]
· · ·

]]
(v �= snk) ,

(9)
where next(v) denotes the set of succeeding nodes of v, i.e., next(v) := {x|(v, x) ∈
E}.
Some readers may be confused by the definition of β in (9) because the definitions
of α (in (5)) and β are asymmetric by design. In the ordinary forward-backward
algorithm, α and β are usually defined in a symmetric manner, and combined
in the product α(v)β(v)/φ(v) because both α(v) and β(v) have the same factor
φ(v) redundantly. However, such a symmetric definition makes the combination
of α and β in (8) quite complex. So we define β as in (9).

With the following relation

∑
π∈Ψ(G)

Γ (π)F́ (π) =
∑
v∈V

⎡⎣f́(v)
∑

π∈Ψv(G)

Γ (π)

⎤⎦ , (10)

where Γ is a complex-valued function defined on Ψ(G) and
Ψv(G) := {π | π ∈ Ψ(G), v ∈ π} , we give proof of Th.2.

Proof (of Th.2). Just like the proof of Th.1, we can prove the following claim.

βn1,...,nK (v) =
∑

π∈Ψv←snk(G)

Φ(G)F1
n1(π) · · ·FK

nK (π)
(∀v ∈ V, v �= snk

)
, (11)

where Ψv←snk(G) :=
⋃

v′∈next(v) Ψv′→snk(G). Hereafter, for the sake of simplicity,
we just refer to the case where K = 1. Obviously, we can split a directed path
containing v into two parts. One is prior to v, and the other is posterior to
v. In other words, for ∀v ∈ V, Ψv(G) is the direct product of Ψsrc→v(G) and
Ψv←snk(G). So,∑

π∈Ψ(G)

Φ(π)Fn(π)F́ (π)

=
∑
v∈V

[
f́(v)

∑
π∈Ψv(G)

Φ(π)Fn(π)

]
(∵ (10) with Γ (π) = Φ(π)Fn(π))

=
∑
v∈V

[
f́(v)

∑
π∈Ψsrc→v(G)

∑
π′∈Ψv←snk(G)

Φ(π ∪ π′)Fn(π ∪ π′)

]

=
∑
v∈V

[
f́(v)

∑
π∈Ψsrc→v(G)

∑
π′∈Ψv←snk(G)

Φ(π)Φ(π′) (F (π) + F (π′))n

]
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=
∑
v∈V

[
f́(v)

∑
π∈Ψsrc→v(G)

∑
π′∈Ψv←snk(G)

[
Φ(π)Φ(π′)

×
n∑

m=0

(
n

m

)
Fm(π)Fn−m(π′)

]]
(∵ binomial theorem)

=
∑
v∈V

[
f́(v)

n∑
m=0

(
n

m

)⎛⎝ ∑
π∈Ψsrc→v(G)

Φ(π)Fm(π)

⎞⎠
×

⎛⎝ ∑
π′∈Ψv←snk(G)

Φ(π′)Fn−m(π′)

⎞⎠]

=
∑
v∈V

[
f́(v)

n∑
m=0

(
n

m

)
αm(v)βn−m(v)

]
(∵ (6), (11)) .

(12)

��

This theorem shows that, by recursive calculation of α and β, and storing them
for ∀v ∈ V, we can calculate the summation appearing in the left-hand side of
(8). We call this calculation (n1, . . . , nK)-th order forward-backward algorithm.
It is worth noting that the (0)-th order forward-backward algorithm is equivalent
to the ordinary forward-backward algorithm for the form of (2).

In the same way as Th.1, the time complexity is proportional to
(|V |+ |E|) (n1 + 1)2 · · · (nK + 1)2. The space complexity is proportional to
|V |(n1 + 1) · · · (nK + 1) because we need to store α and β for ∀v ∈ V.

2.2 Fourier-Transformed Formulation

In both Th.1 and Th.2, we can find that the definitions of α and β involve a sort
of convolution. It is well known that a convolution is transformed into element-
wise product under the Fourier transform. So, we can derive formulation with
element-wise products instead of convolutions under the Fourier transform.

First, let us give a brief description of convolution and its relationship with
the Fourier transform. Consider two complex-valued sequences {an}, {bn} (n =
0, . . . , 2N − 1). Both have N trailing zeros in them, i.e., an = 0, bn = 0 (n =
N, . . . , 2N − 1). Let a sequence {cn} be as follows.

cn :=
n∑

m=0

ambn−m (n = 0, . . . , 2N − 1) . (13)

Then,
F ({cn}) = F ({an}) ◦ F ({bn}) , (14)
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where F : C2N → C2N is the discrete Fourier transform 2, and ◦ denotes an
element-wise product. The relation (14) is often referred to as the convolution
theorem.

Convolutions in the definitions of α and β are of the form

cn :=
n∑

m=0

(
n

m

)
ambn−m , (15)

which is slightly different from the ordinary convolution in (13). However, with
the definition of the binomial coefficient, we can rephrase (15) as

cn

n!
=

n∑
m=0

am

m!
· bn−m

(n−m)!
, (16)

in which the sequence
{

cn

n!

}
is calculated by an ordinary convolution of

{
an

n!

}
and

{
bn

n!

}
.

Based on the convolution theorem mentioned above, we will derive the
Fourier-transformed versions of Th.1 and Th.2. For the sake of simplicity, we
just refer to the case where K = 1.

Theorem 3 (Fourier-transformed Generalized Forward Algorithm). In
addition to the definitions of φ, f := f1, α in Th.1, let{

f̃n(v)
}

:= F
({

f0(v)
0!

, . . . ,
fN−1(v)
(N − 1)!

, 0, . . . , 0
}) (∀v ∈ V

)
, (17)

and
α̃n(src) := φ(src)f̃n(src) ,

α̃n(v) := φ(v)f̃n(v)
∑

v′∈prev(v)

α̃n(v′) (v �= src) . (18)

Then, for 0 <= n <= N − 1 and ∀v ∈ V,

αn(v)
n!

=
{
F−1 ({α̃n(v)})

}
n

. (19)

Proof. (Sketch) From the Fourier transform for the definition of α in (5), linearity
of the Fourier transform and the convolution theorem (14), we can easily show
the proof. ��

Theorem 4 (Fourier-transformed Generalized Forward-backward
Algorithm). In addition to the definitions of φ, f, f̃ , α̃ in Th.3, let

Φ(π) :=
∏
v∈π

φ(v), F (π) :=
∑
v∈π

f(v), F́ (π) :=
∑
v∈π

f́(v) (20)

for a directed path π in G, and
2 We use normalization constant 1 for F , and 1

2N
for the inverse discrete Fourier

transform F−1.
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β̃n(snk) := 1 ,

β̃n(v) :=
∑

v′∈next(v)

φ(v′)f̃n(v′)β̃n(v′) ,

S̃n :=
∑
v∈V

f́(v)α̃n(v)β̃n(v) .

(21)

Then, for 0 <= n <= N − 1,

1
n!

∑
π∈Ψ(G)

Φ(π)Fn(π)F́ (π) =
{
F−1

({
S̃n

})}
n

. (22)

Proof. (Sketch) The same as the proof of Th.3, with the Fourier transform of
(8). ��

The argument above can be extended to the case where there are multiple indices.
We can apply the Fourier transform only to an arbitrary subset of indices, and
we may leave the remaining indices as they are.

Using the fast Fourier transform (FFT), the proportionality factor of an index
nk in the time complexity is reduced from (nk + 1)2 to (nk + 1) log(nk + 1).

3 Application of the Proposed Algorithm

In this section, we will show that some specializations of the generalization de-
rived above correspond to some calculations studied in past research. Our intu-
ition behind the following derivations is simple. Problems all boil down to how
we can transform the summation at hand into an expression of the form (3).
Once we obtain a formula of the form (3), our theorems immediately offer an
efficient algorithm for calculating it.

In the following subsections, we assume that the distribution over output
sequences is modeled by CRFs, which is defined as follows.

P (π|x; λ) =
1

Z(λ; x)

∑
π∈Ψ(G)

(∏
v∈π

φ(x, v)

)
(23)

with

Z(λ; x) :=
∑

π∈Ψ(G)

(∏
v∈π

φ(x, v)

)
, (24)

φ(x, v) := exp

(∑
k

λkfk(x, v)

)
. (25)

We also assume that all the expectations and covariances are taken under (23).
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3.1 Covariance for Conditional Random Fields

For CRFs, it is sometimes necessary to calculate the covariance of feature func-
tions. For feature functions F1(π), F2(π) (π ∈ Ψ(G)), the covariance is

Cov [F1(π), F2(π)] = E [F1(π)F2(π)] − E [F1(π)] E [F2(π)] . (26)

If both F1 and F2 are of the form
∑

v∈π f(v), the second term of (26) can
be calculated either by the (1)-st order forward algorithm or the (0)-th order
forward-backward algorithm, and the first term of (26) can be calculated either
by the (1, 1)-th order forward algorithm or the (1)-st order forward-backward
algorithm.

Covariance of feature functions is useful for optimization of CRFs. Because it
has rich information of curvature of the log-likelihood objective function, i.e.,

∂2

∂λi∂λj
L(λ) = −Cov[Fi(x, π), Fj(x, π)] , (27)

where L is the log-likelihood objective function and Fk(x, π) :=
∑

v∈π fk(x, v).
For example, S. V. N. Vishwanathan et al. [3] used stochastic gradient meth-
ods to accelerate the optimization of the log-likelihood objective for CRFs. In
stochastic gradient methods, it is required to calculate the Hessian-vector prod-
uct. Although they use automatic differentiation to calculate the Hessian-vector
product, we can derive an alternative algorithm for it as a specialization of the
generalized forward-backward algorithm. For a vector v, Hessian-vector product
is

{H(L) · v}i = −
∑

j

Cov[Fi(x, π), Fj(x, π)]vj

= E[Fi(x, π)]E[F (x, π) · v]− E[Fi(x, π) (F (x, π) · v)] ,

(28)

where H is the Hessian matrix. The (1)-st order forward-backward algorithm
provides an efficient algorithm to calculate the second term in (28). That algo-
rithm is equivalent to the calculation by the automatic differentiation as far as
the computational cost is concerned. 3

As another practical application of the covariance, we can take differentiation
of more complicated objective functions than the log-likelihood objective. For
example, the objective function used in Jiao et al. [4] has the conditional entropy
of CRFs.

H(λ) = E[log P (π|x; λ)] = E[F (x, π) · λ]− log Z(λ; x) . (29)

3 Generally speaking, the algorithm implicitly derived by the automatic differentia-

tion for the ordinary forward-backward algorithm is equivalent to the (1)-st order

forward-backward algorithm. In addition, we conjecture that the higher-order au-

tomatic differentiation for the ordinary forward-backward algorithm is essentially

equivalent to the generalized forward-backward algorithm proposed in this paper.
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The ordinary ((0)-th order) forward-backward algorithm can calculate the gra-
dient of the second term. The gradient of the first term is

∂

∂λk
E[F (x, π) · λ] = Cov [F (x, π) · λ, Fk(x, π)] . (30)

The discussion of the calculation of (30) is the same as the one for the second
term of (28).

In more general formulation, for the expectation of a sufficient statistic F̄ (π)
(π ∈ Ψ(G)),

∂

∂λk
E[F̄ (π)] = Cov

[
F̄ (π), Fk(x, π)

]
. (31)

(31) falls within the applicable scope of the generalization proposed in this paper,
assuming F̄ is of the form F̄ (π) =

∑
v∈π f̄(v).

3.2 Hamming Loss for Conditional Random Fields

Kakade et al. [5] proposed to use Hamming loss objective function in parameter
estimations involved in sequential labeling. For a correctly annotated input-
output sequence pair (x̂, ŷ), the objective to be optimized is

C1(λ; x̂, ŷ) :=
1
T

∑
t

log P (ŷt|x̂; λ) . (32)

With notations used in this paper, we can rephrase this objective as follows.

C1(λ; x̂, ŷ) =
1
T

∑
t

log
∑

π∈Ψ(G)

P (π|x̂; λ)δπ̂t(π) , (33)

where π̂t is the node that corresponds to ŷt. T is the number of labels in ŷ, and
δπ̂t(π) :=

∑
v∈π δv,π̂t is the indicator for the condition π̂t ∈ π. Its gradient is

∂C1

∂λk
=

1
T

∑
t

∑
π∈Ψ(G) P (π|x; λ)Fk(x, π)δπ̂t(π)∑

π∈Ψ(G) P (π|x; λ)δπ̂t(π)

−
∑

π∈Ψ(G)

P (π|x; λ)Fk(x, π) .
(34)

The second term is of the form which can be calculated by the ordinary ((0)-th
order) forward-backward algorithm.

To calculate the first term in (34), Kakade et al. [5] derived a sort of the
forward-backward algorithm, which is as efficient as the ordinary
forward-backward algorithm. We can show that a specialization of the gener-
alization proposed in this paper also leads to an equivalent algorithm.

With following definitions

c(v) :=

{
1 (v represents a correct label) ,

0 (otherwise) ,
(35)
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α0(v) :=

{
φ(v) (v = src) ,

φ(v)
∑

v′∈prev(v) α0(v′) (otherwise) ,
(36)

α1(v) :=

{
φ(v) c(v)

α0(v)β0(v) (v = src) ,
c(v)

α0(v)β0(v)α0(v) + φ(v)
∑

v′∈prev(v) α1(v′) (otherwise) ,
(37)

β0(v) :=

{
1 (v = snk) ,∑

v′∈next(v) φ(v′)β0(v′) (otherwise) ,
(38)

β1(v) :=

{
0 (v = snk) ,

c(v)
α0(v)β0(v)β0(v) +

∑
v′∈next(v) φ(v′)β1(v′) (otherwise) ,

(39)

and noting the following relation

Δ(π) :=
∑

t

δπ̂t(π)
α0(π̂t)β0(π̂t)

=
∑

t

∑
v∈π δv,π̂t

α0(π̂t)β0(π̂t)

=
∑
v∈π

(∑
t

δv,π̂t

α0(π̂t)β0(π̂t)

)
=
∑
v∈π

c(v)
α0(v)β0(v)

,

(40)

we can derive an efficient algorithm to calculate the first term in (34) as follows.

1
T

∑
t

∑
π∈Ψ(G) P (π|x; λ)Fk(x, π)δπ̂t(π)∑

π∈Ψ(G) P (π|x; λ)δπ̂t(π)

=
1
T

∑
t

∑
π∈Ψ(G) P (π|x; λ)Fk(x, π)δπ̂t(π)

α0(π̂t)β0(π̂t)

(∵ (0)-th order forward-backward algorithm for the denominator)

=
1
T

∑
π∈Ψ(G)

(
P (π|x; λ)Fk(x, π)

∑
t

δπ̂t(π)
α0(π̂t)β0(π̂t)

)

=
1
T

∑
π∈Ψ(G)

P (π|x; λ)Fk(x, π)Δ(π)

=
1
T

∑
v∈V

fk(x, v) (α1(v)β0(v) + α0(v)β1(v))

(∵ (1)-st order forward-backward algorithm) .

(41)

Note that α1(v) and β1(v) in this notation respectively correspond to ωf
i+1 and

ωb
i used in [5]. Of course both sides are also equivalent concerning the compu-

tational cost.

3.3 Generalized Expectation Criteria for Conditional Random
Fields

Mann et al. [6] proposed a semi-supervised training method called generalized
expectation criteria to improve accuracy with unlabeled data. The objective used
in [6] has an additional term
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−θD(P̂ ||P̃ ) , (42)

where θ is a given hyper-parameter, D is the KL divergence, P̂ is a given tar-
get distribution and P̃ is the conditional distribution of labels given a feature
fm(x, t) at time t, i.e., 4

P̃ := P̃ (yt|fm(x, t) = 1; λ) . (43)

We now focus on the parameter gradient. Instead of the derivation shown in [6],
we first rephrase P̃ (y|fm(x, t) = 1; λ) as

P̃ (�(v)|fm(v) = 1; λ) =
1

Um

∑
x∈Um

∑
π∈Ψ(G)

P (π|x; λ)Δfm,y(π) , (44)

where �(v) is the label assigned to v, Um is the set of sequences where fm is
present for some nodes, and

Δfm,y(π) =
∑
v∈π

fm(v)δ�(v),y . (45)

Noting the following relation

Δfm(π) :=
∑

l

P̂

P̃
Δfm,l(π) =

∑
v∈π

P̂ (�(v)|fm(v) = 1)
P̃ (�(v)|fm(v) = 1; λ)

fm(v) (46)

we get

∂

∂λk
D(P̂ ||P̃ ) = − 1

Um

∑
x∈Um

∑
l

P̂

P̃

∂

∂λk
E [Δfm,l(π)] , (47)

and

∑
l

P̂

P̃

∂

∂λk
E [Δfm,l(π)] = −E[Δfm(π)Fk(x, π)] + E[Δfm(π)]E[Fk(x, π)] . (48)

Here, the first term can be calculated by the (1)-st order forward-backward
algorithm, the second term by the ordinary ((0)-th order) forward-backward
algorithm.

Note that this calculation can drastically reduce the computational cost com-
pared with the algorithm proposed in [6]. Computational cost needed by our
formulation is scaled by up to a constant factor compared with the ordinary
forward-backward algorithm, whereas [6] takes the forward-backward algorithm
for each label so computational cost is proportional to the number of labels.

4 In the same way as their paper, we assume that all output sequences are same in

length and fm is binary.
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4 Further Possibilities

In the previous section, we show some specializations of our generalized forward-
backward algorithm. However, we have not fully utilized the potential capacity of
the higher order generalization of the forward-backward algorithm we proposed
in this paper. To show a sample application of the higher order generalization,
we will describe the expected F-measure optimization.

4.1 Expected F-Measure Optimization

Jansche [7] utilized the expected f-measure as an objective function in opti-
mization of logistic regression models. He has just described on single label,
non-structured case. Here, let this criteria be sequentially-extended. We define

Fγ(λ; x̂) := E[Fγ(π)] , (49)

where the expectation is taken under (23), and Fγ(π) is the label-wise f-measure
for a given output sequence π, i.e.,

Fγ(π) :=
(1 + γ2)l(π)
|π|+ γ2L

. (50)

L is the number of labels in the correctly annotated answer sequence, and l(π) is
the number of labels in the output sequence π that coincide with the correct labels.
|π| is the total number of labels appearing in π. Hereafter, we refer only to the case
γ = 1. Let F(π) := F1(π). For the case where all the possible output sequences
have the same number of labels (length), optimization concerning (49) – calcula-
tions of value and gradient – requires up to the (1, 1)-th order forward-backward
algorithm. On the other hand, for the case where the lengths of the output se-
quences are different as in [8], because the denominator in (49) is variable in the
summation, calculations of the value and the gradient of (49) are not trivial at all.

However, with the Taylor expansion of the reciprocal function in (49), we get

E[F(π)] =
1

Z(λ; x)

∑
π∈Ψ(G)

Φ(π)
2l(π)
|π| + L

=
2

Z(λ; x)(L + x0)

∑
π∈Ψ(G)

[
Φ(π)l(π)

∞∑
m=0

(
|π| − x0

−L− x0

)m
]

=
2

Z(λ; x)(L + x0)

∞∑
m=0

∑
π∈Ψ(G)

Φ(π)l(π)
(
|π| − x0

−L− x0

)m

,

(51)

where x0 is a complex value that satisfies the condition
∣∣∣ |π|−x0
−L−x0

∣∣∣ < 1 (∀π ∈ Ψ(G))
(such a value really exists at any time). By truncating the higher terms in the
Taylor series, we can approximate the value.

E[F(π)] ≈ 2
Z(λ; x)(L + x0)

M∑
m=0

∑
π∈Ψ(G)

Φ(π)l(π)
(
|π| − x0

−L− x0

)m

. (52)
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The summation
∑

π∈Ψ(G) in (52) is of the form to which the (m, 1)-th order
forward algorithm is applicable. We can also derive an approximation of the
gradient of (52).

∂

∂λk
E[F(π)] = E[F(π)Fk(x, π)]− E[F(π)]E[Fk(x, π)] (53)

The first term in (53) can be approximated by the (m, 1)-th forward-backward
algorithm in a similar manner to (52). Therefore, we can optimize the objective
with numerical optimization routines.

For a given constant M, these calculations are as efficient as the ordinary
forward-backward algorithm, scaled by up to a constant factor. For trellises in
which the length of a node is up to 5, we have experimentally confirmed that
M ∼ 15 proves to be sufficient to approximate the objective and the gradient
with enough precision under the double-precision floating-point arithmetic.

5 Conclusion

In this paper, we proposed a generalization of the forward-backward algorithm,
which is applicable to much broader types of summations over all possible se-
quences than the ordinary forward-backward algorithm. We also show that our
theorems in this paper can offer efficient algorithms for some calculations re-
quired in past studies, even for the summation of a non-linear function using a
Taylor expansion.

We are now investigating other possibilities of applications of our general-
ization, including optimization of much more complex probabilistic models than
log-linear models on sequential labeling tasks (we assume CRFs with polynomial
kernels [9] [10], for example).

While we proposed the generalization only for linear chains, it is straight-
forward to extend this generalization to trees. However, it will be much more
challenging to find a counterpart in the case of loopy structures. We are going
to study such a possibility.
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Abstract. In this paper we introduce graph-evolution rules, a novel type

of frequency-based pattern that describe the evolution of large networks

over time, at a local level. Given a sequence of snapshots of an evolving

graph, we aim at discovering rules describing the local changes occur-

ring in it. Adopting a definition of support based on minimum image we

study the problem of extracting patterns whose frequency is larger than

a minimum support threshold. Then, similar to the classical association

rules framework, we derive graph-evolution rules from frequent patterns

that satisfy a given minimum confidence constraint. We discuss merits

and limits of alternative definitions of support and confidence, justify-

ing the chosen framework. To evaluate our approach we devise GERM
(Graph Evolution Rule Miner), an algorithm to mine all graph-evolution

rules whose support and confidence are greater than given thresholds.

The algorithm is applied to analyze four large real-world networks (i.e.,

two social networks, and two co-authorship networks from bibliographic

data), using different time granularities. Our extensive experimentation

confirms the feasibility and utility of the presented approach. It further

shows that different kinds of networks exhibit different evolution rules,

suggesting the usage of these local patterns to globally discriminate dif-

ferent kind of networks.

1 Introduction

With the increasing availability of large social-network data, the study of the
temporal evolution of graphs is receiving a growing attention. While most re-
search so far has been devoted to analyze the change of global properties of
evolving networks, such as the diameter or the clustering coefficient, not much
work has been done to study graph evolution at a microscopic level. In this paper,
we consider the problem of searching for patterns that indicate local, structural
changes in dynamic graphs. Mining for such local patterns is a computationally
challenging task that can provide further insight into the increasing amount of
evolving-network data.

Following a frequent pattern-mining approach, we introduce the problem of
extracting Graph Evolution Rules (GER), which are rules that satisfy given
constraints of minimum support and confidence in evolving graphs. An example

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 115–130, 2009.
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Fig. 1. A Graph Evolution Rule extracted from the DBLP co-authorship network

of a real GER extracted form the DBLP co-authorship network is given in Fig. 1:
nodes are authors, with an edge between two nodes if they co-authored a paper.

In this specific example, the node labels represent a class of degree of the
node: the higher the label the higher the degree of the node. It is important
to note that the label refers to the degree of the node in the input graph, not
in the rule. In particular the label 3 indicates a node with degree > 50. In
general, node labels may represent any property of a node. The labels on the
edges instead are more important as they represent the (relative) year in which
the first collaboration between two authors was established. Intuitively (later
we provide all the needed definitions) the rule might be read as a sort of local
evidence of preferential attachment, as it shows a researcher with a large degree
(label 3) that at time t is connected to four medium degree researchers (labels 2),
and that at time t+1 will be connected to another medium degree researcher. The
definition, extraction and subsequent empirical analysis of such Graph Evolution
Rules (GER) constitute the main body of our work.

The remainder of the paper is organized as follows: Section 2 describes the
problem under investigation and defines the novel kind of pattern we are inter-
ested in. In Section 3 we describe the details of our algorithm. We report on our
experimental results in Section 4 and present related work in Section 5. Finally,
in Section 6 we discuss possible future research directions and in Section 7 we
provide our conclusions.

2 Patterns of Graph Evolution

2.1 Time-Evolving Graphs

We start by describing how we conceptually represent an evolving graph, and
subsequently discuss how to actually represent the graph in a more compact
format. As usual the terminology G = (V, E, λ) is used to denote a graph G
over a set of nodes V and edges E ⊆ V × V , with a labeling function λ :
V ∪E �→ Σ, assigning to nodes and edges labels from an alphabet Σ. These labels
represent properties, and for simplicity we assume that they do not change with
time. As an example, in a social network where nodes model its members, node
properties may be gender , country, college, etc., while an edge property can be
the kind of connection between two users. The evolution of the graph over time
is conceptually represented by a series of undirected graphs G1, . . . , GT , so that
Gt = (Vt, Et) represents the graph at time t. Since G1, . . . , GT represent different
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Fig. 2. Relative time patterns extracted from two different samples of the DBLP co-

authorship network: respectively 1992-2002 for (P1), and 2005-2007 (P2). Dataset de-

tails are given in Sec. 4.1.

snapshots of the same graph, we have Vt ⊆ V and Et ⊆ E. For simplicity of
presentation, we assume that as the graph evolves, nodes and edges are only
added and never deleted: i.e., V1 ⊆ V2 ⊆ . . . VT and E1 ⊆ E2 ⊆ . . . ET .

It is worth noting that the number of edge deletions in social networks is
so small to be negligible when analyzing the temporal evolution of networks.
However, in our framework we can handle also deletions by slightly changing the
matching operator as described in Section 6.

Our mining algorithm represents the dataset by simply collapsing all the
snapshots G1, . . . , GT in one undirected graph G, in which edges are time-
stamped with their first appearance. Thus, we have G = (V, E) with V =⋃T

t=1 Vt = VT and E =
⋃T

t=1 Et = ET . To each edge e = (u, v) a time-stamp
t(e) = argminj{Ej | e ∈ Ej} is assigned. Note that time-stamps on the nodes
may be ignored as a node always comes with its first edge and hence this infor-
mation is implicitly kept in edge time-stamps. Overall, a time-evolving graph is
described as G = (V, E, t, λ), with t assigning time-stamps to the set of edges E.

2.2 Patterns

Consider a time-evolving graph G, as defined above. Intuitively a pattern P of
G is a subgraph of G that in addition to matching edges of G also matches their
time-stamps, and if present, the properties on the nodes and edges of G.

Definition 1 (Absolute-time pattern)
Let G = (V, E, t, λ) and P = (VP , EP , tP , λP ) be graphs, where G is the time-
evolving dataset and P a pattern. We assume that P is connected. An occurrence
of P in G is a function ϕ : VP �→ V mapping the nodes of P to the nodes of G
such that for all u, v ∈ VP :

i) (u, v) ∈ EP ⇒ (ϕ(u), ϕ(v)) ∈ E,
ii) (u, v) ∈ EP ⇒ t(ϕ(u), ϕ(v)) = t(u, v), and
iii) λP (v) = λ(ϕ(v)) ∧ λP ((u, v)) = λ((ϕ(u), ϕ(v)))

In case no labels are present for edges or nodes, the last condition (iii) is ignored.
Two examples of patterns from the DBLP co-authorship network are shown in
Fig. 2. Those examples motivate us to make two important decisions. First, since
our goal in this paper is to study patterns of evolution we naturally focus on
patterns that refer to more than one snapshots such as the examples in Fig. 2.
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In other terms we are not interested in patterns where all edges have the same
time-stamp. The second decision is based on the following observation. Consider
pattern P1: arguably, the essence of the pattern is the fact that two distinct pairs
of connected authors, one collaboration created at time 0, and one at time 1, are
later (at time 2) connected by a collaboration involving one author from each
pair, plus a third author. We would like to account for an occurrence of that
event even if it was taking place at times, say, 16, 17 and 18. To capture this
intuition we define relative-time patterns.

Definition 2 (Relative-time Pattern). Let G and P be a graph and pattern
as in Definition 1. We say that P occurs in G at relative time if there exists a
Δ ∈ R and a function ϕ : VP �→ V mapping the nodes of P to the nodes in G
such that ∀u, v ∈ VP

i) (u, v) ∈ EP ⇒ (ϕ(u), ϕ(v)) ∈ E,
ii) (u, v) ∈ EP ⇒ t(ϕ(u), ϕ(v)) = t(u, v) + Δ, and
iii) λP (v) = λ(ϕ(v)) ∧ λP ((u, v)) = λ((ϕ(u), ϕ(v)))

The difference between Definitions 1 and 2 is only in the second condition. As a
result of Definition 2, we obtain naturally forming equivalence classes of struc-
turally isomorphic relative time patterns that differ only by a constant on their
edge time-stamps. To avoid the resulting redundancies in the search space of all
relative time patterns we only pick one representative pattern for each equiva-
lence class, namely the one where the lowest time-stamp is zero.

In the remainder of this paper we focus on relative time patterns, as they
subsume the absolute time case: they are both more interesting and more chal-
lenging to mine.

2.3 Support

Next we discuss the support measure we use. Let GΣ be the set of all graphs
over an alphabet Σ. We define support as a function σ : GΣ ×GΣ �→ N. Given a
host-graph G and a pattern P , the value of σ(P, G) reflects the support of the
pattern in the host-graph.

Defining a concept of support for the single graph setting is a non-trivial task,
which has received attention recently [14,8,4,5]. The most important property
that a definition of support must satisfy is anti-monotonicity, that is, for all
graphs G, P and P ′, where P is a subgraph of P ′, it must hold that σ(P, G) ≥
σ(P ′, G). This property is exploited by pattern miners to prune the search space.
Anti-monotonicity holds trivially in the transactional setting, but is more tricky
for the single-graph setting. For instance, while the total number of occurrences
of a pattern is intuitively a meaningful measure, it is not anti-monotonic. As
an example consider Fig. 4(b): the number of occurrences in the host graph Y
of the pattern indicated as “body” is 1, while the number of occurrences of its
supergraph indicated as “head” is 2, thus violating anti-monotonicity.

A first feasible support measure was proposed in [14] followed by a refine-
ment published in [8]. Both measures rely on solving a maximum independent
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Fig. 3. (a): a graph with three different occurrences of a pattern evaluates to

σ = 2. (b): a graph H with relative edge labels and all possible relative subgraphs

A, B, C, D, E, F, G

set problem MIS which is NP-complete. We employ the minimum image based
support measure recently introduced in [4] which does not require solving a MIS.
This measure is based on the number of unique nodes in the graph G = (VG, EG)
that a node of the pattern P = (VP , EP ) is mapped to, and defined as follows:

Definition 3 (Support)

σ(P, G) = min
v∈VP

| {ϕi(v) : ϕi is an occurrence of P in G} |

By taking the node in P as reference which is mapped to the least number of
unique nodes in G, the anti-monotonicity of the measure is ensured. An example
of minimum image based support is given in Fig. 3(a). Even if the pattern has
3 occurrences in the host graph, it has support σ = 2. In fact the lower white
node of the pattern can only be mapped to nodes 1 and 8 in the host graph.

The advantage of this definition over other definitions introduced [14,8] is
twofold. From a practical point of view it is computationally easier to calcu-
late since it does not require the computation of all possible occurrences of
a pattern-graph in the host-graph. Additionally it does not require to solve a
maximal independent set problem for each candidate pattern. From a theoreti-
cal perspective we know that this definition is an upper bound for the according
overlap based definitions [4,8]. Hence the support according to this definition is
closer to the real number of occurrences in the graph.

2.4 Rules and Confidence Measure

The support of a pattern can provide insight into how often such an event may
happen compared to other specific changes, but not how likely is a certain se-
quence of steps. To acquire this information we need to decompose a pattern into
the particular steps and subsequently determine the confidence for each transi-
tion. Each step can be considered as a rule body→head with both body and head
being patterns as defined in the previous section. Unfortunately, this does not
yet solve our problem, but rather introduces two important questions:
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Fig. 4. Two example host-graphs X and Y illustrating different problems with support

and confidence notions

1. How to decompose a pattern into head and body?
2. What are reasonable definitions of confidence?

Regarding the decomposition consider pattern H in Fig. 3(b). An occurrence of
H implies an occurrence of all its sub-patterns A−G. Similarly to the definition
of association rules all A−G can be considered candidate-body in order to form
a graph evolution rule with pattern H as head. Fortunately, most of those pos-
sibilities can be discarded immediately. First, we are interested in evolution and
hence only care about rules describing edges emerging in the future. This allows
us to discard bodies A, C, D, E, and F thus only leaving B and G. Furthermore,
the step should be as small as possible to allow for a high granularity wherefore
we would drop candidate-body G in the example, leaving B as body for the
head H . Following the same reasoning, G would be the only choice as body for
B as head. Similar the other rules in the example are E → A, D → C, G → E.
The natural body thus would be the head discarding all the edges from the last
time-step of the target-pattern. More formally:

Definition 4 (Graph Evolution Rule). Given a pattern head PH the body PB

is defined as: EB = {e ∈ EH | t(e) < maxe∗∈EH (t(e∗))} and VB = {v ∈ VH |
deg(v, EB) > 0}, where deg(v, EB) denotes the degree of v with respect to the edges
in EB. Moreover we constrain PB to be connected. Finally, the support of a graph
evolution rule is the support of its head.

This definition yields a unique body for each head and therefore a unique con-
fidence value for each head. This allows us to represent the rules by the head
only. Note that the definition disallows disconnected graphs as body due to the
lack of a support-definition for disconnected graphs. As a consequence not all
frequent patterns can be decomposed into graph evolution rules.

Consider for instance pattern P1 in Fig. 2: after removing all edges with the
highest time-stamp, and discarding disconnected nodes, the graph that remains
still contains two disconnected components (the one-edge component with label
1, and the one with label 0). Since the support is not defined for such discon-
nected pattern, P1 can not be decomposed to be a GER. On the other hand, P2
can be decomposed: in fact after removing all edges with the maximum time-
stamp, and subsequently the disconnected node, we obtain a connected graph
that will become the body of the rule for which P2 is the head. Note that a
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GER can be represented in two different ways: either explicitly as two patterns
(body→head), or implicitly by representing only the head as P2 in Fig. 2. This
is possible since there is a unique body for each head.

Finally, we have to choose a reasonable definition of confidence of a rule.
Following the classic association rules framework, a first choice is to adopt the
ratio of head and body supports as confidence. With the support being anti-
monotonic this yields a confidence value which is guaranteed to be between zero
and one. However, Fig. 4(a) shows that this definition may in some cases lack
a reasonable semantic interpretation. In the upper host-graph X we find three
possible ways to close a triangle given the edges from time-stamp 7. The confi-
dence of 1 suggests that all of these will close to form triangles, while the graph
shows that only one actually does. To overcome this counterintuitive result, we
investigated if the ratio of number of occurrences of head and body can be em-
ployed to solve this issue. While this definition of confidence allows for more
reasonable semantics for the case in Fig. 4(a), it has the clear disadvantage that,
due to the lack of anti-monotonicity, it may yield confidence values larger than
1, as in Fig. 4(b). In our experiments we compare the two alternative defini-
tions showing that the minimum-image-based support is an effective and useful
concept, while the occurrence-based definition has unpredictable behavior. More-
over, while the support is already available as it is computed for extracting the
frequent patterns, the occurrence based confidence needs a separate and costly
computation.

3 Mining Graph Evolution Rules

GERM is an adaptation of the algorithm in [4], which was devised to prove the
feasibility of the minimum image based support measure, and which in turn,
was an adaptation of gSpan [22]. Thus, GERM inherits the main characteristics
from those algorithms. In particular, GERM is based on a DFS traversal of the
search space, which leads to very low memory requirements. Indeed, in all the
experiments that we performed the memory consumption was negligible.

We next describe in detail how to adapt gSpan to GERM whereas the main
changes are in the SubgraphMining method shown as Algorithm 1. The first key
point is that we mine patterns in large single graphs, while gSpan was developed
to extract patterns from sets of graphs. The part most involved in adapting
gSpan is the support computation in line 7. Thus we start from the implemen-
tation of [4], where gSpan support calculation is replaced by the minimum im-
age based support computation, without the need for changing the core of the
algorithm.

One of the key elements in gSpan is the use of the minimum DFS code,
which is a canonical form introduced to avoid multiple generations of the same
pattern.

We need to change this canonical form in order to enable GERM to mine
patterns with relative time-stamps (cf. line 1). As explained after Definition
2, we only want one representative pattern per equivalence class, namely the
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Algorithm 1. SubgraphMining(GS, S, s)
1: if s 
= min(s) then return // using our canonical form
2: S ← S ∪ s
3: generate all s′ potential children with one edge growth

4: Enumerate(s)
5: for all c, c is s′ child do
6: // using definition 3 based on definition 1 or definition 2
7: if support(c)≥ minSupp then
8: s ← c
9: SubgraphMining(GS, S, s)

one with the lowest time-stamp being zero. This is achieved by modifying the
canonical form such that the first edge in the canonical form is always the one
with the lowest time-stamp, as compared to gSpan where the highest label is
used as a starting node for the canonical form. Any pattern grown from such a
pattern by extending the canonical form will have the same lowest time-stamp,
which we set to zero by a simple constraint on the first edge. Hence we guarantee
to extract only one pattern per equivalence class which dramatically increases
performance and eliminates redundancy in the output.

Note that when matching a pattern to the host-graph we implicitly fix a value
of Δ, representing the time gap between the pattern and the host graph. In order
to complete the match all remaining edges must adhere to this value of Δ. If
all the edges match with the Δ set when matching the first edge, the pattern is
discovered to match the host-graph with that value of Δ.

Another important issue is to be able to deal with large real-world graphs,
in which several nodes have high degree (the degree distribution in our datasets
follows a power law). In typical applications of frequent-subgraph mining in the
transactional setting, such as biology and chemistry, the graphs are typically of
small size and they are not high-degree nodes. Dealing with large graphs and
high degrees give rise to increased computational complexity of the search. In
particular, having nodes with large degree increases the possible combinations
that have to be evaluated for each subgraph-isomorphism test. We thus equip
GERM with a user-defined constraint specifying the maximum number of edges
in a pattern. This constraint allows to deal more efficiently with the DFS strategy
by reducing the search space. Our experiments confirm that the total running
time is much more influenced by the maximum-edge constraint than by the
minimum support threshold.

4 Experimental Results

In this section, we report our experimental analysis. The GERM algorithm was
implemented in C++. All the experiments were conducted on a Linux cluster
equipped with 8 Intel Xeon processors at 1.8Ghz and 16Gb of RAM.
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Table 1. Dataset statistics: Number of nodes and edges and resulting average degree

for the total graph as well as for the largest connected component (LCC) out of all

connected components (CC). Further the growth rate in terms of edges: total growth

as ratio between the graph size at the final and the initial time-stamps, and average

growth rate per time-stamp.

LCC Growth Rates

Dataset Date |V| |E| avg T #CC |V| |E| avg total avg
deg deg

flickr-month 03-05 147 241 1.64 24 16 74 182 2.43 60347 2.832

flickr-week 02-05 149 246 1.64 76 16 76 186 2.45 246331 0.241

y!360-month 04-05 177 205 1.16 10 17 110 155 1.40 68470 5.150

y!360-week 04-05 177 205 1.16 41 17 110 155 1.40 68470 0.834

arxiv92-01 92-01 709 289 4.08 10 6 49 260 5.32 803 1.691

dblp92-02 92-02 129 277 2.15 11 13 83 220 2.63 25 0.408

dblp03-05 03-05 109 233 2.15 3 14 53 153 2.88 3 0.871

dblp05-07 05-07 135 290 2.15 3 16 72 201 2.76 3 0.749

×1000 ×1000 ×1000 ×1000 ×1000

4.1 Datasets

We conducted experiments on four real-world datasets: two social networks
(Flickr and Y!360) and two bibliographic networks (DBLP and arXiv). Table 1
reports statistics on the resulting graphs.

Flickr (http://www.flickr.com/): Flickr is a popular photo-sharing portal.
We sampled a set of Flickr users with edges representing mutual friendship and
edge time-stamp the moment when the bidirectional contact was established.
We generated one graph with monthly and one with weekly granularity.

Y!360 (http://360.yahoo.com/): Yahoo! 360◦ is an online service for blogging.
Again we sampled a set of users and proceed as in the Fickr dataset. In this case
the monthly and weekly datasets contain exactly the same time period.

DBLP (http://www.informatik.uni-trier.de/~ley/db/): This dataset is
based on a recent snapshot of DBLP, which has yearly time granularity. Ver-
tices represent authors and edges represent the co-authorship relation. The edge
time stamps represent the year of the first co-authorship. Three different graph
snapshots were extracted, for three different years.

arXiv (http://arxiv.org/): Another co-authorship graph dataset, extracted
from the arXiv repository. The resulting graphs arxiv92-01 contain co-authorship
relations that emerged in the years 1992 to 2001 with a yearly time granularity.

As discussed in Section 2, our framework allows to have vertex and edge labels
that represent additional information. We experiment with node labels that are
based on two graph-theoretic measures: the degree and the closeness centrality.
These measures change as the graph evolves. To obtain static labels the measures
are computed on the whole graph, corresponding to the last time stamp and then
they are discretized in 5 bins.

http://www.flickr.com/
http://360.yahoo.com/
http://www.informatik.uni-trier.de/~ley/db/
http://arxiv.org/


124 M. Berlingerio et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. (a)–(g): comparison of confidence of graph evolution rules in different networks.

(h) and (i): comparison of support of patterns in different networks.

4.2 Results

We analyze the experimental results with regard to the following questions:

Q1 Do the extracted patterns and rules characterize the studied network?
Q2 Do different time granularities influence the confidence of the rules?
Q3 How do the different confidence definitions compare?
Q4 How do the parameters and the type of dataset influence the number of

derivable rules, the number of patterns obtained, and the running time?

Q1: Discriminative analysis. Fig. 5 compares different pairs of datasets in
terms of the confidence of extracted rules. For each pair-wise comparison we
show the scatter plot of the confidence of the rules that are (i) most frequent
in each dataset, and (ii) common in both datasets. The plots allow for several
interesting observations. First, Fig. 5(a), (b) and (c) show that the confidence
of the extracted rules are different between a co-authorship network (arXiv and
DBLP) and a social network (Y!360).1 On the other hand, the confidence of
1 Using Flickr instead of Y!360 gives similar results.
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(a) (b) (c)

Fig. 6. (a): confidence comparison between monthly and weekly granularity. (b): scatter

plot comparing the two different definitions of confidence discussed in Section 2.4. (c)

number of valid rules as percentage of the number of frequent patterns, for varying

confidence.

rules are similar between the two co-authorship networks (figure (d)) and the
two social networks (figures (e)-(g)). Thus, the plots confirm our claim that
graph evolution rules characterize the different types of networks.

Fig. 5 (h) and (i) compare the same two datasets as in figures (c) and (g),
but using the measure of support instead of confidence. One notices that the
measure of support cannot be used to characterize different types of networks.

Q2: Time-granularity. Fig. 6(a) is the scatter plot of confidence of rules ex-
tracted from the same network but with different time granularity. The col-
ors/shapes in the plot correspond to the difference between maximum time
stamp on an edge in the head (MTH) and maximum time stamp on an edge
in the body (MTB) of the rule. We notice that the rules form three clear clus-
ters (shown with different colors/shapes and the corresponding regression lines)
that correspond to the different between the maximum time stamp in the the
head and the body of each rule. In particular, we see that rules that have higher
weekly confidence than monthly correspond to a larger difference MTH−MTB.
This observation can be explained if we think about confidence as prediction:
the difference MTH−MTB can be thought as the temporal gap that must be
bridged by a prediction task, and clearly predicting further in the future is more
difficult (i.e., lower confidence).

Q3: Confidence measures. Fig. 6(b) shows that the two confidence mea-
sures disagree. A more thorough investigation shows that all the rules with an
occurrence-based confidence exceeding 200 have the most simple body: one sin-
gle edge. Furthermore, all those rules span 3 or 4 time-steps from body to head.
Given that all those rules share the same simplistic body, which can be matched
anywhere, a prediction task, especially at 3 or 4 steps into the future, is doomed
to fail. On the other hand, the support-based confidence, assigns score below 0.2
to all rules with the simplistic body – declaring them almost meaningless – thus
indicating that support-based confidence is a more appropriate measure to use.

Q4: Influence of parameters. We performed further experimentation on the
number of extracted rules and the running time of the algorithm. Fig. 6(c) shows
the number of valid graph evolution rules as percentage of the number of frequent
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Running time and number of patterns found with varying min. support and

max. edge thresholds

patterns found for various thresholds of minimum confidence. This is done on
one bibliographic and one social network, with and without node labels. In all
cases, the number of rules is close to 80% of the number of frequent patterns. The
results reaffirm the observation from Fig. 6(a), namely, that rules extracted from
a dataset with weekly granularity have higher confidence than rules extracted
from a dataset with yearly granularity.

Fig. 7(e) shows that the number of extracted patterns grows as a function of
the number of edges allowed in the pattern. This behavior is expected as the
number of possible graphs increases exponentially with the number of edges.
Fig. 7(d) shows another typical result: lowering the support threshold allows for
more complex patterns that contain more edges, and thus a similar increase in
the number of extracted patterns.

Fig 7(a)-(b) show that the running time is affected more by the maximum-
edge than the minimum-support constraint. While the increase is almost linear
with decreasing minimum support, the running time grows exponentially with
an increasing maximum edge size.

A more interesting observation can be made from Fig. 7(c) and (f), in which
we compare the Y!360 graph for the two different time granularities. The weekly
graph has 41 edge labels and is more diverse than the monthly graph, which has
only 10. Comparing the two datasets, we see that while the running times are very
different, the number of extracted patterns is almost the same. The explanation of
this apparent discrepancy is the following: With respect to the number of patterns,
notice that, on one hand, more edge labels allow for more patterns to be found, on
the other hand, less edge labels allow patterns to be found more repeatedly. Thus
for a fixed number of edges, there are more high-support patterns in the graphwith
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(a) (b) (c)

Fig. 8. Running time and number of patterns found on networks with labelled nodes

with varying level of minimum support

the few edge labels, and more low-support patterns in the graph with the many
edge labels. With respect to the running times, more patterns of smaller size can
be found in the graph with the many edge labels, and for those small patterns
the subgraph-isomorphism problem is easier to solve. Furthermore, it is easier to
encounter a non-matching edge earlier, thus being able to terminate earlier the
search-branch for the subgraph-isomorphism.

Similar results hold for graphs with labelled nodes, as shown in Fig. 8. How-
ever, in the case of node labels, the introduced diversity has the effect of reducing
the number of patterns found, and the running time.

5 Related Work

Several papers have focused on the global evolution of networks. For instance,
Backstrom et al. [2] studied the evolution of communities in social networks,
and Leskovec et al. [16] discovered the shrinking diameter phenomena on time-
evolving networks. On the other hand, studying network evolution at a more
local level, Leskovec et al. [15] used a methodology based on the maximum-
likelihood principle and they showed that edge locality plays a critical role in
the evolution of networks.

Other recent papers present algorithmic tools for the analysis of evolving net-
works. Tantipathananandh et al. [20] focus on assessing the community affiliation
of users and how it changes over time. Sun et al. [18], apply the MDL principle
to the discovery of communities in dynamic networks. The main difference of
the work of Sun et al. [18] from previous work such as [1,19] is that they develop
a parameter-free framework. However, as in [20], the focus lies on identifying
approximate clusters of users and their temporal changes. Ferlez et al. [7] use
the MDL principle for monitoring the evolution of a network.

Desikan and Srivastava [6] study the problem of mining temporally evolv-
ing web graphs. Three levels of interest are defined: single node, subgraphs
and whole graph analysis, each of them requiring different techniques. Inokuchi
and Washio [11] propose a fast method to mine frequent subsequences from
graph-sequence data defining a formalism to represent changes of subgraphs over
time. However the time in which the changes take place is not specified in the
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patterns. Liu et al. [17] identify subgraphs changing over time by means of vertex-
importance scores and vertex-closeness changes in subsequent snapshots of the
graphs. The most relevant subgraphs are hence not the most frequent, but the
most significant based on the two defined measures. The paper that is most re-
lated to our work is the one by Borgwardt et al. [3] who represent the history
of an edge as a sequence of 0’s and 1’s representing the absence and presence of
the edge respectively. Then conventional graph-mining techniques are applied to
mine frequent patterns. However, there are several differences to our approach.
First, the employed mining algorithm GREW is not complete, but heuristic.
Further, the overlap-based support measure used requires solving an maximal
independent set problem for which a greedy algorithm is used. Another compu-
tational issue with their approach is the extension of an edge in the so-called
inter-asynchronous FDS case. Accordingly the size of the networks analyzed in
the paper is rather small.

Various proposals for mining frequent patterns in the single graph context
[14,21,8,4] were discussed in Section 2. A recent paper by Calders et al. [5] intro-
duces a new measure named minimum clique partition, which analogous to the
maximal independent set is based on the notion of an overlap graph and thus
requires solving an NP-complete problem. They prove that support measures
based maximal independent set and minimum clique partition are the minimal
and the maximal possible meaningful overlap measures, and show that [12] intro-
duced a function which is sandwiched between these two measures; computable
in polynomial time. However, any of those measures requires computing an over-
lap graph for each candidate pattern, which is a costly operation in itself due to
requiring enumerating all occurrences of a pattern.

6 Extensions and Future Work

In this section we discuss briefly how to relax some of the restrictions of our
problem definition.

Consider first the pattern H in Fig. 3(b). Imagine that, for a particular
dataset, it is the case that when there is a star of size 3 an edge between two
peripheral nodes appear. Pattern H captures partly this phenomenon, but is too
“specific” as it emphasizes that the star was formed in particular time instances
before the appearance of the last edge. A more general pattern would be to
replace the time-stamp of the last edge with T , and the time-stamp of all the
edges in the star with the constraint “< T ”, which will have to be satisfied when
tested with the time-stamps of the host graph. We plan to extend our algorithm
to experiment with this idea as a continuation of our work.

For sake of presentation, in Section 2 we assumed that graphs can only grow in
time. However, our approach can be easily extended to handle edge-deletions if an
edge can appear and disappear at most once. The extension would consider two
time-stamps tI (time of insertion) and tD (time of deletion) on each edge instead
of the single time t. By modifying definitions 1 and 2 condition (ii) to ∀(u, v) ∈
EP it is tI(ϕ(u), ϕ(v)) = tI(u, v) + Δ and tD(ϕ(u), ϕ(v)) = tD(u, v) + Δ.
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We did not implement the above matching since two out of four datasets
(arXiv and DBLP) are by definition only growing (no deletions), and deletions
are rare in the other two. As future work we plan to incorporate deletions and
study networks with a higher likelihood of such events.

In our approach, we have not considered node or edge relabelling so far. Con-
sidering node and edge relabeling is very interesting, as in many graphs, such
as social networks, the properties of nodes and edges change over time. For ex-
ample, in social-network analysis it would be interesting to study the change of
leadership in communities and its effects.

Besides all the above, which are possible extensions to the type of patterns
we are able to mine, we would like to go further by leveraging the concept of
rule confidence, and designing a paradigm that will allow us to predict graph
evolution, and that, together with GERM , will provide helpful tools analyzing
datasets of dynamic graphs.

7 Conclusions

Following a frequent pattern mining approach, we defined relative time patterns
and introduced introduced the problem of extracting Graph Evolution Rules,
satisfying given constraints of minimum support and confidence, from an evolv-
ing input graph. While providing the problem definition we discussed alternative
definitions of support and confidence, their merits and limits. We implemented
GERM an effective solution to mine Graph Evolution Rules, and extensively test
it on four large real-world networks (two social networks, and two co-authorship
networks), using different time granularities. Our experiments confirmed the fea-
sibility and the utility of our framework and allowed for interesting insights. In
particular we showed that Graph Evolution Rules with their associated concept
of confidence, indeed characterize the different types of networks.

Availability. The executable code of the GERM software is freely available at:
http://www-kdd.isti.cnr.it/~berlingerio/so/gm/.
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Abstract. Monitoring the variables of real world dynamic systems is a difficult
task due to their inherent complexity and uncertainty. Particle Filters (PF) per-
form that task, yielding probability distribution over the unobserved variables.
However, they suffer from the curse of dimensionality problem: the number of
particles grows exponentially with the dimensionality of the hidden state space.
The problem is aggravated when the initial distribution of the variables is not
well known, as happens in global localization problems. We present a new paral-
lel PF for systems whose variable dependencies can be factored into a Dynamic
Bayesian Network. The new algorithms significantly reduce the number of par-
ticles, while independently exploring different subspaces of hidden variables to
build particles consistent with past history and measurements. We demonstrate
this new PF approach on some complex dynamical system estimation problems,
showing that our method successfully localizes and tracks hidden states in cases
where traditional PFs fail.

1 Introduction

Estimating the hidden state of a multivariate dynamical system remains a large chal-
lenge. While the Dynamic Bayesian Network (DBN) formalism provides us an excel-
lent way to represent such systems, performing inference in these models remains dif-
ficult, and approximations are usually necessary. Among the most popular approximate
inference methods for DBNs are particle filters (PFs): point-mass approximations to
the hidden state distribution, which are updated via Monte Carlo sampling steps [1].

In spite of their popularity, PFs can be sensitive and tricky to apply to new prob-
lems. One of the core challenges arises from the familiar curse of dimensionality: in
even modest dimensionality spaces, the chances are high that many or most particles
will fall into near-zero probability regions of the state space, leading to serious particle
depletion and quickly driving the PF off track. This problem is evident, for example,
in multi-object tracking tasks [2]. The difficulty is exacerbated by poor initial particle
distributions that are unlikely to choose any high-probability particles. The dimension-
ality/depletion difficulty can be reduced by careful choice of initial particle distribution
and sampling and reweighting distributions, but doing so requires extensive domain
knowledge engineering.

In this paper, we propose a principled sampling framework to overcome some of the
dimensionality drawbacks for PFs applied to DBNs with factored state spaces and mul-
tiple conditionally independent observations (e.g. multi-object tracking). Our approach
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Fig. 1. Combining the information of two low probability particles (Figure 1a) to create a higher
probability one (Figure 1b)

requires less prior knowledge about domain dynamics and fewer ad hoc corrections
than other methods [3,4].

The key insight is displayed in Figure 1a. Here we see a state space of three variables,
{A,B,C}, with the support of the target distribution displayed as a bright yellow cloud
centered at approximately [A = 40,B = 20,C = 30]. Two particles (red star and green di-
amond) fall far from the target distribution and are assigned zero probability. However,
the red star particle has significant probability in the projection into the {C} subspace
(dark olive cloud), while the green diamond particle has non-negligible probability in
the A,B subspace (dark olive cloud). Our method amounts to carefully combining the
useful dimensions of these particles (A and B from the green diamond particle and C
from the red star) into a hybrid particle (Figure 1b, blue triangle) that falls within our
target distribution. The trick is doing so in a way that correctly accounts for both the
observation likelihoods associated with different subspaces and the particles’ previous
state histories.

Of course, the basic insight is not, itself, new [5,6,7,8]. What we add to previous work
is a principled design of the PF importance sampling (IS) and weighted resampling
(WR) steps that provides a firm probabilistic foundation for combining such particles.
Doing so has three benefits. First, it allows a form of “parallel” filtering that works with
separate, lower-dimensional subspaces of variables simultaneously (Section 3). Second,
it helps overcome poor particle initialization, improving state localization and conver-
gence when the initial particle sample is far from the target distribution (Section 5).
And finally, it allows us to get away with simultaneously fewer particles and less prior
knowledge/less sophisticated sampling distributions than existing methods (Section 4).

2 Particle Filter Fundamentals

Our core contribution is to modify the standard PF for DBNs [9] by substituting its
proposal distribution for another that lets it sample the subspaces defined for different
subsets of hidden variables and introducing the weight update equation related with the
new proposal. In this section we introduce an uniform notation and formalism in which
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to state the standard PF and our modifications to it. In the process, we also introduce
a sub-contribution: the “instantaneous” PF, a variation of the standard PF that emerges
to estimate only the current state of the hidden variables instead of the state of all the
hidden variables at any time.

2.1 Definitions and Notation

In this paper, a capital letter U represents a random variable, a boldface capital letter U
– a set of random variables, a lowercase letter u – the specific value of the corresponding
random variable U , and a lowercase bold letter u – an assignment of the values to the
variables of its set U . We also define P(U) as a partition of U .

A BN is an annotated directed graph that encodes the probability distribution of a set
of random variables V . DBNs model the distribution of a sequence of sets of variables.
A set of variables belonging to kth time slice is represented as Vk and the total set
of variables up to the current time slice t is V0:t . To distinguish hidden and observed
variables, we use X , Xt and X0:t to denote the former, and Y , Yt and Y0:t for the
latter. The graph is completely defined by the sets of parents of all its variables: Pak(V )
represents the subset of the parents of variable V that belong to time slice k and pak(V )
their assignment to particular values. Similarly, we also define the set of children of a
variable and their assignments by Chk(V ) and chk(V ).

Probability distributions will be represented as p(·), q(·) and r(·): the first related
with the probabilities of the variables of the system and the others with the proposal
distributions used to sample the particles from. The operation a∼ q(·) represents sam-
pling a according to q(·).

A PF approximates the probability p
(
X|y

)
of a set of hidden variables X given

the values of the measurements Y by the point mass distribution ∑N
i=1 w(i)δ(X−x(i)),

where δ(·) is Dirac delta function, x(i) are the values of the variables in X in the i-th

particle, w(i) their weights, and N the number of particles. Additionally, x(i), x
(i)
0:t and

pa(i)
t (V ) represent the assignments of variable X , the variables in X0:t and the variables

in Pat(V ) to the values they have in the i-th particle, and w(i)
t stands for the weight of

the particle when we have unrolled the DBN up to the time stamp t.

2.2 Importance Sampling (IS) and Weighted Resampling (WR)

To develop a new PF we can modify the two basic operations that are normally com-
bined to obtain the values of the particles x(i) and the weights w(i) [10]:

– Importance sampling is used to (1) create new particles by means of a proposal
distribution q(X|y) that generates their values (x(i) ∼ q(X|y)) and (2) calculate
their weights as w(i) =p(x(i)|y)/q(x(i)|y).

– Weighted resampling is used to redistribute an existing set of weighted particles
(x(i),w(i)) according to the resampling function r(X), without changing the ap-
proximated distribution. The new set of weighted particles (x′(i),w′(i)) is obtained
as x′(i) = x( j) and w′(i) = w( j)/r(x( j)) with j ∼ r(x( j)).

In short, IS is used to create the particles while WR is carried out to increment the
number of the particles in the regions of high interest and reduce them in the others.
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2.3 PF for DBN

Note that we have not specified which random variables are included in the sets X and
Y . Although it is often non stated explicitly in the literature, different PFs emerge from
different choices of hidden variables X and observed values y. When X =X0:t the PF
is responsible of estimating the probability of the trajectory X0:t while when X =Xt

is in charge of estimating the probability of the state Xt at the current time slice t.
To distinguish the two problems, we name the PF filters that solve the first problem
“trajectory” PF and the second “instantaneous”. The set of observed variables Y is in
both cases Y =Y0:t .

The IS operation of both filters can be carried out sequentially exploiting the in-
dependence assumption imposed by the structure of the DBN. In the paper, we only
consider DBNs whose variables have parents only belonging to the current or previous
time slice (∀V ∈Vt ∧ ∀k /∈{t,t−1} Pak(V ) = /0). With this restriction, the structure of
the DBN factors the joint probability of the set of hidden and observation variables up
to time slice t as in Eq. (1). The dependence of each variable on its parents imposes an
ancestral ordering in the evaluation of the probabilities that needs to be considered by
the PFs.

p(X0:t ,Y0:t)=p(Xt ,Yt |X0:t−1,Y0:t−1)p(X0:t−1,Y0:t−1)
p(Xt ,Yt |X0:t−1,Y0:t−1)= ∏

X∈Xt

p(X |Pat−1(X),Pat(X))∏
Y∈Yt

p(Y |Pat−1(Y ),Pat(Y )) (1)

Although the two types of PFs work with different X , both are used to obtain the
values of the current state variables Xt , because the trajectory X0:t includes them.
Additionally, for some types of proposals q(X|y), they are equivalent. However, the
search space of the first is significantly bigger, and it usually needs more particles, as
[11] shows for the case of HMMs.

“Trajectory” PF. Its weights w(i)
t can be calculated with expression (2), which exploits

the factorization of the DBN, assumes that q(x(i)
0:t−1|y0:t)=q(x(i)

0:t−1|y0:t−1) and considers

that instead of sampling from q(x(i)
t |x

(i)
0:t−1,y1:t) we can do it from q(x(i)

t |x0:t−1,y1:t).

w(i)
t =

p
(
x

(i)
0:t |y0:t

)
q
(
x

(i)
0:t |y0:t

)∝
p
(
x

(i)
0:t ,y0:t

)
q
(
x

(i)
0:t |y0:t

)=
p
(
x

(i)
t ,yt |x(i)

0:t−1,y0:t−1

)
q
(
x

(i)
t |x

(i)
0:t−1,y0:t

) p
(
x

(i)
0:t−1,y0:t−1

)
q
(
x

(i)
0:t−1|y0:t−1

)
∝

∏
Y∈Yt

p
(

y|pa(i)
t−1(Y ),pa(i)

t (Y )
)

∏
X∈Xt

p
(

x(i)|pa(i)
t−1(X),pa(i)

t (X)
)

q
(
x

(i)
t |x0:t−1,y1:t

) w(i)
t−1

(2)

Different proposals and combinations of IS and WR create different “trajectory” PF.

The IS step of KLPF [9] uses q(x(i)
t |x0:t−1,y1:t) = ∏X∈Xtp(x

(i)|pa(i)
t−1(X),pa(i)

t (X)), and

so w(i)
t = ∏Y∈Ytp(y|pa(i)

t−1(Y ),pa(i)
t (Y ))w(i)

t−1. According to the ancestral ordering of the

variables, for each X∈Xt its value x(i)∼p(X |pa(i)
t−1(X),pa(i)

t (X)) and for each Y∈Yt mul-

tiplies w(i)
t by its corresponding likelihood p(y|pa(i)

t−1(Y ),pa(i)
t (Y )). The WR step of KLPF
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is carried out once all V∈Vt are processed, using r(x(i))=w(i)
t , what makes the resam-

pled particles have all the same weight. The PF in [12] uses the same factorization and
sequential weight updates as KLPF, but it alternates, according to the ancestral ordering,

IS for each X ∈Xt and WR with r(x(i)) = p(y|pa(i)
t−1(Y ),pa(i)

t (Y )) after the likelihood of

each measurement Y∈Yt is used to multiply the w(i)
t . That is, KLPF updates completely

w(i)
t taking into account all the variables of time slice t and does WR after it, while the

PF in [12] updates the w(i)
t for each variable and performs WR after each measurement

appears in the ancestral ordering. The other “trajectory” PFs listed in Section 1 combine
KLPF with other techniques.

“Instantaneous” PF. To the best of authors’ knowledge, there are no “instantaneous”

PFs designed for general DBNs. However, its w(i)
t can also be calculated by extending

the ideas that [11] utilizes for HMMs to the general DBN case. Equation (3), our first
contribution in this paper, calculates the weights by exploiting the factorization of the
DBN and marginalizing the hidden variables of the previous time slice. To simplify the
expression, it is possible to take out of the summation those variables that don’t have
hidden parents belonging to the previous time slice (V ∈ Vt s.t.Pat−1(V )∩Xt−1 = /0).

w(i)
t =

p
(
x

(i)
t |y0:t

)
q
(
x

(i)
t |y0:t

) ∝
p
(
x

(i)
t ,yt |y0:t−1

)
q
(
x

(i)
t |y0:t

) ∝

∫
p
(
x

(i)
t ,yt ,xt−1|y0:t−1

)
dxt−1

q
(
x

(i)
t |y0:t

)
∝

∫
p
(
x

(i)
t ,yt |xt−1,y0:t

)
p(xt1 |y0:t−1)dxt−1

q
(
x

(i)
t |y0:t

)

∝

N

∑
j=1

(
w( j)

t−1∏
Y∈Yt

p
(
y|pa( j)

t−1(Y ),pa(i)
t (Y )

)
∏

X∈Xt

p
(
x(i)|pa( j)

t−1(X),pa(i)
t (X)

))
q
(
x

(i)
t |y0:t

)
(3)

Although a factorization of the proposal distribution is also possible, the sequential way

proposed for updating w(i)
t in the “trajectory” PF proposed [12] is no longer valid for

the hidden variables that have to stay inside the summation.

3 A Parallel Sampling Framework for DBN

In a case with N hidden variables where there is an observation for each of these vari-
ables, the likelihood of a state is a product of the likelihoods of each hidden variable
in the state. A likely particle should be likely according to each and all of its variables,
otherwise its weight is going to be negligible. An easy situation arises when all hidden
variables are independent and their joint probability can be factored into a product of
its marginals. In this case, we can simply solve N PF in parallel and obtain a solution.
The problem arises when there are inter-dependencies in the hidden state, i.e. we have
a DBN of N hidden interacting random variables and their N conditionally independent
observations. If our prior is slightly wrong in even one of the hidden variables it is dif-
ficult to obtain a particle with a non-negligible weight. Thus a wrong start usually leads
to the hidden state representation completely going off track.
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Existing approaches to addressing the problem can be roughly split into three cat-
egories: 1) tracking only a subset of hidden variables while handling its complement
through additional probabilistic techniques [3,4], 2) sequentially alternating IS and WR
sub-steps for the variables belonging to each time slice of the DBN [10,12], and (3)
parallel creation of particles in subsets of hidden variables with their subsequent re-
combination by varying means [5,6,7,8].

The PFs presented in Section 2.3, sample the values of the current time hidden vari-
ables Xt from the values that their parents have inside the same particle. So the proba-
bility of each particle is highly dependent on the values that all the variables have inside
that particle and therefore on the initial sampling distribution. In problems with many
hidden variables, if no particle is “good” initially or at some point, there is little chance
for the presented PFs to recover.

However, the values of some variables of some particles that have zero probabil-
ity can be inside of the non-zero probability subspace associated with those variables.
Additionally, different particles can have different subsets of variables inside differ-
ent non-zero probability subspaces. This scenario is illustrated by Fig. 1a, where the
light yellow region represents the non-zero probability zone of a set of three variables
{A,B,C}, the darker olive surfaces and lines its projections into the different possible
subspaces, and the red star and green diamond the position of two particles with zero
probability but whose {C} and {A,B} variables are respectively inside probable sub-
spaces. The core idea of our PF framework consists on using the information of proba-
ble areas of different particles to build non-zero probable particles by parallel sampling
different subspaces of hidden variables. Figure 1b shows with a blue triangle a probable
particle obtained combining the probable regions of the red and green particles.

However, to create probabilistic consistent PFs we need to combine IS and WR steps,
and select the q(·) and r(·) functions. As the main distinction between the weight update
operation of the “trajectory” and “instantaneous” PFs appears in the numerator, we
can also use the same proposal for both types of filters. So, the parallel PF framework
presented in this paper is based on 1) the proposal presented in the following section,
that independently samples in parallel different subsets of hidden variables, and 2) in

the calculus of the w(i)
t of the particles considering this proposal and Eq. (2) or (3).

3.1 A Parallel Sampling Proposal

Independently sampling different subspaces of hidden variables belonging to each time

slice Xt can be achieved factoring the proposal q(x(i)
t |·,y1:t) that appears in the denom-

inator of Eq. (2) or (3) in as many proposals as subsets X exist in a given disjoint
partition P(Xt) of Xt :

q
(
x

(i)
t |·,y1:t

)
= ∏
X∈P (Xt)

q
(
x(i)|·,y1:t

)
(4)

The sampling proposal of each subset has to select highly probable values of their cor-
responding variables given all the past information. This behavior can be approximated
with a mixture model of the product of the transition priors of all the variables belong-
ing to each subset. However, to increment the flexibility of our PF, we substitute the
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transition prior by a proposal of each variable given its parents. This lets the user decide

whether to use the transition prior (q(x|pa( j)
t−1(X),pa(i)

t (X)) = p(x|pa( j)
t−1(X),pa(i)

t (X))) or
another distribution that will let the PF explore other regions of the space. The complete
proposal is presented in Eq. (5), where αX

j stands for the weight of each component of
the mixture related with the subspace defined by the variables in the subset X .

q
(
x

(i)
t |·,y1:t

)
=∏
X∈P (Xt )

(
N

∑
j=1

(
αX

j ∏
X∈X

q
(

x|pa( j)
t−1(X),pa(i)

t (X)
)))

(5)

The selection of the αX
j is fundamental because it let us change the importance of each

component of the mixture. To make it consistent with the past measurements we can
make it proportional to the product of the likelihoods related with the hidden variables
of the subspace defined by the subset X . However, to increment the flexibility of the
system, we substitute the likelihoods for other distributions that relate the observed
variables with their parents as it is presented in equation (6).

αX
j = ∏

Y∈Cht(X)∧X∈X

q
(

y|pa( j)
t−1(Y ),pa(i)

t (Y )
)

(6)

However, we can’t sample from the mixture model if the weights depend on values of
the different components of the mixture. To overcome this difficulty, we can follow the
approach of Auxiliary PFs [13,11]: we will assign to each hidden variables X∈Pat(Y ) in

Eq. (6) the mean value that will be obtained from sampling from q(x|pa( j)
t−1(X),pa(i)

t (X))
instead of a sampled one.

Equation (5) and (6) define completely our parallel proposal. However, it is impor-
tant to highlight that the parallel sampling idea proposed by (4) can be extended to other
types of factorization. For instance, we could extend the idea of substituting the transi-
tion priors and likelihoods by adding some extra components to the mixture that will let
us sample from regions of space no related with any particle at the previous time slice
or modifying αX

j to create more particles in certain regions of the space, according with
some prior kwnowlegde of the problem.

3.2 Defining the Partition of the Hidden and Observation Variables

The structure of the DBN imposes some restriction on the disjoint partition of hidden
variables. Additionally, Eq. (6) imposes some constraints too in the partition of the
observed variables. Both are closely related.

For the partition of the hidden variables, the isochronal connected hidden variables
and the isochronal hidden variables whose child is the same observed variable need to
be in the same partition. That is, the basic hidden partition fulfills that ∀X∈P(Xt)B ∈
Xif X ∈X ∧ (X ∈ Pat(B)∨ (Y ∈ Yt ∧B ∈ Pat(Y )∧X ∈ Pat(Y ))). Any other partition
is formed by the union of subsets of the basic one.

Regarding the partition of the observed variables, we need to divide them according
to the selected partition of the hidden variables, grouping the measurements with its
hidden parents. So, the basic observed partition fulfills ∀Y ∈P(Yt)∃X∈P (Xt)s.t.∀Y ∈
Y ∃X ∈Xs.t.Y ∈ Cht(X).
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Fig. 2. Example of partition for a DBN

An example is presented in Fig. 2, where there is a DBN with 6 hidden variables
{A,B,C,D,E,F} and 3 measurements {G,H, I} per time slice. This network has two
basic hidden partitions (P1 and P2), represented with the big rounded squares. Vari-
ables A and B belong to P1 because A∈Pat (B). C also belongs to P1, because G is a
common child of B and C. D, E and F belong to P2 because they are related through
their common children H and I. The measurements are divided according to the hidden
partitions: G belongs to the observed partition associated with P1 because it is a child
of B and C, and H and I to the other because they are children of D, E and F .

3.3 The Complete Parallel Framework

The first step, before carrying out the filtering steps of our framework consists on defin-
ing the disjoint partitions, taking into account the restrictions presented in Sec. 3.2.

Once the subsets are defined, and the original particles created with an initialization
proposal, we can sample the subspaces in parallel with the proposal defined by Eq.
(5) and (6). In short, we get the mean values of the hidden variables and calculate the
αX

j of each subset taking into account the ancestral ordering. We use αX
j to select a

component of the mixture and sample the hidden values from that component.

To calculate the w(i)
t of the particles created with the parallel proposal, we use either

(2) or (3). The numerator can be zero when the values of the hidden variables in the
current time slice are non probabilistically “consistent” with the ones of the previous
time slice and/or the measurements. The denominator can’t, because we have generated

it with the proposal. So, the final w(i)
t ≥0. When w(i)

t =0 for all the particles, as all of
them are equally non probable, we accept them with the same probability. This auto-

matically resets our PF to the values proposed by q(·) when the PF is lost (all w(i)
t =0).

Additionally, we can also include a WR step after calculating w(i)
t , or and create

a Serial and Parallel sampling PF that alternate substeps of our Importance Parallel
Sampling step with WR steps for the groups we sample in serial. However, the “instan-
taneous” PF can’t include a WR step before we have sampled all the variables that can’t
be extracted from the numerator’s summation in (3).

The computational cost of our PF framework depends on the expressions used for
calculating the numerator (“trajectory” or “instantaneous” case) and denominator (the
parallel sampling proposal) of (2) or (3). How to minimize the cost is out of the scope of
this article, although we believe that the use of N-body learning can reduce it
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significantly as implied by [11]. Additionally, we can use parallel computing archi-
tectures for calculating the probabilities values and sample groups of hidden variables.

4 Related Work

This section compares the behavior of our PFs with some of the existing ones, starting
with the PFs that combine the values of different subsets of hidden variables to create
new particles and following with other two techniques closely related with our PF.
Table 1 highlights the most relevant parts of our comparison.

Among the first group of PFs, the Factored PF in [5] is developed for systems with
discrete hidden variables. It approximates the distribution as a product of distribu-
tions of subsets of hidden variables. The probability of each subset is represented as a
weighted set of particles, and the inference is carried out building particles of the whole
set of hidden variables, performing a PF step with the whole particles, and marginaliz-
ing the whole PF distribution to obtain the point-mass distribution of each subset. Our
PF, valid for DBNs with continuous and discrete variables, follows a different path: it
keeps the weighted particle distribution of all hidden variables, samples from differ-
ent subsets according to αX

j , and builds the whole particle with the weights calculated
by (2) or (3).

The Hybrid-PF for the specific problem of [6] combines the Factored PF for dis-
crete variables with the Rao-Blackwellised technique for continuous ones, and includes
a look-ahead step to sample the most probable particles according to the current mea-
surements before building the whole particle. Our proposal is more general, doesn’t
distinguish discrete and continuous variables, and the look-ahead step is implicitly im-
plemented with our selection of αX

j .
The Genetic PF for HMM in [7] includes a Genetic Algorithm (GA) crossover and

mutation step, placed after having sampled the values of the hidden variable with the
transition prior and before calculating the weights with the version of (2) for HMM.

This lets the PF explore the whole space, although the calculated w(i)
t don’t consider

the two new steps. So, its w(i)
t represents only the probability of a hidden variable at the

current time given the current time measurement, although the probability of sampling
areas of the space consistent with previous measurements is higher.

The Hierarchical PF in [8] consists in multiple PF steps connected in serial and in
parallel. Although structurally the closest to our parallel PFs, it doesn’t show how to up-

date w(i)
t after the parallel connection, while our PFs provides the sampling distribution

as well as the updating weights equations.
It is important to highlight the connection of our PFs with the “instantaneous” PF for

HMM [11]. Its proposal, extended to DBNs, will be equal to ours when all the hidden
and observed variables belong to the same partition (P

(
Yt
)

= Yt)∧ (P
(
Xt
)

= Xt).
Finally, the serial PF presented in [10,12], that sequentially alternates IS and WR

sub-steps for the variables belonging to each time slice of the DBN, can be used in com-
bination with our PFs to build general Serial/Parallel PFs because the two approaches
complement each other: the serial approach is beneficial for DBNs which have many
isochronal links of hidden variables and can only be partitioned into a few sets, while
the parallel approach is beneficial for DBNs which are naturally partitioned in many



140 E. Besada-Portas et al.

Table 1. Comparison of our PFs with others (D. Discrete, C. Continuous)

Probabilistic
PF Foundation Variables DBN type Consistent

weight update
Ours Parallel sampling proposal D. + C. Highly parallel Yes

[5] Factored posterior + PF for particles D. Any No
created from the posterior

[6] [5] + Rao-Blackwellised D. + C. Special No
[7] Normal PF + genetic mutation and crossover D. + C. HMM No
[8] Serial and Parallel sampling D. + C. Any No
[11] Instantaneous PF D. + C. HMM Yes
[12] Alternating IS and WR inside time slice D. + C. Highly serial Yes

subsets. Due to this distinction, in the experimental section, to show the performance
of our framework, we select DBNs that show the advantages of our approach. As the
experiments show there is an abundance of problems of this kind.

5 Experimental Results

The results presented in this paper compare our PFs with the KLPF because it is the
generic algorithm for DBNs1.

The first set of experiments, performed with simulated data compare the performance
of the PFs using the Root Square Mean Error (RMSE) between the mean value of the
particles estimates for each PF and the true value of the hidden variables at the last
step of the simulation. In the second set, carried out with real world data, we use the
different PFs to score the structure of a DBN given the measurements. In both cases,
our PFs perform better than KLPF.

5.1 Simulated Experiments

This section compares our PFs, working with a limited number of particles, with KLPF
in two complex real problems modeled by different DBNs. We have selected them be-
cause the structures of their DBNs, with multiple hidden variables that can be sampled
in parallel, let them benefit significantly from our PFs. In fact, the second one is a sim-
plification of our original problem: sea rescue where an Unmanned Air Vehicle (UAV)
has to track several objects that are in the water and whose initial positions is not com-
pletely known. The first problem is a modification demonstrating our PFs on a more
complex DBN. In both cases, we want to localize a set of O mobile objects given the
information provided by the existing sensors. To be able to distinguish the variables
related with the l-th object, in this section some variables names have a subindex (Vl).

In the first problem, each mobile object (Ml) is repelled by another (Mk) with a
common unknown force (F), and the position of each mobile is observed by a different

1 A preliminar analysis, excluded for space limitation, showed that the Serial PF by [10,12]
worked even worst than KLPF due to the highly parallel structure of our DBNs.
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sensor (Sl). The PFs have to estimate the probability of the hidden variables (Ml,F)
given the measurements (Sl) for the DBN whose structure is defined by Pat−1(Ml) =
{Ml,Mrem(l+1,O+1),F}, Pat−1(F)={F} and Pat(Sl)={Ml}. The structure of this DBN
let us divide the hidden variables in O+1 groups, each with a hidden variable and assign
to the weights of each mixture the likelihoods of the measurement associated with each

hidden variable (α{F}j = 1 and α{Ml}
j = p

(
sl |pa(i)

t

(
Sl
))

). We also make the proposal of
each hidden variable equal to its prior transition model. Although each hidden variable
belongs to a different group, the difficulty of this problem comes from the fact that they
are highly coupled by the Pat−1(Ml) relation.

The second problem is an abstraction of a sea rescue problem with UAVs. The objects
(Ml) move with the direction of the sea current and wind (E) and the sensors, which
are onboard the UAV (U), are only able to detect (Dl) the mobiles that are within a
circular area of the UAV and provide their position (Sl) when detected.The PFs have to
estimate the probability of the hidden variables (Ml , E) given the observed ones (U , Dl ,
Sl) for the DBN whose structure is defined by Pat−1(Ml) = {Ml,E}, Pat−1(E) = {E},
Pat(Dl) = {Ml,U} and Pat(Sl) = {Ml,Dl}. Again, the structure of this DBN let us
divide the hidden variables in O+1 groups, each with a hidden variable and assign to the
weights of each mixture the product of the likelihoods of the measurements associated

with each hidden variable (α{E}j =1 and α{Ml}
j = p

(
dl|pa(i)

t

(
Dl
))

p
(
sl |pa(i)

t

(
Sl
))

). We also
make the proposal of each Ml equal to its prior transition model. However, to let our PFs
explore a bigger region of E , its proposal distribution is the prior transition model with
extra noise. Although this problem is less coupled than the first one, it is also difficult
due to the use of multiple measurements per hidden variable and the fact that when the
object is not inside the circular area its position is not observed.

For each problem, we run to types of experiments. In both types, we measure at the
last step of the simulation the Root Mean Square Error (RMSE) between the mean value
of the particles estimates for each PF and the true value of the hidden variables.

In the first type, we calculate the RMSE over the same experiment 50 times for the
KLPF, and our “trajectory” and “instantaneous” PFs, initializing the particles in each
experiment and PF randomly using the same initial proposal. We then use the RMSE
to clasify the experiments in “convergent” and “divergent” according with a selected
threshold. Table 2a and 2b show the number of convergent runs and the mean over
convergent runs of RMSE of the three PFs for each problem. Our PFs, which obtain
similar solutions, hasn’t been tested with more than 100 particles and the RMSE is not
defined (n/d) when no run converges. For the first problem, Table 2a shows that while
our PF convergence increases with N, no runs of KLPF converge. The bad results of
KLPF are due to the high dependence of the hidden variables on each other, which is
especially problematic for a global localization problem where the particles are created
randomly in all the regions of the space. However, as our PFs sample independently
from the more likely regions of each group of variables, the estimated positions of the
mobiles can converge more easily to their real values. For the second problem, Table 2b
shows that the convergence of all PFs increases with N, although our PFs have a higher
velocity of growth. Hidden variables are not strongly interdependent and particles are
initialized randomly in a smaller region of the space increasing chances of starting with



142 E. Besada-Portas et al.

Table 2. First experiment: Number of convergent runs (conv.) and RMSE (mean over convergent
runs) of the two PFs for experiments of problems 1 and 2 with L=10

(a) problem 1

# particles 20 50 100 500 1000

KLPF
conv. 0 0 0 0 0

RMSE n/d n/d n/d n/d n/d

“Trajectory” conv. 7 30 42

PF RMSE 810 662 414

“Instant.” conv. 12 27 36

PF RMSE 830 620 410

(b) problem 2

# particles 20 50 100 500 1000

KLPF
conv. 4 7 8 22 23

RMSE 832 1650 457 362 392

“Trajectory” conv. 24 37 46

PF RMSE 892 483 382

“Instant.” conv. 24 34 46

PF RMSE 956 429 382

P
ro

bl
em

 1
E

xp
er

im
en

ts

difficulty index

20 particles

2 4

10

20

30

40

50

difficulty index

50 particles

2 4
difficulty index

100 particles

2 4

P
ro

bl
em

 2
E

xp
er

im
en

ts

difficulty index
2 4 6

10

20

30

40

50

difficulty index
2 4 6

difficulty index

 

 

2 4 6
−100

0

100

200

300

400

500

600

700

(a) “Trajectory” PF

P
ro

bl
em

 1
E

xp
er

im
en

ts

difficulty index

20 particles

2 4

10

20

30

40

50

difficulty index

50 particles

2 4
difficulty index

100 particles

2 4

P
ro

bl
em

 2
E

xp
er

im
en

ts

difficulty index
2 4 6

10

20

30

40

50

difficulty index
2 4 6

difficulty index

 

 

2 4 6
−100

0

100

200

300

400

500

600

700

(b) “Instantaneous” PF

Fig. 3. Second experiment: Comparing KLPF with the “trajectory” and “instantaneous” PFs with
the same initial particles

a good particle. This leads to improved performance of KLPF and superior performance
of our PFs, both respect to the results observed in problem 1.

In the second type of experiments, we calculate the RMSE for the KLPF and our two
PFs, with the same initial particles for all of them with the purpose of comparing how
the filters work under the same initial conditions. The complete experiment consists on
running the three filters for different number of particles (20, 50 and 100), with different
initialization region proposals (4 for problem 1 and 6 for problem 2), and the same
initial particles. For the convergent runs2 of each of our PFs, we represent in Figure 3
the quotient of the RMSE of KLPF by the RMSE of one of our PFs (“Trajectory” in 3a
and “Instantaneous” in 3b) for each problem (figure row), number of particles (figure
column), initialization regions (x-axis, incrementing the size of the region, and so the
difficulty of the problem with the number) and experiment number (y-axis). Quotients
bigger than 1 show that our corresponding PF was better while smaller worst. The
divergent runs are represented in black (set to -100). For problem 1, we can observe
how incrementing the number of particles helps each of our PFs and how incrementing

2 We use the same convergence criterium as in experiment 1.
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Fig. 4. Particle positions at the final step (pluses) and real trajectory (lines) of the 10 mobile
objects (each with a different grey level) of a convergent and divergent run of the PFs. The big
circle in Problem 2 represents the area around the UAV while the little ones are centered around
Ml for the detected mobiles.

the size of the region makes it worst. As none runs of the KLPF converge, each of our
PFs outperforms the KLPF for all its convergent runs (quotient is always bigger than
1). For the second problem, when the difficulty index is small, KLFP and each of our
PFS obtain similar RMSE, but as the difficulty index grows, the convergent runs of
our corresponding PF get better than KLPF. Incrementing the number of particles also
increments the number of convergent runs of our PFs. So, in short, our PFs deals better
than KLPF with poorly initialized particles and complex problems.

Finally, Fig. 4 shows examples of convergent and divergent solutions for each of the
problems. Fig. 4a, for problem 1, shows the position of the mobiles in the particles at
the final iteration (pluses) and the real trajectory (lines) for a typical run of KLPF (that
always diverges) and of our PFs. Fig. 4b, for problem 2, represents the position of the
mobiles in the particles at the final iteration (pluses) and the real trajectory (lines); the
circular area around the UAV (big circle) and an area around the measured position sl,t

of the detected mobiles (small circles). Note the different axes used in each case, due to
the wider distribution of the particles for the divergent example.

5.2 Real Data

For the real data experiment we have used a functional Magnetic Resonance Imaging
(fMRI) dataset [14]. FMRI signal represents the Blood Oxygenation Level Dependent
(BOLD) response measured in a small cubic region of the brain (voxel). BOLD re-
sponse is itself governed by the underlying hidden neural activity. As the model of the
BOLD signal generation from neural activity we have used the hemodynamic forward
model based on a coupled system of ordinary differential equations [15].

The number of voxel measurements collected per time point in a typical fMRI ex-
periment is too large to model directly. Thus voxel time courses were averaged on a
per Region of Interest (ROI) basis. ROIs were selected according to the widely used
Talairach database [16].
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Fig. 5. The network for a subset of regions of interest (ROIs) from the Talairach anatomical atlas
database. ROI names are replaced by short labels since they are not significant fr our work. Note
that each ROI is observed through its indirect measurement by fMRI.
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Fig. 6. Cross validation log likelihood score plots for the instantaneous (IPPF) and trajectory
(TPPF) parallel PFs, as well as regular particle filter (PF). Not displayed points mean that kernel
density estimator did not produce a valid result.

In order to obtain the underlying structure of the DBN, we have used the approach
that treats fMRI data as fully observed and quantizes it into categorical representa-
tion [14]. Among the discovered DBN families we have used several most significant
ones according to the cross validation procedure (t-test with p-value of 0.05). This re-
sulted in a DBN of 42 hidden variables per slice. Figure 5 shows a small portion of the
hidden structure of the DBN we use. The observation nodes that are present for each
ROI in a time slice are not shown.

The two novel parallel PF algorithms as well as the KLPF were run on this dataset
for 50 time points (100 seconds with 2 seconds fMRI sampling rate). Since the ground
truth for neural activity of ROIs is unknown in this dataset, for evaluation we have used
cross validation log likelihood based on kernel density estimators with Gaussian kernels
and automatically chosen variance value using a cross validation procedure [17].

The results for 20 runs using 20, 50 and 100 particles are shown in Figure 6. Parallel
PFs show higher score (better) although are not much different in their performance.
KLPF has considerably lower mean score as well as a higher variance. Note how the
score decreases as the number of particles grows. This is an expected behavior with
Parzen window estimators, that is due to the smoother and generally wider estimates in
the cases of more data that lead to lower probability values. Thus in general this result
supports the one obtain on simulated data.

6 Conclusions

This paper presents two PFs to estimate the trajectory or current state of the hidden
variables of a DBN. It consists of a highly configurable proposal that samples in parallel
the values of different subsets of hidden variables to build a whole particle whose weight
is updated according to the sampling proposal and the estimation problem.
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Our PFs explore different subspaces of the state space in parallel while performing
the sampling step, and the whole space as a block while updating the weights. Inside
each subspace the exploration is carried out by means of a mixture distribution, whose
weights and components are selected by the user to control the regions of the space
it wants to explore. For the whole space step, either the “trajectory” update weight
function by Koller and Lenser [9] or the “instantaneous” update proposed in this paper
can be used. In our experiments, our two filters show similar performances.

Our tests show that our PFs usually better sample the state space when the particles
are initialized in spread regions, hence it is superior to KLPF in keeping track of the
hidden state while needing smaller number of particles.

Finally, in combination with the Serial PF method proposed in [12], we can build a
Parallel & Serial PF that updates the weights according to the sampling functions.
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Universitat Politècnica de Catalunya, Barcelona, Spain

{abifet,gavalda}@lsi.upc.edu

Abstract. We propose a new method to classify patterns, using closed

and maximal frequent patterns as features. Generally, classification re-

quires a previous mapping from the patterns to classify to vectors of

features, and frequent patterns have been used as features in the past.

Closed patterns maintain the same information as frequent patterns us-

ing less space and maximal patterns maintain approximate information.

We use them to reduce the number of classification features. We present

a new framework for XML tree stream classification. For the first compo-

nent of our classification framework, we use closed tree mining algorithms

for evolving data streams. For the second component, we use state of the

art classification methods for data streams. To the best of our knowledge

this is the first work on tree classification in streaming data varying with

time. We give a first experimental evaluation of the proposed classifica-

tion method.

1 Introduction

Pattern classification and frequent pattern discovery have been important tasks
over the last decade. Nowadays, they are becoming harder, as the size of the pat-
tern datasets is increasing, data often comes from sequential, streaming sources,
and we cannot assume that data has been generated from a static distribution.
If we want accuracy in the results of our algorithms, we have to consider that the
distribution that generates data may vary over time, often in an unpredictable
and drastic way.

Tree Mining is becoming an important field of research due to the fact that
XML patterns are tree patterns and that XML is becoming a standard for in-
formation representation and exchange over the Internet. XML data is growing
and it will soon constitute one of the largest collection of human knowledge.
Other applications of tree mining appear in chemical informatics, computer vi-
sion, text retrieval, bioinformatics, and Web analysis. XML tree classification
has been done traditionally using information retrieval techniques considering
the labels of nodes as bags of words. With the development of frequent tree min-
ers, classification methods using frequent trees appeared [21, 14, 8, 12]. Recently,
closed frequent miners were proposed [7, 18, 1], and using them for classification
tasks is the next natural step.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 147–162, 2009.
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Closure-based mining on relational data has recently provided some inter-
esting algorithmic developments. In this paper we use closure-based mining to
reduce drastically the number of attributes in tree classification tasks. Moreover,
we show how to use maximal frequent trees to reduce even more the number of
attributes needed in tree classification, in many cases without loosing accuracy.

We propose a general framework to classify XML trees based on subtree oc-
currence. It is composed of a Tree XML Closed Frequent Miner, and a classifier
algorithm. We propose specific methods for dealing with adaptive data streams.
In [5] a new approach was proposed for mining closed patterns adaptively from
data streams that change over time, and it was used for closed unlabeled rooted
trees. In this work, we use the extension to the more challenging case of labeled
rooted trees.

The rest of the paper is organized as follows. We discuss related work in Sec-
tion 2. Section 3 gives background and Section 4 introduces our closure operator
and its properties needed for our classification algorithm. Section 5 shows the
tree classification framework and it introduces the adaptive closed frequent min-
ing method. Experimental results are given in Section 6, and some conclusions
in Section 7.

2 Related Work

Zaki and Aggarwal presented XRules in [21]. Their classification method mines
frequent trees in order to create classification rules. They do not use closed
frequent trees, only frequent trees. XRules is cost-sensitive and uses Bayesian
rule based class decision making. They also proposed methods for effective rule
prioritization and testing.

Kudo and Matsumoto presented a boosting method for tree classification
in [14]. Their method consists of decision stumps that uses significant frequent
subtrees as features and a Boosting algorithm which employs the subtree-based
decision stumps as weak learners. With Maeda they extended this classification
method to graphs in [13].

Other works use SVMs defining tree Kernels [8, 12]. Tree kernel is one of the
convolutions kernels, and maps the example represented in a labeled ordered
tree into all subtree spaces. The feature space uses frequent trees and not closed
trees.

Garriga et al. [10] showed that when considering labeled itemsets, closed sets
can be adapted for classification and discrimination purposes by conveniently
contrasting covering properties on positive and negative examples. They formally
proved that these sets characterize the space of relevant combinations of features
for discriminating the target class.

Chi et al. proposed CMTreeMiner [7], the first algorithm to discover all closed
and maximal frequent labeled induced subtrees without first discovering all fre-
quent subtrees. CMTreeMiner shares many features with CloseGraph [19]. Ter-
mier et al. proposed DryadeParent [18], based on the hooking principle first
introduced in Dryade. They claim that the branching factor and depth of the
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frequent patterns to find are key factors in the complexity of tree mining algo-
rithm and that DryadeParent outperforms CMTreeMiner, on datasets where the
frequent patterns have a high branching factor.

In [5], we proposed a new approach for mining closed frequent patterns adap-
tively from data streams that change over time, and we applied it to unlabelled
frequent tree mining.

To the best of our knowledge this is the first work defined for classifying trees
and mining labeled closed frequent trees in streaming data that evolve with
time, and the first one in using closed and maximal frequent trees for feature
reduction.

3 Preliminaries

Following Formal Concept Analysis usage, we are interested in (possibly infinite)
sets endowed with a partial order relation. Elements of these sets are generically
called patterns.

The set of all patterns will be denoted with T , but actually all our develop-
ments will proceed in some finite subset of T which will act as our universe of
discourse.

Given two patterns t and t′, we say that t is a subpattern of t′, or t′ is a
super-pattern of t, if t � t′. Two patterns t, t′ are said to be comparable if t � t′

or t′ � t. Otherwise, they are incomparable. Also we write t ≺ t′ if t is a proper
subpattern of t′ (that is, t � t′ and t �= t′).

The input to our data mining process is a dataset D of transactions, where
each transaction s ∈ D consists of a transaction identifier, tid, and a transaction
pattern. The dataset is a finite set in the standard setting, and a potentially
infinite sequence in the data stream setting. Tids are supposed to run sequentially
from 1 to the size of D. From that dataset, our universe of discourse U is the set
of all patterns that appear as subpattern of some pattern in D.

Figure 1 shows a finite dataset example of trees.
As is standard, we say that a transaction s supports a pattern t if t is a subpat-

tern of the pattern in transaction s. The number of transactions in the dataset
D that support t is called the support of the pattern t. A subpattern t is called
frequent if its support is greater than or equal to a given threshold min sup. The
frequent subpattern mining problem is to find all frequent subpatterns in a given
dataset. Any subpattern of a frequent pattern is also frequent and, therefore, any
superpattern of a nonfrequent pattern is also nonfrequent (the antimonotonicity
property).

3.1 Frequent Pattern Compression

We define a frequent pattern t to be closed if none of its proper superpatterns
has the same support as it has. Generally, there are much fewer closed patterns
than frequent ones. In fact, we can obtain all frequent subpatterns with their
support from the set of frequent closed subpatterns with their supports. So, the
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Fig. 1. A dataset example of 4 tree transactions

set of frequent closed subpatterns maintains the same information as the set of
all frequent subpatterns.

The closed trees for the dataset of Figure 1 are shown in the Galois lattice of
Figure 2.

We define a frequent pattern t to be maximal if none of t’s proper superpat-
terns is frequent. All maximal patterns are closed, but not all closed patterns
are maximal, so there are more closed patterns than maximal. Note that we can
obtain all frequent subpatterns from the set of maximal frequent subpatterns,
but not their support. So, the set of maximal frequent subpatterns maintains
approximately the same information as the set of all frequent subpatterns.

4 Classification Using Compressed Frequent Patterns

The pattern classification problem is defined as follows. A set of examples of the
form (t, y) is given, where y is a discrete class label and t is a pattern. The goal
is to produce from these examples a model ŷ = f(t) that will predict the classes
y of future pattern examples with high accuracy.

We use the following approach: we convert the pattern classification problem
into a vector classification learning task, transforming patterns into vectors of
attributes. Attributes will be frequent subpatterns, or a subset of these frequent
subpatterns.

Suppose D has d frequent subpatterns denoted by t1, t2, . . . , td. We map any
pattern t to a vector x of d attributes: x = (x1, ..., xd) such that for each attribute
i, xi = 1 if ti � t or xi = 0 otherwise.
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Fig. 2. Example of Galois Lattice of Closed trees

As the number of frequent subpatterns is huge, we perform a feature selection
process, selecting a subset of these frequent subpatterns, maintaining the same
information, or approximate. Figures 3 and 4 show frequent trees and its conver-
sion to vectors of attributes. Note that closed trees have the same information as
frequent trees, but maximal trees loose some support information, as mentioned
in Section 3.1.

4.1 Closed Frequent Patterns

Recall that if X is a set with a partial order ≤, a closure operator on X is a
function C : X → X that satisfies the following for all x in X : x ≤ C(X), C(x) =
C(C(x)), for all y ∈ X , x ≤ y implies C(x) ≤ C(y). A Galois connection
is provided by two functions, relating two lattices in a certain way. Here our
lattices are not only plane power sets of the transactions but also plain power
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Fig. 3. Frequent trees from dataset example (min sup = 30%), and their corresponding

attribute vectors

sets of the corresponding solutions. On the basis of the binary relation t � t′,
the following definition and proposition are rather standard.

Definition 1. The Galois connection pair is defined by:

– For finite A ⊆ D, σ(A) = {t ∈ T
∣∣ ∀ t′ ∈ A (t � t′)}

– For finite B ⊂ T , not necessarily in D, τD(B) = {t′ ∈ D
∣∣ ∀ t ∈ B (t � t′)}

Proposition 1. The composition ΓD = σ ◦ τD is a closure operator on the
subsets of D.

Theorem 1. A pattern t is closed for D if and only if it is maximal in ΓD({t}).

In other words, Theorem 1 states each closed set is uniquely defined through its
maximal elements. On this basis, our algorithms can avoidduplicating calculations
and redundant information by just storing the maximal patterns of each closed set.
We denote Δ(t) as the set of maximal patterns of each closed set of ΓD({t}).
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Frequent Trees
c1 c2 c3 c4

Id c1 f1
1 c2 f1

2 f2
2 f3

2 c3 f1
3 c4 f1

4 f2
4 f3

4 f4
4 f5

4

1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

2 0 0 0 0 0 0 1 1 1 1 1 1 1 1

3 1 1 0 0 0 0 1 1 1 1 1 1 1 1

4 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Closed Maximal
Trees Trees

Id Tree c1 c2 c3 c4 c1 c2 c3 Class

1 1 1 0 1 1 1 0 Class1

2 0 0 1 1 0 0 1 Class2

3 1 0 1 1 1 0 1 Class1

4 0 1 1 1 0 1 1 Class2

Fig. 4. Closed and maximal frequent trees from dataset example (min sup = 30%),

and their corresponding attribute vectors

We can relate the closure operator to the notion of closure based on support,
as previously defined, as follows: t is closed for D if and only if: ΔD({t}) = {t}.

Following the standard usage on Galois lattices, we consider now implications
of the form A → B for sets of patterns A and B from U . Specifically, we consider
the following set of rules: A→ ΓD(A). Alternatively, we can split the consequents
into {A→ t

∣∣ t ∈ ΓD(A)}.
It is easy to see that D obeys all these rules: for each A, any pattern of D that

has as subpatterns all the patterns of A has also as subpatterns all the patterns
of ΓD(A).

Proposition 2. Let ti be a frequent pattern for D. A transaction pattern t sat-
isfies ti � t, if and only if it satisfies ΔD(ti) � t.

We use Proposition 2 to reduce the number of attributes on our classification
task, using only closed frequent patterns, as they keep the same information.
The attribute vector of a frequent pattern will be the same as its closed pattern
attribute vector. Figure 4 shows the attribute vectors for the dataset of Figure 1.

4.2 Maximal Frequent Patterns

Maximal patterns are patterns that do not have any frequent superpattern. All
maximal patterns are closed patterns. If min sup is zero, then maximal patterns
are transaction patterns. We denote by M1(t), M2(t), . . . , Mm(t) the maximal
superpatterns of a pattern t. We are interested in the implications of the form
tc → (M1(t) ∨M2(t) ∨ . . . ∨Mm(t)) where tc is a closed pattern.
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Proposition 3. Let tc be a closed non-maximal frequent pattern for D. Let
M1(tc), M2(tc), . . . , Mm(tc) be the maximal superpatterns of pattern tc. A trans-
action pattern t satisfies tc ≺ t, if and only if at least one of the maximals
superpattern Mi(tc) of pattern tc satisfies Mi(tc) � t.

Proof. Suppose that pattern tc satisfies tc ≺ t but no maximal superpattern
Mi(tc) satisfies Mi(tc) � t. Then, pattern tc has no frequent superpattern. There-
fore, it is maximal, contradicting the assumption.

Suppose, for the other direction, that a maximal superpattern Mi(tc) of tc
satisfies Mi(tc) � t. Then, as tc is a Mi(tc) subpattern, tc � Mi(tc), and it holds
that tc �Mi(tc) � t.

For non-maximal closed patterns, the following set of rules holds if tc is not a
transaction pattern:

tc →
∨

Mi(tc)

Note that for a transaction pattern tc that it is closed and non-maximal, there
is no maximal superpattern Mi(tc) of pattern tc that satisfies Mi(tc) � tc. If
there are no closed non-maximal transaction patterns, we do not need to use all
closed patterns as attributes, since non-maximal closed patterns may be derived
from maximal patterns.

Using Proposition 3, we may reduce the number of attributes on our classi-
fication task, using only maximal frequent patterns, as they keep much of the
information as closed frequent patterns.

5 XML Tree Classification Framework on Data Streams

In this section we specialize the previous approach to the case of labelled trees,
such as XML trees.

Trees are connected acyclic graphs, rooted trees are trees with a vertex singled
out as the root, and unranked trees are trees with unbounded arity. We say that
t1, . . . , tk are the components of tree t if t is made of a node (the root) joined to the
roots of all the ti’s. We can distinguish between the cases where the components
at each node form a sequence (ordered trees) or just a set (unordered trees). We
will deal with rooted, unranked trees. We assume the presence of labels on the
nodes.

An induced subtree of a tree t is any connected subgraph rooted at some node
v of t that its vertices and edges are subsets of those of t. An embedded subtree
of a tree t is any connected subgraph rooted at some node v of t that does
not break the ancestor-descendant relationship among the vertices of t. We are
interested in induced subtrees. Formally, let s be a rooted tree with vertex set
V ′ and edge set E′, and t a rooted tree t with vertex set V and edge set E. Tree
s is an induced subtree (or simply a subtree) of t (written t′ � t) if and only if
1) V ′ ⊆ V , 2) E′ ⊆ E, and 3) the labeling of V ′ is preserved in t. This notation
can be extended to sets of trees A � B: for all t ∈ A, there is some t′ ∈ B for
which t � t′.
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Our XML Tree Classification Framework has two components:
– An XML closed frequent tree miner, for which we could use any incremental

algorithm that maintains a set of closed frequent trees.
– A Data stream classifier algorithm, which we will feed with tuples to be

classified online. Attributes in these tuples represent the occurrence of the
current closed trees in the originating tree, although the classifier algorithm
need not be aware of this.

In this section, we describe the two components of the framework, the XML
closed frequent tree miner, and the data stream classifier.

5.1 Adaptive Tree Mining on Evolving Data Streams

Using a methodology based on Galois Lattice Theory, we use three closed tree
mining algorithms: an increment IncTreeMiner, a sliding-window based one,
WinTreeMiner, and an algorithm that mines closed trees adaptively from data
streams. It is basically an adaptation of the theoretical framework developed
in [5], which deals with quite general notion of pattern and subpattern, to the
case of labeled rooted trees.

For maximal frequent trees, the following properties hold:
– adding a tree transaction to a dataset of trees D, may increase or decrease

the number of maximal trees for D.
– adding a transaction with a closed tree to a dataset of trees D, may modify

the number of maximal trees for D.
– deleting a tree transaction from a dataset of trees D, may increase or decrease

the number of maximal trees for D.
– deleting a tree transaction that is repeated in a dataset of trees D from it,

may modify the number of maximal trees for D.
– a non maximal closed tree may become maximal if

• it was not frequent and now its support increases to a value higher or
equal to min sup

• all of its maximal supertrees become non-frequent
– a maximal tree may become a non maximal tree if

• its support decreases below min sup
• a non-frequent closed supertree becomes frequent

We could check if a closed tree becomes maximal when

– removing closed trees because they do not have enough support
– adding a new closed tree to the dataset
– deleting a closed tree from the dataset

We use three tree mining algorithms adapting the general framework for patterns
presented in [5]:

– IncTreeMiner, an incremental closed tree mining algorithm,
– WinTreeMiner, a sliding window closed tree mining algorithm
– AdaTreeMiner, an adaptive closed tree mining algorithm
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The batches are processed using the non-incremental algorithm explained in [3].
AdaTreeMiner is a new tree mining method for dealing with concept drift,
using ADWIN [4], an algorithm for detecting change and dynamically adjusting
the length of a data window. ADWIN is parameter- and assumption-free in the
sense that it automatically detects and adapts to the current rate of change.
Its only parameter is a confidence bound δ, indicating how confident we want
to be in the algorithm’s output, inherent to all algorithms dealing with random
processes.

Also important for our purposes, ADWIN does not maintain the window explic-
itly, but compresses it using a variant of the exponential histogram technique in
[9]. This means that it keeps a window of length W using only O(log W ) memory
and O(log W ) processing time per item, rather than the O(W ) one expects from
a näıve implementation. When windows tend to be large, this usually results in
substantial memory savings.

We propose two strategies to deal with concept drift:

– AdaTreeMiner1: Using a sliding window, with an ADWIN estimator decid-
ing the size of the window

– AdaTreeMiner2: Maintaining an ADWIN estimator for each closed set in
the lattice structure.

In the second strategy, we do not delete transactions. Instead, each ADWIN mon-
itors the support of a closed pattern. When it detects a change, we can conclude
reliably that the support of this pattern seems to be changing in the data stream
in recent times.

5.2 Data Stream Classifier

The second component of the framework is based on MOA. Massive Online
Analysis (MOA) [11, 6] is a framework for online learning from continuous sup-
plies of examples, such as data streams. It is closely related to the well-known
WEKA project, and it includes a collection of offline and online as well as tools
for evaluation. In particular, it implements boosting, bagging, and Hoeffding
Trees, both with and without Näıve Bayes classifiers at the leaves.

We use bagging and boosting of decision trees, because these ensemble meth-
ods are considered the state-of-the-art classification methods.

6 Experimental Evaluation

We tested our algorithms on synthetic and real data. All experiments were per-
formed on a 2.0 GHz Intel Core Duo PC machine with 2 Gigabyte main memory,
running Ubuntu 8.10.

6.1 Tree Classification

We evaluate our approach to tree classification on both real and synthetic clas-
sification data sets.
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Table 1. Comparison of classification algorithms. Memory is measured in MB. The

best individual accuracy is indicated in boldface.

Bagging Time Acc. Mem.

AdaTreeMiner1 161.61 80.06 4.93

AdaTreeMiner2 212.57 65.78 4.42

WinTreeMiner W=100,000 192.01 72.61 6.53

WinTreeMiner W= 50,000 212.09 66.23 11.68

IncTreeMiner 212.75 65.73 4.4

Boosting Time Acc. Mem.

AdaTreeMiner1 236.31 79.83 4.8

AdaTreeMiner2 326.8 65.43 4.25

WinTreeMiner W=100,000 286.02 70.15 5.8

WinTreeMiner W= 50,000 318.19 63.94 9.87

IncTreeMiner 317.95 65.55 4.25

For synthetic classification, we use the tree generation program of Zaki [20],
available from his web page. We generate two mother trees, one for each class.
The first mother tree is generated with the following parameters: the number of
distinct node labels N = 200, the total number of nodes in the tree M = 1, 000,
the maximal depth of the tree D = 10 and the maximum fanout F = 10. The
second one has the following parameters: the number of distinct node labels
N = 5, the total number of nodes in the tree M = 100, the maximal depth of
the tree D = 10 and the maximum fanout F = 10.

A stream is generated by mixing the subtrees created from these mother trees.
In our experiments, we set the total number of trees in the dataset to be T =
1, 000, 000. We added artificial drift changing labels of the trees every 250, 000
samples, so closed and maximal frequent trees evolve over time. We use bagging
of 10 Hoeffding Trees enhanced with adaptive Näıve Bayes leaf predictions, as
classification method. This adaptive Näıve Bayes prediction method monitors the
error rate of majority class and Näıve Bayes decisions in every leaf, and chooses
to employ Näıve Bayes decisions only where they have been more accurate in
past cases.

Table 1 shows classification results. We observe that AdaTreeMiner1 is the
most accurate method, and that the accuracy of WinTreeMiner depends on
the size of the window.

For real datasets, we use the Log Markup Language (LOGML) dataset from
Zaki et al. [16, 21], that describes log reports at their CS department website.
LOGML provides a XML vocabulary to structurally express the contents of
the log file information in a compact manner. Each user session is expressed in
LOGML as a graph, and includes both structure and content.

The real CSLOG data set spans 3 weeks worth of such XML user-sessions.
To convert this into a classification data set they chose to categorize each user-
session into one of two class labels: edu corresponds to users from an ”edu“
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Table 2. Comparison of tree classification algorithms. Memory is measured in MB.

The best individual accuracies are indicated in boldface (one per row).

Maximal Closed

BAGGING Unordered Ordered Unordered Ordered

# Trees Att. Acc. Mem. Att. Acc. Mem. Att. Acc. Mem. Att. Acc. Mem.

CSLOG12 15483 84 79.64 1.2 77 79.63 1.1 228 78.12 2.54 183 78.12 2.03

CSLOG23 15037 88 79.81 1.21 80 79.8 1.09 243 78.77 2.75 196 78.89 2.21

CSLOG31 15702 86 79.94 1.25 80 79.87 1.17 243 77.6 2.73 196 77.59 2.19

CSLOG123 23111 84 80.02 1.7 78 79.97 1.58 228 78.91 4.18 181 78.91 3.31

Maximal Closed

BOOSTING Unordered Ordered Unordered Ordered

# Trees Att. Acc. Mem. Att. Acc. Mem. Att. Acc. Mem. Att. Acc. Mem.

CSLOG12 15483 84 79.46 1.21 77 78.83 1.11 228 75.84 2.97 183 77.28 2.37

CSLOG23 15037 88 79.91 1.23 80 80.24 1.14 243 77.24 2.96 196 78.99 2.38

CSLOG31 15702 86 79.77 1.25 80 79.69 1.17 243 76.25 3.29 196 77.63 2.62

CSLOG123 23111 84 79.73 1.69 78 80.03 1.56 228 76.92 4.25 181 76.43 3.45

domain, while other class corresponds to all users visiting the CS department
from any other domain. They separate each week’s logs into a different data
set (CSLOGx, where x stands for the week; CSLOG12 is the combined data for
weeks 1 and 2). Notice that the edu class has much lower frequency rate than
other.

Table 2 shows the results on bagging and boosting using 10 Hoeffding Trees
enhanced with adaptive Näıve Bayes leaf predictions. The results are very similar
for the two ensemble learning methods. Using maximals and closed frequent
trees, we obtain results similar to [20]. Comparing maximal trees with closed
trees, we see that maximal trees use 1/4 to 1/3rd of attributes, 1/3 of memory,
and they perform better.

6.2 Closed Frequent Tree Labeled Mining

As far as we know, CMTreeMiner is the state-of-art algorithm for mining induced
closed frequent trees in databases of rooted trees. The main difference with our
approach is that CMTreeMiner is not incremental and only works with bottom-
up subtrees, and our method works with both bottom-up and top-down subtrees.

For synthetic data, we use the same dataset as in [7] and [20] for rooted ordered
trees. The synthetic dataset T8M is generated by the tree generation program
of Zaki [20], used for the evaluation on tree classification. In brief, a mother tree
is generated first with the following parameters: the number of distinct node
labels N = 100, the total number of nodes in the tree M = 10, 000, the maximal
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Fig. 7. Memory used on ordered trees, T8M dataset

depth of the tree D = 10 and the maximum fanout F = 10. The dataset is then
generated by creating subtrees of the mother tree. In our experiments, we set
the total number of trees in the dataset to be from T = 0 to T = 8, 000, 000.

The results of our experiments on synthetic data are shown in Figures 5,6,7,
and 8. We observe that as the data size increases, the running times of Inc-

TreeMiner and CMTreeMiner become closer, and that IncTreeMiner uses
much less memory than CMTreeMiner. CMTreeMiner failed in our experiments
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Fig. 9. Time used on ordered trees on T8M dataset varying window size

when dataset size reached 8 million trees: not being an incremental method, it
must store the whole dataset in memory all the time in addition to the lattice
structure, in contrast with our algorithms.

In Figure 9 we compare WinTreeMiner with different window sizes to Ada-

TreeMiner on T8M dataset. We observe that the two versions of AdaTreeM-

iner outperform WinTreeMiner for all window sizes.

7 Conclusions

The scheme for classification based on our methods, efficiently selects a reduced
number of attributes, and achieves higher accuracy (even more in the more
selective case in which we keep only attributes corresponding to maximal trees).
Our approach to tree mining outperforms CMTreeMiner in time and memory
consumption when the number of trees is huge, because CMTreeMiner is not an
incremental method and it must store the whole dataset in memory all the time.

Song et al.[17] introduced the concept of relaxed frequent itemset using the
notion of relaxed support. We can see relaxed support as a mapping from all
possible dataset supports to a set of relaxed intervals. Relaxed closed mining is
a powerful notion that reduces the number of closed subpatterns. We introduced
the concept of logarithmic relaxed frequent pattern in [5]. Future work will be
to apply this notion to our classification method by introducing an attribute
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for each relaxed frequent closed pattern, instead of one for each closed frequent
pattern. Also, we would like to apply these classification methods to other kinds
of patterns.

And finally, we would like to extend our work to generators [15]. In [2] the
authors were interested in implications of trees of the form G → Z, where G is
a generator of Z. When Γ (G) = Z for a set of trees G �= Z and G is minimal
among all the candidates with closure equal to Z, we say that G is a generator of
Z. Generator based representations contain the same information as the frequent
closed ones. In the literature, there is no method for finding generators of trees
in evolving data streams. As future work, we would like to compare classification
using tree generators, with the classification methods presented in this paper.
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Abstract. Driven by the need to understand change within domains

there is emerging research on methods which aim at analyzing how pat-

terns and in particular itemsets evolve over time. In practice, however,

these methods suffer from the problem that many of the observed changes

in itemsets are temporally redundant in the sense that they are the side-

effect of changes in other itemsets, hence making the identification of

the fundamental changes difficult. As a solution we propose temporally

closed itemsets, a novel approach for a condensed representation of item-

sets which is based on removing temporal redundancies. We investigate

how our approach relates to the well-known concept of closed itemsets

if the latter would be directly generalized to account for the temporal

dimension. Our experiments support the theoretical results by showing

that the set of temporally closed itemsets is significantly smaller than

the set of closed itemsets.

1 Introduction

In many application areas data is being collected over a long time. Due to its
temporal nature such data not only captures influences, like market forces or the
launch of a new product, but also reflects the changes of the underlying domain.
Often, change can mean a risk (like a shrinking subgroup of target customers)
or an opportunity (like an evolving market niche). In either case, it is in many
domains not only imperative to detect change in order to survive or to win but
it is also essential for successful decision making to analyze and act upon it.

As a response to this need there is increasing research interest in methods
which aim at analyzing the changes within a domain by describing and modeling
how the results of data mining—models and patterns—evolve over time. The
term change mining has been coined as an umbrella term for such methods [1].
Change mining approaches have been proposed for a variety of patterns and
models. Nonetheless, many studies focus on analyzing change in the context of
itemsets, not only because itemsets are rather comprehensible itself but also
because their evolution can be represented in a convenient and interpretable
way.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 163–178, 2009.
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It is generally assumed that itemsets cannot change in their symblic represen-
tation but only in quantitative measures which describe them, the most com-
mon of which is support, i.e. the frequency of occurrence within a data set. The
evolution of itemsets is therefore captured in time series (also called histories),
whereby most approaches only utilize support histories [2,3,4,5,6]. Nevertheless,
they can often be adapted to other measures.

Consider, as an example, survey data which contains information about used
telecommunication services, like broadband or phone, and the social background
of customers, like their gender. Itemset change mining is applied to this dataset
to discover evolving customer segments in a sociographical context. Assume that
the following itemset which specifies one customer segment has been discovered:
XY : Broadband=Yes,Gender=Male. Figure 1 shows its support history
describing the size of this segment relative to all customers over 20 periods.
Change mining approaches would, for example, employ statistical tests [4,6],
pattern matching in time series [2] or heuristics [5] to detect that this history
shows many characteristic features which might be of interest to the expert: a
trend turning point and a declining and inclining trend to the left, respectively
to the right of it.

Generally, changing itemsets hint at changes in the underlying domain. Such
changes may indicate that an intervening action is required, for instance, to
rectify a problem [3]. On the other hand, an itemset which always remains stable
in its support can be expected to describe an invariant of the domain. Invariants,
however, are of less interest to experts because they are almost always known
and usually do not indicate a serious problem [7]. Still, they may be of interest
if the domain under consideration is in its basic underlying principles has not
been fully understood, yet.

Besides being only of secondary interest, invariants also lead to a drastically
larger number of itemsets with changes in their histories. To continue our exam-
ple, assume that the fraction of males among all broadband users is an invariant
of the domain. In this case, the change of X : Broadband=Yes will be qualita-
tively the same as the one of XY : Broadband=Yes,Gender=Male. Both
histories will only differ by a scaling factor which, in turn, is the invariant. This
is also shown in Figure 1. In the context of change mining it can be said that
both itemsets are temporally redundant with respect to each other.

Temporal redundancy is very common in practice. Many of the changes ob-
served in itemset histories are simply the effect of a combination of changes in
other itemset histories with domain invariants. For an expert it will be a very
tedious task to identify the fundamental changes in which he is primarily inter-
ested. This problem is even worsened by the vast number of itemsets which are
discovered. For this reason it is desirable to obtain a condensed representation
which captures the fundamental set of changing itemset histories and allows to
reconstruct the shape of all other itemsets histories that are necessary for change
mining. To our knowledge this problem has up to now neither been addressed
in the field of change mining nor in the area of condensed representations of
itemsets.
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Our goal in this paper is twofold: first of all we want to contribute to the field
of change mining by providing a condensed representation of itemsets which
incorporates the temporal dimension. More precisely, we introduce temporally
closed itemsets as an approach to reduce the number of itemsets by accounting
for temporal redundancies. The set of temporally closed itemsets is minimal in
the sense that the shape of every other itemset’s history can be reconstructed
from it. Here we follow the argument of Agrawal and Psaila [2] and Chakrabarti
et al [3] that an itemset’s relevance is primarily dictated by its qualitative change
over time and not by its actual support value. Secondly, we want to tighten the
link between itemset mining and itemset change mining by investigating how
temporally closed itemsets relate to the well-known concept of closed itemsets.
In particular, we show that the set of temporally closed itemsets is a subset
of the set of closed itemsets if the notion of the latter is directly generalized
to the temporal dimension. The subset property is the result of removing those
redundancies from the set of closed itemsets which are only visible when itemsets
are analyzed over time.

The remainder of this paper is organized as follows. In Section 2 we discuss
related work. Section 3 and Section 4.1 introduce the necessary background on
frequent itemset mining and closed itemsets. In Section 4.2 we discuss how closed
itemsets can be straightforwardly generalized to be applicable to sequences of
time periods in order to have a benchmark for our approach. In Section 5 we
define temporal redundancy by introducing the concept of temporally derivable
itemsets, which we will subsequently use in Section 6 as basis for the definition of
the set of temporally closed itemsets. Section 7 discusses how the set of temporally
closed itemsets can be discovered. Section 8 shows the experimental results we
obtained.

2 Related Work

The approach described in this paper is related to two so far rather distinct
fields of association mining: change mining and condensed representations. For
this reason we will first provide an overview over existing change mining methods
for associations, followed by some background on condensed representations.

Several methods have been proposed in the area of association mining which
aim to discover interesting changes in histories of itemsets and association rules,
respectively. Agrawal et al [2] proposed a query language for shapes of histories.
Liu et al [4] showed how trend, semi-stable and stable rules can be distinguished
using a statistical approach. In [3] the temporal description length of an itemset
is introduced which rates support changes by using methods from information
theory. Frameworks to monitor and analyse changes in support and confidence
are described in [5,1]. None of these publications discusses how the set of dis-
covered itemsets can be effectively reduced such that the shape of all other
itemsets can still be derived, nor do they discuss how existing reduction tech-
niques for itemsets can be extended towards the temporal dimension. Liu et al
proposed a method to detect so-called fundamental rule changes that aims to
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identify changes in support and confidence of association rules which cannot be
explained by other changes [8]. The authors provide heuristic criteria for solv-
ing this task. However, their approach differs to our approach of temporally
closed itemsets because it can only be applied to histories of two periods length,
whereas much longer histories are the norm when analyzing change. An exten-
sion to many periods is not straightforward due to the form of the underlying
statistical test.

Several approaches have been proposed which lead to a condensed representa-
tion of the set of discovered itemsets such that all other itemsets can be derived
from the representation. Three such techniques are: closed itemsets [9,10], count-
ing inference [11] and deduction rules [12]. From the perspective of analyzing the
change of itemsets over time these methods treat each element of a sequence of
temporally ordered data sets independently from each other. For this reason,
they do not have the capability to detect redundancies which are only visible if
itemsets are analysed over time. Of these condensed representation approaches,
closed itemsets are related to our approach. We will discuss them in more detail
in Section 4.1.

3 Itemsets and Support Histories

Formally, itemset discovery is applied to a data set of transactions. Every trans-
action T is a subset of a set of items L. A subset X ⊆ L is called itemset.
It is said that a transaction T supports an itemset X if X ⊆ T . If X ⊂ Y
holds for two itemsets X and Y we will say that X is more general than Y
because X puts less restrictions on the underlying transaction set. Likewise, we
say that Y is more specific than X . Furthermore, we define XY := X ∪ Y for
simplicity.

The statistical significance of an itemset X is measured by its support supp(X)
which estimates P (X ⊆ T ), or short P (X). It is said that an itemset is frequent
if its support is greater than or equal to a user-defined minimum support value
suppmin. The downward closure property of itemsets states that for two itemsets
Y ⊃ X the support of X is greater or equal to the one of Y .

As other authors we define the change of an itemset by the change of its
support over time. The time series of support values is called support history.
Formally, let D be a time-stamped data set and [t0, tn] the minimum time
span that covers all its tuples. The interval [t0, tn] is divided into n > 1 non-
overlapping periods Ti := [ti−1, ti], such that the corresponding subsets Di ⊂
D each have a size |Di| ! 1. After carrying out frequent itemset discovery
for each Di, i = 1, . . . , n the support of each itemset X is now related to a
specific time period Ti. We will indicate this by using the notation suppi(X).
An itemset X which has been discovered in all periods is therefore described
by n support values. Imposed by the order of time the values form sequences
(supp1(X), . . . suppn(X)) which are also called support histories.
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4 Closed Itemsets

4.1 Definition

Closed itemsets are a subset of itemsets from which all other itemsets can be
derived without further mining. The formal underpinnings of closed itemset al-
gorithms can be found in the theory of lattices and Galois connection closures
[9]. Still, their meaning is rather intuitive: a closed itemset is the largest itemset
common to a set of transactions. All non-closed itemsets have the same sup-
port as their closure, which is the smallest closed itemset containing them. This
means that non-closed sets can be regarded redundant.

Formally, a closed itemset is defined as follows (cf. [9]):

Definition 1 (Closed Itemset). An itemset X is a closed itemset iff there
exists no proper superset Y ⊃ X such that supp(X) = supp(Y ).

Equivalently, an itemset X is called non-closed iff there exists a proper superset
Y such that supp(X) = supp(Y ). The largest of such supersets is also called the
closure of X .

As already mentioned in Section 2 closed itemsets can only be applied to a
single data set. As a result, they do not account for redundancies imposed by
the temporal dimension, where we deal with a sequence of data sets.

4.2 Generalization to a Sequence of Time Periods

To analyze the approach proposed in this paper it is desirable to have an es-
tablished condensed representation with which it can be compared, both the-
oretically and experimentally. Although closed itemsets are probably the most
widely used condensed representation they cannot directly be used for this pur-
pose because they were not developed with the temporal dimension in mind.
For this reason the definition of closed itemsets given in the previous section has
to be generalized from a single data set corresponding to one time period to a
sequence of time periods.

On the one hand, from such a generalization one would expect that it is
straightforward in the sense that it resembles the original definition of closed
itemsets as good as possible. On the other hand, the generalization should be
sufficient for the purpose of change analysis: an itemset should only be regarded
as non-closed over a sequence of time periods if no change information is lost.

As an example how change information can be lost consider a non-closed
itemset whose closure varies across periods. Should this non-closed itemset be
regarded as closed or as non-closed over a sequence of time periods? As laid out
in the Introduction a notion of redundancy in the context of change analysis
should be based on invariants of the domain. If an itemset with varying closure
would be regarded as non-closed over a sequence of time periods and thus not
presented to a user this change information is lost. Consequently, it is reasonable
to regard itemsets whose closure varies across periods as closed in the context
of a generalization of closed itemsets towards sequences of time periods.
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Generally, two requirements have to be met by a temporal generalization
of closed itemsets. In the first place, an itemset X should be non-closed over a
sequence of time periods only if it is non-closed in all periods. Secondly, following
the discussion in Section 1 the underlying reason for non-closedness should be
an invariant, i.e. the superset Y with equal support (the closure Y of X) should
be the same in every time period.

A direct temporal generalization of non-closed itemsets which meets the re-
quirements above is the following: An itemset is non-closed over a sequence of
time periods Ti, i = 1, . . . , n iff there exists an itemset Y ⊃ X such that for
all periods suppi(X) = suppi(Y ) i = 1, . . . , n. Equivalently, itemsets which are
closed over a sequence of time periods are defined as follows:

Definition 2 (Closed over a Sequence). An itemset X is closed over the
sequence of time periods {T1, . . . , Tn} iff there exists no itemset Y ⊃ X such
that suppi(X) = suppi(Y ), i = 1, . . . , n.

The above definition means that the set of itemsets which are closed over a
sequence of time periods contains all itemsets which are closed in at least one
period. Additionally, it also contains itemsets X which are non-closed in each
individual time period but for which their closure differs across periods. It should
be noted, however, that the latter is an extremely rare constellation as it has
already been reported by authors in the field of incremental itemset mining (cf.
[13]). Indeed, we did not observe non-closed itemsets with temporally varying
closure in the data sets we used for our experiments.

If the context is clear we will for brevity refer to the direct temporal general-
ization of closed itemsets introduced in this section simply as closed itemsets.

5 Temporally Derivable Itemsets

As laid out in the Introduction, the aim is to find a set of itemsets which is
non-redundant in the sense that it is the minimal set necessary to derive the
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shape of the history of all remaining itemsets. We therefore first have to define
what makes a history of an itemset XY derivable from the history of X and
thus the itemset XY temporally derivable:

Definition 3 (Temporally Derivable Itemset). Let XY, X �= ∅ be an item-
set and (supp1(XY ), . . . , suppn(XY )) its support history. The itemset XY is
temporally derivable with regard to an itemset X, denoted X↪→XY , iff for each
XZ, Z ⊆ Y with support history (supp1(XZ), . . . , suppn(XZ)) there exists a
constant ε, 0 < ε ≤ 1 such that suppi(XY ) = ε suppi(XZ), i = 1, . . . , n.

The main idea behind the definition is that the history of an itemset and hence
the itemset itself is temporally derivable if it has the same shape as the his-
tory of a more general itemset apart from a scaling factor ε. To emphasize the
scaling factor ε we will sometimes use the notation X

ε
↪→ Y . From the criterion

suppi(XY ) = ε suppi(X), i = 1, . . . , n used within the definition it directly fol-
lows that ε decreases with increasing size of Y , i.e. for X

ε1
↪→ Y and X

ε2
↪→ Z

with Y ⊂ Z it is ε2 ≤ ε1. The criterion suppi(XY ) = ε suppi(X), i = 1, . . . , n
can also be rewritten as ε = suppi(XY )/ suppi(X) = P (XY |Ti)/P (X |Ti) =
P (Y |XTi). This means, the probability of Y is required to be constant over
time given X , so the fraction of transactions containing Y additionally to X
constantly grows in the same proportion as X . In other words, the confidence
(represented by the scaling factor ε) of the rule X → Y does not change over
time. Such time-invariant properties, however, often represent domain knowledge
known to a user. Thus, a user would be able to infer the history of XY if he
knows the one of X . In the opposite direction, he could also derive the history
of X from the one of XY .

Figures 1 and 2 show an example of a temporally derivable itemset taken from
the customer survey data used for our experiments, cf. Section 8. For reasons
of data protection, the underlying itemset cannot be revealed. For illustration,
the reader is referred to the example given in the Introduction, instead. Figure 1
shows the support histories of the less specific itemset at the top and the more
specific itemset below, both over 20 time periods. The shape of the two histories
is obviously very similar and it turns out that the history of the more specific
itemset XY can approximately be determined using the more general one X
by applying a scaling factor. As shown in Figure 2, the reconstruction is not
exact. The reason for this is noise. As a result, a statistical test is employed in
Section 7.2 to test for temporal derivability. Obviously, the history of the less
specific itemset could be determined from the more specific in the same way. In
the following we will show several properties of temporally derivable itemsets
which we will use later on in this paper:

Lemma 1. All itemsets are temporally derivable with regard to themselves, i.e.
X↪→X.

Proof. Lemma 1 follows directly from Definition 3.

Lemma 2. If X
ε1
↪→ Y and Y

ε2
↪→ Z then X

ε1ε2
↪→ Z, i.e. derivability is transitive.
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Proof. By Definition 3 it is ε1 supi(X) = supi(Y ) and ε2 supi(Y ) = supi(Z).
Substitution yields ε1ε2 supi(X) = supi(Z) and thus X

ε1ε2
↪→ Z.

6 Temporally Closed Itemsets

If XY is temporally derivable from X then XY and Y have histories with qual-
itatively the same shape. Further, if we assume that the relevance of an itemset
is primarily determined by the qualitative changes represented in its history
both itemsets, X and XY , would have the same interestingness. For example, in
Figure 1 both histories show all characteristic features that would make them in-
teresting for a user: a trend turning point and a declining, respectively inclining,
trend left and right from it. Hence, if one is known the other can be regarded as
temporally redundant.

Commonly, sequences of itemsets X1↪→X2 . . . ↪→Xn temporally derivable from
each other are discovered. Thereby, we assume that this sequence is maximal in
the sense that there exists no Y ⊂ X1 or Z ⊃ Xn such that Y ↪→X1 or Xn↪→Z,
respectively. From such a sequence we will define the maximum element Xn as
being non-redundant and treat the others as redundant. We will call such non-
redundant itemsets temporally closed itemsets because they are related to closed
itemsets as we prove later in this section.

Definition 4 (Temporally Closed Itemset). An itemset X is temporally
closed iff there exists no itemset Y ⊃ X such that X↪→Y .

Apparently, from the above sequence X1↪→X2 . . . ↪→Xn the minimum element
X1 could also have been chosen as the non-redundant element. Nevertheless, the
choice of the maximum Xn as the basis for the definition of temporally closed
itemsets provides the advantage that in this way they can be related to closed
itemsets and thus extending this established notion by temporal considerations.

To analyze how temporally closed itemsets relate to the temporal general-
ization of closed itemsets discussed in Section 4.2 the definition of an itemset
which is closed over a sequence of time periods needs to be linked to the notion
of temporal derivability. By comparing Definition 2 with Definition 3 it can be
seen that the link between the two concepts can be expressed as follows:

Lemma 3. An itemset X is closed over the sequence of time periods {T1, . . . , Tn}
iff there exists no itemset Y ⊃ X such that X

1
↪→ Y .

Proof. Follows directly from the definition of a temporally derivable itemset
(cf. Definition 3).

We now have the necessary tools to prove the central theorem of this paper
which shows that temporally closed itemsets are a subset of the direct temporal
generalization of closed itemsets introduced in Section 4.2, i.e. a subset of the
itemsets which are closed over a sequence of time periods.
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Theorem 1. Let C be the set of all closed itemsets over the sequence of time
periods {T1, . . . , Tn} and TC be the set of temporally closed itemsets. Then, it is
TC ⊆ C.

Proof.

X ∈ TC
Def. 4⇐⇒ �Y ⊃ X : ∃ε ∈ (0, 1] : X

ε
↪→ Y

=⇒ �Y ⊃ X : X
1

↪→ Y
Lemma 3⇐⇒ X ∈ C

From X ∈ TC ⇒ X ∈ C it follows that TC ⊆ C.

The following counterexample shows that TC can indeed be a proper subset
of C. Consider the itemsets X1 ⊂ X2 ⊂ X3 ⊂ X4 with X1, X3 ∈ C. Further,
assume that X1

0.5
↪→ X2

1
↪→ X3

0.5
↪→ X4. Using Lemma 2 it is X1↪→X4 and X3↪→X4.

Using Definition 4 it follows that X1 �∈ TC and X3 �∈ TC.
This means, every temporally closed itemset is also closed over a sequence

of time periods but not every itemset which is closed over a sequence is also
a temporally closed one. The counterexample shows that a temporally closed
itemset can be temporally derivable from multiple closed itemsets. As we will see
in our experiment results in Section 8 temporally closed itemsets form a (almost
always proper) subset of directly generalized closed itemsets in which temporal
redundancies have been removed. The set of temporally closed itemsets can in
fact be significantly smaller than the set of closed ones as we will demonstrate in
our experimental evaluation in Section 8. At the same time, temporally closed
itemsets are lossless in the sense that they can be used to uniquely determine
the shape of the histories of all remaining itemsets.

7 Discovery Procedure

To obtain the set of temporally closed itemsets we use a two step approach in
which we first generate a set of candidate itemsets and then test every candidate
whether it is temporally closed, or not. This two step procedure will be detailed
in the following.

7.1 Candidate Generation

A naive approach to obtain a candidate set would be to consider the set of
itemsets which are frequent in every time period. Because this set is usually
vast the subsequent testing step would be very time consuming. A more efficient
approach is to restrict the candidates to the set C of frequent itemsets which
are closed over a sequence of time periods. According to Theorem 1 this set is a
superset of the set of temporally closed itemsets TC. It is, however, by several
factors smaller than the set of all frequent itemsets.

Given a time-stamped data set D and a segmentation Ti := [ti−1, ti] of the
covered time span [t0, tn], D is divided into the corresponding subsets Di ⊂ D.
From this sequence of temporally ordered, disjunct data sets D1, . . . , Dn the
candidate set C can be obtained in three steps.
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Mining Closed Itemsets in each Period. An algorithm for closed itemset
mining is applied to each data set which yields a sequence of closed itemset sets
C1, . . . , Cn.

Merging the Sets of Closed Itemsets. The closed itemset sets C1, . . . , Cn

have to be inserted into the candidate set C. We start by setting C := C1 and
converting C into a data structure in which each node represents an itemset and
maintains a list of parents (largest subsets) and children (smallest supersets).
We then subsequently insert the remaining Ci in C whereby the list of parents
and childrens in each node is being maintained. Assume that C1, . . . , Cj−1 have
already been inserted in C and that X ∈ Cj is the next itemset to be inserted.
The following scenarios are possible:

– X already exists in C: In this case the support of X in the data set Dj is
inserted at position j in the support history of X in C.

– X does not exist in C: In this case it is checked whether there exists a
Y ∈ C such that X ⊂ Y . If no such proper superset exists, X was infrequent
in earlier periods and is not inserted because a complete support history of
it cannot be obtained anymore. If a proper superset exists X was frequent
but non-closed in earlier periods and thus is inserted into C. The support of
X in the data set Dj is inserted at position j in the support history of X
in C.

Complexity. Assume that m is the length of the longest itemset, that the number
of different items is p, and that all Ci have equal size. The initial computational
effort to create the data structure for C is O(|C|2). The effort to search an
itemset X in C is bound by the length m of the longest possible path in C. To
insert an itemset X into C after the smallest proper superset has been found all
largest proper subsets and all smallest proper supersets of X in C need to be
accessed and their parent list, respectively children list, updated. This can be
accomplished in O(m+p) because every itemset cannot have more than m parent
nodes and more than p child nodes. Under the assumption that always a fraction
α of itemsets in Ci needs to be inserted into C the overall complexity of inserting
the sets C2, . . . , Cn into C therefore is O(|Ci|2 + mn|Ci| + αn(m + p)|Ci|). A
bottleneck is the quadratic effort for creating the initial data structure. This
effort, however, can be avoided by using in the previous step a closed itemset
miner like CHARM-L [10] which outputs the data structure directly.

Handling Incomplete Histories. It needs to be checked whether C con-
tains itemsets with incomplete histories. An incomplete history can occur either
because an itemset was non-closed or infrequent in some but not all periods,
respectively. We iterate over each element X ∈ C starting with the largest item-
sets. We visit itemsets with no children always first and visit all others in order
of size. The following two scenarios for itemsets X with incomplete histories are
possible:

– The itemset X has no children: This implies that in at least one period either
X or its closure were infrequent. In this case it is not possible to obtain a



A Condensed Representation of Itemsets for Analyzing Their Evolution 173

0.8 1 1.2 1.4

0.8

1

1.2

1.4

rel. change X

re
l. 

ch
an

ge
 X

Y

Fig. 3. Scatter plot of the relative changes of the support histories shown in Figure

1. The fitted regression line is Δ supp(XY ) = 1.0332 · Δ supp(X) − 0.0396 and the

correlation coefficient r ≈ 0.9545.

complete support history of X , thus the itemset is removed from C and the
children list of its parents updated accordingly.

– The itemset X has children: This implies that the itemset X was non-closed
in at least one period. Assuming that its support is missing in period j then
one of the children of X must have a support value for this period, either
because it is the closure of X in j or because the support value was completed
in an earlier step. Due to X being non-closed in at least one period, there
may exist subsets Z ⊂ X which are non-closed in every period but have a
different closure across periods (one of which is X). Following the discussion
in Section 4.2 these itemsets are closed over a sequence of time periods and
thus also part of the candidate set C. For this reason, each itemset Z ⊂ X
for which no itemset X ′ ∈ C exists such that X ′ ⊂ Z ⊂ X is also inserted
into C.

Complexity. We use the same notation as in the complexity analysis before.
Additionally we assume that a fraction β of itemsets in C is infrequent and that
a fraction γ is non-closed in some but not all periods, respectively. In the first
scenario for each deleted itemset the children list of each parent needs to be
updated. Because each itemset can have at most m parents the computational
effort thus is O(mβ|C|). In the second scenario, for each of the γ|C| itemsets each
direct child needs to be accessed. Since the number of children is bound by p the
computational effort therefore is O(pγ|C|). Further the set NC of itemsets which
were non-closed in each period but had a varying closure need to be inserted. As
in the previous step the complexity of inserting an itemset is O(m + p). Taking
into account that every itemset with complete history needs to be accessed once
the overall complexity therefore is O((1+(m−1)β+(p−1)γ)|C|+(2p+m)|NC|).
We do not have an estimation for β, γ and |NC| but in our experiments we
neither encountered itemsets with varying closedness nor with varying closure.
This gives rise to the assumption that γ and |NC| will be very small in practice.
Concerning β we observed that typically 10 − 20% of the itemsets in C had an
incomplete history due to infrequency in some periods.
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7.2 Testing for Temporal Closedness

To check whether an itemset X ∈ C is temporally non-closed we need to test
whether an itemset XY exists which can be temporally derived from X . This, in
turn, means we have to test whether ε in suppi(XY ) = ε suppi(X), i = 1, . . . , n
is constant over time. Due to data usually being noisy as we showed in Figure 2,
we will not check this criterion directly, but instead statistically test its validity.
Also, we rewrite the criterion in an equivalent form to account for the order of
values over time in the histories. Our experiments have shown that direct use
of the criterion counterintuitively marked some histories as temporally derivable
when they were noisy.

Let Δi supp(X) := suppi(X)
suppi−1(X) be the relative change in support for itemset X

between two periods Ti−1 and Ti, i = 2, . . . , n. Then, the above criterion holds,
iff Δi supp(XY ) = Δi supp(X) for any i = 2, . . . , n. This means, if the itemset
XY is temporally derivable from X then the relative changes in the history of
XY are equal to the temporally related relative changes in the history of the
itemset X .

Imagine Δi supp(X) and Δi supp(XY ) in a plotted graph, whereby – as im-
plied by Definition 3 – Δi supp(XY ) is the dependent quantity. If Δi supp(XY ) =
Δi supp(X) holds, then all points in the plot should be on a straight line with
slope 1 and intercept 0. In practice, however, this equality will rarely hold due
to noise. As a solution, we model the underlying relationship as Δi supp(XY ) =
Δi supp(X) + γ where γ is a random error with zero mean and unknown, but
low variance.

Under the assumption that the dependency of Δi supp(XY ) from Δi supp(X)
can be generally described by Δi supp(XY ) = a · Δi supp(X) + b + γ, we fit a
regression line Δ supp(XY ) = â · Δ supp(X) + b̂. The parameters â and b̂ are
estimates for a and b and obtained by minimizing the regression error. We then
test if Δi supp(X) is statistically equal to Δi supp(XY ) by carrying out the
following two steps:

1. Based on the estimates â and b̂ we test the hypothesis that the true param-
eters of the model are a = 1 and b = 0 using a standard t-test.

2. Additionally, we test whether the variance of γ is small, i.e. whether the
(Δi supp(X), Δi supp(XY )) are sufficiently close to the regression line, by
setting a threshold r̃ for Pearson’s correlation coefficient r.

Figure 3 illustrates the testing procedure. It shows the scatter plot of the relative
changes of the support histories from Figure 1. The fitted regression line is
Δ supp(XY ) = 1.0332 ·Δ supp(X) − 0.0396 and the correlation coefficient r ≈
0.9545. The above test procedure using a significance level of 0.05 and r̃ = 0.95
shows that XY is indeed temporally derivable from the history of X .

Complexity. The complexity of this step is apparently O(|C|) because each
itemset’s parent can be directly accessed through the parent list.
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8 Experimental Results

As Theorem 1 as the central result of this publication states temporally closed
itemsets form a subset of those itemsets which are closed over a sequence of time
periods. The set of itemsets which are closed over a sequence of time periods also
forms the candidate set to be tested for temporal closedness. For this reason, the
question to be answered experimentally is how much the set of temporally closed
itemsets is smaller than the set of itemsets which are closed over a sequence.

For our experiments we chose two data sets. One data set, here called CRS,
is extracted from the data-warehouse of a telecommunication company. The
other data set we extracted from the IPUMS project1 [14] which is dedicated to
collecting, harmonizing and freely distributing census data.

The CRS data set contains answers of customers to a survey collected over
a period of 20 weeks. Each record is described by 19 nominal attributes with a
domain size between 2 and 9. We transformed the data set into a transaction set
by recoding every (attribute, attribute value) combination as an item. Then we
split the transaction set into 20 subsets, each corresponding to a period of one
week. The subsets contain between 385 and 547 transactions.

The data set we extracted from IPUMS contains census data of the USA
collected during the years 2001–2006. Due to the data set being vast we re-
stricted the data to the states New Jersey, New York, and Pennsylvania. From
the available attributes we selected 15 concerning the person himself (e.g. age,
race, gender), the house they are living in (e.g. number of bedrooms, year of
built), and their profession (e.g. travel time, avg. hours worked per week, net
income). Numeric attributes were converted into nominal ones using uniform
binning. The domain size of the attributes varies between 2 and 9. We split the
data set year-wise resulting in six data sets each containing between 130364 (for
2002) and 397788 (for 2006) records. We applied the same preprocessing steps
as for the CRS data.

For each data set we then obtained the candidate set to be tested for temporal
closedness. To each subset of each data set we applied a closed itemset miner2

using 11 different minimum support thresholds in steps of 0.01 in the range from
suppmin = 0.05 to suppmin = 0.15. For each value of suppmin we then generated
from the obtained 20 sets of closed itemsets for CRS, respectively 6 sets for
IPUMS, the candidate sets as described in Section 7.

For both data sets we observed that the closed itemsets were the same in every
period, i.e. closed itemsets did not turn into non-closed ones and vice versa. This
indicates that such events are very rare. It also implies that for both data sets
the candidate set is equal to the set of closed itemsets in each period.

We tested the elements of the candidate sets for temporally closed itemsets by
applying Definition 4 in combination with the test procedure in Section 7.2. We
also investigated the number of itemsets which are closed over the sequence of

1 http://usa.ipums.org/usa/
2 We used the frequent closed itemset miner contained within the apriori software

package by Ch. Borgelt. It can be obtained from http://borgelt.net/fpm.html
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Fig. 5. Results for the IPUMS data set

time periods. Here, we employed two approaches. The first one uses the original
definition which requires strict equality of support values (cf. Definition 2). To
rule out the effects of low quality data we also tested for approximate closedness,
i.e. we regarded an itemset as non-closed if its support value is approximately
the one of a more general itemset. Here, we applied the test from Section 7.2 to
the candidate set extended by an additional test for ε > 0.98 because for strict
closedness it must be ε = 1 (cf. Lemma 3).

To compare the number of itemsets returned by our approach with the overall
number of frequent itemsets (i.e. closed and non-closed frequent itemsets) we
also applied a frequent itemset miner to both data sets using the same support
threshold as for the other experiments. We only kept those itemsets which were
frequent in every period.

The experimental results for the CRS data set are shown in Figure 4 and for
the IPUMS data set in Figure 5 . Both figures show the the number of all frequent
itemsets discovered and the number of itemsets which are temporally closed,
approximately closed, and strictly closed. As can be seen, the approach of tem-
porally closed itemsets leads to a significant reduction in the number of itemsets
compared to both closed itemset approaches. For example, for suppmin = 0.05
mining only for closed itemsets reduces the CRS result set to roughly 69% and
the IPUMS result set to roughly 76% of its initial size while the temporally
closed itemset approach leads to a reduction of 36% and 24%, respectively. This
means, for the CRS data the set of temporally closed itemsets is by a factor
of 1.7 smaller than the set of strictly closed itemsets. For the IPUMS data this
factor is with 3.1 even better.

Figure 6 and Figure 7 show for suppmin = 0.05 how the factor ε is distributed
which maps the history of a non-temporally closed itemset to the smallest tempo-
rally closed itemset derivable from it. As we may expect from the results in Figure 4
and Figure 5 the range of ε is spread over a large range approximately [0.75, 1] for
the CRS data and [0.4, 1] for the IPUMS data. The bar on the very right side in
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Fig. 6. Histogram of the distance ε of

non-temporally closed itemsets to the cor-

responding temporally closed one for the

CRS data.

Fig. 7. Histogram of the distance ε of

non-temporally closed itemsets to the cor-

responding temporally closed one for the

IPUMS data.

each histogram (ε ≈ 1) roughly indicates the number of itemsets that would have
been discardedby the generalized closed itemset approachdescribed in Section 4.2.
Our approach, in contrast, would discard every itemset shown in the histogramand
thus reduce the set of closed itemsets by a very large extent.

9 Conclusion

Many businesses collect huge volumes of time-stamped data about all kinds of
processes. This data reflects changes in the underlying domain. It is crucial for
the success of most businesses to detect these changes, and finally to adapt
or react to them. As a response to this need there is emerging research on
data mining methods which aim at understanding change within a domain by
analyzing how patterns evolve over time. Several studies have been conducted
on analyzing how itemsets change over time. However, these approaches do not
account for temporal redundancies, i.e. the problem that many of the observed
changes are simply the side-effect of other changes.

In this paper we solved this problem by introducing temporally closed itemsets
as a condensed representation of itemsets which is, on the one hand, free of tem-
poral redundancies but which, on the other hand, still contains all the information
needed for change analysis. Based on temporally closed itemsets it is possible to
derive the shape of the history of all other itemsets. In particular, we showed that
temporally closed itemsets are a subset of the set of closed itemsets if the definition
of the latter would be directly generalized to be applicable to sequences of time pe-
riods. Our experiments not only demonstrated that temporally closed itemsets do
exist in real-world data. We also showed that the set of temporally closed itemsets
can be smaller than the set of closed itemsets by a factor of two to three and by
orders of magnitude smaller than the set of initially discovered itemsets.
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1. Böttcher, M., Spiliopoulou, M., Höppner, F.: On exploiting the power of time in

data mining. SIGKDD Explorations Newsletter 10(2), 3–11 (2008)

2. Agrawal, R., Psaila, G.: Active data mining. In: Fayyad, U.M., Uthurusamy, R.

(eds.) Proceedings of the 1st ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, Montreal, Quebec, Canada, pp. 3–8. AAAI Press,

Menlo Park (1995)

3. Chakrabarti, S., Sarawagi, S., Dom, B.: Mining surprising patterns using temporal

description length. In: Proceedings of the 24th International Conference on Very

Large Databases, pp. 606–617. Morgan Kaufmann Publishers Inc., San Francisco

(1998)

4. Liu, B., Ma, Y., Lee, R.: Analyzing the interestingness of association rules from

the temporal dimension. In: Proceedings of the IEEE International Conference on

Data Mining, pp. 377–384. IEEE Computer Society Press, Los Alamitos (2001)

5. Spiliopoulou, M., Baron, S., Günther, O.: Efficient monitoring of patterns in data

mining environments. In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka,

U. (eds.) ADBIS 2003. LNCS, vol. 2798, pp. 253–265. Springer, Heidelberg (2003)
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Abstract. Subgroup discovery is a local pattern discovery task, in which

descriptions of subpopulations of a database are evaluated against some

quality function. As standard quality functions are functions of the de-

scribed subpopulation, we propose to search for equivalence classes of

descriptions with respect to their extension in the database rather than

individual descriptions. These equivalence classes have unique maximal

representatives forming a closure system. We show that minimum car-

dinality representatives of each equivalence class can be found during

the enumeration process of that closure system without additional cost,

while finding a minimum representative of a single equivalence class is

NP-hard. With several real-world datasets we demonstrate that search

space and output are significantly reduced by considering equivalence

classes instead of individual descriptions and that the minimum repre-

sentatives constitute a family of subgroup descriptions that is of same or

better expressive power than those generated by traditional methods.

1 Introduction

Subgroup discovery [2,12,17] is a local pattern discovery task: descriptions of sub-
populations of a database are evaluated against some real-valued quality func-
tion, and those descriptions exceeding some given minimum quality are returned
to the user. The quality functions commonly used in this course like Piatetsky-
Shapiro, binomial test, or Gini-index (see [12] for a list) are functions of the
extension of a subgroup description. Traditional subgroup discovery algorithms,
however, search in the space of subgroup descriptions, usually conjunctions of
attribute/value equality constraints, rather than in the space of extensions. Since
many descriptions can have an identical extension on the given data, this may
lead to (i) many redundant evaluations of the quality function and (ii) to a result
set that contains multiple descriptions of the same subpopulation.

In contrast we propose to consider extension based equivalence classes of sub-
group descriptions rather than individual descriptions. Thereby our algorithms
implicitly search in the space of subgroup extensions, and, consequently, they
have a potentially reduced search space and return at most one description of
each extension, a representative, to the user. For this purpose we propose to
use descriptions with a minimum number of constraints, i.e., a minimum rep-
resentative. This choice is motivated by the common hypothesis that (i) short
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descriptions are easier to interpret than long descriptions and (ii) in scenarios in
which subgroups are used as building blocks for global models short descriptions
lead to better generalization. In summary we consider the following computa-
tional problem:

Problem 1 (non-redundant-subgroup-discovery). Given a dataset, a qual-
ity function q, and a minimum quality threshold q∗, list a result setR of subgroup
descriptions that satisfies

completeness, i.e., for all subgroup descriptions H with q(H) ≥ q∗ there is an
H ′ ∈ R that has the same extension as H ,

non-redundancy, i.e., for all pairs of distinct subgroup descriptions H, H ′ ∈ R
the extensions of H and H ′ are distinct, and

representative minimality, i.e., for all listed descriptions H ∈ R there is no
shorter description H ′ having the same extension.

In addition we also discuss the standard problem variations of mining only rep-
resentatives of the top-k quality equivalence classes as well as mining only classes
having a representative not exceeding a given length-limit.

Results and Contribution. We formalize extension based equivalence classes and
show that they theoretically can subsume an exponential number of individual
subgroup descriptions. Thus, searching equivalence classes rather than individual
descriptions has the potential to reduce search space and output tremendously.
Indeed, as we show in an empirical study, a significant reduction can also be
observed on ten well-known real-world datasets.

While each equivalence class has a unique maximal representative, we show
that the number of minimal and minimum representatives can grow exponen-
tially in the length of that maximal description, and it is NP-hard, given some
description, to compute an equivalent description of minimum length. This result
is complemented by our observation that a simple greedy strategy approximates
a minimum representative within a logarithmic factor.

We use this approximation technique together with the fact that the unique
maximal representatives are forming a closure system to develop a first algorith-
mic solution to Problem 1 that builds on any of the known algorithms that can
enumerate closure systems combined with an anti-monotone pruning condition.
As an alternative we present an algorithm that directly traverses the equivalence
classes via the exact minimum representatives. This approach bypasses the hard-
ness of computing minimum representatives by building them inductively from
one another. It comes, however, at the cost of additional memory requirements.

In a concluding empirical evaluation we compare both approaches to each
other and to traditional exhaustive subgroup discovery. We assess good perfor-
mance, as well as a surprisingly good predictive power given that the method
has not been optimized towards this goal.

Prior Work. Addressing output redundancy is a concern of subgroup discovery
research right from the start (see, e.g., [8]). More recent approaches include suc-
cessive weighted covering [13] and the removal of irrelevant descriptions [7]. For
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the first method it is important to note that it can be combined with our’s rather
than being an excluding alternative. The second approach is closely related to
this work in that it also uses the closure system of maximal representatives.
While we are interested in listing minimum representatives of each equivalence
class, their focus is on discarding irrelevant classes.

Traditional subgroup miners usually exploit an optimistic estimator of their
quality function in order to make the approach of searching in the space of descrip-
tions feasible. Hence they create an anti-monotone search space that contains the
family of all interesting descriptions. While our algorithms use equivalence classes
instead of individual descriptions, all the optimistic estimator techniques includ-
ing recent findings [10] can still be applied. Consequently, our algorithms always
use a condensed version of traditional method’s search spaces.

Methodologically our work is directly related to formal concept analysis (e.g.,
[6]) and closed set mining [3,14,16] because the maximal representatives together
with their equivalence classes form a concept lattice. While our algorithms build
on closure system enumeration techniques, we are only interested in minimum
representatives. This is in contrast to closed set mining where algorithms seek to
list all maximal (closed) members or minimal members (generators or free sets).

2 Basic Definitions

Throughout this work we denote “elementary objects” by non-capital letters,
e.g., e, sets of elementary objects by capital letters, e.g, E and families, i.e.,
sets, of sets by calligraphic letters, e.g., E . In particular the power set of some
set E is denoted by P(E). The symbol “⊂” denotes the strict subset relation
between sets. For a family S the terms minimal and maximal refer to the
subset relation, i.e., a set S ∈ S is a minimal element of S if there no strict
subset S′ ⊂ S that is also an element of S. In contrast, the term minimum
is used with respect to the cardinality of a set, i.e., S ∈ S is called minimum
element of S if there is no S′ ∈ S with |S′| < |S|.

Subgroup Descriptions. Let A = A1, . . . , An be a sequence of n sets we refer
to as attributes. A data record over A is an n-tuple D = (a1, . . . , an) ∈
A1× · · · ×An, for which we denote its i-th component by D(i) = ai. A dataset
D over A is a multiset of data records over A. Note that we do not consider
labeled data respectively target attributes at this points. Labels are introduced
in the paragraph about subgroup quality below.

The subgroup description language considered in this work is the language of
conjunctions of attribute/value equality constraints. We formalize this as follows:
a constraint over A is an expression (Ai = v) with i ∈ {1, . . . , n} and v ∈
Ai. The set of all such constraints is denoted CA. The family of subgroup
descriptions over A, i.e., the language of conjunctions of such constraints, is
then LA = P(CA). In the following we drop the index A whenever it is clear
from the context.

The semantic of conjunctions arises through the following interpretation of
subgroup descriptions: let D be a dataset over A. A datarecord D ∈ D is said to
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support a subgroup description H ∈ L, denoted D |= H , if for all (Ai =v) ∈ H
it holds that D(i) = v. Then the extension of H in D, denoted by D[H ], is the
submultiset of D containing the data records that support H . Extensions are
anti-monotone with respect to the subset relation, i.e., it holds that H ⊆ H ′ ⇒
D[H ] ⊇ D[H ′].

Subgroup Quality. For the purpose of this work we simply regard a quality
function as a map q : L → R and an optimistic estimator for q as a map
q̂ : L → R satisfying for all H ⊆ H ′ ∈ L that q̂(H) ≥ q(H ′). Given a quality
threshold q∗ the family of interesting subgroup descriptions is R = {H ∈
L : q(H) ≥ q∗}. Usually, of course, a quality function depends on the given data.
For instance for a binary labeled dataset D, i.e., a dataset with associated
labels l(D) ∈ {+,−} for all D ∈ D a commonly used quality function (and the
one used in our experiments) is the binomial test quality function

q(H) =

√
|D[H ]|
|D|

(
|D+[H ]|
|D[H ]| −

|D+|
|D|

)
,

where D+ = {D ∈ D : l(D) = +} denotes the dataset of all +-labeled data
records. As optimistic estimator for the binomial test quality function we used
q̂(H) =

√
|D[H ]| / |D| (1− |D+| / |D|). In the following, however, the concrete

form of q and q̂ is not considered. We regard them as given blackboxes that
“encapsulate” the data and rely only on the following two requirements:

1. For a given minimum quality threshold q∗ ∈ R the search space S =
{H ∈ L : q̂(H) ≥ q∗} defined by q̂ is anti-monotone, i.e., for all H ⊆ H ′ ⊆
C it holds that H ′ ∈ S implies H ∈ S.

2. The maps q(H) and q̂(H) both are functions of the extension of H in the
dataset, i.e., D[H ] = D[H ′] implies q(H) = q(H ′).

The first requirement follows from the definition of optimistic estimators, and the
second is true for the usually employed quality functions and their estimators.

3 Extension Equivalence and Compression

In this section we formally introduce equivalence classes of subgroup descriptions
and investigate their potential in reducing search space and output of subgroup
discovery. Unless explicitly mentioned otherwise, for the remainder of this article
we assume that D is a dataset of size m over n attributes A. The central notion
of equivalence is:

Definition 1 (Description Equivalence). Two subgroup descriptions H, H ′ ∈
L are equivalent (with respect to the dataset D), denoted by H ≡ H ′, if they
have an identical extension on D, i.e., D[H ] = D[H ′].

Clearly, ≡ is an equivalence relation on L. For a H ∈ L we denote its equiva-
lence class with respect to ≡, i.e., {H ′ ∈ L : H ≡ H ′}, by [H ]. For a family
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Table 1. Construction 1 with n = 6

A1 A2 A3 A4 A5 A6 l

D1 0 0 1 1 1 1 −
D2 1 1 0 0 1 1 −
D3 1 1 1 1 0 0 −
D4 1 1 1 1 1 1 +

of subgroup descriptions H ⊆ L we denote by H≡ the equivalence classes it
contains, i.e., H≡ = {[H ] : H ∈ H}.

In order to investigate the potential reduction of search space and output,
we now give a general dataset construction that intuitively reflects “worst-case
siutations” for traditional subgroup discovery. It leads to several theoretical ob-
servations.

Construction 1. For even positive integers n ∈ N we define the dataset Dn

over n binary attributes A = (A1, . . . , An) with Ai = {0, 1} for i ∈ {1, . . . , n} by
Dn = (D1, . . . , Dn/2+1) with Dn/2+1 = (1, . . . , 1) and

Di(j) =

{
0, if j ∈ {2i− 1, 2i}
1, otherwise

,

for i = 1, . . . , n/2.

Table 1 illustrates this construction for n = 6 annotated with binary labels. For
q∗ = 3/8 only one equivalence class is interesting with respect to the binomial
test quality function, i.e, the one containing the descriptions H with D[H ] =
{D4}. Thus, one solution to Problem 1 for this data is {(A1=1), (A3=1), (A5=
1)}. In contrast there are 33 = 27 alternative descriptions of this extension: for
each of the pairs {A1, A2}, {A3, A4}, and {A5, A6} choose one or both attributes
to be constraint to 1. Generally the datasets Dn witness that the compression
rate achieved by considering equivalence classes instead of individual description
can grow exponentially in the number of attributes (and data records).

Theorem 1. For all positive integers n ∈ N there is a dataset D of size n/2+1
over n attributes A and a quality threshold q∗ such that the compression rates
|R| / |R≡| and |S| / |S≡| are in O(exp(n/2)).

In order to investigate the extend of compression that can be achieved in prac-
tice, we conducted experiments on ten real-world datasets, which are introduced
in more detail in Section 7. Table 2 shows sizes of result families R, compressed
results families R≡, search spaces S, and compressed search spaces S≡ for dif-
ferent quality thresholds q∗. The threshold t100 varies among the datasets: it
is equal to the quality of the 100th highest quality subgroup description (note
that because of ties in the quality |Rt100| can still be greater than 100). The
threshold ε is equal to the smallest positive number distinguishable from zero in
double precision. The results for q∗ = t100 give a differentiated impression: rang-
ing from tremendious compression rates of 749.000 (soybean) to no compression
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Table 2. Uncompressed and compressed result families and search spaces

credi. lung-. lymph mush. nurse. sick soybe. splice tic-t. vote

|Rt100| 100 38K 124 168 100 128 749K 100 113 101

|R≡
t100| 83 1 17 12 100 1 1 99 113 101

|St100| 148K 456M 12K 3458 103K >100M >100M 398K 6067 3505

|S≡
t100| 87K 159K 4176 890 69K 8M 1M 395K 5824 3465

|Rε| 6119K >100M 1078K >100M 11K >100M >100M >100M 65K 3610K

|R≡
ε | 175K 103K 19K 105K 11K 2M 2M >100M 23K 82K

|Sε| 17M >100M 26M >100M 192K >100M >100M >100M 129K 11M

|S≡
ε | 385K 183K 45K 228K 115K 9M 3M >100M 43K 227K

(vote). For decreasing thresholds, however, a significant compression arises for all
datasets: while (with one exception) it is tractable to search through all equiv-
alence classes with a potentially positive quality (q∗ = ε), this is infeasible on
most datasets for exhaustive enumeration due to the large number of equivalent
descriptions.

4 Border Elements

Border elements, i.e., maximal and minimal members of an equivalence class
[H ], play a special role. They contain all information necessary to check whether
some given description is a member of [H ]. Among the minimal members one
can find minimum representatives, one of which we desire as representative for
its class. In this section we state some basic but important mathematical and
computational properties of the border elements.

The first observation is that every equivalence class has a unique maximal
(most specific) element. It is given by the map σ introduced in the lemma below.

Lemma 2 (Pasquier et al. [14]). For all subgroup descriptions H ∈ L it holds
that σ(H) given by

σ(H) = {(Ai =v) : 1 ≤ i ≤ n, ∀D ∈ D[H ] , D(i) = v} .

is the unique maximal element of [H ], i.e., (i) H ≡ σ(H), (ii) for all H ′ ∈ L
with H ′ ⊃ σ(H) it holds that H �≡ H ′, and (iii) σ(H) is unique with (i) and (ii).

While each equivalence class [H ] has a unique maximal element σ(H), there can
be more than one minimal (most general) element of [H ]. In fact the number
of minimal and even that of the minimum representatives can be exponential
in the cardinality of σ(H). Again, the datasets Dn from Construction 1 witness
this statement: for all I ⊆ {1, . . . , n/2} the description HI defined by

HI = {(A2i =1): i ∈ I} ∪ {(A2i−1 =1)) : {1, . . . , n} \ I}

is a minimum description of the extension {Dn+1}, and there are 2n/2 such
descriptions. We can conclude:
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Theorem 3. For all positive integers n ∈ N there is a dataset D of size n/2+1
over n attributes A such that there is an equivalence class with O(exp(n/2))
minimum representatives.

For Problem 1 we are only interested in constructing one minimum representative
per interesting equivalence class. As an isolated task, however, this is intractable.
This again contrasts the maximal representatives, which can be computed in time
O(nm). In particular the NP-hard min-set-cover problem—given a family of
subsets F ⊆ P(E) with

⋃
F = E, compute a minimum subfamily F ′ ⊆ F with⋃

F ′ = E—polynomially reduces to finding a minimum description. In addition
the reduction preserves solution sizes. Thus, even the inapproximability result
from [5] carries over to our problem.

Theorem 4. Given a subgroup description H ∈ L, it is

(a) NP-hard to compute an equivalent subgroup description G ∈ [H ] of mini-
mum length, i.e., |G| = min{|H ′| : H ′ ∈ [H ]} and

(b) hard1 to compute an approximation G′ ∈ [H ] in polynomial time that satisfies
|G′| ≤ |G| (1 − ε) lnm for all ε > 0 where m = |D \ D[H ]| is the number of
data records not supporting H.

Proof. We prove both statements by giving a polynomial time transformation
of min-set-cover instances F ⊆ P(E) to a dataset D over attributes A and
a subgroup description H ∈ LA such that (i) extension equivalent descriptions
H ′ ∈ [H ] correspond to set covers FH′ ⊆ F of E of same size, i.e., |H ′| = |FH′ |
and (ii) |D \ D[H ]| is equal to the size of the set cover ground set |E|. Part (a)
then follows from the NP-hardness of min-set-cover and (b) from the result
of [5]. Let E = {1, . . . , m} and F = {S1, . . . , Sn} be a set cover instance. Set
A = {A1, . . . , An} with Ai = {0, 1} and D = D1, . . . , Dm+1 with

Di(j) =

{
1, if i �∈ Sj

0, otherwise

for i = {1, . . . , m} and Dm+1 = (1, . . . , 1). Furthermore, choose H ∈ L as
H = {(Ai =1) : 1 ≤ i ≤ n}. Let H ′ ∈ [H ] be a subgroup description equivalent
to H . Then it follows from the definitions that H ′ ⊆ σ(H) and D′[H ′] = {}
where D′ = D \ D[H ] denote the datarecords that are not supporting H . It
follows for FH′ ⊆ F defined by FH′ = {Si : (Ai =1) ∈ H ′} that

∀i ∈ E, ∃j, i ∈ Sj ∧ Sj ∈ FH′

⇔∀i ∈ E, ∃(Aj =1) ∈ H ′, Di(j) = 0
⇔∀i ∈ E, Di �∈ D′[H ′] .

That is H ′ ≡ H if and only if FH′ is a cover of E. Moreover, |H ′| = |FH′ | as
required. ��
1 Here, hardness means: “as hard as computing a solution to an NP-hard problem in

time nO(log log n) for instances of size n.”
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5 Closure System Traversal and Greedy Approximation

Our first algorithmic approach towards solving Problem 1 is motivated by the
observation that the transformation used within the proof of Theorem 4 can
be reversed. Hence, finding a minimum equivalent representative of a given de-
scription H is in fact equivalent to min-set-cover. Incoporating that inverse
transformation into the well-known greedy algorithm for min-set-cover yields
the procedure:

1. set D̄ ← D \ D[H ], G ← ∅
2. while D̄[G] �= ∅ set G← G ∪ {argminc∈σ(H)

∣∣D̄[G ∪ {c}]
∣∣}

3. return G

Slav́ık [15] found that the greedy approximation factor for min-set-cover

is g(m) = lnm − ln lnm + 0.78 for instances with a ground set E of size m.
Taking into account our transformation we have the following result.

Lemma 5. Given a subgroup description H, a minimum representative of [H ]
can be approximated in time O(|σ(H)| m) within g(m) where m = |D \ D[H ]| is
the number of data records not supporting H.

Thus, any algorithm that traverses the search space of equivalence classes can be
combined with the greedy algorithm to approximately solve Problem 1. Several
known algorithms are identified as applicable for that task by another observa-
tion: the maximal representatives form a closure system.

Lemma 6 (Pasquier et al. [14]). The map σ is a closure operator, i.e., it
satisfies for all H, H ′ ∈ L that H ⊆ σ(H) (extensivity), H ⊆ H ′ ⇒ σ(H) ⊆
σ(H ′) (monotonicity), and σ(H) = σ(σ(H)) (idempotence).

There are several efficient algorithms listing all closed sets of a closure operator
like the divide and conquer algorithm from formal concept analysis [9]. Adapting
a closed frequent itemset miner like LCM [16] to our task is even more natural:
we plug in optimistic estimate pruning instead of frequency pruning, and instead
of single items we have single constraints. Since there are at most nm valid con-
straints for a dataset of size m over n attributes, together with the performance
of LCM we get the result:

Theorem 7. Problem 1 can be solved in time O(|S≡|n2m2) and space O(nm)
if the representative minimality condition is relaxed to: for all listed descrip-
tions H ∈ R there is no description H ′ having the same extension with |H | >
g(|D \ D[H ]|) |H ′|.

Note that in case of a constant number of attribute values the bound on the
number of constraints boils down to O(n), and consequently the time complex-
ity in the theorem is improved by a factor m. The theoretical approximation
guarantee of the greedy algorithm, although optimal with regard to Theorem 4,
may appear somewhat weak. In practice, however, the worst-case bound is vir-
tually never attained, and the greedy result is usually close to optimum (see
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Section 7). Moreover, note that the potentially expensive greedy algorithm has
to be called only for the returned result equivalence classes and not during the
actual traversal of the closure system.

In order to adress the top-k problem variant, i.e., to list only representatives
of k highest quality classes, only minor changes are necessary: instead of directly
printing the interesting subgroup descriptions, collect them in a priority queue
with capacity k. In this scenario the search space can be reduced significantly
by adjusting the q∗ threshold whenever a new subgroup description is added to
the result queue (and the queue is full).

On the other hand, there is no easy way to include a length-limit for additional
pruning, i.e., when we are only interested in reprentatives containing no more
than l literals, this cannot be exploited for reducing the search space. The reason
is that, even if exact minimum reprentatives would be on hand, in general LCM
(or any other common closed set miner) does not list the closed sets in ascending
order with respect to their minimum equivalent descriptions.

6 Inductive Minimum Representative Construction

In this section we present an alternative algorithmic approach for non-redundant
subgroup discovery that, intuitively, is based on a breadth-first traversal of the
directed graph containing as vertices all equivalence classes that lie in the search
space and edges between any two classes [H ] �= [H ′] such that there is a con-
straint c ∈ C with (H ∪{c}) ∈ [H ′] (note that the existence of such a constraint
is independent of the chosen representatives H, H ′). It turns out that minimum
representatives of an equivalence class [H ] correspond to shortest paths from [∅]
to [H ] in that graph. Thus, beside having the weakness of a significant mem-
ory overhead because all visited classes have to be kept in memory in order to
guarantee a non-redundant traversal, this strategy has two major advantages:

1. it generates minimum representatives of each equivalence class without ad-
ditional cost and,

2. as it visits equivalence classes in ascending order with respect to the mini-
mum cardinality of their members, it allows for pruning based on a length-
limit.

The straightforward implementation of that graph traversal has the serious draw-
back that it reaches vertices via many redundant ways: a minimum representative
G induces |G|! different paths to [G]—one for each of its orderings. This effect can
be significantly reduced by chosing some arbitrary but fixed order {c1, . . . , cN}
of the constraint set C. Thereby the expressions “maxH” and “min H” are
defined for non-empty descriptions H ∈ L by referring to the constraint in H
with the maximum or minimum index, respectively. Algorithm 1 below uses this
order to reduce its traversal paths to those that are in descending order. To de-
scribe its behavior in more detail and prove its correctness we define a modified
lexicographical order on the descriptions L, denoted by “≺L”, given by:
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H ≺L H ′ ⇔ |H | < |H ′| ∨ (|H | = |H ′| ∧max(HΔH ′) ∈ H ′) .

Using this strict linear order we can specify the elements that Algorithm 1 enu-
merates among the potentially many minimum representatives.

Definition 2 (Canonical Minimum Representative). The canonical min-
imum representative of an equivalence class [H ], denoted by μ(H), is the
unique minimum representative of [H ] that is minimal with respect to ≺L.

These canonical minimum representatives have the important property that they
can be built from one another inductively via their suffixes.

Lemma 8. Let G �= ∅ be a non-empty canonical minimum representative of its
equivalence class [G], i.e., G = μ(G). Then G′ = G \ {min G} is the canonical
minimum representative of [G′].

Proof. Assume there is a G′′ ∈ [G′] with G′′ ≺L G′. Then G′′ ∪ {min G} ≺L

G′ ∪ {minG} = G. But as

D[G′′ ∪ {min G}] = D[G′′] ∩ D[{min G}]
= D[G′] ∩ D[{min G}]
= D[G′ ∪ {minG}] = D[G] ,

i.e., (G′′ ∪ {min G}) ∈ [G], this contradicts G = μ(G). ��

Now we can prove the correctness and time complexity of Algorithm 1.

Algorithm 1. Inductive Minimum Representative Construction

Require: ordered ground set of constraints C = {c1, . . . , cN},
extension closure operator σ,

quality function q with optimistic estimator q̂, and quality threshold q∗

Output : family {μ(H) : q(H) ≥ q∗} in lexicographical order

1. init Q as empty queue and V as empty prefix tree

2. enqueue (∅, σ(∅), C) on Q
3. while Q 
= ∅ do
4. dequeue front element (G, S, A) of Q
5. if q(S) ≥ q∗ then print G
6. A′ ← {c ∈ A \ S : c < minG, q̂(G ∪ {c}) ≥ q∗}
7. for all ci ∈ A′ in ascending order of their index do
8. G′ ← G ∪ {ci}
9. S′ ← σ(G′)

10. if S′ 
∈ V then
11. add S′ to V
12. enqueue (G′, S′, A′) on Q
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Theorem 9. Algorithm 1 exactly and non-redundantly lists μ(H) for all [H ] ∈
R≡ = {[H ] : q(H) ≥ q∗} in lexicographical order in time O(|S≡|n2m2) and
space O(|S≡|nm) where S≡ = {[H ] : q̂(H) ≥ q∗} is the search space of all
potentially interesting equivalence classes.

Proof. For each dequeued tuple at most |C| augmentations are evaluated involv-
ing a computation of σ and a visited check. The prefix-tree lookup is performed
in time |S| ≤ |C| and σ is computed in time nm. Also the space dominant data
structure V contains at most one element of size at most |C| for each dequeued
tuple. As |C| is bounded by nm the claim follows if we can show that in lexico-
graphical order for each [H ] ∈ S≡ a tuple (μ(H), σ(H), A) is enqueued and only
tuples of this form are enqueued, i.e., if the following three properties hold:

(i) If a tuple (G, S, A) is enqueued before (G′, S′, A′) then G ≺L G′.
(ii) For all [H ] ∈ S≡ a tuple (G, S, A) with G = μ(H) and S = σ(H) is

enqueued, and A ⊇ {c ∈ C : (G ∪ {c}) ∈ S≡, c < min G}.
(iii) all enqueued tuples (G, S, A) are of the form G = μ(H) and S = σ(H) for

some [H ] ∈ S≡.

Property (i) is implied by the breadth-first strategy and the following observa-
tion: if G1 ≺L G2 then all descriptions G′

1 generated from G1 are lexicographi-
cally smaller than all descriptions G′

2 generated from G2.
Assume that (ii) is violated for some [H ]. Then choose a class [H ] that violates

(ii) with a minimal G′ = μ(H). As (∅, σ(∅), C) is enqueued in line 2, it holds
that G′ �= ∅. By Lemma 8, G = G′ \ {minG′} is lexicographically minimal in
[G]. The anti-monotinicity of the search space and G ⊂ G′ imply that (ii) holds
for [G]. In particular a tuple (G, S, A) is enqueued with (min G′) ∈ A because
min G′ < min G (for the same reason and because of the anti-monotinicity of S≡,
the augmentation set A′ satisfies A′ ⊇ {c ∈ C : (G′ ∪ {c}) ∈ S≡, c < min G′}).
Thus, G′ is generated subsequently in line 8. Then σ(G′) does not pass the
visited check in line 10. This implies that [G′] has already been visited, say via
G′′ ∈ [G′]. It follows from (i) that G′′ ≺L G′ contradicting G′ = μ(G′).

For (iii) observe that S = σ(G) for all enqueued tuples by the generation of S
in line 9. Now assume that G �= μ(S) for an enqueued tuple (G, S, A). Then there
is an G′ ∈ [S] with G′ ≺L G. By the anti-monotinicity of the search space and
(ii) a tuple (G′, S′, A′) is enqueued, and by (i) it is enqueued before (G, S, A).
In the same iteration S′ = S is added V . Consequently, (G, S, A) can not be
enqueued as it does not pass the visited check in line 10—a contradiction. ��

There are some additional speedups that do not affect the worst-case time com-
plexity. For the top-k scenario the same changes as for the closure/greedy ap-
proach can be applied. Furthermore, if at a node (G, S, A) with ci, cj �∈ S it holds
that cj ∈ σ(G∪{ci}) then it follows σ(G∪{ci, cj}) = σ(G∪{ci}) by monotonicity
of σ. In this case the augmentation element ci can be removed from A′ of the
child (G∪ {cj}, σ(G∪ {cj}), A′) in case ci ≺L cj as it would redundantly gener-
ate the same equivalence class again. Furthermore, the sorting of the constraint
set can have a substantial impact on the computation time. It is, however, a
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non-trivial problem to find an optimal sorting (see [9] for a comparison of dif-
ferent sorting strategies for divide and conquer closed set listing).

7 Empirical Evaluation

In this section we empirically compare non-redundant subgroup discovery with
minimum representatives to traditional subgroup discovery. This includes an
evaluation of both proposed algorithmic solutions for Problem 1. We considered
ten datasets from the UCI Machine Learning Repository [1], which are presented
along with their most important properties in Table 3. All numerical attributes
where discretized using minimal entropy discretization. As representative tradi-
tional subgroup miner we used the state-of-the-art algorithm Dpsubgroup [10].
All involved algorithms were implemented in Java and will be published on the
author’s webpage. For the sake of a better comparision we used a simplified
reimplementation of the LCM algorithm and not the implementation published
by its author. The quality function was the binomial test quality function com-
bined with the optimistic estimator introduced in Section 2. All experiments
were performed on a Core 2 Duo E8400 @ 3Ghz running a Sun SE 6u10 Java
Virtual Machine with 1.5 GB of Java heap space under Windows XP.

Computation Time. Table 4 contains the computation times that correspond
to the compression experiments presented in Section 3 for Dpsubgroup (dpsg),
LCM/greedy (lcm/gr), and Algorithm 1 (imr). The threshold t100, i.e., the qual-
ity of the 100th best subgroup description, is explicitly stated. The results es-
sentially reflect the already observed search space reduction. Although, even for

Table 3. Datasets

dataset credi. lung-. lymph mush. nurse. sick soybe. splice tic-t. vote

label bad 1 maln. pois. recm. sick EI bspot. pos. repub.

n 15 56 18 22 8 39 60 35 9 16

m 1000 32 148 8124 12960 3772 3190 638 958 435

|C | 58 159 50 117 27 66 133 287 27 48

Table 4. Computation time (in seconds unless stated differently); “oom” and “>12h”

for computations that ran out of memory or out of time, respectively

dataset credi. lung-. lymph mush. nurse. sick soybe. splice tic-t. vote

q∗ 0.094 0.336 0.244 0.267 0.029 0.177 0.223 0.190 0.061 0.306

dpsg 2 84.4m 0.5 0.6 1.2 4.3h 10.6h 23 0.3 0.4

lcm/gr 3.2 23 0.3 1.0 2.3 18.3m 123 38 0.2 0.2
imr 3.6 23 0.2 0.9 2.4 oom 115 20 0.2 0.3

q∗ ε
dpsg 242 >12h 457 >12h 2 >12h >12h >12h 1 127

lcm/gr 184 95 6.5 53m 85.5 7h 41m >12h 15 59

imr 26 60 4 39 5 oom oom oom 2 19
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(a) search space soybean (b) runtime soybean

(c) search space sick (d) runtime sick

(e) search space lung-. (f) runtime lung-.

Fig. 1. Logscale search space and runtime comparison of Algorithm 1 (imr) vs. Dp-

subgroup (dpsg) for increasing length limits

datasets on which a compression is achieved traditional subgroup discovery is
not directly outperformed. This is illustrated in Figure 1 in which the devel-
opment of search spaces and computation time for increasing length-limits are
shown. The Dpsubgroup algorithm is only beaten by Algorithm 1 for sufficiently
large differences in the search space. This behavior is due to the sophisticated
data structures (fptrees [2,11]) Dpsubgroup uses in contrast to our algorithm.
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Table 5. Greedy performance for q∗ = ε

credi. lung-. lymph mush. nurse. sick soybe. splice tic-t. vote

avg. min. 5.588 4.914 4.532 5.776 5.328 ? ? ? 5.005 5.991

avg. apx. 5.603 5.032 4.562 5.862 5.328 9.062 6.591 ? 5.041 6.039

max. dif. 5 vs. 3 7 vs. 4 5 vs. 3 6 vs. 4 no diff ? ? ? 6 vs. 4 8 vs. 5

time frac. 0.9 0.07 0.54 0.99 0.97 0.96 0.78 ? 0.93 0.59

A further noteworthy fact is that unless Algorithm 1 ran out of memory (the
oom entries) it always outperforms LCM/greedy. This motivates a more detailed
investigation of the latter approach.

Greedy Performance. We analyze the perfomance of the greedy algorithm within
the lcm/greedy approach in two respects: (a) the length of the produced repre-
sentatives and (b) the greedy algorithm’s fraction of the computation time for
the experiments with q∗ = ε. Note that this is an extremely unfavorable case for
the lcm/greedy approach because of the large number of interesting equivalence
classes, each of which requires one greedy call. The results are listed in Table 5.
We note that (a) for all datasets the length of the subgroup descriptions obtained
using the greedy algorithm is only marginally greater than the minimum length
and (b) the computation time of LCM/greedy was dominated by the greedy
algorithm. Without the greedy approximations LCM even slightly outperformed
Algorithm 1 on most datasets.

Predictive Power. While it is out of scope of this article to evaluate the claim
that selecting minimum representatives improves understandability for users,
their power as building blocks of global prediction models can be supported with
standard accuracy experiments. Although not their primary intention, subgroup
description families R are sometimes evaluated (see [13]) by investigating the
area under the ROC curve (AUC) of the set of global models {hi : 1 ≤ i ≤ |R|},
where hi classifies a given data point as positive if it supports any of the i
highest quality subgroup descriptions from R. For each dataset we compared
the predictive quality of the

– top-20 subgroup description (sgd),
– minimum representatives of the top-20 equivalence classes (min-repr),
– and additionally the hypothesis of the rule learner J-RIP, a Java implemen-

tation of RIPPER [4].

A rule learner was chosen as additional benchmark because, among supervised
learning methods, the nature of the hypotheses it produces is most similar to the
subgroup based models. Table 6 shows the average AUC of ten cross validations
using five folds. For performance reasons, we executed all subgroup discoveries
with a depth limit of 5. Using equivalence classes instead of subgroup descriptions
always resulted in a higher or equal AUC. Perhaps surprisingly, in addition, the
hypotheses build from the minimum representatives also outperformed the rule
learner hypotheses on the majority of datasets.
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Table 6. Average AUC over ten 5-fold cross-validations

dataset credi. lung-. lymph mush. nurse. sick splice soybe. tic-t. vote

RIPPER 0.619 0.729 0.774 1.0 0.815 0.916 0.969 0.917 0.975 0.959
sgd 0.628 0.708 0.757 0.890 0.813 0.908 0.987 0.792 0.999 0.972

min-repr 0.633 0.731 0.831 0.946 0.813 0.928 0.987 0.856 0.999 0.972

8 Conclusion

Discussion. Beside the results stated in the introduction our experiments pri-
marily revealed the following trade-off in using non-redundant subgroup discov-
ery based on equivalence classes: while one gains a significant compression of
the search space and output, this is sometimes outweighted by the fact that
one loses the sophisticated data structures of traditional methods. There are,
however, many datasets/quality thresholds managable by our algorithms, that
were completely intractable before due to an exponential explosion of the search
space. This opens up new opportunities for some datasets like an exhaustive
enumeration of all positive quality equivalence classes with a subsequent global
optimization step.

Future Work. It is important to note that the results of this article easily gen-
eralize to more expressive constraint languages as long as they guarantee unique
maximal representatives and extension anti-monotonicity with respect to some
specialization relation. This is for instance the case for interval constraints, which
are appealing in the presence of ordinal attributes. In constrast to the standard
attribute/value equality constraints of the form “Ai = v” an intervall constraint
for a real-valued attribute is of the form “Ai ∈ [l, u]”. In the presence of more
expressive constraint languages the equivalence class search space becomes even
more important as there is an increasing number of ways to (redundantly) de-
scribe one and the same extension. This motivates a future study investigat-
ing the combination of non-redundant subgroup discovery and other constraint
languages.
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7. Garriga, G.C., Kralj, P., Lavrač, N.: Closed sets for labeled data. J. Mach. Learn.

Res. 9, 559–580 (2008)

8. Gebhardt, F.: Choosing among competing generalizations. Knowledge Acquisi-

tion 3(4), 361–380 (1991)
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IID Processes, Information Matrix
and Model Identification in PLSI�
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Abstract. The Probabilistic Latent Semantic Indexing model, intro-

duced by T. Hofmann (1999), has engendered applications in numerous

fields, notably document classification and information retrieval. In this

context, the Fisher kernel was found to be an appropriate document sim-

ilarity measure. However, the kernels published so far contain unjustified

features, some of which hinder their performances. Furthermore, PLSI is

not generative for unknown documents, a shortcoming usually remedied

by “folding them in” the PLSI parameter space.

This paper contributes on both points by (1) introducing a new, rig-

orous development of the Fisher kernel for PLSI, addressing the role of

the Fisher Information Matrix, and uncovering its relation to the ker-

nels proposed so far; and (2) proposing a novel and theoretically sound

document similarity, which avoids the problem of “folding in” unknown

documents. For both aspects, experimental results are provided on sev-

eral information retrieval evaluation sets.

1 Introduction

Ten years ago, the “Probabilistic Latent Semantic Indexing” (PLSI) model
[10,11,12] opened the road to the representation of documents as mixture pro-
portions of so-called “latent topics”. This model proved useful and led to sev-
eral applications on textual data [6,14,18,26,27], audio data [1] and images
[5,16,19,20,24].

In this context, the cosine similarity, originally used without much theoret-
ical justification to evaluate the semantic similarities between documents, was
replaced by the Fisher kernel similarity [11], which has a better theoretical ba-
sis. However, the kernels published so far contain unjustified features, some of
which hinder their performances. The first contribution of this paper, detailed
in Sect. 3.1 consists in the introduction of a new, rigorous development of this
Fisher kernel, that uncovers its canonical form, and shows how it relates to the
kernel originally proposed by Hofmann [11].
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Moreover, one major shortcoming of PLSI comes from its tendency to over-
fit [2,4,23] and its non-generative nature for new document models.1 In the con-
text of information retrieval, this is usually remedied by “folding in” the queries
into the PLSI parameter space [9,10]. A number of extensions and alternatives
have been proposed to address these issues: latent Dirichlet allocation [4], undi-
rected PLSI [28], correlated topic models [3], rate adapting Poisson models [7];
but they come at the price of an increased complexity, especially regarding the
runtime cost for the learning algorithms. The second contribution of this paper,
detailed in Sect. 4, targets the “folding-in” phase for queries by introducing a
new, theoretically grounded, document–query similarity that entirely avoids it.
This novel approach is compared to Fisher kernel similarities for PLSI.

Finally, the third contribution of this paper, detailed in Sect. 5, lies in new
experimental results on a large collection coming from the TREC–AP evaluation
corpus. Up to authors’ knowledge, it is the first time that PLSI is evaluated on
an IR corpus of over 7000 documents and one million word occurrences.

2 PLSI Document Model and Similarity

PLSI is a latent topic-based model for textual document classification and In-
formation Retrieval [10,12]. Documents are modeled as occurrences of successive
random choices of document–term couples (d, w), knowing some topic z ∈ Z:
iteratively, a topic z is chosen with probability P (z); a term w and a document
model d are then chosen, with probabilities P (w|z) and P (d|z) respectively. In
PLSI, w and d are assumed to be independent knowing z; the probability of
occurrence of a pair (d, w) thus being

P (d, w) =
∑
z∈Z

P (z)P (w|z)P (d|z) . (1)

A document realization d̂0 from a collection C is modeled as the set of all (d, w)
pairs sharing the same document model d0: d̂0 = {(d0, w) ∈ C}. As done in
the PLSI literature to simplify expressions, we will henceforth not distinguish
between document model d and its concrete realization d̂ in the collection.

The parameters of PLSI are θ =
{
P (z), P (w|z), P (d|z)

}
, for all possible z,

w and d in the model.2 These parameters can be estimated over a document
collection through (tempered) Expectation-Maximization (EM) [10,12].

Regarding document similarity measures for PLSI, Fisher kernels yielded sig-
nificant improvements in performance over the original formulations that used
the usual cosine measure [11].

1 Notice, however, that PLSI is indeed a generative model for new occurrences of

already known document models.
2 Other equivalent parameterizations are also possible; for instance using P (d), P (w|z)

and P (z|d).
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However, the original Fisher kernel for PLSI derived by Hofmann [11] was
later found to neglect the contribution of the Fisher information matrix G(θ),3

and to contain a normalization by document length |d|. Variants of the Fisher
kernel were thus introduced [21]:

– the observation about renormalization by document length yielded the de-
velopment of a Fisher kernel not normalized by |d|;

– from the observation about the information matrix stemmed the develop-
ment of a “DFIM” kernel (for “Diagonal Fisher Information Matrix”), which
takes the diagonal components of G(θ) into account. By contrast, whenever
required, we shall name “IFIM” (Identity Fisher Information Matrix) the
kernels that do not.

3 IID Processes Perspective on PLSI Fisher Kernels

3.1 IID Derivation of the Fisher Kernel

The Fisher kernel provides a similarity measure among instances of probabilistic
models [13]: for two instances X and Y of a given family of stochastic models
P (X |θ) parameterized with θ, it is defined as

K(X, Y ) = UX(θ)T G(θ)−1UY (θ) ,

where UX(θ) is the gradient of the log-likelihood: UX(θ) = ∇θ log P (X |θ), and
the Fisher information matrix G(θ) is the covariance of UX(θ):

G(θ) = EX [UX(θ) UX
T (θ)] .

Lemma 1. The Fisher kernel between two instances Xn
1 and Y m

1 of an inde-
pendent and identically-distributed (i.i.d.) stochastic process is the sum of the
Fisher kernels between the individual random variables Xi and Yj , divided by
the number of variables in the processes:

K(Xn
1 , Y m

1 ) =
1
n

1
m

n∑
i=1

m∑
j=1

K(Xi, Yj) .

We refer to Appendix A for the proof.
The Fisher kernel for PLSI can be derived in a manner which stems directly

from the definition of the PLSI model as an i.i.d. process of (d, w) pairs proba-
bilized by (1).

In this context, Xi = (d, w) and Yi = (q, w′) (for two document models d
and q, and terms w and w′ from vocabulary V ). Through Lemma 1, the Fisher
kernel for PLSI as an i.i.d. process is:

KIID(d, q) =
1
|d|

1
|q|

∑
w∈V

∑
w′∈V

n(d, w)n(q, w′)K
(
(d, w), (q, w′)

)
, (2)

3 Hofmann identified G(θ) with the identity matrix through a reparametrization suited

for multinomial models; however, PLSI is neither a multinomial, nor in an exponen-

tial family, and G(θ) may significantly differ from identity in such cases.
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where n(d, w) is the number of occurrences of word w in query d, |d| =
∑

w n(d, w)
is the length of document d, and K

(
(d, w), (q, w′)

)
is the “atomic kernel” between

a pair of terms w and w′ belonging to documents d and q respectively. This “atomic
kernel” can be written as (see Appendix B for details): K ((d, w), (q, w′)) =

P (d|z)
P (d, w)

P (q|z)
P (q, w′)

·
∑

z

[
P (w|z)P (w′|z)α(z) + δw,w′γ(w, z)

]
, (3)

with δw,w′ = 1 if w = w′ and 0 otherwise, and

α(z) =

⎧⎨⎩
P (z) in IFIM,(∑

d∈C

∑
w∈V n(d, w)

(
P (w|z)P (d|z)

P (d,w)

)2
)−1

in DFIM,

and γ(w, z) =

⎧⎨⎩
P (w|z)P 2(z) in IFIM,(∑

d∈C n(d, w)
(

P (d|z)
P (d,w)

)2
)−1

in DFIM.

Injecting (3) into (2) leads to

KIID(d, q) =
∑
w∈V

∑
w′∈V

P̂ (w|d) · P̂ (w′|q) · P (d|z)
P (d, w)

P (q|z)
P (q, w)

·

·
∑

z

[
P (w|z)P (w′|z) · α(z) + δw,w′γ(w, z)

]
, (4)

where P̂ (w|d) = n(d,w)
|d| .

3.2 Relation between KIID(d, q) and KH(d, q)

Hofmann’s original development of the Fisher kernel [11], KH(d, q) =∑
z∈Z

P (z|d)P (z|q)
P (z)

+
∑
w∈V

P̂ (w|d)P̂ (w|q)
∑
z∈Z

P (z|d, w)P (z|q, w)
P (w|z)

,

uses the assumption that ∑
w∈V

P̂ (w|d)
P (w|d)

P (w|z) ' 1 . (5)

Introducing

ζ(d, z) =
∑
w∈V

n(d, w)
P (w|z)
P (d, w)

, (6)

Equation (4) becomes:

KIID(d, q) =
1
|d|

1
|q|

∑
z∈Z

P (d|z)P (q|z) ·

·
[
α(z)ζ(d, z)ζ(q, z) +

∑
w∈V

n(d, w)
P (d, w)

n(q, w)
P (q, w)

γ(w, z)

]
. (7)
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Injecting (5) into (6) entails that ζ(d, z) ' |d|
P (d) . Furthermore, noticing that

P (d) ' |d|
|C| , where |C| =

∑
w∈V

∑
d∈C

n(d, w) , (8)

is experimentally verified to a precision inferior to 1%, we can state that ζ(d, z) '
|C|. In the IFIM case, this leads to

KIID(d, q) ' KH(d, q) .

Thus, at the price of assumptions (5) and (8), the Hofmann IFIM kernel can be
seen as an approximation of the IID one.

In the DFIM case, the equivalence is as not exact, as the DFIM α and γ are
not the same in the IID kernel and Hofmann’s:

Hofmann IID

α−1(z)
∑

d
P (z|d)2

P (z)

∑
d

∑
w n(d, w)

(
P (w|z)P (d|z)

P (d,w)

)2

γ−1(w, z)
∑

d P̂ 2(w|d)
(

P (d|z)
P (d,w)

)2 ∑
d n(d, w)

(
P (d|z)
P (d,w)

)2

3.3 Implementation of the IID Kernel

In practice, (7) is more efficiently computed by taking into account that α(z)
depends only on z (and neither on d nor on w): α(z) and ζ(d, z) can be pre-
computed once for all for the entire corpus. γ(w, z) and ζ(q, z) are best computed
for each query, as to take advantage of the limited number of different terms
present in a query: γ(w, z) is computed only for w ∈ q (i.e. w ∈ V such as
n(w, q) > 0). Such processing is an order of magnitude quicker using these
precomputations.

Furthermore, the computation of all Fisher kernels can be decomposed into
two independent parts Kz and Kw which stem from the contributions of the la-
tent categories and of the terms, respectively; for instance using (7): KIID(d, q) =
KIID

z (d, q) + KIID
w (d, q), where

KIID
z (d, q) =

1
|d|

1
|q|

∑
z∈Z

P (d|z)P (q|z)α(z) ζ(d, z) ζ(q, z) ,

and

KIID
w (d, q) =

1
|d|

1
|q|

∑
z∈Z

[
P (d|z)P (q|z) ·

∑
w∈V

n(d, w)
P (d, w)

n(q, w)
P (q, w)

γ(w, z)

]
.

4 Avoiding the Folding-In of Queries

The second contribution of this paper consists in the development of a document
similarity measure for PLSI that entirely removes the so-called “folding-in” phase
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for unknown document models q (typically the queries in Information Retrieval),
and all the problems related to the learning of new parameters P (q|z), as well as
their adequacy with already existing ones: changing from P (q|z) = 0 to P (q|z) >
0 should imply the rescaling of all the P (d|z) according to

∑
δ P (δ|z) = 1, i.e.

by a factor 1/(1 + P (q|z)) ' 1− P (q|z).
To remove folding-in entirely, we follow the Language-Model approach [22,29]

and consider queries, not as new document models for which new parameters
P (q|z) must be learned, but rather as new occurrences of already learned docu-
ment models.

The retrieval problem thus simply turns into model identification (rather than
learning of new model): for a given query q, which are the (already learned)
models d best representative of q?

One usual way to address such a question is to minimize the Kullback-Leibler
divergence between the empirical distribution (q) and the model distribution (d)
[15]:

SKL(d, q) = −KL
(
P̂ (w|q), P (w|d)

)
=

∑
w∈q∩d

P̂ (w|q) log
P (w|d)

P̂ (w|q)
, (9)

where w ∈ q ∩d denotes all the words appearing in q (i.e. n(q, w) > 0) such that
P (d, w) > 0.

Notice that this formulation uses P̂ (w|q) = n(q, w)/|q|, for which no learning
is required, as opposed to P (w|q), for which unknown parameters P (q|z) have
to be estimated (usually done through “folding in”).

5 Experiments

We are thus faced with 13 different document similarity measures: SKL(d, q),
which does not require query folding-in (Sect. 4), and 12 Fisher kernel vari-
ants: the two IFIM models KH and KIID, and the corresponding DFIM kernels
KDFIM-H and KDFIM-IID; as well as, separately, the Kz and Kw components of
all these kernels (as defined in Sect. 3.3). Across K(DFIM-)H and K(DFIM-)IID,
the latter provide 8 different kernels.

The following questions arise regarding these 13 kernels:

1. Are there significant differences between all the possible variants of the Fisher
kernel and which one is the best?

2. Can the new approaches here proposed compete with the Hofmann kernel
variant?

3. How do these compare to the IR state-of the art model, BM25 [25], especially
on a large document collection?

To address these questions in line with previously published work on PLSI,
we experimented on the standard Information Retrieval benchmarks from the
SMART collection4: CACM, CISI, MED, CRAN and TIME. We furthermore
4 ftp://ftp.cs.cornell.edu/pub/smart/
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Table 1. Characteristics of the document collections used for evaluation

CACM CRAN TIME CISI MED AP89 01XX

# Terms (stems) 4 911 4 063 13 367 5 545 7 688 13 379

# occurrences (|C|) 90 927 120 973 114 850 87 067 76 571 1 321 482

Documents

# 1 587 1 398 425 1 460 1 033 7 466

avg. |d| 56.8 85.1 268.6 56.7 73.8 177.2

Queries

# 64 225 83 112 30 50

avg. |q| 12.7 8.9 8.2 37.7 11.4 79.3

explored the limits of PLSI learning tractability, and experimented on a signifi-
cantly bigger corpus5 consisting of a subpart of the TREC–AP 89 corpus [8]. For
tractability reasons, we kept only the 7466 first documents of this collection,6

and queries 1 to 50. The main characteristics of the evaluation corpora are given
in Table 1.

For experiments on the SMART collection, 6 runs with different learning
initial conditions were performed for all the models, and for different num-
bers of topics: |Z| ∈ {1, 2, 8, 16, 32, 64, 128}, totalling 2730 experiments. For the
TREC-AP part, due to its size, a single run was performed for each |Z| ∈
{1, 32, 48, 64, 80, 128}, totaling 78 experiments.

For all the experiments, stemming was performed using the Porter algorithm
of Xapian.7 Evaluation results were obtained using the standard trec eval
tool.8 We here use the standard Mean Average Precision (MAP) to display
the results: we plot the MAP against the number of latent topics |Z|, averaged
over all experiments and with error bars corresponding to 1-standard devia-
tion. The conclusions are exactly the same using either 5-point precision or
R-precision, except on MED; we come back to this latter point at the end of this
section.

The main results out of these experiments, summarized in Table 2, are:

1. The kernels KIID and KH have very similar performances, which experimen-
tally validates the theoretical result that KH approximates KIID (see Fig. 1).
KDFIM-IID and KDFIM-H are a bit less similar, due to the slightly different
form that G(θ) takes. However, KIID is more computationally demanding
than KH, at least one order of magnitude slower.

5 Over 5 times as many documents and 10 times as many word occurrences as in the

SMART collection.
6 Documents AP890101-0001 to AP890131-0311. The EM learning for e.g. |Z| = 128

took 45 hours of CPU time and used 6.7 Gb of RAM on a dedicated computer server

with one octo core 2-GHz Intel Xenon processor and 32 Gb of memory.
7 http://xapian.org/
8 http://trec.nist.gov/trec eval/
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Table 2. Main results and conclusions out of 2808 experiments over 13 models on

6 corpora

CACM CRAN TIME CISI MED AP89 01XX

BM25 MAP 31.4 42.4 69.2 12.3 52.3 19.7

Best PLSI model MAP 30.0 39.6 60.8 20.2 53.8 21.6

Best PLSI model is: KDFIM-H
w SKL KDFIM-H

w KH
w KH KDFIM-H

w

for |Z| = 32 128 8 8 32 48

R
e
su

lt
s

KH
w MAP 30.0 33.6 55.6 20.2 49.8 16.5

KDFIM-H
w MAP 23.2 37.0 60.8 15.6 45.5 21.6

SKL−128 MAP 22.9 39.6 49.1 19.5 52.8 11.4

PLSI > BM25? No No No YES yes yes

SKL−128 w.r.t. Fisher kernels < > <   <

C
o
n
c
l.

DFIM G(θ) helps? (on Kw) Yes Yes Yes No No Yes

2. We can confirm that the DFIM Fisher kernels for PLSI outperform by their
original IFIM versions (Fig. 1). They are furthermore dominated by their
Kw component.

3. Kz deteriorates performances in general: used alone, it performs poorly;
furthermore the performances of KH decrease as the role of Kz becomes more
important for growing |Z|: starting from Kw at low |Z|, the performances of
KH reach down Kz at higher |Z|(Fig. 3).
On the other hand, Kw alone is always good, if not the best (Figs. 2 and 3).

4. KDFIM-H
w and KDFIM-H have similar behaviors (Fig. 3). The reason is that

the normalizing role of G(θ) makes Kz ( Kw for DFIM kernels.
5. SKL has a growing performance with |Z|, the number of latent-topics (Fig. 2).

We had to stop at |Z| = 128 for tractability reasons (for both learning and
evaluation running times).

6. SKL can outperform the best Fisher kernel on CRAN and reaches similar
performances on MED and CISI (Fig. 2). It should however be emphasized
that the former does not require any folding-in phase for queries as the latter
does.

7. The best PLSI-based kernels can perform better than the state-of-the-art
BM25 model, especially on corpora which could be considered semantically
more difficult: CISI, where few words are shared between queries and docu-
ments (thus particularly suited to test the extend to which a retrieval models
is robust to synonymy, or “topics”.9), MED (specialized vocabulary), and
TREC–AP.

The only collection where conclusions should be more nuanced is MED: the
different models do not behave in the same way at different recall values (Fig. 4);
some are better at low recall and others are better at higher recall. Global
measures as MAP or R-Prec cannot represent such nuances.

9 CISI is remarkable in the sense that some query-document matches are expected

between queries and documents that do not share any significant term.
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Fig. 1. Behaviors (MAP vs |Z|) of the KIID and KH kernels, both for IFIM and DFIM

variants
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Fig. 2. Results (MAP vs |Z|) obtained on the six corpora considered for different

models: KH (H), SKL (KL), KDFIM-H
w (WDFIMH), and KH

w (WH). The horizontal bar

represents the MAP of state-of-the-art BM25 model (which does not depend on |Z|).
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Fig. 3. Two typical examples comparing different variants of the Fisher kernel for

PLSI (MAP vs |Z|): KDFIM-H (DFIMH), KH (H), KDFIM-H
w (W-DFIMH), KH

w (W-

H), KDFIM-H
z (Z-DFIMH), and KH

z (Z-H). This illustrates that the latent-topic part

Kz performs poorly in comparison to the word part Kw, and impairs the combined

kernels: notice how KH starts from KH
w at low |Z|, and degrades to KH

z as |Z| grows.
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Fig. 4. Precision vs Recall curves on MED for BM25, KDFIM-H for |Z|=64 (DFIMH64),

KH for |Z|=32 (H32), SKL for |Z|=128 (KL128), KH
w for |Z|=32 (WH32), and KH

z for

|Z|=32 (YH32)

6 Conclusion

This paper offers two contributions: the first one is a rigorous development of
the Fisher kernel for PLSI models, by which we uncover the kernel that properly
takes into account the i.i.d. nature of PLSI, thereby explaining the underlying
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reasons for normalization by document and query length in Hofmann’s kernel;
and restore the contribution of the Fisher Information Matrix into these ker-
nels. The second contribution is a theoretically grounded similarity for PLSI
which entirely avoids query folding-in. Furthermore, we were able to perform an
Information Retrieval evaluation of PLSI on a collection much larger than the
SMART collections on which it is usually evaluated.

Regarding the questions we wanted to address experimentally, we can conclude:

1. There are significant differences between all the possible variants of Fisher
kernel for PLSI and the best variant is globally KDFIM-H

w .
Regarding the role of the Fisher information matrix, its normalizing impact
improves the results on bigger collections (TIME, CRAN, TREC–AP89).
Regarding the role of topics and terms components, Kz should clearly be
neglected in favor of Kw; at least for tractable numbers of topics (small |Z|).
The rigorous IID kernels K

(DFIM-)IID
w offer performances similar to those of

K
(DFIM-)H
w ; this is to be expected, as the Hofmann’s kernel family turns out

to be an approximation of the IID one. Since the kernels K
(DFIM-)IID
w are

computationally more expensive, K
(DFIM-)H
w should be preferred in practice.

2. The new approach which avoids query folding-in can compete with the best
Fisher kernel variants, especially for high number of topics.

3. These models (either KL divergence or Fisher kernels) can compete with
BM25, especially on corpora which could be considered semantically more
difficult as CISI, MED and TREC–AP.

We thus experimentally confirm that topic-based models as PLSI could be in-
teresting for information retrieval in not too large but semantically difficult doc-
ument collections, where documents and queries do not necessarily share at lot
of terms. In such cases, we would recommend KDFIM-H

w as similarity measure,
or SKL, (9), when sufficiently large numbers of latent topics are tractable. The
advantage of the latter is the lack of folding-in phase for queries.

The overall conclusion, however, is that PLSI is not well-suited for large scale
ad hoc IR, mainly because it is not a fully generative model. This model simply
does not scale with the number of documents. Furthermore, as sophisticated
as it can be, PLSI hardly outperforms the state-of-the-art BM25 model, at a
complexity price that is not worth paying. PLSI might be interesting and better
than state-of-the-art models for large numbers of latent-topics, but the former
limitation (huge number of parameters) makes such levels intractable in practice.
It may indeed be the case, especially for bigger document collections, that a
much larger |Z| improves the performances of Kz or SKL, but, due to the non-
scalability of PLSI, such levels won’t finish training in practice, especially for
the bigger document collections where they would be interesting.
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A Proof of Lemma 1

Let us consider Xn
1 a n-element long instance of an i.i.d. stochastic process.

To simplify notations, we shall henceforth write X = Xn
1 . Its log-likelihood

is expressed by log P (X) =
∑n

i=1 log P (Xi). Linearity of derivation operators
entails that the corresponding Fisher score is written Uθ(X) =

∑n
i=1 Uθ(Xi).

The Fisher information matrix for n-event instances of this i.i.d. stochastic
process is defined as GX(θ) = EX

[
Uθ(X)Uθ(X)T

]
; and for a single instance:

G1(θ) = EXi

[
Uθ(Xi)Uθ(Xi)T

]
(which is independent of Xi since the process is

i.i.d.). It can be written as:

GX(θ) = EX

⎡⎢⎣( n∑
i=1

Uθ(Xi)

) ⎛⎝ m∑
i=j

Uθ(Xj)

⎞⎠T
⎤⎥⎦

=
n∑

i=1

(
EX

[
Uθ(Xi)Uθ(Xi)T

]
+
∑
j �=i

EX

[
Uθ(Xi)Uθ(Xj)T

])

=
n∑

i=1

(
GXi(θ) + EXi [Uθ(Xi)]

∑
j �=i

EXj [Uθ(Xj)]
T︸ ︷︷ ︸

=0

)
=

n∑
i=1

G1(θ)

= n ·G1(θ) .
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The “natural gradient” φX is obtained from the ordinary gradient UX via φX =
GX

−1UX [13]. In the case of i.i.d. stochastic processes, the previous results lead
to

φX = GX
−1UX =

1
n
·

n∑
i=1

G1
−1UXi =

1
n
·

n∑
i=1

φXi .

Eventually, the Fisher kernel between two instances Xn
1 and Y m

1 of an i.i.d.
process is given by

K(Xn
1 , Y m

1 ) = φX
T G1 φY =

(
1
n

n∑
i=1

G1
−1UXi

)T

G1

⎛⎝ 1
m

m∑
i=j

G1
−1UYj

⎞⎠
=

1
n ·m

n∑
i=1

m∑
i=j

UT
Xi

G1
−1UYj =

1
n ·m

n∑
i=1

m∑
i=j

K(Xi, Yj) .

B Development of the PLSI Atomic Fisher Kernel

B.1 Fisher Score U(d,w)

The Fisher score for PLSI is written U(d,w)(θ) = ∇θ log P (d, w). Derivations are
performed with respect to P (z), P (d|z) and P (w|z) respectively for all terms w,
documents d and categories z. Let us write d̃ and w̃ the indices of the document
and term with respect to which derivations of P (d, w) are performed. Then,

U(d,w)(θ) = ∇θ log P (d, w) =

⎛⎜⎜⎝
∂ log P (w,d)

∂P (z)
∂ log P (w,d)

∂P (w̃|z)
∂ log P (w,d)

∂P (d̃|z)

⎞⎟⎟⎠ =

⎛⎜⎝
P (w|z)P (d|z)

P (w,d)

δw̃w
P (d|z)P (z)

P (w,d)

δd̃d
P (w|z)P (z)

P (w,d)

⎞⎟⎠ ,

where δw̃w = 1 if w̃ = w and 0 else (and similarly for d).
Note that two terms ∂ log P (w,di)

∂P (d̃|z)
and ∂ log P (w,dj)

∂P (d̃|z)
are both non-zero if and only

if i = j, that is if a document is compared to itself. Since this case is trivial, the
terms of U(d,w)(θ) that stem from the derivation w.r.t. P (d̃|z) can be ignored in
the kernel.

At this stage, for the sake of consistency with Hofmann’s derivation, a square
root reparametrization can be introduced:

θ(z)→ ρ(z) = 2
√

P (z) and θ(w|z) → ρ(w|z) = 2
√

P (w|z) .

In the DFIM case, this reparametrization eventually cancels out; however, in the
IFIM case, its contribution remains, making it a necessary step in the deriva-
tion. With this reparametrization, ∂P (z)

∂ρ(z) = 1
2ρ(z) =

√
P (z) and ∂P (w|z)

∂ρ(w̃|z) =

δw̃w
1
2ρ(w|z) = δw̃w

√
P (w|z). Hence,

U(d,w)(ρ) =

⎛⎝ √
P (z) P (w|z)P (d|z)

P (d,w)

δw̃w

√
P (w|z) P (d|z)P (z)

P (w,d)

⎞⎠ .



210 J.-C. Chappelier and E. Eckard

B.2 Fisher Information Matrix G(θ)

The Fisher information matrix is written

G(θ) = E(d,w)
[
U(d,w)(θ) U(d,w)

T (θ)
]

.

Let us consider the parts of the matrix G which stem from U(d,w)(z) = ∂ log P (d,w)
∂P (z)

(noted Gz) and from U(d,w)(w̃|z) = ∂ log P (d,w)
∂P (w̃|z) (noted Gw). The diagonal of G(θ)

can be approximated by (e.g. [17]):

Gz(z) =
∑

(d,w)∈C

U(d,w)(z)2, Gw(w̃, z) =
∑

(d,w)∈C

U(d,w)(w̃|z)2 ,

which leads to

Gz(z) =
∑
d∈C

∑
w∈d

n(d, w)
(

P (w|z)P (d|z)
P (d, w)

)2

and

Gw(w, z) =
∑
d∈C

n(d, w)
(

P (w|z)P (z)
P (d, w)

)2

.

B.3 Fisher Kernel

The expressions for U(d,w) and G, can be assembled into the Fisher kernel
K
(
(d, wd), (q, wq)

)
= U(d,wd) G−1 U(q,wq), written as

K
(
(d, wd), (q, wq)

)
= Kz

(
(d, wd), (q, wq)

)
+ Kw

(
(d, wd), (q, wq)

)
, where

Kz

(
(d, wd), (q, wq)

)
=
∑

z

U(d,wd) Gz(z)−1
U(q,wq) , and

Kw

(
(d, wd), (q, wq)

)
=
∑

z

∑
w̃

U(d,wd) Gw(w̃, z)−1 U(q,wq)

= δwdwq

∑
z

U(d,wd) Gw(wd, z)−1
U(q,wq) .

Eventually, K
(
(d, wd), (q, wq)

)
=

∑
z

[ P (wd|z)P (d|z)
P (d, wd)

P (wq|z)P (q|z)
P (q, wq)

P (z)Gz(z)−1

+ δwd,wq

P (d|z)P (q|z)P 2(z)
P (d, wd)P (q, wd)

P (wd|z)Gw(wd, z)−1
]

.

Note the normalizing role of G(θ): all the terms not depending on d in Ud will
cancel out, as they can be factorized in Gz(z) and Gw(w, z), respectively: P (z)
cancels out in Kz and P (w|z)P 2(z) cancels out in Kw.
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Abstract. In order to derive high quality information from text, the field of text
mining has advanced swiftly from simple document clustering to co-clustering
with words and categories. However, document co-clustering without any prior
knowledge or background information is a challenging problem. In this paper, we
propose a Semi-Supervised Non-negative Matrix Factorization (SS-NMF) frame-
work for document co-clustering. Our method computes new word-document and
document-category matrices by incorporating user provided constraints through
simultaneous distance metric learning and modality selection. Using an iterative
algorithm, we perform tri-factorization of the new matrices to infer the document,
category and word clusters. Theoretically, we show the convergence and correct-
ness of SS-NMF co-clustering and the advantages of SS-NMF co-clustering over
existing approaches. Through extensive experiments conducted on publicly avail-
able data sets, we demonstrate the superior performance of SS-NMF for docu-
ment co-clustering.

Keywords: Semi-supervised co-clustering, Non-negative matrix factorization.

1 Introduction

Document clustering is the task of automatically organizing text documents into mean-
ingful clusters (groups) such that documents in the same cluster are similar, and are
dissimilar from the ones in other clusters. It is one of the most important tasks in text
mining and has received extensive attention in the data mining community. A number of
different techniques [1,2,3,4] were proposed in the literature for clustering documents.

With the rapid development of the Internet and computational technologies in the
past decade, the field of text mining has advanced swiftly from simple document clus-
tering to more demanding tasks such as the production of granular taxonomies, sen-
timent analysis, and document summarization, in the hope of deriving higher quality
information from text. These new applications in text mining typically involve multi-
ple interrelated types of objects (e.g., categories, documents and words). Consequently,
co-clustering was proposed in the literature [5,6]. In the heart of word-document co-
clustering, the similarity between documents is defined by their word representations
while the similarity between words is defined by their appearances in documents. In
other words, document similarity and word similarity are defined in a reinforcing man-
ner. In such a way, document and word can be grouped at the same time, leading to

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 211–226, 2009.
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simultaneous document clustering and text representation. Similarly, high-order co-
clustering uses the information contained in categories, documents, and words together,
and is able to discover a hidden global structure in the heterogeneous text data [7,8].
This global structure, integrating document clustering with simultaneous text
representation and categorization, provides us a better understanding of the roles and
interactions of words, documents and categories in text analysis, which is highly valu-
able in many applications, and not achievable when clustering each data type
independently.

However, current co-clustering methods are mostly developed based on the spectral
graph model, and thus inapplicable to large text data sets. Moreover, they are com-
pletely unsupervised. Accurately co-clustering documents without domain dependent
background information is still a challenging task. In this paper, we propose a Semi-
Supervised NMF (SS-NMF) based framework to incorporate prior knowledge into doc-
ument co-clustering. Under the proposed SS-NMF co-clustering methodology, a user is
able to provide constraints on a few documents specifying whether they “must” (must-
link) or “cannot” (cannot-link) be clustered together. Our goal is to improve the quality
of document co-clustering by learning a distance metric based on these constraints. Us-
ing an iterative algorithm, we perform tri-factorizations of the new word-document and
document-category matrices, obtained with the learnt distance metric, to infer the docu-
ment clusters while simultaneously deriving the text representation (word clusters) and
categorization (category clusters). The major contribution of this work is summarized
as follows,

1. We propose a novel algorithm for document co-clustering based on NMF. Com-
putationally, NMF co-clustering is more efficient and flexible than spectral methods,
and can provide more meaningful clustering results.

2. To the best of our knowledge, this is the first work on semi-supervised data
co-clustering providing significance of each modality. Through distance metric learn-
ing and modality selection, prior knowledge is integrated into document co-clustering,
making must-link documents as tight as possible and cannot-link documents as loose as
possible.

3. From a theoretical perspective, our approach is mathematically rigorous. The con-
vergence and correctness are proved. In addition, we show that our work provides a gen-
eral framework for data co-clustering. Existing approaches such as the well-established
spectral co-clustering algorithms can be considered as special cases of our method.

The rest of the paper is organized as follows. We review related work in Section 2.
The proposed SS-NMF co-clustering algorithm is derived in Section 3. Our theoretical
analysis on the correctness and convergence of the algorithm and on the advantages
over spectral co-clustering approaches are presented in Section 4. Experimental results
appear in Section 5. Finally, we conclude in Section 6.

2 Related Work

In this section, we briefly review related work in co-clustering (documents, words, and
categories) and semi-supervised clustering.
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In general, co-clustering approaches can be divided into two representative cate-
gories: information theory-based models and graph theoretic methods. In the former
category, Dhillon et al. [9] presented a pairwise co-clustering algorithm to maximize the
mutual information between the clustered random variables subject to the constraints
on the number of row and column clusters. Later, Gao et al.[10] extended this method
for high-order co-clustering. However, there is no sound objective function and theoret-
ical proof on the effectiveness and correctness of these algorithms. On the other hand,
graph theoretic approaches have a well-defined objective function. Spectral learning,
such as Bipartite Spectral Graph Partitioning (BSGP) [5], was proposed and applied
to co-cluster documents and words. With the similar philosophy, Gao et al. proposed
Consistent Bipartite Graph Co-partitioning for high-order co-clustering to do hierarchi-
cal taxonomy preparation [7]. Recently, Rege et al. proposed to directly minimize the
isoperimetric ratio of the weighted bipartite or high-order graph[11,12]. Experimental
results on word-document and word-document-category co-clustering show that their
approaches outperform the spectral methods in terms of the quality, speed, and stabil-
ity. More recently, Long et al. [8] proposed Spectral Relational Clustering (SRC), in
which they formulated heterogenous co-clustering as collective factorization on related
matrices and derived a spectral algorithm to cluster multi-type interrelated data objects
simultaneously. SRC provides more flexibility by lifting the requirement of one-to-one
association in graph-based co-clustering. However, as a spectral method, it requires
solving an eigen-problem, which computationally is not efficient to deal with large text
data sets.

Semi-supervised clustering uses class labels or pairwise constraints on examples to
aid unsupervised clustering. Two sources of supervised information are usually avail-
able to a semi-supervised clustering method: class labels or some pairwise constraints
(must-link or cannot-link) as a prior. Existing methods for semi-supervised clustering
based on source information generally fall into two categories: semi-supervised cluster-
ing with labels and semi-supervised clustering with constraints methods. In constraint-
based approaches, the clustering algorithm itself is modified so that the available labels
or constraints are used to bias the search for an appropriate clustering of the data [13]. In
distance-based approaches, an existing clustering algorithm that uses a distance mea-
sure is employed; however, the distance measure is first trained to satisfy the labels
or constraints in the supervised data [14]. Recent research in semi-supervised cluster-
ing tends to combine the constraint-based with distance-based approaches. Noticeable
efforts on semi-supervised clustering algorithm include: Semi-Supervised Kernel K-
means [15], Semi-Supervised Spectral Normalize Cuts [16] and SS-NMF [17,18]. In
[19], it is shown that SS-NMF provides a unified framework for semi-supervised clus-
tering. Many existing algorithms can be considered as special cases of SS-NMF. How-
ever, until now all semi-supervised methods are only applicable to homogeneous data
clustering.

Even though the research on document co-clustering and semi-supervised clustering
has attracted substantial attention in the past years, there has been no mathematically
rigorous approach for semi-supervised data co-clustering. In the following, we will de-
rive a theoretically sound algorithm based on SS-NMF, and apply it for document co-
clustering.
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3 SS-NMF Co-clustering

In this section, we first propose a SS-NMF model for general data co-clustering. Then,
we narrow down to document clustering with simultaneous text representation and cat-
egorization, and discuss 1) how to incorporate prior knowledge through distance metric
learning and modality selection, and 2) how to efficiently infer document, word and
category clusters simultaneously using matrix factorization.

3.1 Model Formulation
Nonnegative Matrix Factorization (NMF) is a group of algorithms in multivariate analy-
sis and and linear algebra where a matrix X is factorized into two nonnegative matrices,
F and G. It is initially proposed for “parts-of-whole” decomposition [20], and later ex-
tended to a general framework for data clustering [21]. It can model widely varying
data distributions and do both hard and soft clustering. Let X = (x1, ..., xn) ∈ Rd×n

be the data matrix of nonnegative elements. NMF factorizes X into two non-negative
matrices,

X ≈ FGT , (1)

where F ∈ Rd×k is cluster centroid, G ∈ Rn×k is cluster indicator, and k is the number
of clusters. The factorizations are typically obtained by the least square minimization.

Given a Heterogenous Relational Data (HRD) set, X1 = {x11, ..., x1n1},..., Xc =
{xc1, ..., xcnc},..., Xl = {xl1, ..., xlnl

}, each representing one data type, our goal is to
simultaneously cluster X1 into k1 disjoint clusters, ..., and Xl into kl disjoint clusters.
To derive a solution to the co-clustering problem under matrix factorization framework,
we first model HRD as a set of related matrices, i.e., a relation matrix R(pq) ∈ Rnp×nq

is used to represent the relations between Xp and Xq (1 ≤ p, q ≤ l). Then, we can
formulate the task of co-clustering as a optimization problem with nonnegative tri-
factorization of R(pq),

J = min
G(p)≥0,G(q)≥0,S(pq)≥0

∑
1≤p,q≤l

‖R(pq) − G(p)S(pq)G(q)‖2 (2)

where G(p) ∈ Rnp×kp and G(q) ∈ Rkq×nq are the cluster indicator matrices, and
S ∈ Rkp×kq is the cluster association matrix which gives the relation among the clusters
of different data types.

In semi-supervised document co-clustering, supervision is typically provided as two
sets of pairwise constraints derived from given labels on the documents: must-link con-
straints M = {(xi, xj)} and cannot-link constraints C = {(xi, xj)}, where (xi, xj) ∈ M
implies that xi and xj are labeled as belonging to the same cluster, while (xi, xj) ∈ C
implies that xi and xj are labeled as belonging to different clusters. Figure 1 shows the
triplet data (e.g., categories, documents and words), which is a basic element of general
HRD. If we can successfully co-cluster such triplet data, the corresponding technique
can be easily extended to structures involving more data types. In Figure 1, the relations
between words and documents, and documents and categories are denoted by a word-
document matrix R(12) and a document-category matrix R(23), respectively. The edges
marked with M indicate the must-link constraints M, while the edges marked with C
denote cannot-link constraints C. The dotted line shows the optimal clustering result.
Note that in the following discussions, we will focus on the triplet co-clustering, or more
specifically, word-document-category co-clustering. However, the derived algorithm is
in general applicable to structures with more than three data types.



Semi-supervised Document Clustering 215

Category (3)

  Document  (2)

Word (1)

 M MC
  C

R(23)

R(12)

Fig. 1. Word-Document-Category co-clustering with must-link and cannot-link constraints

3.2 SS-NMF for Triplet Data

We now present the SS-NMF based triplet co-clustering algorithm. For simultane-
ous text representation and categorization, documents have to be clustered together
with both words and categories. Let R(12) and R(23) denote the word-document and
document-category matrix, respectively. The goal of SS-NMF triplet co-clustering is
to iteratively cluster rows and columns of R(12), and rows and columns of R(23), sub-
ject to the M and C constraints on the documents. The first step in triplet co-clustering
is to obtain the new matrix R̃ between different data types. In other words, we need
to learn a distance metric L for each relation based on must-link and cannot-link con-
straints such that the clustering result on the central type (e.g., documents) is glob-
ally optimized. Specifically, a distance metric L(pq) (where (pq) ∈ {(12), (23)} )

over each relation of the form d(x(pq)
i , x(pq)

j ) =
√

(x(pq)
i − x(pq)

j )T L(pq)(x(pq)
i − x(pq)

j )

will be learnt, such that (x(pq)
i , x(pq)

j ) ∈ M are moved closer to each other while

(x(pq)
i , x(pq)

j ) ∈ C are moved further away. That is, we solve the following optimization
problem,

max g(L(pq)) =

∑
(x

(pq)
i

,x
(pq)
j

)∈C
||x(pq)

i , x(pq)
j ||

L(pq)∑
(x

(pq)
i

,x
(pq)
j

)∈M
||x(pq)

i , x(pq)
j ||

L(pq)

(3)

where ‖.‖ is the Frobenius matrix norm. This maximization problem is equivalent to
the generalized Semi-Supervised Linear Discriminate Analysis (SS-LDA) problem as
follows,

J = min
trace(L(pq)WM

(pq))

trace(L(pq)B(pq)
C )

(4)

where WM is within-distance matrix from must-link constraints, BC is between-distance
matrix from cannot-link constraints, and can be solved accordingly [14]. Moreover,
triplet co-clustering has an additional layer of complexity. Because categories and words
can play a different role in the grouping of documents, we have to consider the issue
of modality selection. To this end, we introduce a factor, a = [α(12), α(23)], to de-
note the relative importance of “word” and “category”. Note that the modality selec-
tion and distance metric learning are strongly dependent. This suggests that these two
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objectives must be achieved simultaneously. In Algorithm 1, we propose an iterative
algorithm to learn the optimal distance metrics L(12), L(23) and modality importance
factor a for the given constraints. Based on the learnt distance metrics L(12) and L(23),

we compute two new relational data matrices, R̃
(12)

and R̃
(23)

. To achieve triplet co-
clustering, we need to perform non-negative tri-factorization of new relational matrix
as follows,

J = min
G(1)≥0,G(2)≥0,G(3)≥0

S(12)≥0,S(23)≥0

(‖R̃
(12) − G(1)S(12)(G(2))‖2 + ‖R̃

(23) − G(2)T S(23)(G(3))‖2) (5)

Our main idea is to iteratively update the cluster structures for each data type in Equa-
tion (5). The details are given in Algorithm 2.

Algorithm 1. Simultaneous Distance Metric Learning and Modality Selection
INPUT: Original relational matrices R(12) ,R(23) , central type X2 with must-link constraint M, and cannot-link constraint
C
OUTPUT: Optimal distance metric L(12), L(23) and modality importance factor a
METHOD:

1. Construct target relation M̃ based on constraints M and C, where each element m̃ij is 1 if (xi, xj) ∈ M, and 0 if
(xi, xj) ∈ C

2. Obtain the initial distance metrics L(12) and L(23) by SS-LDA with constraints M and C
3. Set the number of iterations t=0

(a) Learn new relational matrices R̃
(12)

and R̃
(23)

(b) Formulate matrices M(12) = (R̃
′(12)

)T R̃
′(12)

and M(23) = R̃
′(23)

(R̃
′(23)

)T , where R̃
′(12)

and R̃
′(23)

contain only samples of X2 with constraints
(c) Optimize the following function to obtain modality importance factor a

aopt = arg min
α

‖M̃ − α(12)M(12) + α(23)M(23)‖2

(d) Learn the new distance metrics L(12) and L(23) for α(12)R̃
(12)

and α(23)R̃
(23)

by SS-LDA

4. If at+1 − at > ε, set t = t + 1 and go to steps (a)-(d); otherwise, stop and output the optimal distance metrics
L(12) , L(23) and modality importance factor a

4 Theoretical Analysis

4.1 Algorithm Convergence and Correctness

We now prove the theoretical convergence and correctness of SS-NMF co-clustering
algorithm. Motivated by [6], we render the proof based on optimization theory, auxiliary
function and several matrix inequalities.

Correctness. First, we prove the correctness of the algorithm, which can be stated as,

Proposition 1. If the solution converges based on the updating rules in Equations (6)-
(10), the solution satisfies the KKT optimality condition.
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Algorithm 2. SS-NMF for Triplet Co-Clustering
INPUT: Original relational matrices R(12) and R(23) , new distance metrics L(12) and L(23)

OUTPUT: Cluster indicator matrices G(1) , G(2) , and G(3) , cluster association matrices S(12) and S(23)

METHOD:

1. Obtain new relational matrices through projection: R̃
(12)

=
√

L(12)R(12) and R̃
(23)

=
√

L(23)R(23)

2. Initialize G(1), G(2), G(3), S(12), S(23) with non-negative values.
3. Iterate for each i and h until convergence

(a) Cluster indicator matrices:

G(1)
ih ← G(1)

ih

(R̃
(12)

G(2)T S(12)T
)ih

(G(1)S(12)G(2)G(2)T S(12)T )ih

(6)

G(2)
ih ← G(2)

ih

(S(12)T
G(1)T R̃

(12)) + (R̃
(23)

G(3)T S(23)T )T

(S(12)T G(1)T G(1)S(12)G(2)) + (G(2)T S(23)G(3)G(3)T S(23)T )T
(7)

G(3)
ih ← G(3)

ih

(S(23)T
G(2)R̃

(23))ih

(S(23)T G(2)G(2)T S(23)G(3))ih

(8)

(b) Cluster association matrices:

S(12)
ih ← S(12)

ih

(G(1)T R̃
(12)

G(2)T )ih

(G(1)T G(1)S(12)G(2)G(2)T )ih

(9)

S(23)
ih ← S(23)

ih

(G(2)R̃
(23)

G(3)T )ih

(G(2)G(2)T S(23)T G(3)G(3)T )ih

(10)

Proof. Following the standard theory of constrained optimization, we introduce the
Lagrangian multipliers λ1, λ2, λ3 , λ4, λ5 and λ6 to minimize the Lagrangian function,

L(G(1)
, G(2)

, G(3)
, S(12)

, S(23)
, λ1, λ2, λ3, λ4, λ5, λ6)

= ‖R̃
(12) − G(1)S(12)G(2)‖2 + ‖R̃

(23) − G(2)T S(23)G(3)‖2

− Tr(λ1C(1)T ) − Tr(λ2S(12)T ) − Tr(λ3C(2)T )

− Tr(λ4C(2)) − Tr(λ5S(23)T ) − Tr(λ6C(3)T ) (11)

Based on the KKT complementarity conditions ∂L
∂G(1) = 0, ∂L

∂S(12) = 0, ∂L
∂G(2) = 0,

∂L
∂S(23) = 0 and ∂L

∂G(3) = 0, we obtain the following five equations,

2R̃
(12)

G(2)T S(12)T − 2G(1)S(12)G(2)G(2)T S(12)T + λ1 = 0

2G(1)T R̃
(12)

G(2)T − 2G(1)T G(1)S(12)G(2)G(2)T + λ2 = 0

2S(12)T G(1)T R̃
(12) − 2S(12)T G(1)T G(1)S(12)G(2) + λ3+

(2R̃
(23)

G(3)T S(23)T − 2G(2)T S(23)G(3)G(3)T S(23)T )T + λ4 = 0

2G(2)R̃
(23)

G(3)T − 2G(2)G(2)T S(23)G(3)G(3)T + λ5 = 0

2S(23)T G(2)R̃
(23) − 2S(23)T G(2)G(2)T S(23)G(3) + λ6 = 0
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We apply the Hadamard multiplication on both sides of above five equations by G(1),
S(12), G(2), S(23), and G(3), respectively. Using KKT conditions of

λ1 � G(1) = 0 λ2 � S(12) = 0 λ3 � G(2) = 0

λ4 � G(2) = 0 λ5 � S(23) = 0 λ6 � G(3) = 0

where * denotes the Hadamard product of two matrices and letting λ3 = λ4, we can
prove that if G(1), S(12), G(2), S(23), and G(3) are a local minimizer of the objective
function in Equation (11), the following five equations are satisfied,

((R̃
(12)

G(2)T S(12)T ) − (G(1)S(12)G(2)G(2)T S(12)T )) � G(1) = 0

((G(1)T R̃
(12)

G(2)T ) − (G(1)T G(1)S(12)G(2)G(2)T )) � S(12) = 0

((S(12)T G(1)T R̃
(12) + (R̃

(23)
G(3)T S(23)T )T ) − (S(12)T G(1)T G(1)

S(12)G(2) + (G(2)T S(23)G(3)G(3)T S(23)T )T )) � G(2) = 0

((G(2)R̃
(23)

G(3)T ) − (G(2)G(2)T S(23)G(3)G(3)T )) � S(23) = 0

((S(23)T G(2)R̃
(23)

) − (S(23)T G(2)G(2)T S(23)G(3))) � G(3) = 0

Based on the above five equations, we derive the proposed updating rules of Equations
(6)-(10). If the updating rules converge, the solution satisfies the KKT optimality con-
dition. Proof is completed.

Convergence. Next, we prove the convergence of the algorithm. In Proposition 2, we
show that the objective function decreases monotonically under the five updating rules
of Equations (6)-(10) . This can be done by making use of an auxiliary function similar
to that used in [21,22].

Proposition 2. If any four of five matrices G(1), S(12), G(2), S(23), and G(3) are fixed,

J = ‖R̃(12) −G(1)S(12)G(2)‖2 + ‖R̃(23) − G(2)T

S(23)G(3)‖2 decreases monotonically
under the updating rules of Equations (6)-(10).

Proof. Due to the space constraints, we give the proof of convergence for one updat-
ing rule (e.g., the rule in Equation (6)) and skip the others. However, the proof of all
five updating rules is similar to each other. The mathematical derivation below can be
applied to other rules as well.

So, we need to show: If S(12), G(2), S(23), and G(3) are fixed matrices, then J(G(1)) =

‖R̃
(12)

−G(1)S(12)G(2)‖2+‖R̃
(23)

−G(2)T

S(23)G(3)‖2 decreases monotonically under
the updating rule of Equation (6).

First, a function F (G(1)(t+1)
, G(1)(t)) is called an auxiliary function of J(G(1)(t+1)

)
if it satisfies the following two conditions: F (G(1)(t+1)

, G(1)(t)) ≥ J(G(1)(t+1)
) and

F (G(1)(t+1)
, G(1)(t)) = J(G(1)(t+1)

) for any G(1)(t+1)
, G(1)(t) .

We define G(1)(t+1)
= arg min F (G(1)(t+1)

, G(1)(t)). By constructing an appropriate
auxiliary function, we can prove the following equation,

J(G(1)(t) ) = F (G(1)(t) , G(1)(t) ) ≥ F (G(1)(t+1)
, G(1)(t) ) ≥ J(G(1)(t+1)

)

Thus, J(G(1)(t)) is monotonic decreasing (non-increasing). The proof is completed.
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4.2 Advantages of SS-NMF

We now show that NMF provides a general framework for data co-clustering by es-
tablishing the relationship between NMF and other well-known spectral high-order co-
clustering algorithms, i.e., Spectral Relational Clustering (SRC) [8]. In fact, this algo-
rithm can be considered as a special case of NMF co-clustering.

SRC is proposed in [8] for high-order document co-clustering. It iteratively embeds
each type of data into low dimensional spaces and benefits from the interactions in the
hidden structure of different data types. The underlying objective function is,

min
G(1)T G(1)=I,G(2)T G(2)=I,G(3)T G(3)=I

(‖R(12) − G(1)S(12)G(2)‖2 + ‖R(23) − G(2)T S(23)G(3)‖2)
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Fig. 2. (a)-(c): Clustering results by SRC in the subspace of the first two singular vectors of
G(1),G(2) and G(3). There is no direct relationship between the axes and the clusters. (d)-(f):
Clustering results by NMF in the subspace of the two column vectors of G(1),G(2) and G(3). The
data points from the two clusters are distributed closely to the two axes. (g)-(i): Clustering results
by SS-NMF (with 5% constraints) in the subspace of the two column vectors of G(1),G(2) and
G(3). The data points from the two clusters are distributed exactly along the two axes.
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On the other hand, NMF-based high-order co-clustering is to minimize the following
function,

min
G(1)≥0,G(2)≥0,G(3)≥0,S(12)≥0,S(23)≥0

(‖R(12) − G(1)S(12)G(2)‖2 + ‖R(23) − G(2)T S(23)G(3)‖2)

It is clear that the major difference between NMF co-clustering and SRC lies in the fact
that SRC requires the cluster indictor matrices be orthogonal, while NMF co-clustering
relaxes this requirements to be near-orthogonal. This relaxation can provide us more
meaning clustering results.

The advantage of NMF or SS-NMF over SRC can best be illustrated using an exam-
ple. In the following example, the synthetic data set has 200 words, 20 documents, and
2 categories, each having two clusters of equal size. More specifically, we have two re-
lational matrices: R(12) of size 200× 20 and R(23) of size 20× 2, both binary matrices
with 2-by-2 block structures generated by the Bernoulli distribution. R(12) is gener-

ated based on the block structure

[
0.9 0.1
0.2 0.8

]
and R(23) is based on the block structure[

0.8 0.2
0.1 0.9

]
.

Unlike SRC, NMF or SS-NMF maps the data into a non-negative latent seman-
tic space which is not required to be orthogonal. Panels (a)-(c), (d)-(f) and (g)-(i) in
Figure 2 show the clustering results by SRC, NMF and SS-NMF, in which two clus-
ters are denoted by stars and triangles, respectively. For NMF or SS-NMF, we plot
the data points in the subspace of two column vectors of G(1), G(2) and G(3), while
for SRC the subspace of the first two singular vectors is used. Note that for either
NMF or SS-NMF, each data point takes a non-negative value on both axes. In the
NMF subspace, each axis corresponds to a cluster, and all the data points belonging
to the same cluster are nicely located closely to the axis. In the SS-NMF subspace,
the data points belonging to the same cluster are almost spread along the axis. This
indicates that SS-NMF can provide better clustering accuracy than unsupervised NMF
because the cluster label for a data point is determined by finding the axis with which
the data point has the largest projection value. On the other hand, in the SRC sub-
space, we observe no direct relationship between the axes (singular vectors) and the
clusters.

5 Experiments and Results

In this section, we empirically demonstrated the performance of SS-NMF in co-clustering
documents, words and categories by comparing it with well-established co-clustering al-
gorithms. Through these comparisons, we showed the relative position of SS-NMF with
respect to existing approaches to document co-clustering1. All algorithms were imple-
mented using MATLAB 7.0.

1 At present, there is no other existing work on semi-supervised co-clustering with constraints,
so a comparison is not feasible.
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5.1 Data Description and Preprocessing

We have primarily utilized the data set used in [23] 2. Data sets oh5 and oh15 are from
OHSUMED collection, a subset of MEDLINE database, which contains 233, 445 doc-
uments indexed using 14, 321 unique categories. Data set WAP is from the WebACE
Project, and each document corresponds to a web page listed in the subject hierarchy
of Yahoo!. Data set re0 is from Reuters − 21578 text categorization collection (dis-
tribution 1.0). We also used Newsgroup data which contains about 2000 articles from
20 newsgroups [24] 3. In our experiments, we mixed up some of the data sets men-
tioned above. Table 1 gives the details of the data sets for word-document-category
co-clustering.

Table 1. Data sets for text (word-document-category) co-clustering

Name Data sets Data No. of No. of No. of
structure categories clusters documents

HT1 oh15,re0 {Adenosine-Diphosphate,Aluminum,Cell-Movement}, 2 5 899
{cpi,money}

HT2 oh15,re0 {Blood-Coagulation-Factors,Enzyme-Activation,Staphylococcal-Infections}, 2 5 461
{jobs,reserves}

HT3 oh15,re0 {Aluminum,Blood-Coagulation-Factors,Blood-Vessels} 2 5 256
{housing,retail}

HT4 oh5,re0 {Aluminum,Cell-Movement,Staphylococcal-Infections}, 2 5 391
{cpi,wpi}

HT5 WAP,re0 {media,film,music}, 2 5 404
{cpi,jobs}

HT6 Newsgroup {rec.sport.baseball,rec.sport.hockey}, 2 5 500
{talk.politics.guns,talk.politics.mideast,talk.politics.misc}

HT7 Newsgroup {comp.graphics,comp.os.ms-windows.misc}, 3 6 300
{rec.autos,rec.motorcycles},
{sci.crypt,sci.electronics}

We used term frequency to build word-document matrix and carry out feature selec-
tion to choose the top 1000 words by the mutual information. The Document-category
matrix is constructed by computing the probability of each document belonging to each
category. The following technique is used: (1) For each class of documents, select the
top 1000 words based on mutual information. (2) For each document, if any of the top
1000 word occurs, the amount of occurrence is 1, otherwise 0. (3) The probability of
one document belonging to a category is the ratio of the sum of occurrence of the top
1000 words in this document to 1000. Thus, every element of document-category matrix
is in the range [0, 1]. In addition, for semi-supervised clustering, we defined the percent-
age (%) of pairwise constraints with respect to all the possible document pairs, which
is (total docs

2 ). The document constrains are generated by randomly selecting documents
from each class of the data set.

5.2 Evaluation Method

We evaluated the clustering results using the accuracy rate AC. The AC metric mea-
sures how accurately a learning method assigns labels ŷi to the ground truth yi, and is
defined as,

2 http://www.cs.umn.edu/ ∼han/data/tmdata.tar.gz
3 http://www.cs.uiuc.edu/homes/dengcai2/Data/TextData.html
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AC =
∑n

i=1δ(yi, ŷi)
n

. (12)

where n denotes the total number of documents/categories in the experiment, and δ is
the delta function that equals one if ŷi = yi, otherwise zero. Since an iterative algorithm
is not guaranteed to find the global minimum, it is beneficial to run the algorithm several
times with different initial values and choose the average of all the test runs as the final
accuracy value. In our experiments, for each given cluster number k, we conducted 10
test runs and final AC value is the average of all the 10 test runs.

5.3 Word-Document-Category Co-clustering

We conducted experiments to co-cluster words, documents and categories, and com-
pared the performance of SS-NMF with SRC [8] and unsupervised NMF.

Co-clustering Accuracy. Table 2 shows document clustering accuracy obtained by
SRC, unsupervised NMF, and SS-NMF with 15% constraints, respectively. It is obvi-
ous that SS-NMF outperforms SRC or unsupervised NMF in all the data sets. In general,
SRC performs the worst amongst the three. Its accuracy on data set HT7 with 3 cate-
gories and 6 document clusters is only 19%, while SS-NMF provides an accuracy over
63%. Also from Table 2, we observed that SS-NMF can achieve high clustering accu-
racy, over 80% in 5 out of 7 data sets. Note that we have at least five document clusters
in each of these data sets, so comparatively the baseline accuracy is only 20%. In Fig-
ure 3, we plotted the AC value against increasing percentage of pairwise constraints
for SS-NMF. It is obvious to see that SRC and unsupervised NMF are consistently out-
performed by SS-NMF with varying amounts of constrains across all the data sets. In
addition, when more prior knowledge is available, the performance of SS-NMF clearly
gets better.

In the left panel of Table 3, we reported the accuracy of text categorization by SRC,
unsupervised NMF, and SS-NMF. For all the data sets, the AC value of SS-NMF is
either the best or the closely-followed second best amongst the three methods. This
result shows that even though the original document-category matrix is biased in the
distance metric learning towards the constraints on the documents, SS-NMF still can
provide a highly competitive results on category clustering.

For co-clustering, we obtained the clusters of words simultaneously with the clusters
of documents and categories. However, for text representation, there is no ground truth
available to compute an AC value. Here, we selected the “top” 10 words based on
mutual information for each word cluster associated with a category cluster, and listed
them in the right panel of Table 3. These words can be used to represent the underlying
“concept” of the corresponding category cluster.

Modality Selection. As described in Section 3.2, distance metric and modality im-
portance are learnt iteratively in Algorithm 1. First, modality selection can provide ad-
ditional information on the relative importance of various relations (e.g., “word” and
“category”) for the grouping the central data type (e.g., “document”). Moreover, from
a technical point of view, it also acts like feature selection when computing the new re-
lational data matrix. Table 4 lists the modality importance for the two relations: word-
document and document-category in SS-NMF with 1% constraints. A higher value in
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Table 2. Comparison of document clustering accuracy between SRC, unsupervised NMF and
SS-NMF with 15% constraints on word-document-category co-clustering

Name SRC NMF SS-NMF
HT1 0.4772 0.5250 0.8509
HT2 0.4989 0.6529 0.8243
HT3 0.3359 0.5391 0.6875
HT4 0.4450 0.5601 0.8261
HT5 0.6411 0.6386 0.8267
HT6 0.4989 0.5780 0.8620
HT7 0.1900 0.4333 0.6467
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Fig. 3. Comparison of document clustering accuracy between SRC, unsupervised NMF, and SS-
NMF with different amounts of constraints for word-document-category co-clustering

Table 3. Text categorization: clustering accuracy of categories and Text representation: top ten
words for each category

Name SRC NMF SS-NMF Representative words for each category
HT1 0.8 0.8 0.8 {via,coverag,calcium,purif,modifi,increm,identif,receiv,explant,delta}

{market,pct,bank,rate,monei,billion,dollar,mln,dlr,currenc}
HT2 0.8 0.6 0.8 {studi,activ,patient,suggest,protein,increas,result,effect,treat,infect}

{januari,pct,februari,reserv,unemploy,billion,bank,fell,mln,rose}
HT3 0.4 0.8 0.6 {increas,patient,activ,perform,suggest,studi,effect,examin,result,factor}

{februari,adjust,fall,sale,depart,retail,fell,season,level,month}
HT4 0.4 0.8 0.8 {cell,treatment,determin,site,bone,neutrophil,single,anim,change,differ}

{consum,statist,index,inflat,rise,compar,base,month,increas,rose}
HT5 0.8 0.4 0.8 {pm,star,film,hollywood,set,releas,octob,director,time,million}

{rise,price,rose,statist,unemploy,inflat,compar,consum,januari,increas}
HT6 0.8 0.6 0.8 {disregard,jai,pyramid,winner,aaron,baltimor,dean,leaf,ban,stanlei}

{sahak,ohanus,melkonian,appressian,serazuma,armenian,serdar,escap,turkish,sdpa}
HT7 0.8 0.5 0.7 {mac,color,al,push,bit,sse,lower,size,traffic,screen}

{licenc,egreeneast,clipper,drink,claim,biker,safeti,clean,dod,motorcycl}
{vga,univ,pub,servic,educ,bill,robert,school,technic,game}
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Table 4. Modality importance: words v.s. categories

Name word-document document-category
HT1 0.9996 0.3884
HT2 0.9999 0.4331
HT3 0.6837 0.9949
HT4 0.7607 0.7233
HT5 0.2479 0.9998
HT6 0.9999 0.1751
HT7 0.2390 0.9990

the table indicates more importance. It is clear that the significance of words and cat-
egories are quite distinct in different data sets. Specifically, word-document relation
seems to play an more important role for document clustering in data sets HT1, HT2,
HT4 and HT6, while document-category relation is more important in the rest. This
information provides us a better understanding of the underlying process that generates
the document clusters.

Time Complexity. Finally, we compared the computational speed of SRC, unsuper-
vised NMF and SS-NMF for document co-clustering. The time complexity of SRC is
O(t(l max (nd, nw)3 + kndnf), SS-NMF is O(tl(n3

d + kndnf )), and unsupervised
NMF is O(tlkndnf ), where t is the number of iterations, l is the number of data types,
k = max (kd, kf ) is maximum number of clusters in all data types (e.g., word, docu-
ment or category), nd is the number of documents, and nf is the maximum number of
words or categories for all modalities. Normally, nf = nw since nw(number of words)¿
nc (number of categories). So, given t, l and k , the actual computational speed is usu-
ally determined by nd or nw. Figure 4(a) illustrates the computational speed of SRC,
SS-NMF and unsupervised NMF, with increasing number of documents for a fixed nw,
while Figure 4(b) shows the computational speed with increasing number of words for
a fixed nd. The experiments were performed on a machine with Dual 3GHz Intel Xeon
processors and 2GB RAM.
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required by each of the algorithms are displayed in log(seconds) for increasing ndocument (a),
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Amongst the three, unsupervised NMF is the quickest as it uses an efficient iterative
algorithm to compute the cluster indicator and cluster association matrices. SS-NMF
ranks the second and its time gradually increases as the number of samples or features
increases. The difference between SS-NMF and unsupervised NMF is mainly due to the
additional computation required to learn the new distance metric through SS-LDA, in
which we need to solve a generalized eigen-problem. We observed that in Figure 4(a),
the computing time for SS-NMF is close to unsupervised NMF since both have linear
complexity with nd when nw is fixed. On the other hand as shown in Figure 4(b), time
for SS-NMF increases more quickly (O(tln3

w)) when nc is fixed. In both cases, SRC
is the slowest comparatively. Even though SRC is completely unsupervised, it needs
to solve a computationally more expensive constrained eigen-decomposition problem
and require additional k-means post-processing to infer the clusters. In short, SS-NMF
approach provides the efficient way for document co-clustering.

6 Conclusions

In this paper, we presented SS-NMF co-clustering: a novel semi-supervised approach
for document clustering with simultaneous text representation and categorization. In
SS-NMF co-clustering model, users are able to provide supervision in terms of must-
link and cannot-link pairwise constraints on the documents, which are used to derive
new word-document and document-category matrices through distance metric learning
and modality selection. Tri-factorization of the new matrices is then performed to ob-
tain the grouping of documents, words and categories. We demonstrated that SS-NMF
outperforms existing methods in document co-clustering on publicly available text data
sets.
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Abstract. In this paper we describe our work on pattern discovery in system 
event logs. For discovering the patterns we developed two novel algorithms. 
The first is a sequential and efficient text clustering algorithm which automati-
cally discovers the templates generating the messages. The second, the PARIS 
algorithm (Principle Atom Recognition In Sets), is a novel algorithm which dis-
covers patterns of messages that represent processes occurring in the system. 
We demonstrate the usefulness of our analysis, on real world logs from various 
systems, for debugging of complex systems, efficient search and visualization 
of logs and characterization of system behavior.    

1   Introduction 

Almost every piece of software writes messages into event logs. Systems composed 
of many components, such as web services, complex enterprise applications and even 
complex printing presses collect such events from their many components into log 
files. These logs are meant to be utilized both in the development stages and in nor-
mal operations for debugging and understanding of the behavior of the complex sys-
tem. In fact, studies have shown these reasons to be the main impetus of companies in 
collecting logs in the first place [1]. 

While these logs hold vast amount of information describing the behavior of appli-
cations and systems, finding relevant information within the logs can be a very chal-
lenging task; even modest systems can log thousands of messages per second. Most 
users still use the good old unix “grep” for finding potentially relevant messages in 
event logs. Existing commercial tools, such as those from Splunk, LogLogic and 
Xpolog, collect and join logs from different sources and provide a more convenient 
search through the logs. However, the indexing provided by these tools still does not 
lead to automation in leveraging the logs for tasks such as automated problem debug-
ging, process identification or visualization of the information in the logs.  

There are two main fundamental challenges in transforming the logs into machine 
readable form, enabling automated analysis.  

First, a “translation” of the text based events (messages) in the logs into a diction-
ary of event types: The number of templates creating events is limited, but the actual 
number of distinct events observed is very large, and grows quickly as a function of 
time.  This is because the actual messages in the logs include various parameters that 
change from instance to instance of the same type of message (e.g., “login user 
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$name”). Unfortunately, in many systems, the event templates generating the mes-
sages are not available, making it challenging to compute representative statistics 
enabling automated analysis over the events. 

Second, a pattern finding mechanism to provide a compressed/concise representa-
tion of processes represented in the logs is a major challenge. Many processes spawn 
multiple messages into logs, e.g., a failure of a process can cause multiple messages 
in different logs representing the output of different software components creating 
interleaved sequences of events. Automated systems benefit greatly from identifica-
tion and representation of such groups, as opposed to individual messages, as it re-
duces noise, compresses the data and provides more accurate representation of proc-
esses in the system. 

Solving both of these problems requires the design of efficient machine learning 
algorithms. Existing research in the area focused mainly on the second problem – 
analysis of log patterns from event log streams  [10][11][12][13][14] . These works 
focus on discovery of temporal patterns or correlation of event statistics to problems, 
but either assume a known dictionary [10][11][12][13] or assume access to the source 
code for its discovery [14]. Most of these works generally ignore the complexities 
introduced when collecting logs from various components in a complex system, 
namely,  interleaving of sequences of events, asynchronous events and high dimen-
sionality. 

In this paper we describe our solution to the above challenges and demonstrate the 
solution on a number of common use cases. Our solution includes two novel algo-
rithms. The first is an efficient sequential text clustering algorithm for creating the 
dictionary representing the event types. The second, the PARIS algorithm (Principle 
Atom Recognition In Sets), automatically discovers principle patterns (atoms) of log 
event types, representing processes in the system. We use the output of these algo-
rithms to visualize logs, enable fast debugging of system problems, and search in the 
logs via a highly compressed lossless representation of the information in the logs.   

The paper is organized as follows. We start with a problem description in the next 
section. We then describe the two main contributions of this paper; an online diction-
ary creation algorithm for semi-structured machine generated events, followed by the 
PARIS algorithm. We discuss the use cases for our log analysis algorithms and dem-
onstrate the results of these algorithms on several large scale datasets collected from 
enterprise applications. Next, we describe the related work followed by a discussion 
and conclusions. 

2   Problem Description 

Logs are semi-structured events generated automatically when software components 
output messages describing actions, warnings or errors during their operation. A log 
event typically has a timestamp, representing the time at which the software wrote the 
event, and at least a text message describing the event. In some log events additional 
fields appear, often describing severity level, source method/function, etc. 
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Table 1. Log entry examples from an enterprise application. Marked words represent variables 
in the templates. Sequences of a similar process are marked 1,2,3 in the first column. 

1 2008 02 06 14:35:16 unexpected failure while trying to ping user session #55555 the session authentication has failed

1 2008 02 06 14:35:17 failed to retrieve the meta data of project ‘null0’ the session authentication has failed.

1 2008 02 06 14:35:19 failed to get licenses for project session the session authentication has failed.

1 2008 02 06 14:35:19 error processing request from 192.111.22.33 data starts with 0 \00000023\0 conststr download

2 2008 02 06 14:35:39 unexpected failure while trying to ping user session #44444 the session authentication has failed

2 2008 02 06 14:35:40 failed to retrieve the meta data of project ‘null1’ the session authentication has failed.

3 2008 02 06 14:35:41 unexpected failure while trying to ping user session #33333 the session authentication has failed

3 2008 02 06 14:35:41 failed to get licenses for project session the session authentication has failed.

2 2008 02 06 14:50:08 failed to get licenses for project session the session authentication has failed.

2 2008 02 06 14:50:09 error processing request from 192.111.22.33 data starts with 0 \00000014\0 conststr download

3 2008 02 06 14:50:11 Failed to retrieve the meta data of project ‘null3’ the session authentication has failed.

3 2008 02 06 14:50:14 error processing request from 192.111.22.33 data starts with 0 \00000512\0 conststr download  

Consider the examples of log entries from a running application shown in Table 1.  
Even though the events in this log contain 10 distinct messages, it is easy to see 

that there are only four message templates that generated the messages in this log. 
Variables words (IP address, user session #, project name, conststr) generated the 10 
distinct messages shown. If the templates were known, it would be easy to map each 
message to its generating templates; however, such templates are rarely known in 
practice. In addition, the number of log events with distinct messages in the log files 
we collected represented between 10-70% of the total number of log events. With 
millions of log events this number becomes too high for any type of automated analy-
sis on the event log time sequence. The problem then becomes to “compress” the log 
events so that events with similar messages are grouped together. In this paper we 
pose this problem as a clustering one, with the goal of recovering the message tem-
plates generating the log events. 

A second type of behavior is observed in logs when a system reaches a certain 
state; causing different software components to output log entries, sometimes in an 
ordered sequence, and sometimes unordered. The log entries in Table 1 show three 
sequences of log entries (marked as 1,2,3 in the first column), each caused by the 
same application state – a failure to authenticate a user session.  While some of the 
event types always occur when an authentication failure occurs (the first three), the 
fourth message, ‘error processing request from …’ occurs in other states as well.  It is 
desirable to capture such processes and represent them as one for better characteriza-
tion of the system behavior. The second problem is thus to automatically discover 
such event sequences from the massive logs. Clearly, this second problem requires a 
solution to the first one, so that sequences can be compared and matched. A further 
challenge in solving this problem stems from the fact that the logs entries may repre-
sent multiple system states at the same time, leading to interleaved sequences (e.g., 
sequence 2 and 3 above), each representing the same or a different state; e.g., a user 
session authentication failure may occur at the same time as a failure to update a data-
base – the logs would represent interleaved events from the two failures, without clear 
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indication of the source of the failure. Any solution must be capable of discovering 
the different sequences despite the interleaving. 

Formally, we represent each log entry, e, by the tuple (t,msg), where t is the time-
stamp of the message and msg is the message text, represented by the word vector: 
msg = w1, w2, …, wn, where wi is the word in the i’th position, while n is the number 
of words in a message. Each wi represents a word from all the words present in the 
logs, and the set of log entries is E. The first problem is to discover a set of message 
clusters C = c1, c2, c3,…, ck,  where k << |E|, and map each event e(t,msg) to one of 
the clusters, leading to the new representation of each event as (t, ci). The second 
problem is to automatically discover repeating event sequences, even when interleav-
ing between sequences occurs, and when event clusters appear in multiple different 
types of sequences.   

3   Online Dictionary Creation Algorithm 

To create the dictionary, mapping the text messages to a typically much smaller set of 
message clusters, we leverage the fact that messages produced by the same template 
are usually identical in many of the words, with differences only at various parame-
ters. Additionally, word ordering is important, therefore any similarity function needs 
to take word ordering into account. In our implementation we used the order sensitive 
cosine similarity between the messages: 

(Eq. 1) 
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where n12 is the number of identical words comparing each word position of msg1 and 
msg2, and n1,n2 are the number of words in each message. 

An alternative to the cosine similarity defined above is an edit distance, or varia-
tions of it, allowing for insertions and deletions. However, we found that in practice 
there is little need for it, and using it adds a significant computational overhead.  

Additionally, any algorithm is required to meet the following: 
1. Efficient: Given the massive amount of log events, any algorithm must process 

the logs very quickly, keeping up at least with the rate of incoming messages. 
Our algorithm is linear time in terms of number of messages. Our implementa-
tion of the algorithm is able to process 25,000 messages per second, keeping 
up with all systems we have encountered so far. 

2. Produce value immediately: Our algorithm is an online algorithm, producing 
new clusters as needed as more messages are observed. 

3. Consistency of clusters: Two messages that belonged to the same cluster at 
time t, cannot belong to conflicting clusters at time t+1, otherwise it can result 
in conflicting conclusions depending on t. Our algorithm builds a forest of 
cluster trees, and ensures that messages are always a part of the same tree in 
the forest, thus maintaining global consistency.  

4. Similar messages with different semantics or frequent parameter values should 
be in separate clusters: It occurs that two messages are almost identical, but 
the semantics can be very different – e.g., “network is up” vs. “network is 
down” (often the message can be much longer, with the only difference being 
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the words “up” and “down”). Additionally, a message could be “login user 
$name” could have many instances where $name =  “root”, and the rest with 
varying names, implying that user “root” should probably be considered sepa-
rately from the others. To produce the desired result in such cases, our algo-
rithm splits clusters based on the entropy of word positions in the messages 
and the words within each position to maintain high entropy among the mem-
bers of a cluster in the word positions considered parameters.  

Our online dictionary creation algorithm is shown in Table 2. 
The algorithm begins with an empty set of clusters. Each new event is compared to 

a representative message of the existing clusters in the order in which the clusters 
were created, and is assigned to the first cluster to which the similarity threshold is 
exceeded; this ensures the satisfaction of the consistency requirement. If the similarity 
threshold is not surpassed for any of the existing clusters, a new cluster is created and 
the event message is used as the representative message of the new cluster.   

Table 2. Dictionary creation algorithm 

Algorithm Dictionary Creation 
Parameters: MinimumSimilarityThreshold, MinimumSamplesForSplit, 

MinimumWordPositionEntropy, MinimumWordPercentForSplit
Initialize Clusters = {ø}; 
CREATING ROOT CLUSTERS AND ASSIGNING EVENTS TO CLUSTERS 
for every log event e(t,msg) in E Do{ 
 for every Cluster{i} in Clusters { 
  if cosine(msg,Clusters{i}) > MinimumSimilarityThreshold { 
   Add e(t,msg) as member of Clusters{i}; 
   Add e(t,msg) to relevant leaf in Clusters{i} tree; 
   break; 
  }; 
 }; 
 if no cluster matched e(t,msg) 
  Add msg as new cluster in Clusters;  
}
SPLITTING CLUSTERS (check occurs every X events) 
for every leaf cluster in Clusters{ 
 if number of events assigned to the cluster > MinimumSamplesForSplit{ 
  Compute the entropy of every word position in cluster h(j), j=1,…, max msg length 
  Find i=argminj h(j) such that h(j)>MinimumWordPositionEntropy; 
  Find all words for which pki •100 > MinimumWordPercentForSplit 
  Split to leaf clusters according to the words above and another for all other words 
  Update membership of all events e(t,msg) in the split cluster 
 } 
}

 

The second step of the algorithm considers splitting a cluster if the following condi-
tions are met: 

1. There is a minimum number of events that belonged to the cluster 
2. A word position has an entropy smaller than a splitting threshold (but not zero) 

and at least one word in that word position appeared in x% of the messages. 
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The entropy of a word position is computed as: ∑
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where n is the number of words in the dictionary, pkj is the probability that 

word k appears in position j, computed as 
c

kj
kj n

n
p = , where nkj is the num-

ber of times word k appeared in position j, and nc is the number of messages 
belonging to the cluster. 

When the two conditions are met, a cluster is split into at least two clusters, and pos-
sibly more if more words that pass the x% threshold. We use x = 10% in our experi-
ment, and the minimum number of messages in a cluster as 1000. 

The output of the algorithm is a forest of cluster trees, in which the branches of the 
tree represent splits based on the entropy criterion, and the tree roots are based on the 
cosine similarity criterion.  In terms of efficiency, the algorithm performs a single 
pass over the data, preserving word counts for splits as it reads the messages. Creating 
the root of the forest is purely online, while the splitting phase is performed periodi-
cally on select clusters such that new messages are not held up for long. We show in 
our experiments that despite the heuristic nature of the algorithm, it achieves cluster-
ing results that are both accurate in terms of recovering message templates, and also 
very similar to batch clustering on the same data. 

4   PARIS Algorithm 

The PARIS (for Principal Atoms Recognition In Sets) algorithm is designed for iden-
tification of sets of events that tend to occur together. We assume that in each point in 
time several processes occur in the system, each generates its own set of log messages 
and the full log is a union of the individual log sets. We also do not assume that the 
messages generated by a process are ordered since many systems are a-synchronic 
making the ordering meaningless.  PARIS gets as input the full log, and identifies the 
individual sets of messages that belong to one process or failure. Therefore, PARIS 
actually provides an alternative representation of the full log as a collection of atoms, 
where each atom is a known set of messages produced by one process or failure. Such 
an alternative representation provides several advantages, 

1. Event suppression and filtering – one atom is used instead a set of log mes-
sages, which allows efficient representation of the data. 

2. Analysis – each atom stands for one process or failure, and therefore repre-
sentation by atoms is more meaningful than the full representation. Note that 
unlike atoms, a single log message can appear in several different processes 
or failures, and therefore its occurrence does not necessarily describe any spe-
cific system state. 

3. Reduction of noise – lets assume a process occurs every once in a while in the 
system, and causes a set of log messages. PARIS will identify this set as an 
atom that describes the process. Let’s also assume in a new time window we 
witness most of these log messages but not all of them. This inconsistency 
can be either noise (other messages were deleted, delayed or were wrongly 
assigned to a different time window), or as an intrinsic problem in the system 
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(e.g. the process was stopped in the middle). In both cases, PARIS representa-
tion can easily detect this inconsistency – fix it, or alert. 

PARIS – Problem Description  

Let D1,D2,…DN be N different sets of elements, each consists of a finite set of values 
taken from a finite alphabet v1,v2,...,vT (in our case the alphabet is the set of log mes-
sages ids, given as a result of the dictionary creation algorithm). We assume the con-
tent of each set Di consists of at most L smaller sets, denoted also as principal atoms. 
The set of all principal atoms is denoted as A, and consists of K elements A = {A1, 
A2, ... , AK}. Each principal atom Aj holds a set of values Aj = {vj1,vj2,...,vjw}. The 
atoms are not necessarily distinct, nor do they consist of all available values. A repre-
sentation of the set Di using A is denoted as F(A,Ri), where Ri is a set of indices, and 

j
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i ARAF
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∪=),( . We denote by F(A,R) the set of all representations, 

{ }RiRAFRAF i ≤≤= 1),(),( . The PARIS algorithm aims to find a set of 

atoms A and a set of representations R that minimize the sum of distances between 

),( iRAF  and Di for Ni ≤≤1 . Therefor, the cost function can be defined as  
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where d is a distance metric between sets. PARIS’s execution and results heavily de-
pend on the definition of the distance function d. The simplest distance function we 
defined counts the number of elements that are not common in the two sets, and nor-
malizes it by the size of Di, 
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where ⊗  is the XOR operator that returns the set of elements that appear in one set 
and not in the other. However, in many cases we found this distance function to be 
too simplified, as it does not consider cases in which only part of the atom appears in 
Di due to, for example, missing log entries. We defined a slightly modified distance 
function that uses a slack parameter r, 
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. That is, we al-

low the distance metric to consider only a portion r of the elements of each atom in 
the representation reducing the penalty for mismatches. When r=1, the function dr is 
identical to d.  
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Implementing PARIS 

As the solution of (2) is combinatorial in its nature, we designed an iterative scheme 
for minimizing it. In each iteration there are two stages: representation stage and atom 
optimization stage. 
 

• Representation stage: we fix the set A, and solve for all i 

( )),(,minarg ii
r

R
i RAFDdR

i

= . This is done greedily by adding one atom 

after the other to the representation. In each stage the added atom is the one 
that best minimizes the distance. The process stops when the distance is no 

longer minimized, or when LRi = .  

• Atom optimization stage: we change A in order to minimize the distance of 
the representation to D. We do so one atom after the other. When optimizing 
Ai, we fix all other atoms, and consider only the data sets that include Ai in 
their representation (other data sets will not effect Ai). For each such data set 
we define representation error set Ei, 

{ }})/{,(/ iRAFDE iii = , 

where the operator ‘/’ stands for set subtraction. Ei actually holds all the 
elements in Di that are not yet represented by all other atoms except Ai. We 
then re-define Ai in order to better approximate all these representation er-
ror sets. 

 

In each iteration the cost function (2) is reduced, and therefore the algorithm is prom-
ised to converge to a minimum solution. As the solution is local, several heuristic 
operations are done in order to force a more global solution (such as replacing identi-
cal atoms or atoms that contain other atoms). Other versions or PARIS are designed 
mainly to omit the need for the initial setting of K and L, and to better avoid local 
minima solutions.  

Validating PARIS Using Synthetic Data 

A necessary and important stage in validating the algorithm is to execute it on syn-
thetic data that was generated directly according to the model assumptions. For this, 
we randomly selected a set of K ‘true’ atoms from an alphabet of size 200 (each atom 
included 8 elements). Then we assumed a fixed r and generated the input sets D. Each 
set Di was generated by a union of random L atoms. From each of the atoms only r of 
the elements were taken. In addition, some noise was added to each set by switching 
on/off n elements. Finally, we executed the algorithm after supplying it with the pa-
rameters (k, L, r), and with the input sets D. The success rate of the algorithm was 
measured by the number of successful atom restorations out of k. 

In the first experiment we set, K=50, L=3, N=3000, and varying r (between 0.4 and 
1). The rates of successful restorations with noise levels of 0, 2, 4, 10 are described in 
the blue, red and green graphs in Figure 1. 
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Fig. 1. (a-c)  PARIS synthetic experiments 

Another experiment was done with a fixed r=0.6, and L varies between 1 and 7, 
with noise levels of 0,2,4,6,8,10. The results are presented in Figure 1(b). A third ex-
periment was done with fixed r=0.6, and L=3, while K varies between 30 and 100 in 
jumps of 10 and with noise levels of 0,2,4,6,8,10. The results are presented in Figure 
1(c). These results demonstrate the ability of PARIS to successfully extract the origi-
nal atoms, even in the presence of noise.  

However, when applying PARIS on real data, the setting of K, L and r is done heu-
ristically, using reasonable assumptions and knowledge of the system and the origin 
of the data. In the log experiments we used the following: k=80, L=3, r=0.51. 

5   Use Cases for the Log Analysis Algorithms 

The two algorithms described in the previous section transform the system event logs 
from semi-structured text to machine readable forms. The obvious question is what 
are the use cases that justify running these algorithms on system logs? In this section 
we describe three such use cases which we have seen in our experience to be useful 
for operations of large Enterprise IT systems. There could be additional use cases 
which we have not encountered yet. 

The first use case, and also the most straightforward one, is to use the transformed 
event logs to aid in diagnosis of system problems. In most IT applications, indications 
of problems stem from abnormal measurement values in monitors that are critical to 
the business, such as transaction response time or throughput. When those indicate a 
problem, the operators needs to discover the root cause through mounds of data; 
monitors of system behavior, such as CPU utilization, memory, network, etc, and sys-
tem event logs. In recent years, work in this area showed how to aid in the diagnosis 
using machine learning methods such as Bayesian network classifiers, clustering 
[7][8][9] using real-valued monitors. Adapting these methods to use the output of our 
algorithm is straightforward; the rate or binary representation of each event type from 
the dictionary, and/or atoms from the output of PARIS, is computed over time win-
dows of 1-5 minutes, matching the frequency of the monitors used to detect problems. 
This turns the log events to temporal measurements enabling the application of exist-
ing learning technologies to help classify and describe problem periods.  

A second use case is visualization of the system event logs over time for gaining 
better understanding of the system operation. While this use case is similar to the first 
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in many respects, visualization of the log events over time produces views that enable 
quick understanding of system operation, such as reboots, normal periodic processes 
(e.g., database partition), and processes that are running amok, not causing any de-
tectable problem at the application level yet. Whereas in the first use case the diagno-
sis of a specific problem that occurred is a supervised learning problem, this use case 
is unsupervised, leveraging visualization and additional unsupervised techniques to 
detect anomalies or behavioral patterns from the logs. 

A third use case is the use of the output of the algorithm for efficient indexing of 
the logs, reducing both space requirements and speeding up search through the logs 
significantly over standard indexing. The clusters serve as the index to each message, 
coupled with the varying words, to produce a very fast and small index representing 
exactly all event logs.   

We show examples of each use case in the experimental section. 

6   Experimental Results 

For our experiments we collected five log message datasets taken from systems in 
different fields of the IT world, in accordance with the use cases mentioned above. In 
order to demonstrate the generality of the algorithm, we chose one hardware log (that 
of a printing press), one Windows Server event log (which represents an infrastructure 
environment) and two enterprise business application logs. We were careful to select 
logs in which system problems were discovered, as well as logs from normal process-
ing time of the systems. We ran each of the logs through the dictionary creation algo-
rithm, transforming them into sets of clusters, unique messages and word dictionaries.  

In addition to clustering the messages into distinct clusters, the dictionary creation 
algorithm also kept track of the distinct message strings, number of distinct non-
numeric words in the logs of each system, as well as statistical information about the 
messages, such as the average number of words and the median number of words in 
each message. 

Table 3. Result Summary for Log Datasets 

Source Time Frame Number 
of
messages 

Number 
of unique 
messages 

Number 
of clusters 

Number of 
distinct
words

Median
message 
length

Index size 
reduction

Business
App 1 

Start:
2008-01-10 06:00:01 
End:
2008-09-03 11:14:16 

4,210,513 153,619 4,193 112,112 25 90%

Printer
Press

Start:
2008-04-14 22:09:10 
End:
2008-04-14 22:12:51 

11,204 5,631 204 1,796 10 50%

Window
s Events 

Start:
2006-09-05 01:55:19 
End:
2009-06-19 02:38:45 

66,102 25,340 476 14,550 26 40%

Business
App 2 

Start:
2009-01-25 13:19:31 
End:
2009-03-23 09:06:33 

483,768 70,102 1,115 42,057 10 90%
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Table 3 summarizes the results of running each of the datasets through the algo-
rithm. For every data set it shows the timeframe of the messages in the log, how many 
messages were processed (number of messages), how many distinct messages were in 
the logs (number of unique messages), the number of clusters they were grouped into 
(number of clusters), the number of distinct words that were discovered in the log (not 
including numeric strings), and the median number of words in a message. 

Index Size Reduction and Space Compression 

Special attention must be given to the last column of Table 3 Result Summary for Log 
Datasets. As mentioned previously in the third use case, the algorithm efficiently in-
dexes the logs, both reducing space requirements and speeding up search through the 
logs significantly over standard indexing. The last column of Table 3 demonstrates 
this. It shows the percentage by which the index size was reduced in the representa-
tion of the logs. In the cases of the business applications, the reduction in size was up 
to 90%! This compression in representation of the logs is done on two levels. The first 
consists of keeping track of unique messages and the number of times they occur 
rather than keeping track of every instance of every message. The second level of 
reduction consists of using the cluster as an index to the unique messages, coupled 
with keeping only the subsequent varying words of every unique pattern message, to 
produce a very fast and small index representing exactly all event logs.  The 90% re-
duction is the saving of the clustering step compared to the first step of reduction – an 
index based on the unique messages. A 99% reduction is achieved over the naïve in-
dex which doesn’t keep track of the unique messages. 

Figure 2 further demonstrates the reduction in size that the algorithm provides for 
the Business Application 1 data, showing that over a 6 month period the number of 
unique messages (labeled as “Distinct Messages”) grows at a steep rate while the 
number of clusters (labeled as “Template Messages”) stays relatively very small.  

 

 

Fig. 2. Growth of distinct (unique) messages vs. cluster (Template)  messages created by the 
algorithm  
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Dictionary Accuracy 

In order to gauge the precision of our clustering methodology, we utilized the event 
logs from Windows to perform an accuracy test of our algorithm. Windows event 
messages include an event id for every message, a form of ground truth clusters pre-
ordained by the Windows server. We analyzed our algorithm’s clusters to see what 
types of Windows event id’s are included in each of them, and to see how well our 
cluster ids correspond to the Windows event id designated by the Windows server. 
We measure cluster accuracy using clustering purity and normalized mutual informa-
tion (NMI) [15] compared to the ground truth given by the windows event ids.  

For the 25,340 unique messages in the Windows logs, there were a total of 104 dis-
tinct event ids and a total of 467 clusters created by the algorithm1. The algorithm 
clustered the events with 96.7% purity in comparison to the Windows event ids, and 
NMI of 0.41. These numbers show that there was a great match between the clusters 
and the windows event ids, although the algorithm produced four times as many event 
types as existed in the data. Compared to the number of unique messages though 
(over 25,000), this number is quite small. It is also noteworthy that some Windows 
events had different event ids despite being comprised of the exact same text. This 
ambiguity in the source data can also contribute to the lack of purity in the clusters. 

We also compared our clustering algorithm to the result of a batch clustering  
algorithm on the windows event data. As a batch clustering algorithm we used the 
hierarchical cluster tree algorithm with single linkage clustering [15], adjusting it to 
produce the same number of clusters as our online algorithm. The NMI between the 
results of our clustering ands the batch algorithm was 0.88, while the purity was at 
98%, indicating the result of our online heuristic algorithm is nearly the same as the 
batch algorithm. 

Example 1: Root cause analysis for application performance debugging 

The following example demonstrates the use case of using the log analysis algorithm 
for diagnosis of performance problems in a transactional business application using 
the system logs. During routine monitoring of performance, a spike in transaction 
response time was noticed (see figure 3).  

In addition, the performance monitors showed that the database CPU usage and the 
application server CPU usage were increasing, despite the fact that the number of 
connections to the application server was decreasing.  

The monitor indicated multiple symptoms of a performance problem occurring in 
the system, but no indication of what might be causing it. The different components 
that compose the environment all have corresponding logs with error messages that 
occurred at the time of the spike, but no clear way to disseminate them. It is only 
when processing the system logs through the algorithms that a clear picture of the 
environment is composed using that information and error messages from multiple 
sources are put into context of timeline and order (see figure 4). 

Once processed through the algorithms, error messages from multiple sources were 
visualized together, indicating order of appearance and cluster classification.  
 
                                                           
1 The algorithm ran with similarity threshold of 0.6. 
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Fig. 3. Spike in transaction response time. The spike represents a performance problem for the 
application.  

Analyzing the messages in this fashion assisted in isolating the root problem that 
caused the system errors – a java IllegalStateException message: 
java.lang.IllegalStateException: getAttribute: Session already invalidated. Once iden-
tified, explanations and solutions were easily found and applied  (e.g., 
http://forums.sun.com/thread.jspa?threadID=5129793). 

Example 2:  Error/Behavior Detection in IT Management Software 

The second example we provide is that of an IT Management system whose 
dashboard did not report any data about system health, despite the data being col-
lected. As opposed to the previous case, in this situation there were no accompanying 
symptomatic behaviors by components in the system.  

 

Fig. 4. Error messages at time of system errors, visualized after dictionary creation processing.  
The y-axis refers to the IDs generated by the dictionary creation algorithm (clusters). The x-
axis is the time. Every dot in the graph represents an actual message from the log, showing its 
mapping to one of the discovered clusters. The period shaded period corresponds to the period 
with the spike in response time. The corresponding log error messages relevant to the problem 
are clearly visible in the graph. 
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Fig. 5. Visualization of the messages from IT Management System logs following the diction-
ary creation step. The Region marked in red is the time when a problem occurred in the system; 
the marked message clusters that appear in this period were deemed to describe the root cause 
of the problem. Regions marked with ovals demonstrate the pattern of events when the system 
was performing a restart. 

Once again a multitude of logs were processed by the algorithms and, when visual-
ized, provided some insight into the problem in the system. The time-series graph in 
Figure 5 displays the results of the log analysis process. The area shaded in red is the 
timeframe in which the problem with application occurred, and upon examination of 
the graph, the problem is isolated given the two error messages, which appear only 
during this problem, stating that the report transaction failed to publish its results to 
the dashboard due to a locking problem. Once again, once the problem is isolated, the 
corresponding resources can get to work on fixing it. 

From the visualization, further information about the system’s behavior can be ob-
tained, both normal and abnormal. For example, the points surrounded by ellipses 
represent groups of messages that recur regularly, which upon investigation are iden-
tified as belonging to the normal shutdown and startup processes of the server.  

PARIS Results: Identifying Processes 

We have shown in the previous section the result of the PARIS algorithm on artificial 
data. We applied the PARIS algorithm on the Business App 1 data set, using 15 min-
ute windows and representing the data in the window as a binary vector; a vector rep-
resenting at time window t is a vector of length N (the dictionary size), with “1”s in 
the indices of event clusters that appeared at least once during the time window. 
While no complete ground truth exists regarding the different processes in the system, 
we resort to experts to determine the validity of our output. 

Table 4 below shows examples of three atoms, showing the corresponding event 
clusters in each. These atoms represent three failure types in the system creating the 
logs. 

Failed processing http request: report_transaction, from remoteHost :5.55.55.55

Failed to acquire lock for publishing sample

Reboots
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We see that there are shared events in Atom 78 and Atom 14 (highlighted), al-
though the failure modes in the system are different in these two cases. The messages 
in Atom 79 represent a third failure mode, representing the messages occurring after a 
session authentication failure. When we looked at the timeline of when this atom ap-
peared, we saw it repeating. Some investigation showed that it is due to an old script 
that was being executed at a regular interval that went undetected for months until our 
analysis 

Viewing the timeline of when the atoms appeared, we saw that some failure types 
sometimes occur concurrently, due to the concurrent nature of the system, which 
serves multiple users performing various different tasks at the same time.  

Unfortunately, we do not have ground truth data similar to the windows event logs, 
as such ground truth requires deep knowledge of the applications. However, the anec-
dotal evidence presented above do validate both the need for an algorithm such as 
PARIS and that PARIS can produce meaningful results in complex system event logs. 

Table 4. Example Atoms corresponding to three failure types in the system 

Failure type 1: Atom 78 Failure Type 2: Atom 14 Failure Type 3: Atom 79 
failed to get coverage,
failed to get list of entities keys

failed to cover req invalid values in 
removecoverage input frec parameter 

failed to post common settings the 
project session authentication has 
failed.

failed to complete the action cannot create 
new test duplicate test name 'xxx' 

failed to complete the action cannot create 
new test duplicate test name 'xxx' 

failed to retrieve the meta data of 
project 'xxx' the project session 
authentication has failed 

failed to get test value unexpected failure 
in getvaluepostprocess 

failed to get test value unexpected failure 
in getvaluepostprocess 

failed to get licenses for xx project 
session the project session 
authentication has failed. 

failed to post design steps values cannot 
add new design step to test #xxx test #xxx 
not found 

failed to post design steps values cannot 
add new design step to test #xxx test #xxx 
not found 

failed to get the specified common 
settings the project session 
authentication has failed. 

failed to post req, failed to build 
hierarchical item descriptor 

error creating request from x \xxx\xx 
conststr gettestsetvalue, 
failed to lock object the project 
session authentication has failed. 
exception in getting sequence value 
login has timed out.  

7   Related Work 

Methods for analyzing system log events have gained the attention of machine learn-
ing researchers in recent years.  Most works assume a known message dictionary and 
apply time series analysis methods to the logs. In this category, among others, are 
[11][12][10], who developed methods to mine temporal event patterns, using HMMs, 
temporal graphs and other temporal models to extract important patterns. These works 
assume a known dictionary mapping the messages to a finite set of types, and also do 
not account for interleaved log sequences, which appear in large scale transactional 
systems.  

[13] introduce a method for reducing the dimensionality of large scale logs by us-
ing dimensionality reduction and clustering of groups of log events. However, their 
method is designed to work in support center settings, where a support engineer re-
ceives chunks of logs only when the system is known to have failures, and limits the 
log types collected. Xu et al [14]  also analyze logs based on log message groups and 
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use PCA to detect anomalous messages in the logs, analyzing logs continuously dur-
ing operations.  Their solution to the dictionary creation problem is to analyze the 
source code of the monitored applications, identifying possible message templates 
from the code and validating them in the logs. In contrast, our method assumes no 
access to the source code, using only the logs themselves to discover the possible 
templates, making our method applicable to a wider range of systems. Our PARIS 
algorithm combines the advantages of both the temporal pattern mining approaches 
and the batch approaches (such as PCA). It does not ignore time in the analysis, but 
tries to represent efficiently each time window with a set of atoms, representing proc-
esses, thus accounting for both groups of messages and interleaving of sequences.  

The PARIS algorithm can also be compared to other existing methods in signal 
processing and machine learning. The simple version of PARIS is the set variation of 
the overcomplete dictionary learning algorithm K-SVD [2] in signal processing with 
real-valued data. K-SVD discovers a dictionary matrix so that each signal in the input 
data can be well represented by a sparse linear combination of its atoms. Its effi-
ciency in image and video processing was proved in applications such as denoising of 
images and videos [3][4], image completion [2] and compression [5]. Similar to the 
latent variables in Latent Dirichlet Allocation [6], PARIS’s atoms can be viewed as 
representing concept clusters, system processes in our case, allowing multiple concept 
clusters to represent each time period; this property overcomes the interleaving prob-
lem present in the logs.  

8   Discussion and Summary 

In this paper we introduced two novel methods for extracting patterns and summariz-
ing complex system event logs. While our work shows promise on real logs, there are 
various open issues and future work opportunities. 

While our dictionary creation algorithm is online and efficient, in some systems it 
may become necessary to analyze logs locally on the various distributed system ma-
chines as it may be too expensive to transfer logs over the network to a single central 
node. The challenge becomes to generate one consistent dictionary for all logs being 
analyzed on various machines, so that logs of the same type (e.g., Apache logs from 
various web servers) produce a single dictionary. 

Second, our use of the PARIS algorithm on the logs currently uses a fixed size time 
window. However, for some processes, shorter or longer windows may be required, 
and the boundaries of the current windows are arbitrary and may split processes. An 
adaptive windowing approach may be required for more accurate process identifica-
tion. Additionally, further validation is required for the PARIS algorithm on logs with 
more ground truth data. 

Our heuristic dictionary creation algorithm performed well on system event logs 
and would most likely fair well on texts generated automatically from a finite set of 
templates. While we used the word order sensitive cosine similarity, it can be easily 
modified to ignore word order and use other similarity measures. We have also been 
experimenting with the PARIS algorithm to extracts concept classes from general text 
corpus, with initial results showing promise. 
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To conclude, the title of this paper, “one graph is worth a thousand logs”, was 
coined by the quality engineer who used our system to quickly diagnose a perform-
ance problem with his application. This paper provides the necessary machine learn-
ing methods that transform massive amounts of system event logs into a form that 
enables meaningful visualizations and automated analysis that indeed help operators 
understand the complex behavior of the systems they manage. 
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Abstract. Conference Mining has been an important problem discussed these 
days for the purpose of academic recommendation. Previous approaches mined 
conferences by using network connectivity or by using semantics-based intrin-
sic structure of the words present between documents (modeling from docu-
ment level (DL)), while ignored semantics-based intrinsic structure of the words 
present between conferences. In this paper, we address this problem by consid-
ering semantics-based intrinsic structure of the words present in conferences 
(richer semantics) by modeling from conference level (CL). We propose a gen-
eralized topic modeling approach based on Latent Dirichlet Allocation (LDA) 
named as Conference Mining (ConMin). By using it we can discover topically 
related conferences, conferences correlations and conferences temporal topic 
trends. Experimental results show that proposed approach significantly outper-
formed baseline approach in discovering topically related conferences and find-
ing conferences correlations because of its ability to produce less sparse topics.  

Keywords: Richer Semantics, Conference Mining, Generalized Topic Model-
ing, Unsupervised Learning. 

1   Introduction 

With the emergence of the Web, automatic acquirement of useful information from 
the text has been a challenging problem, when most of the information is implicit 
within the entities (e.g. documents, researchers, conferences, journals) and their rela-
tionships. For example, various conferences are held every year about different topics 
and huge volume of scientific literature is collected about conferences in digital li-
braries. It provides us with many challenging discovery tasks useful from researchers’ 
point of view. For example, a new researcher can be interested in obtaining authorita-
tive conferences of specific research area to do literature review or a group of re-
searchers would like to know about conferences related to their research area for 
submitting papers.  

Previous approaches used for conference mining problem can be categorized into 
two major frameworks 1) graph connectivity based approaches as a basis for repre-
sentation and analysis of relationships between conferences [24,25] on the basis of co-
authorship and publishing in the same venue and 2) topic modeling based approaches 
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which make use of latent topic layer between words and documents to capture the 
semantic correlations between them. Recently one of the topic modeling approaches 
argued that conferences and authors are interdependent and should be modeled  
together [20]. Consequently, a unified topic modeling approach Author-Conference-
Topic1 (ACT1) was proposed, which can discover topically related authors and  
conferences on the basis of semantics-based structure of the words by considering 
conferences information. Above mentioned frameworks based on graph connectivity 
ignored the semantics-based information. While, recent topic modeling approach 
viewed conferences information just as a stamp (token), which became the reason of 
ignoring implicit semantics-based text structure present between the conferences. We 
think this information is very useful and important for mining conferences. 

In this paper, we will consider semantics-based text structure present between the 
conferences explicitly. We generalized previous topic modeling approach [20] idea of 
mining conferences from a single document “Constituent-Document” (poorer seman-
tics because of only some semantically related words are present in one document) to 
all publications of conference “Super-Document” (richer semantics because of many 
semantically related words are present in all documents of one conference). It can 
provide grouping of conferences in different groups on the basis of latent topics (se-
mantically related probabilistic cluster of words) present between the conferences. We 
propose a Latent Dirichlet Allocation (LDA) [4] based ConMin approach which can 
discover topically related conferences. We used discovered topics to find associations 
between conferences by using sKL divergence and shown temporal topic trends of 
conferences. We empirically showed that ConMin approach clearly achieve better 
results than ACT1 approach for conference mining and solution provided by us pro-
duced quite intuitive and functional results.   

The novelty of work described in this paper lies in the; formalization of the key 
conference mining issues, proposal of generalized topic modeling (ConMin) approach 
to deal with the issues by capturing richer semantics, and experimental verification of 
the effectiveness of our approach on real-world dataset. To the best of our knowledge, 
we are the first to deal with the aforementioned conference related discovery issues 
directly (not through authors generated topics like ACT1) by proposing a generalized 
topic modeling approach from DL to CL. 

The rest of the paper is organized as follows. In Section 2, we formalize the key 
conference related mining issues. Section 3 illustrates our proposed approach for 
modeling conferences with its parameter estimation details. In Section 4, dataset, pa-
rameters settings, performance measures, baseline approach with empirical studies 
and discussions about the results are given; applications of proposed approach are 
provided at the end of this section. Section 5 provides related work and section 6 
brings this paper to the conclusions and future work. 

Note that in the rest of the paper, we use the term constituent-document, accepted 
paper, and document interchangeably. Additionally “super-document” means all the 
documents of one conference. 

2   Problem Setting 

Our work is focused on mining conferences through their accepted papers. Each con-
ference accepts many papers every year. To our interest, each publication contains  
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Fig. 1. Conferences related discovery issues 

title which covers most of the highly related sub research areas. Conferences with 
their accepted papers on the basis of latent topics can be mined. Figure 1 provides a 
pictorial look of conference related mining issues discussed here. 

We denote a conference (Super-Document) c as a vector of Nc words based on all 
accepted papers (Constituent-Documents) by the conference and formalize conference 
mining problem as three subtasks. Intuition behind considering conference as super-
document is based on thinking that semantics at super-document level are richer as 
compared to semantics at a single document (Constituent-Document). 

1) Discovery and Ranking of Conferences related to Topics: Given a conference c 
with Nc words, find the latent topics Z of conference. Formally for a conference, 
we need to calculate the probability p(z|c), where z is a latent topic and c is a con-
ference.   
Predict Z topics for a conference: Given a new conference c (not contained previ-
ously in the corpus) with Wc words, predict the topics contained in the confer-
ence.    

2) Discovery of Conferences Correlations: Given two conferences c1 and c2 with Nc1 
and Nc2 words respectively, find the correlations between conferences. 

3) Discovery of Conferences Temporal Topic Trends: Given a conference c with Nc 
words for every year, access the temporal topic likeliness of a conference. 

3   Conference Modeling 

In this section, before describing our ConMin approach, we will first describe how 
documents are modeled with topics using topic model LDA, followed by modeling of 
conferences with authors’ topics (ACT1 approach). 

3.1   Modeling Documents with Topics (LDA) 

Fundamental topic modeling assumes that there is a hidden topic layer Z = {z1, z2, z3, 
…, zi} between the word tokens and the documents, where zi denotes a latent topic and 
each document d is a vector of Nd words wd. A collection of D documents is defined 
by D = {w1, w2, w3, …, wd} and each word wid is chosen from a vocabulary of size V.  
LDA [4] is a state-of-the-art topic modeling approach which makes use of latent topic 
layer to capture semantic dependencies between the words. First, for each document 
d, a multinomial distribution θd over topics is randomly sampled from a Dirichlet dis-
tribution with parameter α. Second, for each word w, a topic z is chosen from this 



 Conference Mining via Generalized Topic Modeling 247 

topic distribution. Finally, the word w is generated by randomly sampling from a 
topic-specific multinomial distribution Φz. The generating probability of word w from 
document D for LDA is given as: 

  
 

(1) 

3.2   Modeling Conferences with Authors Topics (ACT1 (DL) Approach) 

Recently, LDA is extended to discover topically related conferences indirectly by 
using topics of documents generated by authors [20]. In ACT1 model, each author is 
represented by the probability distribution θd over topics and each topic is represented 
as a probability distribution Φz over words and z over conferences for each word of a 
document for that topic. The generative probability of the word w with conference c 
for author r of a document d is given as: 

   (2) 

3.3   Modeling Conferences with Topics (ConMin (CL) Approach) 

The basic idea of topic modeling that words and documents can be modeled by con-
sidering latent topics became the intuition of modeling the words and conferences 
directly through latent topics. We generalize this idea from DL [4] to CL by consider-
ing documents as sub-entities of a conference. In our approach a conference is viewed 
as a composition of the words of its all accepted publications. Symbolically, for a 
conference c we can write it as: C = {d1 + d2 + d3 + … + di}, where di is one docu-
ment in a conference. 

 

Fig. 2. Conference modeling a) ACT1 (DL) and b) ConMin (CL) approaches 

DL approach is responsible for generating latent topics of documents, while CL 
approach is responsible for generating latent topics of conferences. For each confer-
ence c, a multinomial distribution θc over topics is randomly sampled from a Dirichlet 
with parameter α, and then for each word w contained in super-document, a topic z is 
chosen from this topic distribution. Finally, the word w is generated by randomly 
sampling from a topic-specific multinomial distribution Φz with parameter β. 

The generative process is as follows: 

1. For each conference c = 1,…, C 
Choose θc from Dirichlet (α) 
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2. For each topic z = 1,…, T  
Choose Φz from Dirichlet (β) 

3. For each word w = 1,…, Nc of conference c 
Choose a topic z from multinomial (θc)  
Choose a word w from multinomial (Φz)  

Figure 3 shows the generating probability of the word w from the conference c is 
given as: 

  

 

(3) 
 

 

Fig. 3. ConMin approach (generalized smoothed LDA) 

We utilize Gibbs sampling [1] for parameter estimation in our approach which has 
one latent variable z and the conditional posterior distribution for z is given by:  

  

 
(4) 

where zi = j represents the assignments of the ith word in a conference to a topic j. z-i 

represents all topic assignments excluding the ith word, and w represents all words in 

the dataset. Furthermore, is the total number of words associated with topic j, 

excluding the current instance, and  is the total number of words from conference 
c assigned to topic j, excluding the current instance. “.” Indicates summing over the 

column where it occurs and   stands for number of all words that are assigned to 
topic z excluding the current instance. 

During parameter estimation, the algorithm only needs to keep track of W x Z 
(words by topic) and Z x C (topic by conference) count matrices. From these count 
matrices, topic-word distribution Φ and conference-topic distribution θ can be calcu-
lated as: 

  

 
(5) 

 

  

 
(6) 

where,  is the probability of word w in topic z and  is the probability of topic z 
for conference c. These values correspond to the predictive distributions over new 
words w and new topics z conditioned on w and z. 
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4   Experiments 

4.1   Dataset 

We downloaded five years publication dataset of conferences from DBLP [8,14] by 
only considering conferences for which data was available for years 2003-2007. In 
total, we extracted 90,124 publications for 261 conferences and combined them into a 
super-document separately for each conference. We then preprocessed corpus by a) 
removing stop-words, punctuations and numbers b) down-casing the obtained words, 
and c) removing words that appear less than three times in the corpus. This led to a 
vocabulary size of V=10,902 and a total of 571,439 words in the corpus. Figure 4 
shows quite smooth yearly data distribution for number of publications in the  
conferences. 
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Fig. 4. Histogram illustrating data distribution 

4.2   Parameter Settings 

One can estimate the optimal values of hyper-parameters α and β (figure 3) by using 
Expectation Maximization (EM) method [11] or Gibbs sampling algorithm [10]. EM 
algorithm is susceptible to local maxima and computationally inefficient [4], conse-
quently Gibbs sampling algorithm is used. For some applications topic models are 
sensitive to the hyper parameters and need to be optimized. For application in this 
paper, we found that our topic model based approach is not sensitive to the hyper pa-
rameters. In our experiments, for 200 topics Z the hyper-parameters α and β were set 
at 50/Z and .01 respectively. The numbers of topics Z were fixed at 200 on the basis 
of human judgment of meaningful topics plus measured perplexity [2] on 20% held 
out test dataset for different number of topics Z from 2 to 300. We ran five independ-
ent Gibbs sampling chains for 1000 iterations each. All experiments were carried out 
on a machine running Windows XP 2006 with AMD Athlon I Dual Core Processor 
(1.90 GHz) and 1 GB memory. The run time per each chain was 1.26 hours. 

4.3   Performance Measures 

Perplexity is usually used to measure the performance of latent-topic based ap-
proaches; however it cannot be a statistically significant measure when they are used 
for information retrieval [Please see [2] for details]. In our experiments, at first we 
used average entropy to measure the quality of discovered topics, which reveals the 
purity of topics. Entropy is a measure of the disorder of system, less intra-topic en-
tropy is usually better. Secondly, we used average Symmetric KL (sKL) divergence 
[19] to measure the quality of topics, in terms of inter-topic distance. sKL divergence 
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is used here to measure the relationship between two topics, more inter-topic sKL 
divergence (distance) is usually better.  

To measure the performance in terms of precision and recall [2] is out of question 
due to unavailability of standard dataset and use of human judgments cannot provide 
appropriate (unbiased) answers for performance evaluation. Consequently, we used a 
simple error rate method to evaluate the performance in terms of conferences ranking. 
We discovered top 9 conferences related to top most conference (e.g. for ConMin 
“XML Databases” topic it is XSym) in each topic by using sKL divergence [please 
see table 1]. We compared these top 9 conferences with topically discovered top 10 
conferences and calculated error rate with respect to their absence or presence in the 
topically ranked conferences list. 

  
 

 
(7) 

  

 
(8) 

4.4    Baseline Approach 

We compared proposed ConMin with ACT1 and used same number of topics for 
comparability. The numbers of Gibbs sampler iterations used for ACT1 are 1000 and 
parameter values same as the values used in [20]. We used the same machine which 
was used for proposed approach; run time per each chain for ACT1 was 3.00 hours 
almost double than proposed approach. It shows that ConMin approach is also better 
in terms of time complexity. 

4.5   Results and Discussions 

The effect of topic sparseness on the model performance is studied both qualitatively 
and quantitatively. Firstly, we provide qualitative comparison between ConMin and 
ACT1 approaches. We discovered and probabilistically ranked conferences related to 
specific area of research on the basis of latent topics. Table 1 illustrates 7 different 
topics out of 200, discovered from the 1000th iteration of a particular Gibbs sampler 
run. The words associated with each topic for ConMin approach are strongly semanti-
cally related (less sparse) than that of ACT1, as they are assigned higher probabilities 
(please see prob. column in table 1). So, they make compact topics in the sense of 
conveying a semantic summary of a specific area of research [Please see figure 5 to 
see quantitative comparison of topic compactness]. Additionally it is observed that 
because of topic sparseness topically related conferences are also sparse (not from the 
specific area of research).  

Consequently the conferences associated with each topic for ConMin are also more 
precise than ACT1, as they are assigned high probabilities (please see prob. Column 
in table 1). Only higher probabilities assigned to topic words and conferences is not 
extremely convincing, so we also investigated the bad impact of topic sparseness due 
to lower probabilities on the performance of baseline approach. For example, from 
top ten conferences six conferences related to “XML Databases” topic discovered by 
ACT1 are VLDB, SIGMOD, ICDE, Xsym, ADBIS, WIDM which are related to data-
bases research area and other four ECOOP, SEKE, CAISE and KI are more related to 
software engineering and artificial intelligence research areas. While for ConMin 
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topic “XML Databases” all the conferences are related to only databases research 
area. Similarly for “Data Mining” topic top ten conferences discovered by ConMin 
are more precise then ACT1 as for ACT1 SAC (Cryptography), CCGRID (Cluster 
Computing and Grid), ACM SenSys (Embedded Networked and Sensor Systems), 
ICDCS (Distributed Computing Systems) and ISISC (Information Security and Cryp-
tology) are not actually related to data mining research area, additionally ACT1 is 
unable to find PAKDD, PKDD, DAWAK and DS for “Data Mining” topic among top 
ten conferences but they are well-known conferences in this field. One can see that 
PKDD and PAKDD are discovered by ACT1 for “Web Search” topic, which mis-
matches with the real world data. Similar kind of problem is encountered by ACT1 
for other topically related conferences. It concludes that sparser the topics the discov-
ered conferences will also be sparse which will result in poor performance of the  
approach.  

Here it is obligatory to mention that top 10 conferences associated with a topic are 
not necessarily most well-known conferences in that area, but rather are the confer-
ences that tend to produce most words for that topic in the corpus. However, we see 
that top ranked conferences for different topics are in fact top class conferences of 
that area of research for proposed approach. For example for topic 28 “Bayesian Net-
works” and topic 117 “XML Databases” top ranked conferences are more or less the  
 

Table 1. An illustration of 7 discovered topics (top ConMin approach, bottom ACT1 ap-
proach). Each topic is shown with the top 10 words and conferences. The titles are our interpre-
tation of the topics. 

Topic 117 (ConMin) Topic 164 (ConMin) Topic 63 (ConMin) Topic 138 (ConMin) Topic 190 (ConMin) Topic 28 (ConMin) Topic 0 (ConMin)
“XML Databases” “Semantic Web” “Information Retrieval” “Digital Libraries”  “Data Mining”  "Bayesian Networks"  "Web Search" 

Word Prob. Word Prob. Word Probability Word Prob. Word Prob. Word Prob. Word Prob. 
xml 0.121514 semantic 0.125522 retrieval 0.157699 digital 0.234255 mining 0.147924 Bayesian 0.083057 web 0.328419 
query 0.059027 web 0.12249 information 0.112182 libraries 0.099236 data 0.107059 networks 0.057923 search 0.02874 
databases 0.0547 owl 0.03093 query 0.05448 library 0.09544 clustering 0.056024 inference 0.042624 content 0.024066 
database 0.052969 rdf 0.029718 relevance 0.037277 metadata 0.031998 frequent 0.044513 time 0.028964 semantic 0.024066 
processing 0.050199 ontologies 0.023048 feedback 0.029392 access 0.020611 patterns 0.036455 belief 0.028418 xml 0.019565 
queries 0.045179 annotation 0.01941 search 0.022583 collections 0.01573 time 0.027054 causal 0.024593 language 0.018007 
relational 0.03237 end 0.016378 user 0.020074 collection 0.013019 streams 0.02667 continuous 0.0235 pages 0.017314 
efficient 0.025447 data 0.01274 language 0.017924 image 0.012477 pattern 0.022066 graphical 0.022954 information 0.015929 
management 0.020773 large 0.010921 xml 0.017565 educational 0.012477 high 0.021298 structured 0.021315 user 0.014717 
schema 0.020081 networks 0.010921 term 0.017207 oai 0.011935 privacy 0.017077 graphs 0.019676 collaborative 0.014544 
Conference Prob. Conference Prob. Conference Prob. Conference Prob. Conference Prob. Conference Prob. Conference Prob. 
Xsym 0.413636 ISWC 0.330486 SIGIR 0.242417 JCDL 0.293113 SDM 0.251071 UAI 0.227882 WWW 0.234292 
VLDB 0.199081 ASWC 0.326289 ECIR 0.194643 ECDL 0.27024 KDD 0.213337 AAAI 0.049531 LA-WEB 0.214421 
SIGMOD 0.197517 WWW 0.040461 CIKM 0.086882 ELPBU 0.086239 ICDM 0.198849 NIPS 0.048314 WISE 0.213057 
ICDE 0.192734 WIDM 0.014888 SPIRE 0.053974 MKM 0.04002 PKDD 0.196895 ICML 0.046224 WIDM 0.192592 
IDEAS 0.1875 PODS 0.01374 SEBD 0.037998 DOCENG 0.025634 PAKDD 0.187208 ECML 0.044391 ICWS 0.159733 
ADBIS 0.179348 ICCS 0.010382 ECDL 0.036844 Hypertext 0.017996 DAWAK 0.15004 Cana. AI 0.030308 WI 0.157155 
SEBD 0.17217 ACSAC 0.009259 MMM 0.032828 SBBD 0.012186 DS 0.072158 ICTAI 0.016417 Hypertext 0.114341 
BNCOD 0.165171 CAISE 0.008955 ICWS 0.029954 ECOOP 0.010417 IDEAS 0.066027 SDM 0.016065 ICWL 0.09839 
ADC 0.164414 PSB 0.00837 WAIM 0.027234 SIGCSE 0.008574 ICDE 0.0647 EC 0.014017 ICWE 0.073778 
PODS 0.162534 CADE 0.008267 ELPBU 0.022441 ECIR 0.008135 SSDBM 0.061772 AUSAI 0.012357 ASWC 0.0631 

Topic 117 (ACT1) Topic 164 (ACT1) Topic 63 (ACT1) Topic 138 (ACT1) Topic 190 (ACT1) Topic 28 (ACT1) Topic 0 (ACT1) 
“XML Databases” “Semantic Web” “Information Retrieval” “Digital Libraries” “Data Mining” "Bayesian Networks" "Web Search" 

Word Prob. Word Prob. Word Probability Word Prob. Word Prob. Word Prob. Word Prob. 
data   0.03135 semantic    0.056959 retrieval    0.035258 digital    0.056555 data    0.029013 Bayesian   0.017148 web   0.065414 
xml    0.031176 web    0.05335 information   0.020689 libraries    0.026451 mining    0.021635 learning    0.01287 search    0.017745 
query    0.023387 ontology    0.025683 search    0.018469 library    0.021862 clustering    0.020054 networks    0.011704 based    0.016747 
database    0.01802 based    0.016861 based    0.016387 based    0.012868 patterns    0.008459 models    0.010926 semantic    0.015748 
web    0.013 ontologies    0.012851 web   0.015277 information   0.00938 learning    0.007668 inference    0.006649 services    0.007512 
system    0.012135 owl    0.011247 text   0.01167 metadata    0.008279 based    0.007668 probabilistic   0.00626 data    0.006514 
processing    0.011789 services    0.010846 document   0.011392 evaluation    0.006994 classification  0.007141 based    0.005871 information    0.006514 
based    0.011096 rdf    0.010045 query    0.010976 web   0.00681 preserving    0.006351 markov    0.004705 approach    0.005765 
relational    0.010231 approach    0.008842 relevance    0.009588 collections    0.00681 streams    0.006087 graphical    0.004705 queries    0.005765 
management    0.010231 service    0.008441 evaluation    0.007646 search   0.006627 privacy    0.005824 information   0.004705 query    0.005516 
Conference Prob. Conference Prob. Conference Prob. Conference Prob. Conference Prob. Conference Prob. Conference Prob. 
VLDB 0.450054 ASWC 0.496074 SIGIR 0.651289 JCDL 0.609793 SDM 0.695489 UAI 0.978935 WWW 0.986798 
SIGMOD 0.378506 ISWC 0.49582 ECIR 0.249118 ECDL 0.379536 ICDM 0.185296 NIPS 0.001382 CIKM 0.001388 
ICDE 0.150949 ICWS 0.000534 CIKM 0.080613 WISE 0.00207 KDD 0.102877 ISAAC 0.000724 ECIR 0.000711 
Xsym 0.014415 KI 0.00028 SPIRE 0.014316 SBBD 0.00116 VLDB 0.002225 AUSAI 0.000724 PKDD 0.000711 
ECOOP 0.000233 IEAAIE 0.00028 DAWAK 0.000179 SODA 0.000705 ICDE 0.00186 PODS 0.000724 SPIRE 0.000711 
SEKE 0.000233 INFOCOM 0.00028 PKDD 0.000179 DOCENG 0.00025 SAC 0.000766 SIGIR 0.000724 TCVG 0.000372 
WIDM 0.000233 LA-WEB 0.00028 WISE 0.000179 CASES 0.00025 CCGRID 0.000766 AINA 0.000066 TAB. AUX 0.000372 
CAISE 0.000021 ADBIS 0.000025 KI 0.000016 ACL 0.00025 SenSys 0.000401 CAISE 0.000066 PAKDD 0.000372 
KI 0.000021 AGILE 0.000025 ADBIS 0.000016 ECOOP 0.00025 ICDCS 0.000401 KI 0.000066 KI 0.000034 
ADBIS 0.000021 XP 0.000025 AGILE 0.000016 CAISE 0.000023 ISISC 0.000401 ADBIS 0.000066 ADBIS 0.000034  
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best conferences of artificial intelligence and databases fields, respectively. Both top-
ics also show deep influence of Bayesian networks on artificial intelligence and move 
from simple databases to XML database, respectively. We think, characteristically in 
top class conferences submitted papers are very carefully judged for the relevance to 
the conference research areas which results in producing more semantically related 
words; this is why top class conferences are ranked higher.  

Proposed approach discovers several other topics related to data mining such as 
neural networks, multi-agent systems and pattern matching, also other topics that span 
the full range of areas encompassed in the dataset. A fraction of non-research topics, 
perhaps 10-15%, are also discovered that are not directly related to a specific area of 
research, as the words present in those topics were actually used as a glue between 
scientific terms. In addition to qualitative comparison between ConMin and ACT1, 
we also provide quantitative comparison to explain the effect of topics sparseness on 
the performance of approach. Figure 5 (a) shows the average entropy of topic-word 
distribution for all topics measured by using equation 7. Lower entropy curve of pro-
posed approach for different number of topics Z = 50, 100, 150, 200, 250, 300 shows 
its effectiveness for obtaining less sparse topics which resulted in its better ranking 
performance shown in table 1. Figure 5 (b) shows the average distance of topic-word 
distribution between all pairs of the topics measured by using equation 8. Higher sKL 
divergence curve for different number of topics Z = 50, 100, 150, 200, 250, 300 con-
firms the effectiveness of the proposed approach for obtaining compact topics as 
compared to baseline approach. 

From the curves in figure 5 (a) and figure 5 (b) it is clear that ConMin approach 
outperformed ACT1 approach for different number of topics. The performance differ-
ence for different number of topics is pretty much even, which corroborate that pro-
posed approach dominance is not sensitive to the number of topics. 
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Fig. 5. a) Average Entropy curve as a function of different number of topics, lower is better and 
b) Average sKL divergence curve as a function of different number of topics, higher is better 

Now we provide comparison in terms of error rate. Table 2 shows top 9 confer-
ences discovered related to the first conference of each topic for ConMin and ACT1 
approaches by using sKL divergence. For example, in case of “XML Databases” topic 
ADC, ADBIS, IDEAS, BNCOD, VLDB, SIGMOD, PODS, DASFAA and DEXA are 
top 9 conferences correlated with “Xsym” for ConMin approach. 

The highlighted blocks in table 2 shows that similar results are found for discov-
ered topics in table 1 and sKL divergence calculated for top most conference. For 
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example, in case of ConMin approach top 10 conferences shown in table 1 for “XML 
Databases” topic has 7 conferences in common, which are ADC, ADBIS, IDEAS, 
BNCOD, VLDB, SIGMOD and PODS. From top 9 related conferences for seven se-
lected topics (same is the case with non selected topics) shown in the table 2 the error 
rate (ER) for ConMin is less than ACT1, except digital libraries topic and ConMin 
approach has 30.16 % less average error rate than ACT1. It shows the bad effect of 
topics sparseness on conferences ranking performance of ACT1, and its inability to 
discover better results in comparison with proposed approach.  

Table 2. An illustration of 7 topics sparseness effect on ranking in terms of error rate (ER). 
Here acronyms are XML Databases (XMLDB), Semantic Web (SeW), Information Retrieval 
(IR), Digital Libraries (DiL), Data Mining (DM), Bayesian Networks (BN) and Web Search 
(WS). 

ConMin Approach ACT1 Approach 
XMLDB SeW IR DiL DM BN WS XMLDB SeW IR DiL DM BN WS 

ADC ASWC ECIR ECDL ICDM ICML  WI SIGMOD ISWC ECIR ECDL KDD EC Hypertext 
ADBIS ER CIKM ELPBU PAKDD ECML LA-WEB ICDE LA-WEB CIKM WISE ICDM ICML SPIRE 
IDEAS LA-WEB NLDB Hypertext KDD NIPS WISE Xsym KI SPIRE SBBD SEDB ALT LISA 

BNCOD ISTA ACL WWW PAKDD AAAI ICWS ADA ADA WISE ISI ICDE PODS MATES 
VLDB WI ICWS ICWL DS ALT CIKM Ada-Eu Xsym MKM ECOOP VLDB ADA SGP 

SIGMOD SEBD WWW SIGIR ECML COLT WAIM ISTA PPDP DOCENG DOCENG ISISC COLT ICSOC 
PODS WWW WISE DOCENG DAWAK Cana. AI WIDM SDM FSTCS TableAUX SODA ADA ISAAC SIGIR 

DASFAA CAISE KDD ECIR IDEAL SDM Hypertext ICFP ECOOP ISSAC CASES SAC Xsym ICWS 
DEXA WIDM MMM LA-WEB ICML ICTAI JCDL APLAS ICWS RCLP/LPAR ADA SAM PPDP FC 

ER=22.22 ER=55.55 ER=55.55 ER=44.44  ER=33.33 ER=22.22 ER=33.33 ER=66.66 ER=66.66 ER=55.55 ER=33.33 ER=33.33 ER=77.77 ER=88.88 
Average Error Rate =  30.15 Average Error Rate = 60.31  

4.6   Applications of Proposed Approach 

4.6.1   Topics for New Conferences  
One would like to quickly access the topics for new conferences which are not 
contained in the training dataset by offline trained model. Provided parameter 
estimation Gibbs sampling algorithm requires significant processing time for large 
number of conferences. It is computationally inefficient to rerun the Gibbs sampling 
algorithm for every new conference added to the dataset. For this purpose we apply 
equation 4 only on the word tokens in the new conference each time temporarily 
updating the count matrices of (word by topic) and (topic by conference). The 
resulting assignments of words to topics can be saved after a few iterations (20 in our 
simulations which took only 2 seconds for one new conference). Table 3 shows this 
type of inference. To show predictive power of our approach we treated two 
conferences as test conferences one at a time, by training model on remaining 260 
conferences to discover latent topics. Discovered topics are then used to predict the 
topics for words of the test conference. 

Predicted words associated with each topic are quite intuitive, as they provide a 
summary of a specific area of research and are true representatives of conferences. For 
example, KDD conference is one of the best conferences in the area of Data Mining. 
Top five predicted topics for this conference are very intuitive, as “Data Mining”, 
“Classification and Clustering”, “Adaptive Event Detection”, “Data Streams” and 
“Time Series Analysis” all are prominent sub-research areas in the field of data mining 
and knowledge discovery. Topics predicted for SIGIR conference are also intuitive and 
precise, as they match well with conference sub-research areas. Comparatively ACT1 
(DL) approach is unable to directly predict topics for new conferences.   
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Table 3. An illustration of top five predicted topics for SIGIR and KDD conferences; each 
topic is shown with its probability, title (our interpretation of the topics) and top 10 words 

SIGIR 
Topic Words Title Probability 

retrieval, search, similarity, query, based, clustering, classification, relevance, document, evaluation Information Retrieval .2001 
information, based, text, document, approach, documents, web,  user, content, structured Web based Information .1340 

language, text, extraction, semantic, disambiguation, question, word, answering, relations, natural Intelligent Question Answering .0671 
web, search, collaborative, xml, user,  pages, information, mining, content, sites Web Search .0415 

models, probabilistic, random, structure, graph, exploiting, conditional, hidden, probability, markov Probabilistic Models .0361
KDD 

Topic Words Title Probability 
mining, clustering, data, patterns, discovery, frequent, association, rules, algorithm, rule Data Mining .1819 

classification, data, feature, selection,  clustering, support, vector, machine, machines, Bayesian Classification and Clustering .0809 
based, approach, model, multi, algorithm, method, efficient, analysis, detection, adaptive Adaptive Event Detection .0652 

data, streams, stream, similarity, semantic, queries, incremental, adaptive, distributed, trees Data Streams .0618 
time, high, large, efficient, dimensional, series, method, scalable, correlation, clusters Time Series Analysis .0584  

 

In addition to the quantitative and qualitative evaluation of topically related con-
ferences, we also quantitatively illustrate the predictive power of proposed approach 
in predicting words for the new conferences. For this purpose, perplexity is derived 
for conferences by averaging results for each conference over five Gibbs samplers. 
The perplexity for a test set of words Wc, for conference c of test data Ctest is defined 
as: 

  

 
(9) 

Figure 6 shows the average perplexity for different number of topics for AAAI, 
SIGIR, KDD and VLDB conferences, which fairly indicate the stable predictive 
power of proposed approach after 50 topics for all conferences. 

4.6.2   Conference Correlations  
ConMin and ACT1 both approaches can be used for automatic correlation discovery 
[19] between conferences, which can be utilized to conduct joint conferences in the 
future. To illustrate how it can be used in this respect, distance between conferences i 
and j is calculated by using equation 8 for topics distribution conditioned on each of 
the conferences distribution.  

We calculated the dissimilarity between the conferences by using equation 8, 
smaller dissimilarity values means higher correlation between the conferences. For 
similar pairs less dissimilarity value and for dissimilar pairs higher dissimilarity value 
indicate better performance of our approach. 

Table 4 shows correlation between 8 pairs of conferences, with every two pairs in 
order from top to down have at least one conference in common making four (A, B, C, 
D) common pairs. Common conference pairs show the effectiveness of our approach in 
discovering more precise conferences correlations. For example, common pair A has 
ASWC (Asian Semantic Web Conference) conference common in pairs (1, 2). Dis-
similarity value between pair 1 (pretty much related conferences Asian Semantic Web 
Conference and International Semantic Web Conference) is smaller for ConMin .176 
than that of ACT1 2.75, and dissimilarity value between pair 2 (related conferences to 
normal extent) is smaller for ConMin 3.16 than that of ACT1 3.61, which shows that 
ConMin can find correlations better. Common pair B has ECIR (European Conference 
on Information Retrieval) common in pairs (3, 4). Dissimilarity value between pair 3 is 
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smaller for ConMin 1.13 than that of ACT1 1.89 because both are IR related confer-
ences, while dissimilarity value between pair 4 is greater for ConMin 4.03 than that of 
ACT1 1.58 because ECIR is top ranked conference for IR topic in table 1 and JCDL 
(Joint Conference on Digital Libraries) is top ranked conference for topic Digital Li-
braries in table 1 for both approaches, which shows that ConMin can better disambigu-
ate which conference is related to which conference and to which extent. On the other 
hand according to ACT1 approach ECIR is more related to JCDL 1.58 than SIGIR 
(Special Interest Group Conference on Information Retrieval) 1.89 which is against the 
real world situation. The results for pairs C and D represent same situation as pair B, 
which proves overall authority of ConMin approach on ACT1 in capturing semantics-
based correlations between conferences. 
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Fig. 6. Measured perplexity for new con-
ferences 

Table 4. sKL divergence for pairs of Conferences 
of ConMin and ACT1 

Common 
Pairs 

Pairs Conferences T=200 
ConMin 

T=200 
ACT1 

ASWC 2.75 1 
ISWC 

.176 
 

2 ASWC 3.16 3.61 

 
 
A 

 WWW   
3 ECIR 1.13 1.89 
 SIGIR   
4 ECIR 4.03 1.58 

 
 
B 

 JCDL   
5 SDM 1.49 2.31 
 KDD   

 
 
C 6 SDM 3.91 1.25 
  UAI   

7 PODs 2.28 3.33 
 VLDB   
8 PODs 7.68 3.16 

    
 
D 

 ISWC    

4.6.3   Conferences Temporal Topic Trends  
In most of the cases, conferences can be dominated by different topics in different 
years, which can provide us with topic drift for different research areas in different 
conferences. We used yearly data from (2003-2007) to analyze these temporal topic 
trends. Using 200 topics Z; for each conference corpus was partitioned by year, and 
for each year all of the words were assigned to their most likely topic using ConMin 
approach. It provided us the probability of topics assigned to each conference for a 
given year. The results provide interesting and useful indicators of temporal topic 
status of conferences. Figure 7 shows the results of plotting topics for SIGIR and 
KDD, where each topic is indicated in the legend with the five most probable words. 
Temporal conference trends can be captured by Topics over Time [22] and Dynamic 
Topic Models [5], but we are not focusing on that here. 

The left plot shows the super dominant continuing topic “Information Retrieval” 
and other four topics having very low and steady likeliness trend for SIGIR confer-
ence. The right plot shows the ongoing dominancy of “Data Mining” topic and steady 
increase in the popularity of topics “Information Retrieval” and “Vector based Learn-
ing” for KDD (Knowledge Discovery in Databases) conference. As a whole, both 
conferences are dominated by one topic over the years, which is also one of the  
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Fig. 7. Temporal topic trends of conferences 
 

judgment criteria of the excellence of the conference and ongoing popularity of that 
topic. Here, it is necessary to mention that the probability for each topic per year of a 
conference only indicates probabilities assigned to topics by our approach, and makes 
no direct assessment of the quality or importance of the particular sub-area of a con-
ference. Nonetheless, despite these caveats, obtained results are quite informative and 
indicate understandable temporal status of research topics in the conferences. Com-
paratively, ACT1 (DL) approach is unable to directly discover temporal topic trends. 

5   Related Work 

Automatic extraction of topics from text is performed by [15,16] to cluster documents 
into groups based on similar semantic contents. Clustering provides a good way to 
group similar documents, but clustering is inherently limited by the fact that each 
document is only associated with one cluster. For this reason soft clustering represen-
tation techniques are mandatory, which can allow documents composed of multiple 
topics to relate to more than one cluster on the basis of latent topics. 

Probabilistic Latent Semantic Indexing (PLSI) [11] was proposed as a probabilistic 
alternative to projection and clustering methods. While PLSI produced impressive 
results on a number of document modeling problems, the number of parameters in the 
model grows linearly with the size of the corpus, which leads to serious problems of 
model over fitting and it was not clear how to assign a probability to a document out-
side the corpus.  

Consequently, a more general probabilistic topic model LDA was proposed [4]. 
LDA assumes that each word in the document is generated by a latent topic and ex-
plicitly models the words distribution of each topic as well as the prior distribution 
over topics in the document. We generalized LDA to model conferences directly in-
stead of indirectly modeling conferences like ACT1 [20] which modeled conferences 
through topics generated by the authors, and obtained more precise results. 

Entities are modeled as graphs and related groups of entities were discovered either 
by network linkage information [17] or by iterative removal of edges between graphs 
[9,18,21]. Collaborative filtering [6,7] is employed to discover related groups of  
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entities. They recommended items to the users on the basis of similarity between us-
ers and items. Content-based filtering [3] can also be used to recommend items on the 
basis of correlations between the content of the items and the users’ preferences. This 
method creates a profile for each item or user to characterize their nature. 

Previously, topics of conferences are extracted on the basis of keyword frequency 
from paper titles for related conferences finding [24] and specific area conferences are 
suggested by using pair-wise random walk algorithm [25], without considering se-
mantic information present in the text. Differently, a topic modeling approach is used 
to discover topically related conferences [20]. Aforementioned approaches were inca-
pable of considering implicit semantic information based text structure present be-
tween conferences. While, in real world co-occurrence of words and conferences; 
instead of co-occurrence of words and documents, can provide more appropriate se-
mantics-based conferences correlations.   

Traditionally, Kernighan-Lin algorithm and spectral bisection method [12,17] used 
the network linkage information between the entities to find the relationships between 
them. Both approaches are useless if there is no network connectivity information. 
Differently, correlations between authors and topics are discovered by using semantic 
information presented in the text [19]. Recently, Eclipse Developers correlations are 
discovered by using KL Divergence [13]. Here, we used sKL Divergence to discover 
semantics-based correlations between conferences. 

Temporal topic trends of computer science were discovered in Citeseer documents 
[16,19] by utilizing clustering and semantics-based text information. Recently, Dy-
namic Topic model and Topics over Time [5,22] are used to find the general topic 
trends in the field of computer science. A Bayesian Network was proposed on the 
basis of authors to understand the research field evolution and trends [23]. Here, we 
used ConMin to discover topic trends specific to conferences without using authors’ 
information, these topics are also representative of general topic trends in computer 
science field.    

6   Conclusions and Future Work 

This study deals with the problem of conference mining through capturing rich se-
mantics-based structure of words present between conferences. We conclude that our 
generalization from DL to CL is significant; as proposed generalized approach’s dis-
covered and probabilistically ranked conferences (can also be applied to journals 
datasets such as HEP or OHSUMED) related to specific knowledge domains are bet-
ter than baseline approach. While, predicted topics for new conferences are practical 
and meaningful. Proposed approach was also proved effective in finding conferences 
correlations when compared with the baseline approach. We demonstrated the effec-
tiveness of proposed approach by applying it for analyzing temporal topic trends, 
which provide useful information. CL (capturing conference-level semantic structure) 
approach can handle the problem of DL (not capturing conference-level semantic 
structure) approach and provides us with dense topics. We studied the effect of gener-
alization on topics denseness and concluded that sparser topics will results in poor 
performance of the approach. Empirical results show better performance of proposed 
approach on the basis of richer semantics as compared to baseline approach. Even 
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though our approach is quite simple, nonetheless it reveals interesting information 
about different conference mining tasks.  

Possible future direction of this work is use of authors’ information in addition to 
already used information for discovering research community. As we think, the re-
search community discovered from CL will be more precise than that of DL due to 
topics denseness. 
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Abstract. Within-network classification, where the goal is to classify

the nodes of a partly labeled network, is a semi-supervised learning prob-

lem that has applications in several important domains like image pro-

cessing, the classification of documents, and the detection of malicious

activities. While most methods for this problem infer the missing labels

collectively based on the hypothesis that linked or nearby nodes are likely

to have the same labels, there are many types of networks for which this

assumption fails, e.g., molecular graphs, trading networks, etc. In this

paper, we present a collective classification method, based on relaxation

labeling, that classifies entities of a network using their local structure.

This method uses a marginalized similarity kernel that compares the lo-

cal structure of two nodes with random walks in the network. Through

experimentation on different datasets, we show our method to be more

accurate than several state-of-the-art approaches for this problem.

Keywords: Network, semi-supervised learning, random walk.

1 Introduction

Networked data is commonly used to model the relations between the entities of
a system, such as hyperlinks connecting web pages, citations relating research
papers, and calls between telephone accounts. In such models, entities are rep-
resented by nodes whose label gives their type, and edges are relations between
these entities. As is it often the case, important information on the nature of
certain entities and links may be missing from the network. The task of recov-
ering the missing types of entities and links (i.e. node and edge labels) based
on the available information, known as within-network classification, is a semi-
supervised learning problem key to several applications like image processing,
classifying document and web pages, classifying protein interaction and gene
expression data, part-of-speech tagging, detecting malicious or fraudulent activ-
ities, and recommending items to consumers.

Classification methods for this problem suffer from two important limitations.
First, many of these methods are based on the principle that nodes that are
close to each other in the network are likely to have the same type, a principle
known as homophily. While evidence suggests that homophily applies to certain
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networks, such as social networks [1], there are many types of networks for which
this principle fails. For instance, in molecules, nearby atoms are no more likely
to have the same type than distant ones. In such networks, the type of a node
is instead dictated by underlying rules which may be learned by considering the
relations of this node with other ones. Also, while other methods classify nodes
based on their neighborhood these methods consider the distribution of labels
in this neighborhood but not its structure. As we will see, the local structure
of a node in the network contains important information that can improve its
classification.

1.1 Contributions

This paper makes two contributions to the problem of within-network classifica-
tion. First, it introduces a novel collective classification framework that combines
the iterative approach of relaxation labeling with the power of similarity kernels.
Unlike existing relational classifiers, which only consider the distribution of labels
in the neighborhood of a node, this framework allows to use complex similarity
measures between nodes. Secondly, while methods based on random walks have
recently been proposed for the within-network classification problem [4,8,20],
such methods evaluate the similarity between nodes using their proximity in the
network. Following the success of structural kernels on the problem of graph
classification [3,7,12], we present a new similarity measure inspired by marginal-
ized graph kernels [10], that evaluates the local structure similarity between two
nodes with random walks. This similarity measure upgrades marginalized kernels
by considering the uncertainty of labels and the degree of nodes in the network.

The rest of this paper is organized as follows. In Section 2, we present an
overview of existing methods for within-network classification. We then describe
our method in Section 3, and evaluate it experimentally on several datasets
in Section 4. Finally, we conclude with a short summary of our approach and
contributions.

2 Related Work

Unlike traditional machine learning approaches, methods for the classification of
networked data must deal with additional challenges that result from the inter-
dependence of node classes. To overcome this problem, it has been recognized
that the type of the nodes should be inferred simultaneously instead of indi-
vidually, a technique known as collective classification [15]. Collective inference
methods for the within-network classification problem can generally be divided
in two groups: exact and approximate inference methods. Exact inference meth-
ods for this problem focus on learning the joint probability distribution of node
labels. Among the best known methods of this group are those using Markov
Random Fields (MRF) [11], where the joint distribution is defined as the product
of potential functions that operate on the cliques of the network. Various exten-
sions to MRFs, that also take into account observed attribute data, have also
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been developed. Among these are Conditional Random Fields [11], Relational
Markov Networks [18] and Markov Logic Networks [6].

Due to the computational complexity of exact inference, approximation
methods, such as the one presented in this paper, are normally used for the
within-network classification problem. Among these is Gibbs sampling [9], which
approximates the joint distribution by generating samples for the unknown la-
bels. The main drawback of this method is its slow convergence, especially for
large networks [2]. Related approaches are Relaxation Labeling (RL) [5] and
Loopy Belief Propagation [19], where a vector containing the label probabilities
of each node of unknown label is maintained. In RL, these vectors are initialized
with apriori probabilities, either given or obtained from the data, and, at each
subsequent iteration, are recomputed using a given relational classifier, until
convergence or a maximum number of iterations is reached. Nodes of unknown
label are then given the label of greatest probability. Unlike RL methods, It-
erative Classification (IC) approaches [13,16] assign, at every iteration, a label
to each node of unknown label, using a given relational classifier. To facilitate
convergence, the amount of classified nodes at each iteration can be gradually
increased during the process. Although our classification approach could also be
used within an IC framework, we have found the updated label probabilities of
RL to have better convergence properties.

2.1 Relational Classifiers

As pointed out in [15], the performance of iterative classification methods, such as
RL and IC, greatly depends on the relational classifier used. A classifier strongly
based on homophily, the Weighted-Vote Relational Neighbor (WVRN) [14], com-
putes the label probability of a node as a weighted sum of the probabilities of
neighbor nodes of having the same label. This simple classifier was found to work
well with a RL method in the classification of documents and web pages.

Another classifier is the Class-Distribution Relational Neighbor (CDRN) [15].
This classifier assigns to each node v of known label a vector whose k-th element
contain the sum, over each neighbor u of v, of the probability of u to have label
k. A reference vector is then obtained for each label k as the average of the
vectors belonging to nodes with known label k, and the probability of a node to
have label k is defined as the similarity (L1, L2, cosine, etc.) between its vector
and the reference vector of label k. While our classification approach is also
based on node similarity, it is more general than CDRN which only considers
the distribution of labels in the neighborhood of a node.

Two other relational classifiers are the Network-Only Bayes (NOB) classifier
[5] and the Network-Only Link-Based (NOLB) [13] classifier. The former, which
was originally used with an RL method to classify documents employs a naive
Bayes approach to compute the label probability of a node, assumed to be inde-
pendent given the labels of its neighbors. Finally, the NOLB classifier learns a
multiclass logistic regression model using the label distribution (raw or normal-
ized counts, or aggregation of these values) in the neighborhood of nodes with
known labels. In [13], this classifier was used within an IC method to classify
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documents. As with CDRN, these methods do not use the local structure of a
node in its classification.

3 A Novel Classification Approach

Our method is composed of two parts: a classification approach based on relax-
ation labeling and a node structure similarity inspired by marginalized kernels.

3.1 Relaxation Labeling Framework

Although the methods presented in this paper could be extended to the multi-
variate case of the within-network classification problem, we will focus on the
univariate case.

We model relational data as a partially labeled graph G = (V, E, W, LV , LE, l)
where V is a set of nodes, E a set of edges between the nodes of V , W ⊂ V is
the set of nodes for which the true labels are known, LV and LE are respectively
the sets of node and edge labels, and l is a function that maps each node and
edge to a label of the corresponding set. We denote by lu the label of a node u
and lu,v the label of an edge (u, v). Denoting U the set of unlabeled nodes of G,
i.e. U = V \W , the problem consists in assigning to each u ∈ U a label in LV

based on the labels of nodes in W .
As with other RL methods, our approach works by iteratively updating the

label probabilities of each unlabeled node using a relational classifier, until con-
vergence. Let Ku be a random variable modeling the label of a node u. Our
relational classifier is based on the assumption that the probability P(Ku = k)
of a node u to have label k is determined by the membership of u to a cer-
tain “node class”, modeled by random variable Cu whose possible values are the
nodes of V . Thus, P(Cu = v) represents the probability of node u to “behave”
in the same way as node v, or more simply, the similarity between u and v.
Following this model, P(Ku = k) can be obtained by marginalizing Cu:

P(Ku = k) =
∑
v∈V

P(Ku = k, Cu = v)

=
∑
v∈V

P(Ku = k|Cu = v) P(Cu = v)

∝
∑
v∈V

P(Kv = k) P(Cu = v).

Using the shorthand notation πv,k = P(Kv = k) and letting σu,v ∝ P(Cu = v)
denote the similarity between u and v, this expression becomes

πu,k =
1
Z

∑
v∈V

πv,k σu,v,

where Z is a normalization constant. Assuming the label probabilities are all
binary, i.e. πv,k = δ (lv = k), and letting Vk ⊆ V be the nodes that have label k,
the model simplifies to
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πu,k =
1
Z

∑
v∈Vk

σu,v.

This expression underlines an important drawback, where the probability of a
label k is proportional the number of nodes that have k as label. In cases where
there is an important bias in the distribution of labels, such as those reported
in the experimental section, this causes all the unlabeled nodes to get the most
frequent label. To alleviate this problem, we use a different formulation where

πu,k =
1
Z
·

∑
v∈V

πv,k σu,v∑
v∈V

πv,k
.

If we consider, once again, the label probabilities as binary, this expression be-
comes

πu,k =
1
Z
· 1
|Vk|

∑
v∈Vk

σu,v,

i.e., πu,k is proportional to the average similarity with nodes of label k.
Finally, this model is augmented with two parameters α ≥ 0 and β ≥ 0

which respectively encode the importance given to label uncertainty and node
similarity:

πu,k =
1
Z
·

∑
v∈V

πα
v,k σβ

u,v∑
v∈V

πα
v,k

. (1)

Our classification approach can be summarized with the following iterative pro-
cess. First, we initialize the label probability of unlabeled nodes using apriori
probabilities, either known or approximated from the labeled nodes. Then, at
each iteration, we use (1) to update the label probabilities πu,k of each unlabeled
node u ∈ U and label k ∈ LV , using the values of the previous iteration. These
values are then normalized to make sure that they constitute a probability dis-
tribution. This process is repeated until the label probabilities converge, i.e. the
average change is inferior to a given threshold ε > 0, or we reach a given number
of iteration Tmax. Finally, we assign to each unlabeled node u ∈ U the label k of
highest probability πu,k.

Note that this approach can also be used to classify the unlabeled edges of a
graph G. The idea is to transform G by replacing each edge (u, v) ∈ E by a new
node uv and two new edges, (u, uv) and (uv, v). The graph obtained in this way
has |V |+ |E| nodes with labels from a set of |LV |+ |LE | nodes labels, and 2|E|
edges with the same label.

3.2 Random Walk Structure Similarity

Our approach to evaluate the local structure similarity of two nodes is based
on marginalized graph kernels [10], which compute similarities as the proba-
bility of generating the same sequence of labels in two parallel random walks.
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While a more general approach using product graphs has been proposed to com-
pute the structural similarity between graphs [7], the probabilistic framework
of marginalized kernels is better suited to cope with the label uncertainties of
our RL method. We should also mention that other types of kernels have been
proposed to measure the similarity between nodes, such as exponential, diffu-
sion and regularization kernels [17], and kernels based on random walks [4,8,20].
However, these kernels are mostly based on the proximity of the nodes in the
graph, not their structural similarity.

Our similarity measure differs from marginalized kernels in two respect. First,
it evaluates the similarity between two nodes of a same graph, instead of between
two different graphs. Accordingly, the similarity between two nodes u and u′ is
defined as the probability of generating the same sequence with random walks
starting at u and u′. Secondly, the labels of some nodes are only known as a
probability. To cope with this problem, we make the label generation stochastic
such that label k is generated at node v with probability πv,k.

Since we do not demonstrate the semi-definite positiveness of our proposed
kernels and because our classification framework is meant to be very flexible, the
term kernel should be considered as a general similarity measure throughout the
rest of the paper.

3.3 Derivation of the Similarity Kernel

Denote by Pt(v|u) the probability that the walk jumps from a node u to an ad-
jacent node v and Pe(v) the probability that the walk stops at node v, satisfying
the constraint that

Pe(u) +
∑
v∈V

Pt(v|u) = 1. (2)

Following these definitions, the probability of visiting a sequence of nodes v =
(v0, . . . ,vn) in a random walk starting at node v0 is

P(v) =

(
n∏

i=1
Pt(vi|vi−1)

)
Pe(vi).

Let Pl(k|v) and Pl(k|u, v) denote, respectively, the probability of generating
label k ∈ LV at node v and the probability of generating label k′ ∈ LE while
traversing edge (u, v). Given node sequence v, the conditional probabilities of
generating the sequences of node labels s and edge labels q are

P(s|v) =
n∏

i=1
Pl(si|vi)

P(q|v) =
n∏

i=1
Pl(qi|vi−1,vi)

Let W(n)
u be the set of possible sequences of n + 1 nodes visited in a random

walk starting at node u. The marginalized probability of a sequence s, given a
start node u = v0, is obtained by summing over all sequences of W(n)

u :
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P(s,q|u) =
∞∑

n=1

∑
v∈W(n)

u

P(s|v)P(q|v)P(v)

=
∞∑

n=1

∑
v

(
n∏

i=1
Pt(vi|vi−1)Pl(si|vi)Pl(qi|vi−1,vi)

)
Pe(vi).

Denote by S(n) and Q(n) the set containing, respectively, all sequences of n node
labels and edge labels, the probability of generating the same sequence in two
parallel random walks starting at nodes u and u′ is given by

σu,u′ =
∞∑

n=1

∑
s∈S(n)

∑
q∈Q(n)

P(s, q|u)P(s,q|u′
)

=
∞∑

n=1

∑
s,q

∑
v∈W(n)

u

∑
v′∈W(n)

u′

(
n∏

i=1

Pt(vi|vi−1)Pt(v
′
i|v′

i−1)Pl(si|vi)Pl(si|v′
i)

Pl(qi|vi−1,vi)Pl(qi|v′
i−1, v

′
i)

)
Pe(vn)Pe(v

′
n)

=
∞∑

n=1

∑
s,q

∑
v,v′

(
n∏

i=1

a(vi−1,v
′
i−1,vi,v

′
i, si,qi)

)
Pe(vn)Pe(v

′
n),

where
a(vi−1,v′

i−1,vi,v
′
i, si, qi)=Pt(vi|vi−1)Pt(v

′
i|v′

i−1)Pl(si|vi)Pl(si|v′
i)Pl(qi|vi−1, vi)Pl(qi|v′

i−1, v′
i).

The computation of σu,u′ can be greatly simplified using the following recur-
rence: the probability of generating the same sequence of n labels two parallel
random walks starting at nodes u and u′, written r

(n)
u,u′ , can be obtained from the

probability of visiting nodes v and v′, respectively from u and u′, and the prob-
ability of generating the same sequences of n− 1 node and edge labels, starting
at nodes v and v′. This recurrence can be written as

r
(n)

u,u′ =

⎧⎪⎪⎨⎪⎪⎩
∑

v,v′∈V

∑
k∈LV

∑
k′∈LE

a(u, u′, v, v′, k, k′
) r

(n−1)

v,v′ , n ≥ 1

Pe(u) Pe(u
′) , n = 0

The probability of generating the same sequences of at most N labels starting
from nodes u and u′, written R

(N)
u,u′ , is then

R
(N)
u,u′ =

N∑
n=1

r
(n)
u,u′

=
N∑

n=1

∑
v,v′∈V

∑
k∈LV

∑
k′∈LE

a(u, u′, v, v′, k, k′
) r

(n−1)
v,v′

=
∑
v,v′

∑
k,k′

a(u, u′, v, v′, k, k′
)

N∑
n=1

r
(n−1)
v,v′

=
∑
v,v′

∑
k,k′

a(u, u′, v, v′, k, k′
)

(
Pe(v)Pe(v

′
) + R

(N−1)
v,v′

)
,

where R
(0)
u,u′ = 0 for all u, u′. We then have σu,u′ = limN→∞ R

(N)
u,u′ .
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Denote by Nu the neighbors of node u and let du = |Nu| be the degree of u.
Setting the termination probabilities of u to a constant Pe(u) = γ, and letting
the transition probabilities be uniform over the neighbors of u, following the
constraint of (2), we have Pt(v|u) = (1 − γ)/du if v ∈ Nu and 0 otherwise.
Furthermore, using Pl(k|v) = πv,k and Pl(k′|u, v) = δ (lu,v = k′) as node and
edge label probabilities, the formulation of the kernel becomes

R
(N)
u,u′ =

(1 − γ)2

dudu′

∑
v∈Nu

∑
v′∈Nu′

∑
k∈LV

δ (lu,v = lu′,v′) πv,kπv′,k

(
γ2

+ R
(N−1)
v,v′

)
. (3)

Other than being computed between pairs of nodes instead of graphs, this expres-
sion differs from the one of [10] by the fact that the label probabilities are also
marginalized. To compute the kernel, we use a bottom-up iterative approach,
where we use (3) to compute the probabilities R(N) based on R(N−1). We repeat
this process for increasing values of N , until the similarity values converge, i.e.
the average change is smaller than a given ε, or N reaches a given limit Nmax.

3.4 Exploiting Node Degrees

A problem with the kernel definition of (3) is that it does not consider the
difference between the degrees of two nodes u and v, while evaluating their
similarity. To illustrate this, suppose we limit the walk length in (3) to Nmax = 1,
i.e. we consider only the direct neighbors of u and v. Moreover, suppose that the
label of every node is known, i.e. πu,k = δ (lu = k). Under these constraints, the
similarity kernel becomes

σu,v =
(1− γ)2γ2

dudv

∑
k∈LV

nu,k nv,k,

where nu,k ≤ du denotes the number of neighbors of u that have label k. Thus,
this simplified kernel simply compares ratios of neighbors having each label k,
similar to what is done in the CDRN classifier. Using this formulation, the
similarity between the nodes u and v of Figure 1 (a)-(b) is equal to the self-
similarity of these nodes: σu,u = σv,v = σu,v = 1

2 (1− γ)2γ2.

(a) (b) (c)

Fig. 1. (a)-(b) The neighborhood of two nodes u, v and (c) the transformed neighbor-

hood of v
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In order to consider the difference in the degrees, we modify the kernel for-
mulation as

R
(N)
u,u′ =

(1 − γ)2

max{du, du′}2

∑
v∈Nu

∑
v′∈N′

u

∑
k∈LV

δ (lu,v = lu′,v′) πv,kπv′,k

(
γ2

+ R
(N−1)
v,v′

)
(4)

This modification to the kernel can be interpreted in the parallel random walks
framework as follows. If the degree of the node visited by a walk is less than
the degree of the node visited by the other walk, temporary edges are added
from this node to a dummy node of label ∅ �∈ LV , such that both nodes have
the same degree. With the same probability as the true neighbors, the random
walk can jump to this dummy node, after which the probability of generating
the same sequence becomes null. Figure 1(c) illustrates this idea for nodes u, v
of (a) and (b). Using this new formulation, the similarity values for nodes u and
v, again limiting the walk length to Nmax = 1, are σu,u = σv,v = 1

2 (1− γ)2γ2 ≥
1
4 (1− γ)2γ2 = σu,v.

3.5 Convergence and Complexity

While the convergence of the similarity kernels defined above is shown in Ap-
pendix A, the collective classification method presented in this paper, as most RL
methods, is not guaranteed to converge since the node structure similarities σu,v

vary from one iteration to the next. However, by limiting the number of allowed
iterations to Tmax, we can still obtain a solution in the non-converging case. Fur-
thermore, while the classification process can be expensive in the worst-case, i.e.
O
(
TmaxNmaxd

2
max|LV ||V |2

)
, its complexity is closer to O(|V |2) in practice due

to four reasons: 1) there are much less node labels than nodes, 2) the nodes of
many real-life graphs have a low bounded degree (e.g., molecular graphs), 3) the
relevant structural information of a node is contained within a short distance,
and 4) the RL algorithm normally converges in a few iterations, regardless of
|V |.

4 Experimental Evaluation

In this section, we test our framework on the problem of classifying the unlabeled
nodes of a partly labeled graph.

4.1 Experimental Setting

We tested our classification approach on five datasets. The first three datasets,
which are available online at the IAM Graph Database Repository1, were orig-
inally used for the prediction of mutagenicity, AIDS antiviral activity, and pro-
tein function. The first two model chemical compounds as undirected graphs
where the nodes represent atoms, node labels are the chemical symbols of these

1 http://www.iam.unibe.ch/fki/databases/iam-graph-database

http://www.iam.unibe.ch/fki/databases/iam-graph-database


Within-Network Classification Using Local Structure Similarity 269

Table 1. Properties of the datasets

Property Mutagen. AIDS Protein Cornell Texas

Nb. graphs 4,337 2,000 600 1 1

Avg. nodes 30.3 15.7 32.6 351 338

Avg. edges 30.8 16.2 62.1 1392 986

Node labels 14 38 3 6 6

Edge labels 3 3 5 1 1

Freq. class 44.3% 59.3% 49.4% 41.5% 48.1%

atoms, and edges are covalent bonds between atoms. Edge labels give the va-
lency of these bonds. The third dataset models proteins into undirected graphs
using their secondary structure, such that nodes are secondary structure ele-
ments (SSE) labeled as helix, sheet, or turn. Every node is connected with an
edge to its three nearest neighbors2 in space, and edges are labeled with their
structural type.

Finally, the last two datasets, which were created for the WebKB project,
contain graphs modeling the links between Web pages collected from computer
science departments of the Cornell and Texas Universities. These two datasets,
available online3, have often been used to benchmark within-network classifica-
tion methods, as in [15]. While the link information is sometimes converted into
a co-citation graph, we evaluate our approach directly on the original Web page
link graph. Furthermore, we consider the multiclass classification problem where
pages can have one of six types: student, faculty, staff, department, course and
project. Finally, while they are used in the evaluation of other methods, the edges
weights representing the number of links between two Web pages, are ignored
by our methods.

Table 1 gives some properties of these datasets: the number of graphs, the
average number of nodes and edges of these graphs, their number of node and
edge labels, and the percentage of nodes having the most frequent class label.

As suggested in [15], we compare our approach with the classification meth-
ods implemented in NetKit-SRL4. This toolkit provides a general framework for
within-network classification that allows the user to choose any combination of
collective inference approach, i.e. RL, IC or Gibbs sampling, and relational clas-
sifier, i.e. WVRN, CDRN, NOB or NOLB (using either raw or normalized counts
of neighbors with a given label). For additional information, the reader may refer
to Section 2 or to [15]. Although we have tested every possible combination of
collective classification approach and relational classifier, we have kept, for each
classifier, the approach which worked best. Including the two methods proposed
in this paper, i.e. our RL framework with the similarity kernels of (3) and (4), a
total of 7 methods, described in Table 2, are tested.

2 Note that a node can have more than three neighbors since the relation “nearest-

neighbor” is not symmetric.
3 http://netkit-srl.sourceforge.net/data.html
4 http://netkit-srl.sourceforge.net/.

http://netkit-srl.sourceforge.net/data.html
http://netkit-srl.sourceforge.net/
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Table 2. Tested classification methods

Method Description

RL-WVRN: RL with WVRN

RL-CDRN: RL with CDRN (cosine similarity on normalized counts)

IC-NOB: IC with NOB

IC-NOLB-count: IC with NOLB (raw counts)

IC-NOLB-norm: IC with NOLB (normalized counts)

RL-RW: Our RL with the kernel of (3).

RL-RW-deg: Our RL with the kernel of (4).

The five datasets were used differently in our experiments. For the first three
ones, which contain many small graphs, we randomly sampled six sets of 100
graphs and then merged the graphs of each of these sets into larger test graphs,
considering the small graphs as individual components of the larger ones (1500
to 3500 nodes depending on the dataset). We then randomly selected one of
these test graphs to tune the parameters of the tested methods and used the five
others to evaluate their performance. For each of these five test graphs, 10 runs
were performed, where we randomly selected a subset of nodes from which we
removed the labels. We then computed the F1-score using the precision and recall
obtained for each class, weighted by the number of nodes in these classes, and
averaged this value over the 5× 10 classification runs. For the graphs of the last
two datasets, parameters were tuned using another WebKB dataset modeling
the links between Web pages of the University of Washington. As with the other
datasets, 10 runs were performed on each of these two graphs and the F1-scores
were averaged over these runs.

4.2 Results

Figures 2 gives the F1-scores obtained by the seven tested methods on the five
datasets, for decreasing percentages of labeled nodes. Note that we have used a
different range of labeled nodes for the two WebKB graphs (10% to 80% instead
of 2.5% to 50%), since these graphs have much less nodes than the other ones.

We can see that our structure similarity kernel approach that considers node
degrees, i.e. RL-RW-deg, outperforms the other classification methods for
datasets where the type of a node is well correlated with its local structure
(i.e., Mutagenicity and AIDS datasets), especially when a small portion of nodes
are labeled. Moreover, within the classification methods of Netkit-SRL, the IC
method based on the multiclass regression using the raw counts, i.e. IC-NOLB-
count, provides results comparable with RL-RW-deg when the labels of a suf-
ficient number of nodes are known. However, as the number of labeled nodes
reduces, this method fails to learn a proper regression model and its perfor-
mance drops. Finally, the methods based on homophily, such as RL-WDRN,
perform poorly on this type of data.

Our classification approach considering node degrees also works well on other
types of data, such as the Web page link graphs, where it is comparable to
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(a) (b)

(c) (d)

(e)

Fig. 2. F1-scores obtained for the tested datasets: (a) Mutagenicity, (b) AIDS, (c)

Protein, (d) Cornell and (e) Texas

the best NetKit-SRL method. For the Cornell dataset, however, it appears that
WDRN works the best when a few labels are known. In this case, this method
simply assigns the most frequent label to unlabeled nodes, which gives decent
results due to the biased distribution of labels (see Table 1). As more node
labels are known, the classification relies increasingly on proximity which actually
degrades the performance of this method.

Comparing our two similarity kernels, we observe a variation in the results
obtained for the different types of data. Thus, while RL-RW-deg is significantly
better than RL-RW on the Mutagenicity data, the performance of these two
methods is comparable on the AIDS data. This is due to the fact valency of an
atom, i.e. degree of a node, is a good indicator of the type of this atom, but this
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information is noisy in the AIDS data since bonds to hydrogen atoms have been
omitted. For the Protein and WebKD datasets, however, the degree of a node
provides a weaker signal for classification, and both approaches give comparable
results.

4.3 Influence of Parameters and Runtimes

Although the results presented in this section were obtained on the same datasets
as for the validation, these results were not used to tune our methods.

Figure 3(a) gives the average accuracy of RL-RW-deg on the Mutagenicity
data (using a percentage of labeled nodes of 50%) for different values of parame-
ters α and β, which control the impact of label uncertainty and similarity in our
relational classifier. We notice that the accuracy can sometimes be improved by
increasing the importance of nodes with uncertain labels w.r.t. nodes of known
label, i.e. using α < 1. This could be explained by the fact that using such val-
ues provides a smoother convergence of the method. This could also explain the
poor results of the RL-CDRN method, which corresponds to using α → ∞ in
our framework (assuming the random walk length is limited to 1).

The impact of the random walk termination probability γ on the classification of
the AIDS data (using a percentage of labeled nodes of 50%) is shown in Figure 3(b).
To illustrate how this parameter influences the length of the random walks, we
varied the maximum walk length Nmax of the kernel. When the walk lengths are
the least limited, i.e. Nmax = 6, we notice that the accuracy is reduced when the
termination probability γ increases. We also see that the greatest gain in accuracy
occurs for Nmax = 2, suggesting that most of the structural information of a node,
for this data, is contained within a short distance of this node.

The last analysis focuses on the times required to run our methods on a machine
equipped with two 2.60GHz i686 processors and 1Gb of RAM. Figure 4 gives the
mean runtimes of RL-RW-deg on the Mutagenicity data (using a percentage of
labeled nodes of 50%), for different values of kernel parameter γ. As a reference, we
also give the runtime of RL-CDRN, the slowest Netkit-SRL classification method

RL β
RL α 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.25 87.42 87.48 87.75 88.22 88.42 88.68 89.28

0.50 87.42 87.55 88.02 88.42 88.42 88.82 89.41

0.75 86.95 87.95 88.15 87.88 88.02 88.68 88.88

1.00 86.42 87.82 87.75 87.08 85.82 83.69 81.89

1.25 86.22 86.88 84.82 82.36 77.03 72.44 67.44

1.50 84.75 83.02 76.23 69.04 59.19 44.67 43.81

(a)

Kernel Kernel γ
Nmax 0.1 0.3 0.5 0.7 0.9

1 62.54 62.54 62.54 62.54 62.54

2 66.92 66.92 67.49 65.80 62.76

3 65.69 67.15 66.25 64.45 62.76

4 65.46 67.82 66.02 64.00 62.76

5 67.71 67.82 66.02 64.00 62.76

6 66.92 67.60 66.02 64.00 62.76

(b)

Fig. 3. Impact of the parameters on the classification accuracy: (a) RL parameters α
and β on the Mutagenicity data, and (b) kernel parameters Nmax and γ on the AIDS

data
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Fig. 4. Runtime (in seconds) of our approach on the Mutagenicity data

for this data. While our method is noticeably slower than methods based only on
direct neighbors, such as RL-CDRN, it performed the classification within only 2
minutes for networks with 3,000 nodes, suggesting it could be used for even larger
networks.

5 Conclusion

This paper presented a novel approach for the problem of within-network classifi-
cation. Unlike other methods for this problem, which are based on the principle
that nearby nodes in the network are likely to have the same type, or which
use only the distribution of labels in the neighborhood of a node, this approach
classifies a node based on its local structure similarity with other nodes in the
network. Furthermore, a new method was proposed to evaluate the structural
similarity between nodes in a partly labeled graph. This method, which uses
random walks, extends marginalized graph kernels by considering the label un-
certainty and the degree of nodes in the network. Our classification approach
was tested on real-life data from the several fields, and the experimental results
have shown our method to outperform several state-of-the-art methods when
the type of a node is correlated to its structure, and perform as well as these
methods with other types of data.

Acknowledgements. This work was supported by NSF ACI-0133464, IIS-
0431135, NIH RLM008713A, and by the Digital Technology Center at the
University of Minnesota.
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A Proof of Convergence

Proposition 1. The kernel defined by (3) converges for any 0 < γ ≤ 1.

Proof. Consider the probability of generating the same sequence of n labels in
two random walks starting at u and u′, as defined by the following equation:

r
(n)

u,u′ =
(1 − γ)2

dudu′

∑
v∈Nu

∑
v′∈Nu′

∑
k

δ (lu,v = lu′,v′) πv,k πv′,k r
(n−1)

v,v′ .

Since r
(n)
u,u′ is computed by summing and multiplying non-negative terms, by

induction, it is also non-negative. Furthermore, this value can be bounded from
above as

r
(n)
u,u′ ≤ (1 − γ)2

dudu′

∑
v,v′

r
(n−1)
v,v′

∑
k∈LV

∑
k′∈LV

πv,kπv′,k′

=
(1 − γ)2

dudu′

∑
v,v′

r
(n−1)

v,v′

(∑
k

πv,k

)(∑
k′

πv′,k′

)

=
(1 − γ)2

dudu′

∑
v,v′

r
(n−1)
v,v′ .

Let r
(n−1)
max = max

v,v′∈V
r
(n−1)
v,v′ , we have

r
(n)
u,u′ = (1 − γ)

2 r(n−1)
max

≤ (1 − γ)
2n r(0)

max (by induction)

= (1 − γ)
2n γ2.

Finally, the probability of generating the same sequence of any length between
u and u′ is bounded by

σu,u′ =

∞∑
n=1

r
(n)

u,u′

≤ γ2
∞∑

n=1

(1 − γ)
2n

=
γ2(1 − γ)2

1 − (1 − γ)2
,

where we have used the fact that the series is geometric and (1− γ)2 < 1.

Proposition 2. The kernel defined by (4) converges for any 0 < γ ≤ 1.

Proof. This can be shown using the same approach as with Proposition 1.
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Abstract. We address the problem of joint feature selection in multi-

ple related classification or regression tasks. When doing feature selection

with multiple tasks, usually one can “borrow strength” across these tasks

to get a more sensitive criterion for deciding which features to select. We

propose a novel method, the Multiple Inclusion Criterion (MIC), which

modifies stepwise feature selection to more easily select features that are

helpful across multiple tasks. Our approach allows each feature to be

added to none, some, or all of the tasks. MIC is most beneficial for se-

lecting a small set of predictive features from a large pool of potential

features, as is common in genomic and biological datasets. Experimental

results on such datasets show that MIC usually outperforms other com-

peting multi-task learning methods not only in terms of accuracy but

also by building simpler and more interpretable models.

1 Introduction

We consider the problem of feature selection for a set of related tasks which
are expected to partially share common sets of predictive features. When one is
trying to predict a set of related responses (“tasks”), be they multiple clinical
outcomes for patients or growth rates under different conditions for yeast strains,
it may be possible to “borrow strength” by sharing information between the
models for the different responses.

The problem of building shared models for multiple related tasks is popularly
known as “Multi-Task Learning” or “Transfer Learning” and has been stud-
ied extensively [1,2,3,4,5,6,7]. To give a couple examples: [2] do joint empirical
risk minimization and treat the multi-response problem by introducing a low-
dimensional subspace which is common to all the response variables. [7] construct
a multivariate Gaussian prior with a full covariance matrix for a set of “similar”
supervised learning tasks and then use semidefinite programming (SDP) to com-
bine these estimates and learn a good prior for the current learning task. Some
traditional methods such as neural networks also share parameters between the
different tasks [1]. However, none of the above methods does feature selection.
This limits their applicability in domains such as genomics, where often only
a handful of the thousands of potential features are predictive so that feature
selection is very important.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 276–289, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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There has been some work on feature selection for multi-task learning. [8]
uses maximum-entropy discrimination to select a single subset of features across
multiple SVM regression or classification problems that share a common set of
potential features. Several other papers work within the framework of regularized
regression, taking the penalty term to be an �1 norm over features of an �p norm
over the coefficients for each feature (an “�1 − �p” penalty). [9] consider the
case p = ∞, while [4,10] use p = 2. [4] show that the general subspace selection
problem can be formulated as an optimization problem involving the trace norm.
[10] focus on the case where the trace norm is not required and instead use a
homotopy-based approach to evaluate the entire regularization path efficiently
[11]. The idea behind �1 − �p penalties is that when p > 1, the cost of making
a coefficient nonzero is smaller for features that are shared across more tasks.
Indeed, for either p = 2 or p = ∞, these algorithms tend in practice to yield
nonzero coefficients for all of the tasks associated with features that get selected.

Our approach is different. Unlike the above algorithms, we not only select
features but select tasks for each feature. This amounts to an �0 − �0 penalty
(“two-level” sparsity), with one �0 penalty on features and the other on the as-
sociated tasks.1 Optimization with an exact �0 penalty requires subset selection,
known to be NP-hard [12], but a close solution can be found by stepwise search.
Though approximate, stepwise �0 methods generally yield sparser models than
exact �1 methods [13].

In this paper, we use the information-theoretic Minimum Description Length
(MDL) principle [14] to derive an efficient coding scheme for multitask stepwise
regression that we call the Multiple Inclusion Criterion (MIC). MIC gives im-
proved performance in prediction for multiple related tasks when there are many
candidate features of which only a few are predictive and the predictive features
are shared by different tasks. Because it allows each feature to be considered rel-
evant for only a subset of the tasks, MIC achieves sparser models than methods
which always share features across all tasks.

The rest of the paper is organized as follows. After outlining the notation
used, we describe the MIC coding scheme and its properties in detail. We then
present experimental results on synthetic and real datasets, and conclude.

2 Multiple Inclusion Criterion (MIC) for Feature
Selection

2.1 Notation Used

The symbols used throughout this section are defined in the Table 1. All the
values in the table are given by data except m∗, which is unknown. In particular,
we have an n× h response matrix Y, with a shared n×m feature matrix X.
1 Another case of two-level sparsity could be an �1 − �1 penalty, but as [10] note, this

is equivalent to a single �1 penalty over the entire set of features and fails to share

information across tasks.
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Table 1. Symbols used and their definitions

Symbol Meaning

n Number of observations

m Number of candidate features

m∗ Number of beneficial features

h Total number of tasks

k Number of tasks into which a feature

has been added

j Index of feature

ν Index of observation

2.2 A Brief Overview of MIC

In general, penalized likelihood methods like MIC aim to minimize an objective
function of the form

score = − log(likelihood of Y given X) + F × q, (1)

where q is the current number of features in the model. As [15] notes, various
penalties F have been proposed, including F = 1, corresponding to AIC (Akaike
Information Criterion), F = lnn

2 , corresponding to BIC (Bayesian Information
Criterion), and F = ln m, corresponding to RIC (Risk Inflation Criterion—
similar to a “Bonferroni correction”) [16].

Each of these penalties can be interpreted within the framework of the Mini-
mum Description Length (MDL) principle [14]. MDL envisions a “sender,” who
knows X and Y, and a “receiver,” who knows only X. In order to transmit Y us-
ing as few bits as possible, the sender encodes not the raw Y matrix but instead
a model for Y given X, followed by the residuals of Y about that model. The
length S of this message, in bits, is called the description length and is the sum
of two components. The first is SE , the number of bits for encoding the residual
errors, which according to standard MDL is given by the negative log-likelihood
of the data given the model; note that this is the first term of (1). The second
component, SM , is the number of bits used to describe the model itself and can
be seen as corresponding to the second term of (1). We use the phrase total
description length (TDL) to denote the combined length of the message for all
h tasks.

In the setting of multiple responses,2 we select features for the h tasks simul-
taneously to minimize S. Thus, when we evaluate a feature for addition into the
model, we want to maximize the reduction of TDL ΔSk incurred by adding that
feature to a subset k of the h tasks (1 ≤ k ≤ h):

ΔSk = ΔSk
E −ΔSk

M

2 We interchangeably use the terms “multiple responses” and “multiple tasks,” though

our setting is more specific than that of standard multitask problems in which each

task may have a different feature matrix; we assume all tasks share the same feature

matrix.
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where ΔSk
E > 0 is the reduction in residual-error coding cost due to the data

likelihood increase given the new feature, and ΔSk
M > 0 is the increase in model

cost to encode the new feature.3

As will be seen in Section 2.3, MIC’s model cost includes a component for
coding feature coefficients that resembles the AIC or BIC penalty, plus a com-
ponent for specifying which features are present in the model that resembles the
RIC penalty.

In Section 2.4 we compare three approaches to stepwise regression with mul-
tiple tasks: (1) a feature is added to all tasks or none; (2) features are added
independently to each task (i.e., no transfer); or (3) features can be added to a
subset of tasks but the tasks share strength. We first describe a code for approach
(3) below.

2.3 Coding Schemes for MIC

Code ΔSk
jE. Let E be the residual error matrix:

E = Y − Ŷ,

where Y and Ŷ are the n× h response and prediction matrices, respectively.
ΔSk

jE is the decrease in negative log-likelihood that results from adding fea-
ture j to some subset k of the h tasks. If all the tasks were independent, then
ΔSk

jE would simply be the sum of the changes in negative log-likelihood for each
of the h models separately. However, we may want our model to allow for nonzero
covariance among the tasks. This is particularly true for stepwise regression, be-
cause in the first iterations of a stepwise algorithm, the effects of features not
present in the model show up as part of the “noise” error term, and if two tasks
share a feature not yet in the model, the portion of the error term due to that
feature will be the same.

Thus, letting εν , ν = 1, 2, . . . , n, denote the error for the νth row of E, we
assume εν

i.i.d.∼ N (0, Σ), with Σ an h× h covariance matrix. In other words,

P (εν) =
1√

(2π)h|Σ|
exp

(
−1

2
εT
ν Σ−1εν

)
in which (·)T , (·)−1, and | · | are the matrix transpose, inverse, and determinant,
respectively. Therefore,

SE = − log
n∏

ν=1

P (εν)

=
n

2
log

(
(2π)h|Σ|

)
+

1
2 ln 2

n∑
ν=1

εT
ν Σ−1εν ,

(2)

3 ΔSk
E is always greater than zero, because even a spurious feature will slightly increase

the data likelihood.
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where the 1
ln 2 factor appears because we use logarithm base 2 (here and through-

out the remainder of the paper). Note that the superscript k in ΔSk
jE indicates

that the reduction is incurred by adding a new feature to k tasks, but the cal-
culation ΔSk

jE is over all h tasks; i.e., the whole residual error E is taken into
account.

Code ΔSk
jM . To describe ΔSk

jM when a feature is added, MIC uses a three-part
coding scheme:

ΔSk
jM = �I + �H + �θ̂,

where �I is the number of bits needed to describe which feature is being added,
�H is the cost of specifying the subset (k) of the h task models in which to include
the feature, and �θ̂ is the description length of the k nonzero feature coefficients.
We now consider different coding schemes for �I , �H , and �θ̂.

Code �I. For most data and feature sets, little is known a priori about which
features will be beneficial.4 We therefore assume that if a feature xj is beneficial,
its index j is uniformly distributed over {1, 2, . . . , m}. This implies �I = log m
bits to encode the index, reminiscent of the RIC penalty for equation (1).

RIC often uses no bits to code the coefficients of the features that are added,
based on the assumption that m is so large that the log m term dominates. This
assumption is not valid in the multiple response setting, where the number of
models h could be large. If a feature is added to k of the h tasks, the cost of
encoding the k coefficients may be a major part of the cost. We describe the cost
to code a coefficient below.

Code �θ̂. This term corresponds to the number of bits required to code the
value of the coefficient of each feature. We could use either AIC or the more
conservative BIC to code the coefficients. As explained below, we use 2 bits for
each coefficient, similar to AIC.

Given a model, MDL chooses the values of the coefficients that maximize the
likelihood of the data. [18] proposes approximating θ̂, the Maximum Likelihood
Estimate (MLE), using a grid resolved to the nearest standard error. That is,
instead of specifying θ̂, we imagine encoding a rounded-integer value of θ̂’s z-
score ẑ, where θ̂ = θ̂0 + ẑ SE(θ̂), with θ̂0 being the default, null-hypothesis value
(here, 0) and SE(θ̂) being the standard error of θ̂.

We assume a “universal prior” distribution for ẑ, in which half of the prob-
ability is devoted to the null value θ̂0 and the other half is concentrated near
θ̂0 and decays slowly. In particular, for θ̂ �= θ̂0, the coding cost is 2 + log+ |ẑ|
+ 2 log+ log+ |ẑ| bits, where log+ denotes logarithm base 2 if the argument is
positive, else 0. This prior distribution makes sense in hard problems of feature
selection where beneficial features are just marginally significant. Since ẑ is quite
small in such hard problems, the 2 bits will dominate the other two terms. In
fact, we simply assume �θ̂ = 2.

4 Following [17], we define a “beneficial” feature as one which, if added to the model,

would reduce error on a hypothetical infinite test set.
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Code �H. In order to specify the subset of task models that include a given
feature, we encode two pieces of information: First, how many of the tasks (k)
have the feature? Second, which subset of k tasks are those?

One way to encode k is to use log h bits to specify an integer in {1, 2, . . . , h};
this implicitly corresponds to a uniform prior distribution on k. However, since
we generally expect that smaller values of k are more likely, we instead use
coding lengths inspired by the “idealized universal code for the integers” of [19]
and [18]: The cost to code k is log∗ k + ch, where log∗ k = log+ k + log+ log+ k +
log+ log+ log+ k + . . ., and ch is the constant required to normalize the implied
probability distribution over {1, 2, . . . , h}. c∞ ≈ log 2.865 ≈ 1.516 [18], but for
h ∈ {5, . . . , 1000}, ch ≈ 1.

Given k, there are
(
h
k

)
possible subsets of tasks. Taking the subsets to have

some pre-specified ordering, we can list the index of our desired subset within
that ordering using log

(
h
k

)
bits.

Thus, in total, we have

�H = log∗ k + ch + log
(

h

k

)
.

2.4 Comparison of the Coding Schemes

The preceding discussion outlined a coding scheme for what we might call “Par-
tially Dependent MIC,” or “Partial MIC,” in which models for different tasks
can share some or all features.

As suggested at the end of Section 2.2, we can also consider a “Fully Depen-
dent MIC,” or “Full MIC,” scheme in which each feature is shared across all
or none of the task models. This amounts to a restricted Partial MIC in which
k = 0 or k = h for each feature. The advantage comes in not needing to specify
the subset of tasks used, saving �H bits for each feature in the model; however,
Full MIC may need to code more coefficient values than Partial MIC.

A third coding scheme is simply to specify each task model in isolation from
the others. We call this the “RIC” approach, because each model pays log m
bits for each feature to code its index; this is equivalent, up to the base of the
logarithm, to the F = ln m penalty in equation 1. (However, we include an
additional cost of �θ̂ bits to code a coefficient.) If the sum of the two costs is
sufficiently less than the bits saved by the increase of the data likelihood from
adding the feature to the model, the feature will be added to the model. RIC
assumes that the beneficial features are not significantly shared across tasks.

We compare the relative coding costs under these three coding schemes for
the case where we evaluate a hypothetical feature, xj , that is beneficial for k
tasks and spurious for the remaining h− k tasks. Suppose that Partial MIC and
RIC both add the feature to only the k beneficial tasks, while Full MIC adds it
to all h tasks. We assume that if the feature is added, the three methods save
approximately the same number of bits in encoding residual errors, ΔSk

E . This
would happen if, say, the additional h− k coefficients that Full MIC adds to its
models save a negligible number of residual-coding bits (because those features
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Table 2. Costs in bits for each of the three schemes to code a model with k = 1,

k = h
4
, and k = h nonzero coefficients. m � h � 1, �I = log m, �θ̂ = 2, and for

h ∈ {5, . . . , 1000}, ch ≈ 1. Examples of these values for m = 2,000 and h = 20 appear

in brackets; the smallest of the costs appears in bold.

k Partial MIC Full MIC RIC

1 log m + ch + log h + 2 [18.4] log m + 2h [51.0] log m + 2 [13.0]
h
4

log m + log∗ (h
4

)
+ ch + log

(
h

h/4

)
+ h

2
[39.8] log m + 2h [51.0] h

4
log m + h

2
[64.8]

h log m + log∗ h + ch + 2h [59.7] log m + 2h [51.0] h log m + 2h [259.3]

are spurious) and if the estimate for Σ is sufficiently diagonal that the negative
log-likelihood calculated using (2) for Partial MIC approximately equals the sum
of the negative log-likelihoods that RIC calculates for each response separately.

Table 2 shows that RIC and Partial MIC are the best and the second best
coding schemes when k = 1, and that their difference is on the order of log h.
Full MIC and Partial MIC are the best and the second best coding schemes
when k = h, and their difference is on the order of log∗ h. Partial MIC is best
for k = h

4 .

2.5 Stepwise Search Method

To find a model that minimizes TDL, we use a modified greedy stepwise search
as shown in Algorithm 1. For each feature, we evaluate the change in TDL that
would result from adding that feature to the model with the optimal number of
associated tasks. We add the best feature and then recompute the changes in
TDL for the remaining features. This continues until there are no more features
that would reduce TDL if added. The number of evaluations of features for
possible addition is thus O(mms), where ms is the number of features eventually
added.

To select the optimal number of task models (k) in which to include a given
feature, we again use a stepwise-style search. In this case, we evaluate the re-
duction in TDL that would result from adding the feature to each task, add
the feature to the best task, recompute the reduction in TDL for the remaining
tasks, and continue.5 However, unlike a normal stepwise search, we continue this
process until we have added the feature to all h task models. The reason for this
is two-fold. First, because we want to borrow strength across tasks, we need to
avoid overlooking cases where the correlation of a feature with any single task
is insufficiently strong to warrant addition, yet the correlations with all of the
tasks are. Second, the log

(
h
k

)
term in Partial MIC’s coding cost does not increase

monotonically with k, so even if adding the feature to an intermediate number of
5 A stepwise search that re-evaluates the quality of each task at each iteration is

necessary because, if we take the covariance matrix Σ to be nondiagonal, the values

of the residuals for one task may affect the likelihood of residuals for other tasks. If

we take Σ to be diagonal, as we do in Section 3, then an O(h) search through the

tasks without re-evaluation suffices.
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Algorithm 1. Partial MIC
1: Include the intercept (feature number 1) in all h response models.

2: remaining features = {2, . . . , m}.
3: keep adding features = true.

4: while keep adding features do
5: for j in remaining features do
6: // Find the best subset of response models to which to add feature j.
7: for k = 1 to h do
8: Try including feature j in the best k response models. (We greedily assume

that the best k responses are the union of the best k− 1 responses with the

remaining response that, if included, would most increase likelihood.)

9: Compute ΔSk
jE , the decrease in data residual cost, and ΔSk

jM , the resulting

increase in model-coding cost, relative to not including feature j in any

response models.

10: end for
11: Let kj be the value of k that maximizes ΔSk

jE − ΔSk
jM .

12: ΔSj := ΔS
kj

jE − ΔS
kj

jM .

13: end for
14: Let j∗ be the feature j that maximizes ΔSj , the reduction in TDL for adding

feature j.
15: if ΔSj∗ > 0 then
16: Add feature j∗ to the appropriate kj∗ response models.

17: remaining features = remaining features − {j∗}.
18: else
19: keep adding features = false.

20: end if
21: end while

tasks does not look promising, adding it to all of them might still be worthwhile.
Thus, when evaluating a given feature, we compute the description length of
the model O(h2) times. Since we need to identify the optimal k for each feature
evaluation, the entire algorithm requires O(h2mms) evaluations of TDL.

While not shown explicitly in Algorithm 1, we use two branch-and-bound-style
optimizations to cut this cost significantly in practice:

1. Before searching through subsets of responses to find the optimal subset for
each feature, we make an O(m) sweep through the features to compute an
upper bound on the decrease in TDL that could result from adding that
feature as

(decrease in TDL if the feature is added to all h response models)− log m.
(3)

Here, the first term is an upper bound on the benefit of adding the feature
to the optimal number of response models (since adding a feature can only
make a model fit better), and the second term underestimates the model
cost of adding the feature, regardless of how many response models would
actually be used. We sort the features in decreasing order by this upper
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bound, and when we reach features whose upper bounds are less than the
best actual decrease in TDL observed so far, we terminate the search early.

2. For the stepwise search over responses, we can bound from above the poten-
tial benefit of adding the feature to k response models as

(decrease in TDL if the feature is added to all h response models)

−
(

log∗ k + ck + log
(

h

k

)
+ 2k

)
,

(4)

where the subtracted term represents the coding cost of including the feature
in k response models. We can stop the search early when no higher value of
k has an upper bound that exceeds the best reduction in TDL seen so far
for any feature’s response subset.6

Although we did not attempt to do so, it may be possible to formulate MIC
using a regularization path, or homotopy, algorithm of the sort that have become
popular for performing �1 regularization without the need for cross-validation
(e.g., [20]). If possible, this would be significantly faster than stepwise search.

3 Experimental Results

This section evaluates the MIC approach on three synthetic datasets, each of
which is designed to match the assumptions of, respectively, the Partial MIC,
Full MIC, and RIC coding schemes described in Section 2.4. We also test on two
biological data sets, a Yeast Growth dataset [21], which consists of real-valued
growth measurements of multiple strains of yeast under different drug conditions,
and a Breast Cancer dataset [22], which involves predicting prognosis, ER status,
and three other descriptive variables from gene-expression values for different cell
lines.

We compare the three coding schemes of Section 2.4 against two other mul-
titask algorithms: “AndoZhang” [2] and “BBLasso” [10], as implemented in the
Berkeley Transfer Learning Toolkit [23]. We did not compare MIC with other
methods from the toolkit as they all require the data to have additional struc-
ture, such as meta-features [6,7], or expect the features to be frequency counts,
such as for the Hierarchical Dirichlet Processes algorithm. Also, none of the
neglected methods does feature selection.

For AndoZhang we use 5-fold CV to find the best value of the parameter that
[2] call h (the dimension of the subspace Θ, not to be confused with h as we use
it in this paper). We tried values in the range [1, 100] as is done in [2].

MIC as presented in Section 2.3 is a regression algorithm, but AndoZhang
and BBLasso are both designed for classification. Therefore, we made each of
our responses binary 0/1 values before applying MIC with a regular regression

6 We say “no higher value of k” rather than “the next higher value of k” because (4)

does not decrease monotonically with k, due to the log
(

h
k

)
quantity.
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likelihood term. Once the features were selected, however, we used logistic re-
gression applied to just those features to obtain MIC’s actual model coefficients.7

As noted in Section 2.3, MIC’s negative log-likelihood term can be computed
with an arbitrary h × h covariance matrix Σ among the h tasks. On the data
sets in this paper, we found that estimating all h2 entries of Σ could lead to
overfitting, so we instead took Σ to be diagonal. Informal experiments showed
that estimating Σ as a convex combination of the full and diagonal estimates
could also work well.

3.1 Evaluation on Synthetic Datasets

We created synthetic data according to three separate scenarios—called Partial,
Full, and Independent. For each scenario, we generated a matrix of continuous
responses as

Yn×h = Xn×mwm×h + εn×h

where m = 2,000 features, h = 20 responses, and n = 100 observations. Then,
to produce binary responses, we set to 1 those response values that were greater
than or equal to the average value for their column and set to 0 the rest; this
produced a roughly 50-50 split between 1’s and 0’s because of the normality of
the data. Each nonzero entry of w was i.i.d. N (0, 1), and entry of ε was i.i.d.
N (0, 0.1), with no covariance among the ε entries for different tasks. Each task
had m∗ = 4 beneficial features, i.e., each column of w had 4 nonzero entries.

The scenarios differed according to the distribution of the beneficial features
in w.

– In the Partial scenario, the first feature was shared across all 20 responses,
the second was shared across the first 15 responses, the third across the
first 10 responses, and the fourth across the first 5 responses. Because each
response had four features, those responses (6 − 20) that did not have all
of the first four features had other features randomly distributed among the
remaining features (5, 6, . . . , 2000).

– In the Full scenario, each response shared exactly features 1− 4, with none
of features 5− 2000 being part of the model.

– In the Independent scenario, each response had four random features among
1, . . . , 2000.

For the synthetic data, we report precision and recall to measure the quality
of feature selection. This can be done both at a coefficient level (Was each
nonzero coefficient in w correctly identified as nonzero, and vice versa?) and at an
overall feature level (For features with any nonzero coefficients, did we correctly
identify them as having nonzero coefficients for any of the tasks, and vice versa?).
Note that Full MIC and BBLasso always make entire rows of their estimated
w matrices nonzero and so tend to have larger numbers of nonzero coefficients.
Table 3 shows the performance of each of the methods on five instances of the
7 This contrasts with BBLasso, which in the default Transfer Learning Toolkit imple-

mentation uses the original regression coefficients (mostly zeros).
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Table 3. Test-set accuracy, precision, and recall of MIC and other methods on 5

instances of various synthetic data sets generated as described in Section 3.1. Standard

errors are reported over each task; that is, with 5 data sets and 20 tasks per data set,

the standard errors represent the sample standard deviation of 100 values divided by√
100 (except for feature-level results, which apply only to entire data sets and so are

divided by
√

5). Baseline accuracy, corresponding to guessing the majority category, is

roughly 0.5. Note: AndoZhang’s NA values are due to the fact that it does not explicitly

select features.

Method True Model Partial MIC Full MIC RIC BBLasso AndoZhang

Partial Synthetic Dataset

Test error 0.07 ± 0.00 0.10 ± 0.00 0.17 ± 0.01 0.12 ± 0.01 0.19 ± 0.01 0.50 ± 0.02

Coeff. precision 1.00 ± 0.00 0.84 ± 0.02 0.26 ± 0.01 0.84 ± 0.02 0.04 ± 0.00 NA

Coeff. recall 1.00 ± 0.00 0.77 ± 0.02 0.71 ± 0.03 0.56 ± 0.02 0.81 ± 0.02 NA

Feature precision 1.00 ± 0.00 0.99 ± 0.01 0.97 ± 0.02 0.72 ± 0.05 0.20 ± 0.03 NA

Feature recall 1.00 ± 0.00 0.54 ± 0.05 0.32 ± 0.03 0.62 ± 0.04 0.54 ± 0.01 NA

Full Synthetic Dataset

Test error 0.07 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 0.11 ± 0.01 0.09 ± 0.00 0.45 ± 0.02

Coeff. precision 1.00 ± 0.00 0.98 ± 0.01 0.80 ± 0.00 0.86 ± 0.02 0.33 ± 0.03 NA

Coeff. recall 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.63 ± 0.02 1.00 ± 0.00 NA

Feature precision 1.00 ± 0.00 0.80 ± 0.00 0.80 ± 0.00 0.36 ± 0.06 0.33 ± 0.17 NA

Feature recall 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 NA

Independent Synthetic Dataset

Test error 0.07 ± 0.00 0.17 ± 0.01 0.36 ± 0.01 0.13 ± 0.01 0.35 ± 0.01 0.49 ± 0.00

Coeff. precision 1.00 ± 0.00 0.95 ± 0.01 0.06 ± 0.01 0.84 ± 0.02 0.02 ± 0.00 NA

Coeff. recall 1.00 ± 0.00 0.44 ± 0.02 0.15 ± 0.02 0.58 ± 0.02 0.43 ± 0.02 NA

Feature precision 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.83 ± 0.02 0.30 ± 0.05 NA

Feature recall 1.00 ± 0.00 0.44 ± 0.02 0.14 ± 0.02 0.58 ± 0.03 0.42 ± 0.06 NA

Partial, Full, and Independent synthetic data sets. On the Partial data set,
Partial MIC performed the best, closely followed by RIC; on the Full synthetic
data, Full MIC and Partial MIC performed equally well; and on the Independent
synthetic data, the RIC algorithm performed the best closely followed by Partial
MIC. It is also worth noting that the best-performing methods tended to have
the best precision and recall on coefficient selection. The performance trends of
the three methods are in consonance with the theory of Section 2.4.

The table shows that only in one of the three cases does one of these methods
compete with MIC methods. BBLasso on the Full synthetic data shows com-
parable performance to the MIC methods, but even in that case it has a very
low feature precision, since it added many more spurious features than the MIC
methods.

3.2 Evaluation on Real Datasets

This section compares the performance of MIC methods with AndoZhang and
BBLasso on a Yeast dataset and Breast Cancer dataset. These are typical of bi-
ological datasets in that only a handful of features are predictive from thousands
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Table 4. Accuracy and number of coefficients and features selected on five folds of CV

for the Yeast and Breast Cancer data sets. For the Yeast data, h = 20, m = 6,715,
n = 104. For the Breast Cancer data, h = 5, m = 5,000, n = 100. Standard errors

are over the five CV folds; i.e., they represent (sample standard deviation) /
√

5. Note:
AndoZhang’s NA values are due to the fact that it does not explicitly select features.

Method Partial MIC Full MIC RIC BBLasso AndoZhang

Yeast Dataset

Test error 0.38 ± 0.04 0.39 ± 0.04 0.41 ± 0.05 0.43 ± 0.03 0.39 ± 0.03
Num. coeff. sel. 22 ± 4 64 ± 4 9 ± 1 1268 ± 279 NA

Num. feat. sel. 4 ± 0 3 ± 0 9 ± 1 63 ± 14 NA

Breast Cancer Dataset

Test error 0.33 ± 0.08 0.37 ± 0.08 0.36 ± 0.08 0.33 ± 0.08 0.44 ± 0.03
Num. coeff. sel. 3 ± 0 11 ± 1 2 ± 0 61 ± 19 NA

Num. feat. sel. 2 ± 0 2 ± 0 2 ± 0 12 ± 4 NA

of potential features. This is precisely the case in which MIC outperforms other
methods. MIC not only gives better accuracy but does so by choosing fewer
features than BBLasso’s �1 − �2-based approach.

Yeast Dataset. Our Yeast dataset comes from [21]. It consists of real-valued
growth measurements of 104 strains of yeast (n = 104 observations) under 313
drug conditions. In order to make computations faster, we hierarchically clus-
tered these 313 conditions into 20 groups using correlation as the similarity
measure. Taking the average of the values in each cluster produced h = 20 real-
valued responses (tasks), which we then binarized into two categories: values at
least as big as the average for that response (set to 1) and values below the aver-
age (set to 0).8 The features consisted of 526 markers (binary values indicating
major or minor allele) and 6,189 transcript levels in rich media for a total of
m = 6,715 features.

Table 4 shows test errors from 5-fold CV on this data set. As can be seen from
the table, Partial MIC performs better than BBLasso and AndoZhang. RIC and
Full MIC perform slightly worse than Partial MIC, underscoring the point that
it is preferable to use a more general MIC coding scheme compared to Full MIC
or RIC. The latter methods have strong underlying assumptions, which cannot
always correctly capture sharing across tasks. Like Partial MIC, AndoZhang did
well on this data set; however, because the algorithm scales poorly with large
numbers of tasks, the computation took 39 days (at least using a näıve extension
of the default Transfer Learning Toolkit implementation).

Breast Cancer Dataset. Our second data set pertains to Breast Cancer,
containing data from five of the seven data sets used in [22]. It contains 1,171
8 The split was not exactly 50-50, as the data were sometimes skewed, with the mean

falling above or below the median.
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observations for 22,268 RMA-normalized gene-expression values. We considered
five associated responses (tasks); two were binary—prognosis (“good” or “poor”)
and ER status (“positive” or “negative”)—and three were not—age (in years),
tumor size (in mm), and grade (1, 2, or 3). We binarized the three non-binary
responses into two categories: Response values at least as high as the average,
and values below the average. Finally we scaled the dataset down to n = 100 and
m = 5,000 (the 5,000 features with the highest variance), to save computational
resources. Table 4 shows test errors from 5-fold CV on this data set. As is
clear from the table, Partial MIC and BBLasso are the best methods here. But
as was the case with other datasets, BBLasso puts in more features, which is
undesirable in domains (like biology and medicine) where simpler and hence
more interpretable model are sought.

4 Conclusion

We proposed a novel coding scheme, MIC, for feature selection in the presence of
multiple related tasks. MIC is a penalized-likelihood method based on the princi-
ple of Minimum Description Length (MDL). Sharing across tasks happens at two
levels in MIC. Firstly, we (optionally) build a shared covariance matrix for the
tasks (important when the various tasks are nearly identical), and secondly, we
use a shared coding scheme to specify which of the tasks (models) each feature
is added to. Among many attractive properties of the method is its immunity
to overfitting and the absence of any free parameters that might require cross
validation, unlike �1 regularization methods. Results on synthetic and real data
demonstrate that MIC performs better than state-of-the-art Multi-Task Learn-
ing Methods, not only in terms of accuracy but also in terms of simplicity of the
resulting models. MIC works best when there are many features of which only
a few are relevant, a situation that occurs commonly in computational biology
and bioinformatics applications.
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Abstract. Polytope Faces Pursuit (PFP) is a greedy algorithm that ap-

proximates the sparse solutions recovered by �1 regularised least-squares

(Lasso) [4,10] in a similar vein to (Orthogonal) Matching Pursuit (OMP)

[16]. The algorithm is based on the geometry of the polar polytope where

at each step a basis function is chosen by finding the maximal vertex us-

ing a path-following method. The algorithmic complexity is of a similar

order to OMP whilst being able to solve problems known to be hard

for (O)MP. Matching Pursuit was extended to build kernel-based solu-

tions to machine learning problems, resulting in the sparse regression

algorithm, Kernel Matching Pursuit (KMP) [17]. We develop a new al-

gorithm to build sparse kernel-based solutions using PFP, which we call

Kernel Polytope Faces Pursuit (KPFP). We show the usefulness of this

algorithm by providing a generalisation error bound [7] that takes into

account a natural regression loss and experimental results on several

benchmark datasets.

Keywords: Polytope Faces Pursuit, Orthogonal Matching Pursuit,

Pseudo-dimension, Sample Compression Bounds, Regression, Kernel

methods.

1 Introduction

Estimating a sparsely represented function from a set of training examples is
a classical problem in regression. Sparsity of representation is an important
issue, for reasons of computational efficiency and for its influence on gener-
alisation performance [5,6]. Suppose we are given a sequence of observations
X = [x1, . . . ,xm],xi ∈ Rn with corresponding outputs y ∈ R. We would
like to find a sparse set of weights w ∈ Rn such that the regression loss (e.g.
‖y −X′w‖22) is minimised. It is thereotically possible to directly enforce sparsity
through the �0 optimisation problem

min
w
‖w‖0 (1)

s.t. y = X′w

Finding this �0 solution is known to be NP−hard. However the equivalent �1
optimisation problem

min
w
‖w‖1 (2)

s.t. y = X′w

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 290–301, 2009.
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is a convex optimisation problem and can be solved using general purpose solvers.
A reformulation of this that directly minimises the regression loss is the Least
Absolute Shrinkage and Selection Operator (LASSO) [15], which is given by

min
w
‖y −X′w‖22 + λ ‖w‖1 , (3)

i.e. a form of �1-penalised least squares. Basis pursuit [3] uses the Least Angle
Regression Solver (LARS) to solve the LASSO problem. The algorithm requires
the computation of the full regularisation path through the LARS. However,
for large scale problems, this optimisation becomes inefficient and in some cases
intractible.

Matching Pursuit was proposed in the signal-processing community as an al-
gorithm that decomposes any signal into a linear expansion of waveforms that
are selected from a redundant dictionary of functions [8]. It is a general, greedy,
sparse function approximation scheme with the squared error loss, which itera-
tively adds new functions (i.e. basis functions) to the linear expansion.

If we take as dictionary of functions of the form K(·, xi) where xi is the
input part of a training example, then the linear expansion has essentially the
same form as a Support Vector Machine. Matching Pursuit and its variants were
developed primarily in the signal-processing and wavelets community, but there
are many interesting links with the research on kernel-based learning algorithms
developed in the machine learning community.

Kernel Matching Pursuit (KMP) [17] was developed as a method to estimate
a function from training examples in the presence of noise in the context of a
Reproducing Kernel Hilbert Space (RKHS). The general idea is to decompose
the function to learn on a sparse-optimal set of spanning functions. Unlike Basis
Pursuit (BP), which finds the exact �1 solution, the implementation does not
rely on the LASSO formulation or the LARS. We are then effectively finding
an approximation to the regression problem in the RKHS defined by the kernel
function,

min
α
‖α‖1 (4)

s.t. y = Kα

where α resembles the dual weight vector found by other kernel methods such
as Kernel Ridge Regression [12].

More recently, connections have been made between Matching Pursuit, Kernel-
PCA, Sparse Kernel Feature analysis, and how greedy algorithms of this kind
can be used to compress the design matrix in SVMs to allow handling of very
large data sets [14,13].

Further investigation of the criteria under which �0/�1 equivalence holds led to
consideration of the d−dimensional polytope (the d−dimensional generalisation of
a polygon) [4]. Using this geometric interpretation, a greedy algorithm called Poly-
tope Faces Pursuit (PFP) has been proposed [9] which adopts a path-following ap-
proach through the relative interior faces of the polar polytope. In order to
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generalise this to its kernelised form, we begin by converting (4) into its standard
form

min
α
‖α̃‖1 (5)

s.t. y = K̃α̃, α̃ ≥ 0

where K̃ = [K,−K] and α̃ has 2m nonnegative components, with the standard
weight vector recoverable by αi = α̃i− α̃i+m [2]. The corresponding dual of this
linear program is

max
c

y′c (6)

s.t. K̃′c ≤ 1

which has an optimal dual weight vector c which coincides with the optimum α of
the primal formulation. Note that in the sense of kernel methods, the formulation
(5) is already in the dual space, so the weight vector c is in fact the dual of the
dual. The greedy approach to the solution of (6) then follows the same approach
as taken in standard PFP [9]. This will be described further in section 2.2

We present experimental results on real world datasets, which show that
KPFP is competitive with the KMP, Kernel Ridge Regression (KRR) and the
LARS solver for LASSO on datasets derived from the UCI and STATLOG repos-
itories.

2 Kernel Polytope Faces Pursuit

2.1 Preliminaries

Assume we have a sample S containing examples as paired inputs x ∈ Rn and
outputs y ∈ R. Let X = (x1, . . . ,xm)′ be the input vectors stored in matrix X as
row vectors, where ′ denotes the transpose of vectors or matrices. For simplicity
we always assume that the examples are already projected into the kernel defined
feature space, so that the kernel matrix K has entries K[i, j] = 〈xi,xj〉. In the
analysis section we will explicitly denote the feature map φ(x) for some vector x.
The notation K[:, i] will denote the ith column of the matrix K. When given a
set of indices i = {i1, . . . , ik} (say) then K[i, i] denotes the square matrix defined
solely by the index set i.

For analysis purposes we assume that the training examples are generated i.i.d.
according to an unknown but fixed probability distribution that also governs the
generation of the test data. Expectation over the training examples (empirical
average) is denoted by Ê[·], while expectation with respect to the underlying
distribution is denoted E[·].

2.2 Algorithm

We now derive the Kernel Polytope Faces Pursuit (KPFP) algorithm, which is a
generalisation of Polytope Faces Pursuit (PFP) to Reproducing Kernel Hilbert
Spaces (RKHS).
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Table 1. Notation

X Input matrix

y Output vector

ŷ Estimates of outputs

K Kernel matrix with entries Ki,j =< φ(xi), φ(xj) >

K̃ [K,−K]

α Dual (sparse) weight vector

r Vector of residuals

c Double-dual weight vector

kmax Sparsity parameter

A† pseudo-inverse of matrix A
0,1 Vector of zeroes and ones respectively

I Identity matrix

At each step the approach to the solution of this problem is to identify the
optimal vertex which is the maximiser of y′c, which is similar to the way in
which KMP builds up its solution. However the difference is that at each step,
the path is constrained on the polytope face F given by the vertex of the previous
step. This is achieved by projecting y into a subspace parallel to F to give
r = (I − Q)y where Q = K[:,i]K[:,i]′

|K[:,i]|2 . Since α = K[:, i]′†y and ŷ = K[:, i]α
we have r = y − K[:, i]α = y − ŷ meaning that r is the residual from the
approximation at step i.

The second step, which is where the main difference between (O)MP and PFP
arises, involves projecting within the face F that has just been found, rather than
from the origin. This is done by projecting along the residual r. Therefore to
find the next face at each step we find the maximum scaled correlation

ii = argmax
i/∈i

K̃[:, i]′r/(1− K̃[:, i]′c) (7)

where we only consider bases such that K̃[:, i]′r > 0.
We then proceed by removing any constraints that violate the condition that

α̃ contains any negative entries. This is achieved by finding j ∈ i such that
α̃j < 0, removing j from i and removing the face from the current solution. We
then recaluclate α̃ and continue until αj ≥ 0, ∀ j. Although this step is necessary
to provide exact solutions to (6), it may be desirable in some circumstances to
remove this step due to the fact that our primal space is in fact the dual space
of an RKHS. This would result in faster iterations but less sparse solutions. In
section 3 we compare the performance of the algorithm with and without this
step. The full algorithm is given in Algorithm 1.

2.3 Generalisation Error Bound

For the generalisation error bound we assume that the data are generated iid
from a fixed but unknown probability distribution P over the joint space X ×Y.
Given the true error of a function f :

err(f) = E(x,y)∼P L(f(x), y),
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Require: kernel K, sparsity parameter k > 0, training outputs y
1: Initialise K̃ = [K,−K], α̃ = [ ], α = [ ], ŷ = 0, Ã = [ ], r = y, c = 0
2: for i = 1 to k do
3: Find face ii = arg maxi/∈i K̃[:, i]′r/(1 − K̃[:, i]′c) where K̃[:, i]′r > 0

4: Add constraint: Ã = [Ã, K̃[:, ii]]
5: Update B = (Ã)†, α̃ = By
6: (Optional) Release violating constraints:

7: while ∃ α̃j < 0,∀ j do
8: Remove face j: Ã = Ã � K̃[:, j], i = i � {j}
9: Update B = K̃[:, ii]

†, α = By
10: end while
11: Set c = B′1, ŷ = Ãα̃, r = y − ŷ
12: end for
13: Calculate αi = α̃i + α̃i+m

Ensure: final set i, (sparse) dual weight vector α, predicted outputs ŷ

Algorithm 1. Kernel Polytope Faces Pursuit

where L(ŷ, y) is the loss between the predicted ŷ and true y, the empirical error
of f given S:

errS(f) =
1
m

m∑
i=1

LS(f(xi), yi)

and the estimation error est(f)

est(f) = |err(f)− errS(f)|,

we would like to find an upper bound for est(f).
We use Theorem 17.1 from [1] (using the �∞ covering number as opposed to

the �1 covering number) which states that:

Pm{∃f ∈ F : |err(f)− errS(f)| ≥ ε} ≤ 4N∞(ε/16, F, 2m) exp(−ε2m/32),

where N∞(ε, F, m) is the �∞ covering number. 1 This covering number can be
upper bounded using Theorem 12.2 from [1]:

N∞(ε, F, m) ≤
(

emR

εd

)d

,

where R is the support of the distribution and d denotes the pseudo-dimension.
As with KMP [7] the KPFP also has VC-dimension (pseudo-dimension) k, when
k is the number of basis vectors chosen. However, in contrast to the KMP bound
of [7] we use the pseudo-dimension to apply a natural regression loss function,
the so-called squared error:

L(f(x), y) = (f(x)− y)2.
1 Note that the �∞ ≥ �1 covering number is always an upper bound on the �1 covering

number.
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Therefore there is no need to fix a bandwidth parameter as was the case with
the bound of [7] i.e., no need to map the regression loss into a classification one.
We follow the proof technique of [7] but instead apply the sample compression
technique over pseudo-dimension bounds, resulting in a slightly more involved
proof.

Theorem 1. Let f ∈ F : X �→ [0, 1] be the function output by any sparse (dual)
kernel regression algorithm which builds regressors using basis vectors, m the size
of the training set S and k the size of the chosen basis vectors i. Let S̄ = S � Si

denote the examples outside of the set Si. Assume without loss of generality that
the last k examples in S form the set Si. Let R be the radius of the ball containing
the support of S, then with 1 − δ confidence we can upper bound the true error
err(f) of function f given any training set S by,

err(f) ≤ errS̄(f) +√
322 + 128(m− k)

(
k ln em

k + k ln 32e(m− k)R + 1 + ln 4km
δ

)
− 32

2(m− k)
.

Proof. First consider a fixed k for the indices i. Assume that the first m − k
points from S are drawn independently and apply Theorem 17.1 (and Theorem
12.2) from [1] to obtain the bound

Pm{S̄ : |err(f)− errS̄(f)| ≥ ε} ≤ 4
(

32e(m− k)R
εk

)k

exp
(
−ε2(m− k)

32

)
. (8)

Given that we would like to choose k basis vectors from m choices we have
(
m
k

)
different ways of selecting them. Multiplying the rhs of Equation 8 by

(
m
k

)
and

setting it equal to δ we get:

Pm{S : ∃f ∈ span{Si} s.t. |err(f)− errS̄(f)| ≥ ε}

≤ 4
(

m

k

)(
32e(m− k)R

εk

)k

exp
(
−ε2(m− k)

32

)
. (9)

Next by setting the rhs of Equation (9) to δ, taking logarithms and rearranging
we get

ε2(m− k)
32

= k ln
em

k
+ k ln 32e(m− k)R− ln ε + ln k + ln

4
δ
.

We would like to write this bound in terms of ε and use the following result [11]
which states that for any α > 0, ln ε ≤ ln 1

α − 1 + αε. Substituting this result
with α = 1 (a smaller α can be used but would make the bound less neat) we
get

ε2(m− k) = 32
(

k ln
em

k
+ k ln 32e(m− k)R− ln 1 + 1− ε + ln k + ln

4
δ

)
,
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which yields the following quadratic equation:

(m− k)ε2 + 32ε− 32
(

k ln
em

k
+ k ln 32e(m− k)R + 1 + ln

4k

δ

)
= 0.

Therefore, solving for ε gives the result2 when we further apply the bound m
times. ��

This bound can be specialised to a Gaussian kernel3 that uses the mean squared
error loss.

Corollary 1. For a Gaussian kernel and using all the definitions from Theo-
rem 1 we can upper bound the loss of KPFP by:

err(f) ≤ 1
m− k

m−k∑
i=1

LS̄(f(xi), yi) +√
322 + 128(m− k)

(
k ln em

k + k ln 32e(m− k) + 1 + ln 4km
δ

)
− 32

2(m− k)
.

Remark 1. The consequences of Theorem 1 (and Corollary 1) is that although
the pseudo-dimension can be infinite even in cases where learning is successful4,
we will generate a bound that is always finite. Also, this is the first bound for
KMP and KPFP (proposed in this paper) to use the natural regression loss in
order to upper bound generalisation error. The bound is naturally trading off
empirical error with complexity – as the training error decreases the bound gets
smaller, and as the number of basis vectors (complexity) increase the bound gets
larger. A good trade-off is to find small training error whilst using a small number
of basis vectors. Clearly, the KMP and KPFP algorithms try and optimise this
trade-off, and the bound suggests that this will result in good generalisation.

It is quite obvious that the output of the function class F : X �→ [0, 1] is not
bounded between 0 and 1 in most ‘real world’ regression scenarios. Therefore, we
can give a more practically useful bound for a function class F : X �→ [−B, B]
where the outputs are bounded in the range of [−B, B] ∈ R.

Corollary 2. Let ‖w‖2 ≤ B ∈ R and ‖xi‖2 ≤ 1, i = 1, . . . , m. Let f ∈ F : X �→
[−B, B] be the function output by any sparse (dual) kernel regression algorithm
which builds regressors using basis vectors, m the size of the training set S and
k the size of the chosen basis vectors i. Let S̄ = S � Si denote the examples
outside of the set Si. Assume without loss of generality that the last k examples
in S form the set Si. Let R be the radius of the ball containing the support of S,

2 Only solve the quadratic equation for the positive quadrant.
3 We use the Gaussian kernel in the experiments.
4 Note that the pseudo-dimension is a generalisation of the VC-dimension and hence

the same problems of infinite VC-dimension also apply to the pseudo-dimension.
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then with 1− δ confidence we can upper bound the true error err(f) of function
f given any training set S by,

err(f) ≤ errS̄(f) +

2B

√
322 + 128(m− k)

(
k ln em

k + k ln 32e(m− k)R + 1 + ln 4km
δ

)
− 32

2(m− k)
.

Proof. Denote the function class F̃ =
{

f±B
2B : f ∈ F

}
: X �→ [0, 1]. Therefore,

given any function f̃ ∈ F̃ Theorem 1 holds. Furthermore, for any function class
F : X �→ [−B, B] we have:

2Berr(f̃) ≤ 2BerrS̄(f̃) +

2B

√
322+128(m−k)

(
k ln em

k +k ln 32e(m−k)R+1+ln 4km
δ

)
−32

2(m− k)
,

which completes the proof when we make the substitutions err(f) = 2Berr(f̃)
and errS̄(f) = 2BerrS̄(f̃). ��

3 Experiments

We present a comparison on 9 benchmark datasets derived from the UCI, StatLib,
and Delve benchmark repositories. Details of the datasets are given in Table 2.
We analyse the performance of KPFP, KMP, Kernel Ridge Regression (KRR)
and LASSO using the Least Angle Regression Solver (LARS) using Radial Basis
Function (RBF) kernels. We used 10 randomised splits into training and test
sets. For each of the datasets we used cross-validation (c.v.) to select the opti-
mal RBF kernel width parameter for KRR. We then used this kernel as input to
the KMP, LARS and KPFP algorithms. For both KMP and KPFP the initial
sparsity level k was set in training by a heuristic method to the lesser of 100 or
the number of training examples. Since the train and test error curves for both
KMP and KPFP tend to follow each other well, we used the index of minimum
training error as the final sparsity value. The means and standard deviations of
the generalisation error for each method and dataset are given in Table 3.

The results show that overall the sparse methods (KMP,KPFP,LARS) all per-
form better than KRR. It is interesting to compare the performance of KPFP
with and without the release of violating constraints (KPFPv and KPFP re-
spectively). KPFPv performs nearly as well as KMP on all datasets except for
cpusmall, whilst requiring fewer bases in the final solutions. On the other hand,
KPFPv results in solutions that are the least sparse of the three methods, but
results in the lowest generalisation error. LARS which gives an exact solution to
the LASSO problem performs the worst here, showing that the exact solution is
not necessarily the optimal one for generelisation. The key to the performance
of all of these methods is in selecting the appropriate stopping point k. This is
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Table 2. Number of examples and dimensions of each of the 9 benchmark datasets

Dataset # examples # dimensions

abalone 4177 8

bodyfat 252 14

cpusmall 8192 12

housing 506 13

mpg 392 7

mg 1385 6

pyrim 74 27

space ga 3107 6

triazines 186 60

Table 3. Mean MSE (μ) and standard deviations (σ) for 9 benchmark datasets for

Kernel Ridge Regression (KRR), Kernel Matching Pursuit (KMP), LASSO using the

Least Angle Regression Solver (LARS) and Kernel Polytope Faces Pursuit with and

without violation release (KPFPv,KPFP). The total number of wins over all splits of

the data for each algorithm is given in the last row.

Dataset KRR KMP LARS KPFPv KPFP
μ σ μ σ k μ σ k μ σ k μ σ k

abalone 8.70 1.79 5.70 2.56 49.2 21.64 28.80 5.4 6.07 1.16 7.3 4.82 0.24 37.7

bodyfat 0.00 0.00 0.00 0.00 49.1 0.01 0.02 5.7 0.00 0.00 30.1 0.00 0.00 129.7

cpusmall 216.35 64.04 15.66 2.51 24.0 519.06 95.45 10.3 69.97 2.51 13.4 12.50 1.51 54.2

housing 72.19 19.59 21.93 7.17 50.3 56.84 19.35 8.9 34.16 8.19 21.9 23.22 6.67 150.8

mpg 39.47 24.57 20.70 14.37 50.6 42.05 48.27 7.7 13.11 3.35 11.5 10.98 1.97 161.1

mg 0.04 0.01 0.02 0.00 49.0 0.11 0.19 4.4 0.02 0.00 7.6 0.02 0.00 48.7

pyrim 0.02 0.01 0.02 0.02 24.3 0.02 0.01 11.6 0.02 0.01 17.8 0.01 0.01 39.0

space ga 0.03 0.01 0.02 0.00 49.9 0.05 0.05 4.8 0.02 0.00 6.0 0.02 0.00 38.2

triazines 0.02 0.01 0.03 0.02 50.9 0.02 0.00 11.3 0.02 0.00 34.4 0.02 0.00 109.7

wins 3 34 6 9 39

quite difficult to achieve in KMP, as the algorithm tends to overfit quite quickly,
and there is no obvious criteria for stopping. For example, if cross-validation
were used to select k, the resulting value would be too low, as the number of
bases would selected from a smaller validation set. In our experiments we found
that by selecting an intial k through a heuristic method and then choosing the
minimiser of the training error resulted in the best compromise. In KPFP and
KPFPv the optimal value for k is more easily achieved, as the training and test
error curves tend to follow each other quite well, and we also have an (optional)
stopping parameter θmax. In fact, the value of θ to which θmax is compared
also follows the error curves. We found that by taking the minimiser of θ as the
number of bases was a reliable way of estimating k.
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Fig. 1. a) Plot of generalisation error bound for different values of k using RBF kernels

for the ‘Boston housing’ data set. The log of the generalisation error is shown on the y
axis. The plot shows the empirical error of the set S̄ (denoted training error, in green),

the estimation error (in blue), the norm of the weight vector (in red), the bound value

which is calculated from these three values (in cyan), and the generalisation (true)

error (in magenta). Note that the empirical error follows the true error very well,

which justifies its’ use in the setting of the sparsity parameter. However the bound

value is swamped by the norm of the weight vector (needed according to Corrollory

2), and as such is not useful. b) The bound values for the KMP algorithm. Note that

in this case the bound (which is valid for this algorithm too) is more useful, simply

because the norm of the weight vector does not blow up as quickly.

3.1 Bound Experiments

Finally we present results of the performance of the bound. Figure 3.1 shows
typical plots of the bound. For Figure 3.1 (b) the number of training examples
chosen were 450 and the number of test examples were 56, with the Gaussian
width parameter set to σ = 0.035. The bound values tend to fall as basis vectors
are added, before rising again as the complexity of the solution rises. Hence the
first minimum of the bound value could serve as an appropriate point to stop the
algorithm. This is clearly much more efficient than using cross-validation to select
the value of k, the number of basis vectors to use. However in our experiments
this resulted in stopping too early, resulting in underfitting. Further refinement
of the bound may improve its performance in this respect.

4 Conclusions

Polytope Faces Pursuit (PFP) is a greedy algorithm that approximates the
sparse solutions recovered by �1 regularised least-squares (LASSO) [4,10] in a
similar vein to (Orthogonal) Matching Pursuit (OMP) [16]. The algorithm is
based on the geometry of the polar polytope where at each step a basis function
is chosen by finding the maximal vertex using a path-following method. The
algorithmic complexity is of a similar order to OMP whilst being able to solve
problems known to be hard for (O)MP.
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We extended the PFP algorithm to a kernel verison, which we called Kernel
Polytope Faces Pursuit (KPFP). We showed the utility of this algorithm by
providing a novel generalisation error bound which used the natural regression
loss and pseduo-dimension in order to upper bound its loss. The experimental
results were also encouraging and showed that KPFP was competitive against
the KMP and Kernel Ridge Regression.

A future research direction is to tighten the bound and use it to find the
number of basis vectors during training.
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Abstract. From a multi-class learning task, in addition to a classifier,

it is possible to infer some useful knowledge about the relationship be-

tween the classes involved. In this paper we propose a method to learn a

hierarchical clustering of the set of classes. The usefulness of such cluster-

ings has been exploited in bio-medical applications to find out relations

between diseases or populations of animals. The method proposed here

defines a distance between classes based on the margin maximization

principle, and then builds the hierarchy using a linkage procedure. More-

over, to quantify the goodness of the hierarchies we define a measure.

Finally, we present a set of experiments comparing the scores achieved

by our approach with other methods.

1 Introduction

In many Machine Learning and Data Mining applications, users are not only
interested in learning good classifiers but also in gaining some insight into the
application domain. This is the case, for instance, of learning techniques for
association rule, clustering or feature selection.

Given a dataset of labeled examples, in this paper we present a method to
cluster the set of classes. This learning task has received little attention in the
literature; typically, clustering deals with examples instead of classes. However,
once we have classes attached to examples, their clusters draw valuable informa-
tion about the similarities and differences between classes.

In Medicine, [1,2] report methods for clustering SAGE (Serial Analysis of Gene
Expression) data to detect similarities and dissimilarities between different types
of cancer on the subcellular level. There are also many interesting applications
in Genetics of Populations. The aim is to discover relationships between species
or breeds according to their genetic descriptions. Thus, [3] studied 50 indigenous
cattle breeds from Africa; [4] clustered a total of 1272 termites representing 56
genetically distinct colonies in central North Carolina; [5] investigated the ge-
netic structure and variation of 21 populations of cattle in northern Eurasia and
the neighbouring Near Eastern regions; [6], in order to facilitate the assessments
of epidemiological risks, showed the genetic structure of human populations us-
ing genotypes at 377 autosomal microsatellite loci in 1056 individuals from 52
populations.

Roughly speaking the clustering of classes has been faced in two ways. The
straightforward approach represents each class using a single feature vector,

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 302–314, 2009.
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Fig. 1. Hierarchical clustering of classes obtained on led dataset. This domain contains

7 boolean attributes, representing the 7 light-emitting diodes, and 10 classes, the set

of decimal digits. To make the task more difficult, the problem has some noise. Each

attribute value has the 10% probability of having its value inverted.

usually the centroid of the examples of the class in the input space [7]. Then,
the collection of these vectors is clustered using algorithms as k-means, Self-
Organized Maps [8] or a hierarchical clustering. The main drawback of this
approach is that representing a class by a single vector may imply an important
loss of information.

The second approach proceeds in two stages. First, a clustering is obtained
using the complete dataset of individual examples. Then, in an ad hoc way, the
users analyze the groups so obtained. Typically, the individual examples are
represented in a 2-D map using visualizations tools like Self-Organized Maps
[9,10,1]; from this map an application-specific discussion infers a graph that
represents the relationship between classes [11]. Using these types of meth-
ods, knowledge discovery depends heavily on the capability of users to inter-
pret the clustering of individual examples. Using this approach, it is a dif-
ficult task to find the true relationship between all classes of a classification
task.

The method proposed in this paper builds a hierarchical clustering [12] of the
set of classes. The core idea is to define a metric between classes. Given that
the starting data is a classification learning task, the metric of classes is defined
from a bundle of binary classifiers. Then an agglomerative hierarchical clustering
method will provide a binary tree or dendrogram with classes placed at leaves.
The dendrogram can be broken at different levels to yield different clusterings
of the set of classes.

The organization of the classes so learned is a meaningful tree that will be
easily interpreted by an expert of the domain. Figure 1 depicts the relationships
of classes of the well-know led dataset. Notice that the topmost split of classes
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separates those that share the bottom led (left hand side) from those in which
that led is off, classes 1, 7, and 4. As one could hope, the closest classes are the
groups {8, 0}, {5, 9, 6}, {1, 7}, and {2, 3}.

The organization of the paper is the following. In the next section we present
an overview of related work. Then, we introduce the central idea of the paper, the
definition of the distance of classes that uses an algorithm based on the margin-
maximization principle. Additionally, we present a measure to compare different
hierarchical clusterings of classes. In Section 5, we report some experimental
results supporting our approach. We shall show that our method is able to
build meaningful hierarchical clusters of classes, significantly better than those
produced by other methods. We close the paper drawing some conclusions.

2 Related Work

There are two kinds of related work. The papers that present biomedical appli-
cations, quoted in the Introduction, describe mainly ad hoc methods to cluster
the set of classes. On the other hand, there are a number of approaches that
build clusters trying to assemble multi-class classifiers based on Support Vector
Machines (SVM) [13]. This section is devoted to explain the relation of these
papers with the method presented here.

First of all, let us recall that there are two types of approaches for multi-class
classification using SVM. One is considering all data in a single optimization
problem [14,15]. The other is decomposing the multi-class task into a series
of binary SVMs, such as One-vs-All (OVA) [13], One-vs-One (OVO) [16], and
using a directed acyclic graph (DAG) [17]. As none of these methods significantly
outperforms the others, this is an active research subject.

Lately, some authors [7,18,19,20] have proposed decomposition algorithms
which follow a similar approach: learn a decision tree (a special case of DAG)
based on a hierarchy of classes. First, these methods build a dendrogram of
classes; and then, a binary SVM is learned for each internal node of that hier-
archy in order to separate the examples of each subset of classes (see Figures 1
and 2). The classification procedure goes from the root to leaves guided by the
predictions of SVMs classifiers at internal nodes. All these methods basically
differ in the way they build the hierarchy of classes.

In [7] the authors propose a method to construct a binary tree. It proceeds
top-down, and at each node it uses a k-means clustering of the centroids of classes
to divide the set of classes into two groups.

In [19] the authors present the so called Dendrogram-based Support Vector
Machines (DSVM). In order to build the dendrogram, DSVM computes the
centroid of each class, and then uses an agglomerative hierarchical algorithm.
We shall include this method in the Experimental Results section.

In [18], the algorithm Half-Against-Half (HAH) is presented. After some dis-
cussion about different methods to build the hierarchy structure (generating it
at random or using prior knowledge), the authors propose to use a hierarchi-
cal clustering algorithm based on the mean distance between classes. Since the
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authors do not state clearly the concrete hierarchical clustering algorithm used,
we shall not include this method in Section 5.

However, the work that inspired this paper is [20]. In fact, our approach can
be seen as a generalization of it. The authors present a multi-class classifier for
high-dimensional input spaces, called Margin Trees Classifier, that achieves an
accuracy comparable to that of OVO SVM on 7 cancer microarray data sets. The
algorithm is somehow similar to those cited before since it uses a hierarchy of
classes to build a decision tree classifier. The authors report a study comparing
different procedures to build the hierarchy: complete linkage, single linkage and
a greedy algorithm. They conclude proposing the complete linkage.

However, the main idea introduced by Tibshirani and Hastie is that they use
the margin to compute the distance between two classes. In their approach, the
dimension of the input space is always greater than the number of examples.
Therefore, all classes are separable. In the next section we present a generaliza-
tion to the non-separable case of this method, applying the basic principles of
margin maximization.

In our opinion, another important contribution of [20] is that the authors are
the first to remark the additional interpretability of the model obtained in bio-
logical tasks. Despite they describe their method only as a multi-class classifier,
they also point out the utility of the cluster of classes in real applications. In
this paper we want to explore this idea and we shall focus in the method as a
clustering of classes.

3 Soft Margin Trees

Let X be an input space, and Y = {C1, ..., Ck} a finite set of classes. We consider
a multi-classification task given by a training set S = {(x1, y1), . . . , (xn, yn)}
drawn from an unknown distribution Pr(X, Y ) from the product X ×Y. Within
this context, our learning task is to build a dendrogram T in which each class
labels exactly one leave, T has k leaves, and k − 1 internal nodes.

In Figure 1 you can see the dendrogram obtained applying the method de-
scribed here to the led dataset [21]. Here, y-axis represents the distance between
clusters grouped together.

In order to define an algorithm for agglomerative hierarchical clustering we
require two elements:

1. A linkage scheme to recalculate inter-cluster distances when the two most
similar or near clusters are merged.

2. A method to calculate a symmetric dissimilarity matrix D based on pairwise
dissimilarities or distances. The value in the l -th row, m-th column is the
distance between classes Cl and Cm. Notice that it will be necessary to apply
this method

(
k
2

)
times to calculate D.

In the following subsections we describe our proposals in these elements of the
method for clustering classes.
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3.1 Linkage Method

An agglomerative hierarchical clustering algorithm starts defining one cluster
for each class. Then, the algorithm proceeds iteratively joining together (linking)
the two closest clusters. Differences between linkage methods arise from different
ways to define distances between clusters. Thus, using different linkage methods
can produce different dendrograms. Here, due to the lack of space, we can not
study the effect of using different linkage methods.

Following the conclusions drawn by [20], we shall use the complete linkage
method. In their experimental results all methods produce the same accuracy,
but complete linkage gives rise to more balanced trees. This kind of trees are more
interpretable than those obtained by other methods. In the experiments reported
in Section 5 all hierarchical clustering algorithms compared use the complete
linkage method. They only differ in the way they compute the dissimilarity
matrix.

3.2 A Margin-Based Metric for Classes

In [20], the distance between two separable classes is defined as the margin
between them. To compute the distance between classes Cl and Cm, the class
labels (yi) of the examples of those classes are relabeled (y′

i) as +1 and −1,
respectively. The hyperplane of maximum margin that separates the nearest
examples of those classes is defined by a weight vector w and a bias b that can
be obtained solving the following optimization problem:

(w, b) = argmax
‖w‖=1

(M) (1)

s.t. y′
i(〈w, xi〉+ b) ≥ M, ∀yi ∈ Cl ∪ Cm.

Finally, in Margin Trees, the distance between classes Cl and Cm is the margin:

D(l, m) = 2 ·M. (2)

Actually, the optimization problem in Equation 1 is equivalent, see for instance
[22,23], to a typical hard-margin SVM formulation:

min
1
2
||w||2 (3)

s.t. y′
i(〈w, xi〉+ b) ≥ 1, ∀yi ∈ Cl ∪ Cm.

In this case, the margin between both classes is equal to:

D(l, m) =
2
||w|| . (4)
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Our proposal is to use a soft-margin SVM formulation instead of a hard-margin
one:

min
1
2
||w||2 + C

∑
∀yi∈Cl∪Cm

ξi, (5)

s.t. y′
i(〈w, xi〉+ b) ≥ 1− ξi,

ξi ≥ 0, ∀yi ∈ Cl ∪Cm,

where C is a regularization parameter. The distance between classes Cl and Cm

is defined by the following expression:

D(l, m) =
1

1
2 ||w||2 + C

∑
∀yi∈Cl∪Cm

ξi

. (6)

The idea is that when classes are very different, the classifier will be given by a
simple model (i.e., ||w|| will be low) and/or the number of misclassified examples
or points inside the margin will be small (

∑
ξi → 0), so the distance (Equation 6)

will be high. When classes are similar, the model will be complex (the norm of
weight vector will be high) and/or there will be a lot of misclassified examples or
points inside the margin (

∑
ξi ! 0); in this case the distance will be small. Thus,

the optimization problem in Equation 5 minimizes an expression that captures
faithfully the differences between two classes.

It must be noted that, in order to ensure that all distances of matrix D share
an identical scale, the regularization parameter C must be the same in the

(
k
2

)
SVM binary classifiers needed to calculate all pairwise distances.

The differences between distances of Margin Trees and those proposed in
this paper may be quite subtle in linearly separable cases. Then, both depend
only on the norm of weight vectors, but these vectors may differ. However, in
general, our metric has a couple of advantages over that of Margin Trees: 1) it
can be applied to non-separable problems, and 2) even in a separable case, the
soft-margin approach can find a different solution because it takes into account,
at the same time, the complexity of the model and the expected loss. In fact,
these are the same benefits that can be obtained using the soft margin approach
instead of the hard margin in traditional SVM.

Figure 2 shows these ideas. There are some examples in a 2-dimensional space
labeled in four classes linearly separable. At a first glance, it seems that there are
two groups of classes: {1,3} and {2,4}. Applying the Margin Trees algorithm (left
side panel), Equations 1 or 3, the two most similar classes are 1 and 2; a couple
of outlayers make the hard margin quite small. The separating hyperplane and
margin frontiers are displayed in Figure 2. On the other hand, our method (right
side panel), Equation 5, takes advantage of the possibility to misclassify some
examples or to place them inside the margin. Therefore, the method proposed
in this paper captures the relationship between those classes better than Margin
Trees.
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Fig. 2. Example of a Margin Tree (left panel) and a Soft Margin Tree (right panel).

Separating hyperplanes and hierarchical clustering of classes are displayed. The method

proposed in this paper captures the relationship between those classes better than

Margin Trees.

4 A Method and a Metric to Compare Hierarchical
Clustering of Classes

A very important aspect of learning methods is to measure the quality of the
obtained knowledge. In supervised learning this task is accomplished by a set of
well established metrics. They allow users to compare different techniques and to
estimate the future performance of predictive models. But unsupervised learning
algorithms, like clustering, are difficult to compare.

The learning task of clustering a set of classes is an unsupervised task, we do
not know the correct organization of classes. However, we can take advantage of
having a dataset with examples labeled by those classes.

Given a hierarchical clustering of k classes, as was mentioned in Section 2, it
is possible to build a classifier learning k − 1 binary SVMs. Let h : X → Y be
such a classifier. A first approach to define a metric for the quality of clusterings
of classes could be to measure the accuracy of h. In fact, if the hierarchy is good,
the accuracy of h must be high.
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Table 1. Description of the datasets used in the experiments. They are divided in two

parts. The first is a collection of classification tasks non-linearly separable drawn from

the UCI repository [21]. The second part are cancer datasets that were previously used

in [20].

Dataset #classes #examples #features

zoo 7 101 16

glass 6 214 9

ecoli 8 336 7

dermatology 6 366 33

vehicle 4 846 18

vowel 11 990 11

led 10 1000 7

yeast 10 1484 8

car 4 1728 6

image 7 2310 19

landsat 6 6435 36

brain 5 42 5597

lymphoma 3 62 4026

srbct 4 63 2308

stanford 14 261 7452

9 tumors 9 60 7131

11 tumors 11 174 12533

14 tumors 14 190 16063

But this is an incomplete view of the problem. It is more important to study
what happens when the classifier fails, than to calculate only the accuracy. A
hierarchical clustering of classes represents the similarity between those classes.
When h missclassifies an example xi, if the hierarchy is good, the predicted class
h(xi), must be near (in the hierarchy) to the true class yi .

Therefore, we propose to measure the distance in the hierarchy between pre-
dictions and true classes; that is, the number of arcs in the dendrogram T placed
between the leaves labeled by those classes. We called this measure Prediction
Distance (PD):

PD(h(xi), yi, T ) = #arcs(h(xi), yi, T ). (7)

For instance, the Prediction Distance of an example of class 5 (see Figure 1)
classified as class 9 is 2, but if prediction were class 2, PD would rise to 5. The
farthest classes from class 5 are 1 and 7, both at distance 8. Notice that the
maximum distance between two classes in a dendrogram of k classes is k.

Averaging this metric over a set of test examples we shall measure the good-
ness of a hierarchy T .
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5 Experimental Results

In order to evaluate the benefits of our approach we conducted a battery of
experiments. The aim is to show that our approach is able to build meaningful
hierarchical clusters of classes, significantly better than those produced by other
methods.

As it was indicated in Section 3.1, each algorithm for hierarchical clustering
employed in the experiments used the complete linkage method to build the
tree. Therefore, the differences between the algorithms arise from the way they
compute the matrixes of distances between each pair of classes. We considered
four approaches:

– Random. A random symmetrical distance matrix is computed. Since PD is
an unbounded measure, we used Random method to obtain an upper bound
on all datasets. It is expected that the other approaches perform significantly
better.

– DSVM [19]. Dendrogram-based Support Vector Machines computes the dis-
tance matrix by means of the Euclidean distance between the centroids of
each pair of classes.

– Margin Trees (MT). The distance matrix is computed using the Margin
Trees idea from [20], showed in Equations 3 and 4.

– Soft Margin Trees (SMT). The distance matrix is computed applying Equa-
tions 5 and 6.

Once we have built a hierarchical clustering of classes, a multi-class classifier may
be learned with a binary SVM attached to each internal node. We shall report
the accuracy of these classifiers (“0/1” errors) in addition to the Prediction
Distance (PD) (Equation 7). Although the quality of the trees can be measured
only by means of the prediction distance, we include the accuracy to compare
their predictive power with the SVM multiclass.

The datasets used in the experiments are described in Table 1. There are
datasets with more number of examples than features and vice versa. The first
group is formed by datasets obtained from the UCI repository [21]. We selected
those datasets that fulfill the following rules: continuous or ordinal attribute
values, no more than 40 attributes, no more than 10000 examples, and excluding
datasets with missing values and with less than 4 classes. The second group is
composed by the datasets used in [20]. They are 7 datasets which target is to
classify cancer patients from gene expressions captured by microarrays.

All the scores reported were estimated by means of a 5-fold cross validation
repeated 2 times. We did not use the 10-fold procedure, since in certain datasets
there are too few examples in some classes. The SVM implementation used was
libsvm [24] with the linear kernel in all cases. Cancer datasets can be separated
by a linear-SVM, so the utility of using different kernels it is not clear.

For each hierarchical system considered (Random, DSVM, MT and SMT), we
used the same regularization parameter C in all models learned at each node in
the tree. To select this parameter, we utilized a 2-fold cross validation repeated
5 times on training data searching within C ∈ [10−2, . . . , 102]. The aim in this
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Table 2. Cross validation results both in “0/1” errors and PD

SVM Random DSVM MT SMT
Dataset 0/1 0/1 PD 0/1 PD 0/1 PD 0/1 PD

zoo 4.98 5.48 0.2336 4.50 0.2750

M
T

c
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w
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s

w
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h
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b
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d
a
ta
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4.98 0.1788
glass 33.20 40.44 1.7156 35.76 1.1292 37.40 1.1502
ecoli 11.75 16.58 0.6888 14.01 0.3873 13.71 0.3782
dermatology 3.55 3.14 0.1312 4.36 0.1036 3.82 0.0928
vehicle 20.33 22.99 0.7400 20.63 0.4817 20.63 0.4805
vowel 19.19 54.60 3.2303 26.77 1.1354 29.70 1.3449
led 27.70 36.95 2.0790 27.80 1.1950 27.95 1.1860
yeast 41.61 46.36 2.2685 42.79 1.4340 43.43 1.3672
car 14.35 19.50 0.6754 15.11 0.4751 17.30 0.4161
image 4.07 12.53 0.5890 10.13 0.3812 4.29 0.1126
landsat 13.05 18.91 0.7876 14.96 0.5829 13.18 0.4051

brain 13.19 14.44 0.5278 14.58 0.5611 13.33 0.5125 13.33 0.5125
lymphoma 0.00 0.00 0.0000 0.00 0.0000 0.00 0.0000 0.00 0.0000
srbct 1.60 1.60 0.0564 0.83 0.0167 0.83 0.0250 0.83 0.0250
stanford 5.36 5.35 0.3759 6.12 0.2700 5.93 0.3162 5.93 0.3162
9 tumors 48.33 51.67 2.4667 45.83 2.3083 44.17 2.3083 44.17 2.3083
11 tumors 10.08 9.81 0.5603 9.81 0.5492 10.09 0.5206 10.09 0.5206
14 tumors 30.53 32.11 2.0368 31.58 1.9026 28.68 1.5289 28.68 1.5289

Average 16.83 21.80 1.0646 18.09 0.7327 17.75 0.6847

grid search was to optimize the PD. In the case of the SMT, the C parameter
found by the search was used both for computing the distance matrix and to
build the classifiers of each internal node.

Following [25], we used the Wilcoxon signed ranks test to compare the per-
formance of the classifiers by pairs when the measurements are “0/1” errors or
PD.

In Table 2, we show the results obtained in the experiments. Considering the
quality of the hierarchies measured by PD, we can see that SMT achieved the
best results. The differences are significant with p < 0.01 for Random, and with
p < 0.03 for DSVM. The MT algorithm was not applied on UCI datasets since
they are not separable. To summarize the results, in Table 3 we show the number
of victories, defeats and ties between each pair of algorithms. We can see that
SMT is the unique algorithm that never loses versus Random in all datasets;
and it only ties ones, in lymphoma dataset where all algorithms obtain the best
performance.

Additionally, it is important to remark that SMT and MT achieve the same
results in those datasets in which the number of features is higher than the
number of examples.

With respect to “0/1” errors, Table 2 shows that the results attained by
SVM multiclass are better in general (as it happens in [20]). Actually, SVM is
significantly better than Random and DSVM with p < 0.01, and better than
SMT with p < 0.04. Comparing multi-class classifiers attached to hierarchies of



312 J. Dı́ez et al.

Table 3. Summary of PD scores. Number of wins (w), losses (l), and ties (t) between

pairs of algorithms considered. In the case of DSVM versus SMT (4/12/2), it must be

read as follows: DSVM is better than our approach SMT 4 times, worse 12 times, and

in 2 datasets they obtain equal results.

w/l/t MT SMT Random

DSVM 2/3/2 4/12/2 15/2/1

MT 0/0/7 6/0/1

SMT 17/0/1

classes, SMT is significantly better than Random with p < 0.01. These results
show that these methods have less predictive power than SVM, although they
produce valuable descriptive models represented in the hierarchies of classes.

Notice that sometimes an algorithm A obtains better “0/1” errors, but a worse
PD than other algorithm B. Even in that case, these scores mean that the hierar-
chy learned by A is worse than that produced by B. The reason is that although
the hypothesis hA learned by A missclassifies less examples than the correspond-
ing hypothesis hB of B, the errors of hA are far in the corresponding hierarchy
from true classes. On the other hand, the more frequent misclassifications of hB

are close to the true classes.

6 Conclusions

In this paper we presented a new method for clustering a set of classes of a
multi-class learning task. These clusterings have shown their usefulness in fields
such as medicine or genetics of populations. The aim in all these cases is not only
to learn an accurate classifier but also to gain some insight into the application
domain.

Our approach computes a distance matrix between classes using a method
based on the soft margin of each pair of classes. Then, using a complete linkage
method, it is possible to build a dendrogram where the leaves are labeled by
classes. We tested Soft Margin Trees with other algorithms for clustering classes
and it was shown that SMT produces significantly better hierarchical clusters of
classes than those produced by other methods.
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Abstract. The Support Vector Machine error bound is a function of

the margin and radius. Standard SVM algorithms maximize the margin

within a given feature space, therefore the radius is fixed and thus ignored

in the optimization.

We propose an extension of the standard SVM optimization in which

we also account for the radius in order to produce an even tighter error

bound than what we get by controlling only for the margin.

We use a second set of parameters, μ, that control the radius intro-

ducing like that an explicit feature weighting mechanism in the SVM

algorithm. We impose an l1 constraint on μ which results in a sparse

vector, thus performing feature selection. Our original formulation is not

convex, we give a convex approximation and show how to solve it. We

experiment with real world datasets and report very good predictive per-

formance compared to standard SVM.

Keywords: Feature Weighting, Support Vector Machine, convex opti-

mization.

1 Introduction

Support Vector Machines have been proven one of the most successful machine
learning tools over the last decade. Their wide acceptance from the machine
learning community has to do by the excellent performance that they achieve
over different learning problems—excellent performance that is founded on sound
theoretical concepts and namely the fact that they control directly their error
bound. In the classification setting they work by establishing a class separating
hyperplane in some feature space, typically given by a kernel function. The the-
ory shows that their error bound is a function of both the margin, γ, informally
the distance of the nearest data points from the hyperplane, and the radius, R,
of the smallest sphere enclosing the data; more precisely, the function depends
on the ratio R2/γ2.

However, even though this double dependency is well known, all SVM algo-
rithms optimize the error bound by focusing only on the margin and ignoring the
radius. One could argue that for a given feature space the radius of the smallest
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sphere enclosing the data remains fixed and thus can be ignored. However it is
quite easy to show that under a very simple scenario, for example by weighting
or selecting features, the radius changes. The question that then arises is what
is the best way to control that change, i.e. best in the sense of the error bound
optimization. This question has been partially explored in the context of feature
selection; for example [1] and [2] directly try to exploit this dual dependency of
the error bound in order to determine which features to remove and which to
retain. SVMRFE [3] also implicitly changes the radius since it removes features;
however since the algorithm is based on the recursive application of a standard
SVM, its cost function obviously disregards the radius.

Nevertheless it still remains a challenge to exploit all the facets of the gener-
alization bound in the learning process. In this paper we move one step ahead in
this direction and propose an SVM algorithm that optimizes the error bound by
controlling both for the margin and the radius. To do so we extend the standard
margin-based cost function of SVM (which controls the margin by controlling
the size of the norm of the normal vector, w, of the maximum margin hyper-
plane), to include also the radius. We control the latter by introducing a second
vector of parameters, μ, which in fact performs feature weighting; we call our
algorithm MR-SVM (Margin-Radius SVM). The proposed algorithm includes a
sparsity constraint on μ which is based on the l1 norm; this forces many features
to have a zero weight, thus performing also feature selection.

The paper is organized as follows. In section 2 we briefly review previous
work on SVM that deal with both the margin and the radius, mainly in the
context of feature selection. In section 3 we discuss the various error bounds
that motivate the use of the radius and present the standard SVM framework.
We give our main contribution in section 4 and present some experiments on
several benchmark datasets in section 5. Finally, we conclude in section 6 where
we also present some ideas for future work.

2 Related Work

The idea of optimizing the error bound of SVM by controlling both the margin
and the radius has received relatively limited attention. This despite the fact that
one would expect, at least in principle, to be able to produce tighter error bounds
when we control for both, thus achieving better generalization performance.
Somehow naturally the only two works of which we are aware that move in that
direction fall within the feature selection research domain.

Weston et al. in [1] start from exactly the same idea, i.e. that the gener-
alization performance of SVM depends on the ratio R2/γ2 and not only on
the margin γ and propose a feature selection algorithm which tries to optimize
that ratio. To do so they introduce a binary valued vector σ ∈ {0, 1}d, where
each σi, i := 1, . . . , d corresponds to one of the dimensions of the input space.
The σ controls which features are included or removed through a componen-
twise multiplication with the learning instances. They then express the ratio
as a function of σ, i.e. f(σ) = R2

γ2 (σ). Their goal is to find that vector σ∗
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which minimizes f(σ). However the original formulation of the problem requires
searching over all possible feature subsets which is a combinatorial problem that
is only tractable by greedy search methods. The authors propose an alternative
approach in which they relax σ to be a real valued vector and formulate the
problem as an approximation of integer programming which they solve by using
gradient descent by computing the gradient ∂f(σ)/∂σ. There is no guarantee
that the algorithm will reach a global minimum. Moreover since they view the
problem as a feature selection problem they parametrize the ratio in a manner
that includes or removes features on the basis of the original input space, i.e.
the parametrization performed by σ is not done in the feature space. However
the radius is computed in the feature space and obviously tighter error bounds
can be achieved if the parametrization is done in the feature space, in the same
way that the parametrization of the margin is done in the feature space and not
in the original input space.

Rakotomamonjy in [2] examines a number of different SVM-based functions
and feature ranking approaches to perform feature selection. Among the different
functions he examines we find the radius-margin ratio as it was given in the
previous paragraph, i.e. f(σ). He explores two approaches to establish a ranking
of the features from f(σ), which he calls zero-order and first-order approaches.
In the zero-order approach the importance of a feature is given by the value
of f(σ) when that feature has been removed. In other words the importance
of feature i is given by f(σ(−i)), where σ

(−i)
j �=i = 1 and σ

(−i)
i = 0. In the first-

order approach the importance of a feature i is given by the value of the partial
derivative ∂f(σ)/∂σi calculated at σi = 1. The two approaches are incorporated
within a stepwise selection method to determine which features to retain. We
note here that this work does not try to optimize f(σ) but simply uses it as
a way to determine the importance of the different features in the input space
and decided which ones to retain and which to eliminate. Moreover the initial
value of f(1), where 1 is the vector of ones, may not be the optimal value and
the method removes those features that have the smallest effect on the value of
f(1).

In both approaches the parametrization of the radius-margin ratio is achieved
via the parametrization of the kernel function which is written in the form
K(σ.xi, σ.xj), where the operator . denotes the componentwise multiplication.
[4] examined the more general problem of tuning any number of parameters of a
kernel and proposed a framework that relies on the use of theoretical error bounds
to perform that tuning. One of the error bounds they examined was the radius-
margin ratio. Obviously the K(σ.xi, σ.xj) form can be addressed within their
framework, and in fact they did use their method and this kernel parametriza-
tion to perform feature selection and scaling. As in the two previous works, fea-
ture scaling and weighting is performed in the input space. The framework they
proposed is based on a two step iterative optimization procedure. The first step
solves a standard SVM problem in which the set of parameters σ is kept fixed. The
second step uses gradient descent to update the parameters σ in the direction that
minimizes the theoretical error bound, i.e. the radius-margin ratio. However the
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radius-margin ratio can have many local minima, see for example [5], and a simple
gradient method may easily get trapped in one of them.

As it is apparent from the above discussion, one of the learning tasks in
which SVMs have been used often is that of feature selection. Probably the
most popular algorithm of this family is SVM-RFE, introduced by [3], which
is a backwards feature elimination procedure that removes features based on
the values of their weights as these are determined by a linear kernel SVM. In
fact the work of [2] extends this work. The linear kernel has been proven one of
the most popular kernels for SVM not only because of its very good predictive
performance, but also because of its understandability; its weights directly reflect
the importance of the corresponding features, provided that features have been
normalized. These explain why it is the kernel of choice not only for the feature
selection task but also more generally for the task of classification in problems
with high dimensionality.

The same trend also appears in regression problems where some of the most
successful algorithms for high dimensional problems are algorithms that produce
linear models by imposing sparsity constraints on the vector of weights of the
coefficients, e.g. Lasso, [6], LARS, [7], and more recently Adaptive Lasso, [8]. All
of them use the l1 norm to control the coefficients of the linear regression models,
which is known to produce sparse weight vectors. In an interesting twist Adaptive
Lasso uses two sets of weights: a first set of weights controls the importance of
the different features and the second is the set of lasso coefficients learned on
the weighted feature set. The author proposes to derive the first set of weights
from the solution of the Ordinary Least Squares regression [9]. Note here that
unlike the different regression algorithms mentioned the standard SVM does not
impose strong sparsity constraints such as the one imposed by the l1 norm.

3 SVM, Margin and Radius Based Error Bounds

There are a number of theorems in statistical learning that bound the expected
classification error of the thresholded linear classifier given by the maximum
margin hyperplane by quantities that are related to its margin and the radius
of the smallest sphere that encloses the data. Below we give two of them that
correspond to the cases of linearly separable and non-separable training sets.

Consider a mapping x �→ Φ(x) in which a training instance x ∈ X is mapped
to an inner product feature spaceH. Moreover the inner product ofH is given by
K(., .), a kernel function defined in the original input space X , i.e. K(xi,xj) =
〈Φ(xi),Φ(xj)〉.

Theorem 1. [4], Given a training set S = {(x1, y1), ..., (xl, yl)} of size l, a
feature space H and a hyperplane (w, b), the margin γ(w, b, S) and the radius
R(S) are defined by

γ(w, b, S) = min
(xi,yi)∈S

yi(〈w,Φ(xi)〉+ b)
‖w‖

R(S) = min
a

max
i
‖Φ(xi)− a‖
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The maximum margin algorithm Ll : (X ×Y)l → H×R takes as input a training
set of size l and returns a hyperplane in feature space such that the margin
γ(w, b, S) is maximized. Note that assuming the training set is separable means
that γ > 0. Under this assumption, for all probability measures P underlying the
data S, the expectation of the misclassification probability

perr(w, b) = P (sign(〈w,Φ(X)〉 + b) �= Y )

has the bound

E{perr(Ll−1(Z))} ≤ 1
l
E

{
R2(Z)

γ2(Ll(Z), Z)

}
The expectation is taken over the random draw of a training set Z of size l − 1
for the left hand side and l for the right hand side.

The following theorem gives a similar result for the error bound of the linearly
non-separable case.

Theorem 2. [10], Consider thresholding real-valued linear functions L with unit
weight vectors on an inner product space H and fix γ ∈ R+. There is a constant
c, such that for any probability distribution D on H×{−∞,∞} with support in a
ball of radius R around the origin, with probability 1− δ over l random examples
S, any hypothesis f ∈ L has error no more than:

err(f)D ≤
c

l
(
R2 + ‖ξ‖22

γ2 log2l + log
1
δ
), (1)

where ξ = ξ(f, S, γ) is the margin slack vector with respect to f and γ.

It is clear from both theorems that the bound on the expected error depends
not only on the margin but also on the radius of the data. The expected error
is bounded in the linearly separable and non-separable cases by functions of the
ratios R2/γ2 and (R2 + ‖ξ‖22)/γ2 respectively.

The standard soft margin SVM builds exactly on these results, namely theo-
rem 2, by learning maximal margin hyperplanes while controlling for the l2 norm
of the slack vector in an effort to optimize the error bound given in equation 1.
Maximizing for the margin is equivalent to minimizing the norm of the normal
vector, w, of the separating hyperplane, thus the optimization problem that is
solved by the standard soft margin SVM is given by:

min
ξ,w,b

1
2
〈w,w〉+

C

2

l∑
i=1

ξ2
i (2)

s.t yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . , l

C is a regularization parameter that controls the trade off between the size of the
margin and the norm of the slack variables vector; the latter is directly related
to the total number of training set missclassifications. Obviously this approach
to error bound optimization focuses exclusively on the margin and ignores the
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radius; under this problem formulation the latter is fixed and optimizing the
cost function of equation 2 is equivalent to optimizing the error bound given in
equation 1. Usually we solve the dual optimization problem of equation 2; this
is given by:

max
α

W (α) =
l∑
i

αi −
1
2

l∑
ij

αiαjyiyj(K(xi,xj) +
1
C

δij)

s.t

l∑
i=1

yiαi = 0, αi ≥ 0, i = 1, ..., l.

where a is the vector of Langrange multipliers, and δij is the Kronecker δ,
defined to be 1 if i = j and 0 otherwise. The decision function of SVM is
f(x) = sign(〈w∗, Φ(x)〉 + b∗) = sign(

∑l
i yiα

∗
i K(xi,x) + b∗) where w∗, b∗ and

α∗
i are the solutions of 2 and its dual form.
The radius of the smallest sphere that contains all instances xi in theH feature

space defined by the Φ(x) mapping is computed by the following formula [11]:

min
R,Φ(x0)

R2 (3)

s.t. ‖Φ(xi)−Φ(x0)‖2 ≤ R2, ∀i

where Φ(x0) is the center of the sphere.

4 Margin and Radius Based SVM

In this section we will show how it is possible to control not only for the margin
but also for the radius in an effort to achieve better error bounds. Consider the
feature spaceH given by the mapping function Φ(x) = (Φ1(x), Φ2(x), ..., Φd(x)) ∈
Rd, where x ∈ X ; let μ ∈ Rd be a vector of parameters whose role will be to
perform feature weighting in the feature space. Then the feature space Hμ given
by the mapping Φμ(x) = Φ(x).

√
μ is a feature space the radius of which is no

longer constant but can be controlled by the weighting vector μ (
√

μ denotes the
componentwise square root of μ). Therefore, if we use the standard SVM, which
maximizes only the margin, we will not be fully optimizing the generalization
bound given in equation 1. To exploit the full potential of the radius-margin
error bound we should also learn the vector μ. Note that in the standard SVM
formulation μ = 1, i.e. all features of the feature space have equal importance or
weight. For reasons that will become apparent below, and without loss of gener-
ality, we will work in the normalized feature space H′, i.e. Φ′(x) = Φ(x)

‖Φ(x)‖ ; this

normalization is also achieved by the kernel K ′(x,y) = K(x,y)√
K(x,x)K(y,y)

, where

K(x,y) is the kernel associated with the Φ(x) mapping. To simplify notation in
the following we will be using H, Φ(x), and K(x,y), instead of H′, Φ′(x), and
K ′(x,y).
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We will now discuss a number of inequalities that relate the radius of the
Hμ space to the radii of the spaces defined by each one of its features. Con-
sider the one-dimensional space given by Hk, Φk(x), which we get by pro-
jecting H on its kth dimension. Its radius is given by Rk = (maxj(Φk(xj)) −
minj Φk(xj))/2. Let R2

μ be the radius of the feature space Hμ. The following
inequalities hold:

maxk(μkR2
k) ≤ R2

μ ≤
∑d

k=1 μkR2
k ≤ maxk(R2

k) ≤ 1 (4)

s.t.
∑d

k μk = 1, μk ≥ 0, ∀k

The inequality, maxk(R2
k) ≤ 1, holds because the feature space H is normalized.

The rest of the proof is given in the appendix.
We will now describe how we can optimize the radius-margin error bound given

in equation 1 by learning also the μ vector. A straightforward way to do so is to
modify the cost function of the standard SVM so that it also includes the radius.
We define the the following optimization problem in the Hμ feature space:

min
w,b,ξ,μ

1
2
〈w,w〉R2

μ +
C

2

l∑
i=1

ξ2
i (5)

s.t. yi(〈w,
√

μ.Φ(xi)〉+ b) ≥ 1− ξi, ∀i

By rewriting w :=
√

μ.w we also have wk :=
√

μkwk and then we can rewrite
equation 5 as:

min
w,b,ξ,μ

1
2

d∑
k

〈wk, wk〉
μk

R2
μ +

C

2

l∑
i

ξ2
i (6)

s.t. yi(
d∑
k

〈wk, Φk(xi)〉+ b) ≥ 1− ξi,

d∑
k=1

μk = 1, μk ≥ 0, ∀k

The constraint
∑d

k=1 μk = 1 is added so that we get a unique solution. If μk = 0
we will see that from the dual form given later we have wk = 0; in this case, we
use the convention that 0

0 = 0. Note the similarity of the two sets of parameters,
w and μ, to the two sets of weights used by the Adaptive Lasso algorithm of [8],
however here we simultaneously optimize over both sets of parameters within
the same optimization problem and not independently as it is done in [8].

We will denote the cost function of equation 6 by F (w, b, ξ, μ). This opti-
mization problem is not a convex optimization problem because the cost func-
tion F is not convex. From the set of inequalities given in equation 4 we have
R2

μ ≤
∑d

k μkR2
k ≤ 1 and from this we can get:
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F (w, b, ξ, μ) =
1
2

d∑
k

〈wk, wk〉
μk

R2
μ +

C

2

l∑
i

ξ2
i ≤ (7)

1
2

d∑
k

〈wk, wk〉
μk

d∑
k

μkR2
k +

C

2

l∑
i

ξ2
i =

(
1
2

d∑
k

〈wk, wk〉
μk

+
C

2
∑d

k μkR2
k

l∑
i

ξ2
i )

d∑
k

μkR2
k ≤

(
1
2

d∑
k

〈wk, wk〉
μk

+
C

2
∑d

k μkR2
k

l∑
i

ξ2
i ) = F̃ (w, b, ξ, μ)

The tighter the bound R2
μ ≤

∑d
k μkR2

k is, the closer F̃ will be to the original error
bound given by F . F̃ (w, b, ξ, μ) is a convex function so instead of the original
soft margin optimization problem given in formula 6 we propose to solve the
following upper bounding convex optimization problem:

min
w,b,ξ,μ

1
2

d∑
k

〈wk, wk〉
μk

+
C

2
∑d

k μkR2
k

l∑
i

ξ2
i (8)

s.t. yi(
d∑
k

〈wk, Φk(xi)〉+ b) ≥ 1− ξi,

d∑
k=1

μk = 1, μk ≥ 0, ∀k

The l1 norm constraint on μ has the potential to result in a sparser solution, i.e.
many of the μi could be zero, which can not be obtained using standard SVM.
The dual function of the optimization problem of equation 8 is:

Ws(α, μ) = −1
2

l∑
ij

αiαjyiyj

d∑
k

μk〈Φk(xi), Φk(xj)〉 (9)

+
l∑
i

αi −
∑d

k μkR2
k

2C
〈α, α〉

= −1
2

l∑
ij

αiαjyiyj(
d∑
k

μk〈Φk(xi), Φk(xj)〉

+
∑d

k μkR2
k

C
δij) +

l∑
i

αi
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The dual optimization problem is:

max
α,μ

Ws(α, μ) (10)

s.t.

l∑
i

αiyi = 0,

αi ≥ 0, ∀i
l∑
ij

αiαjyiyj〈Φk(xi), Φk(xj)〉 =
R2

kC
∑l

i ξ2
i

(
∑

k μkR2
k)2

, ∀k,

As it is obvious the cost function and the constraints are not expressed in the
form of a kernel function on the feature space H but instead require access to its
explicit representation. This limits for the moment the application of the method
that we propose here only to features spaces for which we have access to their
explicit form, e.g. linear or polynomial feature spaces. In the next section we will
show how we can solve this optimization problem.

4.1 Algorithm

The dual function 9 is quadratic with respect to α and linear with respect to
μ. One way to solve the optimization problem 8 is by using a two step itera-
tive algorithm such as the ones described in [4,12]. Following such a two step
approach, in the first step we will solve a quadratic problem that optimizes over
(w, b), while keeping μ fixed; as a consequence the resulting dual function is
a simple quadratic function of α which can be optimized easily. In the second
step we will solve a linear problem that optimizes over μ. More precisely the
formulation of the optimization problem with the two-step approach takes the
following form:

min
μ

J(μ) (11)

s.t.

d∑
k=1

μk = 1, μk ≥ 0, ∀k

where

J(μ) =

{
minw,b

1
2

∑d
k

〈wk,wk〉
μk

+ C∑d
k μkR2

k

∑l
i ξ2

i

s.t. yi(
∑d

k〈wk, Φk(xi)〉+ b) ≥ 1− ξi

(12)

To solve the outer optimization problem, i.e. minμ J(μ), we use gradient de-
scent.

At each iteration, we fix μ, compute the value of J(μ) and then compute
the gradient of J(μ) with respect to μ. The dual function of equation 12 is the
Ws(α, μ) function already given in equation 9. Since μ is fixed we now optimize
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only over α (the resulting dual optimization problem is much simpler compared
to the original soft margin dual optimization problem given in formula 10):

max
α

Ws(α, μ)

s.t.

l∑
i

αiyi = 0, αi ≥ 0, ∀i

which has the same form as the SVM quadratic optimization problem, the only
difference is that the C parameter here is equal to C∑d

k μkR2
k

.

For the strong duality, at the optimal solution α∗, the value of Ws(α, μ), and
thus the J(μ) value, is given by:

Ws(α∗, μ) = −1
2

l∑
ij

α∗
i α

∗
jyiyj(

d∑
k

μk〈Φk(xi), Φk(xj)〉

+
∑d

k μkR2
k

C
δij) +

l∑
i

α∗
i

The last step of the algorithm is to compute the gradient of the J(μ) function,
formula 12, with respect to μ. As [4] and [12] have pointed out, we can use the
theorem of Bonnans and Shapiro, [13], to compute gradients of such functions.
Hence:

∂J(μ)
∂μk

= −1
2

l∑
ij

α∗
i α

∗
jyiyj(〈Φk(xi), Φk(xj)〉+

R2
k

C
δij)

To compute the optimal step in the gradient descent we used line search. The
complete two-step procedure is given in algorithm 1.

Algorithm 1. MR-SVM
Initialize μ1

k = 1
d

for k = 1, ..., d
repeat

Set R2
μ =

∑d
k μt

kR2
k

compute J(μt) as the solution of a quadratic optimization problem with given μt
k

compute ∂J
∂μk

for k = 1, ..., d
compute optimal step γt

μt+1 ← μt + γt
∂J(μ)

∂μ

until stopCriterion is true

4.2 Computational Complexity

At each step of the iteration we have to compute the solution of a standard SVM,
with a fixed μ and C equal to C∑

d
k μkR2

k

, which has a complexity O(n3) where n
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is number of instances. Moreover when μ is updated we have to recompute the
approximation of R2

μ, a computation that is linear in the number of features,
O(d), where d is number of features.

5 Experiments

We experimented with 12 different datasets. Six of them, Ionosphere, Liver,
Sonar, Wdbc, Wpbc, Musk1, were taken from the UCI repository, and six, Colon-
Cancer, CentralNervousSystem, FemaleVsMale, Leukemia, stroke, ovarian, [14],
from the domain of genomics and proteomics. A short description of the datasets
is given in Table 1. In the experiments we limit ourselves to the linear feature
space, although as we mentioned previously any feature space for which we have
access to its explicit form can be used. We compare the performance of the stan-
dard SVM with the linear kernel, STD-SVM, to that of MR-SVM. We tuned
the hyperparameter C by inner cross-validation choosing from the set of val-
ues {0.1, 1, 10, 100, 500, 1000}. We terminate MR-SVM when the duality gap is
smaller than 0.01. We estimated the classification error using 10-fold cross vali-
dation. In table 2 we give the results including: the classification errors of both
algorithms, the number of non-zero weight features selected by MR-SVM, the
percentage that these non-zero weight features represent with respect to the to-
tal number of features, and the result of McNemar’s test of significance with a
significance level of 0.05 (if MR-SVM is significantly better than standard SVM
we denote that by +, if it is significantly worse by -, and if they are equivalent
by =).

As it is obvious from the results the performance of MR-SVM is much better
than that of standard SVM. Its classification performance is significantly better
in seven out of the 12 datasets and significantly worse only in two of them.
Remember here that the two algorithms operate in exactly the same space, i.e.

Table 1. Datasets Description

Dataset #Inst. #Features #Class1 #Class2

Ionosphere 351 34 126 225

Liver 345 6 145 200

Sonar 208 60 97 111

Wdbc 569 32 357 212

Wpbc 198 34 151 47

Musk1 476 166 269 207

ColonCancer 62 2000 40 22

CentralNervous 60 7129 21 39

FemaleVSMale 134 1524 67 67

Leukemia 72 7128 25 47

Stroke 208 171 101 107

Ovarian 253 385 62 91

Prostate 322 390 253 69
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Table 2. Results of the experiments. The average errors of standard SVM and MR-

SVM are reported, together with the average number of non-zero weight features estab-

lished by MR-SVM and the respective number of total features. The last column gives

the results of the McNemar’s significance test, + means that MR-SVM is significantly

better than the standard SVM.

Dataset STD-SVM MR-SVM #μi �= 0
#μi �=0

#F eatures
Sig.

Ionosphere 11.71 11.14 28.3 83.23 +

Liver 32.35 32.35 5.9 98.33 =

Sonar 24.5 23.00 44.3 73.88 +

Wdbc 1.96 2.50 16.7 52.18 -

Wpbc 18.95 17.37 24.8 72.94 +

Musk1 13.62 13.83 68.1 41.02 =

ColonCancer 15.00 16.67 2000 100 =

CentralNervous 38.33 31.67 6442 90.36 +

FemaleVSMale 13.08 11.54 1524 100 +

Leukemia 1.43 1.43 6922 97.10 =

Stroke 28.00 26.00 76.8 44.91 +

Ovarian 04.80 3.60 53.2 13.81 +

Prostate 18.44 20.00 93.07 23.86 -

the one that corresponds to the linear kernel. Their only difference is that MR-
SVM directly optimizes for both the radius and the margin and not just the
margin as the standard SVM does. This has the potential, at least in theory, to
produce lower error bounds than those we would get by optimizing only for the
margin—a fact that seems to be confirmed by the performance results we get.

Apart from the very good classification performance that MR-SVM achieves
we also get for many of the datasets, though not for all of them, a significant
reduction of the number of features actually used in the learned model, many
of them are assigned a μi that has a value of zero due to the use of the l1
constraint. The mean value of features retained is around 68.6% of the total
number of features over the different datasets.

6 Discussion and Future Work

In this paper we present an extension of the standard SVM that incorporates in
its cost function not only the margin but also the radius of the smallest sphere
that encloses the data, thus implementing directly well known error bounds from
statistical learning theory. Our experimental results show that indeed optimizing
the error bound accounting for both the radius and the margin leads to much
better classification performance than when we optimize only for the margin as
it is typically done in the standard SVM algorithms. We want to further verify
the preliminary results reported here by experimenting with more datasets; if
these are verified, and provided that we are able to provide a kernelized version,
the proposed algorithm has a potential of very wide application.
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A possible way of producing a kernelized version of our algorithm is by using
kernel PCA [15] and expressing the original feature space by projecting it on its
PCA components. In this case we do not need the explicit representation of the
feature space, and we will work on the representation given by the projections on
the PCA dimensions of the feature space. Since these can be computed explicitly
we will be able to directly apply our algorithm on the transformed space.

Apart from the remarkable predictive performance, a further advantage of the
algorithm comes as a result of the way we control the radius through the intro-
duction of the μ vector of parameters. This vector weights the different features
in the feature space; moreover due to the incorporated sparsity constraint on
μ the algorithm has the potential to produce sparser linear models than those
of the standard SVM. The result is that we do not only get a feature weight-
ing mechanism but we also perform direct feature selection. However we would
like to explore further the l1 constraint defined on the μ vector in order to see
whether it is possible to control the desired level of sparsity in the final models.
Remember that we set that constraint to one so that we get a unique solution.
For some of the datasets this resulted in quite sparse solutions retaining as few
as 14% or 24% of the original features, yet in others it retained all of them. We
want to understand better the conditions under which this constraint becomes
active and removes a significant number of features. Moreover we would like to
explore the option of regularizing this norm as it is done in other methods, such
as Lasso, in order to get even sparser solutions.

Finally we should mention that it is straightforward to use our algorithm, in
its present form, within the SVM-RFE algorithm in order to replace the standard
linear kernel SVM used there. Its advantage over the standard SVM will be the
fact that at each iteration we can potentially remove a larger number of features
the weight of which will be zero due the sparsity constraint and with a better
predictive performance as our results indicate.
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Appendix

Proof of inequality (4). If Kμ(x,x′) is the kernel function associated with the
Φμ(x) mapping then the computation of the radius in the dual form is given
by [15]:

max
βiβj

R2 =
l∑
i

βiK(xi,xi)−
l∑
ij

βiβjK(xi,xj) (13)

s.t.

l∑
i

βi = 1, βi ≥ 0

We also introduce the kernels Kμ and Kk as follows: Kμ(xi,xj)=〈Φμ(xi), Φμ(xj)〉
= 〈√μ.Φ(xi),

√
μΦ(xj)〉=

∑d
k=1 μk〈Φk(xi), Φk(xj)〉 =

∑d
k=1 μkKk(xi,xj), i.e.,

Kμ is the kernel, inner product, in the weighted feature space,Hμ, and Kk(xi,xj)
= 〈Φk(xi), Φk(xj)〉, is the trivial kernel, inner product, on the kth dimension,Hk,
of the non-weighted feature space H. Remember that the solution μ satisfies:∑d

k=1 μk = 1.
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If β∗ is the optimal solution of (13) when K = Kμ, and β̂k is the optimal
solution of (13) when K = Kk, i.e. :

R2
μ =

d∑
k=1

μk(
l∑

i=1

β∗
i Kk(xi,xi)−

l∑
i,j=1

β∗
i β∗

j Kk(xi,xj))

R2
k =

l∑
i=1

β̂k
iKk(xi,xi)−

l∑
i,j=1

β̂k
iβ̂

k
jKk(xi,xj)

then

l∑
i=1

β∗
i Kk(xi,xi)−

l∑
i,j=1

β∗
i β∗

j Kk(xi,xj) ≤

l∑
i=1

β̂k
iKk(xi,xi)−

l∑
i,j=1

β̂k
iβ̂

k
jKk(xi,xj)

Therefore: R2
μ ≤

∑d
k=1 μkR2

k. This still obviously holds true when K is linear
kernel.

Proof of convexity of R-MKL (Eq.8). To prove that 8 is convex, it is enough
to show that functions x2

μ , where x ∈ R, μ ∈ R+; and ξ2∑
M
k αkμk

, where ξ ∈
R, μk, αk ∈ R+, are convex. The former is quadratic-over-linear function which
is convex. The later is convex because its epigraph is a convex set [18].
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Abstract. A serious drawback of kernel methods, and Support Vector

Machines (SVM) in particular, is the difficulty in choosing a suitable

kernel function for a given dataset. One of the approaches proposed to

address this problem is Multiple Kernel Learning (MKL) in which sev-

eral kernels are combined adaptively for a given dataset. Many of the

existing MKL methods use the SVM objective function and try to find a

linear combination of basic kernels such that the separating margin be-

tween the classes is maximized. However, these methods ignore the fact

that the theoretical error bound depends not only on the margin, but

also on the radius of the smallest sphere that contains all the training

instances. We present a novel MKL algorithm that optimizes the error

bound taking account of both the margin and the radius. The empirical

results show that the proposed method compares favorably with other

state-of-the-art MKL methods.

Keywords: Learning Kernel Combination, Support Vector Machines,

convex optimization.

1 Introduction

Over the last few years kernel methods [1,2], such as Support Vector Machines
(SVM), have proved to be efficient machine learning tools. They work in a feature
space implicitly defined by a positive semi-definite kernel function, which allows
the computation of inner products in feature spaces using only the objects in
the input space.

The main limitation of kernel methods stems from the fact that in general
it is difficult to select a kernel function, and hence a feature mapping, that
is suitable for a given problem. To address this problem several several at-
tempts have been recently made to learn kernel operators directly from the
data [3,4,5,6,7,8,9,10,11,12]. The proposed methods differ in the objective func-
tions (e.g. CV risk, margin based, alignment, etc.) as well as in the classes of
kernels that they consider (e.g. combination of finite or infinite set of basic
kernels).

The most popular approach in the context of kernel learning considers a fi-
nite set of predefined basic kernels which are combined so that the margin-based

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 330–343, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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objective function of SVM is optimized. The learned kernel K is a linear combi-
nation of basic kernels Ki, i.e. K(x, x′) =

∑M
i=1 μiKi(x, x′), μi ≥ 0, where M

is the number of basic kernels, and x and x′ are input objects. The weights μi

of the kernels are included in the margin-based objective function. This setting
is commonly referred to as the Multiple Kernel Learning (MKL).

The MKL formulation has been introduced in [3] as a semi-definite program-
ming problem, which scaled well only for small problems. [7] extended that work
and proposed a faster method based on the conic duality of MKL and solved
the problem using Sequential Minimal Optimization (SMO). [5] reformulated the
MKL problem as semi-infinite linear problem. In [6] the authors proposed an ad-
justment in the cost function of [5] to improve predictive performance. Although
the MKL approach to kernel learning has some limitations (e.g. one has to choose
the basic kernels), it is widely used because of its simplicity, interpretability and
good performance.

The MKL methods that use the SVM objective function do not exploit the
fact that the error bound of SVM depends not only on the separating margin,
but also on the radius of the smallest sphere that encloses the data. In fact
even the standard SVM algorithms do not exploit the latter, because for a given
feature space the radius is fixed. However in the context of MKL the radius is
not fixed but is a function of the weights of the basic kernels.

In this paper we propose a novel MKL method that takes account of both
radius and margin to optimize the error bound. Following a number of transfor-
mations, these problems are cast in a form that can be solved by the two step
optimization algorithm given in [6].

The paper is organized as follows. In Section 2 we introduce the general MKL
framework. Next, in Section 3 we discuss the various error bounds that motivate
the use of the radius. The main contribution of the work is presented in Sec-
tion 4 where we propose a new method for multiple kernel learning that aims to
optimize the margin- and radius-dependent error bound. In Section 5 we present
the empirical results on several benchmark datasets. Finally, we conclude with
Section 6 where we also present pointers to future work.

2 Multiple Kernel Learning Problem

Consider a mapping of instances x ∈ Xi, to a new feature space Hi

x→ Φi(x) ∈ Hi (1)

This mapping can be performed by a kernel function Ki(x,x′) which is de-
fined as the inner product of the images of two instances x and x′ in Hi, i.e.
Ki(x,x′) = 〈Φi(x),Φi(x′)〉; Hi may have even infinite dimensionality. Typically,
the computation of the inner product in Hi is done implicitly, i.e. without having
to compute explicitly the images Φi(x) and Φi(x′).

2.1 Original Problem Formulation of MKL

Given a set of training examples S = {(x1, y1), ..., (xl, yl)} and a set of basic
kernel functions, Z = {Ki(x,x′)|i := 1, . . .M}, the goal of MKL is to optimize
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a cost function Q(f(Z, μ)(x,x′), S) where f(Z, μ)(x,x′) is some positive semi-
definite function of the set of the basis kernels, parametrized by μ; most often a
linear combination of the form:

f(Z, μ)(x,x′) =
M∑
i=1

μiKi(x,x′), μi ≥ 0,

M∑
i

μi = 1 (2)

To simplify notation we will denote f(Z, μ) by Kμ. In the remaining part of
this work we will only focus on the normalized versions of Ki, defined as:

Ki(x,x′) :=
Ki(x,x′)√

Ki(x,x) ·Ki(x′,x′)
. (3)

If Kμ is a linear combination of kernels then its feature space Hμ is given by
the mapping:

x→ Φμ(x) = (
√

μ1Φ1(x), ...,
√

μMΦM (x))T ∈ Hμ (4)

where Φi(x) is the mapping to the Hi feature space associated with the Ki

kernel, as this was given in Formula 1.
In previous work within the MKL context the cost function, Q, has taken

different forms such as the Kernel Target Alignment, which measures the “good-
ness“ of a kernel for a given learning task [9], or the typical SVM cost function
combining classification error and the margin [3,5,6], or as in [4] any of the above
with an added regularization term for the complexity of the combined kernel.

3 Margin and Radius Based Error Bounds

There are a number of theorems in statistical learning that bound the expected
classification error of the thresholded linear classifier, that corresponds to the
maximum margin hyperplane, by quantities that are related to the margin and
the radius of the smallest sphere that encloses the data. Below we give two of
them that are applicable on linearly separable and non-separable training sets,
respectively.

Theorem 1. [10], Given a training set S = {(x1, y1), ..., (xl, yl)} of size l, a
feature space H and a hyperplane (w, b), the margin γ(w, b, S) and the radius
R(S) are defined by

γ(w, b, S) = min
(xi,yi)∈S

yi(〈w,Φ(xi)〉+ b)
‖w‖

R(S) = min
a

max
i
‖Φ(xi)− a‖

The maximum margin algorithm Ll : (X ×Y)l → H×R takes as input a training
set of size l and returns a hyperplane in feature space such that the margin
γ(w, b, S) is maximized. Note that assuming the training set is separable means
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that γ > 0. Under this assumption, for all probability measures P underlying the
data S, the expectation of the misclassification probability

perr(w, b) = P (sign(〈w,Φ(X)〉 + b) �= Y )

has the bound

E{perr(Ll−1(Z))} ≤ 1
l
E

{
R2(Z)

γ2(Ll(Z), Z)

}
The expectation is taken over the random draw of a training set Z of size l − 1
for the left hand side and l for the right hand side.

The following theorem gives a similar result for the error bound of the linearly
non-separable case.

Theorem 2. [13], Consider thresholding real-valued linear functions L with unit
weight vectors on an inner product space H and fix γ ∈ R+. There is a constant
c, such that for any probability distribution D on H×{−∞,∞} with support in a
ball of radius R around the origin, with probability 1− δ over l random examples
S, any hypothesis f ∈ L has error no more than:

err(f)D ≤
c

l
(
R2 + ‖ξ‖22

γ2 log2l + log
1
δ
), (5)

where ξ = ξ(f, S, γ) is the margin slack vector with respect to f and γ.

It is clear from both theorems that the bound on the expected error depends not
only on the margin but also on the radius of the data, being a function of the
R2/γ2 ratio. Nevertheless standard SVM algorithms can ignore the dependency
of the error bound on the radius because for a fixed feature space the radius
is constant and can be simply ignored in the optimization procedure. However
in the MKL scenario where the Hμ feature space is not fixed but depends on
the parameter vector μ the radius is no longer fixed but it is a function of μ
and thus should not be ignored in the optimization procedure. The radius of the
smallest sphere that contains all instances in the H feature space defined by the
Φ(x) mapping is computed by the following formula [14]:

min
R,Φ(x0)

R2 (6)

s.t. ‖Φ(xi)−Φ(x0)‖2 ≤ R2, ∀i
It can be shown that if Kμ is a linear combination of kernels, of the form given
in Formula 2, then for the Rμ radius of its Hμ feature space the following
inequalities hold:

max
i

(μiR
2
i ) ≤ R2

μ ≤
M∑
i=1

μiR
2
i ≤ max

i
(R2

i ), (7)

s.t.

M∑
i

μi = 1

where Ri is the radius of the component feature space Hi associated with the
Ki kernel. The proof of the above statement is given in the appendix.
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4 MKL with Margin and Radius Optimization

In the next sections we will show how we can make direct use of the dependency
of the error bound both on the margin and the radius in the context of the MKL
problem in an effort to decrease even more the error bound than what is possible
by optimizing only over the margin.

4.1 Soft Margin MKL

The standard l2-soft margin SVM is based on theorem 2 and learns maximal
margin hyperplanes while controlling for the l2 norm of the slack vector in an
effort to optimize the error bound given in equation 5; as already mentioned
previously the radius although it appears in the error bound is not considered
in the optimization problem due to the fact that for a given feature space it is
fixed. The exact optimization problem solved by the l2-soft margin SVM is [13]:

min
w,b,ξ

1
2
〈w,w〉 +

C

2

l∑
i=1

ξ2
i (8)

s.t. yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, ∀i

The solution hyperplane (w∗, b∗) of this problem realizes the maximum margin
classifier with geometric margin γ = 1

‖w∗‖ .
When instead of a single kernel we learn with a combination of kernels Kμ

then the radius of the resulting feature space Hμ depends on the parameters
μ which are also learned. We can profit from this additional dependency and
optimize not only for the margin but also for the radius, as Theorems 1 and 2
suggest, in the hope of reducing even more the error bounds than what would
be possible by just focusing on the margin.

A straightforward way to do so is to alter the cost function of the above
optimization problem so that it also includes the radius. Thus we define the
primal form of soft margin MKL optimization problem as follows:

min
w,b,ξ,μ

1
2
〈w,w〉R2

μ +
C

2

l∑
i=1

ξ2
i (9)

s.t. yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, ∀i

Accounting for the form Φμ of the feature space Hμ, as it is given in equation 4,
this optimization problem can be rewritten as:

min
w,b,ξ,μ

1
2

M∑
k

〈wk,wk〉R2
μ +

C

2

l∑
i=1

ξ2
i (10)

s.t. yi(
M∑
k

〈wk,
√

μkΦk(xi)〉+ b) ≥ 1− ξi, ∀i
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where the w is the same as that of Formula 9 and equal to (w1, . . . ,wM ), R2
μ

can be computed by equation 6. By letting w :=
√

μ.w then wk :=
√

μkwk we
can rewrite equation 10 as1:

min
w,b,ξ,μ

1
2

M∑
k

〈wk,wk〉
μk

R2
μ +

C

2

l∑
i

ξ2
i (11)

s.t. yi(
M∑
k

〈wk,Φk(xi)〉+ b) ≥ 1− ξi,

M∑
k=1

μk = 1, μk ≥ 0, ∀k

The non-negativity of μ is required to guarantee that the kernel combination is a
valid kernel function; the constraint

∑M
k=1 μk = 1 is added to make the solution

interpretable (kernel with bigger weight can be interpreted as more important
one) and to get a specific solution (note that if μ is solution of 11 (without the
constraint

∑M
k=1 μk = 1), then λμ, λ ∈ R+ is also its solution).

We will denote the cost function of equation 11 by F (w, b, ξ, μ). F is not a
convex function, this is probably the main reason why in current MKL algorithms
the radius is simply removed from the original cost function, therefore they do
not really optimize the generalization error bound.

From the set of inequalities given in equation 7 we have R2
μ ≤

∑M
k μkR2

k and
from this we can get:

F (w, b, ξ, μ) = 1
2

∑M
k

〈wk,wk〉
μk

R2
μ + C

2

∑l
i ξ2

i ≤ (12)
1
2

∑M
k

〈wk,wk〉
μk

∑M
k μkR2

k + C
2

∑l
i ξ2

i =

(1
2

∑M
k

〈wk,wk〉
μk

+ C
2
∑M

k μkR2
k

∑l
i ξ2

i )
∑M

k μkR2
k ≤

(1
2

∑M
k

〈wk,wk〉
μk

+ C
2
∑

M
k μkR2

k

∑l
i ξ2

i ) = F̃ (w, b, ξ, μ)

The last inequality holds because in the context we examine we have
∑M

k μkR2
k ≤

1. This is a result of the fact that we work with the normalized feature spaces,
using the normalized kernels as these were defined in equation 3, thus we have
R2

k ≤ 1 and since
∑M

k μk = 1 it holds that:
∑M

k μkR2
k ≤ 1. Since F̃ is an

upper bound of F and moreover it is convex2 we are going to use it as our
objective function. As a result, we propose to solve, instead of the original soft
margin optimization problem given in equation 11, the following upper bounding
convex optimization problem:

1 Note that if μk = 0 then from the dual form we have wk = 0. In this case, we use

the convention that 0
0

= 0.
2 The convexity of this new function can be easily proved by showing that the Hessian

matrix is positive semi-definite.
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min
w,b,ξ,μ

1
2

M∑
k

〈wk,wk〉
μk

+
C

2
∑M

k μkR2
k

l∑
i

ξ2
i (13)

s.t. yi(
M∑
k

〈wk,Φk(xi)〉+ b) ≥ 1− ξi,

M∑
k=1

μk = 1, μk ≥ 0, ∀k

The dual function of this optimization problem is:

Ws(α, μ) = −1
2

l∑
ij

αiαjyiyj

M∑
k

μkKk(xi,xj) (14)

+
l∑
i

αi −
∑M

k μkR2
k

2C
〈α, α〉

= −1
2

l∑
ij

αiαjyiyj(
M∑
k

μkKk(xi,xj) +
∑M

k μkR2
k

C
δij) +

l∑
i

αi

where δij is the Kronecker δ defined to be 1 if i = j and 0 otherwise. The dual
optimization problem is given as:

max
α,μ

Ws(α, μ) (15)

s.t.
∑

i

αiyi = 0,

αi ≥ 0, ∀i
l∑
ij

αiαjyiyjKk(xi,xj) =
R2

kC
∑

i ξ2
i

(
∑

k μkR2
k)2

, ∀k

In the next section we will show how we can solve this new optimization problem.

4.2 Algorithm

The dual function 14 is quadratic with respect to α and linear with respect to
μ. One way to solve the optimization problem 13 is to use a two step iterative
algorithm such as the ones described in [6], [10]. Following such a two step
approach, in the first step we will solve a quadratic problem that optimizes over
(w, b), while keeping μ fixed; as a consequence the resulting dual function is a
simple quadratic function of α which can be optimized easily. In the second step
we will solve a linear problem that optimizes over μ.
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More precisely, the formulation of the optimization problem with the two-step
approach takes the following form:

min
μ

J(μ) (16)

s.t.

M∑
k=1

μk = 1, μk ≥ 0, ∀k

where

J(μ) =

{
minw,b

1
2

∑M
k

〈wk,wk〉
μk

+ C
2
∑

M
k μkR2

k

∑l
i ξ2

i

s.t. yi(
∑M

k 〈wk,Φk(xi)〉+ b) ≥ 1− ξi

(17)

To solve the outer optimization problem, i.e. minμ J(μ), we use gradient descent
method. At each iteration, we fix μ, compute the value of J(μ) and then compute
the gradient of J(μ) with respect to μ. The dual function of Formula 17 is the
Ws(α, μ) function already given in Formula 14. Since μ is fixed we now optimize
only over α (the resulting dual optimization problem is much simpler compared
to the original soft margin dual optimization problem given in Formula 15):

max
α

Ws(α, μ)

s.t.
∑

i

αiyi = 0, αi ≥ 0, ∀i

which has the same form as the SVM quadratic optimization problem, the only
difference is that the C parameter here is equal to C∑M

k μkR2
k

.
For the strong duality, at the optimal solution α∗, the values of dual cost

function and primal cost function are equal. Thus the value of Ws(α, μ), and
the J(μ) value, is given by:

Ws(α∗, μ) = −1
2

l∑
ij

α∗
i α

∗
jyiyj(

M∑
k

μkKk(xi,xj)

+
∑M

k μkR2
k

C
δij) +

l∑
i

α∗
i

The last step of the algorithm is to compute the gradient of the J(μ) function,
Formula 17, with respect to μ. As [6] have pointed out, we can use the theorem
of Bonnans and Shapiro [15] to compute gradients of such functions. Hence, the
gradient is in the following form:

∂J(μ)
∂μk

= −1
2

l∑
ij

α∗
i α

∗
jyiyj(Kk(xi,xj) +

R2
k

C
δij)

To compute the optimal step in the gradient descent we used line search. The
complete two-step procedure is given in Algorithm 1.
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Algorithm 1. R-MKL
Initialize μ1

k = 1
M

for k = 1, ..., M
repeat

Set R2
μ =

∑M
k μt

kR2
k

compute J(μt) as the solution of a quadratic optimization problem with K :=∑M
k μt

kKk

compute ∂J
∂μk

for k = 1, ..., M
compute optimal step γt

μt+1 ← μt + γt
∂J(μ)

∂μ

until stopCriteria is true

4.3 Computational Complexity

At each step of the iteration we have to compute the solution of a standard SVM,
with kernel K =

∑M
k=1 μkKk, and C equal to C∑

M
k μkR2

k

, which is a quadratic pro-

gramming problem with a complexity of O(n3) where n is number of instances.
Moreover, when μ is updated we have to recompute the approximation of R2

μ;
the complexity of this procedure is linear in the number of kernels, O(M).

5 Experiments

We experimented with ten different datasets. Six of them were taken from the
UCI repository (Ionosphere, Liver, Sonar, Wdbc, Wpbc, Musk1), while four come
from the domain of genomics and proteomics (ColonCancer, CentralNervousSys-
tem, FemaleVsMale, Leukemia) [16]; these four are characterized by small sample
and high dimensionality morphology. A short description of the datasets is given
in Table 1. We experimented with two different types of basic kernels, i.e. poly-
nomials and Gaussians, and performed two sets of experiments. In the first set
of experiments we used both types of kernels and in the second one we focused
only on Gaussians kernels. For each set of experiments the total number of basic
kernels was 20; for the first set we used polynomial kernels of degree one, two,
and three and 17 Gaussians with bandwidth δ that ranged from 1 to 17 with
a step of one; for the second set of experiments we only used Gaussian kernels
with bandwidth δ that ranged from 1 to 20 with a step of one.

We compared our MKL algorithm (denoted as R-MKL) with two state-of-the-
art MKL algorithms: Support Kernel Machine (SKM) [7], and SimpleMKL [6].
We estimate the classification error using 10-fold cross validation. For comparison
purposes we also provide the performances of the best single kernel (BK) and
the majority classifier (MC); the latter always predicts the majority class. The
performance of the BK is that of the best single kernel estimated also by 10-fold
cross validation, since it is the best result after seeing the performance of all
individual kernels on the available data it is optimistically biased. We tuned the
parameter C in an inner-loop 10-fold cross-validation choosing the values from
the set {0.1, 1, 10, 100}. All algorithms terminate when the duality gap is smaller
than 0.01. All input kernel matrices are normalized by equation 3.
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Table 1. Short description of the classification datasets used

Dataset #Inst #Attr #Class1 #Class2

Ionosphere 351 34 126 225

Liver 345 6 145 200

Sonar 208 60 97 111

Wdbc 569 32 357 212

Wpbc 198 34 151 47

Musk1 476 166 269 207

ColonCancer 62 2000 40 22

CentralNervous 60 7129 21 39

FemaleVSMale 134 1524 67 67

Leukemia 72 7128 25 47

We compared the significance level of the performance differences of the al-
gorithms with McNemar’s test [17], where the level of significance is set to 0.05.
We also established a ranking schema of the examined MKL algorithms based
on the results of the pairwise comparisons [18]. More precisely, if an algorithm
is significantly better than another it is credited with one point; if there is no
significant difference between two algorithms then they are credited with 0.5
points; finally, if an algorithm is significantly worse than another it is credited
with zero points. Thus, if an algorithm is significantly better than all the others
for a given dataset it has a score of two. We give the full results in Tables 2, 3.
For each algorithm we report a triplet in which the first element is the estimated
classification error, the second is the number of selected kernels, and the last is
the above described rank.

Our kernel combination algorithm does remarkably well in the first set of
experiments, Table 2, in which it is significantly better than both other algo-
rithms in four datasets and significantly worse in two; for the four remaining
datasets there are no significant differences. Note that in the cases of Wpbc and

Table 2. Results for the first experiments, where both polynomial and Gaussian kernels

are used. Each triplet x,y,z gives respectively the classification error, the number of

selected kernels, and the number of significance point that the algorithm scores for the

given experiment set and dataset. Columns BK and MC give the errors of the best

single kernel and the majority classifier, respectively.

D. Set SKM Simple R-MKL BK MC

Ionos. 04.00,02,1.5 03.71,02,1.5 04.86,02,0 05.71 36.00

Liver 33.82,05,1.5 33.53,13,1.5 36.18,03,0 30.29 42.06

Sonar 15.50,01,1.0 15.50,01,1.0 15.50,01,1 17.50 46.00

Wdbc 11.25,03,1.0 13.04,18,0.0 03.75,18,2 08.57 37.32

Wpbc 23.68,17,1.0 23.68,01,1.0 23.68,01,1 23.68 23.68

Musk1 11.70,07,1.0 13.40,18,0.0 06.60,01,2 04.47 43.83

Colon. 18.33,18,1.0 18.33,18,1.0 16.67,18,1 11.67 35.00

CentNe. 35.00,17,1.0 35.00,17,1.0 35.00,17,1 31.67 35.00

Female. 33.85,20,1.0 38.92,18,0.0 20.00,18,2 22.31 60.00

Leuke. 07.14,18,0.5 07.14,18,0.5 02.86,18,2 02.86 34.29
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Table 3. Results for the second set of experiments, where only Gaussian kernels are

used. The table contains the same information as the previous one.

D. Set SKM Simple R-MKL BK MC

Ionos. 04.86,02,1.0 05.43,04,1.0 05.14,03,1.0 05.14 36.00

Liver 33.53,03,1.0 33.53,20,1.0 33.53,16,1.0 34.71 42.06

Sonar 15.50,01,1.0 15.50,01,1.0 15.50,01,1.0 17.00 46.00

Wdbc 37.32,03,1.0 37.32,19,1.0 37.32,20,1.0 37.32 37.32

Wpbc 23.68,20,1.0 23.68,19,1.0 23.68,20,1.0 23.68 23.68

Musk1 43.83,14,1.0 43.83,19,1.0 43.83,20,1.0 43.83 43.83

Colon. NA 35.00,20,1.5 35.00,20,1.5 35.00 35.00

CentNe. 35.00,20,1.0 35.00,20,1.0 35.00,20,1.0 35.00 35.00

Female. 60.00,20,1.0 60.00,20,1.0 60.00,20,1.0 60.00 60.00

Leuke. 34.29,20,1.0 34.29,20,1.0 34.29,20,1.0 34.29 34.29

CentralNervousSystem all algorithms have a performance that is similar to that
of the majority classifier, i.e. the learned models do not have any discriminatory
power. By examining the classification performances of the individual kernels
on these datasets we see that none of them had a performance that was bet-
ter than that of the majority classifier; this could explain the bad behavior of
the different kernel combination schemata. Overall, for this set of experiments
R-MKL gets 12 significance points over the different datasets, SKM 10.5, and
SimpleMKL 7.5. The performance improvements of R-MKL over the two other
methods are are quite impressive on those datasets on which R-MKL performs
well; more precisely its classification error is around 30%, 50%, and 40%, of that
of the other algorithms for Wdbc, Musk1, and Leukemia datasets respectively.

In the second set of experiments,Table 3, all methods perform very poorly in
seven out of ten datasets; their classification performance is similar to that of the
majority classifier. In the remaining datasets, with the exception of ColonCancer
for which SKM failed (we used the implementation provided by the authors of
the algorithm and it returns with some errors), there is no significant difference
between the three algorithms. The collectively bad performance in the last seven
databases is explained by the fact that none of the basic kernels had a classifi-
cation error that was better than that of the majority classifier. Overall, for this
set of experiments SKM scores 9 points, and Simple MKL and R-MKL score
10.5 points each.

Comparing the number of selected kernels by the different kernel combination
methods using a paired t-test (significance level of 0.05) revealed no statistically
significant differences between the three algorithms on both sets of experiments.

In an effort to get an empirical estimation of the quality of the approxima-
tion of the radius that we used to make the optimization problems convex, we

computed the approximation error defined as
∑M

k μkR2
k−R2

μ

R2
μ

. We computed this
error over the different folds of the ten-fold cross-validation for each dataset.
The average approximation error over the different datasets was 0.0056. We
also computed this error over 1000 random values of μ for each dataset and the
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average error was 0.0104. Thus, the empirical evidence seems to indicate that the
R2

μ ≤
∑M

k μkR2
k bound is relatively tight, at least for the datasets we examined.

6 Conclusion and Future Work

In this paper we presented a new kernel combination method that incorporates
in its cost function not only the margin but also the radius of the smallest sphere
that encloses the data. This idea is a direct implementation of well known error
bounds from statistical learning theory. To the best of our knowledge this is
the first work in which the radius is used together with the margin in an effort
to minimize the generalization error. Even though the resulting optimization
problems were non-convex and we had to use an upper bound on the radius to
get convex forms, the empirical results were quite encouraging. In particular, our
method competed with other state-of-the-art methods for kernel combination,
thus demonstrating the benefit and the potential of the proposed technique.
Finally, we mention that it is still a challenging research direction to fully exploit
the examined generalization bound.

In future work we would like to examine optimization techniques for directly
solving the non-convex optimization problem presented in Formula 11. In partic-
ular, we will examine whether it is possible to decompose the cost function as a
sum convex and concave functions, or to represent it as d.m functions (difference
of two monotonic functions) [19,20]. Additionally, we plan to analyze the bound
R2

μ ≤
∑M

k μkR2
k and see how it relates with the real optimal value.
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Appendix

Proof of Inequality 7. If K(x,x′) is the kernel function associated with the Φ(x)
mapping then the computation of the radius in the dual form is given in [1]:

max
βiβj

R2 =
l∑
i

βiK(xi,xi)−
l∑
ij

βiβjK(xi,xj) (18)

s.t.

l∑
i

βi = 1, βi ≥ 0

If β∗ is the optimal solution of (18) when K = Kμ =
∑M

1 μkKk, and β̂k is the
optimal solution of (18) when K = Kk, i.e. :
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R2
μ =

M∑
k=1

μk(
l∑

i=1

β∗
i Kk(xi,xi)−

l∑
i,j=1

β∗
i β∗

j Kk(xi,xj))

R2
k =

l∑
i=1

β̂k
iKk(xi,xi)−

l∑
i,j=1

β̂k
iβ̂

k
jKk(xi,xj)

then

l∑
i=1

β∗
i Kk(xi,xi)−

l∑
i,j=1

β∗
i β∗

j Kk(xi,xj) ≤

l∑
i=1

β̂k
iKk(xi,xi)−

l∑
i,j=1

β̂k
iβ̂

k
jKk(xi,xj)

Therefore: R2
μ ≤

∑M
k=1 μkR2

k

Proof of convexity of R-MKL (Eq.13). To prove that 13 is convex, it is enough
to show that functions x2

μ , where x ∈ R, μ ∈ R+, and ξ2∑
M
k αkμk

, where ξ ∈
R, μk, αk ∈ R+ are convex. The first is quadratic-over-linear function which is
convex. The second is convex because its epigraph is a convex set [21].
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Abstract. We develop a statistical methodology to validate the result

of network inference algorithms, based on principles of statistical testing

and machine learning. The comparison of results with reference networks,

by means of similarity measures and null models, allows us to measure

the significance of results, as well as their predictive power. The use

of Generalised Linear Models allows us to explain the results in terms

of available ground truth which we expect to be partially relevant. We

present these methods for the case of inferring a network of News Outlets

based on their preference of stories to cover. We compare three simple

network inference methods and show how our technique can be used to

choose between them. All the methods presented here can be directly

applied to other domains where network inference is used.

Keywords: Network inference, Network validation, News Outlets net-

work.

1 Introduction

Network Inference is a ubiquitous problem, found in fields as diverse as genomics,
epidemiology or social sciences. Elements of a set (e.g., genes, people or news
outlets) are connected by links that represent relations between them (e.g., co-
expression, social contact, similar reporting bias, etc). While we can often observe
the state of the network nodes, the underlying topology of the network is hidden,
and must be inferred based on a finite set of observations of node-states.

Several methods have been proposed to infer this underlying network struc-
ture, in different communities and under different conditions. Examples include
gene regulatory networks [1], biochemical regulatory networks[2] and protein in-
teraction networks[3]. We focus on the general problem of testing, or validating,
the result of this inference. Since often ground truth is missing, validation against
related but different networks, or against networks inferred in different ways, is
the only option or the only viable alternative to costly experiments.

In this paper, we present and study general methods to assess the results of
Network Inference algorithms, from a statistical and machine learning point of
view, and we demonstrate them on a challenging test case: the inference and
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validation of a network of News Outlets, based on content similarity informa-
tion. All the principles and methods are however general, and can be applied to
different domains.

We argue that network inference algorithms need to satisfy two key properties.
First, the inferred network needs to be stable, meaning that networks inferred
on independent data must be similar to each other. Second, it must be related to
any available independent ground truth known or assumed to affect the network
topology. Both these properties can be verified by testing if the inferred network
is similar to a reference network.

For the first property, the reference network would be a network inferred based
on independent data. For example for the network of News Outlets, we show that
our network inference algorithm produces networks that are significantly similar
to each other, when operating on independent datasets. This stability strongly
indicates that the algorithm is capturing a signal, not noise.

For the second property, the reference network would be a network constructed
based on independent ground truth data. For example for the network of News
Outlets we show how the inferred network is significantly related to other—
directly observable—networks of news outlets, such as those based on geographic,
linguistic and media-type similarity.

Hence, both properties are verified by assessing if the inferred network is
related to a reference network. More specifically, we want to verify if the inferred
network is related significantly stronger to the reference network than a random
network would be related to it. This is formalized in statistics by means of the
key notion of statistical significance of a pattern, as expressed by a p-value. In
order for this to be defined, we need to make two choices: a test statistic that
quantifies how related the inferred network is to the reference network, and a
null model for the inferred network.

The test statistic can be defined by quantifying the similarity of the inferred
network to the reference network considered, and we will discuss various options
for this similarity measure. To define the null model we will make use of two
established approaches for random network generation. The choices we explore
in this paper are exemplary, and other choices may be more appropriate in other
applications. We will discuss the implications of these design choices, by com-
paring three different network inference algorithms for the News Outlet network
inference application.

Finally, as a separate validation from a machine learning perspective, we in-
vestigate if we can predict the inferred network topology based on independent
information. In particular, we show how Generalised Linear Models can be used
to ‘explain’ the inferred network in terms of any known ground truth networks
as discussed above.

Our approaches can be readily transferred to social sciences and genomics,
where the availability of ground truth is the key problem when validating network
inference.
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2 Network Validation

The analysis of patterns found in data can generally be validated in two different
ways: either by assessing their significance, or by measuring their predictive
power. In the first case, we are interested in measuring the probability that a
similar pattern could be found in randomly generated data. In the second case,
we are interested in measuring the extent to which patterns found in a subset of
the data, can be found in an independent subset of the data. Of course the two
approaches have many relations, but in this study we will simply address them
separately. We will call them respectively ‘Hypothesis Testing’ and ‘Predictive
Power’ approach.

Notations. A network G = (N , E) is comprised of the set of nodes N =
{N1, N2, ...Nn} and the set of edges E ⊆ N × N , n = |N | is the total num-
ber of nodes of the network and e = |E| is the total number of edges.

2.1 Hypothesis Testing

The key idea of hypothesis testing is to quantify the probability that a the value
of a test statistic evaluated on observed data could have been found also in
random data. In our strategy to evaluate network inference algorithms, the test
statistic is the similarity to a chosen reference network, and we denote it as tGR

where GR stands for the reference network. We denote as GI the network inferred
by the inference algorithm. The null hypothesis H0 is that the inferred network
is sampled from some underlying distribution. Hence, the hypothesis test boils
down to quantifying the probability that a random network is at least as similar
to a chosen reference network as the inferred network:

p = PG∼H0 (tGR(G) ≥ tGR(GI)) (1)

For most null hypotheses, it would be impractical to compute the p-value exactly.
However, it can be reliably estimated by sampling a large number K of networks
from the null hypothesis. Then the p-value is measured as the fraction of those
for which the test statistic defined as the similarity to a reference network is
smaller than that for the inferred network, or more precisely:

p ≈ #{G : tGR(G) ≥ tGR(GI)}+ 1
K + 1

(2)

If the p-value is small, this means that the inferred network is more similar
to the reference network than expected by chance. Then the null hypothesis is
rejected, as it is unlikely given the evidence. When the null hypothesis is rejected
in this way, the alternative must hold. This means that the inferred network is
significantly different from random networks sampled from the null hypothesis
in its similarity to the reference network, supporting the inference method used
to infer the network. In case that distances are used as test statistics instead of
similarities, the inequality signs in p-value equations should be inverted. Often
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a significance threshold α is chosen, and the null hypothesis is rejected if p < α,
where α is selected depending on the application.

In the following two subsections we will address the issue of selection of a test
statistic and null models.

Test Statistics. As a test statistic we will use the similarity of the inferred
network to a reference network, which we expect to be in some sense related to
it. In this section we will discuss both the similarity measure and the choice of
reference networks.

In literature several approaches have been proposed for the measurement of
similarity between networks [4,5,6]. In the case of comparing two networks GA

and GB that have the same set of nodes N , one can compare the topologi-
cal properties or their link structure. Perhaps the simplest comparison involves
counting how many pairs of nodes have the same linkage status (connected or
disconnected). The edges of each network can be considered as independent sets
of elements and the comparison of networks is reduced to a comparison of sets
of edges. Jaccard distance can be used to compare two sets as a measure of dis-
similarity between them[7]. It is obtained by dividing the difference of the sizes
of the union and the intersection of two sets by the size of the union:

JD(EA, EB) =
|EA ∪ EB| − |EA ∩ EB|

|EA ∪ EB|
(3)

This quantity ranges between zero and one, with a value of zero indicating
identical networks, and a value of one indicating no shared edges.

Of course one could define other measures, that consider less local proper-
ties, for example one could count how many triplets of nodes have the same
connectivity status (in this way counting common network motifs [8]), or one
could ignore the specifics of network topology, and focus on the distances be-
tween nodes represented by it. So a comparison of the all-pairs distance-matrix
for each network could lead to a useful similarity measure.

In this study, as test statistic we will use the Jaccard distance from a reference
network.

The choice of reference network is a very important one, as often in network
inference applications we only have access to indirect evidence of the network
topology (this being one of the key motivations for modern network inference).
We have however often access to other networks (or sub-networks) for which the
ground truth can be assumed to be known, and which we expect to be somewhat
related to the network we are investigating.

If the data can be divided into independent sets, for example, we should as-
sume that networks inferred on different parts of the data should be significantly
similar. This can lead both to a bootstrap process, but also to the analysis of
temporal data, as we will discuss in Sect. 3.3. Observing significant similarity to
independently generated networks can provide strong support for a hypothesis,
also in the case of networks generated with completely different types of data,
as we will demonstrate using geographic, linguistic and media-type similarity, to
test the significance of a network of news-media outlets.
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Null Models. Every statistical test aims at answering the following question:
what is the probability that a pattern like the one currently analysed is the
result of chance? Of course this quantity (p-value) can be computed only after
a random process has been specified, to formalise the notion of ‘chance’. The
Null Model has the crucial role of providing a baseline comparison to assess the
significance of inferred patterns.

In the case of validating network patterns, we will need to specify a model of
random network generation. If the observed similarity to a reference network is
found also in randomly generated graphs, then we cannot conclude that we have
found a significant pattern in the given data. In this study we will present two
methods of random network generation, although many others are possible.

Erdös-Rényi Model
The first model is the celebrated G(n, p) Erdös - Rényi model[9]. A graph of n
nodes is generated by connecting nodes randomly. Two nodes have an indepen-
dent probability p to be connected. This probability defines the density of the
graph. Indeed the expected number of edges e is:

e =
(
n
2

)
p (4)

and the distribution of the degree of any particular node N is binomial:

P (deg(N) = l) =
(

n− 1
l

)
pk(1 − p)n−1−l (5)

Switching Randomisation
Although the Erdös-Rényi model is very natural and simple to analyse, it leads
to topologies that are often very different from topologies observed in real world
situations. For example, it does not exhibit the power-law in degree distribu-
tions that is often found in social networks. To remedy this, one can define a
random-network generation model that—by construction—has the same degree
distribution as the inferred network, and yet is randomly sampled from the space
of possible networks. Such models can be created by a switching approach[10].
This method starts from a given graph and randomises it by switching edges
between nodes. If the pairs of nodes A-B and C-D are connected, the model will
switch the connections to create the edges A-D and B-C. The number of itera-
tions is arbitrary but an adequate number is considered 100 times the number
of edges [11].

2.2 Predictive Power

We are interested in the possibility of predicting the network topology based
on other observable properties of the network. If some ground truth information
about the inferred network is known, it is expected to be able to ‘explain’ the ex-
istence of some edges of the network. If more than one ground truth components
are available this knowledge can be combined in order to improve the under-
standing of the inferred network. The combination of ground truth elements can
be made using Generalized Linear Models (GLMs).
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Generalized Linear Models. J. Nelder and R. Wedderburn introduced GLMs
as a way to provide a unified framework for various non-linear or non-normal
linear variations of regression[12]. GLM splits the model for the observed data
Yi into a random and a systematic component through a function called the link
function. Under GLM Yi is assumed to be generated from a distribution function
of the exponential family [13]. The mean μ of the distribution depends on the
independent variables, X, through:

E(Y) = μ = g−1(η) = g−1(Xβ) (6)

where E(Y) is the expected value of Y; η is the linear predictor which is a
linear combination of unknown parameters β; g is the link function; and the
elements of X are typically measured by experimenters. The variance of the
distribution is a function of the mean that can also follow the same exponential
family distribution. The unknown parameters are easily estimated by maximum
likelihood or other techniques.

Network Topology Prediction. The quality of the GLM models and the
accepted ground truth components can be measured based on their power to
predict the topology of the inferred network. Our aim is to measure the ability
of the GLM model to predict the existence of an edge of the network. Using
a methodology similar to this found in supervised classification we separate
the network into a training and test sub-network. The training network is used
to calculate the GLMs parameters. These parameters are combined with the
accepted ground truth and are used to predict the structure of the test network.
A generally accepted accuracy measurement is the Area Under Curve (AUC)
based on the ROC analysis of the predictions on the test set. The separation into
train and test sub-networks is performed multiple times under a cross-validation
scheme in order to reduce bias.

3 Experimental Study

We will illustrate the validation methodology on the specific task of inferring
the network of news outlets that are connected by the same bias in choosing
stories to cover. This case study has many points in common with standard
network inference tasks, for example gene regulation networks (while being easier
to interpret): ground truth is not directly observed, side information is available,
data is noisy, and so on. In this section we also introduce three increasingly
complex network inference algorithms and use our methodology to compare their
output.

3.1 Content-Based Inference of Media Outlets Network

In this application, we are interested in linking news outlets that have similar
interests in choosing stories to cover. In this research a news story is defined as
a set of news articles that cover the same event, practically found as a cluster.
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We analyse a set of 1,017,348 articles gathered over a period of 12 consecutive
weeks starting from October 1st, 2008, from 543 online news outlets, distributed
over 32 different countries, in 22 different languages, including 7 different media
types (e.g., newspapers, blogs, etc). This dataset was created as part of a separate
project, which will not be discussed here[14]. While many of the outlets of interest
offer their content in English language, we machine-translated the content of the
others into English, by using Moses software [15,16].

Articles are preprocessed using stop-word removal, stemming and are vec-
torised using the TF-IDF representation[17]. They are then clustered in order to
form the stories that will be used as the base for the network inference. The dis-
tance of two articles is measured using the cosine similarity[17]. The clustering
algorithm identified on average 974 stories per day.

We used the Best Reciprocal Hit (BRH) clustering method, borrowed from
the field of bioinformatics [18]. The choice of clustering algorithm is not central
to the discussion of this study.

3.2 Three Network Inference Algorithms

We compared three network inference algorithms, all connecting pairs of nodes
that have a sufficiently high level of similarity. While other inference methods
are possible, we focused on this approach here for simplicity. Since we will use
real valued similarity measures, we will also to choose a threshold in order to
derive the linkage structure, and this threshold will control the density of the
resulting graph.

We will assume we have an Outlet-by-Story matrix, indicating which outlets
carried each given news story. There are 543 outlets, and 81,816 stories in total.
Every outlet is hence described by an indicator vector in ‘story-space’.

Method A. The simplest approach is to connect two outlets if they share
some minimum number of stories. If the threshold is set to one, every pair of
outlets that share at least one story are connected. In other words, the similarity
measure between outlets is the scalar product between their indicator-vectors in
story-space. This approach can easily lead to very dense networks since many
stories are shared by the majority of outlets.

Method B. A more sophisticated approach would apply weights to the candi-
date edges of the network. A popular weighing scheme is based on the TF-IDF.
Under this scheme each outlet correspond to a document and each story to a
term. The frequency of story j that belong to outlet k is

fk
j =

sk
j

sk
(7)

where the nominator is the number of times the story appears to the outlet k
and sk is the total number of stories of outlet k. The corresponding inverse outlet
frequency ikj is defined as

ikj = log
n

nj
(8)
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where n is the total number of outlets and nj is the number of outlets that have
story j. Thus, a vector of size J , that is the total number of different stories, is
assigned to each outlet, one weight for each story:

wk
j = fk

j · ikj , j = 1, 2..J (9)

The similarity of two outlets Na and Nb can now be measured as their cosine
similarity:

sim(Na, Nb) =
J∑

t=1

wa
t wb

t (10)

Method C. Another method which is similar to the previous one is weighting
each story with a weight fj based on the frequency of the story, independently
of the outlet that publish it:

fj =
1
nj

(11)

where nj is the number of outlets that have story j. Stories that are found in the
majority of media receive a small weight and stories found in few media receive
higher weight. The maximum weight is 1/2 since we consider as stories clusters
that have articles of at least two different outlets, and the minimum weight is
1/n. If we normalise the above measure to the range of zero to one we get

f ′
j =

2(n− nj)
(n− 2) · nj

(12)

where n is the total number of outlets and we consider two as the minimum
number of outlets that can belong to a cluster. This way measure of similarity
between two outlets Na and Nb is defined as:

sim′(Na, Nb) =
∑J

t=1 f ′
tya(j)yb(j)∑J

t=1 ya(t)yb(t)
(13)

where yk(j) is one if outlet k has story j and zero otherwise.

3.3 Results

In this section we present the application of our methodology for inferring and
validating the News Outlets network. We show that the network presents stabil-
ity in time using independent datasets, that using some ground truth knowledge
we can select the appropriate inference algorithm, and that finally we can predict
the network structure.

Stability in Time. Figure 1 presents the stability of the network for the 12
consecutive weeks. The dataset of each week is independent of the data of the
other weeks and the first week is used only as reference network. The threshold
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of the three network inference methods was set to produce networks of the same
density of ∼ 5000 edges per week.

To determine the stability of the network inference algorithm, we test whether
an inferred network’s similarity to the inferred network from the previous week
is significant. In order to do this, we carry out two hypothesis tests: one for each
of the possible null models discussed in 2.1. As test statistic we used the Jaccard
Distance. We sampled K = 1000 networks and estimating the p-value as the
fraction of those for which the Jaccard distance with the reference network from
the previous week is smaller than for the inferred network.

The networks inferred by each method are significantly similar (p < 0.001) to
those inferred the previous week with the same method, under both null models.

Comparison to Related Networks. In this test, we compare the network
inferred by each of the three Methods, with three other networks, obtained using
independent (but possibly related) information. The first one (Location Network)
linking outlets with the same geographic location; the second one (Language
Network) linking outlets written in the same language; the third one (Media
Type) liking outlets of the same type (e.g., newspaper, magazine, broadcast,
blog, etc). These networks of outlets are formed of several disjoint cliques, and we
expect some of them to relate to the news-choice preference of an outlet. Clearly,
a story that is important and publishable for UK media may be uninteresting
to the French media. Language is also an important factor, independently of the
location of the outlet. For example, we measured that the number of stories that
mention the word ‘Pope’ in Spanish-language media in the USA is three times
larger than in English-language media in the same country. About the influence
of media type, it is worth mentioning that certain stories may reported in blogs
before they appear in mainstream traditional media.

Figure 1 presents the comparison of the content-based network inferred by
Methods A, B, C to the ‘Location’ network. In this case only the Methods B and
C are significant with p < 0.001. Figure 2 presents the case of the ‘Language’
where only Method C yields significant patterns (p < 0.001) over all weeks’
datasets. Finally Fig. 2 illustrates the ‘Media-Type’ case where Method A and
Method C yield significant results (p < 0.001). Only method C present significant
results for all reference networks over all independent datasets and the two null
models that were used to make comparisons. Note that although the distances
between networks seem relative small, they are highly significant.

Selecting Inference Method. The selection of the inference method will be
made based on their ability to create significant results. We selected a signifi-
cance level of 0.001 and based our decision on this. Table 1 compares the three
methods for the 11 weeks’ independent datasets (the first week was used only
as reference network). The numbers represent the number of weeks that the
methods presented significant results with p < 0.001 for the different reference
networks and the two null models. Only Method C presents significant results
for all the performed tests and datasets, performing at least as good as the two
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Fig. 1. Network stability on sequential weeks (on the left) and ‘Location’ reference

network (on the right) for the three network reconstruction methods. Errorbars are

+/− 3 standard deviations over the mean value.

other methods investigated on all tests carried out. We can therefore conclude
that Method C is better than both Methods A and B.

In Figure 3 we report the network of the media outlets obtained with Method
C. To the best of our knowledge, this is the first map of this kind to be published.
The visualisation of the network was made by using the Cytoscape software [19].

Prediction of Edges. We investigated the ability of prediction of an edge
of media outlet network based on the GLM analysis and the three available
ground truth reference networks. For the GLM analysis we adopted the normal
distribution for Yi and the identity link function where μ = Xβ. The accuracy
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Fig. 2. Comparison to the ‘Language’ (on the left) and ‘Media-Type’ (on the right)

reference networks. Errorbars are +/− 3 standard deviations over the mean value.

Table 1. The number of weeks that each Method presented significant results with

p < 0.001. ER stands for the Erdös and SR for the Switching Random Graphs.

Previous week Location Language Media-Type

ER SR ER SR ER SR ER SR

Method A 11 11 1 11 0 9 11 11

Method B 11 11 11 11 11 11 2 11

Method C 11 11 11 11 11 11 11 11
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Fig. 3. A snapshot of the News Media Network. A high threshold is set to produce

more sparse graph for visualisation reasons. This graph contains 351 nodes and 1612

edges. Singletons are omitted. The node sizes are proportional to their degrees.

was measured as the AUC for a 100-fold cross-validation scheme for different
densities of the inferred network. For each inference method two figures are
presented: The first illustrates the accuracy of each ground component if it was
used by itself for predictions compared to using all three, and the second the
accuracy of using pairs of components compared to using all three. Figure 4
present the edge prediction results for the three network inference methods and
under different scenarios: Using all three ground truth networks combined, using
each one of them separately and using all pairwise combinations of them. The
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Fig. 4. AUC accuracy for edge prediction using Method A on the top row, Method

B in the middle row and Method C in the bottom row, based on GLM analysis over

different network densities

best prediction accuracy, 77.11%, over all different network densities, is reached
using all three ground truth networks and the Method C.

4 Conclusions

The validation of network inference results in terms of statistical assumptions
or in terms of related networks, indicates how to handle the common case where
ground truth is difficult to obtain. Concepts from statistical testing can directly
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provide a framework for assessing and comparing results, algorithms and also
datasets.

Importantly, when one can distinguish in a principled way between two al-
gorithms, then one can also search the hypothesis space for the best possible
network. Future work in this direction will include the design of network in-
ference algorithms that directly optimise the stability and significance of the
output, instead of just choosing between existing heuristic algorithms.
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Abstract. Bipartite ranking refers to the problem of learning a ranking

function from a training set of positively and negatively labeled examples.

Applied to a set of unlabeled instances, a ranking function is expected to

establish a total order in which positive instances precede negative ones.

The performance of a ranking function is typically measured in terms of

the AUC. In this paper, we study the problem of multipartite ranking,

an extension of bipartite ranking to the multi-class case. In this regard,

we discuss extensions of the AUC metric which are suitable as evalua-

tion criteria for multipartite rankings. Moreover, to learn multipartite

ranking functions, we propose methods on the basis of binary decom-

position techniques that have previously been used for multi-class and

ordinal classification. We compare these methods both analytically and

experimentally, not only against each other but also to existing methods

applicable to the same problem.

1 Introduction

There are several connections between “learning to rank”, a topic of increasing
interest in machine learning research, and conventional classifier learning. First,
some ranking problems such as label ranking [16] can be seen as direct extensions
of (multi-class) classification. Second, many learning methods for ranking essen-
tially reduce the original problem to a standard classification problem. Third,
aspects of ranking and sorting are also of interest for classification itself. A
notable case is ROC analysis, which evaluates the ability of classifiers to sort
positive and negative instances in terms of the area under the ROC curve, ab-
breviated as AUC [7]. The problem to learn classifiers with high AUC (instead
of low error rate) is called bipartite ranking.

In this paper, we are interested in extending bipartite ranking from the bi-
nary to the multi-class case. This problem, that we shall refer to as multipartite
ranking, is closely related to ordinal classification, that is, classification with a
totally ordered set of classes. Yet, just like in bipartite ranking, the goal is not to
learn a good classifier, but a good ranker, that is, a function that systematically
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ranks “high” classes ahead of “low” classes. Note that a ranking is in a sense a
refinement of the order information provided by an ordinal classifier, as the latter
does not distinguish between objects within the same category. As an example,
compare the task of two reviewers: one has to make an ordinal prediction for
each paper (reject, weak reject, weak accept, accept), and the other has to rank
the papers according to quality. Obviously, the latter approach provides more
detailed information that can be used not only for partitioning papers into the
above four categories.

To solve the multipartite ranking problem, we explore the use of binary de-
composition techniques. Such techniques have already been applied quite suc-
cessfully in conventional classification, ordinal classification, and label ranking
[1,8,16], but have not yet been explored in prior work on multipartite ranking
[20,22]. Our main result is that, compared to existing methods applicable for
the multipartite ranking problem, binary decomposition techniques are at least
competitive in terms of predictive accuracy, and presumably even superior, while
being computationally much more efficient.

In the next section, we introduce the multipartite ranking problem, discuss its
relation to bipartite ranking and ordinal classification, and also address the ques-
tion of how to evaluate multipartite ranking functions. In Section 3, we propose
two methods for multipartite ranking which are based on binary decomposition
techniques. Section 4 is devoted to an experimental analysis of these methods.
The paper ends with some concluding remarks in Section 5.

2 Ordinal Classification and Multipartite Ranking

In this section, we introduce the problem of multipartite ranking and discuss
corresponding performance metrics. Beforehand, we recall the related problems
of ordinal classification and bipartite ranking.

2.1 Ordinal Classification

In ordinal classification, also called ordinal regression in statistics, the set of
class labels L = {λ1, λ2 . . . λm} is endowed with a natural (total) order relation
λ1 ≺ λ2 ≺ · · · ≺ λm. This distinguishes ordinal from conventional classification,
where L is an unordered set.

From a learning point of view, the ordinal structure of L is additional infor-
mation that a learner should try to exploit, and this is what existing methods for
ordinal classification essentially seek to do [8,4]. In fact, the problem of ordinal
classification is in a sense in-between classification and regression, two problems
that have been extensively studied. Like in classification, the output space is
finite, and like in regression, the elements of this space are ordered.

Thus, it is hardly surprising that both classification and regression algorithms
have been used to tackle ordinal classification problems, even though both ap-
proaches are obviously problematic: A simple classification method will neglect
information about the class order, whereas a regression method will make too
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strong assumptions, because it does not only exploit the order relation but as-
sumes meaningful distances between output values [19]. To avoid these problems,
new algorithms have been developed in the machine learning field in recent years,
which are able to exploit class order information in a meaningful way [13,8,5,4].

2.2 Bipartite Ranking

In the problem of bipartite ranking, training data consists of a set of positively
and negatively labeled instances, just like in conventional binary classification.
However, instead of learning a classifier that can be used for assigning instances
to one of the two classes, the goal is to learn a ranking function f(·) that can
be used for ordering a set of instances from most likely positive to most likely
negative. Thus, given a set X of instances with unknown class labels, the learned
ranking function outputs a linear order of these instances. Typically, this is
accomplished by scoring the instances, i.e., f(·) is implemented as an X → R
mapping that assigns a real-valued score f(x) to each instance x from an instance
space X. The instances are then ranked according to their respective scores.

The most commonly used metric to evaluate a predicted ranking is the area
under the ROC curve (AUC) [7]:

AUC(f, X) =
1

|P ||N |
∑
x∈P

∑
x′∈N

S(f(x′), f(x)) , (1)

where P ⊂ X and N ⊂ X are the positive and negative instances in X (hence
X = P ∪ N , P ∩ N = ∅). The mapping S(·, ·) outputs 1 when the positive
instance is ranked before the negative one, and 0 in the reverse case. An output
of 1/2 is given when the instances are assigned the same score.

2.3 Multipartite Ranking

Given that class labels are ordered, as in ordinal classification, the idea of bipar-
tite ranking can obviously be generalized from the binary to the multi-class case.
Given a set of instances X with class labels in L = {λ1, λ2 . . . λm}, the goal is to
order them in such a way that, ideally, the instances from λm precede those from
λm−1, which in turn precede those from class λm−2, etc. Subsequently, we shall
refer to the problem of learning a corresponding ranking function from a training
set T = {(xi, �xi

)}n
i=1 ⊂ X× L of labeled instances as multipartite ranking.

A common approach to learning the scoring function f consists of turning the
original training data into a set of order constraints on f(·), and then finding a
function that is as much as possible in agreement with these constraints. More
specifically, each pair of observed examples (xi, �xi

) and (xj , �xj
) with �xi

- �xj

gives rise to a constraint f(xi) > f(xj). To make the problem amenable to ex-
isting learning algorithms, the idea is to express such constraints as classification
examples. Suppose, for example, that f(·) is a linear function x �→ 〈α, x〉. Then,

f(x) > f(x′) ⇔ 〈α, x〉 − 〈α, x′〉 > 0 ⇔ 〈α, x− x′〉 > 0 ,
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which is equivalent to saying that z = x − x′ should be classified as positive
(or −z as negative) by a standard binary classifier [13]. The number of pairwise
constraints, and hence the size of the training data for the binary classifier, will
typically be much larger than the original training data (cf. Section 3.5).

2.4 Evaluation Metrics for Multipartite Ranking

To evaluate the performance of a predicted multipartite ranking of a set X of
instances, different metrics have been proposed in the literature. An obvious gen-
eralization of the AUC, which estimates the probability that a randomly chosen
positive instance is ranked higher than a randomly chosen negative instance, is to
consider the probability that a randomly chosen pair of instances from different
classes is ranked correctly by f(·), i.e.

P (f(x) < f(x′) |λx ≺ λx′) .

Assuming that the training examples are drawn independently from an under-
lying probability distribution on X×L, an unbiased estimate of this probability
is obtained by the C-index

C(f, X) =
1∑

i<j ninj

∑
1≤i<j≤m

∑
(x,x′)∈Xi×Xj

S(f(x′), f(x)) , (2)

where Xi is the subset of instances x ∈ X whose true class is λi, and ni = |Xi|.
The C-index is commonly used as a metric of concordance in statistics [11]. It is
essentially equivalent to the pairwise ranking error introduced in [13]. Obviously,
the AUC defined in (1) is a special case of (2) with X1 = P and X2 = N .

A related metric is the Jonckheere-Terpstra statistic [14], which is closely
related to a multi-class extension of the AUC that has been proposed in [12]:

U(f, X) =
2

m(m− 1)

∑
1≤i<j≤m

AUC(f, Xi ∪Xj) . (3)

The key difference between (2) and (3) is that in (2), the contribution of a class
is proportional to the size of the class, while each class has the same weight in
(3). In fact, (2) can be written as a weighted sum of pairwise AUCs:

C(f, X) =
1∑

i<j ninj

∑
1≤i<j≤m

ninj AUC(f, Xi ∪Xj) (4)

An alternative proposal for extending the AUC has recently been made in [22].
This alternative is motivated by the observation that decomposing the evaluation
of a multipartite ranking into several pairwise evaluations may arguably come
along with a certain loss of information and, moreover, can violate desirable tran-
sitivity properties. For example, pairwise AUCs can violate stochastic transitiv-
ity: AUC(f, X1∪X2) ≥ 1/2, AUC(f, X2∪X3) ≥ 1/2 but AUC(f, X1∪X3) < 1/2.
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Therefore, to evaluate rankings in a more global way, the idea is to consider the
probability

P ( f(x1) < f(x2) < . . . < f(xm) | �x1 = λ1, . . . , �xm
= λm) ,

where the (xi, �xi
), i = 1 . . .m, are again drawn independently from an underly-

ing probability distribution on X×L. This gives rise to the following evaluation
metric for the ranking of a finite set X of instances:

W (f, X) =
1∏m

i=1 ni

∑
x1∈X1,...,xm∈Xm

I(f(x1) < f(x2) < . . . < f(xm)) , (5)

where the indicator function I(·) maps truth values of predicates to {0, 1}. Thus,
the basic idea is to select m instances, one from each class, and to check whether
they are correctly ordered or not. The metric (5) is simply the average over all
possible m-tuples that can be verified in this way.

Despite having some potential advantages, we believe that (5) does also exhibit
some questionable properties. In particular, evaluating a ranking of m elements
in terms of a simple 0/1 loss, as done by the indicator function I(·), does not
distinguish between very poor rankings (e.g., a reversal of the correct ranking)
and rankings that are “almost correct” (in which, for example, only two adjacent
classes are swapped). To take an extreme example, suppose that X1 = {x1}
and X2 = {x2} each only contain a single instance, and that the predicted
ranking swaps these two instances (f(x1) > f(x2)), while the instances from all
other classes are always ordered correctly by f(·). Still, (5) will yield the worst
evaluation W (f, X) = 0.

This strong sensitivity toward small mistakes could in principle be avoided
by replacing the indicator function I(·) in (5) with a more tolerant metric, for
example the (normalized) sum of concordant pairs

2
m(m− 1)

∑
1≤i<j≤m

I(f(xi) < f(xj)) .

This would obviously yield a metric closely related to the pairwise variants (2)
and (3). Still, when expressing the metric thus obtained in terms of pairwise
AUCs, another questionable property of (5) becomes obvious. In fact, one will
again obtain a weighted combination of pairwise AUCs, just like (4), but now
the AUC of classes λi and λj is weighted by

∏m
i=1 ni/(ninj). In other words,

the weighing is now inversely related to the size of the classes. This is because,
to produce all m-tuples in (5), a pair of instances (xi, xj) is combined with all
instances from all other classes. In our above example, where |X1| = |X2| = 1, the
instance pair (x1, x2) has an extreme influence, since it will necessarily appear
in all m-tuples.

Subsequently, we shall focus on the pairwise evaluation metrics (2) and (3),
which are intuitively appealing and widely adopted in the literature.
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2.5 From Multipartite Ranking to Ordinal Classification

We end this section with a few comments on the relationship between multi-
partite ranking and ordinal classification, the problem that we also started with
at the beginning of the section. Obviously, an ordinal classification function can
be used as a ranking function. In fact, note that an ordinal classifier becomes
a scoring function by interpreting its predictions, namely class labels, as scores
(i.e., predicting class λi for instance x is considered as scoring x by i). Needless
to say, however, this type of scoring will produce a large number of ties, which
is why one cannot expect ordinal classifiers to be good rankers.

Conversely, a ranking function f(·) can be turned into an ordinal classifier by
thresholding: Given m+1 threshold values ti, i = 1 . . .m+1, class λi is predicted
for an instance x if the score f(x) is between ti and ti+1. The main problem here
is to find optimal thresholds, i.e., thresholds that lead to an optimal classification
performance [21]. However, this problem is beyond the scope of this paper.

3 Binary Decomposition for Multipartite Ranking

As mentioned in Section 2.3, existing ranking methods are mostly based on the
idea of transforming the original ranking problem into a binary classification
problem. Roughly speaking, each pair of instances (from different classes) gives
rise to a training example. It is worth mentioning that these methods are indeed
applicable though not specifically designed for multipartite ranking: Their input
is a set of order constraints on instances (f(xi) > f(xj)), which can originate
from class information (�xi

- �xj
), but may also come from other sources; in

fact, the existence of classes is not even assumed. In this section, we propose
an alternative strategy which is specialized to the multipartite ranking problem
and exploits class information in a more explicit way.

3.1 Exploiting Class Information by Binary Decomposition

Instead of transforming the original problem to a single binary classification
problem, we decompose it into several such problems, resorting to binary de-
composition techniques that have already been used successfully in multi-class
classification. A decomposition technique specifically designed for ordinal clas-
sification has been proposed in [8]. Since ordinal classification and multipartite
ranking are closely related (cf. Section 2.5), the idea to adapt this method to the
latter problem suggests itself, and we will do so in Section 3.2. Another promis-
ing decomposition technique is the all-pairs learning scheme that has already
been used in conventional and ordinal classification, as well as in other types of
ranking problems such as label ranking [9,10,16,15]. In fact, this technique is es-
pecially motivated by (3) and (4), which show that the quality of a multipartite
ranking is in direct correspondence with the quality of the associated bipartite
rankings. Thus, it should, in principle, be possible to optimize the former by
optimizing the latter, and this is what the all-pairs approach is seeking to do.
We shall elaborate on this approach in Section 3.3.
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One key advantage of binary decomposition is that the related problems are
simpler and usually much smaller than a single binary problem, as they avoid the
combinatorial explosion caused by considering all pairs of the original training
examples (cf. Section 3.5). Roughly speaking, by exploiting class information, a
large number of order constraints can be satisfied in an implicit way: A classifier
that separates n0 negative from n1 positive instances, and which is hence trained
on n0 + n1 examples, automatically satisfies n0n1 order constraints.

On the other hand, binary decomposition also produces an additional prob-
lem, namely the need to aggregate the predictions of the different models into
a single ranking: Binary decomposition techniques learn a set of models Mi

on different subproblems. Given a query instance x, this instance is submitted
to all models, and the predictions Mi(x) have to be combined into an overall
prediction. In the context of multipartite ranking, aggregation can essentially be
realized at two different levels: (1) Aggregation of rankings: In this case, each
model Mi produces a ranking, and these rankings are combined into a consen-
sus ranking. (2) Aggregation of scoring functions: If all models Mi are based on
scoring functions fi(·), a second option is to combine these functions into a single
function f(·), which means combining the scores fi(x) into a single score f(x).
Computationally, the first alternative is more complex, since, depending on the
concrete criterion used, optimal rank aggregation may become very expensive.
We shall therefore adopt the second approach.

3.2 The Approach of Frank and Hall

A simple and intuitively appealing approach to ordinal classification has been
proposed by Frank and Hall [8]. The idea of this method, subsequently re-
ferred to as F&H, is to decompose the original problem involving m classes
L = {λ1, λ2 . . . λm} into m− 1 binary problems. The i-th problem is defined by
the “meta-classes” C− = {λ1, λ2 . . . λi} and C+ = {λi+1, λi+2 . . . λm} playing
the role, respectively, of the negative and positive class.

Let Mi, i = 1 . . . m − 1, denote the model learned on this problem. Given
a query instance x, a prediction Mi(x) is interpreted as an estimation of the
probability P(�x - λi) that the class of x, denoted �x, is in C+. Consequently,
the models must guarantee outputs in the unit interval. From these probabilities,
a probability distribution on L is derived as follows:

P(�x = λ1) = 1−P(�x - λ1)
P(�x = λi) = max {P(�x - λi−1)−P(�x - λi), 0 } , i = 2, . . . , m− 1
P(�x = λm) = P(�x - λm−1)

(6)

Eventually, the class with the highest probability is predicted.
Coming back to the problem of multipartite ranking, recall that we seek to

aggregate the scoring functions associated with individual models into an overall
scoring function that defines the ranking. Here, these functions are given by the
predictions of the models Mi, that is, fi(x) =Mi(x), and each of them induces
an individual ranking. An obvious aggregation function is given by
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f(x) =
m−1∑
i=1

fi(x) =
m−1∑
i=1

Mi(x) . (7)

This aggregation is meaningful as it systematically assigns higher scores to in-
stances from higher classes. For example, an instance x of class λ1 will be in the
negative meta-class of all m − 1 binary classifiers, i.e., all Mi should return a
low score fi(x), and hence the cumulative score f(x) will be low.

Formally, it is worth mentioning that (7) is in direct correspondence with the
expected class index of an instance, given that the models Mi yield reasonable
probability estimations and are consistent in the sense that Mi(x) ≥Mi+1(x).
In fact, the mapping i �→ Mi(x) is nothing else than a decumulative distribution
function, and hence, with E(i) the expected class index of x:

f(x) =
m−1∑
i=1

P(�x - λi) =
m−1∑
i=1

m∑
j=i+1

P(�x =λj) =
m−1∑
i=1

(i−1)P(�x =λi) = E(i)−1

3.3 Learning by Pairwise Comparison

Learning by pairwise comparison (LPC), also known as all-pairs or round robin
learning [9], is a popular binarization technique for multi-class classification.
LPC trains a separate model Mi,j for each pair of classes (λi, λj) ∈ L × L,
1 ≤ i < j ≤ m; thus, a total number of m(m − 1)/2 models is needed. At
classification time, a query x is submitted to all models, and each prediction
Mi,j(x) is interpreted as a vote for a label. More specifically, assuming scoring
classifiers that produce normalized scores fi,j = Mi,j(x) ∈ [0, 1], the weighted
voting technique interprets fi,j and fj,i = 1−fi,j as weighted votes for classes λi

and λj , respectively, and predicts the class λ∗ with the highest sum of weighted
votes, i.e., λ∗ = argmaxi

∑
j �=i fi,j .

LPC has been used successfully for conventional multi-class classification, but
has also been shown to produce strong results for ordinal classification [10,15].
To derive a ranking function from the ensemble of models Mi,j , we again need a
proper scoring function. Imitating the derivation of (7), a reasonable candidate
is the sum of the predictions “in favor of a higher class”, that is

f(x) =
∑

1≤i<j≤m

fj,i(x) =
∑

1≤i<j≤m

Mj,i(x) . (8)

A variant of this aggregation, motivated by the fact that the C-index (2) is a
weighted combination of the pairwise AUCs, is

f(x) =
∑

1≤i<j≤m

pipj fj,i(x) =
∑

1≤i<j≤m

pipj Mj,i(x) , (9)

where pi is the probability of class λi estimated by the relative frequency in the
training data. In fact, one may expect that (9) is more suitable to optimize the
C-index (2), while (8) might be preferable when using (3) as evaluation metric.
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3.4 Comparing LPC and F and H

A critical issue of the LPC approach is the so-called “non-competence” problem.
Even though the pairwise modelsMi,j are trained only on examples from classes
λi and λj , they have to be queried by all instances at prediction time. Thus, if
x neither belongs to λi nor to λj , then Mi,j is actually not “competent” and
the prediction Mi,j(x) becomes arguably questionable.

This problem is well-known from standard classification, and is also relevant
for other binary decomposition techniques which are based on a generalized
version of error correcting output codes that allows classifiers to be trained on
proper subsets of the label set [1]. Despite this problem, LPC is known to per-
form extremely well for classification and often outperforms other decomposition
techniques that do not suffer from the non-competence problem, including the
one-vs-rest decomposition and the F&H method. A key advantage of LPC is a
simplification effect produced by the all-pairs decomposition: Two-class prob-
lems are maximally simple from a learning point of view, and the predictions of
models trained on these problems are hence more accurate. Since methods like
one-vs-rest and F&H train each model on all classes, it is true that they only
produce competent models. On the other hand, however, the problems are more
difficult (typically requiring more complex decision boundaries), and hence the
model predictions presumably less accurate. Besides, there is another potential
advantage of LPC, namely a kind of redundancy due to the training of a larger
(namely quadratic) number of models. Thanks to this redundancy, is is easier to
compensate for prediction errors of individual models.

For the following reason, however, one may expect the non-competence prob-
lem to be more severe for multipartite ranking than for classification: In classifi-
cation, one score is derived for each class label λi by combining the predictions
Mi,j(x), 1 ≤ i �= j ≤ m. Thus, at least the computation of the score for the
true label �x does not involve any incompetent prediction, and as long as these
predictions are correct, the true class will be the winner of the voting scheme,
regardless of all other (non-competent) predictions. In multipartite ranking, on
the other hand, the score of an instance x depends on all modelsMi,j , and most
of them are not competent for x.

Fortunately, due to the ordinal structure, there is still reason to hope that
even the non-competent models will make reasonable predictions: Given that
the ordinal structure of the set of class labels L is also reflected in the topology
of the instance space X, an assumption which is implicitly made by all ordinal
classification methods [15], a modelMi,j will indirectly also be trained for classes
λk, i �= k �= j. For example, when the model M2,3 is queried with an instance x
whose true class is λ4, a vote for the higher class λ3 (which is supposed to be
“closer” to λ4) should be more likely than a vote for the lower class λ2.

In summary, LPC has the disadvantage of partially non-competent models,
but the advantage of simplicity and redundancy. Which of these effects will
dominate in practice is a question that cannot be answered in general, especially
since the answer will strongly depend on the data set and learning algorithm
used. First insights will be offered by our empirical study presented in Section 4.
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3.5 Computational Complexity

The F&H method trains m− 1 models on the complete set of training examples
whose size is |T | = n. Thus, the total number of training examples for the
transformed problem is (m−1)n, and when using a base learner with complexity
O(kα), the overall complexity for training an F&H ranking model is O(mnα).

LPC requires a total of (m−1)n training examples, too, because each original
example (xi, �xi

) is used in exactly m−1 binary models Mi,j . Correspondingly,
the training complexity is O(m2nα) for a base learner with complexity O(kα).
It should be noted, however, that the pairwise problems, which involve only the
instances from two classes, are typically much smaller than n. For example, for a
uniform class distribution where each class has ≈ n/m examples, the complexity
is O(m2−αnα). Thus, for base learners with super-linear complexity (α > 1),
LPC is typically even more efficient than F&H.

For methods that construct a single binary classification problem, with one
order constraint for each pair of instances with different class labels, the number
of training examples can become as large as O(n2). With a classifier whose
complexity is O(kα), the overall complexity is hence O(n2α) and increases much
faster with the size of the training set T than for the decomposition methods.

However, it is worth mentioning that, for support vector machines, a quadratic
growth in the number of examples can be avoided under certain conditions. In
[18], Joachims proposes a sophisticated cutting plane algorithm for SVM training
that exploits the sparsity of a data set and scales with O(s · n · log(n)), where
s is the average number of non-zero features. Unfortunately, an implementation
of this approach (http://svmlight.joachims.org/) is offered only for the case
of two ranks (m = 2), which precludes its use in our experimental analysis.

4 Experimental Analysis

In this section, we provide an extensive empirical evaluation and comparison
between methods for multipartite ranking. Our primary interest is to show that
a reduction to multiple binary classifiers is at least competitive to state-of-the-
art ranking methods in terms of predictive accuracy, while being much more
efficient from a computational point of view. Besides, we are also interested in
comparing the two decomposition methods, LPC and F&H, amongst each other.

4.1 Data Sets, Ranking Methods, and Experimental Setup

Due to a lack of ordinal benchmark data sets, several previous studies includ-
ing [8,10,15] have resorted to discretized regression data sets for experimental
purposes. This is reasonable and has the advantage that, by changing the dis-
cretization, ordinal data sets can be produced in a quite flexible manner. We
have used twenty-one regression data sets from the UCI repository [2]. These
data sets vary strongly in size and number and type of features, and hence, they
are representative for a wide range of data that may occur in practice; see Ta-
ble 1. To obtain an ordinal class attribute, the numerical output attributes were

http://svmlight.joachims.org/
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Table 1. The twenty-five data sets used in the experiments (name, number of instances,

number of numerical features, number of nominal features). The last four data sets are

truly ordinal, and the number of classes is given in brackets after the name.

# name size num nom # name size num nom

1 Abalone 4177 7 1 14 House 8L 22784 8 0

2 Ailerons 13750 40 0 15 House 16H 22754 16 0

3 Auto Mpg 398 40 0 16 Kinematics 8192 8 0

4 Auto Price 159 14 1 17 MV Artificial 40768 7 3

5 Bank 8FM 8192 8 0 18 Pumadyn 8NH 8192 8 0

6 Bank 32NH 8192 32 0 19 Pumdayn 32H 8192 32 0

7 Boston Housing 506 12 1 20 Servo 167 0 4

8 California Housing 20640 8 0 21 Stocks 950 9 0

9 CPU Act 8192 21 0

10 CPU Small 8192 12 0 22 ERA (9) 1000 40 0

11 Delta Ailerons 7129 5 0 23 ESL (9) 488 40 0

12 Elevators 16599 18 0 24 Eucalyptus (5) 736 14 5

13 Friedman Artificial 40768 10 0 25 LEV (5) 1000 40 0

discretized into m = 5 classes using equal-frequency binning. It is worth noting
that this did not always lead to classes of equal size, since in many data sets, one
or more values of the numerical output attribute occurs many times. We only
report results for m = 5, because other values produced quite similar results.
We complemented the discretized regression data sets with four truly ordinal
classification data sets taken from [3], namely those that have reasonable size
and at least five classes.

As a baseline, we selected SVMRank [17], a state-of-the-art method for rank-
ing problems which is based on support vector learning (http://svmlight.
joachims.org/). We used this method in its default setting with a linear ker-
nel. F&H and LPC were implemented with logistic regression as a base learner,
which comes down to fitting a linear model and using the logistic link func-
tion (logit(x) = log(x/(1 − x))) to derive [0, 1]-valued scores, the type of model
output requested by both methods. Essentially, all three methods are therefore
based on linear models so that the comparison is fair from this point of view.
For LPC, we tried both aggregation strategies, the unweighted version (8) and
the weighted variant (9); we shall refer to these methods as LPC-U and LPC-W,
respectively. As a side remark, we mention that we also tried the classifier ver-
sions of F&H and LPC (ordering instances by the predicted class). As expected,
however, these were consistently outperformed by their ranking variants, and
therefore we excluded them from the analysis that we will present below.

We report averages of several test statistics over five repetitions of a stratified
ten-fold cross validation, each time with a different random permutation of the
data. The standard deviations were very small (often of the magnitude 10−4)
and, for the ease of exposition, are therefore omitted in the tables.

http://svmlight.joachims.org/
http://svmlight.joachims.org/
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4.2 Experimental Results

The ranking performance of the methods in terms of the C-index (2) and the
Jonckheere-Terpstra statistic (3) are shown in Table 3. To analyze the results, we
followed the two-step statistical test procedure recommended in [6], consisting of
a Friedman test of the null hypothesis that all learners have equal performance
and, in case this hypothesis is rejected, a Nemenyi test to compare learners in a
pairwise way. Both tests are based on the average ranks over all data sets, which
are shown at the bottom of the table. The ranks on the individual data sets are
indicated by the numbers in brackets (the best method has rank 1, the worst
rank 4; average ranks are assigned in case of ties).

The results show that F&H is significantly better than the rest, while no
significant difference is detected among the others (the critical rank difference
is 0.88 for a significance level of 10%). Note that, as expected, the performance
of LPC-U increases in comparison to LPC-W when using (3) instead of (2) as a
performance metric. Overall, however, these differences are small.

The main conclusion from this experiment is that the binary decomposition
methods are quite competitive to SVMRank in terms of ranking performance,
and in fact, the ranking variant of F&H seems to be even superior. (We are
somewhat cautious here, since the computational complexity of SVMRank pre-
vented from a truly thorough parameter optimization.) In terms of computa-
tional complexity, the decomposition methods are much more efficient, outper-
forming SVMRank by several orders of magnitude on some data sets. In fact,
training of a single SVMRank model may easily take hours to days, and running
the experiments for this method was only feasible on a parallel computer. Obvi-
ously, this precludes a direct comparison of run-times. We can mention, though,
that the run-times of F&H and LPC are comparable to the run-times of their
corresponding classification variants, and for both methods, 5 repetitions of a
10-fold cross validation never took more than one hour of CPU time.

As to the direct comparison of F&H and LPC, we complemented the ranking
results by the performance of the respective classifier-versions in terms of clas-
sification accuracy; see Table 2. This study essentially confirms previous results
[10,15], which have shown that LPC, even though it is not specifically designed

Table 2. Classification accuracy for the classifier-variants of LPC and F&H

# LPC F&H # LPC F&H # LPC F&H # LPC F&H

1 .5248 .5157 8 .5490 .5463 14 .5040 .4814 20 .7425 .7199

2 .6084 .6118 9 .7195 .7183 15 .4967 .4603 21 .8307 .7840

3 .6836 .6846 10 .6686 .6676 16 .4044 .4161 22 .4036 .4062

4 .5987 .5902 11 .5716 .5587 17 .9149 .8837 23 .7729 .7741

5 .7897 .7885 12 .5727 .5707 18 .4860 .4575 24 .6378 .6619

6 .4851 .4855 13 .5547 .5547 19 .3863 .3933 25 .5972 .6022

7 .6608 .6561
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for ordinal problems, is at least competitive and often superior to F&H: The
classification version of LPC wins 15 times against the classification variant of
F&H and looses only 9 times; see Table 2. All the more interesting is the question
why F&H performs better for the ranking problem.

In Section 3.3, some possible answers to this question have already been an-
ticipated. To get more insight, we looked at the ranking performance of the
individual models. More precisely, we let each of the models Mi in F&H and
Mi,j in LPC rank all examples, and compared this ranking to the true ordi-
nal classification of the examples. Table 4 shows the minimum, mean, median,
and maximum C-index among these models for both LPC and F&H. It can be
seen that F&H is consistently better in terms of the minimum, i.e., the worst
model Mi is still better than the worst model Mi,j . This may not be too sur-
prising, because the pairwise approach learns a much higher number of models.
However, the same can also be observed for the mean and the median (with a
single exception), and even in terms of the maximum, F&H is better in 20 of the
25 data sets. Less surprisingly, the variability among the LPC models Mi,j is
higher than among the F&H models Mi, as can be seen from the difference be-
tween the maximum and the minimum. We take these results as strong evidence
for the dominance of the non-competence problem of LPC models, as discussed
in Section 3.3, and consider this problem as a reasonable explanation for the
superiority of F&H.

Worth mentioning is finally a kind of ensemble effect revealed by the results
in Table 4: For both methods, LPC and F&H, the overall performance of the ag-
gregated model is consistently better than the best performance of an individual
model.

5 Conclusions

We have elaborated on the use of binary decomposition methods in the context of
multipartite ranking, a generalization of bipartite ranking to the multi-class case.
The use of such methods is motivated by their successful application to related
problems, including multi-class classification, ordinal classification, and label
ranking. Our results have shown that decomposition methods are competitive,
if not even superior, to state-of-the-art ranking methods in terms of predictive
accuracy, while being much more efficient from a computational point of view.
In any case, they offer a viable alternative to hitherto existing methods.

In future work, we plan to further improve the performance of the methods
proposed in this paper, for example by means of alternative aggregation schemes.
Moreover, only simple classification methods such as logistic regression have
been used as base learners so far. Such methods seek to maximize classification
accuracy in the first place, and hence optimize ranking performance (in terms of
AUC) only indirectly. Therefore, the use of AUC-optimizing classifiers as base
learners is likely to yield improved results.
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15. Hühn, J., Hüllermeier, E.: Is an ordinal class structure useful in classifier learning?

Int. J. Data Mining, Modelling and Management 1(1), 45–67 (2009)
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Abstract. Traditional machine learning methods only consider relation-

ships between feature values within individual data instances while dis-

regarding the dependencies that link features across instances. In this

work, we develop a general approach to supervised learning by leverag-

ing higher-order dependencies between features. We introduce a novel

Bayesian framework for classification named Higher Order Naive Bayes

(HONB). Unlike approaches that assume data instances are independent,

HONB leverages co-occurrence relations between feature values across

different instances. Additionally, we generalize our framework by devel-

oping a novel data-driven space transformation that allows any classifier

operating in vector spaces to take advantage of these higher-order co-

occurrence relations. Results obtained on several benchmark text corpora

demonstrate that higher-order approaches achieve significant improve-

ments in classification accuracy over the baseline (first-order) methods.

Keywords: machine learning, text classification, higher order learn-

ing, statistical relational learning, higher order naive bayes, higher order

support vector machine.

1 Introduction

A well known problem in real-world applications of machine learning methods
is that expert labeling of large amounts of data for training a classifier is pro-
hibitively expensive. Often in practice, only a small amount of labeled data is
available for training. Traditional methods of classification treat individual data
instances independently. In this case, however, a small training set makes an ad-
equate estimation of the model parameters of a classifier very challenging. Prior
work has demonstrated the value of leveraging explicit [1,2,3] as well as implicit
[4,5] link information within data in order to provide a richer data representation
for model estimation.

In Sect. 4.1, we build on a graph-based data representation from our prior work
[4] and introduce anovel Bayesian framework for classification namedHigherOrder
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Naive Bayes (HONB). Unlike approaches that assume data instances are indepen-
dent, HONB leverages co-occurrence relations between feature values across differ-
ent instances. We term these implicit co-occurrence relations higher-order paths.
Features (e.g., words in documents of a text collection) are richly connected by such
higher-order paths, and a model built by HONB exploits this rich connectivity.

We further generalize our framework in Sect. 4.2 by developing a novel data-
driven space transformation that allows any classifier operating in vector spaces
to take advantage of relational dependencies captured by higher-order paths
between features.

We evaluate the proposed methods1 on several benchmark text corpora across
a wide range of training set sizes in Sect. 5. In that section, we also draw com-
parisons with the results reported in [6], where a word clustering approach was
proposed for dealing with small and sparse training data for text classification.

The paper is organized as follows. Related work is discussed in Sect. 2. In Sect.
3, we provide the necessary background for development of the proposed methods
described in Sect. 4. Experimental results are presented in Sect. 5. A discussion
of the effects of leveraging higher-order dependencies for text classification is
provided in Sect. 6. Concluding remarks are made in Sect. 7.

2 Related Work

Our motivation for using higher-order dependencies for classification stems from
advances in the areas of link mining [7] and information retrieval. In addition
to (or sometimes instead of) using the more traditional data representation by
feature vectors characterizing each data instance independently of the others,
link-based approaches [3,8,9] to collective classification leverage explicit depen-
dencies, or links, within networked data [9]. Several studies [1,2,3] have shown
that collective classification can achieve significant reductions in classification
errors by performing inferences about multiple data instances simultaneously.
However, such methods are context-dependent and are therefore not designed to
classify single data instances. This restriction limits the domain of applicability
of link-based classifiers.

In this work, we propose classification methods that leverage higher-order de-
pendencies in the form of implicit links between instances and features of the
training data. Unlike collective classifiers, methods presented in this work main-
tain the ability to classify single data instances without requiring any additional
context information.

In [5], we gave a mathematical proof supported by empirical results of the depen-
dence of LatentSemantic Indexing (LSI) [10], a technique often used in text mining
and information retrieval, on higher-order relations and in particular on higher-
order term co-occurrences expressed via higher-order paths. A higher-order path
is exemplified in Fig. 1 (reproduced from [5]) in the context of text data. Figure 1
depicts three documents, D1, D2 andD3, each containing two terms representedby
1 “Systems and Methods for Data Transformation for Supervised Machine Learning,”

M.C. Ganiz, N.I. Lytkin and W.M. Pottenger, U.S. Patent Pending 61/185255.
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the letters A, B, C and D. Shown below the three documents in Fig. 1 is a higher-
order path that links term A with term D through B and C. This path contains
three edges and is therefore referred to as a third-order path.

Higher-order relations play an im-

Fig. 1. Higher-order co-occurrences [5]

portant role in many other systems for
text mining and information retrieval.
In [11], higher-order associations were
used for rule mining in textual data.
Higher-order co-occurrences were used
in [12] for solving a component of the
problem of lexical choice, which iden-
tifies synonyms in a given context. In
another effort, [13] used second-order
co-occurrences for improving the run-
time performance of LSI. Higher-order
co-occurrences have also been used in
other applications including word
sense disambiguation [14] and stem-
ming [15].

It should be noted that our framework extends beyond the textual domain. In
other words, instances D1, D2 and D3 from Fig. 1 need not be text documents
– they may be records in a database, or instances in a labeled training dataset.
Likewise, features A, B, C, etc. need not be terms – they may be values in a
database record, or feature-value pairs in a data instance.

In fact, in [4] we have successfully used higher-order paths for capturing de-
pendencies amongst data instances when modeling time series data for anomaly
detection in the Border Gateway Protocol, which constitutes the backbone of
the Internet’s routing infrastructure. The approach presented in this work builds
on the data representation introduced in our prior work [4] and also described
in Sect. 3.2.

3 Background

In this section we review parts of the Bayesian learning theory (Sect. 3.1) and
the data representation (Sect. 3.2) underlying the development of approaches
presented in Sect. 4. Although the methods discussed in this work are not limited
to a particular application domain, here we restrict our attention to textual data.
We assume the input space to be an n-dimensional binary vector space where
each document is represented by a vector whose non-zero coordinates correspond
to terms present in the document.

Formally, let W = {w1, . . . , wn} denote the set of binary features that corre-
spond to terms in the vocabulary. Any document d can therefore be represented
by an n-dimensional binary vector w(d) = (w1(d), . . . , wn(d)), where

wi(d) =
{

1, if document d contains term wi

0, otherwise.
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For convenience of further exposition, we will simply write d to denote the cor-
responding vector w(d).

3.1 Bayesian Learning Theory

Given a document d and two classes c1 and c2, the Bayes discriminant function
can be written as

f(d) = log
P (c1|d)
P (c2|d)

= log
P (d|c1)P (c1)
P (d|c2)P (c2)

, (1)

where
P (d|cj) = P (w1(d), . . . , wn(d)|cj), ∀j ∈ {1, 2}, (2)

is the conditional likelihood of document d belonging to class cj , and P (cj) is
the prior probability of class cj .

By assumption of mutual independence of terms given a class, the conditional
likelihood (2) becomes

P (w1(d), . . . , wn(d)|cj) =
n∏

i=1

P (wi(d)|cj), (3)

where P (wi(·)|cj) denotes the conditional probability mass function of term wi

in class cj . The Bayes discriminant function (1) therefore becomes

f(d) =
∑

i:wi(d)=1
log P (wi|c1)

P (wi|c2)
+∑

i:wi(d)=0
log 1−P (wi|c1)

1−P (wi|c2)
+ log P (c1)

P (c2)
,

(4)

where P (wi|cj) denotes the conditional probability of occurrence of term wi in
documents of class cj , i.e., P (wi|cj) = P (wi(·) = 1|cj). The log likelihood ratios
in (4) are, essentially, term weighting factors that attain large absolute values
for terms that are strong discriminators between a pair of classes.

This framework is not limited to binary classification problems. The Bayes
discriminant function for a general K-class classification task can be written as

g(d) = arg max
j=1,...,K

P (cj |d). (5)

Given a set of class labels C = {c1, . . . , cK} and the corresponding (training)
set Dj of documents representing class cj for each j ∈ {1, . . . , K}, conditional
probabilities P (wi|cj) are estimated by

P (wi|cj) =

1 +
∑

d∈Dj

wi(d)

2 + |Dj |
, (6)

which is the ratio of the number of documents that contain term wi in class cj

to the total number of documents in class cj. The constants in numerator and
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denominator in (6) are introduced according to Laplace’s rule of succession in
order to avoid zero-probability terms.

The prior class probabilities P (cj) are estimated by

P (cj) =
|Dj |

K∑
k=1

|Dk|
. (7)

Together, equations (3) and (5–7) comprise the well-known Naive Bayes classi-
fier.

3.2 Higher Order Data Representation

The data representation on which we build in the following section was initially
used in our prior work [4] for anomaly detection in time series data. In the
representation employed herein, a set D of documents is considered as a bipartite
graph G = (VD∪VW , E). Vertices in VD correspond to documents, while vertices
in VW correspond to terms. Two vertices d ∈ VD and w ∈ VW are connected by
an edge (d, w) ∈ E iff document d contains the term w.

A higher-order path in dataset D is a chain subgraph of G. For example, a
chain wi—dl—wk—dr—wj , which we will denote by (wi, dl, wk, dr, wj), encodes
the fact that document dl ∈ D contains terms wi and wk, while document dr ∈ D
contains terms wk and wj . The order of a path is determined by the number
of document vertices the path spans. Thus, path (wi, dl, wk, dr, wj) captures a
second-order co-occurrence between terms wi and wj , realized through term wk

shared by distinct documents dl and dr.
Higher-order paths simultaneously capture term co-occurrences within docu-

ments as well as term sharing patterns across documents, and in doing so provide
a much richer data representation than the traditional feature vector form. As
we will see in Sect. 5, the richness of representation becomes crucial when the
small size of a training dataset prohibits traditional methods from accurately
estimating model parameters.

4 Approach

In this section we present two novel methods of leveraging higher-order depen-
dencies between features for supervised machine learning. In Sect. 4.1, we build
on the Naive Bayes classifier by introducing a higher-order classifier termed
Higher Order Naive Bayes. Our approach, however, can be generalized beyond
the probabilistic machine learning methods. In Sect. 4.2, we introduce a data-
driven space transformation that allows any learner that operates in vector
spaces to leverage higher-order dependencies in data.

4.1 Higher Order Naive Bayes

Higher-order paths as defined in Sect. 3.2 allow us to extract rich relational
information between features in a dataset. We incorporate this information into
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a Bayesian learning framework by modifying the parameter estimation equations
(6) and (7) to depend on the counts of higher-order paths as follows.

Let ϕ(wi, D) denote the number of higher-order paths that contain term wi

given the dataset D, and let Φ(D) denote the total number of higher-order paths
in D. The parameter estimation equations of the proposed Higher Order Naive
Bayes classifier are:

P̂ (wi|cj) =
1 + ϕ(wi, Dj)

2 + Φ(Dj)
, (8)

and

P̂ (cj) =
Φ(Dj)

K∑
k=1

Φ(Dk)
. (9)

4.2 Leveraging Higher Order Dependencies by a Vector
Space-Based Classifier

In this section, we present a novel data transformation that allows any classi-
fier operating in vector spaces to take advantage of higher-order dependencies
between features. We describe our approach for the case of binary classification.
This, however, does not limit the applicability of the proposed approach, be-
cause numerous methods for multi-class classification based on binary classifiers
have been proposed (see [16] for an overview). The proposed data transformation
proceeds as follows.

Given two sets Dj and Dk of (training) documents from classes cj and ck,
resp., the class conditional term probabilities (8) are computed. Let us denote
the corresponding conditional log likelihood ratios as

φ
(1)
i = log

P̂ (wi|cj)
P̂ (wi|ck)

, (10)

and

φ
(0)
i = log

1− P̂ (wi|cj)
1− P̂ (wi|ck)

. (11)

Each binary document vector d = (d1, . . . , dn), d ∈ Dj ∪Dk, is then transformed
into a real vector d̂ = (d̂1, d̂2, . . . , d̂n), where

d̂i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ

(1)
i√
|φ(1)

i |
, if di = 1, φ

(1)
i �= 0

φ
(0)
i√
|φ(0)

i |
, if di = 0, φ

(0)
i �= 0

0, otherwise.

(12)

Finally, the resulting dataset D̂j ∪ D̂k is used as input for training a binary
classifier for classes cj and ck.
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Data transformation (12) assigns weights that are high in absolute values for
highly discriminative terms present in a document. The normalizing factors2

in (12) moderate the spread of values of each feature in order to allow less
discriminative terms to retain a certain level of influence over the classification.
This level of influence depends on the discriminative power of a term as measured
by (10) and (11). An illustration of the effect of the normalizing factors can be
found in Sect. 6.

5 Experimental Results

Experimental evaluation was carried out on six widely-used text corpora. Four
of these datasets were RELIGION, SCIENCE, POLITICS and COMP subsets of
the 20 News Groups (20NG) [17] benchmark data. These particular subsets were
selected to allow us to draw comparisons of our results with the related work
[6], which will be discussed later in this section. Our preprocessing procedures
closely followed those in [6]. First, all cross-postings in the 20NG data were
removed. Then, for each dataset we performed stop word removal, stemming
and removal of all terms that occurred in fewer than three documents in the
dataset. The remaining terms were ranked by Information Gain. The top 2000
terms were selected. Finally, 500 documents were sampled at random from each
class to comprise the 20NG datasets used in our experiments.

The other two datasets, Citeseer and Cora, are collections of scholarly research
articles preprocessed by [18]. The Citeseer dataset contained 3312 documents
with a vocabulary of 3703 terms. The Cora dataset comprised of 2708 documents
with a vocabulary of 1433 terms. A summary description of all six datasets is
provided in Table 1.

Naive Bayes (NB) was used as the baseline for evaluation of the proposed
Higher Order Naive Bayes (HONB) classifier. Support Vector Machine (SVM)
[19] was chosen as the base classifier for evaluation of the data transformation

Table 1. Six datasets used in the experiments

Dataset Classes

RELIGION (3) alt.atheism, soc.religion.christian, talk.religion.misc

SCIENCE (4) sci.crypt, sci.electronics, sci.med, sci.space

POLITICS (3) talk.politics.guns, talk.politics.mideast, talk.politics.misc

COMP (5) comp.graphics, comp.os.ms-windows.misc,

comp.sys.ibm.pc.hardware, comp.sys.mac-hardware, comp.windows.x

Citeseer (6) AI, Agents, DB, HCI, IR, ML

Cora (6) Case Based, Genetic Algorithms, Neural Networks, Probabilis-

tic Methods, Reinforcement Learning, Theory

2 It is possible to omit the normalizing factors in (12). However, we have found ex-

perimentally that the normalized transformation, on average, yields slightly higher

classification accuracies.
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proposed in Sect. 4.2. SVM with the linear kernel has been shown [20] to perform
well on text classification problems. The linear kernel allows us to observe the
direct impact of leveraging higher-order dependencies, without any additional
data transformations as performed implicitly by other kernel functions. Multi-
class problems were addressed using the “one-against-one” classification scheme
[21]. Under this scheme, a binary SVM classifier is constructed for every pair of
classes. A data instance is then classified by each binary classifier and the final
classification is determined by the majority vote over the assigned class labels.
We refer to a SVM classifier constructed on the transformed data as Higher
Order SVM (HOSVM).

Experiments described in this section were done using second-order paths for
HONB and HOSVM. A O

(
n2(m + n)

)
algorithm for obtaining the counts of

second-order paths in a dataset with m instances in n dimensions can be found
in [22]. We have conducted additional experiments using third-order paths, but
the results did not differ significantly.

Figure 2 shows mean classification accuracies obtained by varying training set
size from 5% up to 60%. For each training set size, eight trials were performed.
On each trial, a set of documents were randomly sampled from each class for
training, while the rest were used for testing. On every trial, all terms that did
not appear in any of the training documents were disregarded. The classifiers
were then trained in the corresponding subspace of the original term space.

As can be seen from Figs. 2(a)–2(d), HONB and HOSVM3 consistently out-
performed first-order classifiers NB and SVM3, resp., on the RELIGION, SCI-
ENCE, POLITICS and COMP datasets. All of these accuracy improvements
were statistically significant at the 5% level for (HONB, NB) pair of classifiers
and in 83% of the cases for the (HOSVM, SVM) pair.

A slightly different pattern of performance can be observed on the Citeseer
(Fig. 2(e)) and Cora (Fig. 2(f)) datasets. While classification accuracy of each
method monotonically increased with increasing training set size, HONB drasti-
cally outperformed NB when training sets were small, reaching close to accuracy
levels of SVM-based methods. HOSVM performed 1.5-2% better than SVM 66%
of the time, but never worse overall. These results are especially encouraging in
that they suggest that higher-order methods were able to construct robust mod-
els even when training data was particularly scarce. We speculate that changes
in the distribution of highly-discriminative terms across classes as a result of
increasing training set size allowed NB to outperform HONB on the Citeseer
and Cora datasets once the amount of training data reached a certain point. We
are currently investigating this hypothesis and intend to report our findings as
part of our future work.

Consistent and statistically significant accuracy improvements attained by
higher-order classifiers on small training sets led us to explore this aspect

3 When selecting the value of the soft margin cost parameter C for SVM, we considered

the set {10−4, 10−3, . . . , 104} of possible values. On every trial, we picked the smallest

value of C which resulted in the highest accuracy obtained on the training set.
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(a) RELIGION (b) SCIENCE

(c) POLITICS (d) COMP

(e) Citeseer (f) Cora

Fig. 2. Scalability across training set size

further. In order to simulate a real-world scenario where only a few labeled data
instances are available, and to illustrate accuracy improvements in a setting
comparable with the related work [6], we focused our attention on 5% train-
ing samples. In case of the 20NG datasets, for instance, this corresponded to
training on 25 documents per class and testing on the other 475 documents per
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Table 2. Mean classification accuracies

NB HONB SVM HOSVM

Dataset Acc. St. dev. Acc. St. dev. Acc. St. dev. Acc. St. dev.

RELIGION (3) 0.66 0.051 0.741 0.03 0.699 0.022 0.723 0.023

SCIENCE (4) 0.632 0.071 0.833 0.043 0.751 0.029 0.792 0.039

POLITICS (3) 0.73 0.042 0.832 0.01 0.763 0.03 0.793 0.047

COMP (5) 0.539 0.051 0.623 0.036 0.585 0.022 0.614 0.031

Citeseer (6) 0.444 0.025 0.539 0.015 0.609 0.01 0.602 0.01

Cora (6) 0.315 0.006 0.532 0.021 0.553 0.021 0.554 0.026

class. Classification accuracies averaged over eight trials are reported in Table 2.
Highest accuracies for pairs (NB, HONB) and (SVM, HOSVM) of classifiers are
highlighted in bold. The corresponding standard deviations are also reported in
Table 2.

The obtained results indicate that leveraging higher-order dependencies in
the RELIGION, SCIENCE, POLITICS and COMP datasets lead to significant
improvements in classification accuracies of both Bayesian and SVM-based ap-
proaches. The improvements of HONB over NB and of HOSVM over SVM on
those datasets are statistically significant at the 5% level. The only exception is
the (HOSVM, SVM) pair on the POLITICS dataset. Although the difference in
SVM and HOSVM accuracies on the POLITICS dataset was significant at level
α = 0.158, HOSVM outperformed SVM on seven out of eight trials on that data
by an average of 3%.

HONB performed particularly well on the 20NG data, outperforming NB
by 11.7% and SVM by 5.8% on average. HONB also outperformed HOSVM
by an average of 2.7%, although the differences in accuracy between the two
classifiers were not statistically significant at the 5% level. HOSVM consistently
outperformed SVM by an average of 3.1%.

On the Citeseer dataset, HONB outperformed NB by about 9% (significant
at the 5% level), while HOSVM and SVM performed at the same level. On the
Cora dataset, NB’s average classification accuracy was 31.5%, which is the low-
est accuracy across all datasets and classifiers considered in this work. Such low
accuracy and almost zero standard deviation (Table 2) resulted from NB as-
signing all test documents to the majority class Neural Networks. By exploiting
valuable higher-order dependencies, HONB attained approximately 53% average
accuracy, which is not significantly different at the 5% level from the roughly
55% accuracy of SVM and HOSVM.

In another set of experiments, we expanded our reach to compare the perfor-
mance of higher-order classifiers to other approaches that also attempt to achieve
better generalization performance on sparse input data. These related research
efforts use clustering as a dimensionality reduction technique. In general they
cluster words into groups and these groups are used as features in text classi-
fication. The authors of [6] observed that one advantage of using word clusters
can be seen when word statistics (i.e., NB parameter estimates) are relatively
hard to estimate. In order to demonstrate this, they conducted experiments with
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Table 3. Mean classification accuracies reported by [6]

Dataset mNB NBWC

RELIGION (3) 0.525 0.553

SCIENCE (4) 0.65 0.725

POLITICS (3) 0.62 0.67

COMP (5) 0.473 0.508

Table 4. Mean classification accuracies of a pure higher-order classifier

Dataset HONB pure HONB

RELIGION (3) 0.741 0.745

SCIENCE (4) 0.833 0.842

POLITICS (3) 0.832 0.836

COMP (5) 0.623 0.649

small numbers of labeled training documents from the subsets listed in Table 1
of the 20NG data. To provide a more objective comparison, we focused on the
relative improvement over respective base models. In [6] the authors used multi-
nomial NB (mNB) as their base model and improved on the performance of this
model using word clusters as features instead of just words. The latter algorithm
is indicated as NBWC in Table 3. Similarly, we used binomial NB as our base
model and improved on the performance of this model using higher-order paths
instead of individual documents to estimate parameters.

Tables 2 and 3 show that compared to NBWC, HONB achieved much better
performance than the corresponding base model for all datasets (4.7% average
difference between NBWC and mNB versus 11.7% average difference between
HONB and NB). Additionally, our results are statistically significant.

In order to further verify the value of leveraging higher-order dependencies
within the data, additional experiments were conducted. In the first experiment,
when estimating the conditional probabilities (8) and (9), we used only the
“pure” second-order paths, i.e., paths that involved terms which did not co-
occur together in any single document of the training set. The results of these
experiments are reported in Table 4 comparing performance of HONB with
that of the pure HONB. The differences in performance of these classifiers were
minimal and not statistically significant.

In the second experiment, prior to training an SVM classifier with the linear
kernel, a data transformation analogous to (12) was performed using the first-
order conditional term probabilities (6) instead of higher-order probabilities (8).
The resulting approach is referred to as NBSVM. Mean classification accuracies
attained by NBSVM3 are shown in Table 5. Comparison of Tables 2 and 5
makes it clear that NBSVM performed worse than both SVM and HOSVM.
These results indicate that taking advantage of higher-order dependencies was
indeed crucial for achieving the performance improvements attained by HONB
and HOSVM.
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Table 5. Mean classification accuracies of NBSVM

Dataset NBSVM HOSVM

RELIGION (3) 0.678 0.723

SCIENCE (4) 0.745 0.792

POLITICS (3) 0.759 0.793

COMP (5) 0.576 0.614

We have also conducted experiments with the Radial Basis Function (RBF)
kernel for the HOSVM and SVM classifiers. The results were consistent with the
findings of [20]. Namely, there were no significant differences between classifica-
tion accuracies attained with the linear kernel and those attained with the RBF
kernel.

In summary, higher-order approaches HONB and HOSVM outperformed their
first-order counterparts. Consistent performance improvements were observed on
the 20NG data across a wide range of training set sizes. On the Citeseer and
Cora datasets, HONB outperformed NB when training set sizes were below 10%
and 25%, respectively. Under the conditions of small (5%) training samples from
the Citeseer dataset, HOSVM performed the same as SVM, which outperformed
HONB by 7%. HONB, SVM and HOSVM produced very similar results on
the Cora dataset. It is interesting to note that while HOSVM scaled better
across datasets, HONB did not require any parameter tuning and performed
exceptionally well on the 20NG data.

6 Discussion

In order to gain a deeper understanding of the effect of using higher-order
paths for estimation of conditional term probabilities (8), let us consider Fig.
3 generated based on one of the 5% (25 documents per class) training sam-
ples from the RELIGION dataset using two of its classes, “alt.atheism” and
“soc.religion.christian”. For every term wi, Fig. 3(a) presents a plot of the con-
ditional log probability ratio (10) obtained from higher-order probabilities (8)
(horizontal axis) versus the log ratio obtained from first-order probabilities (6)
(vertical axis). Notice the differences in scales of values on the axes of Fig. 3(a):
[−20, 20] for higher-order log ratios versus [−4, 4] for first-order log ratios. Addi-
tionally, three distinct groups of terms appeared as a result of using higher-order
paths for estimating the model parameters. We found that terms that fell into
the right (left) most group are highly-discriminative terms that appeared in doc-
uments of only one of the classes in the training set. Figure 3(a) reveals that
due to drastic difference in scales of values of higher- and first-order log ratios,
highly-discriminative terms exert much stronger influence on classification in
HONB than in NB. In other words, highly-discriminative terms contribute more
heavily to the Bayesian discriminant function (4) under HONB than under NB.

Similarly, Fig. 3(b) shows a plot of the conditional log probability ratios (11)
of non-occurrence of a term in a HONB model versus a NB model. An impor-
tant feature in this figure is the one order of magnitude difference in values
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(a) (b)

Fig. 3. Conditional log probability ratios obtained from higher-order probabilities (8)

(horizontal axes) versus the log ratios obtained from first-order probabilities (6) (ver-

tical axes) on “alt.atheism” and “soc.religion.christian” classes of one of the 5% (25

documents per class) training samples from the RELIGION dataset

on the axes: [−0.1, 0.1] for higher-order log ratios on the horizontal axis versus
[−1.5, 1.5] for first-order log ratios on the vertical axis. Together, Figs. 3(a) and
3(b) indicate that while both NB and HONB take into account presence of terms
as well as their absence, HONB tends to place more emphasis on the presence
of terms in a document being classified.

As was noted in Sect. 4.2, the normalizing factors in (12) were introduced
in order to allow terms that may appear in multiple classes, but are still good
discriminators as measured by the log likelihood ratios (10) and (11), to have
a non-negligible impact during document classification by HOSVM. The effect
of these normalizing factors can be seen by comparing Figs. 3(a) and 3(b) with
Figs. 4(a) and 4(b).

On the vertical axes in Figs. 4(a) and 4(b) are plotted the same first-order
conditional log probability ratios as in Figs. 3(a) and 3(b), respectively. Plotted
on the horizontal axes of Figs. 4(a) and 4(b) are the higher-order conditional
log probability ratios shown on the horizontal axes of Figs. 3(a) and 3(b), re-
spectively, and normalized as in (12). Note the change in scales of the horizontal
axes once normalization has been applied: [−20, 20] before normalization (Fig.
3(a)) versus [−4, 4] after, and [−0.1, 0.1] before normalization (Fig. 3(b)) versus
[−0.3, 0.3] after. It is this change in scales coupled with the increased spread
of the middle group of terms along the horizontal axis that allowed good dis-
criminator terms from the middle group in Fig. 3(a) to increase their relative
influence during document classification by HOSVM.

Although it is trivial to identify strongly discriminative features in a given
training set, the question remains of how to weight those features for pattern
classification. Methods proposed in this work address this question by leveraging
higher-order dependencies between features.
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(a) (b)

Fig. 4. Conditional log probability ratios obtained from higher-order probabilities (8)

and normalized as in (12) for use by HOSVM (horizontal axes) versus the log ratios

obtained from first-order probabilities (6) (vertical axes) on the same dataset as in

Fig. 3.

7 Conclusions and Future Work

In prior work [5], we gave a mathematical proof supported by empirical results
of the dependence of LSI on higher-order paths. In this work, a general approach
to leveraging higher-order dependencies for supervised learning was developed.
We presented a novel classification method termed Higher Order Naive Bayes
(HONB). We further generalized our framework by developing a new data trans-
formation that allows any classifier operating in vector spaces to take advantage
of the rich relational information captured by higher-order paths.

Higher-order paths allow a classifier to operate on a much richer data repre-
sentation than the conventional feature vector form. This is especially important
when working with small and sparse training sets where accurate parameter es-
timation of traditional (first-order) models becomes very challenging [6]. Exper-
imental results affirmed the value of leveraging higher-order paths, resulting in
significant improvements in classification accuracies on benchmark text corpora
across a wide range of training set sizes. In addition, we compared our results
with those reported in [6], where term clusters were used (instead of terms) as
features for classification by Naive Bayes (NBWC). Our experiments demon-
strated that HONB consistently achieved better performance over the baseline
Naive Bayes (NB) classifier than did NBWC.

In ongoing efforts, we are developing methods for leveraging higher-order de-
pendencies in various domains including nuclear detection, as well as in large
datasets. We are also investigating extensions of the proposed framework to a
number of other supervised learning approaches, and to unsupervised machine
learning.
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Abstract. A core problem in data mining is to retrieve data in a easy

and human friendly way. Automatically translating natural language

questions into SQL queries would allow for the design of effective and

useful database systems from a user viewpoint. Interesting previous work

has been focused on the use of machine learning algorithms for automat-

ically mapping natural language (NL) questions to SQL queries.

In this paper, we present many structural kernels and their combina-

tions for inducing the relational semantics between pairs of NL questions

and SQL queries. We measure the effectiveness of such kernels by using

them in Support Vector Machines to select the queries that correctly

answer to NL questions. Experimental results on two different datasets

show that our approach is viable and that syntactic information under

the form of pairs of syntactic tree fragments (from queries and questions)

plays a major role in deriving the relational semantics between the two

languages.

Keywords: Natural Language Processing; Kernel Methods; Support

Vector Machines.

1 Introduction

In the last decade many natural language interfaces to database (NLIDBs) have
been proposed to translate the human intent into machine-readable instructions
[1,2,3,4,5,6,7,8]. Despite this, little progress has been made in developing an
interface that can be used by any untrained user without manual annotation
and intervention. The problem of automatically translating natural language
(NL) questions into SQL queries is an interesting and appealing research in
data mining. For example, solving this problem would suggest the role of syntax
for mapping NLs to artificial languages; this would have a direct impact in
the field of information systems. Unfortunately computational linguistics and
artificial intelligence research [9] has shown that such mapping problem cannot
be addressed with a deep semantic approach, thus a concrete solution should
rely on shallow and statistical methods.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 391–406, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



392 A. Giordani and A. Moschitti

In this paper, we propose a set of structural kernels, e.g. Sequence and Tree
Kernels [10,11,12,13], and Support Vector Machines (SVMs) to map NL into
SQL.

First, starting from a set of correct pairs of questions and the related SQL
queries, available for our target DBs, we design an algorithm to produce in-
correct pairs and additional correct pairs, i.e. negative and positive examples,
respectively.

Second, we model a representation of the above question/query pairs in terms
of syntactic structures, i.e. we build pairs of syntactic parse trees automatically
derived by off-the-shelf natural language parsers and the straightforward appli-
cation of SQL grammar.

Third, we train SVMs with the above data, where the structural representa-
tion of the pairs is encoded by means of different types of kernels, i.e. linear,
polynomial, string and tree kernels and their combinations. This allows us to
automatically exploit the associative patterns between NL and SQL syntax to
detect correct and incorrect pairs from an operational semantics viewpoint.

Finally, given a new question and the set of available queries (i.e. the reposi-
tory of queries asked to the target DB), we produce the set of pairs containing
such question and then we use SVMs to rank pairs in terms of correctness. We
select the top scored pair as the query that answers the given question.

The new contributions with respect to our previous research on Natural Lan-
guage Interface to Databases [14] are the following:

– We propose and study sequence kernels to provide a pair representation that
is shallower than the one based on deep syntactic parsing. Although, they
prove to not be essential for the design of the most accurate model, their
comparison with polynomial kernels gives some indications on the role of
feature pair spaces.

– We experimented with a large number of kernels showing that, in contrast
with our previous findings, complex kernels relevantly improve the simple
space of term (word) pairs.

– We applied our semi-automatic algorithm to a second dataset of correct
question and query pairs, namely RestQueries [7], to design a new dataset
for classification. We made it available1 along with the one derived by Geo-

Queries.

The use of RestQueries allowed us to (1) assess the high effectiveness of prod-
uct kernels and the feature pair spaces, which, even in their simple form (e.g.
word pairs), highly improve the traditional linear kernel; (2) show that syntac-
tic information is very important since it improves the best model by about
10 absolute percent points; and (3) find out that complex kernels such as the
polynomial expansion of pairs of tree fragments and bigrams can produce the
highest results.

In the remainder, Section 2 shows our proposed algorithm to generate a train-
ing set of question and query pairs used by the kernel-based classifier as described
1 http://disi.unitn.it/~moschitt/corpora.htm

http://disi.unitn.it/~moschitt/corpora.htm
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in Section 3. Section 4 discusses the experimental setup and results, Section 5 re-
views some state of the art NLIDBs, to which we compare, and finally, Section 6
draws conclusions.

2 Dataset Generation

The goal of this research is the development of a NLIDB that maps NL questions
into SQL queries based on a machine learning approach; consequently, we need
to have training data, i.e. a set of positive and negative examples. In practical
cases, we can assume to have a set of positive examples consisting of correct
question/query pairs2, i.e. such that the execution of the query retrieves a correct
answer for the question. Assuming the availability of negative examples is a more
strong assumption since providing the correct query for an user information need
is a more natural task than providing the incorrect solution.

Therefore, to create negative examples, we may use the initial set of ques-
tions and queries in the correct pairs and randomly pair them. Unfortunately,
this may generate false negatives since different questions may have more than
one answer (and vice-versa), thus a manual verification of such pairs is re-
quired. To reduce such costly manual intervention, we can exploit the seman-
tic equivalency between the pairs’ members and its transitivity closure to pair
questions to their correct queries. This allow us to extend the set of positive
examples.

The semantic equivalency can be calculated by means of a clustering algo-
rithm, which groups questions that represent the same information need with
queries that correctly retrieve it. An approach to effectively detect such equiv-
alence is the generalization of questions and queries, e.g. What are some good
restaurants in Berkeley becomes What are some good restaurants in a city.

In the next sections, we describe our approach to automatically generate the
target dataset. The main steps are: (1) generalize question and query instances,
(2) cluster the generalized pairs, (3) generate all the true positives by pairing
questions and queries belonging to the same clusters, and (4) annotate as true
negatives all remaining pairings between questions and queries of distinct clus-
ters. This also requires a limited manual intervention.

2.1 Generalizing Pairs

The aim of pair generalization is to make the detection of semantically equiva-
lent questions and queries easy. Our approach consists in considering questions
or queries having similar structures instantiated by the same semantic concepts.
The latter are generalizations of important domain terms occurring both in the
question and in the related query. For example, terms like Berkeley, San Fran-
cisco, etc., are substituted with the concept city. Note that: (a) we can identify

2 For example, correct pairs may be defined when databases are designed and vali-

dated. Also, we may ask the DB operator to collect the set of queries that she/he

designed in response of typical specific (questions) asked by DB users.
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Fig. 1. Example of the initial corpus (A, on the left) and the generalized version (B,
on the right). The latter is divided in two clusters (identified by the two brackets).

concepts by extracting the column names (in the database) that naturally store
domain terms; and (b) concepts are expressed in the WHERE condition of the
given SQL queries.

An example of the generalization phase is shown in Figure 1, which reports
questions and queries of a restaurant domain. More in detail, on the left there is a
set of four pairs containing four distinct questions and their three related queries
(connected by lines) whereas on the right four generalized pairs are shown. In the
question and query pair 〈n1, s1〉, where n1: “What are some good restaurants in
Berkeley?” and s1: SELECT restaurant FROM general info WHERE rating>2.5 AND

city=’Berkeley’, since Berkeley is associated with the column city, its occur-
rences in n1 and s1 are substituted with the concept/variable VARcity.

We note that, after substituting instances with variables, both n1 and n3 are
generalized into n′

1, which can then be paired with two distinct SQL queries, i.e.
s′1 and s′2. This is correct since there can be more SQL queries that correctly
retrieve an answer to an NL question. We can define them to be semantically
equivalent, i.e. s′1 ≡ s′2. Conversely, there can be many NL questions that map
to the same query, e.g. n2 ≡ n3

3.
It is worth noting that with the generalization process, we introduce redun-

dancy that we eliminate by removing duplicated questions and queries. Thus,
the output dataset is usually smaller than the initial one. However the num-
ber of training examples will be larger, not only because of the introduction of
negatives but also due to the automatic discovering of new positives.

2.2 Pair Clustering and Final Dataset Annotation

Once the pairs have been generalized, we cluster them according to their seman-
tic equivalence so that we can automatically derive new positive examples by
swapping their members. We define semantically equivalent pairs those correct
pairs with (a) equivalent NL questions, i.e. whose generalized version is the same
or (b) equivalent SQL queries. Given that two equivalent queries must retrieve

3 It is worth noting that in this equivalence is true in this domain but in other domains

can be false, since good places not necessarily refers to restaurants.
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the same result set, we can automatically test their equivalence by simply exe-
cuting them. Unfortunately, this is just a necessary condition (e.g. two different
queries can have the same answer) therefore we manually evaluate new pairings
obtained applying this condition.

Note that automatically detecting semantic equivalence of natural language
questions with perfect accuracy is a hard task, so we consider as semantically
equivalent either identical questions (after generalization) or those associated
with semantic equivalent queries. We also apply transitivity closure to both
members of pairs to extend the set of equivalent pairs.

For example, in Figure 1.b s′1 and s′2 retrieve the same results so we verify
that they are semantically equivalent queries and we assign them to the same
cluster (CL1), i.e. information need about good restaurants in a city (with a
rating larger than 2.5 stars). Alternatively, we can also consider that n′

1 and
n′

2 are both paired with s′2 to derive that they are equivalent, avoiding the
human intervention. Concerning s′3, it retrieves a result set different form the
previous one so we can automatically assign it to a different cluster (CL2), i.e.
involving questions about restaurants in a region. Note that, once n′

2 is shown
to be semantically equivalent to n′

1, we can pair them with s′1 to create the new
pair (indicated by the dashed line) 〈n′

2,s′1〉. Indeed the negative example set is
〈n′

3, s
′
1〉, 〈n′

3, s
′
2〉, 〈n′

1, s
′
3〉, 〈n′

2, s
′
3〉.

3 Kernel Methods for Question/Query Representation

Kernel Methods refer to a large class of learning algorithms based on inner
product vector spaces, among which Support Vector Machines (SVMs) are one
of the most well-known algorithms. The main idea is that the parameter model
vector w generated by SVMs (or by other kernel-based machines) can be rewrit-
ten as

∑
i=1..l yiαixi, where yi is equal to 1 for positive and -1 for negative

examples, αi ∈ . with αi ≥ 0, ∀i ∈ {1, .., l} xi are the training instances. There-
fore we can express the classification function as Sgn(

∑
i=1..l yiαixi · x + b) =

Sgn(
∑

i=1..l yiαiφ(oi) · φ(o) + b), where x is a classifying object, b is a threshold
and the product K(oi, o) = 〈φ(oi) · φ(o)〉 is the kernel function associated with
the mapping φ.

Note that it is not necessary to apply the mapping φ, we can use K(oi, o)
directly. This allows, under the Mercer’s conditions [15] for defining abstract
functions which generate implicit feature spaces. The latter allow for an easier
feature extraction and the use of huge feature spaces (possibly infinite), where
the scalar product (i.e. K(·, ·)) is implicitly evaluated.

In the following section, we first propose a structural representation of the
question and query pairs, then we report the two more adequate kernels for syn-
tactic structure representation, i.e. the Syntactic Tree Kernel (STK) [11], which
computes the number of syntactic tree fragments and the Extended Syntactic
Tree Kernel (STKe) [16], which includes leaves in STK. In the last subsection
we show how to engineer new kernels from them.
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Fig. 2. Question/Query Syntactic trees

3.1 Representing Question and Queries Pairs

In Data Mining and Information Retrieval the so-called bag-of-words (BOW) has
been shown to be effective to represent textual documents, e.g. [17,18]. However,
in case of questions and queries we deal with small textual objects in which
the semantic content is expressed by means of few words and poorly reliable
probability distributions. In these conditions the use of syntactic representation
improves BOW and should be always used, [13,19,20,21,22,23].

Therefore, in addition to BOW, we represent questions and queries using their
syntactic trees4. As shown in Figure 2 for questions (a) we use the Charniak’s
syntactic parser [25] while for queries (b) we implemented an ad-hoc SQL parser.
The latter builds a SQL parse tree for each query following its syntactic deriva-
tion according to MySQL grammar. The grammar has been slightly modified
to accommodate the usage of the symbol • for the production of items in the
SELECT clause and in WHERE conditions. In such an SQL tree, the internal
nodes are only the SQL keywords of the query plus the special symbol • whereas
the leaves are names of tables and columns of the database, category variables
or operators. Note that, although we eliminated comma and dot from the gram-
mar, it is still possible to obtain the original SQL query, by just performing a
preorder traversal of the tree.

To represent the above structures in a learning algorithm we use tree kernels
described in the following section.

3.2 Tree Kernels

The main underlying idea of tree kernels is to compute the number of common
substructures between two trees T1 and T2 without explicitly considering the
whole fragment space. Let F = {f1, f2, . . . , f|F|} be the set of tree fragments
and χi(n) an indicator function equal to 1 if the target fi is rooted at node n
and equal to 0 otherwise. A tree kernel function over T1 and T2 is defined as
TK(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

Δ(n1, n2), where NT1 and NT2 are the sets of

4 Early work on the use of syntax for text categorization were based on part-of-speech

tags, e.g. [24].
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Fig. 3. Feature spaces for the tree pair in Figure 2 a) joint space STK+STK b)

Cartesian product STK×STK

nodes in T1 and T2, respectively, and Δ(n1, n2) =
∑|F|

i=1 χi(n1)χi(n2). The Δ
function is equal to the number of common fragments rooted in nodes n1 and
n2, and thus, depends on the fragment type. We report its algorithm for the
evaluation of the number of syntactic tree fragments (STFs).

A syntactic tree fragment (STF) is a set of nodes and edges from the original
tree which is still a tree and with the constraint that any node must have all or
none of its children. This is equivalent to state that the production rules con-
tained in the STF cannot be partial. To compute the number of common STFs
rooted in n1 and n2, the STK uses the following Δ function [11]:
1. if the productions at n1 and n2 are different then Δ(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf
children (i.e. they are pre-terminal symbols) then Δ(n1, n2) = λ;
3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-
terminals then
Δ(n1, n2) = λ

∏l(n1)
j=1 (1 + Δ(cn1(j), cn2(j))),

where l(n1) is the number of children of n1, cn(j) is the j-th child of the node n
and λ is a decay factor penalizing larger structures.

Figure 3.a shows some STFs of the NL and SQL trees in Figure 2. STFs
satisfy the constraint that grammatical rules cannot be broken. For example,
[VP [AUX NP]] is a STF, which has two non-terminal symbols, AUX and NP, as
leaves whereas [VP [AUX]] is not a STF.

STK does not include individual nodes as features. As shown in [16] using its
extension (STKe) we can include at least the leaves, (which in constituency trees
correspond to words) by simply inserting the following step 0 in the algorithm
above [16]:

0. if n1 and n2 are leaf nodes and their labels are identical then Δ(n1, n2) = λ;

3.3 String Kernels

The String Kernels that we consider count the number of substrings containing
gaps (i.e. some of the symbols of the original string are skipped) shared by two
sequences. We adopted the efficient algorithm described in [15,10,26,27]. Charac-
ters in the sequences can be substituted with any set of symbols. In our study we
preferred to use words obtaining word sequences. For example, given the query:
Select restaurant from general info sample substrings, extracted by the
Sequence Kernel (SK), are: Select restaurant, Select from general info,
Select general info, Select from, etc. It is worth noting that: (i) longer
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subsequences receive lower weights, (ii) some words can be omitted, i.e. gaps
and (iii) gaps determine a weight since an exponential decay factor is applied,
where the exponent is the number of words and gaps between the first and last
words.

3.4 Kernel Engineering for Pair Representation

Kernel engineering [28,29,30] can be carried out by combining basic kernels with
additive or multiplicative operators or by designing specific data objects, e.g.
the tree representation for the SQL syntax, to which standard kernels are ap-
plied. Since our data is a set of pairs, we need to represent the members of
a pair and their interdependencies. For this purpose, given two kernel func-
tions, k1(., .) and k2(., .), and two pairs, p1 = 〈n1,s1〉 and p2 = 〈n2,s2〉, a first
approximation is given by summing the kernels applied to the components:
K(p1, p2) = k1(n1, n2) + k2(s1, s2). This kernel will produce the union of the
feature spaces of questions and queries. For example, the explicit vector repre-
sentation of the space of STK of the pair in Figure 2 is shown in Figure 3.a.
The Syntactic Tree Fragments of the question will be in the same space of the
Syntactic Tree Fragments of the query.

In theory a more effective kernel is the product k(n1, n2) × k(s1, s2) since it
generates pairs of fragments as features, where the overall space is the Carte-
sian product of the used kernel spaces. For example Figure 3.b shows pairs of
STF fragments, which are essential to capture the relational semantics between
the syntactic tree subparts of the two languages [31]. In particular, the second
fragment pair of the figure may suggest that the adjective phrase good expresses
similar semantics of the syntactic construct WHERE rating>2.5. In other words,
the above pair feature suggests that the whole query may be a correct translation
of the given question.

As additional feature and kernel engineering, we also exploit the ability of the
polynomial kernel to add feature conjunctions. By simply applying the function
(1 + K(p1, p2))d, we can generate conjunction up to d features. Thus, we can
obtain tree fragment conjunctions and conjunctions of pairs of tree fragments.

The next section will show the results using different kernel combination for
pair representation.

4 The Experiments

We ran several experiments to evaluate the accuracy of our approach in auto-
matically selecting correct SQL queries for NL questions, where the selection of
the correct query is modeled as a ranking problem. The ranker is constituted by
SVMs and by the kernels described in Section 3. To show the generality of our
approach we created two different datasets by applying our algorithm described
in Section 2 to two different corpora.
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4.1 Setup

We address the problem of finding a query whose result answers to a question
according to the following ranking problem. Given a question n ∈ N and the
complete set of the available queries S, we classify the set of all possible pairs
P (n) = {〈n, s〉 : s ∈ S}. Then we use the classification score to rank the element
of P (n) and select the pair with the highest score5.

To learn the classifier we used SVM-Light-TK6, which extends the SVM-
Light optimizer [18] with tree kernels. i.e. Syntactic Tree Kernel (STK) and
its extension (STKe) as described in Section 3. We implemented the String
Kernel [10] (word sequence kernel [26]) and modeled many different combinations
described in the next section. We used the default parameters, i.e. the cost and
trade-off parameters = 1 (for normalized kernels) and λ = 0.4 (see Sec. 3.2).

To generate our datasets we applied our algorithm described in Section 2 to
GeoQueries250 and RestQueries corpora7.

The first corpus is about geography questions. After the generalization process
the initial 250 pairs of questions/queries were reduced to 155 pairs containing
154 NL questions and 79 SQL queries. We found 76 clusters, from which we
generated 165 positive and 12,001 negative examples for a total of 154 × 79
pairs. Such dataset will be referred to as Geo.

The second dataset regards questions about restaurants. The initial 250 pairs
were generalized by 197 pairs involving 126 NL questions and 77 SQL queries.
We clustered these pairs in only 26 groups, which lead to 852 positive examples
and 9,702 negatives. Such dataset will be referred to as Rest.

To evaluate the results of our mapping models, we applied standard 10-fold
cross validation and measure the average accuracy and the Std Dev. of selecting
the correct query for each question.

4.2 Results on Geo Dataset

We tested several models for ranking based on different kernel combinations
whose results are reported on Table 1 and Table 2. The first column of Table 1
lists kernel combination by means of product and sum between pairs of basic
kernels used for the question and the query, respectively. The latter column
shows the average accuracy (over 10 folds) ± Std. Dev.

More in detail, our basic kernels are: (1) linear kernel (LIN) built on the
bag-of-stems (BOS) of the questions or of the query; (2) a polynomial kernel
of degree 3 on the above BOSs (POLY); (3) the Syntactic Tree Kernel (STK)
on the parse tree of the question or the query and (4) STK extended with leaf
features (STKe). Note that we can also sum or multiply different kernels, e.g.
POLY×STK.
5 More effective approaches have been proposed [11,32].
6 http://disi.unitn.it/~moschitt/Tree-Kernel.htm
7 Questions in both corpora were originally collected from a web-based interface and

manually translated into logical formulas in Prolog by Mooney’s group [7]. Popescu

et al. [2] manually converted them into SQL. Thanks to our clustering algorithm we

discovered and fixed many errors and inconsistencies in SQL queries.

http://disi.unitn.it/~moschitt/Tree-Kernel.htm
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Table 1. Kernel combi-

nation accuracies (± Std.

Dev) for Geo dataset

Combination Accuracy

LIN + LIN 57.3±10.4

LIN × LIN 70.7±12.0

POLY × POLY 71.9±11.5

STK × STK 70.3±9.3

STKe × STKe 70.1±10.9

LIN × STK 74.6±9.6

LIN × STKe 75.6±13.1

POLY × STK 73.8±9.5

POLY × STKe 73.5±10.4

STK × LIN 64.7±11.5

STKe × LIN 68.3±9.6

STK × POLY 65.4±10.9

STKe × POLY 68.3±9.6

Table 2. Advanced kernel combination accuracies

(± Std. Dev) for Geo dataset

Advanced Kernels Accuracy

STK2+POLY2 72.7±9.7

STK2
e+POLY2 73.2±11.4

(1+LIN2)2 73.6±9.4

(1+POLY2)2 73.2±10.9

(1+STK2)2 69.4±10.0

(1+STK2
e)

2 70.0±12.2

(1+LIN2)2+STK2 75.6±8.3

(1+POLY2)2+STK2 72.6±10.5

(1+LIN2)2+LIN×STK 75.9±9.6

(1+POLY2)2+POLY×STK 73.2±10.9

POLY×STK+STK2+POLY2 73.9±11.5

POLY×STKe+STK2
e+POLY2 75.3±11.5

LIN×STK+STK2+LIN2 74.5±9.1

LIN×STKe+STK2
e+LIN2 74.9±11.8

An examination of the reported figures suggests that: first, the basic tra-
ditional model based on linear kernel and BOS, i.e. LIN + LIN, provides an
accuracy of only 57.3%, which is greatly improved by LIN×LIN=LIN2, i.e. by
13.5 points 8. The explanation is that the sum cannot express the relational
feature pairs coming from questions and queries, thus LIN cannot capture the
underlying shared semantics between them. It should be noted that only kernel
methods allow for an efficient and easy design of LIN2; the traditional approach
would have required to build the Cartesian product of the question BOS by
query BOS. This can be very large, e.g. 10K features for both spaces lead to a
pair space of 100M features.

Second, the feature pair space is essential since the accuracy of all kernels
implementing the union spaces of question and query representations9 is much
lower than the baseline model for feature pairs, i.e. LIN2.

Third, if we include conjunctions in the BOS representation by using POLY,
we improve the LIN model, i.e. 71.9% vs. 70.8%. POLY2 is also better than
STK2 since it includes individual term/word bigrams that are not included by
STK.

Next, the lower accuracy provided by STK2 and STK2
e suggests that syntac-

tic models can improve BOS although too many (possibly incorrect) syntactic
features (generated by the syntactic parser) make the model unstable. This con-
sideration leads us to experiment with the model LIN × STK and LIN × STKe,
which combine words of the questions with syntactic constructs of SQL queries.
8 Although the Std. Dev. associated with the model accuracy is high, the one associ-

ated with the distribution of difference between the model accuracy is much lower,

i.e. 5%.
9 Given the limited space, we could not report the results of these poorly accurate

kernels.
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Table 3. Kernel combi-

nation accuracies (± Std.

Dev) for Rest dataset

Combination Accuracy

LIN + LIN 20.9±11.9

LIN × LIN 37.1±16.2

POLY × POLY 74.5±14.0

STK × STK 71.8±10.8

STKe × STKe 62.5±11.6

LIN × STK 79.1±11.5

LIN × STKe 77.2±12.8

POLY × STK 82.3±11.8

POLY × STKe 78.0±12.2

STK × LIN 38.3±13.4

STK × POLY 45.5±11.8

SK3 × SK3 67.4±11.1

SK3 × STK 81.7±13.3

SK3 × STKe 78.5±11.5

Table 4. Advanced kernel combination accuracies

(± Std. Dev) for Rest dataset

Advanced Kernels Accuracy

STK2+POLY2 78.6±11.9

STK2
e+POLY2 73.3±10.2

(1+LIN2)2 52.5±10.2

(1+POLY2)2 74.5±14.0

(1+STK2)2 74.5±14.0

(1+STK2
e)

2 62.5±11.6

(1+SK2
3)

2 69.8±10.0

(1+POLY×STK)2 84.7±11.5

(1+POLY2)2+STK2 78.7±12.1

(1+POLY2)2+POLY×STK 78.1±13.8

POLY×STK+STK2+POLY2 78.6±11.9

They produce statistically significant higher results (at 90% of confidence), i.e.
74.6% and 75.6%. This suggests that the syntactic parse tree of the SQL query
is very reliable (indeed, it is obtained with 100% of accuracy) while the natu-
ral language parse tree, although accurate, introduces noise that degrades the
overall feature representation. As a consequence it is more effective to use words
only in the representation of the first member of the pairs.

This is also shown by the last four lines of Table 1, showing the low accuracies
obtained when relying on NL syntactic parse trees and SQL BOSs. Thus the only
viable possibility to improve LIN × STKe was to use the polynomial kernel in
the combination POLY × STKe. The slightly lower outcome shows that POLY
is equivalent to LIN.

Moreover, we experimented with very advanced kernels built on top of fea-
ture pair spaces as shown in Table2. For example, we sum different pair spaces,
STK2

e and POLY2, and we apply the polynomial kernel on top of pair spaces
by creating conjunctions, over feature pairs. This operation tends to increase
too much the cardinality of the space and makes it ineffective. However, using
the simplest initial space, i.e. LIN, to build pair conjunctions, i.e. (1+LIN2)2,
we obtain a very interesting and high result, i.e. 73.6%. Using the joint space
of the kernel above and kernel products, we can still improve our models, e.g.
(1+LIN2)2+LIN×STK.

This suggests that kernel methods have the potentiality to describe relational
problems using simple building blocks although new theory describing the degra-
dation of kernels when the space is too complex is required.

Finally, to study the stability of our complex kernels, we compared the learning
curve of the baseline model, i.e. LIN+LIN, with the those of the best models, i.e.
LIN×STKe and STK2+(1+LIN2)2. Figure 4 shows that surprisingly, complex
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Fig. 4. Learning curves for GeoQueries and RestQueries corpora

kernels are not only more accurate but also more stable, i.e. their accuracy
increases smoothly according to the availability of training data.

4.3 Results on Rest Dataset

The previous results, although interesting, show that syntactic information plays
a minor role and that complex kernels do not significantly improve our question
translator (similar findings were derived in the preliminary experiments in [14]).

To verify such hypothesis, we experimented with the second dataset whose
results, reported in tables Table 3 and Table 4, provide more interesting data.

First, the baseline model, i.e. LIN + LIN, produces very low accuracy, i.e.
only 20.9%, which is highly improved by LIN2, also showing a very low result,
i.e. 37.1%, although.

Second, surprisingly, including conjunctions in the BOS representation, i.e. by
using POLY2, the accuracy of LIN2 doubled (74.5%). Moreover, if we combine
POLY with syntactic SQL subtrees, i.e. POLY×STK, we obtain another relevant
improvement, i.e. 82.3%. This confirms that it is better to use stems in the
representation of the first member of the pairs and syntactic parse trees in the
second member.

Third, given that n-gram based text representation technique has shown to
outperform bag-of-words approaches [10], we experimented with String Kernel
(SK). The results confirm that sequences of three words (SK2

3) better represent
questions than BOS (see SK2

3 vs. LIN2). Nevertheless, the conjunctions of POLY
are more effective.

Next, we experimented with advanced kernel combinations. The results, listed
in table Table 4, show that the advanced polynomial kernel combination (1+
POLY × STK)2 outperforms10 the best kernel combination, POLY × STK.

Finally, Figure 4 illustrates the learning curve of the best kernels, i.e. POLY ×
STK, the advanced polynomial kernel applied on top of it, i.e. (1+POLY×STK)2,
10 Although the Std. Dev. associated with the model accuracy is high, the one associ-

ated with the distribution of difference between the model accuracy is much lower

(about 2%). Considering also that we used 10 folds, we could verify that the first is

better than the second at 90% of confidence limit.
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POLY2 and SK3×STK. The plots show that the best kernels including the syn-
tactic information are superior to the very accurate and rich kernels based on
only BOS.

5 Related Work and Discussion

In this section we discuss some NLIDBs that have been tested on GeoQueries
11

or RestQueries datasets. NLIDBs can be classified according to the approach
used to retrieve an answer to a given question from a database. For sake of space
limit, we only discuss a system for each different approach. For a complete review
of other state-of-the-art systems, please refer to Chandra and Mihalcea [33].

Authoring systems rely on semantic grammar specified by an expert user
(i.e. the author) to interpret question over a database. The author has to name
database elements, tailor entries and define additional concepts. CatchPhrase [3]
is an authoring system that has been evaluated on GeoQueries250. In partic-
ular, two students were asked to author the system to cover 100 of the 250
questions each. Then the remaining questions were split in 2 test sets and trans-
lated by the system first into logical queries in tuple calculus representation and
then into SQL queries. The average accuracy was 69%.

Many systems instead adopt a machine learning approach to induce semantic
grammars from corpora of correct pairs of questions and queries, e.g. Krisp [1].
This takes pairs of sentences and their computer-executable meaning represen-
tations as training input to find a mapping between sentences and Prolog asser-
tions using an SVM classifier. For each production in the meaning representation
language the model is learned using string subsequence kernels. Then the clas-
sification is used to compositionally represent a natural language sentence in
its meaning representation. The reported experiments using standard 10-fold
cross validation show an accuracy of 70% and of 75% on GeoQueries880 and
GeoQueries250, respectively.

In Precise [2], the derivation of semantic interpretation of ambiguous phrases
is reduced to a graph matching problem. Precise finds valid mapping(s) from
a complete tokenization of a given question to a set of database elements and
then converts them into a SQL query (queries). The system achieves 100% Pre-
cision on a subset of questions while rejecting semantically intractable questions
for a final Recall of 77.5% and 95% for GeoQueries880 and RestQueries

respectively.
The performance of the above mentioned systems were originally measured

according to Precision and Recall since they do not to generate a correct answer
in particular output conditions. In contrast our approach allows for always having
one answer, therefore it can be more appropriately measured with accuracy. We
note that our approach is comparable to Krisp obtaining the similar outcome,
11

GeoQueries250 is a subset of GeoQueries880 dataset whose questions are also

available in other languages. Since our learning algorithm is language independent,

we plan to experiment with other natural languages but also with GeoQueries880

so we report others’ result also on this dataset.
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i.e. 75.6% vs 75% (of Krisp), on GeoQueries250. Regarding the comparison
with Precise, it should be noted that we corrected several errors in the SQL
testset prepared in [2] (many of queries did not return the correct values and
others were syntactically incorrect).

It is worth noting that our system, in contrast with previous generative ap-
proaches, retrieves the best matching query among the given set of all possible
queries. One could argue that we cannot find a correct answer to a given unseen
NL question if the SQL query is not present in the initial dataset. However, we
can rely on query logs which reliably represent frequent and required queries
asked to DBs.

There exist other systems [4,5,7,8] that were tested on GeoQueries880 with
different experimental-setup, so results are not directly comparable.

With respect to other natural language tasks that employ tree kernels, several
models have been proposed, e.g. [11,34,35,36,37,38,39,40,41,42].

6 Conclusions

In this paper, we approach the problem of deriving a shared semantic between
natural language and programming language by automatically learning a model
based the syntactical representation of the training examples. In our experiments
we consider pairs of NL questions and SQL queries as training examples. These
are annotated by means of our algorithm starting from a given initial annotation.
In particular we experimented with the annotation available in GeoQueries250

and RestQueries corpora.We generated new datasets adding new positive pairs,
creating negatives example set and also fixing some errors. Our datasets are pub-
licly available so that other systems can be comparedwith our benchmark corpora.

To represent syntactic/semantic relationships expressed by training pairs, we
encode such pairs in SVM by means of kernel functions. We designed innovative
combinations between different kernels for structured data applied to pairs of
objects, that, to the best of our knowledge, represent a novel approach to describe
relational semantics between NL and SQL languages.

Experimental results show a promising accuracy, which can be largely im-
proved, e.g. by model tuning. This suggests that our approach is viable to mine
semantic relations between natural language and SQL.

In the future we would like to extend this research by focusing on advanced
shallow semantic approaches such as predicate argument structures [43].

References

1. Kate, R.J., Mooney, R.J.: Using string-kernels for learning semantic parsers. In:

Proceedings of the 21st ICCL and 44th Annual Meeting of the ACL, Sydney, Aus-

tralia, July 2006, pp. 913–920. Association for Computational Linguistics (2006)

2. Popescu, A.M., Etzioni, A.O., Kautz, A.H.: Towards a theory of natural language

interfaces to databases. In: Proceedings of the 2003 International Conference on

Intelligent User Interfaces, Miami, pp. 149–157. Association for Computational

Linguistics (2003)



Syntactic Structural Kernels for NL Interfaces to Databases 405
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Abstract. Data domain description techniques aim at deriving concise
descriptions of objects belonging to a category of interest. For instance,
the support vector domain description (SVDD) learns a hypersphere en-
closing the bulk of provided unlabeled data such that points lying out-
side of the ball are considered anomalous. However, relevant information
such as expert and background knowledge remain unused in the unsu-
pervised setting. In this paper, we rephrase data domain description as a
semi-supervised learning task, that is, we propose a semi-supervised gen-
eralization of data domain description (SSSVDD) to process unlabeled
and labeled examples. The corresponding optimization problem is non-
convex. We translate it into an unconstraint, continuous problem that
can be optimized accurately by gradient-based techniques. Furthermore,
we devise an effective active learning strategy to query low-confidence
observations. Our empirical evaluation on network intrusion detection
and object recognition tasks shows that our SSSVDDs consistently out-
perform baseline methods in relevant learning settings.

1 Introduction

Data domain description techniques aim to devise concise descriptions of ob-
served data. The task is to find minimal regions in feature space containing all
data points that belong to the category of the observed data. Observations that
do not fall into this region deviate from the normality and are rejected.

Data domain description techniques are therefore frequently being applied to
outlier and anomaly detection problems where a model of normality is devised
from available observations. Anomality of new objects is measured by their dis-
tance (in some metric space) from the learned model of normality, historically
also known as “the sense of self” [7].

In network intrusion detection, the main merit of anomaly detection tech-
niques is their ability to detect previously unknown attacks. One might think
that the collective expertise amassed in the computer security community rules
out major outbreaks of “genuinely novel” exploits. Unfortunately, a wide-scale de-
ployment of efficient tools for obfuscation, polymorphic mutation and encryption
results in an exploding variability of attacks. Although being only “marginally
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novel”, such attacks quite successfully defeat signature-based detection tools.
This reality brings one-class anomaly detection back into the research focus of
the security community [14,15,11,28,27,19,20]. Until now, anomaly detection is
usually being regarded as an unsupervised learning task for good reasons: Firstly,
the rejection class cannot be sampled per definition as it comprises rare and un-
likely events. Secondly, outliers are frequently too diverse to be modeled by only
a single rejection class.

Nevertheless, data domain description techniques exhibit appealing properties
for dealing with multiple, non-stationary class-distributions in settings where
shifting distributions can be modeled by all means. For instance, domain de-
scriptions have been successfully applied to multi-class classification problems
with temporally varying numbers of categories such as event detection tasks and
object recognition systems. Instead of maintaining expensive multi-class classi-
fiers that have to be retrained using all available data once a new category is
added, one simply learns a single domain description for every (new) category
of interest.

We claim that an unsupervised learning setting for data domain descrption
is often too restricted for practical applications. Firstly, these methods have
to be trained solely on normal data which is hardly possible without already
knowing the labelings. Although state-of-the-art techniques prove robust against
injecting a few instances of the rejection class into the training data [2,24],
knowing the class ratios is often crucial for accurate parameter adjustments.
Secondly, one often knows the categories of certain training instances, be it
manually labeled or recently seen instances. Such expert knowledge cannot be
exploited in unsupervised settings and the learned models are sub-optimal in the
sense that they leave out important information.

In this paper, we rephrase data domain description as a semi-supervised learn-
ing task, that is, we present semi-supervised data domain description (SSSVDD)
that allows for processing unlabeled as well as labeled data to include expert and
prior knowledge. Our model learns a minimal enclosing hypersphere in feature
space that contains the normal data where point-wise errors are relaxed by slack
variables. The inclusion of examples of the rejection class turns the optimiza-
tion problem non-convex. As a remedy, we translate the optimization into an
unconstraint, continuous problem with fewer parameters. It can therefore be op-
timized faster, and the retrieved local minima are substantially better on average
[3]. The SSSVDD contains the unsupervised data domain description [24] as a
special case that is obtained when no label information is used in the training
process.

Furthermore, we devise an active learning strategy to query low-confidence
decisions, hence guiding the user in the labeling process. Active learning selects
an instance to be labeled by the user from the pool of unlabeled data. The
selection process is designed to find unlabeled examples in the pool which –
once labeled – lead to the maximal improvement of the hypothesis. Thus, the
SSSVDD is initially trained solely on unlabeled examples and then subsequently
refined by incorporating labeled examples that have been queried by the active
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learning rule. The training process can be terminated at any time, for instance
when the desired predictive performance is obtained.

Empirical results on network intrusion detection and object recognition tasks
show the benefit of casting data domain description into a semi-supervised
learning framework: The SSSVDD significantly outperforms appropriate base-
line methods for all learning settings. This effect is significantly enhanced by
active learning. Our active learning strategy not only reduces the manual label-
ing effort for the practitioner, it also allows for automatically identifying novel
network attacks for the intrusion detection tasks.

Our paper is structured as follows. Section 2 reviews related work and Section
3 introduces the classical data domain description. We extend the latter to a
semi-supervised learning method in Section 4 where we also discuss optimization
issues. Section 5 introduces our active learning strategy and Section 6 reports
on empirical results. Section 7 concludes.

2 Related Work

Data domain description is usually regarded as an unsupervised or one-class
classification task. Prominent approaches comprise k-nearest neighbors [2] or
other distance based methods [9], quadratic programming [24], and statistical
methods [30,25]. In this paper, we rephrase data domain description as a semi-
supervised task (see [32] for an overview).

Active learning for anomaly detection has been studied by [22,17,1]. [1] take a
max-margin approach and propose to query points that lie close to the decision
hyperplane and violate the margin criterion in order to minimize the error rate.
By contrast, the approach by [17] aims at detecting rejection categories in the
data using as few queries as possible. Finally, the approach taken in [22] combines
the former two active learning strategies to find interesting regions in feature
space and to decrease the error-rate simultaneously.

Furthermore, there are several extensions of unsupervised data domain de-
scriptors allowing for the inclusion of labeled examples. For instance, [8,12,26,31]
present fully-supervised variants of the classical support vector data description
(SVDD) [24]. However, the objective functions are no longer convex and the pro-
posed optimizations in dual space may suffer from duality gaps. Another variant
proposed in [23] is trained on unlabeled and instances belonging to the rejection
class. Although this approach seems promising, it also suffers from non-convexity
of the objective.

3 Support Vector Data Description

In this section, we briefly review the classical support vector domain description
(SVDD) [24]. We are given a set of n normal inputs x1, . . . , xn ∈ X and a
function φ : X → F extracting features out of the inputs. For instance, xi may
refer to the i-th recorded request and φ(xi) may encode the vector of bigrams
occurring in xi.
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The goal of the SVDD is to find a concise description of the normal data such
that anomalous data can be easily identified as outliers. In the underlying one-
class scenario, this translates to finding a minimal enclosing hypersphere (i.e.,
center c and radius R) that contains the normal input data [24], see Figure 1
(left). Given the function

f(x) = ‖φ(x)− c‖2 −R2,

the boundary of the ball is described by the set {x : f(x) = 0 ∧ x ∈ X}. That
is, the parameters of f are to be chosen such that f(x) < 0 for normal data and
f(x) > 0 for anomalous points. The center c and the radius R can be computed
accordingly by solving the following optimization problem [24]

min
R,c,ξ

R2 + η

n∑
i=1

ξi

s.t. ∀n
i=1 : ‖φ(xi)− c‖2 ≤ R2 + ξi (1)
∀n

i=1 : ξi ≥ 0.

The trade-off parameter η adjusts point-wise violations of the hypersphere. That
is, a concise description of the data might benefit from omitting some data points
in the computation of the solution. Discarded data points induce slack that is
absorbed by variables ξi. Thus, in the limit η →∞, the hypersphere will contain
all input examples irrespectively of their utility for the model and η → 0 implies
R → 0 and the center c reduces to the centroid of the data.

The above optimization problem can be translated into an equivalent dual
formulation by exploiting the identity c =

∑n
i=1 αiφ(xi). We arrive at the dual

SVDD optimization problem [24],

max
α

n∑
i=1

αik(xi, xi)−
n∑

i,j=1

αiαjk(xi, xj)

s.t.
n∑

i=1

αi = 1 and 0 ≤ αi ≤ η ∀i = 1, . . . , n.

Once optimal parameters α∗ are found these are used as plug-in estimates to
compute the anomaly score for new and unseen instances. A new observation x̄
is accepted if

k(x̄, x̄)− 2
n∑

i=1

α∗
i k(xi, x̄) +

n∑
i,j=1

α∗
i α

∗
jk(xi, xj) ≤ R2.

[8,12,26,23] propose extensions of the SVDD to incorporate labeled data into
the learning process. The corresponding optimization problems are however not
convex and the dual solution might suffer from a duality gap.
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Fig. 1. Left: An exemplary solution of the SVDD. Right: Illustration of SSSVDD that
incorporates unlabeled (green) as well as labeled data of the normal class (red) and
the rejection category (blue).

4 Semi-supervised Data Domain Description

In this section, we derive our semi-supervised data domain description. In addi-
tion to n normal observations x1, . . . , xn ∈ X we are also given m labeled pairs
(x∗

n+1, y
∗
n+1), . . . , (x

∗
n+m, y∗

n+m) ⊂ X × {+1,−1}, where we associate normal
data with the positive class and outliers as the negative class. As in the previous
section, we aim at finding a model f(x) = ||φ(x) − c||2 − R2 that generalizes
well on unseen data, however, the model is now devised on the basis of labeled
and unlabeled data. A straight-forward extension of the SVDD in Equation (1)
using both, labeled and unlabeled examples, is given by

min
R,γ,c,ξ

R2 − κγ + ηu

n∑
i=1

ξi + ηl

n+m∑
j=n+1

ξ∗j

s.t. ∀n
i=1 : ‖φ(xi)− c‖2 ≤ R2 + ξi

∀n+m
j=n+1 : y∗

j

(
‖φ(x∗

j )− c‖2 −R2) ≤ −γ + ξ∗j (2)

∀n
i=1 : ξi ≥ 0,

∀n+m
j=n+1 : ξ∗j ≥ 0.

The optimization problem has additional constraints for the labeled examples
that have to fulfill the margin criterion with margin γ. Trade-off parameters
κ, ηu, and ηl balance margin-maximization and the impact of unlabeled and
labeled examples, respectively. To avoid cluttering the notation unnecessarily,
we omit the obvious generalization of allowing different trade-offs η+

l and η−
l for

positively and negatively labeled instances, respectively. The additional slack
variables ξ∗j are bound to labeled examples and allow for point-wise relaxations
of margin violations by labeled examples. The solution of the above optimization
problem is illustrated in Figure 1 (right).

The inclusion of negatively labeled data turns the above optimization problem
non-convex and optimization in the dual is prohibitive. As a remedy, we translate



412 N. Görnitz, M. Kloft, and U. Brefeld

Equation (2) into an unconstraint, continuous problem [3,33]. For the above
problem, it is possible to resolve the slack terms:

ξi = �
(
R2 − ||φ(xi)− c||2

)
ξ∗j = �

(
y∗

j

(
R2 − ||φ(x∗

j )− c||2
)
− γ

)
where �(t) = max{−t, 0} is the common hinge loss where we explicitely deal with
the margin γ in the argument t because γ is part of the optimization. We can
now pose optimization problem (2) as a simple minimization problem without
constraints as follows,

min
R,γ,c

R2 − κγ + ηu

n∑
i=1

�
(
R2 − ||φ(xi)− c||2

)
+ ηl

n+m∑
j=n+1

�
(
y∗

j

(
R2 − ||φ(x∗

j )− c||2
)
− γ

)
. (3)

Note that the optimization problems in Equations (2) and (3) are equivalent so
far. We now substitute the Huber loss for the hinge loss to obtain a smooth and
differentiable function that can be optimized with gradient-based techniques.
The Huber loss �Δ,ε is displayed in Figure 2 and given by

�Δ,ε(t) =

⎧⎨⎩
Δ− t : t ≤ Δ− ε

(Δ+ε−t)2

4ε : Δ− ε ≤ t ≤ Δ + ε
0 : otherwise

�′Δ,ε(t) =

⎧⎨⎩
−1 : t ≤ Δ− ε

− 1
2 (Δ−t

ε + 1) : Δ− ε ≤ t ≤ Δ + ε
0 : otherwise .

(4)

For notational convenience, we focus on the Huber loss for �Δ=0,ε(t) and move
margin dependent terms into the argument t. Using the Huber loss �0,ε, com-
puting the gradients of the slack variables ξi associated with unlabeled examples
with respect to the primal variables R and c yields

∂ξi

∂R
= 2R�′ε(R

2 − ||φ(xi)− c||2)
∂ξi

∂c
= 2(φ(xi)− c)�′ε(R

2 − ||φ(xi)− c||2).

The derivatives of their counterparts ξ∗j for the labeled examples with respect to
R, γ, and c are given by

∂ξ∗j
∂R

= 2y∗
j R�′ε

(
y∗

j

(
R2 − ||φ(x∗

j )− c||2
)
− γ

)
∂ξ∗j
∂γ

= −κ�′ε
(
y∗

j

(
R2 − ||φ(x∗

j )− c||2
)
− γ

)
∂ξ∗j
∂c

= 2y∗
j (φ(x∗

j )− c)�′ε
(
y∗

j

(
R2 − ||φ(x∗

j )− c||2
)
− γ

)
.
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Substituting the partial gradients, we resolve the gradient of Equation 3 with
respect to the primal variables:

∂EQ3
∂R

= 2R + ηu

n∑
i=1

∂ξi

∂R
+ ηl

n+m∑
j=n+1

∂ξ∗j
∂R

, (5)

∂EQ3
∂γ

= −κ + ηl

n+m∑
j=n+1

∂ξ∗j
∂γ

, (6)

∂EQ3
∂c

= ηu

n∑
i=1

∂ξi

∂c
+ ηl

n+m∑
j=n+1

∂ξ∗j
∂c

. (7)

The above equations can be plugged directly into off-the-shelf gradient-based
optimization tools to optimize Equation (3) in the input space for the identity
φ(x) = x. However, predictive power is often related to (possibly) non-linear
mappings φ of the input data into some high-dimensional feature space. An
application of the representer theorem (see Appendix) shows that the center c
can be expanded as

c =
∑

i

αiφ(xi) +
∑

j

αjy
∗
j φ(x∗

j ). (8)

According to the chain rule, the gradient of Equation (3) with respect to the
αi/j is given by

∂EQ3
∂αi/j

=
∂EQ3

∂c

∂c

∂αi/j
.

Using Equation (8), the partial derivatives ∂c
∂αi/j

resolve to

∂c

∂αi
= φ(xi) and

∂c

∂αj
= y∗

j φ(x∗
j ), (9)
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respectively. Applying the cain-rule to Equations (5),(6),(7) and (9) gives the
gradients of Equation (3) with respect to the αi/j . The final objective function
allowing for the use of kernel functions can be stated as

min
R,γ,α

R2−κγ+ηu

n∑
i=1

�ε

(
R2 − k(xi, xi) + (2ei − α)′Kα

)
+ ηl

n+m∑
j=n+1

�ε

(
y∗

j

(
R2 − k(x∗

j , x
∗
j ) + (2e∗

j − α)′Kα
)
− γ

)
, (10)

where kernel K is given by K(x, x′) = 〈φ(x), φ(x′)〉 and e1, . . . , en+m is the
standard base of Rn+m. By rephrasing the problem as an unconstrained opti-
mization problem, its intrinsic complexity has not changed. However, the local
minima of Optimization Problems (3) and (10) can now easily be found with
gradient-based techniques such as conjugate gradient descent. In general, uncon-
strained optimization is also easier to implement than constrained optimization.
We will observe the benefit of this approach in the following.

5 Active Learning

The SSSVDD is initially trained solely on unlabeled examples and then subse-
quently refined by incorporating labeled examples that have been queried by the
active learning rule. We now devise an active learning strategy to query low-
confidence decisions, hence guiding the user in the labeling process. Our active
learning strategy selects an instance of the unlabeled data pool to be labeled
by the user. The selection process is designed to find the unlabeled example in
the pool which – once labeled – leads to the maximal improvement of the actual
model.

We begin with a commonly used active learning strategy which simply queries
borderline points. The strategy is sometimes called margin strategy and can be
expressed by asking the user to label the point x′ that is closest to the decision
hypersphere [1,29]

x′ = argmin
x∈{x1,...,xn}

|f(x)|
Ω

= argmin
x∈{x1,...,xn}

|R2 − ‖φ(x)− c‖2|
Ω

, (11)

where Ω is a normalization constant and given by Ω = maxi |f(xi)|.
However, when dealing with many non-stationary outlier and/or attack cate-

gories, it is beneficial to identify novel reject classes as soon as possible. We trans-
late this into an active learning strategy as follows. Let A = (aij)i,j=1,...,n+m be
an adjacency matrix, for instance obtained by a k-nearest-neighbor approach,
where aij = 1 if xi is among the k-nearest neighbors of xj and 0 otherwise.
We introduce an extended labeling ȳ1 . . . , ȳn+m for all examples by defining
ȳi = 0 for unlabeled instances and retaining the labels for labeled instances, i.e.,
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ȳj = yj . Using these pseudo labels, Equation (12) returns the unlabeled instance
according to

x′ = argmin
xi∈{x1,...,xn}

1
2k

n+m∑
j=1

(ȳj + 1) aij . (12)

The above strategy explores unknown regions in feature space and subsequently
deepens the learned knowledge by querying clusters of potentially similar objects
to allow for good generalizations.

Nevertheless, using Equation (12) alone may result in querying points lying
close to the center of the hypersphere or far from its boundary. These points will
hardly contribute to an improvement of the hypersphere. In other words, only a
combination of both strategies (11) and (12) guarantees the active learning to
query points of interest. Our final active learning strategy is therefore given by

x′ = argmin
xi∈{x1,...,xn}

= δ
|f(x)|

Ω
+

1− δ

2k

n+m∑
j=1

(ȳj + 1) aij (13)

for δ ∈ [0, 1]. The combined strategy queries instances that are close to the
boundary of the hypersphere and lie in potentially anomalous clusters with re-
spect to the k-nearest neighbor graph. Depending on the actual value of δ, the
strategy jumps from cluster to cluster and thus helps to identify interesting re-
gions in feature space. For the special case of no labeled points our combined
strategy reduces to the margin strategy.

Usually, an active learning step is followed by an optimization step of the
SSSVDD taking into account the newly labeled data. This procedure is of course
time-consuming and can be altered for practical settings, for instance by querying
a couple of points before performing a model update. Irrespectively of the actual
implementation, alternating between active learning and updating the model can
be repeated until a desired predictive performance is obtained.

6 Empirical Results

In this section, we empirically evaluate the SSSVDD and the active learning
strategies and compare their performances to appropriate strawmen. The base-
lines SVDD and SVDDneg [23] are implemented in Matlab and optimized by
SMO [18]. Additional baselines for the object recognition tasks are binary SVMs.
SSSVDDs are optimized by conjugate gradient descent. Parameters of the active
learning strategy are set to k = 10, α = 0.1 for simplicity. We experiment on
network intrusion and object recognition tasks.

6.1 Intrusion Detection

For the intrusion detection experiments we use HTTP traffic recorded within 10
days at Fraunhofer Institute FIRST. The data set comprises 145,069 unmodified
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Fig. 3. Results for normal vs. malicious

connections of average length of 489 bytes. We refer to the FIRST data as the
normal pool. The malicious pool contains 27 real attack classes generated using
the Metasploit framework [16]. It covers 15 buffer overflows, 8 code injections and
4 other attacks including HTTP tunnels and cross-site scripting. Every attack
is recorded in 2 – 6 different variants using virtual network environments and
decoy HTTP servers.

To study the robustness of the different approaches in a more realistic scenario
we also study techniques to obfuscate malicious content by adapting attack pay-
loads to mimic benign traffic in feature space [6]. As a consequence, the extracted
features do not deviate from a model of normality and the classifier is likely to
be fooled by the attack. For our purposes it already suffices to study a simple
cloaking technique by adding common HTTP headers to the payload while the
malicious body of the attack remains unaltered. We apply this technique to the
malicious pool and refer to the obfuscated set of attacks as cloaked pool.

We focus on two scenarios: normal vs. malicious and normal vs. cloaked data.
For both settings, the respective byte streams are translated into a bag-of-3-
grams representation. For each experiment, we randomly draw 966 training ex-
amples from the normal pool and 34 attacks either from the malicious or the
cloaked pool, depending on the scenario. Holdout and test sets are also drawn at
random and consist of 795 normal connections and 27 attacks, each. We make
sure that attacks of the same attack class occur either in the training, or in
the test set but not in both. We report on 10 repetitions with distinct training,
holdout, and test sets and measure the performance by the area under the ROC
curve in the false-positive interval [0, 0.01] (AUC0.01)

Figure 3 shows the results for normal vs. malicious data pools, where the x-axis
depicts the percentage of randomly drawn labeled instances. Irrespectively of the
amount of labeled data, the malicious traffic is detected by all methods equally
well as the intrinsic nature of the attacks is well captured by the bag-of-3-grams
representation. There is no significant difference between the classifiers. However,
our next experiment shows the fragility of the of these results in the presence of
simple cloaking techniques. Simply obfuscating the attacks by copying normal
headers into the malicious payload leads to dramatically different results.
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Figure 4 (left) displays the results for normal vs. cloaked data. First of all,
the performance of the unsupervised SVDD drops to only 70%. We obtain a
similar result for the SVDDneg ; incorporating cloaked attack information into
the training process of the SVDD leads to an increase of about 5% which is far
from any practical value. Notice that the SVDDneg cannot make use of labeled
data of the normal class. Thus, its moderate ascent in terms of the number of
labeled examples is credited to the class ratio of 966/34 for the random labeling
strategy. The bulk of additional information cannot be exploited and has to
be left out. By contrast, the semi-supervised SSSVDD includes all labeled data
into the training process and clearly outperforms the two baselines. For only
5% labeled data, the SSSVDD easily beats the best baseline and for randomly
labeling 30% of the available data it separates almost perfectly between normal
and cloaked malicious traffic.

Nevertheless, labeling 30% of the data is not realistic for practical applications.
We thus explore the benefit of active learning for inquiring label information
of borderline and low-confidence points. Figure 4 shows the results for normal
vs. cloaked data where the labeled data for SVDDneg and SSSVDD is chosen
according to the active learning strategy in Equation (13). The unsupervised
SVDD that does not make use of labeled information remains at an AUC0.01 of
70%. Compared to the results for a random labeling strategy (Figure 4, left), the
performance of its counterpart SVDDneg increases significantly. The ascent of
the SVDDneg is now steeper and yields 85% for 15% labeled data. However, the
SSSVDD also improves for active learning and dominates the baselines. Using
active learning, we need to label only 3% of the data for attaining an almost
perfect separation, compared to 25% for a random labeling strategy. Our active
learning strategy effectively boosts the performance and reduces the manual
labeling effort significantly.

Figure 5 details the impact of our active learning strategy in Equation (13).
We compare the number of outliers detected by the combined strategy with the
margin-based strategy in Equation (11) (see also [1]) and by randomly draw-
ing instances from the unlabeled pool. As a sanity check, we also included the
theoretical outcome for random sampling. The results show that the combined
strategy effectively detects malicious traffic much faster than the margin-based
strategy.
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Fig. 5. Number of outliers found by active learning

6.2 Object Recognition

For our object recognition experiments we use the classification data of the VOC
2008 challenge [5]. The data set comprises 8780 images and 20 object classes.
An image is annotated with a class label if at least one object from that class is
detectable in the image. We use the training and holdout sets for our experiments
which contain 4340 images.

For computational reasons, we focus on the three randomly drawn classes
aeroplane (198 instances), bird (286 instances), and dog (266 instances), exem-
plary images are displayed in Figure 6. From the pool, we draw 375 instances
randomly as independent test set while the remaining 375 examples are used for
model selection over 10 repetitions. In each run, we randomly draw 10 labeled
images of each class, 148 unlabeled instances, and 187 holdout examples.

We employ pyramid histograms [10] of visual words [4] (PHOW) for pyramid
levels 0,1,2 over the grey channel. We obtain a feature vector for every image by
concatenating histograms of all levels. For the grey channel, 1200 visual words
are computed by k-means clustering on SIFT features [13] from randomly drawn
images of each class. The underlying SIFT features are extracted from a dense
grid of pitch ten.

Figure 7 compares regular support vector machines (SVMs) with SSSVDDs
where both approaches apply margin-based active learning (Equation (11)) and
the combined strategy in Equation (13) for detecting query points. For only a
few labeled data points and many unlabeled examples (which cannot be utilized

Fig. 6. Exemplary images from the VOC2008 object recognition data set. From left to
right: aeroplane, dog, and bird.
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by SVMs), both approaches perform comparably. However, for increasing per-
centages of labeled data, the task becomes more and more a binary problem
for which the SVM is well suited. For 25% labeled data, the SVM beats the
SSSVDD significantly. Nevertheless, SSSVDD proves robust when labeled data
is scarce and expensive to obtain; unlabeled examples are effectively exploited
to augment sparse labelings.

7 Conclusion

In this paper, we proposed to view data domain description as a semi-supervised
learning problem to allow for the inclusion of prior and expert knowledge. We
generalized support vector data description to a semi-supervised learning algo-
rithm (SSSVDD). Since the objective function of the SSSVDD is not convex, we
translated the optimization problem into an unconstraint, continuous problem
which can be optimized with efficient gradient-based techniques. Furthermore,
we proposed a novel active learning strategy to guide the user in the labeling
process of the unlabeled data by querying instances that are not only close to
the boundary of the hypersphere but also likely members of novel rejection cat-
egories.

Empirically, we showed on network intrusion detection and object recognition
tasks that rephrasing the unsupervised problem setting as a semi-supervised
task is worth the effort. For instance in the network intrusion detection task,
SSSVDDs prove robust in scenarios where the performance of baseline ap-
proaches deteriorate due to obfuscation techniques. Moreover, we observe the
effectiveness of our active learning strategy which significantly improves the qual-
ity of the SSSVDD and spares practitioners from labeling unnecessarily many
data points.
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Appendix

In this section, we show the applicability of the representer theorem for semi-
supervised support vector domain descriptions.

Theorem 1 (Representer Theorem [21]). Let H be a reproducing kernel
Hilbert space with a kernel k : X × X → R, a symmetric positive semi-definite
function on the compact domain. For any function L : Rn → R, any nonde-
creasing function Ω : R → R. If

J∗ := min J(f)f∈H := min f ∈ H{Ω
(
||f ||2H

)
+ L (f(x1), . . . , f(xn))}

is well-defined, then there exist α1, . . . , αn ∈ R, such that

f(·) =
n∑

i=1

αik(xi, ·) (14)

achieves J(f) = J∗. Furthermore, if Ω is increasing, then each minimizer of
J(f) can be expressed in the form of Eq. (14).

Lemma 1. The representer theorem can be applied to Equation (3).

Proof. Recall the primal SSSVDD objective function which is given by

J(R, γ, c) =R2 − κγ + ηu

n∑
i=1

�
(
R2 − ||φ(xi)− c||2

)
+ ηl

n+m∑
j=n+1

�
(
y∗

j

(
R2 − ||φ(x∗

j )− c||2
)
− γ

)
.

Substituting T := R2 − ||c||2 leads to the new objective function

J(T, γ, c) =||c||2 + T − κγ + ηu

n∑
i=1

�
(
T − ||φ(xi)||2 + 2φ(xi)′c

)
+ ηl

n+m∑
j=n+1

�
(
y∗

j

(
T − ||φ(x∗

j )||2 + 2φ(x∗
j )

′c
)
− γ

)
.

Expanding the center c in terms of labeled and unlabeled input examples is now
covered by the representer theorem. After the optimization, T can be easily re-
substituted to obtain the primal variables R, γ, and c. ��
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Abstract. In many domains there will exist different representations or

“views” describing the same set of objects. Taken alone, these views will

often be deficient or incomplete. Therefore a key problem for exploratory

data analysis is the integration of multiple views to discover the under-

lying structures in a domain. This problem is made more difficult when

disagreement exists between views. We introduce a new unsupervised

algorithm for combining information from related views, using a late in-
tegration strategy. Combination is performed by applying an approach

based on matrix factorization to group related clusters produced on indi-

vidual views. This yields a projection of the original clusters in the form

of a new set of “meta-clusters” covering the entire domain. We also pro-

vide a novel model selection strategy for identifying the correct number

of meta-clusters. Evaluations performed on a number of multi-view text

clustering problems demonstrate the effectiveness of the algorithm.

1 Introduction

In many data analysis tasks there will naturally exist several different ways to
describe the same set of data objects. This leads to the availability of multiple
distinct representations or “views” that encode patterns relevant to the domain
[1]. The question then arises, how can we integrate these representations in a way
that allows us to effectively identify and explore these patterns? For some data
exploration applications, we may have access to a set of views that are entirely
compatible – the same patterns will occur across all views. The problem then
becomes the identification of a single consensus model describing the patterns
common to all views [2]. In other cases significant discord may exist between the
data in different views [3]. An effective data integration procedure must then rec-
oncile these disagreements, identifying common patterns, while also preserving
those that are unique to each view.

In this paper we propose a simple but effective algorithm for combining data
from multiple views, based on a late integration strategy [4]. The proposed ap-
proach, referred to as Integration by Matrix Factorization (IMF), takes repre-
sentative clusterings generated independently on each available view, constructs
an intermediate matrix representation of those clusterings, and applies a factor-
ization procedure to this representation to reconcile the groups arising from the
individual views. The factorization procedure preserves the contribution of the

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 423–438, 2009.
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original clusters to the new groups, thereby highlighting the contribution made
by each of the views. In addition we propose an entropy-based model selection
procedure for automatically identifying the number of groups. To evaluate our
approach we consider the problem of organizing topical news stories, represented
by related text documents distributed across multiple views. These evaluations
indicate that IMF can address common issues arising in real-world integration
problems – such as disagreement between views, noisy views, and missing data.

This paper is organized as follows. Section 2 provides a brief overview of ex-
isting techniques for matrix factorization and fusing data from different sources.
In Section 3 we discuss various issues that frequently arise when integrating
multiple datasets in practice, and describe the proposed algorithm in detail. In
Section 4 we present an empirical evaluation of the algorithm on synthetically-
generated multi-view text datasets, followed by an evaluation on a real-world
integration problem in Section 5. The paper finishes with some conclusions and
suggestions for future work in Section 6.

2 Related Work

2.1 Matrix Factorization

Lee & Seung [5] proposed Non-negative Matrix Factorization (NMF), an un-
supervised approach for dimensionality reduction, which approximates a data
matrix as a product of factors that are constrained so that they will not contain
negative values. By modeling each object as the additive combination of a set of
non-negative basis vectors, a readily interpretable clustering of the data can be
produced without further post-processing. These basis vectors are not required
to be orthogonal, which facilitates the discovery of overlapping groups. The fac-
torization process itself involves minimizing the difference between the original
data and the approximation, most commonly by iteratively applying a pair of
multiplicative update rules until the process converges to a local minimum [5].

2.2 Ensemble Clustering

In an unsupervised ensemble learning scenario we have access to a collection
of “base clusterings”, consisting of different clusterings generated on data orig-
inating from the same source. These clusterings represent the members of the
ensemble. The primary aim of ensemble clustering [6] is to aggregate the in-
formation provided the ensemble members to produce a more accurate, stable
clustering. A variety of strategies have been proposed to combine an ensemble
to produce a single solution. For instance, the most widely-used strategy has
been to consider information derived from the base clusterings to determine the
level of co-association between each pair of objects in a dataset. Once a pair-
wise co-association matrix has been constructed, a standard algorithm such as
single-linkage agglomerative clustering [7] or multi-level graph partitioning [6] is
applied to produce a consensus clustering. The latter formulation was referred to
by the authors as the Cluster-based Similarity Partitioning Algorithm (CSPA).
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Rather than merely examining the pairwise relations between data objects,
several authors have suggested examining the relations between the actual clus-
ters contained in all base clusterings. Strehl & Ghosh [6] proposed the Hyper-
Graph Partitioning Algorithm (HGPA), which involves transforming disjoint
base clusterings to a hypergraph representation. Each node in the hypergraph
represents a data object, and hyperedges are defined by the base cluster bi-
nary membership vectors. Subsequently a consensus clustering is produced by
partitioning the hypergraph using the METIS algorithm [8].

The task of aggregating multiple clusterings can also be viewed as a cluster
correspondence problem, where similar clusters from different base clusterings
are matched together to produce a single “average clustering”. Strehl & Ghosh
[6] described a solution, referred to as the Meta-CLustering Algorithm (MCLA),
which involves constructing a hypergraph where each hyperedge represents a
cluster. The edges of the graph are then divided into a balanced k-way parti-
tion. Based on this edge partition, a majority voting scheme is used to assign
data objects into the final clusters. The correspondence problem has been tack-
led by a number of other authors using cumulative voting ensemble clustering
schemes, which are based on the assumption that there will be a direct relation-
ship between individual clusters across all the base clusterings [9].

2.3 Data Integration

Blum & Mitchell [1] initially proposed the application of machine learning tech-
niques in a multi-view setting, a problem which arises in domains where the
data objects will naturally have several different representations. A useful broad
distinction between techniques in this area was described by Pavlidis et al. [4],
who identified three general data integration strategies: early integration involves
the direct combination of data from several views into a single dataset before
learning; intermediate integration involves computing separate similarity matri-
ces on the views and producing a combined pairwise representation which is
then passed to the learning algorithm; and late integration involves applying an
algorithm to each individual view and subsequently combining the results.

While theoretical work in this area has largely focused on supervised learning
problems, researchers have also considered the problem of producing clusterings
from several different data sources. For instance, Bickel & Scheffer [2] proposed
multi-view extensions of existing partitional and agglomerative clusterings algo-
rithms. These algorithms were applied to the problem of clustering web pages,
as represented by both textual information and hyperlinks. A general two-stage
framework for reconciling discordant views in an unsupervised setting was de-
scribed by Berthold & Patterson [3]. Other approaches have included minimiz-
ing the disagreement between views by casting the integration problem as an
instance of bipartite spectral clustering [10], or as a semi-supervised clustering
task where pairwise constraints generated from one view are used to influence
the clustering process in another [11]. Both of these approaches are naturally
limited to scenarios involving pairs of views.
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3 Methods

3.1 Motivation

Given a set of views {V1, . . . , Vv}, let {x1, . . . , xn} denote the complete set of
data objects present in the domain (i.e. V1 ∪ V2 · · · ∪ Vv). The data integration
task involves producing a complete clustering of the n objects to uncover all
significant underlying “patterns” or groups present in the domain. In practice
such integration tasks will often encounter one or more of the following issues:

Diversity of representation: In some views a feature-based representation
will be available for data objects, while in other views only relation-based
representations will be available, often in the form of graphs or networks.

Incomplete views: A representation for a data object in each view will not
always be available. Rather, each view will often contain a subset of the
total set of data objects in the domain.

Missing patterns: Patterns may be present in the data in one view, but largely
or entirely absent from another view. As a consequence the number of pat-
terns in each view will also vary.

Disagreement between views: The assignment of data objects to patterns
may be inconsistent between views. Such disagreements can arise due to the
unique characteristics of problem domain, or can simply be the result of
noise within a view.

With the above requirements in mind, we propose a factorization-based formu-
lation of the late integration [4] strategy for exploring domains were two or more
related views exist. This approach, referred to as Integration by Matrix Factor-
ization (IMF), takes representative clusterings generated independently on each
individual view (using an algorithm appropriate for that view), constructs an
intermediate representation of the clusterings, and decomposes this represen-
tation to reconcile the groups arising from the individual views. The fact that
IMF operates on previously generated clusterings alone, rather than any specific
representation of the original data, neatly avoids the diversity of representation
issue. Late integration brings a number of additional benefits: the ability to har-
ness parallel computing resources by processing large data views separately, the
aggregation of information from views where privacy issues arise (e.g. financial,
legal or commercially-sensitive data), and the facility to reuse knowledge avail-
able in existing legacy clusterings [6]. Later in Section 4 we demonstrate that the
IMF algorithm can also address the other key integration issues of incomplete
views, missing patterns, and disagreement between the set of available views.

3.2 Integration by Matrix Factorization

Intermediate representation. Formally we have access to a set of representa-
tive clusterings C = {C1, . . . , Cv}, one per view, where Ch indicates the set of kh

clusters {c1
h, . . . , ckh

h } generated on the view Vh. The sum l =
∑v

i=1 ki is the total
number of clusters generated on all views. The clusterings may be generated by
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an algorithm that produces a disjoint partition (e.g. standard k-means or the
kernelized equivalent), probabilistic clusters (e.g. EM clustering), or arbitrary
non-negative membership weights (e.g. NMF). Hierarchical clusterings can be
combined by applying a suitable cut-off strategy to produce a disjoint partition.
However, for the remainder of this paper we focus on disjoint clusterings.

The constituent clusterings in C can be represented by a set of non-negative
membership matrices M = {M1, . . . ,Mv}, where Mh ∈ IRn×kh represents the
cluster membership of objects in Ch generated on view Vh. For objects which are
not present or clustered in a given view, the corresponding row in the membership
matrix of the clustering for that view will contain zero values. By transposing
the matrices in M and stacking them vertically, we can construct a matrix of
clusters X ∈ IRl×n. Each row in X now corresponds to an individual cluster
from the clusterings in C, while each column corresponds to a data object in the
original domain. Following the discussion in [6], conceptually we can view this
representation as the adjacency matrix of a hypergraph consisting of n vertices
and l weighted hyperedges. Alternatively we can interpret the columns of X as
an embedding of the original objects in a new l-dimensional space.

Factorization process. The goal of the integration process is to project the
clusters in C to a set of k′ < l new basis vectors or “meta-clusters”, where
k′ represents the number of underlying patterns present in the domain. These
meta-clusters represent the additive combinations of clusters generated on one or
more different views. Clusters generated on the same view can also be grouped
together. This may be desirable in cases where a pattern has been incorrectly
split in a view, or where the constituent clusterings are generated at a higher
resolution than is required for the integrated solution.

Formally, the process involves producing an approximation of X in the form
of the product of two non-negative factors:

X ≈ PH such that P ≥ 0 , H ≥ 0

where the rows of P ∈ IRl×k′
represent the projection of the original clusters to a

set of new basis vectors representing k′ “meta-clusters”. These meta-clusters can
be additively combined using the coefficient values from the matrix H ∈ IRk′×n

to reconstruct an approximation of the original set of clusters in X. Furthermore,
each column in H can be viewed as the membership of the original complete set
of n data objects with respect to the k′ meta-clusters.

To measure the reconstruction error between the original matrix X and the
pair of factors (P,H) we can compute the Frobenius norm:

||X−PH||2F =
l∑

i=1

n∑
j=1

[Xij − (PH)ij ]
2 (1)

To minimize Eqn. 1 we iteratively apply the multiplicative update rules proposed
by Lee & Seung [5]:
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Pic ← Pic
(XH

T

)ic

(PHHT)ic

Hcj ← Hcj
(P

T

X)cj

(PTPH)cj

The rules are applied until the change in the objective (Eqn. 1) between one
iteration and the next is below an arbitrarily small value. The computational cost
of each iteration is O(lnk′) when using dense matrix multiplication operations.

The additive nature of the factorization procedure can be useful in interpreting
the results of the integrating process. Based on the values in the projection
matrix P, we can calculate a matrix T ∈ IRv×k′

indicating the contribution of
the view Vh to each meta-cluster:

Thf =

∑
cj

f∈Cf
Pjf∑l

g=1 Pgf

(2)

That is, the sum of the projection weights in P for the clusters generated on
Vh, normalized with respect to the total projection weight for each meta-cluster
(i.e. the column sums of P). A value Thf close to 0 indicates that the view Vh

has made little contribution to the f -th meta-cluster, while a value close to 1
indicates that the view Vh has made the predominant contribution.

To illustrate the integration process, Figure 1 shows a simple problem involv-
ing objects {x1, . . . , x7} represented in two views. The corresponding clusterings
C = {C1, C2} are transformed to the intermediate representation X, and factor-
ization is applied to yield the matrices (P,H). The entries in P illustrate how
the clusters from these clusterings are combined to produce k′ = 3 meta-clusters.
The actual object membership weights for these meta-clusters are shown in H.
The contributions made by the two views to the meta-clusters are given by the
entries on the rows of the matrix T.

C1 = {{x1, x2, x3}, {x4, x5}}
C2 = {{x6, x7}, {x1, x2}}

X

⎡
⎢⎢⎣

1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
1 1 0 0 0 0 0

⎤
⎥⎥⎦

x1 x2 x3 x4 x5 x6 x7

c1
1

c2
1

c1
2

c2
2

[
0.6 1.0 0.0
0.4 0.0 1.0

]

⎡
⎢⎢⎣

1.2 0.0 0.0
0.0 1.2 0.0
0.0 0.0 1.2
0.9 0.0 0.0

⎤
⎥⎥⎦ HTP

T

X ≈ PH

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0 0.0 0.0
1.0 0.0 0.0
0.5 0.0 0.0
0.0 0.8 0.0
0.0 0.8 0.0
0.0 0.0 0.8
0.0 0.0 0.8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦V1

V2

c1
1

c2
1

c1
2

c2
2

x1

x2

x3

x4

x5

x6

x7

Fig. 1. Example of IMF applied to clusterings from two views generated in a domain

containing 7 data objects. A value of k′ = 3 is used for the number of meta-clusters.
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Factorization initialization. The sensitivity of NMF-like algorithms to the
choice of initial factors has been noted by a number of authors [12,13]. While
stochastic initialization is widely used in this context, ideally we would like to
produce a single integrated clustering without requiring multiple runs of the
integration process. Therefore to initialize the integration process, we populate
the pair (P,H) by employing the deterministic NNDSVD strategy described by
Boutsidis & Gallopoulos [13]. This strategy applies two sequential SVD processes
to the matrix X to produce a pair of initial factors. In addition to being deter-
ministic, NNDSVD is suitable in the context of integration as it has a tendency
to produce comparatively sparse factors. As we shall see in the next section this
is particularly desirable in the case of the projection matrix P.

3.3 Model Selection

The selection of a suitable value for the number of meta-clusters k′ is central to
the data integration process. A value that is too low could force unrelated clusters
to be grouped together, while a value that is too high could potentially cause
the integration process to fail to merge related clusters from different views.

When selecting a model we consider the uncertainty of the mapping be-
tween clusters from different views, based on the uncertainty of the values in
the projection matrix P. Firstly we normalize the rows of P to unit length,
yielding a normalized matrix P̂ ∈ [0, 1]. In the ideal case each row in P̂ will
contain a single value 1 and (k′ − 1) zeros, signifying that the corresponding
base cluster has been perfectly matched to a single meta-cluster. This notion of
uncertainty can be formally described in terms of the normalized entropy of the
rows in P̂.

To illustrate this, we refer back to the previous example (Figure 1) of combin-
ing two clusterings. Figure 2 shows normalized project matrices corresponding
to models for k′ = 3 and k′ = 4 respectively. In the latter case the integra-
tion procedure splits cluster c1

1 between two meta-clusters (instead of matching
it solely with c2

2, which it subsumes as shown in Figure 1). Consequently the
values in the first row of P̂ have a higher level of entropy. In contrast the ma-
trix for k′ = 3 shows a perfect match between each cluster from C and one of
the three meta-clusters, suggesting that this model is more appropriate for the
problem.

To identify an appropriate number of meta-clusters k′, we can test values from
a broad range k ∈ [kmin, kmax] informed by the user’s knowledge of the domain.

⎡
⎢⎢⎣

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
1.0 0.0 0.0

⎤
⎥⎥⎦

P̂
c1
1

c2
1

c1
2

c2
2

(k′ = 3) (k′ = 4)
P̂

⎡
⎢⎢⎣

0.4 0.0 0.0 0.6
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
1.0 0.0 0.0 0.0

⎤
⎥⎥⎦

c1
1

c2
1

c1
2

c2
2

Fig. 2. Example of model selection for data integration applied to clusterings from two

views, using two candidate values for the number of meta-clusters k′
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For each candidate k we construct P̂. For each row j in this matrix we calculate
the normalized entropy of the projection values:

e(P̂j) = − 1
log k

k∑
h=1

Pjh log (Pjh) (3)

An evaluation s(k) ∈ [0, 1] for the suitability of the model with k meta-clusters
is given by subtracting the mean row entropy from 1:

s(k) = 1− 1
l

l∑
j=1

e(P̂j) (4)

A value for the final number of meta-clusters k′ can be chosen so as to maximize
the value of Eqn. 4.

In practice we observe that Eqn. 4 will not have an expected value of zero
when combining randomly generated clusterings, and will exhibit a bias toward
higher values of k. We can readily address this by employing the widely-used
adjustment technique described in [14] to correct for chance agreement:

ŝ(k) =
s(k)− s̄(k)
1− s̄(k)

(5)

The value s̄(k) is the expected evaluation score for a factorization containing
k meta-clusters. In practice we can find an approximation for s̄(k) by applying
the following for a sufficiently large number of runs: take a given intermediate
matrix X, randomly permute the values in the columns, apply factorization with
parameter k, and recalculate Eqn. 4. The expected value is given by the mean
of s(k) across all permutations.

3.4 Ensemble Multi-view Integration

The “one-shot” integration scenario described in Section 3.2 assumes the avail-
ability of a definitive clustering for each view. However, in many cases a variety
of different clusterings may be available for each view – either generated on dif-
ferent subsets of the data in a view, produced using different parameter values, or
simply as a result of the use of a clustering algorithm that converges to different
local minima (e.g. k-means with random initialization). In many cases ensemble
clustering techniques can harness the diversity present in such collections of clus-
terings [6]. We can naturally apply the IMF approach in a multi-view ensemble
clustering setting, where C contains multiple clusterings generated on each view.
As we shall see in our evaluation in Section 5, IMF can often take advantage of
the diversity in a multi-view ensemble to produce a superior clustering.

4 Evaluation on Synthetic Multi-view Data

To evaluate the ability of the IMF approach described in Section 3 to handle a
number of key issues that arise in data integration problems, we applied IMF
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to cluster multiple different views artificially produced from single-view news
text corpora. Since we can assume that a single news article consists of one or
more segments of text (e.g. one or more consecutive paragraphs), we can con-
struct views containing related segments of text. The overall task then becomes
the identification of an accurate clustering of the entire collection based on the
segment information provided in the different views. Using this synthetically
generated data, we can examine the effectiveness of the proposed approach in
the context of the requirements detailed in Section 3.1.

4.1 Dataset Construction

We make use of the bbc and bbcsport news corpora1 which have been previously
used in document clustering tasks [12], and produce multiple views for documents
based on related text segments. The original bbc corpus contains a total of 2225
documents with 5 annotated topic labels, while the original bbcsport corpus
contains a total of 737 documents also with 5 annotated labels. From each corpus
we constructed new synthetic datasets with 2-4 views as follows:

1. We split each raw document into segments. This was done by separating
the documents into paragraphs, and merging sequences of consecutive para-
graphs until 1-4 segments of text remained, such that each segment was
at least 200 characters long. Each segment is logically associated with the
original document from which it was obtained.

2. The segments for each document were randomly assigned to views, with the
restriction that at most one segment from each document was assigned to
the same view.

3. Standard stemming, stop-word removal and TF-IDF normalization proce-
dures were separately applied to the segments in the individual views.

Details of the six resulting multi-view datasets2 are provided in Table 1. To
quantify algorithm performance, we calculate the normalized mutual informa-
tion (NMI) [6] between clusterings and the set of annotated label information
provided for the original corpora. These annotations are derived from the cate-
gories assigned to the original online news articles. Since NMI evaluates disjoint
clusterings, we convert weighted membership matrices to disjoint clusterings by
assigning each document to the cluster for which it has the highest weight. Note
that in all cases NMI scores are calculated relative to the entire corpus, rather
than relative to the subset present in any individual view.

4.2 “One-Shot” Multi-view Integration

To examine the effectiveness of the IMF approach, we consider the scenario of
combining a set of v clusterings, each coming from a different view. To provide a
set of representative clusterings for our synthetic views, we apply spectral clus-
tering followed by weighted kernel k-means as described in [15]. Since our focus
1 Both available from http://mlg.ucd.ie/datasets/bbc.html
2 Available from http://mlg.ucd.ie/datasets/segment.html

http://mlg.ucd.ie/datasets/bbc.html
http://mlg.ucd.ie/datasets/segment.html
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Table 1. Details of the synthetic multi-view text datasets

Datasets View Documents

bbc-seg2 1 2125

2 2112

bbc-seg3 1 1828

2 1832

3 1845

bbc-seg4 1 1543

2 1524

3 1574

4 1549

Collection View Documents

bbcsport-seg2 1 644

2 637

bbcsport-seg3 1 519

2 531

3 513

bbcsport-seg4 1 400

2 410

3 437

4 432

here is not on the generation of these constituent clusterings, for convenience we
set the number of clusters to the correct number of labeled classes for the asso-
ciated corpora. The representative clusterings also provide a reasonable baseline
comparison. When applying IMF itself, we select a value for the parameter k′

using the procedure proposed in Section 3.3, using a candidate range k′ ∈ [4, 12].

Incomplete views. As indicated by the figures in Table 1, the synthetic view
construction methodology will naturally result in cases where documents will
be represented by segments in some but not all of the views (i.e. the views are
not complete). Therefore we can directly examine the ability of the proposed
algorithm to deal with this scenario. A summary of the results of the “one-
shot” experiments on the six synthetic datasets is given in Table 2. The mean
and standard deviation of the NMI scores for the constituent clusterings are
listed for comparison. In all cases the application of IMF produced integration
clusterings that were significantly better than those generated on the individual
views.

Table 2 also shows the number of meta-clusters k′ automatically selected by
the entropy-based criterion (Eqn. 4). While the model selection procedure did
not always exactly attain the “correct” number of clusters (both the bbc and
bbcsport corpora contain 5 annotated topics), this value did appear in the top
three recommended choices for five of the six datasets.

Table 2. Accuracy (NMI) of the IMF approach on synthetic multi-view data, using

one clustering per view

Dataset k′ Base IMF

bbc-seg2 4 0.77 ± 0.05 0.80

bbc-seg3 5 0.71 ± 0.01 0.83

bbc-seg4 5 0.60 ± 0.01 0.83

bbcsport-seg2 4 0.74 ± 0.05 0.80

bbcsport-seg3 10 0.54 ± 0.05 0.62

bbcsport-seg4 6 0.39 ± 0.04 0.56
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Table 3. Mean accuracy (NMI) of the IMF approach on synthetic multi-view data

with missing patterns, using one clustering per view

Dataset Base IMF

bbc-seg2 0.76 ± 0.02 0.79 ± 0.03

bbc-seg3 0.66 ± 0.01 0.85 ± 0.03

bbc-seg4 0.56 ± 0.02 0.82 ± 0.04

bbcsport-seg2 0.69 ± 0.05 0.78 ± 0.03

bbcsport-seg3 0.51 ± 0.06 0.63 ± 0.04

bbcsport-seg4 0.39 ± 0.04 0.52 ± 0.04

Missing patterns. To examine the behavior of IMF in scenarios were a pattern
is entirely absent from a view, we took the synthetic datasets and removed all
segments relating to a different randomly chosen label from each view (i.e. so
that each view only contains segments pertaining to k′−1 classes). We repeated
this process for 20 runs, applying weighted kernel k-means on this data followed
by IMF integration. For computational reasons, we use the same values of k′

selected in the last set of experiments. Mean and standard deviation of NMI
scores for these experiments are reported in Table 3. Again the IMF approach
performs significantly better than the representative clusterings, and is successful
in combining clusterings where an exact one-to-one mapping between the clusters
in C does not necessarily exist. It is also worth noting that the NMI scores
achieved are very close to those achieved when integrating clusterings generated
on views with all patterns present (Table 2).

Disagreement between views. Next we examined the problem of discord
between connected views. Specifically we considered the scenario where one view
is considerably less informative than the others. In practice we selected one view
at random and permuted 10% to 40% of the non-zero term values for each
document, producing a noisy view on which a clustering was generated with
spectral-initialized kernel k-means. IMF was then applied to integrate the noisy
clustering together with the non-noisy clusterings from the v− 1 other views. In
these experiments we set the value of k′ to the “correct” number of class labels.
We repeated the entire process for 30 runs and averaged the resulting NMI scores.
Mean NMI scores for the base clusterings (both noisy and non-noisy) and the
resulting integrated clusterings are given in Table 4.

A key test in this experiment is whether an integrated clustering can improve
on its constituent clusterings in the presence of noisy views, rather than hav-
ing performance equivalent to the “weakest link” among the views. As expected
we observe that the meta-clusters produced by IMF remain significantly more
accurate than the underlying constituent clusterings. Secondly, comparing the
results to those in Table 2, we see that for 10-20% noise there is little decrease
in clustering accuracy. For more extreme levels of noise, the IMF clustering on
datasets derived from the bbc corpus remain reasonably accurate, while we see a
greater effect on the datasets derived from the bbcsport corpus. In general these
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Table 4. Mean accuracy (NMI) of the IMF approach on synthetic data using one

clustering per view, where one of the views contains 10% to 40% noisy term values

Dataset 10% noise 20% noise 30% noise 40% noise
Base IMF Base IMF Base IMF Base IMF

bbc-seg2 0.79 0.84 0.79 0.83 0.75 0.80 0.72 0.77

bbc-seg3 0.69 0.83 0.67 0.81 0.64 0.78 0.59 0.75

bbc-seg4 0.57 0.81 0.56 0.79 0.54 0.78 0.49 0.72

bbcsport-seg2 0.71 0.81 0.66 0.74 0.65 0.74 0.60 0.66

bbcsport-seg3 0.53 0.65 0.51 0.63 0.47 0.58 0.41 0.47

bbcsport-seg4 0.40 0.53 0.38 0.51 0.35 0.49 0.26 0.35

experiments suggest that the IMF approach is reasonably tolerant to disagree-
ment between views, and cases where one view is weaker than the others.

5 Evaluation on Real-World Data

In this section we describe an evaluation of the proposed integration approach
performed on a real-world multi-view document clustering task – namely that of
clustering topical news stories where multiple reports of the same news story are
available from different news sources. We constructed a new multi-view dataset3,
referred to as the 3sources collection, from three well-known online news sources:
BBC4, Reuters5, and The Guardian6. This dataset exhibits a number of common
aspects of multi-view problems highlighted previously – notably that certain
stories will not be reported by all three sources (i.e. incomplete views), and the
related issue that sources vary in their coverage of certain topics (i.e. partially
missing patterns).

In total we collected 948 news articles covering 416 distinct news stories from
the period February–April 2009. Of these stories, 169 were reported in all three
sources, 194 in two sources, and 53 appeared in a single news source. Each story
was manually annotated with one or more of the six topical labels: business,
entertainment, health, politics, sport, technology. These roughly correspond to
the primary section headings used across the three news sources. To facilitate
comparisons using the NMI measure, in our evaluation we consider only the
dominant topic for each news story, yieldings a disjoint set of annotated classes
as shown in Table 5.

5.1 “One-Shot” Multi-view Integration

For our first evaluation on the 3sources data, we consider a “one-shot” integra-
tion process. Once again we generate a representative clustering on each view

3 Available from http://mlg.ucd.ie/datasets/3sources.html
4 http://news.bbc.co.uk
5 http://reuters.co.uk
6 http://www.guardian.co.uk

http://mlg.ucd.ie/datasets/3sources.html
http://news.bbc.co.uk
http://reuters.co.uk
http://www.guardian.co.uk
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Table 5. The distribution of dominant topic labels for stories in the 3sources collection.

The overall total number of stories per label is given, as well as the number of articles

present within each individual view.

Label Overall BBC Guardian Reuters

business 122 87 78 94

entertainment 70 53 41 43

health 57 45 24 27

politics 61 48 40 23

sport 90 81 76 71

technology 67 38 43 36

Table 6. Performance of IMF on the 3sources collection, compared with clusterings

generated on individual views

Algorithm/View NMI Assigned

Weighted kernel k-means (BBC ) 0.65 85%

Weighted kernel k-means (The Guardian) 0.52 73%

Weighted kernel k-means (Reuters) 0.55 71%

Integration by Matrix Factorization 0.71 100%

using weighted kernel k-means [15], setting the value of k to the number of la-
bels. A value k′ = 7 for the number of meta-clusters was automatically selected
using the entropy criterion described in Section 3.3. It is interesting to note that
the additional cluster reflects the fact the integration procedure identifies two
distinct clusters for “business and finance” – one cluster largely pertaining to
reports on the global economic downturn, the other cluster containing stories
directly related to business and finance, but also containing stories from sport
and entertainment that have a business or financial dimension. The presence
of this latter group reflects the actual overlapping nature of the topics in the
collection. However, as noted earlier we focus on the disjoint labels during our
evaluation to allow comparison with algorithms producing disjoint clusters.

Table 6 shows a comparison of the performance of the proposed approach
to the clusterings produced on documents from the individual news sources.
IMF out-performs the three weighted kernel clusterings, and the resulting inte-
grated clustering is considerably more informative than those generated on the
Guardian and Reuters views. We observed that including these “weaker” sources
of information does not significantly impact upon the effectiveness of the data
integration process.

5.2 Ensemble Multi-view Integration

In the second evaluation performed on this collection, we consider the multi-view
ensemble clustering problem described in Section 3.4. To generate the individ-
ual ensemble members, we use standard k-means with random initialization and
cosine similarity. The number of base clusters is set to the number of labels, and



436 D. Greene and P. Cunningham

Table 7. Accuracy (NMI) of IMF on the 3sources collection, compared with four

well-known ensemble clustering algorithms. The NMI scores for the constituent base

clusterings are also listed.

Algorithm Mean Min Max

Base 0.37 0.02 0.66

IMF 0.78 0.70 0.80

CSPA 0.62 0.61 0.64

HGPA 0.47 0.36 0.60

MCLA 0.72 0.65 0.79

Voting 0.74 0.67 0.79

the parameter value k′ = 7 determined in Section 5.1 is used for the number of
meta-clusters. As well as examining the performance of IMF, for comparison we
also applied several well-known ensemble clustering algorithms from the litera-
ture: the CSPA co-association clustering approach [6], the HGPA and MCLA
hypergraph-based methods [6], and the correspondence clustering cumulative
voting method described in [9]. In total we conducted 30 runs, each involving
the generation and integration of 100 different base clusterings per view.

Table 7 summarizes the experimental results for the four approaches under
consideration, in terms of average, minimum and maximum NMI scores achieved
over the 30 runs. The range of NMI scores for the complete set of 9000 base
clusterings is also given. On average 76% of the total number of news stories
was assigned in each base clustering, reflecting the incomplete nature of the
views. Even though the information provided by the base clustering was often
of very poorly quality, we see that most of the integration algorithms performed
reasonably well, with the exception of the HGPA procedure. On average the
IMF approach was the most successful of the techniques under consideration,
suggesting that it frequently availed of the information provided by the “weak”
but diverse clusterings generated on the three views.

Effect of ensemble size. An important issue in ensemble clustering that is
often neglected is the effect of ensemble size (i.e. the number of base clusterings
in the ensemble) on clustering performance. For larger datasets, even with the
availability of parallel computing resources, the number of clusterings that can
reasonably be generated can often be strictly limited. As the size of the ensem-
ble decreases, the ensemble multi-view clustering task approaches the one-shot
integration task. However we still may face the problem of having access to only
a set of weak or unrepresentative clusterings. Therefore it is desirable to employ
an integration approach that will be effective when given a relatively small set
of potentially weak base clusterings.

To examine this issue, we compare the behavior of the IMF algorithm with
that of the four alternative approaches used above, as the number of ensemble
members increases. Specifically we consider ensemble sizes ∈ [5, 100] of k-means
clusterings generated on the 3sources collection, with an approximately equal
number of clusterings per view. To account for variability in the results we repeat
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Fig. 3. Plot of mean clustering accuracy (NMI) scores for IMF compared to popular

ensemble clustering algorithms, for ensembles of varying size generated on the 3sources
collection

the process over 30 trials with different sets of base clusterings. As before, a value
of k′ = 7 was used as the number of final clusters. The results of the comparison
are shown in Figure 3. We observe that IMF shows superior clustering accuracy
in comparison to the alternative integration algorithms, particularly for smaller
ensemble sizes – an NMI score of at least 0.70 was generally obtained after 25
clusterings have been added.

6 Conclusion

In this paper we presented a simple but effective approach for performing un-
supervised data integration on two or more connected views. Experiments on
synthetic and real-world multi-view text datasets yielded encouraging results,
both in tasks where a single representative clustering was available for each
view, and in cases where a larger diverse collection of clusterings was available
for integration. In the latter task the proposed IMF approach out-performed
a number of popular ensemble clustering algorithms. An additional aspect of
IMF is that the additive nature of the factorization process provides an aid in
interpreting the output of the integration process.
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Abstract. Semi-supervised learning has witnessed increasing interest

in the past decade. One common assumption behind semi-supervised

learning is that the data labels should be sufficiently smooth with re-

spect to the intrinsic data manifold. Recent research has shown that the

features also lie on a manifold. Moreover, there is a duality between data

points and features, that is, data points can be classified based on their

distribution on features, while features can be classified based on their

distribution on the data points. However, existing semi-supervised learn-

ing methods neglect these points. Based on the above observations, in

this paper, we present a dual regularization, which consists of two graph

regularizers and a co-clustering type regularizer. In detail, the two graph

regularizers consider the geometric structure of the data points and the

features respectively, while the co-clustering type regularizer takes into

account the duality between data points and features. Furthermore, we

propose a novel transductive classification framework based on dual reg-

ularization, which can be solved by alternating minimization algorithm

and its convergence is theoretically guaranteed. Experiments on bench-

mark semi-supervised learning data sets demonstrate that the proposed

methods outperform many state of the art transductive classification

methods.

1 Introduction

In many practical machine learning problems, the acquisition of sufficient labeled
data is often expensive and/or time consuming. On the contrary, in many cases,
large number of unlabeled data are far easier to obtain. Consequently, semi-
supervised learning [1] [2], which aims to learn from both labeled and unlabeled
data points, has received significant attention in the past decade. In general,
semi-supervised learning can be categorized into two classes: (1) Transductive
learning [3] [4] [5] [6] [7]: to estimate the labels of the given unlabeled data; and
(2) Inductive learning [8]: to induce a decision function which has a low error rate
on the whole sample space. In our study, we focus on transductive classification.

Many transductive classification methods have been proposed up to now [1]
[2], among which graph based method [3] [4] [5] [6] [7] is one of the most popular

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 439–454, 2009.
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approaches. One common assumption behind graph based transductive classifi-
cation is that the data labels should be sufficiently smooth with respect to the
intrinsic data manifold, i.e. Cluster Assumption [1] [3] [4]. This assumption can
be achieved by graph regularization [9]. In detail, it models the whole data set
as an undirected weighted graph, whose vertices correspond to the data points,
and edges reflect the affinity between pairwise data points. Some of the vertices
on the graph are labeled, while the remainder are unlabeled, and the goal of
graph based transductive classification is to predict the labels of those unlabeled
data points such that the predicted labels are sufficiently smooth with respect to
the data graph. Other assumptions include Local Learning Assumption [6] [10],
which says the label of each point can be predicted by the points in its neighbor-
hood, and local linear embedding assumption [11] [5], which says if a data point
can be reconstructed from its neighbors, then its label can be reconstructed from
the labels of its neighbors by the same reconstruction coefficients.

The motivation of our work is twofold. First, recent research has shown that
not only the data points are sampled from some low dimensional manifold em-
bedded in the high dimensional ambient space [11] [12], namely data manifold,
but also the features lie on a manifold [13] [14], namely feature manifold. Sec-
ond, there is a duality between data points and features, i.e. data points can be
classified based on their distribution on features while features can be classified
based on their distribution on the data points. This is originally proposed in
co-clustering literature [15] [16] [17], which suggests that clustering of features
of a data matrix can lead to the improvement of data clustering. To demon-
strate the usefulness of the duality between data points and features, we give
an illustrative example in Fig. 1. As far as we know, existing semi-supervised
learning methods fail to consider these points mentioned above together, which
may further improve the performance of semi-supervised learning.

In this paper, we present a dual regularization. It consists of two graph reg-
ularizers and a co-clustering type regularizer. The graph regularizers explore
the geometric structure of the data points and features respectively, while the
co-clustering type regularizer utilizes the duality between the data points and
features. Furthermore, we propose a novel framework for transductive classifi-
cation based on dual regularization, which can be solved by alternating mini-
mization algorithm and its convergence is theoretically guaranteed. Encouraging
experimental results on benchmark semi-supervised learning data sets illustrate
that the proposed methods outperform many existing transductive classification
algorithms.

It is worth noting that in [18] [19], the authors proposed a co-clustering type
regularization for transductive learning. However, in their method, besides par-
tial supervision in the data points, partial supervision in the form of feature
labels is also assumed, which is hardly obtained in many applications. Simi-
lar idea has also been applied for clustering [20]. Our method is different from
theirs, since we do not require the supervision on the feature side. Furthermore,
graph regularizers are adopted in our dual regularization, which considers the
geometric structure of data points and features.
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(b) The document word matrix

(a) A synthetic data set

Fig. 1. An illustrative example. Suppose we have 4 documents, i.e. D1, D2, D3 and

D4. The true label of D1 and D2 is ”Data mining”, while the true label of D3 and D4 is

”Computer vision”. And suppose there are 6 words in the vocabulary, i.e. ”clustering,

classification, face, image, text, webpage”. We assume D1 and D3 are labeled, while

D2 and D4 are unlabeled and need to be predicted. If we only rely on the knowledge

of the document side, then D2 is closer to D3 than D1, and D4 is closer to D1 than

D3. So we will wrongly classify D2 as ”Computer vision” and D4 as ”data mining”.

However, if we has the clusters information of the words, we may obtain 3 clusters, i.e.

”clustering, classification”, ”face, image” and ”text, webpage”, based on which D2 is

closer to D1 than D3 while D4 is closer to D3 than D1. As a result, we will correctly

classify D2 as ”Data mining”. Similar analysis can be conducted on the word side.

The remainder of this paper is organized as follows. In Section 2, we will
briefly review graph-based transductive learning. In Section 3, we first present
dual regularization, followed which we propose a novel transductive classifica-
tion method based on dual regularization. The experiments on benchmark semi-
supervised learning data sets are demonstrated in Section 4. Finally, we draw
conclusions and point out the future work in Section 5.

2 A Brief Review of Graph Based Transductive
Classification

Before we go any further, let’s first briefly review the general framework of graph
based transductive classification [3] [4] [5] [6] [7], since it is the foundation of this
paper.

In the setting of transductive classification, we are given a data set X =
{x1, . . . ,xl,xl+1, . . . ,xn} ⊂ Rd, and a label set L = {1, 2, . . . , c}, the first l
points xi, 1 ≤ i ≤ l are labeled as yi ∈ L and the remaining points xu, l +
1 ≤ u ≤ n are unlabeled. Each xi is drawn from a fixed but usually unknown
distribution p(x). Typical graph based transductive classification seeks c optimal
classification functions f j , 1 ≤ j ≤ c, by minimizing the following criterion

J =
c∑

j=1

l∑
i=1

L(yi, f
j(xi)) + λ

c∑
j=1

||f j ||2I , (1)
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where L(, ) is some loss function, e.g. hinge loss or square loss, ||f j||I measures
the smoothness of f j with respect to the intrinsic data manifold, λ > 0 is the
regularization parameter, which controls the balance between the loss and label
smoothness.

Specifically, if we choose L(, ) as square loss, and ||f j ||I as graph regulariza-
tion, then Eq.(1) can be formulated as follows

min
F

tr((F − Y)T C(F − Y)) + λtr(FTLF), (2)

where F = (f1, f2, . . . , fc) ∈ Rn×c with f j = [f j(x1), f j(x2), . . . , f j(xn)]T is
the class assignment matrix, Y ∈ Rn×c is the label matrix with Yij = 1 if xi is
labeled as yi = j and Yij = 0 otherwise, L ∈ Rn×n is called graph Laplacian [21],
and C ∈ Rn×n is a diagonal matrix, with its ith diagonal element Cii = Cl > 0
for 1 ≤ i ≤ l, and Cii = Cu ≥ 0 for l + 1 ≤ i ≤ n, where Cl and Cu are two
parameters.

It is easy to show that the solution of Eq.(2) is

F = (C + λL)−1CY (3)

And the predicted label of xi, l + 1 ≤ i ≤ n is determined by

yi = arg max
1≤j≤c

Fij , l + 1 ≤ i ≤ n (4)

Most of the existing graph based transductive classification methods can be
unified in Eq(2), and only differ in the setting of graph Laplacian L and/or the
diagonal matrix C. For example, [3] chose L as combinational graph Laplacian
and Cl = ∞, Cu = 0. [4] set L as normalized graph Laplacian and Cl = Cu = 1.
Both of the graph Laplacians mentioned above correspond to Cluster Assumption
[1], while [6] selected L as local learning graph Laplacian which is based on Local
Learning Assumption, and Cl = 1, Cu = 0. And [5] selected L as local linear
embedding graph Laplacian and Cl = Cu = 1.

For convenience, we present in Table 1 the notation used in the rest of this
paper.

Table 1. Notation used in this paper

Notation Description Notation Description

n number of data points F class assignment matrix of size n × c
d number of features fi· ith row of F
c number of data classes f·i ith column of F
m number offeature clusters G feature partition matrix of size d × m
X data set gi· ith row of G
X data matrix of size d × n g·i ith column of G
xi· ith row of X LF data graph Laplacian of size n × n
x·i ith column of X LG feature graph Laplacian of size d × d



Transductive Classification via Dual Regularization 443

3 The Proposed Method

In this section, we will first present dual regularization. Then we will propose
a transductive classification framework based on dual regularization, followed
with the optimization algorithm as well as the proof of its convergence.

3.1 Dual Regularization

As we have mentioned above, we aim to explore the geometric structure on both
the data point side and the feature side. To achieve this objective, we turn to
graph regularization [9]. In detail, we construct two graphs i.e. data graph and
feature graph, to explore the geometric structure of data manifold and feature
manifold. In the following, we will introduce the construction of data graph and
feature graph respectively. We will adopt Cluster Assumption [1] [3] [4] as a
running example.

Data Graph. We construct a data graph GF whose vertices correspond to
{x·1, . . . ,x·n}. According to Cluster Assumption, if data points x·i and x·j are
close to each other, then their class labels fi· and fj· should be close as well. This
is formulated as follows,

1
2

∑
ij

|| fi·√
DF

ii

− fj·√
DF

jj

||2WF
ij (5)

where WF
ij is the affinity matrix of data graph measuring how close fi· and fj·

will be, DF
ii =

∑
j WF

ij is the diagonal degree matrix of data graph.
We define the data affinity matrix WF as follows,

WF
ij =

{
exp −d(x·i,x·j)2

σ2 , if x·j ∈ N (x·i) or x·i ∈ N (x·j)
0, otherwise.

(6)

where N (x·i) denotes the k-nearest neighbor of x·i. exp −d(x·i,x·j)2

σ2 is Gaussian
similarity where σ > 0 is the width. d(x·i,x·j) denotes the distance between x·i
and x·j .

Eq.(5) can be further rewritten as

1
2

∑
i,j

|| fi·√
DF

ii

− fj·√
DF

jj

||2WF
ij

= tr(FT (I − (DF )−
1
2 WF (DF )−

1
2 )F)

= tr(FT LF F) (7)

where F ∈ Rn×c is the class assignment matrix of data points, and LF = I −
(DF )−

1
2 WF (DF )−

1
2 is called normalized graph Laplacian (NLap) of the data

graph GF . Eq.(7) reflects the label smoothness of the data points. The smoother
the data labels are with respect to the underlying data manifold, the smaller the
value of Eq.(7) will be.
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Feature Graph. Similar with the construction of the data graph GF , we con-
struct a feature graph GG whose vertices correspond to {x1·, . . . ,xd·}. According
to Cluster Assumption again, if features xi· and xj· are near, then their cluster
labels gi· and gj· should be near as well. This is formulated as follows

1
2

∑
ij

|| gi·√
DG

ii

− gj·√
DG

jj

||2WG
ij (8)

where WG
ij is the affinity matrix of feature graph measuring how close gi· and

gj· will be, DG
ii =

∑
j WG

ij is the diagonal degree matrix of feature graph.
Again we define the feature affinity matrix WG as follows,

WG
ij =

{
exp −d(xi·,xj·)2

σ2 , if xj· ∈ N (xi·) or xi· ∈ N (xj·)
0, otherwise.

(9)

where N (xi·) denotes the k-nearest neighbor of xi·.
Eq.(8) can be further rewritten as

1
2

∑
i,j

|| gi·√
DG

ii

− gj·√
DG

jj

||2WG
ij

= tr(GT (I − (DG)−
1
2 WG(DG)−

1
2 )G)

= tr(GT LGG) (10)

where G ∈ Rd×m is the partition matrix of features, LG = I−(DG)−
1
2 WG(DG)−

1
2

is the normalized graph Laplacian (NLap) of the feature graph GG. Eq.(10) re-
flects the label smoothness of the features. The smoother the feature labels are
with respect to the underlying feature manifold, the smaller the value of Eq.(10)
will be.

Based on the two graph regularizers introduced above, we present a regular-
ization as follows

λtr(FTLF F) + μtr(GTLGG) + η||X − GSFT ||2F (11)

where || · ||F is the Frobenius norm, λ, μ, η ≥ 0 are regularization parameters.
It consists of three terms. The first term is graph regularizer defined in Eq.(7),
which is also the same as the second term in Eq.(2). The second term is graph
regularizer defined in Eq.(10). The third term is the most important one. It is
a co-clustering [17] type regularizer. This term reflects the approximation error
of matrix tri-factorization for co-clustering. The smaller it is, the better the
approximation will be. It establishes a bridge between the data points in the first
term and the features in the second term, through which the label information
of data points and features can be transferred from one to another, which may
benefit the classification of data points. Eq.(11) is called Dual Regularization.
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By now, we have presented dual regularization. It is worth noting that al-
though in the derivation, we adopt Cluter Assumption, other kinds of assump-
tions, e.g. Local Learning Assumption can also be used. In other words, besides
the normalized graph Laplacian (NLap), other kinds of graph Laplacians can
also be utilized in Eq.(11), e.g. local learning graph Laplacian (LLL). For the
detail of LLL, please refer to [6] [10].

3.2 Transductive Classification via Dual Regularization

Based on the dual regularization in Eq.(11) presented above, we propose a novel
transductive classification framework as follows,

JTCDR = tr((F − Y)T C(F − Y))
+ λtr(FT LF F) + μtr(GTLGG) + η||X − GSFT ||2F , (12)

where || · ||F is the Frobenius norm, F ∈ Rn×c is the class assignment matrix of
the data points, G ∈ Rd×m is the partition matrix of the features, LF ∈ Rn×n

is graph Laplacian for data points, and LG ∈ Rd×d is graph Laplacian for fea-
tures. λ, μ, η ≥ 0 are regularization parameters. We call Eq.(12) Transductive
Classification via Dual Regularization (TCDR). TCDR provides a unified frame-
work for transductive classification. Different settings of the graph Laplacians
LF and LG, along with the diagonal matrix C lead to various instantiations of
TCDR. When letting μ = η = 0 in Eq.(12), TCDR degenerates to traditional
graph based transductive classification framework in Eq.(2). To this end, exist-
ing graph based transductive classification methods can be seen as the special
case of TCDR.

By its definition, the elements in F and G can only take binary values, which
makes the minimization in Eq.(12) very difficult, therefore we relax F and G
into continuous nonnegative domain. Then the objective of TCDR in Eq.(12)
turns out to be,

JTCDR = tr((F − Y)T C(F − Y))
+ λtr(FT LF F) + μtr(GT LGG) + η||X − GSFT ||2F ,

s.t. F ≥ 0,G ≥ 0, (13)

To make the objective in Eq.(13) lower bounded, we use L2 normalization on
columns of F and G in the optimization, and compensate the norms of F and
G to S.

3.3 Optimization

As we see, minimizing Eq.(13) is with respect to F,G and S. And we cannot give
a closed-form solution. In the following, we will present an alternating scheme
to optimize the objective. In other words, we will optimize the objective with
respect to one variable when fixing the other variables. This procedure repeats
until convergence.
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Computation of S. Optimizing Eq.(13) with respect to S is equivalent to
optimizing

J1 = ||X − GSFT ||2F (14)

Setting ∂J1
∂S = 0 leads to the following updating formula

S = (GTG)−1GTXF(FT F)−1 (15)

Computation of F. Optimizing Eq.(13) with respect to F is equivalent to
optimizing

J2 = tr((F − Y)T C(F − Y)) + λtr(FTLF F) + η||X − GSFT ||2F ,

s.t. F ≥ 0, (16)

For the constraint F ≥ 0, we cannot get a closed-form solution of F. In the follow-
ing, we will present an iterative multiplicative updating solution. We introduce
the Lagrangian multiplier α ∈ Rn×c, thus the Lagrangian function is

L(F) = tr((F − Y)T C(F − Y))
+ λtr(FT LF F) + η||X − GSFT ||2F − tr(αFT ) (17)

Setting ∂L(F)
∂F = 0, we obtain

α = 2CF− 2CY + 2λRF F − 2ηA + 2ηFB (18)

where A = XTGS and B = STGT GS.
Using the Karush-Kuhn-Tucker condition [22] αijFij = 0, we get

[CF − CY + λLF F− ηA + ηFB]ijFij = 0 (19)

Introduce LF = L+
F − L−

F , A = A+ − A− and B = B+ − B− where A+
ij =

(|Aij | + Aij)/2 and A−
ij = (|Aij | − Aij)/2 [23], we obtain

[CF − CY + λL+
F F− λL−

F F − ηA+ + ηA− + ηFB+ − ηFB−]ijFij = 0 (20)

Eq.(20) leads to the following updating formula

Fij ← Fij

√
[CY + λL−

F F + ηA+ + ηFB−]ij
[CF + λL+

F F + ηA− + ηFB+]ij
(21)

Computation of G. Optimizing Eq.(13) with respect to G is equivalent to
optimizing

J3 = μtr(GT LGG) + η||X − GSFT ||2F
s.t. G ≥ 0, (22)
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Since G ≥ 0, we introduce the Lagrangian multiplier β ∈ Rd×m, thus the La-
grangian function is

L(G) = μtr(GTLGG) + η||X − GSFT ||2F − tr(βGT ) (23)

Setting ∂L(G)
∂G = 0, we obtain

β = 2μLGG− 2ηP + 2ηGQ (24)

where P = XFST and Q = SFTFST .
Using the Karush-Kuhn-Tucker complementarity condition [22] βijGij = 0,

we get
[μLGG− ηP + ηGQ]ijGij = 0. (25)

Introduce LG = L+
G − L−

G, P = P+ − P− and Q = Q+ − Q−, we obtain

[μL+
GG− μL−

GG− ηP+ + ηP− + ηGQ+ − ηGQ−]ijGij = 0. (26)

Eq.(26) leads to the following updating formula

Gij ← Gij

√
[μL−

GG + ηP+ + ηGQ−]ij
[μL+

GG + ηP− + ηGQ+]ij
(27)

3.4 Convergence Analysis

In this section, we will investigate the convergence of the updating formula in
Eq.(21) and Eq.(27). We use the auxiliary function approach [24] to prove the
convergence of the algorithm. Here we first introduce the definition of auxiliary
function [24].

Definition 1. [24] Z(h, h′) is an auxiliary function for F (h) if the conditions

Z(h, h′) ≥ F (h), Z(h, h) = F (h),

are satisfied.

Lemma 1. [24] If Z is an auxiliary function for F , then F is non-increasing
under the update

h(t+1) = argmin
h

Z(h, h(t))

Proof. F (h(t+1)) ≤ Z(h(t+1), h(t)) ≤ Z(h(t), h(t)) = F (h(t))

Lemma 2. [23] For any nonnegative matrices A ∈ Rn×n, B ∈ Rk×k, S ∈
Rn×k,S′ ∈ Rn×k, and A, B are symmetric, then the following inequality holds

n∑
i=1

k∑
p=1

(AS′B)ipS2
ip

S′
ip

≥ tr(STASB)
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Theorem 1. Let

J(F) = tr(FT CF− 2FTCY + λFT LF F− 2ηAFT + FBFT ) (28)

Then the following function

Z(F,F′) =
∑
ij

(CF′)ijF2
ij

F′
ij

− 2
∑
ij

(CY)ijF′
ij(1 + log

Fij

F′
ij

)

+ λ
∑
ij

(L+
F F′)ijF2

ij

F′
ij

− λ
∑
ijk

(L−
F )jkF′

jiF
′
ki(1 + log

FijFik

F′
ijF

′
ik

)

− 2η
∑
ij

A+
ijF

′
ij(1 + log

Fij

F′
ij

) + 2η
∑
ij

A−
ij

F2
ij + F′2

ij

2F′
ij

+
∑
ij

(F′B+)ijF2
ij

F′
ij

−
∑
ijk

B−
jkF

′
ijF

′
ik(1 + log

FijFik

F′
ijF

′
ik

)

is an auxiliary function for J(F). Furthermore, it is a convex function in F and
its global minimum is

Fij = Fij

√
[CY + λL−

F F + ηA+ + ηFB−]ij
[CF + λL+

F F + ηA− + ηFB+]ij
(29)

Proof. See Appendix.

Theorem 2. Updating F using Eq.(21) will monotonically decrease the value of
the objective in Eq.(13), hence it converges.

Proof. By Lemma 1 and Theorem 1, we can get that J(F0) = Z(F0,F0) ≥
Z(F1,F0) ≥ J(F1) ≥ . . . So J(F) is monotonically decreasing. Since J(F) is
obviously bounded below, we prove this theorem.

Theorem 3. Let

J(G) = tr(μGT LGG − 2ηGTP + μGQGT ) (30)

Then the following function

Z(G,G′) =
∑
ij

(L+
GG′)ijG2

ij

G′
ij

−
∑
ijk

(L−
G)jkG′

jiG
′
ki(1 + log

GijGik

G′
ijG

′
ik

)

− 2η
∑
ij

P+
ijG

′
ij(1 + log

Gij

G′
ij

) + 2η
∑
ij

P−
ij

G2
ij + G′2

ij

2G′
ij

+ μ
∑
ij

(G′Q+)ijG2
ij

G′
ij

− μ
∑
ijk

Q−
jkG

′
ijG

′
ik(1 + log

GijGik

G′
ijG

′
ik

)
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is an auxiliary function for J(G). Furthermore, it is a convex function in G and
its global minimum is

Gij = Gij

√
[μL−

GG + ηP+ + ηGQ−]ij
[μL+

GG + ηP− + ηGQ+]ij
(31)

Proof. For the limit of space, we omit it here.

Theorem 4. Updating G using Eq.(27) will monotonically decrease the value
of the objective in Eq.(13), hence it converges.

Proof. By Lemma 1 and Theorem 3, we can get that J(G0) = Z(G0,G0) ≥
Z(G1,G0) ≥ J(G1) ≥ . . . So J(G) is monotonically decreasing. Since J(G) is
obviously bounded below, we prove this theorem.

4 Experiments

In this section, we evaluate the proposed methods on many benchmark semi-
supervised learning data sets. Two instantiations of TCDR are evaluated: (1)nor-
malized graph Laplacian (NLap) + TCDR, which chooses LF and LG as NLap.
Note that it is just the method derived as a running example in Section 3; and
(2) local learning graph Laplacian (LLL) + TCDR, which chooses LF and LG

as LLL [6].

4.1 Data Sets

In our experiments, we use 9 benchmark semi-supervised learning data sets,
which can be found in [1] [7].

g241c & g241n1: Each data set contains two classes with 350 points in each
class, and the data sets are generated in a way of violating the cluster assump-
tions or misleading class structures.

USPS, COIL & Digit1: The first two data sets are generated from the famous
USPS and COIL databases, such that the resultant image data did not appear
to be manifold explicitly. The digit1 data set is generated by transforming the
image of digit 1, and the image data appears a manifold structure strongly.

Cornell, Texas, Wisconsin & Washington: All these four data sets are
selected from the famous WebKB database2, and the web pages are classified
into 5 ∼ 6 categories.

Table 1 summarizes the characteristics of the data sets mentioned above. For
more details about these data sets, please refer to [1].

1 http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html
2 http://www.cs.cmu.edu/ webkb/
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Table 2. Description of a subset of UCI database

Datasets #samples #classes #dimensions Datasets #samples #classes #dimensions

g241c 1500 2 241 cornell 826 6 4134

g241n 1500 2 241 texas 811 5 4029

USPS 1500 2 241 wisconsin 1210 6 4189

COIL 1500 6 241 washington 1165 6 4165

digit1 1500 2 241

4.2 Methods and Parameter Settings

We compare our methods with some state of the art graph based transductive
classification algorithms in the following.
Gaussian Field and Harmonic Function (GFHF) [3]: The width of the
Gaussian similarity is set via the grid {2−3σ2

0 , 2−2σ2
0 , 2−1σ2

0 , σ2
0 , 2σ2

0 , 22σ2
0 , 23σ2

0},
where σ0 is the mean distance between any two samples in the training set. And
the size of N (·) is searched by the grid {5, 10, 50, 80, n− 1}
Learning with Local and Global Consistency (LLGC) [4]: The width of
the Gaussian similarity and the size of N (·) are also determined the same as
that in GFHF, and the regularization parameter is set by searching the grid
{0.1, 1, 10, 100}.
Transductive Classification with Local Learning Regularization
(TCLLR) [6]: The neighborhood size for constructing local learning regularizer
is searched by the grid {5, 10, 50, 80}, and the regularization parameter is set by
searching the grid {0.1, 1, 10, 100}.
Transductive Classification via Dual Regularization (TCDR): In NLap+
TCDR, we use normalized graph Laplacian on both the data point side and the
feature side, and the width of the Gaussian similarity as well as the size of N (·)
are tuned the same as in GFHF. And we set Cl = Cu = 1. In LLL+TCDR,
we use local learning graph Laplacian for both data points and features, and the
neighborhood size is tuned the same as that in TLLR. And we set Cl = 1, Cu = 0.
Besides, we set the number of feature clusters the same as the number of data
classes for simplicity, i.e. m = c. And the regularization parameters, i.e. λ, μ, η
are set by searching the grid {0.1, 1, 10, 100}.

For synthetic and image data sets, the distance between x·i and x·j (or xi·
and xj·) is computed as d(x·i,x·j) = ||x·i − x·j ||2 (or d(xi·,xj·) = ||xi· − xj·||2).

For text data sets, we use TFIDF to weight the term-document matrix. The
distance between two points x·i and x·j is defined as

d(x·i,x·j) = 1 − 〈x·i,x·j〉
||x·i|| · ||x·j ||

. (32)

And the distance between xi· and xj· can be computed analogously.
In order to compare these algorithms fairly, we randomly select {5%, 10%, . . . ,

45%, 50%} data points as labeled samples, while the rest as unlabeled sam-
ples. Since the labeled set is randomly chosen, we repeat each experiment 20
times and calculate the average transductive classification accuracy. We run each
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Table 3. Classification Accuracy with 10% labeled samples on the 9 data sets

Data Sets g241c g241n USPS COIL digit1 cornell texas wisconsin washington

GFHF 0.7998 0.7763 0.9377 0.9230 0.9813 0.7075 0.7151 0.7451 0.7860

LLGC 0.7980 0.8101 0.9633 0.9250 0.9781 0.7276 0.7442 0.7787 0.7906

TCLLR 0.8541 0.8551 0.9623 0.8730 0.9774 0.7439 0.7719 0.8308 0.8078

NLap+TCDR 0.8195 0.8207 0.9742 0.9323 0.9822 0.8064 0.7914 0.8376 0.8407

LLL+TCDR 0.8770 0.8799 0.9694 0.8855 0.9779 0.8173 0.8209 0.8807 0.8936
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Fig. 2. Classification accuracy with respect to the proportion of labeled samples on

the 9 data sets

algorithms under different parameter settings, and select the best average result
to compare with each other.

4.3 Classification Results

The experimental results are shown in Fig. 2. In all figures, the x-axis repre-
sents the percentage of randomly labeled points, while the y-axis is the average
transductive classification accuracy.
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To illustrate the experimental results better, we also list the results of these
algorithms on all the data sets with 10% labeled samples in Table 3.

It is obvious that TCDR outperforms other methods on all the data sets.
In detail, we can see that NLap+TCDR outperforms LLGC consistently, while
LLL+TCDR outperforms TCLLR consistently. This is due to that LLGC is the
special case of NLap+TCDR and TCLLR is the special case of LLL+TCDR.
And the consistent improvement indicates that clustering the features indeed
benefits the classification of data points. In addition, it is worth noting that
LLL+TCDR achieved higher classification accuracy than NLap+TCDR on text
data sets. This indicates that Local Learning Assumption is more suitable for
text classification than Cluster Assumption. The reason is probably that the
data matrix of text data is very sparse, normalized graph Laplacian based on
the distance defined in Eq.(32) may not be able to explore the geometric struc-
ture very well. In contrast, the local learning graph Laplacian can explore the
geometric structure better in this case.

5 Conclusion and Future Work

In this paper, we present a dual regularization to explore the geometric struc-
ture in data manifold and feature manifold, along with the duality between data
points and features. Furthermore, we propose a novel framework for transductive
classification via dual regularization, which can be solved by alternating mini-
mization algorithm and its convergence is theoretically guaranteed. Encouraging
experimental results on benchmark semi-supervised learning data sets illustrate
that the proposed methods outperform many existing approaches.

In the future work, we will devote to extending the dual regularization frame-
work from transductive learning to inductive learning [8].
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Appendix: Proof of Theorem 1

Proof. We rewrite Eq.(28) as

L(F) = tr(FTCF − 2FTCY + λFTL+
F F − λFTL−

F F

− 2FTA+ + 2FTA− + FB+FT − FB−FT ) (33)
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By applying Lemma 2, we have

tr(FTCF) ≤
∑

ij

(CF′)ijF
2
ij

F′
ij

, tr(FT L+
F F) ≤

∑
ij

(L+
F F′)ijF

2
ij

F′
ij

,

tr(FB+FT ) ≤
∑

ij

(F′B+)ijF
2
ij

F′
ij

Moreover, by the inequality a ≤ (a2+b2)
2b , ∀a, b > 0, we have

tr(FT A−) =
∑
ij

A−
ijFij ≤

∑
ij

A−
ij

F2
ij + F′2

ij

2F′
ij

To obtain the lower bound for the remaining terms, we use the inequality that
z ≥ 1 + log z, ∀z > 0, then

tr(FT A+) ≥
∑
ij

A+
ijF

′
ij(1 + log

Fij

F′
ij

) , tr(FT L−
F F) ≥

∑
ijk

(L−
F )jkF′

jiF
′
ki(1 + log

FjiFki

F′
jiF

′
ki

)

tr(FT CY) ≥
∑
ij

(CY)ijF′
ij(1 + log

Fij

F′
ij

) , tr(FB−FT ) ≥
∑
ijk

B−
jkF

′
ijF

′
ik(1 + log

FijFik

F′
ijF

′
ik

)

By summing over all the bounds, we can get Z(F,F′), which obviously satisfies
(1) Z(F,F′) ≥ JTCDR(F); (2)Z(F,F) = JTCDR(F)

To find the minimum of Z(F,F′), we take

∂Z(F,F′)
∂Fij

= 2
(CF′)ijFij

F′
ij

− 2(CY)ij

F′
ij

Fij
+ 2λ

(L+
F F′)ijFij

F′
ij

− 2λ(L−
F F′)ij

F′
ij

Fij

− 2A+
ij

F′
ij

Fij
+ 2A−

ij

Fij

F′
ij

+ 2
(F′B+)ijFij

F′
ij

− 2(F′B−)ij

F′
ij

Fij

and the Hessian matrix of Z(F,F′)

∂2Z(F,F′)
∂Fij∂Fkl

= δikδjl(2
(CF′)ij

F′
ij

+ 2(CY)ij

F′
ij

F2
ij

+ 2λ
(L+

F F′)ij

F′
ij

+ 2λ(L−
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F′
ij

F2
ij

+ 2A+
ij

F′
ij

F2
ij

+ 2
A−

ij

F′
ij

+ 2
(F′B+)ij

F′
ij

+ 2(F′B−)ij

F′
ij

F2
ij

)

which is a diagonal matrix with positive diagonal elements. Thus Z(F,F′) is a
convex function of F. Therefore, we can obtain the global minimum of Z(F,F′)
by setting ∂Z(F,F′)

∂Fij
= 0 and solving for F, from which we can get Eq.(29).
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Abstract. In addition to accuracy, stability is also a measure of success

for a feature selection algorithm. Stability could especially be a concern

when the number of samples in a data set is small and the dimensionality

is high. In this study, we introduce a stability measure, and perform both

accuracy and stability measurements of MRMR (Minimum Redundancy

Maximum Relevance) feature selection algorithm on different data sets.

The two feature evaluation criteria used by MRMR, MID (Mutual In-

formation Difference) and MIQ (Mutual Information Quotient), result

in similar accuracies, but MID is more stable. We also introduce a new

feature selection criterion, MIDα, where redundancy and relevance of

selected features are controlled by parameter α.

Keywords: Feature Selection, Stable Feature Selection, Stability,

MRMR (Minimum Redundancy Maximum Relevance).

1 Introduction and Previous Work

Many feature selection algorithms have been developed in the past with a focus
on improving classification accuracy while reducing dimensionality. Tradition-
ally, the relevance of a feature is the most important selection criterion because
using highly relevant features improves classification accuracy [1]. A majority of
feature selection algorithms concentrate on feature relevance [2]. In order to have
a more compact feature subset with good generalization, the selected features
need to be non-redundant. There are several studies on feature redundancy and
how the trade-off between feature relevance and redundancy affects classification
accuracy [3,4].

A relatively neglected issue is the stability of feature selection - the insensi-
tivity of the result of a feature selection algorithm to variations in the training
set. This issue is important in many applications with high-dimensional data,
where feature selection is used as a knowledge discovery tool for identifying char-
acteristic markers for the observed phenomena [5]. For example, in microarray
data analysis, a feature selection algorithm may select largely different subsets
of features (genes) under variations to the training data [6,7]. Such instability
dampens the confidence of domain experts in investigating any of the various
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subsets of selected features for biomarker identification. It is worthy noting that
stability of feature selection results should be investigated together with classi-
fication accuracy, because domain experts are not interested in a strategy that
yields very stable feature sets, but leads to a bad predictive model (e.g., arbi-
trarily picking the same set of features under training data variation).

There exist very limited studies on the stability of feature selection algo-
rithms. An early work in this direction was done by Kalousis et al. [6]. Their
work compared the stability of a number of feature ranking and weighting al-
gorithms under training data variation based on various stability measures on
high-dimensional data, and demonstrated that different algorithms which per-
formed similarly well for classification had a wide difference in terms of stability.
More recently, two techniques were proposed to explicitly achieve stable feature
selection without sacrificing classification accuracy: ensemble feature selection [8]
and group-based feature selection [7].

The above studies have not addressed an important issue: how different trade-
off between relevance and redundancy affects the stability of feature selection
algorithms. Our study attempts to address this issue by evaluating the stability
of two different MRMR (Minimum Redundancy Maximum Relevance) feature
evaluation criteria: MID (Mutual Information Difference) and MIQ (Mutual In-
formation Quotient), which balance the two objectives, maximum relevance and
minimum redundancy, in different ways. We theoretically and empirically show
that MID produces more stable feature subsets. Furthermore, we introduce an
extension of MID where relevance and redundancy of a feature may have differ-
ent weights in feature evaluation. We show that for each data set, stability of
MRMR can be controlled through the use of this weighting parameter.

The rest of the paper is organized as follows: In Section 2 we review the
MRMR feature selection method, and the two criteria MID and MIQ which are
used by MRMR for feature evaluation. Section 3 discusses the stability measure
that we use. Section 4 discusses theoretically and practically why MID is more
stable than MIQ and introduce the extension MIDα where the contribution of
redundancy and relevance to feature score calculation is scaled by means of a
parameter α. In Section 5 experimental results are given and Section 6 concludes
the paper.

2 MRMR Feature Selection Algorithm

MRMR [9] is a filter based feature selection algorithm which tries to select the
most relevant features with the target class labels and minimize the redundancy
among those selected features simultaneously, the algorithm uses Mutual In-
formation I(X, Y ) that measures the level of similarity between two discrete
random variables X and Y :

I(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log(
p(x, y)

p1(x)p2(y)
) (1)
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where p(x, y) is the joint probability distribution function of X and Y , and
p1(x) and p2(y) are the marginal probability distribution functions of X and Y
respectively.

For notational simplicity, we represent each feature fi using the vector of
N observations for that feature: fi =

[
f1

i , f2
i , f3

i , ..., fN
i

]
. fi is an instance of

the discrete random variable Fi. I(Fi, Fj) will be used to represent the mutual
information between features i and j, where i, j = 1, 2, ..., d and d is the input
dimensionality which equals the number of features in the dataset. In order to
measure relevance, MRMR algorithm again uses mutual information between
target class label h =

[
h1, h2, h3, ..., hN

]
and the feature i which will be denoted

as I(H, Fi).
Let S denote the feature set that we want to select and |S| its cardinality.

In order to make sure that the selected feature subset is the best subset, two
conditions should be met. First one is the minimum redundancy condition:

W =
1
|S|2

∑
Fi,Fj∈S

I(Fi, Fj) (2)

and the other one is the maximum relevancy condition:

V =
1
|S|

∑
Fi∈S

I(Fi, H) (3)

According to [9], the two simplest combinations of these two conditions are:

max(V −W ) (4)

max(V/W ) (5)

Because of the fact that obtaining the best subset that satisfies one of the above
equations requires O(N |S|) search, MRMR uses the following algorithm to solve
this optimization problem. First feature is selected according to Eq. (3). After
that the feature i that satisfies the conditions below in Eqs. (6) and (7) is selected
at each step and the selected features remain in the feature set S. m is the number
of features in feature set (number of selected features) and ΩS = Ω − S is the
feature subset of all features except those already selected.

min
Fi∈ΩS

1
|S|

∑
Fj∈S

I(Fi, Fj) (6)

max
Fi∈ΩS

I(Fi, H) (7)

The combination of Eqs. (6) and (7) according to Eqs. (4) and (5) result in two
selection criteria in Table 1:

As it can be seen, Eq. (6) is equivalent to the condition in Eq. (2) and Eq. (7)
is an approximation of Eq. (3). The complexity of the algorithm above is given
to be O(|S| ·N) in [9].
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Table 1. Two different schemes to search for the next feature in MRMR optimization

conditions

ACRONYM FULL NAME FORMULA

MID Mutual information difference max
Fi∈ΩS

⎡⎣I(Fi, H) − 1

|S|
∑

Fj∈S

I(Fi, Fj)

⎤⎦

MIQ Mutual information quotient max
Fi∈ΩS

⎧⎨⎩I(Fi, H)/

⎡⎣ 1

|S|
∑

Fj∈S

I(Fi, Fj)

⎤⎦⎫⎬⎭

3 Stability Evaluation

In order to measure the stability of a feature selection algorithm, a measure
of similarity between two sets of feature selection results is needed. We will
use a method similar to the one proposed by [7]. Let R1 = {Fi}|R1|

i=1 and R2 =
{Fj}|R2|

j=1 denote two sets of feature selection results and each Fi and Fj represent
an individual feature. In order to evaluate stability between R1 and R2, [7]
propose to model R1 and R2 together as a weighted complete bipartite graph G =
(V, E), with nodes V = R1 ∪ R2, and edges E = {(Fi, Fj) | Fi ∈ R1, Fj ∈ R2},
and every edge (Fi, Fj) is associated with a weight ω(Fi, Fj). In our method,
all weights are determined by calculating the symetrical uncertainty between
pair of features Fi and Fj . This entropy based nonlinear correlation is called
symmetrical uncertainty, SU , and is calculated in the following way:

SUi,j = 2
[

IG(Fi | Fj)
H(Fi) + H(Fj)

]
(8)

As it is defined earlier, in this equation, Fi and Fj are random variables which
refer to the i th and jth input features respectively and information gain, entropy
and conditional entropy are defined as:

IG (X | Y ) = H (X)−H (X | Y ) (9)

H (X) =
∑
x∈X

p (x) log2 (p (x)) (10)

H (X | Y ) =
∑
y∈Y

p (y)
∑
x∈X

p (x | y) log2 (p (x | y)) (11)

In our method ω (Fi, Fj) equals to SUi,j and the overall similarity between fea-
ture sets R1 and R2 is defined as:
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SimM (R1, R2) =
1
|M |

∑
Fi,Fj∈M

ω (Fi, Fj) (12)

where M is a maximum matching in G. The problem of maximum weighted
bipartite matching (also known as the assignment problem) is to find an optimal
matching where the sum of the weights of all edges in the matching has a maximal
value. There exist various efficient algorithms for finding an optimal solution.
The purpose of using such a method is to assess the similarity between two
sets of features by considering the similarity of feature values instead of features
indices which makes sense when two feature subsets contain a large portion
of different but highly correlated features. In order to find the optimal solution,
Hungarian Algorithm is used. The algorithm is implemented by Alexander Melin
from University of Tennessee and taken from the Matlab Central web site [10].
The algorithm is designed for finding minimum weight matching so in order
to find maximum weight matching, the sign of the entries of the performance
matrix is inversed.

Our stability measure differs from that of Yu and Ding in the following way.
First of all, in their paper, they measure the similarity between two sets of feature
groups not two sets of individual features. Second, each weight in a bipartite
graph is decided by the correlation coefficient between the centers or the most
representative features of the two feature groups. Our methodology is a special
case of that of Yu and Ding where each Fi and Fj represent individual features
and the similarity between them is decided by the symmetrical uncertainty.

4 Stability of MID versus MIQ

In this section, the stability of MID and MIQ techniques are compared both
theoretically and experimentally.

4.1 Theoretical Analysis

As it is mentioned before, the MRMR algorithm uses two basic calculations,
MID (Mutual information difference) and MIQ (Mutual information quotient),
for selecting the next feature among ΩS , the feature subset of all features except
those already selected. MID is the difference of the mutual information between
feature Fi and the class label h and the mean of the sum of mutual information
values between feature Fi and Fj , which Fj ∈ S and j = 1, 2, . . . , |S|. MIQ is the
ratio of the mutual information between feature Fi and the class label h to the
mean of the sum of mutual information values between feature Fi and Fj , which
Fj ∈ S and j = 1, 2, . . . , |S|. Since we have a limited number of samples, we
can not obtain the real probability distribution of features or labels, therefore
the mutual information values computed also contain a sampling error. Since
both features and labels are discrete random variables, the feature-feature or
feature-label mutual information computations contain similar types of error.
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Let V +ε and W +δ be the random variables that correspond to the relevance
and redundancy values computed over a sample of size N and let ε and δ be
distributed as N(0, σ2

N ).
The variance of MID and MIQ is a direct indication of the stability of these

estimators, because as the variance increases different features could be selected
at each step of feature selection.

The variance of MID is quite easy to compute:

var(MID) = var((V + ε)− (W + δ)) = 2σ2
N (13)

The mean of MID equals the actual value of the difference between relevance
and redundancy.

The mean and variance of the ratio MIQ is much harder to compute. First
of all, if W + δ has a nonnegligible distribution around 0, then the ratio has a
Cauchy component, which means the mean and variance are undefined and the
second moment is infinite [11]. When both the numerator and the denominator
are far from zero, then the ratio is normally distributed with mean V/W and
unit variance. As seen in the next section in the experimental analysis, espe-
cially for small number of features, W is close to zero and the MIQ shows a
large variance.

4.2 Experimental Analysis

Since we have only a finite number of samples, computation of the actual values
of V and W are not possible. In order to estimate the mean and variances
of V , W , MID and MIQ, we use bootstrapping. We apply MID and MIQ
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while the number of selected features(x axis) varies for Musk (Version 1) dataset
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Fig. 2. Mean and standard deviation of the V , W and V − W (MID) calculations(y

axis) while the number of selected features(x axis) varies for Musk (Version 1) dataset

techniques respectively on the whole dataset and obtain feature sequences for
each algorithm, then we bootstrap the data and do the mutual information
calculations again on these new datasets according to feature sequences that
are obtained before. We repeat the bootstrap evaluations 50 times and present
mean and standart deviation of the values in each feature selection step for the
Musk(Version 1) dataset from the UCI [12].

As seen in figures 1 and 2, the entropy values that are calculated by MID
technique have smaller variance than the entropy values that are calculated by
MIQ, which means difference of V and W gives more stable results.

4.3 MIDα Trading Off Stability and Accuracy

As seen at the previous section, MID gives more stable results than MIQ. We
propose a modification to MID as follows: MIDα = αV − (1− α) W . We aim
to control stability and accuracy by means of changing α. Various α values(α =
[0, 0.25, 0.5, 0.75, 1]) are used in the Results section below.

5 Experiments

In this section we give details on the datasets used in the experiments, experi-
mental setup and results.

5.1 Data Sets

Experiments were performed on 8 datasets. Seven of them were from the UCI
[12]: Ionosphere, Sonar, Parkisons, Musk (Version 1), Multiple-features, Hand-
written digits and Wine. The eighth dataset was the Audio Genre data set.
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Audio genre dataset consists of the 5 least confused genres of the Tzanetakis
data set [13]: Classical, Hiphop, Jazz, Pop and Reggae, each with 100 samples.
Two different sets of audio features are computed. First Timbral, rhytmic con-
tent and pitch content features yielding 30 features are extracted using Marsyas
toolbox [13]. Second, 20 features covering temporal and spectral properties are
etracted using the databionic music miner framework given in [14].

All feature values in the datasets are discretized to 10 equal length bins be-
tween their maximum and minimum values. MRMR algorithm executions and
stability calculations between feature sequences are performed on these dis-
cretized features.

Table 2 shows the number of features, instances and classes for the 8 datasets.

Table 2. Information about datasets

Dataset Features Instances Classes

Ionosphere 34 351 2

Sonar 60 208 2

Parkinsons 23 195 2

Musk(Version 1) 166 476 2

Audio Genre 50 500 5

Multi-features Digits 649 2000 10

Handwritten Digits 64 3823 10

Wine 13 178 3

5.2 Experimental Setup

The stability of a feature selection algorithm is defined as the average similarity
of various sets of results produced by the same feature selection algorithm under
training data variations. Each subset of samples can be obtained by randomly
sampling or bootstrapping the full set of samples. Lets say, we have a dataset
D which contains N samples and we want to measure the stability of a specific
algorithm. In order to do that, we bootstrap N samples from the dataset 10
times to obtain 10 training sets, Dtrain,i, i = 1, 2, . . . , q where q = 10. After
each bootstrap process, samples that do not belong to Dtrain,i are considered
to be the test set Dtest,i for that iteration. In order to demonstrate the stability
of an algorithm, first, a feature selection is performed using all training data
and feature sequence Ri is obtained. Since we want to compare the change in
the selected features when the sample size gets smaller, we draw samples of size
r ∗ |Dtrain,i| from Dtrain,i where we chose r from r =

[
r1, r2, . . . , rj

]
. In the

experiments below we chose j = 5 and r = [0.1, 0.25, 0.5, 0.75, 1]. We obtain
feature sequences Rj

i by implementing feature selection algorithm on smaller
datasets that are obtained by different ratio values. As a result, for each ratio
value, rj , the stability of the algorithm over q subsets of samples is given by:

1
q

q∑
i=1

SimM
(
Ri, R

j
i

)
(14)
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Fig. 3. Stability values of MID and MIQ for Musk (Version 1) dataset

In our experiments we do stability and accuracy computation of feature selection
algorithms as the size of available training samples decrease. In [7] stability
computation is performed only for a single bootstrap sample which corresponds
to approximately r = 0.632 ([15] p. 333).

The classifiers that are used in experiments are k-nearest neighbors classifiers
with the k value of 3. The support vector machines were also used, however their
accuracies did not show a significant difference, hence they are not given here.

The stability comparison of all algorithms and the accuracy values of feature
sequences computed on Dtest,i can be seen at the Results section.

5.3 Results

Stability of MID and MIQ : We first compared stability and accuracy of
MID and MIQ on different datasets. In general MID is more stable than MIQ.
The stability values of MID and MIQ for Musk (Version 1) dataset is shown
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Fig. 4. Stability and accuracy values for Musk (Version 1) dataset

in Figure 3. As seen in the figure, MID is always more stable than MIQ, both
for different values of r and the number of features selected, for this dataset.

Stability of MID, MIQ and MIDα : In order to compare stability and accu-
racy of MID, MIQ and MIDα we performed experiments on all the datasets. We
demonstrate the mean stability and accuracy values for the Musk (Version 1) and
Multi-features datasets in Figures 4 and 5. The stability and accuracy plots for the
other datasets are omitted due to space restrictions but are available at [16].

As seen in Figures 4 and 5, MID is again more stable than MIQ. However, it is
not clearwhich value ofα results in themost stable feature selection. In order tofind
the best value of parameter α in terms of stability and accuracy for each dataset,
we propose comparing the mean ranks of each feature selection method MIDα

for each number of selected features. For a certain number of selected features, we
compute the rank of a method (smaller rank means better stability or accuracy),
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Fig. 5. Stability and accuracy values for Multi-features dataset

Table 3. Rank of α values and their standard deviation according to stability for Musk

(Version 1) dataset

Ratio r α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

0.1 1.7 ∓ 0.9 1.8 ∓ 0.8 2.7 ∓ 0.8 3.9 ∓ 0.7 4.7 ∓ 0.8

0.25 1.9 ∓ 0.8 1.4 ∓ 0.6 2.7 ∓ 0.6 4 ∓ 0.4 4.8 ∓ 0.8

0.5 1.7 ∓ 0.7 1.5 ∓ 0.6 2.8 ∓ 0.5 4.1 ∓ 0.5 4.8 ∓ 0.7

0.75 1.4 ∓ 0.7 1.8 ∓ 0.6 2.9 ∓ 0.6 4.1 ∓ 0.6 4.7 ∓ 0.7
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Table 4. Rank of α values and their standard deviation according to accuracy(knn =

3) for Musk (Version 1) dataset

Ratio r α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

0.1 4.2 ∓ 1.1 1.3 ∓ 0.6 1.9 ∓ 0.6 3.3 ∓ 0.8 4.1 ∓ 0.7

0.25 4.3 ∓ 1 1.1 ∓ 0.3 2 ∓ 0.4 3.3 ∓ 0.5 4.2 ∓ 0.8

0.5 4.5 ∓ 0.8 1.1 ∓ 0.4 1.9 ∓ 0.3 3.3 ∓ 0.7 4.1 ∓ 0.7

0.75 4.9 ∓ 0.4 1.1 ∓ 0.4 2 ∓ 0.5 3.2 ∓ 0.7 3.7 ∓ 0.6

then we average them for all the number of features. If two methods result in
the same stability or accuracy, then we give them the same rank.

Table 3 shows the averages and standard deviations of stability ranks of MIDα

methods and Table 4 shows the same ranks but for accuracy for Musk (Version
1) dataset.

Table 5. Rank of α values and their standart deviation according to stability for

Multi-features dataset

Ratio r α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

0.1 3.3 ∓ 1.8 4.4 ∓ 0.6 2.4 ∓ 0.6 2.2 ∓ 0.8 2.7 ∓ 1.5

0.25 3.4 ∓ 1.9 4.5 ∓ 0.5 2.8 ∓ 0.6 2.2 ∓ 0.7 2.1 ∓ 1.3

0.5 3.3 ∓ 1.8 4.5 ∓ 0.5 3.2 ∓ 0.6 2.1 ∓ 0.8 1.9 ∓ 0.9

0.75 3.2 ∓ 1.8 4.5 ∓ 0.5 3.3 ∓ 0.6 2.1 ∓ 0.8 1.9 ∓ 1

Table 6. Rank of α values and their standart deviation according to accuracy(knn =

3) for Multi-features dataset

Ratio r α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

0.1 4.8 ∓ 0.7 3.9 ∓ 0.4 2.4 ∓ 0.9 1.8 ∓ 0.6 1.7 ∓ 0.8

0.25 4.7 ∓ 0.7 3.8 ∓ 0.7 1.9 ∓ 0.9 2.1 ∓ 0.6 2.1 ∓ 0.9

0.5 4.6 ∓ 1 3.6 ∓ 0.7 1.9 ∓ 0.9 2.1 ∓ 0.8 2.1 ∓ 1

0.75 4.7 ∓ 0.7 3.4 ∓ 1 1.8 ∓ 0.9 2 ∓ 0.7 2.2 ∓ 1

Table 7. Rank of α values and their standart deviation according to stability for all

datasets when r = 0.25

Dataset α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

Ionosphere 3.5 ∓ 1.2 3 ∓ 0.9 3.4 ∓ 1.1 3 ∓ 1.9 1.4 ∓ 0.6

Sonar 2.2 ∓ 0.8 1.7 ∓ 0.8 2.6 ∓ 1.2 4.2 ∓ 0.8 4 ∓ 1.4

Parkinsons 2.5 ∓ 1.1 2.2 ∓ 1.1 3 ∓ 1.4 3.6 ∓ 1.3 2.7 ∓ 1.9

Musk(Version 1) 1.9 ∓ 0.8 1.4 ∓ 0.6 2.7 ∓ 0.6 4 ∓ 0.4 4.8 ∓ 0.8

Audio Genre 3.7 ∓ 1.1 4.5 ∓ 0.9 3.2 ∓ 0.7 1.8 ∓ 0.8 1.4 ∓ 0.5

Multi-features Digits 3.4 ∓ 1.9 4.5 ∓ 0.5 2.8 ∓ 0.6 2.2 ∓ 0.7 2.1 ∓ 1.3

Handwritten Digits 2.9 ∓ 1.5 4.4 ∓ 1 2.4 ∓ 1 2.3 ∓ 1.1 2 ∓ 1

Wine 3.7 ∓ 1.3 4.1 ∓ 1.4 2.5 ∓ 1 1.4 ∓ 0.5 1.8 ∓ 0.9
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Table 8. Rank of α values and their standart deviation according to accuracy(knn =

3) for all datasets when r = 0.25

Dataset α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

Ionosphere 2.7 ∓ 1.9 3.2 ∓ 1.2 3.5 ∓ 1.2 3.1 ∓ 1.1 1.9 ∓ 1

Sonar 3.1 ∓ 1.9 1.8 ∓ 0.7 2.5 ∓ 1.2 3.7 ∓ 1 3.7 ∓ 1

Parkinsons 3.6 ∓ 1.6 2.2 ∓ 1.2 2.9 ∓ 1.4 3.2 ∓ 1 2.4 ∓ 1.3

Musk(Version 1) 4.3 ∓ 1 1.1 ∓ 0.3 2 ∓ 0.4 3.3 ∓ 0.5 4.2 ∓ 0.8

Audio Genre 4.8 ∓ 0.6 3.9 ∓ 0.7 2.9 ∓ 0.4 1.7 ∓ 0.6 1.4 ∓ 0.5

Multi-features Digits 4.7 ∓ 0.7 3.8 ∓ 0.7 1.9 ∓ 0.9 2.1 ∓ 0.6 2.1 ∓ 0.9

Handwritten Digits 4.4 ∓ 0.9 3.8 ∓ 1 2 ∓ 0.9 2 ∓ 0.9 1.7 ∓ 0.8

Wine 2.5 ∓ 1.4 4.3 ∓ 1.3 3.1 ∓ 1.3 1.8 ∓ 0.7 2.2 ∓ 0.7

Table 5 shows the averages and standard deviations of stability ranks of MIDα

methods and Table 6 shows the same ranks but for accuracy for Multi-features
dataset.

We summarize the stability and accuracy ranks of MIDα for all datasets in
tables 7 and 8 respectively, when r = 0.25. According to these tables, α = 0.5, i.e.
MID is not necessarily the best choice in terms of either stability or accuracy.
Different datasets favor different values of α for best stability and accuracy. While
Ionosphere, audio genre, multi features, handwritten digits and wine datasets
prefers α > 0.5 for best stability, others perform better when alpha < 0.5.

6 Conclusion

In this paper, we first devised a method to evaluate the stability of a feature
selection method as the number of dataset used for feature selection gets smaller.
Then, using our stability evaluation method, on 8 different datasets, we showed
that among the two feature selection criteria, MID and MIQ of the MRMR
feature selection method, MID gives more stable results, while the accuracy of
both criteria are comparable. We also showed theoretically, why MID is more
stable than MIQ. Finally, we suggested an improvement on the MID criterion,
MIDα, where the contribution of relevance and redundancy on feature selection
is controlled through a parameter α. For different data sets, we evaluated the
stability and accuracy performance of MIDα and observed that for each dataset
the α that results in the best stability and accuracy could be different. Under-
standing what value of α is the best based on the characteristics of a dataset is
one of the future works we are planning on.
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Abstract. Direct policy search is a promising reinforcement learning

framework in particular for controlling in continuous, high-dimensional

systems such as anthropomorphic robots. Policy search often requires a

large number of samples for obtaining a stable policy update estimator

due to its high flexibility. However, this is prohibitive when the sampling

cost is expensive. In this paper, we extend an EM-based policy search

method so that previously collected samples can be efficiently reused.

The usefulness of the proposed method, called Reward-weighted Regres-
sion with sample Reuse (R3), is demonstrated through a robot learning

experiment.

1 Introduction

Model-free reinforcement learning is an important tool for solving real-world
Markov decision problems online. However, due to its high flexibility, many data
samples are usually required for obtaining good control policies. In practice,
the cost of collecting rollout data is often prohibitively expensive and too time-
consuming for real-world problems where thousands of trials would require weeks
or months of experiments. For example, when a robot learns how to hit a ball
in baseball or tennis, we need to let the robot hit a ball hundreds of times for
obtaining a reliable policy-improvement direction; then this policy update steps
need to be repeated many times for finally obtaining a good policy. As a result,
robot engineers need to spend a lot of time and effort to “nurse” the vulnerable
robot through frequent mechanical maintenance. As in many other real-world
reinforcement learning problems, it is therefore highly important to reduce the
number of training samples generated by the physical system and instead re-use
them efficiently in future updates.

A lot of efforts have been made to reuse previously collected samples, in par-
ticular in the context of value function approximation. A basic technique for
sample reuse is to use importance sampling [16] for which the bias is canceled
out asymptotically. However, a naive use of importance sampling significantly
increases the variance of the estimator and, therefore, it becomes highly unsta-
ble. To mitigate this problem, the per-decision importance-weighting technique
has been introduced for variance reduction [10]. This technique cleverly makes
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use of a property of Markov decision processes and eliminates irrelevant terms
in the importance sampling identity. However, the obtained estimator still tends
to be unstable and, thus, the importance-sampling paradigm has not been in
active use for real-world reinforcement learning tasks yet. For more stable and
efficient variance reduction, an adaptive importance sampling scheme has re-
cently been proposed [4]. This formulates the off-policy value function approx-
imation problem as covariate shift adaptation, which is a statistical learning
paradigm under non-stationarity: a ‘flattening’ parameter is introduced to the
importance weight for trading the variance reduction with a slight bias increase—
the bias-variance trade-off is optimally controlled based on importance-weighted
cross-validation [15].

Due to the above efforts, reinforcement learning methods based on value func-
tion approximation can successfully reuse previously collected samples in a stable
manner. However, it is not easy to deal with continuous actions in the value func-
tion based policy iteration framework; the direct policy search approach is more
suitable for learning control policies with continuous actions, e.g., the policy gra-
dient method [18,17], the natural policy gradient method [5,9], and the policy
search by expectation-maximization [2,8]. Reusing data samples is even more ur-
gent in policy search approaches as small policy updating steps can result into
under-utilization of the data. While plain importance sampling techniques have
also been applied in the direct policy search, they were shown to be unstable
[13,7]. For stabilization purposes, heuristic techniques are often used in practice,
e.g., samples with smaller importance weights are not used for learning [6]. How-
ever, to the best of our knowledge, systematic treatment of instability issues in
the policy search with sample reuse is still an open research topic.

The purpose of this paper is to propose a new framework for systemati-
cally addressing this problem. In particular, we combine the policy search by
expectation-maximization [2,8] with the covariate shift adaptation paradigm,
and develop an efficient data-reuse algorithm for direct policy learning. The
effectiveness of the proposed method, called Reward-weighted Regression with
sample Reuse (R3), is demonstrated by robot-control experiments.

2 Policy Search Framework

We consider the standard reinforcement learning framework in which an agent
interacts with a Markov decision process. In this section, we review how
Markov decision problems can be solved using the policy search by expectation-
maximization [2]; for Gaussian models, this results in the reward-weighted re-
gression (RWR) algorithm [8].

2.1 Markov Decision Problems

Let us consider a Markov decision problem specified by (S,A, PT, PI, R, γ), where
S is a set of (continuous) states, A is a set of (continuous) actions, PT(s′|s, a)
(∈ (0, 1]) is the transition probability-density from state s to next state s′ when
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action a is taken, PI(s) (∈ (0, 1]) is the probability of initial states, R(s, a, s′)
(≥ 0) is an immediate reward for transition from s to s′ by taking action a, and
γ (∈ (0, 1]) is the discount factor for future rewards. Let π(a|s; θ) (∈ (0, 1]) be a
stochastic policy with parameter θ, which represents the conditional probability
density of taking action a given state s. Let us denote a trajectory of the agent
by d ≡ (s1, a1, s2, a2, . . . , sN , aN , sN+1), where N is the length of the trajectory.
Let R(d) be the return (i.e., the sum of discounted rewards) along trajectory d:

R(d) ≡
N∑

n=1

γn−1R(sn, an, sn+1).

Let P (d; θ) be the probability of occurring trajectory d under PI(s1),
PT(sn+1|sn, an), and π(an|sn; θ):

P (d; θ) ≡ PI(s1)
N∏

n=1

π(an|sn; θ)PT(sn+1|sn, an). (1)

The expected return is denoted by J(θ):

J(θ) ≡
∫
R(d)P (d; θ)dd.

The goal of the policy search is to learn the optimal policy parameter θ∗ that
maximizes the expected return J(θ):

θ∗ ≡ arg max
θ

J(θ). (2)

2.2 EM-Based Policy Search

Naively maximizing J(θ) is hard since J(θ) usually contains high non-linearity.
The basic idea of the policy search by expectation-maximization is to itera-
tively update the policy parameter θ by maximizing a lower bound of the target
cost function [3]. More precisely, let θL be the current policy parameter, where
the subscript L indicates the iteration number. Then the use of Jensen’s in-
equality allows us to obtain a lower bound of the normalized expected return
log(J(θ)/J(θL)) as

log
J(θ)
J(θL)

= log
∫ R(d)P (d; θ)

J(θL)
dd = log

∫ R(d)P (d; θL)
J(θL)

P (d; θ)
P (d; θL)

dd

≥
∫ R(d)P (d; θL)

J(θL)
log

P (d; θ)
P (d; θL)

dd ≡ JL(θ).

Note that R(d)P (d; θL)/J(θL) is treated as a probability density function in
applying Jensen’s inequality; this is why R(d) is assumed to be non-negative
and the expected return is normalized.
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Fig. 2. The policy parameter θ is updated iteratively by maximizing lower bounds

The expectation-maximization (EM) approach iteratively updates the param-
eter θ by maximizing the lower bound JL(θ):

θL+1 ≡ argmax
θ

JL(θ). (3)

Since JL(θL) = 0, the lower bound JL(θ) is tight (i.e., the lower bound touches
the target function) at θL. Thus monotone non-decrease of the (un)normalized
expected return is guaranteed (Fig.1):

J(θL+1) ≥ J(θL).

This update is iterated until convergence (see Fig.2).

2.3 Reward-Weighted Regression

Let us employ the Gaussian policy model defined as
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π(a|s; θ) =
1

σ
√

2π
exp

(
− (a− k�φ(s))2

2σ2

)
, (4)

where k = (k1, k2, . . . , kb))� and σ are policy parameters, b is the number of basis
functions, and φ(s) = (φ1(s), φ2(s), . . . , φb(s))� are fixed basis functions. This
model allows us to deal with one-dimensional action a and multi-dimensional
state vector s—multi-dimensional action vectors may be handled by concate-
nating one-dimensional models. The maximizer θL+1 of the lower bound JL(θ)
satisfies the following equation:

∂

∂θ
JL(θ)

∣∣∣∣∣
θ=θL+1

=
∫ R(d)P (d; θL)

J(θL)
∂

∂θ
log P (d; θ)

∣∣∣∣∣
θ=θL+1

dd

=
∫ R(d)P (d; θL)

J(θL)

N∑
n=1

∂

∂θ
log π(an|sn; θ)

∣∣∣∣∣
θ=θL+1

dd = 0. (5)

A useful property of the Gaussian policy model is that the log-derivative of the
policy model with respect to the parameters can be analytically computed as

∂

∂k
log π(a|s; θ) =

a− k�φ(s)
σ2 φ(s),

∂

∂σ
log π(a|s; θ) =

(a− k�φ(s))2 − σ2

σ3 .

Then the maximizer θL+1 = (k�
L+1, σL+1)� can be analytically obtained as

kL+1 =
(∫

R(d)P (d; θL)
N∑

n=1

φ(sn)φ(sn)�
)−1

×
(∫

R(d)P (d; θL)
N∑

n=1

anφ(sn)
)
,

σ2
L+1 =

(
N

∫
R(d)P (d; θL)

)−1

×
(∫

R(d)P (d; θL)
N∑

n=1

(an − kL+1
�φ(sn))2

)
.

The EM-based policy search for Gaussian models is called reward-weighted
regression [8].

2.4 Learning from Episodic Data Samples

Suppose a dataset consisting of M episodes with N steps is available for each
RWR iteration, where each episodic sample is generated as follows. Initially, the
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agent starts from a randomly selected state s1 following the initial-state proba-
bility density PI(s1) and chooses an action based on the policy π(an|sn; θL) at
the L-th iteration. Then the agent makes a transition following PT(sn+1|sn, an)
and receives a reward rn (= R(sn, an, sn+1)). This transition is repeated N times
for M episodes—hence, the training data DL gathered at the L-th iteration is
expressed as DL ≡ {dL

m}M
m=1, where each episodic sample dL

m is given by

dL
m ≡ {(sL

m,n, aL
m,n, rL

m,n, sL
m,n+1)}N

n=1.

Then the RWR solution θL+1 ≡ (k�
L+1, σL+1)� can be approximated using the

L-th training data DL as θ̂L+1 ≡ (k̂
�
L+1, σ̂L+1)�, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k̂L+1 =
( M∑

m=1

R(dL
m)

N∑
n=1

φ(sL
m,n)φ(sL

m,n)�
)−1

×
( M∑

m=1

R(dL
m)

N∑
n=1

aL
m,nφ(sL

m,n)
)
,

σ̂2
L+1 =

(
N

M∑
m=1

R(dL
m)
)−1( M∑

m=1

R(dL
m)

N∑
n=1

(aL
m,n − k̂

�
L+1φ(sL

m,n))2
)
.

(6)

2.5 Importance Sampling

When the cost for gathering rollout samples is high, the number M of episodes
should be kept small. As a result, the next policy parameter θ̂L+1 suggested
by RWR may not be sufficiently accurate. In order to improve the estimation
accuracy, we could reuse the samples collected at the previous iterations {Dl}L

l=1.
If the policies remain unchanged by the RWR updates, just using Eq.(6) gives

an efficient estimator1 θ̂
NIW
L+1 ≡ (k̂

NIW
L+1

�, σ̂NIW
L+1 )�, where

k̂
NIW
L+1 =

( L∑
l=1

M∑
m=1

R(dl
m)

N∑
n=1

φ(sl
m,n)φ(sl

m,n)�
)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)

N∑
n=1

al
m,nφ(sl

m,n)
)
,

(σ̂NIW
L+1 )2 =

(
N

L∑
l=1

M∑
m=1

R(dl
m)
)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)

N∑
n=1

(
al

m,n − k̂
NIW
L+1

�φ(sl
m,n)

)2)
.

1 As the number of episodes goes to infinity, the estimated parameter converges to the

optimal value and its variance achieves the Cramér-Rao lower bound [11].
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The superscript ‘NIW’ stands for ‘No Importance Weight’. However, since poli-
cies are updated in each RWR iteration, {Dl}L

l=1 generally follow different dis-
tributions for different policies and, therefore, the naive use of Eq.(6) will result
in a biased estimator.

Importance sampling can be used for coping with this problem. The basic idea
of importance sampling is to weight the samples drawn from a different distribu-
tion to match the target distribution. More specifically, from i.i.d. (independent
and identically distributed) samples {dm}M

m=1 following P (d; θl), the expectation
of some function g(d) over another probability density function P (d; θL) can be
consistently estimated by the importance-weighted average:

1
M

M∑
m=1

g(dm)
P (dm; θL)
P (dm; θl)

M→∞−→ E
P (d;θl)

[
g(d)

P (d; θL)
P (d; θl)

]
=
∫

g(d)
P (d; θL)
P (d; θl)

P (d; θl)dd = E
P (d;θL)

[g(d)] .

The ratio of two densities P (d; θL)/P (d; θl) is called the importance weight for d.
This importance sampling technique can be employed in RWR for obtaining

a consistent estimator θ̂
IW
L+1 ≡ (k̂

IW
L+1

�, σ̂IW
L+1)

�, where

k̂
IW
L+1 =

( L∑
l=1

M∑
m=1

R(dl
m)wL,l(dl

m)
N∑

n=1

φ(sl
m,n)φ(sl

m,n)
�)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)wL,l(dl

m)
N∑

n=1

al
m,nφ(sl

m,n)
)
,

(σ̂IW
L+1)

2 =
(
N

L∑
l=1

M∑
m=1

R(dl
m)wL,l(dl

m)
)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)wL,l(dl

m)
N∑

n=1

(
al

m,n−k̂
IW
L+1

�φ(sl
m,n)

)2)
.

Here, wL,l(d) denotes the importance weight defined by

wL,l(d) ≡ P (d; θL)
P (d; θl)

.

The superscript ‘IW’ abbreviates ‘Importance Weight’. According to Eq.(1),
the two probability densities P (d; θL) and P (d; θl) both contain PI(s1) and
{PT(sn+1|sn, an)}N

n=1. Since they cancel out in the importance weight, we can
compute the importance weight without the knowledge of PI(s) and PT(s′|s, a)
as

wL,l(d) =
∏N

n=1 π(a,n|sn; θL)∏N
n=1 π(an|sn; θl)

.
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Although the importance-weighted estimator is guaranteed to be consistent, it is
not efficient even asymptotically. Therefore, the importance-weighted estimator
tends to be unstable when the number of samples is rather small. The purpose of
this paper is to propose a new framework for systematically addressing instability
problems in the direct policy search.

3 Adaptive Importance Weight for Stable Policy Search

In this section, we propose a new policy search method called Reward-weighted
Regression with sample Reuse (R3) for efficient sample reuse.

3.1 Bias-Variance Trade-Off and Adaptive Importance Weight

When data samples {Dl}L
l=1 follow different distributions, the NIW estimator is

biased even asymptotically. On the other hand, the IW estimator is asymptot-
ically unbiased [14]. Thus, IW would generally have a smaller bias than NIW.
However, IW has a larger variance than NIW, so there is the trade-off between
the bias and variance.

In order to appropriately control the bias-variance trade-off, we introduce
an adaptive importance weighting technique [14]. For a flattening parameter ν
(∈ [0, 1]), the importance weight wL,l(d) is ‘flattened’ as wν

L,l(d) (wL,l(d) to the

power of ν). Then we have θ̂
AIW
L+1 ≡ (k̂

AIW
L+1

�, σ̂AIW
L+1 )�, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k̂
AIW
L+1 =

( L∑
l=1

M∑
m=1

R(dl
m)wν

L,l(d
l
m)

N∑
n=1

φ(sl
m,n)φ(sl

m,n)
�)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)wν

L,l(d
l
m)

N∑
n=1

al
m,nφ(sl

m,n)
)
,

(σ̂AIW
L+1 )2 =

(
N

L∑
l=1

M∑
m=1

R(dl
m)wν

L,l(d
l
m)
)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)wν

L,l(d
l
m)

N∑
n=1

(
al

m,n − k̂
AIW
L+1

�φ(sl
m,n)

)2)
.

(7)

‘AIW’ stands for ‘Adaptive Importance Weight’. When ν = 0, AIW is reduced
to NIW. On the other hand, when ν = 1, AIW is reduced to IW. In practice, an
intermediate ν often produces a better estimator since the bias-variance trade-off
can be better controlled.

In the above AIW method, the flattening parameter value ν can be different
for each Dl. However, for simplicity, we employ a single common value ν.

3.2 Flattening Parameter Selection

The performance of AIW depends on the choice of the flattening parameter ν,
which allows us to control the bias-variance trade-off. Here, we show how the
value of the flattening parameter can be optimally chosen using samples.
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The goal of the policy search is to find the optimal policy that maximizes the
expected return J(θ). Therefore, the optimal flattening parameter value ν∗

L at
the L-th iteration is given by

ν∗
L ≡ argmax

ν
J(θ̂

AIW
L+1 (ν)). (8)

Directly obtaining ν∗
L requires to compute the expected return J(θ̂

AIW
L+1 (ν)) for

each candidate of ν. To this end, we need to collect data samples following
π(a|s; θ̂

AIW
L+1 (ν)) for each ν, which is prohibitively expensive. In order to reuse

samples generated by previous policies, we propose to use a variation of cross-
validation called importance-weighted cross-validation (IWCV) [15].

The basic idea of IWCV is to split the training dataset D1:L = {Dl}L
l=1 into

an ‘estimation part’ and a ‘validation part’. Then the parameter θ̂
AIW
L+1 (ν) is

learned from the estimation part and its expected return J(θ̂
AIW

(ν)) is approx-
imated using the validation part. Below, we explain in more detail how we apply
IWCV to the selection of the flattening parameter ν in the current context. For
simplicity, we assume that M is divisible by K, i.e., M/K is an integer.

Let us randomly divide the training dataset D1:L = {Dl}L
l=1 into K (we use

K = 5 in the experiments) disjoint subsets {D1:L
k }K

k=1 of the same size, where

each D1:L
k contains M/K episodic samples from every Dl. Let θ̂

AIW
L+1,k(ν) be

the policy parameter learned from {D1:L
k′ }k′ 	=k (i.e., without D1:L

k ) by AIW. We

estimate the expected return of θ̂
AIW
L+1,k(ν) using D1:L

k as

Ĵk
IWCV(θ̂

AIW
L+1,k(ν)) ≡ 1

η

∑
dl∈D1:L

k

R(dl)wL,l(dl),

where dl denotes an episodic sample from Dl and η is a normalization constant.
An ordinary choice of η would be η = LM/K, but we use a ‘stable’ variant
η ≡

∑
dl∈D1:L

k
wL,l(dl) [10].

The above procedure is repeated for all k = 1, 2, . . . , K and the average score
is computed:

ĴIWCV(θ̂
AIW
L+1 (ν)) ≡ 1

K

K∑
k=1

Ĵk
IWCV(θ̂

AIW
L+1,k(ν)).

This is the K-fold IWCV estimate of J(θ̂
AIW
L+1 (ν)), which is shown to be unbiased

[15].
We compute this K-fold IWCV score for each candidate value of the flattening

parameter ν and choose the one that maximizes the IWCV score:

ν̂IWCV ≡ argmax
ν

ĴIWCV(θ̂
AIW
L+1 (ν)).

Note that the above IWCV scheme can be used also for choosing the type and
number of basis functions {φi(s)}b

i=1 in the Gaussian policy model (4).
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3.3 Numerical Examples

Here, we illustrate how the proposed method behaves using a one-dimensional
ball-balancing simulation illustrated in Fig.3. The goal is to control the angle
of the plate so that the ball is kept in the middle of the plate. The action
space A consists of the angle α (∈ (−π/4, π/4)) [rad] of the plate which is one-
dimensional and continuous. The state space S is also continuous and a state
vector s = (x, ẋ)� consists of the distance x [m] between the centers of mass of
the ball and the plate, and the velocity ẋ [m/s] of the ball. The distance x and
velocity ẋ can be modeled using the following equations:

xt+1 = xt + ẋt+1Δt,

ẋt+1 = ẋt + Δt
(
− f

m
ẋt − 9.8 sin(at)

)
,

where f = 0.5 is the friction coefficient, m = 3 [kg] is the mass of the ball, at

[rad] is the action chosen at time t, and Δt = 0.05 [s] is the duration of a time
step. We assume that if an action at is chosen, the plate angle will be adjusted
with a single time-step (this simulation is for illustration purposes; more realistic
experiments will be shown in the next section). The reward function R(s, a, s′)
is a quadratic function defined as

R′(s, a, s′) = −s′�
(

1 0
0 0.5

)
s′ − 0.1a2.

This reward function indicates that the agent will receive the maximum reward
(i.e., zero) when the ball stops at the center of the plate (s = 0). However,
the above reward function takes negative values and therefore violates the non-
negativity assumption imposed in the derivation of the EM algorithm (see Sec-
tion 2). To cope with this problem, when the policy search is carried out, we
convert the return R(d) as

R′(d) = − 1
0.00001 +R(d)

. (9)

We use the Gaussian policy model with φ(s) = s. The discount factor was set
to γ = 0.95.

α

x�

x

Fig. 3. Illustration of one-dimensional ball-balancing simulation. The goal is to control

the angle α of the plate so that the ball is kept in the middle of plate.
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First, let us illustrate how the flattening parameter ν influences the policy-
parameter update. For this purpose, we compute θ̂

AIW
L+1 (ν) only from DL−1. The

target policy parameter θ̂L = (k̂
�
L , σ̂L)� is fixed to k̂L = (0.5, 0.5)� and σ̂L =

0.2. The sample-generation policy parameter θ̂L−1 is chosen randomly as k̂L−1 =
k̂L−(β1, β2)� and σ̂L−1 = σ̂L, where β1 and β2 independently follow the uniform

distribution on [0, 0.2]. Fig.4(a) depicts the true expected return J(θ̂
AIW
L+1 (ν))

averaged over 20 trials as a function of the flattening parameter ν for M = 5
and 20.

The graph overall shows that when the number M of episodes is larger, the av-
erage expected return is also larger. However, the performance of NIW (ν = 0) is
not improved significantly when M is increased. The reason for this phenomenon
is that increasing the number of samples does not contribute to reducing the es-
timation bias in NIW. The amount of variance reduction in NIW is limited as
the variance is relatively small even when M is not large. On the other hand,
the performance of IW (ν = 1) is significantly improved as M is increased. This
is because IW tends to have a large variance when M is small and increasing
M highly contributes to reducing the variance. The graph also shows that nei-
ther NIW nor IW is the best in this simulation—intermediate values of ν (say,
0.2 ≤ ν ≤ 0.4) perform better than NIW and IW. Thus, given that ν is chosen
optimally, AIW can outperform IW and NIW. Note that, although the amount
of performance improvement by AIW over IW seems subtle in this one-step ex-
periment, accumulation of this small gain through iterations actually causes big
performance improvement (Fig.6).

Next, we illustrate how IWCV behaves. Fig.4(b) depicts the expected return

ĴIWCV(θ̂
AIW
L+1 (ν)) estimated by 5-fold IWCV, averaged over 20 trials as a function

of the flattening parameter ν. The graphs show that IWCV roughly captures the
trend of the true expected return for both cases (M = 5 and 20). Note that the
orders of magnitude of the values in Fig.4(a) and in Fig.4(b) are different due
to the importance weights. However, this does not cause a problem in model
selection as long as relative profiles of the curves are similar.

Fig.5 depicts the expected return obtained by NIW (ν = 0), IW (ν = 1), and
AIW+IWCV (ν ∈ {0, 0.1, 0.2, . . . , 1} is selected in each trial using 5-fold IWCV)
averaged over 20 trials as a function of the number M of episodes. This result
indicates that the performance of NIW (ν = 0) does not improve significantly
when M is increased, implying that the estimation bias in NIW is crucial. On
the other hand, the performance of IW (ν = 1) is highly improved when M
is increased. Thus, consistency of IW would be useful in this simulation. The
proposed method, AIW+IWCV, tends to outperform both NIW and IW.

Finally, we illustrate how R3 behaves in three different scenarios; through
RWR iterations, ν is fixed to 0 (NIW), ν is fixed to 1 (IW), and ν is chosen by
IWCV (R3). Starting from a randomly-chosen initial policy-parameter θ̂1, we let
the agent collect samples DL following the current policy π(a|s; θ̂L), and then
the policy parameter is updated using all samples {Dl}L

l=1. This is repeated over
iterations. Fig.6 depicts the return averaged over 20 trials as a function of the
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(IW), and ν is chosen by IWCV (R3) in one-dimensional ball-balancing task. The

performance is measured by the expected return averaged over 20 trials.



Efficient Sample Reuse in EM-Based Policy Search 481

number of RWR iterations; the number of episodes is M = 5 or 20, while the
number of steps is fixed to N = 20.

The graphs show that R3 tends to outperform the non-adaptive schemes.
When ν is fixed to 0 (NIW), the performance of policy is stable for both cases.
However, performance improvement is much slower than that for R3. On the
other hand, when ν is fixed to 1 (IW), the behavior depends on the number of
samples; it works as well as NIW for M = 20, but the performance is poor and
is not improved over iterations for M = 5 due to the high estimation variance.

Our original motivation to introduce R3 was to reduce the number of samples
for saving the sampling cost. When the sampling cost is high, it is preferable to
keep M small, e.g., M = 5. In this case, the IW methods (ν = 1) performs very
poorly due to the huge estimation variance. On the other hand, the proposed
R3 method is stable even in the small sample case and its performance tends to
be better than the naive RWR method (ν = 0).

4 Applications

In this section, we evaluate the performance of our proposed method R3 in a more
complicated environment, i.e., a physically realistic ball-balancing task using a
Barrett WAMTM robot-arm simulator.

The 7 degree-of-freedom Barrett WAMTM arm is mounted on the ceiling up-
side down and has a circular tray attached at the end-effector (see Fig.7). The
goal is to control the robot so that the ball is always brought to the middle of the
tray, similarly to the toy ball-balancing task in the previous section. However,
unlike before, the angle of the tray cannot be directly controlled here as this is
not feasible in a realistic scenario. Thus, achieving the goal is much harder.

The initial pose of the robot is set so that the tray is slightly tilted and the
ball is rolling on the tray (see Fig.7). To simplify the problem, we control only
two degrees of freedom: the wrist angle αroll and the elbow angle αpitch; all
the remaining joints are fixed. Control of the wrist and elbow angles roughly
corresponds to changing the roll and pitch of the tray, but not directly.

We design two separate control subsystems, each of which is in charge of roll
and pitch control. Each subsystem has its own policy parameter θ∗, state space
S∗, and action space A∗; ‘*’ corresponds to ‘roll’ or ‘pitch’. The state space S∗ is
continuous and consists of (x∗, ẋ∗, α∗), where x∗ [m] is the distance between the
centers of mass of the ball and the tray along each axis, ẋ∗ [m/s] is the velocity
of the ball, and α∗ [rad] is the joint angle. The action space A∗ is continuous
and corresponds to the target angle of the joint a∗ [rad]. The reward function is
defined as

R∗(s, a, s′) = −(x′
∗)

2 − (ẋ′
∗)

2 − a2
∗.

Since this reward function is negative, the return is converted to a non-negative
one by Eq.(9) when the policy search is carried out.

We explain how the control system is designed in more detail. As described
in Fig.8, the control system has two feedback loops: joint-angle control using
a proportional and derivative (PD) controller and motion control using an R3



482 H. Hachiya, J. Peters, and M. Sugiyama

roll
x
roll
x

roll
x�
roll
x�

roll
α

(a) The angle of wrist

pitchxpitchx

pitchx�pitchx�

pitchα

(b) The angle of elbow

Fig. 7. Ball-balancing task using a Barrett WAMTM arm simulator. Two joints of the

robots are controlled so as to keep the ball in the middle of the tray.
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controller. The PD controller outputs motor torque to achieve the desired joint
angle a∗ as

τ∗ = kp(α∗ − a∗) + kdα̇∗,

where kp = 20 is the proportional gain and kd = 1 is the derivative gain. On the
other hand, the R3 controller outputs the target joint angle obtained by current
policy π(a|s; θL); the policy parameter is learned by R3 using the Gaussian
policy model with linear basis function φ(s) = s.

We use the Simulation Laboratory (SL) simulator [12] for experiments, which
is known to be highly realistic. The initial policy parameters and state2 are ran-
domly set as k∗ = (δ∗, δ′∗, δ

′′
∗ )�, σ∗ = 0.2, and s∗ = (x∗, ẋ∗, α∗)� = (κ∗, 0, 0.15)�,

where {δ∗, δ′∗, δ′′∗} and κ∗ are independently drawn the uniform distributions on
[0, 0.1] and [0.045, 0.075], respectively. The dataset collected in each iteration
consists of 5 episodes with 400 steps; the duration of an episode is 4 [s] in which3

the sampling cycle and the R3 control cycle are both 10 [ms]. We consider three
scenarios here: sample reuse with ν = 0 (fixed), ν = 1 (fixed), and the proposed
R3 (ν is chosen by IWCV from {0.0, 0.2, 0.4, . . . , 1.0}). The discount factor is
set to γ = 0.99. Fig.9 depicts the averaged return over 10 trials as a function
of the number of RWR iterations. The graph shows that R3 nicely improves the
performance. On the other hand, the performance using fixed ν = 0 or ν = 1 is
saturated after the 2nd or 3rd iteration.

Overall, the proposed R3 method is shown to be still promising in a complex
robot-control task.

5 Conclusions

In real-world reinforcement learning problems, reducing the number of training
samples is highly important as the sampling costs are often much higher than
the computational cost. In this paper, we proposed a new framework of the di-
rect policy search for efficient sample reuse. To overcome the instability problem
caused by importance sampling, we proposed to combine reward-weighted re-
gression with adaptive importance sampling techniques. The proposed method,
called R3, was shown to work well in experiments.

The proposed idea of using importance sampling techniques in the direct
policy search is applicable to other policy search methods such as the policy
gradient method [18,17], the natural-policy gradient method [5,9], and policy
search by dynamic programming [1]. We will develop these variants and evaluate
their performance in the future work.

Acknowledgements. HH acknowledges GCOE Computationism as a Founda-
tion for the Sciences, and MS thanks MEXT Grant-in-Aid for Young Scientists
(A), 20680007, SCAT, and AOARD.

2 The angle of elbow αpitch is offset by π/2.
3 The time cycle of PD control is 2 [ms]. Thus, PD control is applied 5 times in each

R3 control.
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Abstract. This work shows how concepts from the electromagnetic field theory 
can be efficiently used in clustering with constraints. The proposed framework 
transforms vector data into a fully connected graph, or just works straight on the 
given graph data. User constraints are represented by electromagnetic fields that 
affect the weight of the graph's edges. A clustering algorithm is then applied on 
the adjusted graph, using k-distinct shortest paths as the distance measure. Our 
framework provides better accuracy compared to MPCK-Means, SS-Kernel-
KMeans and Kmeans+Diagonal Metric even when very few constraints are 
used, significantly improves clustering performance on some datasets that other 
methods fail to partition successfully, and can cluster both vector and graph 
datasets. All these advantages are demonstrated through thorough experimental 
evaluation. 

Keywords: Data Clustering, User Constraints, Electromagnetic Field Theory. 

1   Introduction 

The goal of clustering is to provide useful information by organizing data into groups 
(referred to as clusters). The use of labeled data is often important for the success of 
the clustering process and for the evaluation of the clustering accuracy. Consequently, 
learning approaches which use both labeled and unlabeled data have attracted the in-
terest of the research community [3, 4, 6, 12, 20]. Such approaches incorporate user 
knowledge in the clustering technique, thus improving the clustering result. There are 
several ways to incorporate user knowledge in the clustering process. In this work we 
focus on the Clustering with User Constraints paradigm, where the user specifies con-
straints on groups of objects (typically pairs), and the goal is to produce a clustering 
that satisfies these constraints as much as possible. 

In this paper, we present a novel way of applying user constraints for clustering; 
our approach is inspired by the Electromagnetic Field Theory in physics. We trans-
form the dataset  into  a graph by linking k-nearest neighbors for each instance in the 
dataset, if the data are given as vectors. If the input is a distance matrix, no transfor-
mation is needed. Must-link and cannot-link constraints are then expressed naturally  
 



486 H. Hakkoymaz et al. 

 

(a) 

 

(b) 

Fig. 1. The simulation of an EMF in a graph. (a)Like charges induces repulsive properties 
while (b) opposite charges induces attractive properties of other objects. 

as magnetic fields between the nodes that are involved in the constraint. These fields 
impact edge weights based on the alignment of each edge compared to the magnetic 
field and its distance to the constraint axis. Using a graph representation yields the ad-
vantage that the edge weights can be adjusted without limitations, in contrast to Euclid-
ean space where pairwise distances need to satisfy the triangle inequality. We exploit 
this liberty through a probabilistic model based on the nature of the constraint edges.  

Contributions: We present a framework, called EMC, for clustering with constraints 
inspired by Electromagnetic Field Theory. The framework is general and assumes 
only that a distance function is available. The distance function does not need to sat-
isfy the triangle inequality. If vector data is given, we transform it into a graph with 
minimal information loss; else if graph data is given we work directly on the given 
graph. We adjust the edge weights according to their proximity to the constraints in a 
probabilistic manner and run any clustering algorithm compatible with graphs. In our 
study, we use the K-Medoids algorithm [10], since it is less sensitive to outliers. For 
the distance metric to be used by the clustering algorithm, we propose k simple-and-
distinct shortest paths, described in section 4.3. It allows for accurate clustering even 
with small number of constraints. Our method avoids the use of an objective function 
that strictly adheres to the given constraints, or a distance metric that is weighted ac-
cording to the constraints and is applied globally. 

Our experimental results confirm that our approach outperforms in accuracy cur-
rent techniques including MPCK-Means [4], SS-Kernel-KMeans [12] and KMeans+ 
Diagonal Metric [20] even using very few constraints. Also, it can work on both vec-
tor and graph datasets. 

2   Related Work 

COP-KMeans [18] uses must-link and cannot-link constraints in an objective function 
to avoid incorrect assignment of data instances. It performs hard constrained clustering 
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and computes the transitive closure of the constraints, thus suffering greatly from noisy 
constraints sensitivity. On the contrary, Xing et al. [20] proposed a distance metric 
learning algorithm which places a distance metric over the input space with the inten-
tion of assigning small distances between similar pairs. Distance metric learning aims 
to satisfy the maximum number of constraints by specifying different weights for dif-
ferent axes. The RCA algorithm [2] learns a Mahalanobis distance metric by using 
only must-link constraints. However, both approaches find one global metric which 
must be applied to all clusters.  

MPCK-KMeans [4] integrates the strengths of both metric-based and constraint-
based approaches in a principal manner. It learns individual distance-metrics for each 
cluster utilizing both unlabeled data and constraints. This allows different clusters to 
define their own space and have arbitrary boundaries. Its drawback: it suffers from 
noisy constraints. 

HMRF-KMeans [3] is a probabilistic framework based on Hidden Markov Ran-
dom Fields. Basu et al. have taken advantage of the available constraints in several 
ways. First, they estimate initial centroids using the constraints as the initialization 
step is crucial to accuracy of the KMeans algorithm. The model integrates constraint-
based and distance-based approaches to maximize the joint likelihood of data and 
constraints while penalizing violated constraints. One weakness of the method is that 
it is applicable only to vector data, like all of the other mentioned so far. 

Kulis et al. [12] extended HMRF-KMeans to a kernel-based framework which can 
handle both vector-based and graph-based data. They have established a connection 
between unweighted Kernel-KMeans, HMRF-KMeans and penalties for violated con-
straints. SS-Kernel-KMeans optimizes the kernel by preprocessing the similarity ma-
trix with must-link and cannot-link constraints. Kernel methods are sensitive to the 
manual selection of the kernel’s parameters. Yan and Domeniconi [22] proposed an 
adaptive method that estimates the optimal parameters. Our method adjusts edge 
weights more intuitively since it considers edges nearby the constraints as well, and 
this leads better performance. This model is based on the homophily concept [8], –
nearby nodes tend to share same characteristics.  Although the attraction/repulsion is 
practiced in unsupervised clustering [15], exploiting their use in semi-supervised clus-
tering via the concept is completely new to our best knowledge. 

Klein et al. [23] has based his algorithm on the same homophily intuition as our 
work, but can be applied only to vector data. Also, our method deals in a more com-
prehensive way with constraint satisfaction and triangular inequality restrictions. 

3   Magnetically Affected Paths (MAP) 

In this section, we describe the basic idea behind our approach in an intuitive way. 
We want to cluster a dataset of n points. We assume that a function defining the dis-
tance between any two points and a set of user defined constraints are given. Our goal 
is to cluster the points so that the constraints are satisfied as much as possible. We 
make no assumptions on the distance measure, but we assume that the constraints are 
on pairs of points, either Must-Link (the two points must be in the same cluster) or 
Cannot-Link (the two points cannot be in the same cluster). We use the user-defined 
constraints to “stretch” the space around the object that are accumulated around the 
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constraints. Since we are dealing with graphs, our goal is to increase the weight of the 
paths connecting the objects that are in the neighborhood of a cannot-link constraint, 
and to decrease the weight of the paths connecting the objects that are in the 
neighborhood of a must-link constraint. 

We realize the idea via the interesting analogy between electromagnetic field the-
ory and graphs. We focus on the graph representation of a given dataset and assume 
that this graph has the characteristics of an electromagnetic field (EMF). In physics, 
an electric field is the property of the space in the vicinity of electric charges or in the 
presence of a time-varying magnetic field. The charges produce an electric field in 
space. This electric field exerts a force on other charged objects [14]. Opposite 
charged objects induce attractive properties, whereas like charged objects induce re-
pulsive properties. To simulate these characteristics, we add charges to the nodes that 
take part in a pair-wise constraint. For must-link constraints, we add opposite charges 
to the node pair. The generated magnetic field decreases the weight of the affected 
edges. Cannot-link constraints (like charges) increase the weights of affected edge. 
The situation is illustrated in Figure 1, where must-link constraints are {e(2,3), e(6,7), 
e(14,15)} and the cannot-link constraints are {e(9,10)}. 

We explore imaginary magnetic fields surrounding the pair of charged nodes. 
We check the nearby edges in the graph and identify the graph edges that are in-
fluenced by the magnetic field. Then, we reduce the weight of the affected edge 
or escalate it according to the constraint type. The magnitude of readjustment de-
pends on the distance of the edge in regard to the magnetic field and its alignment 
in the field.  

Before we proceed to the MAP, some definitions are necessary: 

• Constraint axis. The straight line between the pair of nodes involved in a constraint 
• Reduction ratio rRatio(u,v) is the decrement amount in edge weight w(u,v) due to a 

must-link constraint. 
• Escalation ratio eRatio(u,v) is the increment amount in edge weight w(u,v) due to a 

cannot-link constraint. 
• Vertical distance vd(u,v). The average distance of edge e(u,v) to the constraint axis. 
• Horizontal distance hd(u,v) is defined as distance of edge e(u,v) to the mid-point of  

the constraint axis. 

The effect of an EMF decreases as we get further away from the constraint axis (ver-
tical distance). For must-link constraints, the horizontal distance has no effect on the 
reduction ratio. Cannot-link constraints utilize the horizontal distance of an edge to 
determine its probability of being in the separation region of two clusters. Intuitively, 
the closer a regular edge e(u,v) is to the mid-point of a negative edge constraint, the 
higher the probability of it being an inter-cluster edge. Based on this intuition, we 
apply the highest penalty to the edges overlapping with the mid-point of a constraint 
axis. The penalty is reduced as we go further away from the mid-point. 

To summarize, MAP increases or decreases the weights of regular edges based 
on a probabilistic approach. Even though it classifies some of the edges incor-
rectly, overall re-adjustment of edge weights defines better distances in the graph 
domain. 
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Fig. 2. Horizontal and vertical distances relative to the constraint axis (s and t are two nodes of 
a constraint) 

4   EMC Framework 

Here we describe our clustering framework that unifies MAP and clustering algo-
rithms. The algorithm uses 3 steps to apply the MAP concept and cluster a given data-
set: 1) Graph Construction: If given a vector-based dataset, it is converted into a 
graph by connecting k-nearest-neighbors. Must-link and cannot-link constraints are 
addressed as same or opposite charged nodes respectively. 2) Weight Adjustment: 
Identifies the edges that are affected by the given constraints and adjusts the edge 
weights accordingly. 3) Clustering: Runs an appropriate clustering algorithm to parti-
tion the adjusted graph.  

4.1   Graph Construction 

If the input is not a graph but a vector of data points Ds, our framework builds a graph 
reflecting the data with minimal loss of information. We list k nearest neighbors Li for 

each object xi∈Ds, according to their Euclidean distance, and add an edge between xi 

and each v∈Li. We assign the Euclidean distance ||xi-v||2 as the edge weight of e(xi,v). k 
can be easily estimated from the graph size. Experiments show that k should be pro-
portional to the dataset size |Ds| for better accuracy.  

We take all node pairs (si,ti) involved in some constraint and charge si and ti so that 
the force between them is equal to ||si-ti||2. Remember, opposite charged pair of nodes 
create an attractive force (must-link constraint), whereas same charged pair of nodes 
create a repulsive force (cannot-link constraint). 
 

Disconnected Components. Even if we set k to its optimal value, disconnected com-
ponents might still exist. We identify all disconnected subgraphs, explore k nearest 
neighbors between subgraphs, and add an edge for each nearest neighbor connecting 
the disconnected components. This approach is similar to [12]. 

4.2   Weight Adjustment Algorithm 

The weight adjustment phase applies the MAP concept to the graph in order to in-
crease or decrease the edge weights. For each constraint c(s,t) , we extract a list L of 

edges e(u,v)∈E which are affected by the constraint. Affected edges are labeled ac-
cording to the following definition: 
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DEFINITION. If an edge e(u,v) is in between nodes s and t of constraint c(s,t) and is 
not perpendicular to the constraint axis, then it is affected by constraint c(s,t). 

 

In our model, perpendicularity and betweenness is defined based on hop-count dis-
tance to the constraint pair nodes s and t. We run two breadth-first search algorithms 
starting at s and t separately and for each node we store entries hc(u,s) and hc(u,t), the 
hop-count distance to s and to the t respectively. For a given edge e(u,v), we check the 
hop-count entries of u and v to see whether the edge is affected by a constraint or not. 
Perpendicularity and betweenness is defined as the inverse behavior on hc(u,s), 
hc(u,t) and hc(v,s), hc(v,t) values for nodes u and v. In other words, if hc(u,s)>hc(v,s) 
and hc(u,t)<hc(v,t) or vise versa, then the edge is perpendicular to the constraint axis 
and between nodes s and t. 

Once we identify the affected edges, we compute the escalation ratio for the can-
not-link constraints or reduction ratio for the must-link constraints. In line with the 
main idea, we expect the effective escalation/reduction ratio on an affected edge to 
decrease as we get away from the constraint axis (vertical distance). For a cannot-link 
constraint, we expect an inversely proportional weight increase in regard to the dis-
tance of the edge to the mid-point of the constraint axis. To express this, we use a 
method similar to the validation process. Instead of hop counts, we find the shortest 
path distance to all edges starting at node s and t. Shortest path dist(u,v) is the sum of 
the weights of all edges that compose the shortest path. We compute the reduction 
ratio of e(u,v) for must-link constraints as follows: 

)(),(
r

q
normvurRatio r=  (1) 

Here, qr is the weight for the must-link constraint and r=(dist(u,s) + dist(u,t) + 
dist(v,s) + dist(v,t)) / w(s,t) which is the dispersion ratio from the constraint c(s,t). 
norm() is the normalizing function. To prevent extremely low values, normalization 
function maps the output to a higher interval. 

Similarly, we can write the following equation to compute the escalation ratio due 
to a cannot-link constraint: 

)(),(
Δ

=
⋅r

q
normvueRatio e  (2) 

where qe is the weight of the cannot-link constraint, ∆=(|dist(u,s)-dist(u,t)|+|dist(v,s) -
dist(v,t)|)/w(s,t)+c, which is the average distance approximation function to the mid-
point of the constraint axis to reflect the effect of horizontal distance as seen in Figure 
2. The value of |dist(u,s)-dist(u,t)| becomes zero if node u has equal distances to the s 
and t. We add a constant value c=1 to the ∆ so that in this case, no penalty is applied 
to eRatio(u,v). If ∆ increases, the effect of eRatio(u,v) reduces gradually. 

After applying all constraints, we approximate the overall ratio of edge e(u,v) as: 
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In the last step, we adjust the edge weight as follows: 
),(),(),( vutRatio

new vuwvuw α⋅=  (4) 
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Algorithm. Weight_Adjustment_Algorithm 
     Input: G(V,E): graph with constraints 
     Output: G' (V,E'): graph with adjusted edge weights 
              P:  proximity matrix 

1. For each constraint c(s,t) 
      a. Run breath-first search algorithm starting at node s and t; 

 and record hop-counts for each node vi ∈V 
      b. Run single shortest path algorithm starting at node s and t;   

          and record shortest path distances for each node vi ∈V 
      c. Identify affected edges using hop-counts and put them into list L 

      d. Compute escalation/reduction ratio for each affected edge e(u,v) ∈L  

2. For each edge e(u,v) ∈E 
      a. Calculate overall ratio using following formula                    
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       b. Apply overall ratio to the edge weight 
),(),(),( vutRatio
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3. For each node pair (v, u), calculate the distance  
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Fig. 3. Pseudo-code of Weight Adjustment Algorithm 

Empirically, we have observed that 1<α<2 is a good interval for the adjustment of the 
edge weights. It is obvious that if cannot-link constraints are dominant upon the must-
link ones, then the edge weight increases. Note that vertical and horizontal distances 
are used just to compute the adjustment ratio and are not used in any way in the clus-
tering process.  

After adjusting all the edge weights, we have our final graph and the algorithm 
uses this graph to extracts distance matrix D. The distance between two node pairs is 
defined using k-shortest paths distance. Remember that k was the number of 
neighbors used in order to transform vector data into a graph representation. For vec-
tor data, we use the same k for the number of shortest paths since this is the maximum 
out-links number of an edge. Using multiple shortest paths as a distance between two 
nodes, works in practice better than a single shortest path. Involving more paths in the 
calculation of the distance involves also more constraints, which yields better accu-
racy even for a small number of constraints due to the homophily phenomenon. A 
naïve approach for k-shortest paths is using the Dijkstra’s algorithm to discover k 
most significant paths one by one. 

Each constraint affects the graph locally. Thus, we can focus on subgraphs that 
capture the relevant information we need rather than whole graph. We have adopted 
the idea of very small-connection subgraphs from [11]. The weight adjustment step 
asymptotically takes O((|M| + |C|) (|E| + |V| log|V|)) time, but in practice it is much 
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faster. We explore k-shortest path for every node pairs. Extracting the proximity table 
requires O(k |V|2 (|E| + |V| log|V|)) time. Thus, the weight adjustment phase takes over-
all O(k |V|2 (|E| + |V| log|V|)). 

4.3   Optimization for K-SD Shortest Path Algorithm 

Finding the k-shortest simple paths for every pair of nodes is the bottleneck for the 
efficiency of our algorithm. Even though there is more than one k-shortest paths defi-
nition in the literature [5], we focus on k simple and distinct shortest paths in which 
no loop is allowed, i.e. all vertices on a path are distinct and no two paths share the 
same edge for a given source and destination pair. 

We extend the single shortest path Dijkstra algorithm to k-shortest paths at a rea-
sonable cost and refer to it as K-SD shortest path algorithm. The new algorithm is 
asymptotically only k times slower than the Dijkstra algorithm for one path.  For each 
node, we define k entries to handle each lth path passing through, where 1≤l ≤k. We 
initialize all entries to ∞ except the entries of source node s and nodes adjacent to the 
source. We set all s entries to 0. We assign monotonically increasing path labels i to 
each node u adjacent to s ensuring that each path is rooted at a different edge outgoing 
s. We update the lth entry of each node u to edge weight w(s,u) and the parents of lth 

entry of the nodes to source node s where l is the path label pertaining to each adja-
cent node. Then, we initialize a minimum priority queue Q that contains all path  
 

 
Algorithm. K-SD_Shortest_Path_Algorithm 
     Input: G'(V,E): graph with adjusted edge weights 
  s: source node 
  k: number of shortest path 
     Output: P: Distance matrix 

1. Assign k path entries for each node such as pi(s,u) 
2. Initialize pi(s,u).length +∞ for each node u≠s 
3. For each node u adjacent to s 

a. Assign a monotonically increasing path id i to u 
b. Set pi(s,u).dist w(s,u) and parenti(u) s 

4. Let a min priority queue Q contain all path entries 
5. while Q is not empty do 

a. Extract path entry pe Q.removeMin() 
b. Let i pe.pathID and v pe.node 
c. Lock parenti(v) to prevent updates for v  
d. for each node u adjacent to v  

i. if v is locked for u, then continue 
ii. if pi(s,v).length+w(v,u)<pi(s,u).length, then 

       pi(s,u).length  pi(s,v).length+w(v,u) 
       parenti(u) v 
       Update the value of pi(s,u) in queue Q 

 

Fig. 4. Pseudo-code of K-SD Shortest Path Algorithm 
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entries. The rest of the algorithm works very similar to Dijkstra’s shortest path algo-
rithm except for a few additional restrictions in the relaxation routine. 

When we remove the minimum entry from Q, we lock the parent of the entry in 
order to prevent further updates from this parent for other path entries, using bitmaps 
with each bit assigned to one neighbor node. In the relaxation procedure, first we 
check whether the current node is locked for destination node. If it is not, the algo-
rithm allows it to relax the destination from current node. Otherwise, we simply pro-
ceed to the next available neighbor node. Another rule is that lth entry of path entries 
at a node can be updated only by the lth path entry of the parent node. This limitation 
is necessary in order to force all paths to follow a different set of edges to the destina-
tion. We repeat the relaxation process until all path entries at every single node are 
updated and no more entries reside in the queue (Figure 4). 
 

THEOREM 1. K-SD Shortest Path algorithm identifies k simple and distinct shortest 
paths from a given source node to all other nodes in O(k2 |V| log|V|) time. 
 

Proof: We assume the worst case scenario where we find all shortest path available, 
giving us O(k |V|) entries in the queue. For each entry, we check all neighbor nodes 
and based on k-shortest path definition and our graph construction algorithm, we may 
have at most k neighbors. We may update the keys of all neighbors at each relaxation 
step, requiring O(k log|V|) time. Therefore, our algorithm takes overall O(k2 |V| 
log|V|) time to find all k simple and distinct shortest paths from a given source node s 
to all other nodes. 

4.4   Multi-level Approach for Extracting Similarity Matrix 

Even with the K-SD shortest path algorithm from the previous section, it takes 
O(k2.|V|2.log|V|) to compute all pairs, which is inefficient for large datasets. Many 
state-of-the-art methods deal with this problem by using a multilevel approach. Our 
strategy is to partition the graph into smaller pieces, compute distance matrices for 
each partition, and correlate them via hubs to obtain the global solution [17]. 

We partition the graph into p equally sized subgraphs using METIS with the Ker-
nighan-Lin objective and find local K-SD shortest path distances for each partition. 
Let Di be the distance matrix for partition i. To establish a relationship between parti-
tions and be able to estimate the global distances we use the hub concept discussed in 
[21]. The vertices that reside on the cut and bridge different clusters are considered 
hubs. We are interested only in high quality hubs, which have high degree and  their  
edges  are  balanced amongst  the  different partitions it bridges. Unlike the hubs in 
SCAN, we assume hubs are special vertices belonging to all partitions that it bridges, 
as shown in Fig. 5. If needed, we add new edges to hubs to maintain the k-
neighborhood. 

Let H be the set of all hubs in the graph, Hi 
 be the set of hubs in partition i, and m 

be the size of H. Notice that m<<n, which makes a fast correlation possible. We al-
ready have computed the distance between nodes in partition i and all hubs in Hi. 
Next, we find the pair-wise distances between hubs H so that we can compute the 
distance of  two elements that belong  to two different partitions.  Since Hi  hubs  
are also elements of another partition by definition, we get a fully connected graph  
of hubs, where edges represent the distance between two hubs. By running  
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Fig. 5. The Ionosphere graph with two partitions and hubs connecting them, and the correlation 
of same paths for clusters Ci and Cj 

Floyd-Warshall on this imaginary graph, we get a distance matrix S of all hubs in the 
graph. The matrix S will serve as an approximation of the KSD-shortest path distance 
between two nodes of different clusters. 

For example, assume we have performed all the preparation for extracting the 
global distances in an efficient way. Let s be the source node, t be the destination 
node, and S(hi,hj) be the distance between hubs hi and hj. Then, the KSD-shortest path 
problem can be expressed as the following optimization problem: 

} and        where          

)},(),(),({).(

jbia

bjbaai

HhHh

thDhhShsDmintsD

∈∀∈∀

++=
 (5) 

We have the distances between s and all Hi elements in matrix Di. We compute the 
distances from s to the other hubs in set (H-Hi) through Hi using the S matrix. Each 
destination node checks only the hubs of its own partition in Hj to relax the shortest 
path distance to node s. It takes O(|Hi| (|H| - |Hi|) + |V – Vi| |Hj|) to find k-shortest 
paths from s to all other nodes. Note that, |Vi| ≈ |V| / p and |Hi| ≈ |H| / p. With this  
partitioning concept, our algorithm (EMC) has an overall time complexity of 

O( ( ) ( )
p

HVHV
H
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22
log ). If p=|V|, it finds only single shortest paths. In prac-

tice, this approach runs hundreds times faster compared to the naïve approach. 

4.5   Clustering Algorithm 

The framework allows us to use any graph-compatible clustering algorithm. The suc-
cess of clustering essentially depends on the compatibility of the dataset and the clus-
tering algorithm. Thus, the choice of the algorithm must be made cautiously.  

We implement the K-Medoids algorithm, which utilizes the similarity matrix and 
can be applied on both vector and the graph data. The initial centroids play a  
significant role for the final clustering, so instead of random initialization, we take 
advantage of the given constraints. We take the transitive closure of the must-link 
constraints and define groups of nodes, which have to be clustered together. At this 
point, each group represents a set. We merge the closest two sets until we have K sets 
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remaining. Eventually, we have K disconnected sets formed by constraints, which we 
use to initialize the medoids. 

The algorithm starts by assigning every point xi∈Ds to the cluster that minimizes 
the distance between xi and μk where μk is the cluster medoid of cluster k*. Rather 
than Euclidean distance, we use the distance matrix extracted in the previous step for 
assignment. The algorithm re-estimates medoid μk  using the points  assigned to clus-
ter k*. For each point xi, we check the total distance to all other points and we assign 
the point with minimum distance as the cluster medoid. Then, we repeat the steps 
until algorithm converges or reaches to a pre-specified number of runs. The time 
complexity of the clustering process is O(t K N2) where t is the number of iterations, 
K is number of clusters and N is the size of the dataset. 

5   Experiments 

5.1   Experimental Setup 

We experimented on two synthetic datasets and seven real datasets from UCI Ma-
chine Learning Repository [1]: Soybean, Iris, Wine, Ionosphere, Balance, Breast 
Cancer and Satellite. The properties of these dataset are summarized in Table 1. N is 
the number of instances, d is the number of dimensions, and K is the number of clus-
ters in each dataset. We have measured the clustering accuracy as:  
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where 1{·} returns 1 if any pair of instances xi and xj are assigned correctly by the 
algorithm [20]. In each experimental setup, we have run the clustering algorithms for 
50 times and reported the average accuracy ratios. 

Must-link and cannot-link constraints are generated randomly at equal amounts and 
the total amount is varied proportional to the dataset size. For each run, we use the 
same constraint set for all algorithms. EMC parameters: we use α=1.6 (shown through 
preliminary experiments to give good results), and increase the nearest neighbors and 
number of shortest paths proportional to the dataset size. Weights of the posi-
tive/negative constraint edge, qr/qe, are set to 1.  

Table 1. Datasets used in experiments and running time of the algorithms (in seconds) 

 Soybean Iris Wine Ionosphere Balance Breast Satellite 
N 47 150 178 351 625 683 4435 

d 35 4 13 34 4 9 36 
Dataset 
details 

K 4 3 2 2 3 2 6 

SS-Kernel ~0.1 0.1 0.1 0.1 0.3 0.6 73.8 

MPCK 0.4 0.5 0.5 0.5 0.5 0.6 6.4 

Diagonal 0.2 0.3 0.6 1.3 3.6 5.1 304.3 

Running 
Times 
(secs) 

EMC 0.6 1.1 1.6 4.3 7.0 7.3 66.1 
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To visualize how our method works, we generated two synthetic datasets: 

Gaussian: A set of 180 two-dimensional instances generated by Gaussian number 
generator, as shown in Figure 6. 120 instances in vertical and lower horizontal sets are 
labeled as class one. Upper horizontal set is label as class two. 
 

ThreeCircles: Similar to TwoCircles data in [12], we have generated three layered 
circular data with 300 instances in 2 dimensions. Each circle represents one class with 
100 data points in it.  

We generated small amount of must-link and cannot link constraints (18 for Gaus-
sian and 30 for ThreeCircles). Figure 6 shows final clustering of these datasets with 
high accuracy. For the circular data, Graph Construction process had a pre-clustering 
effect. As we have selected k-nearest neighbors for each point, there were not too 
many inter-cluster edges in the graph. In addition, the re-adjustment phase success-
fully wiped out the effects of these inter-cluster edges for the clustering phase. The 
rest of the experiments are run on the real datasets. 

5.2   Effect of Parameters k and p 

In this set of experiments we investigate the effect of the values of parameters k and p. 
k is the number of neighbors we pick, when converting vector data to graph data, and 
the number of shortest paths we use for our distance metric. For values below 5, we 
get heavily disconnected graphs, when converting vector data to graph data, thus ex-
periments are not run for smaller values. We note that relatively small values of k (>4) 
are performing well enough and by using greater values we do not get significant im-
provements (Figure 9). On the other hand, greater values increase execution time. In 
summary, with small values of k we cannot fully take advantage of the k-shortest 
paths distance metric while for large values all edges are labeled as an affected edge, 
and consequently false escalation or reduction occurs for too many edges.  

The number of partitions, p, has a significant effect on running time while preserv-
ing the accuracy (Figure 7). The algorithm runs up to 24x faster for the Breast dataset 
without significant loss of accuracy. Given that this is a small dataset, we have more 
gain in performance for larger datasets. After p=12, the accuracy starts to decline be-
cause the K-SD shortest path distance approximation does not keep up with very 
small-sized subgraphs. On the flip side, the running time starts increasing after p=16. 
The reason for this situation is the high number of hubs. The computation of matrix S 
starts to dominate the running time as it requires O(|H|3) time. One advantage of parti-
tioning is that we no longer need to increase the value of parameter k and about five 
shortest paths are quite enough to compute distances accurately. 

5.3   Effects of Only Must-Link or Cannot-Link Constraints 

Next, we examine the effect of constraint types individually (Figure 8). When we use 
the must-link constraints alone, it reduces the weights of both inter-cluster and intra-
cluster edges. When the reduction ratio on weights of intra-cluster edges is larger than 
inter-cluster edges, there is a small gain. Similarly, when cannot-link constraints are 
used alone, the weights of inter-cluster edges increase more than weights of intra-
cluster edges. However, the gain in accuracy is greater than when using only positive 
edges. In that respect our algorithm's behavior differs from the one reported in [13],  
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and this shows that the informativeness of a constraint type depends on how it is ap-
plied. Furthermore, the accuracy ratio trend is not steady as the number of constraints 
is augmented. On the other hand, when used together, we get optimal results for the 
algorithm. On incorrectly validated edges, as seen in Figure 10, they cancel the effect 
of each other. We observed the same phenomena for other algorithms as well. 

5.4   Comparison with Other Techniques 

We used real datasets to compare our EMC algorithm with the MPCK-Means, SS-
Kernel-KMeans and KMeans+Diagonal Metric algorithms, which are publicly avail-
able online. We used the same parameters for EMC: k=5 and p=|V|/80 (each subgraph 
has approximately 80 nodes. EMC outperforms MPCK-Means, SS-Kernel-KMeans 
and KMeans+Diagonal Metric algorithms on all datasets, except Breast and Wine 
(Fig. 11). It runs better than SS-Kernel-KMeans and Kmeans+Diagonal Metric on 
Breast dataset and quite reasonable compared to the MPCK-Means. For the Wine 
dataset, graph-based methods such as SS-Kernel-KMeans and EMC do not improve 
the performance significantly and overall accuracy is very low compared to metric-
based methods. 

SS-Kernel-KMeans runs the min-cut objective while EMC tries to minimize the 
overall pairwise distance. The same way MPCK-Means and Kmeans+Diagonal Met-
ric algorithms could not improve the clustering for Balance regardless of constraint 
amount, EMC fails to increase the accuracy for Wine dataset. In some experiments, 
we detect phenomena where the accuracy of the algorithm goes up and down slightly 
as we increase the number of constraints. As shown in [6], this is a general problem of 
randomly-chosen constraint sets, where some constraints reduce the clustering  
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Fig. 9. Clustering results for EMC. The plots show the accuracy ratio achieved in respect to the 
constraints ratio used. The different lines stand for different values of k ranging from 5 to 20. 
Constraints amounts are x·N where x is the constraint ratio. 
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Fig. 10. EMC vs.  MPCK-Means, KMeans+Diagonal and SS-Kernel-KMeans 
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performance. Thus, a learning metric or an edge weight re-adjustment method, is not 
always reliable for a small number of constraints. Compared to other methods, EMC 
is typically more trustworthy even when using few constraints. 

5.5   Running Time Experiments 

We have performed experiments on the running time of the algorithms. All experi-
ments were carried out on 1.7 GHz Pentium IV machine with 512 MB memory. We 
have performed 10 experiments for each algorithm as we increase the constraint 
amount by 10%·N, where N is the dataset size, for each experiment and reported the 
average running time of these experiments. The running time of EMC is comparable 
to the other algorithms tested. In addition, EMC scales almost linearly with the num-
ber of partitions in practice. It is almost linear because it processes equal-sized sub-
graphs and number of hubs affects the linearity in time complexity during merge 
process. Results are given in Table 1. 

6   Conclusions 

We have presented a framework that, when given a dataset of instances and user con-
straints, transforms vector data into a graph and improves the clustering algorithm 
distance metric by adjusting the edge weights based on user constraints. The most 
important contribution lies in the way the weights are adjusted, based on ideas from 
Electromagnetic Field Theory. Instead of modifying the distance metric, it alters the 
distances between objects in the graph domain. EMC algorithm allows us to cluster 
both vector-based and graph-based datasets and it works with distances only as well.  
In addition to K-Medoids, we can also integrate other clustering algorithms into the 
framework. We have shown that even when using a small amount of constraints, the 
algorithm improves the clustering accuracy significantly. 
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Abstract. In this paper �1 regularization is introduced into relational learning to
produce sparse rule combination. In other words, as few as possible rules are con-
tained in the final rule set. Furthermore, we design a rule complexity penalty to
encourage rules with fewer literals. The resulted optimization problem has to be
formulated in an infinite dimensional space of horn clauses Rm associated with
their corresponding complexity Cm. It is proved that if a locally optimal rule is
generated at each iteration, the final obtained rule set will be globally optimal.
The proposed meta-algorithm is applicable to any single rule generator. We bring
forward two algorithms, namely, �1FOIL and �1Progol. Empirical analysis is car-
ried on ten real world tasks from bioinformatics and cheminformatics. The results
demonstrate that our approach offers competitive prediction accuracy while the
interpretability is straightforward.

Keywords: Rule Learning, �1 regularization, Path Following Algorithm.

1 Introduction

Relational Learning [3] deals with tasks in which observations are given in the form of
fragments connected by relations. In general, these observations cannot be represented
by vectors in the Euclidean Space Rn. For instance, in chemistry, an observation (i.e., a
molecule) is described by atoms connected by bonds. However, substructures extracted
from atoms and bonds are responsible features for this domain rather than atoms and
bonds themselves. Therefore, fragments are often integrated into rules (features) Rm on
which the learner is constructed. The learner, which combines different rules together,
is denoted as y = f(R1, R2, ...RM ).

Due to its powerful expressive ability, Inductive Logic Programming (ILP) became
the earliest approach for relational learning [15]. Most algorithms in ILP attempt to find
a set of rules covering the given data set. These rules are iteratively generated and then
combined by logical disjunction. Formally, y = R1 ∨R2 ∨ ... ∨RM .

However, there is no statistical guarantee for the generalization performance of the
algorithms purely based on ILP. This motivated the research of integrating ILP with ker-
nel methods. Usually these algorithms [7] consist of two steps: an appropriate kernel
is designed with the assistance of ILP beforehand, and then a support vector machine
(SVM) is trained based on the predefined kernel. In [11], another dynamic approach
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kFOIL was brought forward. In kFOIL, the rules are dynamically generated and com-
bined in an SVM, i.e., y = SV M(R1, R2, ...RM ). Its interpretability is embodied in
the learned rule set. In addition, approaches have been proposed to embed ILP into
probabilistic structures, such as the Bayesian network [12].

In essence, these approaches except kernel predefining possess the same mechanism:
the rules are iteratively generated by ILP algorithms and then combined in a specific
learner. The performance of an algorithm depends on whether it can choose the rele-
vant rules. In current research, various theory revision techniques, heuristic tricks, and
experts’ experience [3] are utilized to seek the important rules. However, there is no
theoretical and thus objective results to guarantee the global optimality of the obtained
rule set. That’s just the motivation of our work.

In this paper, we bring out an �1 regularization framework to produce sparse rule
combination, which is applicable to any horn clauses generator. The clauses are dynam-
ically generated in the training process, and we establish a one-to-one correspondence
between clauses and features. Therefore, the observations are dynamically mapped into
the feature space induced by horn clauses. Due to the �1 regularization term, the most
relevant features can be automatically picked out [22]. We adopt the hinge loss as the
loss function which has a sound statistical foundation [20]. In addition, for the hinge
loss with �1 regularization, it is proved that there exists an efficient path following al-
gorithm through which the entire solution path can be obtained [16]. Each section on
the path corresponds to a rule set as an approximation to the true model. Then we can
apply cross validation to choose the model with the highest accuracy. This greatly facili-
tates model selection in relational learning. To promote rules with lower complexity, we
modify �1 penalty with the rule complexity weight. The resulted optimization problem
is an �1 SVM in an infinite dimensional space, and we design a path following meta-
algorithm to obtain its entire solution path. If at each iteration the generated clause is
locally optimal, then the obtained rule set is proved to be globally optimal. Moreover,
we propose a simple calibration procedure for the case that the generated clause is only
suboptimal. There is an interesting interpretation from the viewpoint of kernel learning.
The interpretability of our approach is satisfactory in that the obtained clauses are lin-
early combined, i.e., y = f1(R1)+f2(R2)+...+fM (RM ). We propose two algorithms,
i.e. �1FOIL and �1Progol, based on the path following meta-algorithm. The results on
real world tasks demonstrate that our approach has competitive prediction accuracy.

Throughout the paper we use the following notations: M is the index set of the di-
mensions in the feature space. φ(x) ∈ RM is the mapping of x into the feature space
(φm(x) ∈ R is the ”m-th”coordinate of φ(x) for m ∈ M). For a certain relational
learning problem, H is the corresponding space of horn clauses. It is not hard to show
that |H| ≤ ℵ0 (finite or countably infinite). In our setting, there is a one-to-one corre-
spondence between H and M. Therefore, the j-th clause hj ∈ H can be denoted by a
|M|− length vector ej whose j-th element is 1 and all other elements are 0. However,H
is indexed dynamically in the rule constructing process rather than indexed beforehand.

The remainder of the paper is organized as follows: �1 regularization is introduced
into relational learning in Section 2. In Section 3 a path following algorithm which
generates the entire solution path is presented and the resulted rule set is proved to be
optimal in the infinite space of horn clauses under certain condition. We interpret our
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approach from kernel learning viewpoint in section 4. In Section 5, the algorithm is
evaluated on ten real world data sets. Finally, conclusions are drawn in Section 6.

2 Rule Complexity Penalty and Infinite Dimensional Rule Space

An ideal relational learning algorithm should possess the following two features: first,
the relevant rules can be chosen from the vast ocean of candidates; second, the obtained
rules are combined in an appropriate manner. The space of horn clauses for a certain
relational learning task with n observations can be divided into 2n equivalence classes,
each of which corresponds to a set of rules whose output on the given observations are
exactly the same. It seems that each equivalence class could be represented by any indi-
vidual rule in it. However, this is far from true in that two rules with the same output on
the training set may differ greatly on generalization performance. As will be analyzed
below, it is more appropriate to differentiate the rules from the same equivalence class
and formulate the optimal rule combining problem in infinite dimensional spaces. First
of all, the relationship between features and rules has to be established.

2.1 The Correspondence between Features and Rules

Given: the background theory B, in the form of a set of horn clauses, i.e., clauses of the
form h ← b1, ..., bk where h and bj are logical atoms. Background Knowledge depicts
the basic facts and constraints in the given domain; a set of observations D = {xi}n

i=1,
each of which is in the form of the ground facts and the corresponding label set is
{yi}n

i=1; a set of rules {Rm}M
m=1 ⊂ H, Rm are horn clauses.

The feature space is constructed as follows: If an observation xi satisfies the rule
Rm, its corresponding feature value φm(xi) is set to 1, else to 0. Formally:

φm(xi) =

{
1 B ∪ {Rm} � xi

0 B ∪ {Rm} � xi

(1)

Therefore, there is a one-to-one correspondence between features and rules. Therefore,
we will refer to them without differentiation. Nevertheless, the feature space is con-
structed dynamically in the learning process rather than determined beforehand.

2.2 �1 Penalty and Rule Complexity Penalty

For interpretability, the features are often linearly combined

f =
∑

m∈M
βmφm(x) + b, |M| ≤ ℵ0. (2)

On the other hand, the �1 regularization is very popular in statistics and machine learn-
ing [17,22] because it encourages sparsity. This statistical terminology means that in
the obtained linear model only the coefficients of a small number of features will be
nonzero while the coefficients of other features will be exactly zero. Moreover, some
theoretical research [9,22] indicate that under certain conditions the true model can be
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obtained by algorithms with �1 regularization. For linear rule combination, this implies
that it is possible to pick out the rules involved in the underlying model through �1
regularization. Consequently, the problem is formulated as follows:

min
β,b

n∑
i=1

L(yi, β
T φ(xi) + b) s.t. ‖β‖1 ≤ t (3)

where the loss function L is convex, ‖β‖1 =
∑

m∈M
|βm| and |M| ≤ ℵ0. The above

constraint form is equivalent to the following regularization form:

min
β,b

n∑
i=1

L(yi, β
T φ(xi) + b) + λ‖β‖1 (4)

There is a one-to-one correspondence between λ and t [16]. In this paper, we will use
the constraint form (3) which is more convenient for algorithm designing.

Features φm are generated dynamically in the training process. There are 2n choices
for φm, and thus it seems that finite space is enough to analyze the optimal rule com-
bining problem (3). However, due to the characteristic of relational learning, an infinite
dimensional space is more appropriate for this problem. There are three reasons: firstly,
the rules in the same equivalence class may have different complexity (e.g,: an equiv-
alence class may contains the rules of the form {w1x1 + w2x2 > 0}, R1 → pos, and
an appropriate complexity measure for this kind of rules is ‖w‖1 + 2 in which 2 stands
for the number of literals. Therefore, the complexity for these rules are real numbers
and thus have potentially infinite values and rules with different complexity should be
distinguished from each other; secondly, the rules in the same equivalence class may
have different numbers of literals and shorter rules with less redundancy are preferred
(e.g.: rule generators may yield rules of infinite length due to their rigidity, such as
x > 0, x > −1, x > −2, · · · → Positive(x)); finally, the rules are dynamically gener-
ated and thus it is more convenient to assume they are from an infinite repository.

To encourage simpler rules, we substitute the �1 penalty ‖β‖1 in (3) with rule com-
plexity penalty ‖C � β‖1, where � is the element-wise product of two vectors and Cm

is the complexity of rule Rm. The resulted optimization problem is as follow:

min
β,b

n∑
i=1

L(yi, β
T φ(xi) + b) s.t. ‖C � β‖1 =

∑
m∈M

|Cmβm| ≤ t (5)

Furthmore, (5) can be rewritten as follow:

min
β,b

n∑
i=1

L(yi, β
T φ̃(xi) + b) s.t. ‖β‖1 ≤ t (6)

where φ̃m(xi) = φm(xi)/Cm.
Therefore, optimization problems (3) and (5) are of the identical type. In this work,

we measure the complexity of a clause by the number of literals, i.e., Cm = Nm.
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The effect of the rule complexity penalty consists of two parts: the output of rules are
weighted according to its complexity and �1 regularization is performed on the weighted
feature space. Moreover, for rules in each equivalence class their complexity may have
infinite different values, and thus (6) is an infinite dimensional optimization problem.

2.3 The Optimality in Infinite Dimensional Rule Space and �1SVM

In [17] it is proved that the infinite dimensional problem (6) has a finite dimensional
optimal solution. We restate and explain relevant theorems in [17] here.

Theorem 1. (Caratheodory’s Convex Hull Theorem) Let A be a finite set of points
in Rn. Then every x ∈ co(A) can be expressed as a convex combination of at most
n + 1 points of A, where co(A) is the set of all convex combinations of points in A.

Theorem 1 can be readily extended to the case in which A is infinite. This theorem
implies that for a given relational learning problem with n observations, it is possible
to represent these observations with at most n + 1 rules, as follows:

Theorem 2. (A sufficient condition for the existence of a sparse solution) If the set
D = {φm(x) : m ∈ M} ⊂ Rn is compact, then problem (6) has an optimal solution.
Moreover, there exists an optimal solution supported on at most n + 1 features in M.

Furthermore, a criterion is given to judge whether an n + 1 dimensional solution is an
optimal solution to (6).

Theorem 3. (The criterion for judging the optimality of a finite-supported solu-
tion) If an optimal solution to (6) exists, and β̂ is a finite-supported candidate solution
such that ∃A ⊂ M, |A| < ∞ and supp(β̂) = A. We can test its optimality using the
following criterion:
β̂ is optimal solution to (6) ⇔ ∀B s.t. A ⊆ B, |B| < ∞, β̂ is optimal solution to:

min
β

n∑
i=1

L(yi,
∑
m∈B

βmφm(xi)) s.t.‖β‖1 ≤
∑
m∈A

β̂m

This theorem implies that it suffices to show that a finite solution is optimal for any
finite sub-problems containing it in order to prove its optimality for the original infinite
problem. In the next section, we will utilize these theorems to prove that our algorithm
indeed generate the optimal rule set.

In our work, the hinge loss is employed as the loss function L in (6), because there is
sound theoretical foundation for SVM to guarantee its generalization performance [20].
Therefore, the obtained rules are linearly combined in the following �1SVM [24]:

min
β,b

n∑
i=1

max(0, 1− yi(βT φ̃(xi) + b)) s.t. ‖β‖1 ≤ t. (7)

where φ̃(xi) = 1
N � φ(xi), Nm is the number of literals in Rm.

It is proved in [23] that in finite case the solution to (7) has an amazing piecewise
linearity. Namely, β is a piecewise linear function of t. When t varies from zero to
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infinity, the entire path of β is generated. Each section of the path corresponds to a
certain model β̂∗, and this property greatly facilitates model selection. In this paper, we
generalize �1SVM from finite feature spaces to the infinite space of horn clauses and
design a similar path following algorithm to obtain the approximately optimal rule set.

3 The Algorithm

First of all, a nested algorithm integrating any rule generator and �1SVM is presented,
and then we prove that an optimal rule set in the space of horn clauses can be generated
by our algorithm if the optimal rule for each step is obtained.

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0
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β(
t)

 

 The error rate on the validation set
The coefficients of rules in the optimal rule set

Fig. 1. The solution β̂(t) as a function of t

Table 1. Details for optimization in step
2.5 and 2.6

2.5 P (R) : min
g
−
∑
i∈L

yi(
∑

j∈A
gj

φj(xi)
Nj

+gRφR(xi)/NR)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈A

gj
φj(xi)
Nj

+ gR
φR(xi)
NR

= 0,

for i ∈ E∑
j∈A

sign(βj)gj + |gR| = 1

gj = 0, forj �∈ A ∪ {IR}
2.6 Q(e) : min

g
−
∑
L

yig
T φ(xi)/N

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
j∈A

gj
φj(xi)
Nj

= 0 ,for i ∈ E \ {e}∑
j∈A

sign(βj)gj = 1

gj = 0, for j �∈ A

3.1 The Path Following Algorithm

There are two essential differences between the scenarios confronted in the seminal pa-
per of �1SVM and here: first, the feature space induced by the horn clauses is potentially
infinite rather than finite; second, the feature space here have to be dynamically con-
structed during the learning process rather than fixed beforehand. Therefore, the path
following algorithm presented in [24] should be modified accordingly.

To describe the algorithm for finding the solution path, some concepts and defini-
tions should be given first of all. A feature φm is called ”active” when its corresponding
coefficient βm is nonzero. Features enter the active feature set A = {j : βj �= 0} suc-
cessively when the value of t increases. When t is small, only the most relevant features
can enter the active setA; when t is large,A contains most of the features. The solution
has a favorable piecewise linear property (Figure 1), i.e., ∀m ∈ A = {j | β̂j �= 0},
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Table 2. The Main Algorithm

1.Initialize:
HG : a Horn clause Generator.NR : the number of literals in R.
The rule setR = Ø,
R∗ = argminR ΔL(φR) = argminHG→R −∑L yiφR(xi)/NR, R = {R∗}
A = {IR∗}, the index of R∗ in the whole set of horn clauses.
gj = 1, j ∈ A; gj = 0, j /∈ A
ΔL∗ = ΔL(R∗). m = 0, Am = A, P m(R) = −∑L yiφR(xi)/NR, βm = 0, m = m + 1

2.WhileΔL∗ �= 0

2.1 d1 = min{d > 0 : (β + dg)j = 0, j ∈ A}
2.2 d2 = min{d > 0 : 1 − yi(β + dg)T φ(xi)/N = 0, i = 1, ..., n}
2.3 set d = min(d1, d2). β = β + dg.
2.4 If d = d1, then remove the variable attaining 0 from A,

If d = d2, then add the observation entering the elbow to E .
2.5 HG is guided by : minHG→R P (R), P (R) is detailed in Table 1.

The solution is (R∗, g∗), set φ(·) = {φj(·)}j∈A ∪ φR∗(·),
ΔL1 = −∑

L
yig

∗T φ(xi)/N . (Nm : the number of literals in Rm).

2.6 mine∈E Q(e), Q(e) is detailed in Table 1.
The solution is (e∗, g∗), ΔL2 = −∑

L
yig

∗T φ(xi)/N .

2.7 Let ΔL∗ = min{ΔL1, ΔL2},
If ΔL∗ = ΔL1, then
invoke the Calibration Procedure (Section 3.3):
Am = A,P m(·) = P (·) (step 2.5), βm = β, Rm = R∗, m = m + 1.
Update g andA ← A∪ {IR∗}. RA = RA ∪ {R∗}

If ΔL∗ = ΔL2, then update g and E ← E \ {e∗}, L ← L ∪ {e∗}.
If ΔL∗ ≤ 0, then set ΔL∗ = 0.

2.8 Return to 2.

β̂m(t) is a piecewise linear function of t. Piecewise linear property only depends on the
functional form of the loss function and the regularization term [16], and thus it still
holds in the infinite dimensional space. Since the hinge loss L(v) = max(0, 1 − v)
is non-smooth, the dataset has to be divided into three non-intersecting sets in order to
carry out analysis, as follows:

E = {i : 1− yiβ
T φ(xi) = 0}, elbow set of observations;

L = {i : 1− yiβ
T φ(xi) > 0}, left of the elbow set;

R = {i : 1− yiβ
T φ(xi) < 0}, right of the elbow set (has no use in analysis);

Due to the nonsmoothness of the loss function and the �1 constraint, it is impossible
to guide the optimization problem directly via gradient information. Intead, we have to
solve the following optimization to get the steepest descent direction for L:

gβ = argmin
dβ

ΔL(εdβ) = L(β + εdβ)− L(β) = −
∑
L

yiεd
T
βφ(xi)

s.t. εdT
βφ(xi) = 0 for i ∈ E , ‖dβ‖ = 1 (8)

”g” and ”d” stand for gradient and descent direction, respectively. gβ is the direction
in which the loss function decreases fastest per unit increase of the �1 norm of the
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coefficient vector. If ε is a sufficiently small positive number, the observations in R
and L still remains in their respective set when the coefficient vector grows from β to
β + εdβ. However, an observation may leave E and enter L, and thus it is impossible to
determine the incremental of the loss function correpsonding to the incremental of the
coefficient vector εdβ. Therefore, we add a contraint (the first constraint in (8)) to keep
E unchanged. Furthermore, (8) can be simplified to the following form:

gβ = argmin
dβ

−
∑
L

yid
T
βφ(xi) s.t. dT

βφ(xi) = 0 for i ∈ E , ‖dβ‖ = 1 (9)

(9) is the basis for the optimization problem of step 2.5 and 2.6 (Table 2).
First of all, the rule generator algorithm is invoked to generate a feature (rule) that

can decrease the loss the fastest per unit increase of �1 norm of the coefficient vector.
The solution moves along that direction until one of the following two events happens:
1. A coefficient hits the non-differentiable points of the penalty, i.e., βj becomes zero
from nonzero for some j. Hence the corresponding rule is removed fromA. (step 2.1) 2.
An observation hits the non-differentiable point of the loss, i.e., 1−yiβ

T φ(xi) becomes
zero from nonzero for some i. Hence this observation is added to E (step 2.2).

Then there are three types of actions one can take: 1. invoke the rule generator to
yield a new rule and add it to A. (step 2.5) 2. remove an observation from E . (step 2.6)
3. do nothing (can be merged with the first action). The action that can cause the fastest
decrease in the loss per unit increase of the �1 norm of the coefficient will be chosen.

3.2 The Optimality of the Algorithm

Now we will prove that if at each iteration an optimal rule for current step is generated,
then the obtained rule set is an optimal solution to infinite dimensional optimization
problem (6). This is an amazing property in that generally the global optimality of the
rule set cannot be guaranteed just by the local optimality of single rules due to the
greedy nature of rule generating process. This characteristic distinguishes our approach
from existing rule combining methods.

Theorem 4. Assume at any iteration of the algorithm, an optimal rule for step 1 and
step 2.5 (Table 2) is obtained. For a certain iteration, assume we are after step 2.2 and
the current rule set is RA. Then the corresponding finitely-supported solution βA is an
optimal solution to (7) in infinite dimensional rule space with t = ‖βA‖1. Namely, RA
is an optimal rule set with the constraint t = ‖βA‖1.

Proof: Given a relational learning task and n observations X = {xi}n
i=1, the set of

horn clauses can be divided into 2n equivalence classes Hp, p = 1, · · · , 2n according
to the output on X . The corresponding feature value vector φp(X) is constructed as in
(1) and the index set is Ip. In this work, we measure the complexity of a rule R by its
number of literals, i.e., C = NR. ∀h ∈ Hp, if Nh is finite, then the feature vector set
Dp = {φ̃i = φp(X)/Nhi , i ∈ Ip} is finite. If ∃h, Nh is infinite, then Dp is a countable
infinite set with a unique limit point 0 (a n × 1 vector). Therefore, the overall feature
vector set D =

⋃2n

p=1 Dp is a bounded set with unique limit point 0. We construct a new

feature vector set D
′
= D ∪ {0}. It is easy to show that the solution set for (7) with D

′
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equals that with D. Moreover, D
′

is a bounded closed set, and thus compact. According
to Theorem 2, there is an optimal solution supported on at most n + 1 features in D

′
.

Due to the equivalence between optimizing with D and D
′
, this also holds for D. Next

we will prove the optimality of the finitely-supported solution at any iteration. Assume
at any iteration , an optimal rule for step 1 and step 2.5 (Table 2) is obtained. Therefore,
there is no need to perform calibration at step 2.7. For finite D, the optimality of the
algorithm has been proved in [23]. For infinite D, since the finite feature set result
implies that for any finite B such that A ⊆ B ⊆ M, the finitely-supported solution
β̂A is also an optimal solution in feature set B given the restriction ‖βB‖1 ≤ ‖β̂A‖1.
Theorem 3 and finite feature set result combined complete the proof. �

3.3 Suboptimality and Calibration Procedure

In practice the exact optimization in step 2.5 is prohibitive because the space of horn
clauses is exponential to the number of observations or infinite. Therefore, at each step
2.5 a suboptimal rule is chosen instead of the theoretically optimal one. It is still not
clear that to which extent the performance of the algorithm is influenced by this gap
between theory and reality. We conjecture that this gap does not significantly impair
the performance of our algorithm, since the difference between the optimal rule and
the suboptimal rule lies in that the former corresponds to the steepest descent direction
while the latter only corresponds to ordinary descent direction, and for convex objective
function, an algorithm proceeds in an ordinary descent direction at each iteration can
still converge at a slower rate. In experimental evaluation, we explored the impact of
this gap on our algorithms’ performance, and the results support our conjecture. We
will carry out detailed theoretical analysis in the future work.

Nevertheless, there is a situation which has to be avoided: the ”contradiction” on the
solution path. Formally, for two iteration steps m2 > m1, rules selected at step 2.5 are
Rm2 and Rm1 respectively, if Rm2 is better for the optimization problem Pm1 than
Rm1 , then we say that an contradiction happens. A simple remedy is that once a new
rule is generated, it is substituted into previous Pm to examine whether an contradiction
exists, and algorithm is restarted at the earliest step when the contradiction happens.

3.4 Analysis of Computational Complexity

The computational cost of the algorithm consists of three parts: the first part is brought
by the rule generator when searching for the optimal rule at step 2.5, the second part

Table 3. The Calibration Procedure

for n = 0 : (m − 1)

if P n(R∗) < P n(Rn)

if n = 0, goto step 1
else set m = n − 1, A = An−1, β = βn−1, goto step 2.1
end if

end if
end for
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is resulted in by the linear programming at step 2.5 and 2.6, and the third part is due
to the computation for the entire solution path. The following notations are used in
analysis: for m-th iteration, |E| = q and the size of current A is sa. The number of
the rules that have ever entered the active rule set A during the overall iterations is p,
the complexity of the rule generator is O(Cf ), and the number of invoking the rule
generator to generate an approximate rule at step 2.5 is Cs.

The complexity for solving the inner linear programming at step 2.5 and 2.6 isO(s3
a)

[13]. If the training data is separable, then the number of joints on the path can be
assumed to beO(n). Therefore, the overall complexity isO(((Cf +s3

a)Cs +q ·s3
a) ·n).

In experiment, we find Cf ∝ n2, Cs < 40 and p < n. Since q ≤ min(n, p) and sa ≤ p,
then the worst case complexity is O(40n3 + np4). Calibration is not considered in the
above analysis. If calibration is performed for nc times, then the worst case complexity
is O(nc(40n3 + np4)). In experimental evaluation, it is observed nc is about 2 on
average when the beam search width is set to 5. Therefore, the worst case complexity
with calibration is O(80n3 + 2np4).

4 The Kernel Learning Interpretation of the Algorithm

From the viewpoint of kernel learning, it can be shown that the �1 regularized rule
learning algorithm is equivalent to multiple kernel learning [10].

Multiple kernel learning (MKL) attempts to learn the optimal kernel matrix from
data. Different kernels reflect different facets of the data set. MKL aims to combine
these kernels in an optimal manner such that the obtained kernel matrix can best repre-
sent the original data set, as follows:

min
d

J(d) s.t. :
M∑

m=1

dm = 1, dm ≥ 0 (10)

where J(d) is the optimal value of the following problem:

max
α

− 1
2

∑
i,j

αiαjyiyj

M∑
m=1

dmKm(xi, xj) +
∑

i

αi

s.t.

n∑
i=1

αiyi = 0, 0 ≤ αi ≤ t′ (11)

Our �1 regularized algorithm can be proved to be equivalent to performing MKL with
a linear kernel set induced by rules. First of all, the definition of linear kernel induced
by rules is given as follows:

Definition 1. Given a rule Rm, the linear kernel Km induced by it is as follows:

Km(xi, xj) =< φ̃m(xi), φ̃m(xj) >

{
1/N 2

m, B ∪ {Rm} � xi ∩B ∪ {Rm} � xj

0, otherwise

(12)
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Theorem 5. �1 SVM (7) is equivalent to the multiple kernel learning problem (11) with
the linear kernel set {Km}M

m=1 constructed as in definition 1.

Proof: Due to the block-sparsity as shown in [1], MKL (11) is equivalent to the follow-
ing problem:

min
β

n∑
i=1

L(yi, B
T Φ(xi)) s.t.‖B‖block ≤ t′ (13)

where L is the hinge loss, Φ = (φ1, ..., φM ), φm is the feature space induced by Km,

B = (β1, ...βM ), βm is the corresponding coefficient vector, ‖B‖block =
M∑

m=1
‖βm‖2.

According to definition 1, φ̃m are single dimensional features, and thus (13) is simpli-
fied to (7). There is a one-to-one correspondence between t and t

′
. Consequently, (11)

is equivalent to (7). �
The resulted kernel matrix is the optimal linear combination of the linear kernels in-

duced by Rm, i.e., K =
M∑
i=1

d∗mKm. Our approach is actually a kernel matrix learning

algorithm based on the obtained rules. Each rule provides a specific view, and these
facets are finally integrated in the overall kernel matrix K . According to the kernel con-
struction, the rules with lower complexity may have greater contribution to the final
kernel matrix K . Therefore, as a kernel learning method, our approach is more flexible
than the recent algorithms [7] which attempts to integrate ILP and kernel methods.

5 Experiments

As a general-purpose algorithm, our sparse rule combination approach is applicable to
any rule generator such as FOIL, Progol, etc. In experiment, we realized two sparse rule
combination algorithms respectively based on FOIL and Progol, denoted as �1FOIL and
�1Progol. Both FOIL [15] and Progol [14] process data in a divide-and-conquer way,
which consists of two iterative steps: the inner loop generates a single rule at each it-
eration, while the outer loop seeks for a set of rules to cover all positive observations.
The difference lies in the way how a single rule is generated: FOIL can be considered
as a first-order decision tree algorithm guided by FOIL-gain while Progol conducts a
general-to-specific search in the theta-subsumption lattice of a single clause hypothesis
through inverse entailment. The algorithms for comparison include kFOIL [11], FOIL
[15], Rooted Kernel(RKernel,[19]), and Boosting FOIL (BFOIL). For FOIL, maxi-
mum number of clauses in a hypothesis was set to 25, maximum number of literals in
a clause was set to 10, and a beam search with beam width 5 was performed instead of
simple greedy search. For BFOIL, AdaBoost.M1 [5] was adopted for combining rules
and the stepsize was fixed to 0.01 since some theoretical and experiment research [21,6]
demonstrate this modification leads to better prediction accuracy, and the same param-
eters for FOIL were used. kFOIL is an algorithm that uses SVM as the score function
for FOIL instead of the FOIL-gain. We used the same parameters as in FOIL. For the
SVM part, a polynomial kernel of degree 2 was used. RKernel belongs to the family
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of graph kernel [7] algorithms in which structural information of data based on graph
theory is utilized to construct predefined kernels for SVM. The walk length and the dis-
count factor for RKernel were selected from {1, 2, 4, 5, 10} and {0.1, 0.5, 0.8, 1, 2, 10}
through cross validation. For �1FOIL and �1Progol, we also substituted simple greedy
search with beam search with width 5, and there was no limitation on the number of
clauses in a hypothesis and the number of literals in a clause because the complexity
of the hypotheses would be controlled via �1 regularization. The LIBSVM implementa-
tion [2] was employed for the SVM part and the regularization constant C was selected
from {0.1, 1, 10, 100, 1000, 10000} through cross validation. For all of the algorithms,
the validation technique was utilized to determine when to stop training. In each fold of
cross validation (10-fold cross validation was performed for all data sets), the data set
was split to 3 parts, 70% for training, 20% for validating and 10% for testing.

5.1 Datasets

For comparison, we evaluated the above algorithms on ten real world classification
datasets, including Mutagenesis [18], Alzheimer [8], NCTRER [4] and PTC1. On Mu-
tagenesis (230 observations, MUT) the problem is to predict the mutagenicity of a set
of compounds. Alzheimer consists of four independent datasets, each of which cor-
responds to a desirable property of drugs against Alzheimer’s disease: inhibit amine
reuptake (686 observations, ALR), low toxicity (886 observations, ALT), high acetyl
cholinesterase inhibition (1326 observations, ALC) and good reversal of memory defi-
ciency (642 observations, ALM). NCTRER (232 observations,NCT) is extracted from
the EPA’s DSSTox NCTRER database, the problem is to predict estrogens’ binding
activity for the estrogen receptor. On all of the above datasets, we used the atom and
bond information only. PTC contains 417 compounds, each of which is labeled based
on whether it is carcinogenic to female rats (349 observations, PFR), female mice (351
observations, PFM), male rats (336 observations, PMR), and male mice (344 observa-
tions, PMM). Following [19] and others, we treat any molecule labeled ”CE”, ”SE” and
”P” as positive, ”NE” and ”N” as negative, ignore other unsure classifications.

5.2 Results

The 10-fold cross-validation result of the prediction accuracy is shown in Table 4. As
demonstrated therein, �1FOIL significantly outperforms the other algorithms on six out
of ten tasks. In addition, on none of the tasks �1FOIL and �1Progol performed signif-
icantly worse than the other algorithms. It is worth noting that �1FOIL and �1Progol
have similar performance on nearly all of the tasks although their rule generation mech-
anisms are totally different. This indicates that as a meta-algorithm the performance of
our approach is insensitive to the choice of different rule generators. This phenomenon
may be due to the following three reasons: firstly, in relational learning the true model
for a certain task often consists of several rules, each of which accounts for part of
observations; secondly, FOIL and Progol are highly expressive in that they both have
very large hypothesis spaces, and thus the rules for the true model is probably contained

1 http://www.predictive-toxicology.org/ptc/
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Table 4. 10-fold cross validation predictive accuracy results. •/� indicate that the result for
�1FOIL/�1Progol is significantly better than that of the corresponding method. On none of
datasets, performance of �1FOIL or �1Progol is significantly worse (paired samples t-test,
α = 0.05). The second row for each dataset is the number of obtained rules on average.

Dataset �1FOIL �1Progol kFOIL FOIL Rkernel BFOIL

MUT
85.3 ± 2.8 86.9 ± 1.5 82.7 ± 10.3 75.3 ± 11.7 • � 85.4 ± 6.1 81.2 ± 7.4
7.2 ± 2.1 8.4 ± 1.3 13.4 ± 5.2 7.5 ± 1.4 −−− 21.2 ± 2.2

ALR
92.6 ± 3.1 89.2 ± 4.5 87.9 ± 4.9• 76.5 ± 12.1 • � 83.1 ± 7.8 • � 87.3 ± 3.2•
13.4 ± 4.8 15.7 ± 2.6 13.4 ± 1.9 12.7 ± 3.1 −−− 20.3 ± 3.7

ALT
91.6 ± 1.1 92.3 ± 2.4 89.5 ± 4.0 78.2 ± 5.2 • � 88.3 ± 8.1 86.3 ± 5.2
12.1 ± 2.3 16.7 ± 3.6 22.3 ± 7.5 13.4 ± 4.1 −−− 16.9 ± 3.5

ALC
91.3 ± 2.4 88.2 ± 3.9 87.4 ± 3.8• 67.4 ± 5.5 • � 84.6 ± 6.8 • � 81.2 ± 7.8 • �
8.4 ± 2.7 9.5 ± 3.6 15.6 ± 6.2 13.2 ± 3.4 −−− 17.1 ± 9.1

ALM
85.7 ± 4.2 89.3 ± 4.6 81.3 ± 3.5 • � 61.3 ± 12.8 • � 81.9 ± 3.6 • � 75.3 ± 2.1 • �
11.3 ± 2.7 12.8 ± 5.4 7.9 ± 2.1 12.4 ± 5.3 −−− 21.4 ± 5.9

NTC
86.3 ± 2.3 85.2 ± 3.8 78.2 ± 8.7 • � 57.8 ± 6.3 • � 85.2 ± 7.2 79.2 ± 2.5 • �
12.2 ± 2.2 13.1 ± 2.1 16.7 ± 7.5 14.3 ± 2.2 −−− 18.9 ± 4.1

PFR
75.2 ± 5.1 78.2 ± 3.4 82.2 ± 12.1• 57.9 ± 9.2 • � 67.3 ± 11.8• 73.3 ± 4.6�
17.3 ± 6.0 19.2 ± 2.6 23.5 ± 8.2 12.3 ± 4.9 −−− 13.9 ± 5.2

PFM
77.4 ± 7.1 78.6 ± 2.3 62.4 ± 7.2 • � 52.3 ± 10.1 • � 63.8 ± 6.1 • � 72.3 ± 6.4 • �
18.7 ± 8.1 16.5 ± 3.2 21.3 ± 6.4 12.1 ± 3.1 −−− 19.4 ± 8.9

PMR
68.5 ± 3.4 66.5 ± 2.7 57.5 ± 5.2 • � 63.5 ± 6.4• 61.5 ± 7.3 • � 68.2 ± 8.4
13.2 ± 5.5 17.2 ± 3.1 24.1 ± 2.1 13.6 ± 5.3 −−− 18.2 ± 7.2

PMM
70.9 ± 3.7 71.2 ± 5.2 72.1 ± 2.1 67.1 ± 9.2• 65.2 ± 8.9� 63.8 ± 4.1•
8.3 ± 2.1 11.6 ± 3.9 12.3 ± 2.4 7.9 ± 5.8 −−− 25.1 ± 3.2

in their hypothesis spaces; finally, the most relevant rules can be automatically picked
out from the numerous candidates via �1 regularization. Therefore, the true model can
be well approximated by the combination of expressive rule generators and �1 regu-
larization. Besides the outstanding approximation ability, there are two more reasons
for the success of our approach: firstly, due to �1 regularization the variance of the
generalization performance is much less than the other algorithms; secondly, the en-
tire solution path is generated and thus the risk of missing the right model is greatly
reduced. Although boosting also performs rule combination, its performance is worse
than our algorithms. The reason may be that due to the hinge loss our algorithm can
pick out the support vectors and thus is less influenced by the noise than boosting. The
comparison between RKernel and other algorithms is somewhat unfair in that there
are two more tunable parameters for RKernel, i.e., the walk length and the discount
factor. This partly explains its competitive performance in the evaluation. However, its
interpretability is not as straightforward as that of our algorithms.

The 10-fold cross-validation result of the number of rules is also shown in Table 4.
The number of rules generated by our algorithms is comparable to that by other al-
gorithms. Although we claimed that sparse rule combination is achieved through our
framework, the obtained rules is not necessarily fewer than that of other algorithms.
The sparsity only implies that the rules involved in the true model may be chosen au-
tomatically. If for a certain task, the corresponding true model consists of many rules,
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?

X

?

(a) Heteroatom: The atom 
     at X is O, S or N.

(b) Aromatic Ring

O-HX
3

(c) Phenol3nPhenyl: X can be any kind of
      atoms.

Fig. 2. Three Obtained Rules for NCTRER Dataset by �1FOIL

Table 5.

(a) The Influence of Beam Width on the Performance

of �1 FOIL. A stands for prediction accuracy, R stands

for the number of obtained rules and C stands for cal-

ibration times. The results are mean values of 10-fold

cross validation.

Width = 1 Width = 3 Width = 5
Dataset

A C R A C R A C R

MUT 80.9 28.2 8.1 86.7 7.3 8.8 85.3 1.2 7.2

ALR 84.2 7.4 15.9 88.9 4.6 11.1 92.6 1.3 13.4

ALT 87.9 31.2 7.6 89.1 15.8 12.6 91.6 0 12.1

ALC 88.1 14.7 12.4 87.5 2.3 10.5 91.3 1.7 8.4

ALM 82.4 12.3 12.8 86.4 3.5 15.7 85.7 2.1 11.3

NCT 83.6 18.6 9.1 87.8 5.4 16.3 86.3 2.6 12.2

PFR 70.1 15.4 12.4 72.1 6.7 12.4 75.2 2.3 17.3

PFM 73.3 12.6 22.1 75.6 8.9 16.9 77.4 1.3 18.8

PMR 63.4 8.7 9.1 65.9 7.3 17.2 68.5 4.5 13.2

PMM 62.8 9.3 9.5 71.2 6.9 9.1 70.9 2.5 8.3

(b) The Influence of Rule Complexity Penalty on

the Performance of �1 FOIL and �1 Progol. A

stands for prediction accuracy and L stands for

the number of literals in each rule. The results are

mean values of 10-fold cross validation.

PaFOIL PbFOIL PaProgol PbProgol
Dataset

A L A L A L A L

MUT 85.3 2.4 83.1 3.3 86.9 2.6 85.4 5.1

ALR 92.6 4.7 93.2 6.4 89.2 3.2 91.3 4.7

ALT 91.6 3.6 92.7 7.5 92.3 4.1 89.7 4.9

ALC 91.3 3.2 88.9 4.8 88.2 3.2 91.2 5.6

ALM 85.7 5.4 80.4 3.5 89.3 3.7 90.9 4.8

NCT 86.3 4.2 82.1 4.6 85.2 2.3 86.6 3.2

PFR 75.2 2.6 73.5 4.5 78.9 3.2 82.3 5.8

PFM 77.4 3.8 76.9 5.4 78.6 5.7 77.1.9 4.3

PMR 68.3 3.4 72.2 3.6 66.5 4.8 70.2 5.3

PMM 70.3 2.3 68.1 4.3 71.2 3.1 68.3 4.1

then the performance of an algorithm apt to choose fewer rules cannot be expected to
be satisfactory. For RKernel, the corresponding place is filled with ”- - -” instead of a
real number because it is based on kernel design rather than rule combination. For NC-
TRER dataset, three rules among the top ten rules (ordered by coefficients) are shown
is Figure 2. This result is consistent with the study on NTCRER [4].

In Theorem 4, we proved that if at each iteration the optimal rule can be generated,
then the obtained rule set is globally optimal. However, in practice only a suboptimal
rule can be generated for each iteration. For beam search based rule generators, the
approximity between the optimal rule and the suboptimal rule depends on the width of
beam search. Therefore, the prediction accuracy, the calibration times (refer to section
3.3) and the number of rules can all be influenced by the beam width. We tried different
search width (1, 3, 5) and the result is shown in Table 5(a). It can be observed that
the calibration times decreases as the search width increases and this indicates that the
chance of missing the optimal rule for a certain iteration decreases as the search width
increases. The generalization performance improves as the search width increases as we
expected. The number of obtained rules decreases as the search width increases. This
implies that when the suboptimal rules chosen at each step are far from the optimal
rules, more rules are needed to approximate the true model.

Another interesting question is how the size of rule set and prediction accuracy will
be influenced by different designs of rule complexity penalties. For comparison , we
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evaluated �1FOIL and �1Progol based on two different rule complexity penalties: (Pa)
Cm is defined as the number of the literals in Rm ; (Pb) all Cm are just set to 1, i.e.,
no additional rule complexity penalty. The result is shown in Table 5(b). The prediction
accuracy under the two kinds of penalties are close to each other while the literals in
each rule are fewer for the case of literal number penalty.

6 Conclusion and Future Work

In this paper we bring out an �1 regularized rule learning and combining approach for
relational learning, which formally introduces �1 regularization into the infinite space of
horn clauses. Our approach is applicable to any horn clause generators such as FOIL,
Progol, etc. Moreover, due to the piecewise linearity of hinge loss the entire solution
path can be generated for a given task. It is proved that if a locally optimal rule is
generated at each iteration, then each cross-section of the path is an optimal rule set
given the �1 constraint on coefficients. From the kernel learning viewpoint, our approach
is equivalent to multiple kernel learning and the information carried in the obtained rules
is optimally fused into the overall kernel matrix. The proposed algorithm is competitive
with the other algorithms for comparison. In future, the approach presented here will be
extended to tackle the regression tasks.
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Abstract. This article contributes a generic model of topic models. To define the
problem space, general characteristics for this class of models are derived, which
give rise to a representation of topic models as “mixture networks”, a domain-
specific compact alternative to Bayesian networks. Besides illustrating the inter-
connection of mixtures in topic models, the benefit of this representation is its
straight-forward mapping to inference equations and algorithms, which is shown
with the derivation and implementation of a generic Gibbs sampling algorithm.

1 Introduction

Mixture models [1] are a powerful tool to model complex probabilistic distributions
by convex sums of component densities, p(x) =

∑
k p(z=k)p(x|ϑk), where z is an index

variable that indicates which component k the observation x originates from. Among the
large class of such models, mixture models with discrete component densities p(x|ϑk)
are of particular interest because in this case the component densities can serve as
weighting functions for other mixtures, which themselves can have again discrete or
non-discrete component densities. This fact makes it possible to construct models that
consist of cascades or even networks of coupled discrete mixtures as generative struc-
ture underlying one or more observable mixtures with arbitrary (e.g., discrete or Gaus-
sian) component densities.

Such a coupling of mixtures can be considered a defining characteristic of topic mod-
els, a class of probabilistic models that has become a central subject of research in text
mining, computer vision, bioinformatics and other fields. Following the idea proposed
by the seminal work on latent Dirichlet allocation (LDA [2]), topic models exploit the
conjugacy of Dirichlet and multinomial/discrete distributions to learn discrete latent
variables from discrete co-occurrence data (e.g., [3,4,5]) or from the co-occurrence of
discrete and continuous features (e.g., [6]). Via the interrelation of the latent variables
across different mixture levels, structures assumed in the data can be accounted for in
specialised topic models, which renders the topic model approach a powerful and flex-
ible framework.

However, the published work on topic models only defines this framework implic-
itly; authors tend to analyse and derive probabilistic properties and inference algorithms
on a model-specific basis, typically using results from particular prior work. Although
on the other hand frameworks for automatic inference in (more general) Bayesian net-
works exist that are in principle capable of handling topic models as special cases (e.g.,
WinBUGS [7], HBC [8], AutoBayes [9], or VIBES [10]), the generality of this software

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 517–532, 2009.
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makes it difficult (1) to gain insights from the result of the automatic inference deriva-
tion process, and (2) to make performance improvements that may be possible for more
restricted model structures, which is desirable especially because topic models have
serious scalability issues. Such improvements may be based on the recent advances in
massively parallel hardware, along with general-purpose programming platforms like
OpenCL [11], or heterogeneous computing architectures including specialised FPGA
processor designs, along with programming interfaces like the hArtes toolchain [12].
For such high-performance computing architectures, a generic approach to topic model
inference may permit to reuse highly optimised kernels across models and therefore
allow to focus optimisation effort.

Apart from theoretical interest, these practical considerations motivate a closer look
on topic models with the intent to characterise their properties in a generic manner.
Specifically, we generalise the probabilistic properties of topic models in Sec. 2. Moti-
vated by this general characterisation, we propose a specialised representation of topic
models in Sec. 3: mixture networks. Subsequently, as a basis for actual implementa-
tions we present a generic approach to inference in mixture networks in Sec. 4 for the
case of Gibbs sampling, which has been implemented as a generic Gibbs sampling tool
described in Sec. 5. We finish with conclusions and future work directions in Sec. 6.

2 Generalising Topic Models

In this section, we present a generic characterisation to topic models. As a basis for the
following derivations, consider an arbitrary Bayesian network (BN [13]) with variables
Un ∈ U. Its likelihood can be generally formulated as:

p(U) =
∏

n

p(Un | pa(Un)) (1)

where the operator pa(Un) refers to the set of parents of some BN node that belongs to
variable Un.

Characteristics. As has been outlined in the Introduction, the first notable character-
istic of topic models is their use of the conjugate Dirichlet and multinomial/discrete
distributions. Focussing on discrete observations, such models can be structured en-
tirely into “mixture levels”, each of which consists of a set of multinomial components
�ϑk ∈ Θ � {�ϑk}Kk=1 that are themselves drawn from Dirichlet priors with some set of
hyperparameters �α j ∈ A � {�α j}Jj=1. Based on one or more discrete values from parent
nodes in the BN, a component k among the multinomial mixture is chosen and a dis-
crete value xi sampled from it, which is part of the observation sequence X � {xi}i∈I
with index sequence I. The corresponding generative process for one mixture level can
be summarised as:

xi | �ϑk, k=g(↑xi, i) ∼ Mult(xi|Θ, ↑xi)

�ϑk | �α j, j= f (↑X) ∼ Dir(�ϑk|A, ↑X) (2)

where the component index k is some function of the incoming discrete values or their
indices that maps to components of the local mixture level. For this, the parent variable
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operator ↑xi is introduced that collects all parent variables of xi (excluding parameters:
↑X = pa(X)\Θ), and the component selection function can consequently be expressed
as k = g(↑xi, i). Hyperparameter indices j can be chosen either to be global for all k,
i.e., j ≡ 1, or similarly to the component indices, assigned to a group of components
with some grouping function j = f (↑X). This grouping can be used to model clustering
among components (see, e.g., [14,4]).

The generative process in Eq. 2 reveals the second characteristic of topic models:
Mixture levels are solely connected via discrete parent variables (↑X), which ensures a
simple form of the joint likelihood of the model.1 Based on Eq. 1, the complete topic
model can be constructed from the mixture levels � ∈ L, yielding the likelihood:

p(X, Θ|A) =
∏

�∈L
p(X�, Θ� | A�; ↑X�) (3)

=
∏

�∈L

⎡
⎢⎢⎢⎢⎢⎣
∏

i∈I
Mult(xi |Θ, ↑xi)

K∏

k=1

Dir(p(�ϑk | A, ↑X)

⎤
⎥⎥⎥⎥⎥⎦

[�]

(4)

where for simplicity we mark up variables specific to a level with a superscript �, in
brackets [·][�] for all their contents or for entire equations in the text. Without this mark-
up, symbols are assumed model-wide sets of variables X, parameters Θ, hyperparame-
ters A, etc. Eq. 4 shows the structure of the joint likelihood common for topic models:
Multinomial observations factorise over the sequence of tokens generated by the model,
and the Dirichlet priors factorise between the components.

Mixture level likelihood. Due to the conjugacy of the Dirichlet and multinomial/
discrete distributions, the inner terms of Eq. 4 can be simplified further after a trans-
formation from tokens with index i ∈ I (part of a sequence) to counts over component
dimensions with index over t ∈ [1, T ] (part of a “vocabulary”), each specific to a mixture
level �. For every �, the following holds for the total count of co-occurrences between
outcomes xi=t and mixture components k=g(↑xi, i) responsible for them:

nk,t =
∑

i∈I
δ(k − g(↑xi, i)) δ(t − xi) (5)

where δ(x) is the delta function, δ(x) = {1 if x=0, 0 otherwise}. Using these counts, the
likelihood of one mixture level becomes:

p(X�, Θ� | A�; ↑X�) =
⎡
⎢⎢⎢⎢⎢⎣

K∏

k=1

1
Δ(�α j)

T∏

t=1

ϑ
nk,t+α j,t−1
k,t

⎤
⎥⎥⎥⎥⎥⎦

[�]

(6)

where the product over t in Eq. 6 is the integrand of a Dirichlet integral and Δ(�α) is the
partition function of the Dirichlet distribution, a T -dimensional generalisation of the
beta function:

Δ(�a) �

∏T
t=1 Γ(at)

Γ(
∑T

t=1 at)
. (7)

1 With the hyperparameters dependent on j = f (·), formally there is an additional dependency
between mixture levels, but this is dropped by assuming the set A known; common EM-type
inference methods estimate hyperparameters independently inside their M-step; see Sec. 4.
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Mixture level variants. The topic model framework is not restricted to the Dirichlet–
multinomial type of mixture level that forms its core. Several possibilities exist to ex-
tend the framework and plug as levels into Eq. 3:

– Symmetric hyperparameters are a common variant to the standard vectors, see, e.g.,
the original LDA model [2]. The Dirichlet partition function simplifies to ΔT (a) �
Γ(a)T/Γ(Ta).

– Observed parameters introduce known mixture proportions or fixed observations
like labels (see, e.g., the author–topic model [3]), which leads to p(X|Θ; ↑X) =∏

i Mult(xi|Θ, ↑xi) =
∏

k,t ϑ
nk,t

k,t for a level, i.e., the Dirichlet vanishes in Eq. 3.
– Infinite mixtures allow model adaptation to data dimensionalities and typically use

Dirichlet process (DP) mixtures or generalisations [15]. Mixture interrelations in
topic models are handled typically using hierarichcal DPs [16]. Especially the stick-
breaking representation of the DP and its finite approximations [17,18] promise to
preserve a high similarity to finite-dimensional models.

– Non-Dirichlet priors like logistic–normal allow a more flexible combination of top-
ics in particular mixture levels, as in the correlated topic model [19].

– Non-discrete observation components use, e.g., Gaussian distributions in the final
mixture level (e.g., in Corr-LDA [6]). Parameters are preferrably drawn from con-
jugate priors to simplify inference. The likelihood of a non-discrete mixture level
is p(X̃|Θ̃, Ã; ↑X̃) =

∏
i h(x̃i|Θ̃, ↑x̃i)

∏
k g(ϑ̃k|α̃ j) with component distribution h and

prior g.

To keep this paper focussed, we restrict ourselves to the first two variants mentioned,
which already cover a vast body of models in the literature.

3 Mixture Networks

The dependency structure characteristic for topic models shown in Eq. 3 gives rise to
the idea of a specialised graphical representation. In addition to the fact that in BN
diagrams of more complex topic models, interrelations between mixtures are easily
hidden in complex network structures, the introduction of a domain-specific graphical
representation of topic models may help simplify derivation of their likelihood structure
and inference equations.

To obtain such a representation, we use the two characteristics discussed in Sec. 2:
Dirichlet–multinomial mixture levels and the connections between levels via discrete
variables, which can be seen as nodes and edges in a new network structure. This leads
to a representation of topic models as “mixture networks”.

3.1 Definition

A mixture network (MN) is defined as a digraph G(N ,E) that consists of (1) a set of
nodes,N , where (a) an inner node represents a mixture level as described in Sec. 2, i.e.,
a sampling operation from a mixture component and (b) a terminal node represents an
observable (discrete) value, as well as (2) a set of directed edges, E : N ×N , where an



A Generic Approach to Topic Models 521

m∈[1,M]

k∈[1,K] n∈[1,Nm]

�ϕkβ wm,n

zm,nα �ϑx

xm,n

x∈[1,A]

�am

(a)

�ϕk | β

[V]

wm,n

zm,n[K]

m
[M]

xm,n[A]

�am

�ϑx | α

(b)

Fig. 1. The author–topic model, (a) Bayesian network and (b) mixture network

edge propagates a discrete value from its parent node to its child node. The child node
then uses the value to choose one of its components.

Graphical notation. A graphical notation for mixture networks is proposed in Fig.
1(b) via the example of the author–topic model (ATM [3]), which models the topic as-
sociation with authors with three mixture levels and whose BN is shown in Fig. 1(a).
Opposed to BNs that visualise dependencies between random variables and express
the repetitions of data points (plate notation), MNs focus on the interrelations between
discrete mixtures (in the example: document–author,�am, author–topic, �ϑx|α, and topic–
word, �ϕk |β, distributions), along with component numbers and dimensionalities ([M],
[K] and [V]). The frequency of sampling a particular variable is encoded in subscripts
(in the example: �ϑx, �ϕk and wm,n referring to author-, topic- and word-wise sampling
schedules, respectively). Note that the top (inner) node does not indicate a hyperparam-
eter because of its observed parameter (see mixture level variants in Sec. 2).

3.2 Example Models

In illustrate the applicability of the MN representation, the mixture network diagrams
of some topic models from the literature are drawn in Fig. 2. Fig. 2(a) shows the MN
of the model of latent Dirichlet allocation (LDA [2]), which served as a design paragon
to all other models. It has two mixture levels: a document–topic mixture �ϑm|α and a
topic–term mixture �ϕk |β. The extension of this model gives illustrative insight into the
organisation of mixtures to account for logical and semantic structure assumed in the
data. A simple extension to the plain LDA model is the author–topic model shown in
Fig. 2(b) as explained above.
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Fig. 2. Mixture networks of example models from the literature: (a) latent Dirichlet allocation,
(b) author–topic model, (c) latent Dirichlet co-clustering model, (d) 4-level pachinko allocation,
(e) hierarchical pachinko allocation (hPAM1)

Co-clustering. The model of latent Dirichlet co-clustering (LDCC [14]) in Fig. 2(c)
uses aggregation to infer an additional logical layer of topics from the data: For each
section s, a topic distribution �ϑm,s can be inferred, and document topic distributions �ϕm

index word-topics zm,s,n indirectly via section topics ym,s, allowing a finer-grained han-
dling of topic structure across documents with component selection function g(↑zm,s,n,
(m, s, n)) = (m, s). Further, segment topics �ϑm,s are coupled across documents via the
topic-hyperparameters �αy with component group function f (↑z) = k.

Pachinko allocation. Another multi-level MN is the class of pachinko allocation mod-
els (PAM), of which the four-level variant as described in [4] is depicted in Fig. 2(d).
For each word, a path through a topic hierarchy is sampled consisting of the indicators
(z1, z2, z3) where z1=1 provides the root of the tree, associated with LDA-type document
topics �ϑr

m, and based on its sample, a document- and topic-dependent level �ϑm,x is sam-
pled (g(↑z3

m,n, (m, n)) = (m, x)), finally indexing word-topics �ϑy. Similar to the LDCC
model, component grouping is used: f (↑z3) = x.

Hierarchical pachinko allocation [5] (hPAM) as shown in Fig. 2(e) is an example for
a more complex model that allows a hierarchy of topic–term distributions: As in PAM,
the topic hierarchy consists of document-specific root- and super- as well as global sub-
topics, but each node k in the hierarchy is associated with a topic–term distribution �ϕk,
and for each word wm,n, a complete topic path (root–super–sub) is sampled along with
a level �m,n from �ζT,t specific to super- and sub-topics (hPAM1 in [5]). The topic sample
on level �m,n selects from the set k = {1, 1 + T, 1+ |T | + t} the component �ϕk that finally
generates the word.
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Although with a different goal in mind, the concept of pachinko allocation models
is closely related to the approach pursued with mixture networks because it allows to
connect different levels of mixtures with great flexibility. In fact, MNs can be considered
a generalisation of PAMs that allows free interconnection of nodes in general DAG
structures with different types of mixture levels (observed, unobserved parameters) and
with observable variables (edges or parameters) at arbitrary points in the network. By
appropriate choice of index transformations g�(↑x�i , i�), even the component-dependent
subtrees mentioned as the most flexible version of the PAM concept [4] may be realised
with mixture networks.

4 Inference in Mixture Networks

Inference in the context of mixture networks refers to finding the parameters Θ and
hyperparameters A given the observations. With the model variables X divided into
sets of visible (observed) and latent (hidden) variables, X = {V,H}, this is typically a
two-part process of (1) Bayesian inference for the posterior distribution,

p(H, Θ|V, A) =
p(V,H, Θ|A)

p(V |A)
, (8)

and (2) estimation of the hyperparameters, for which ML or MAP estimators are com-
monly sufficient because of the simpler search space.

As in many latent-variable models, determining the posterior Eq. 8 is generally in-
tractable in mixture networks because of excessive dependencies between the latent
variables H and parameters Θ in the marginal likelihood for the observations V in the
denominator, p(V |A) =

∑
H

∫
p(V,H, Θ|A) dΘ. To circumvent this intractability, approx-

imate inference methods have been proposed, for topic models including mean-field
variational Bayes [2], collapsed variational Bayes [20], expectation propagation [21]
and collapsed Gibbs sampling [22].

For our purposes, a method is needed that has feasible complexity with reasonable
accuracy even when it comes to modelling dependencies between variables. The full
factorisation of variational mean-field distributions may be adverse for model fitting
[23], and structured approaches become complicated quickly [10]. Expectation propa-
gation on the other side has not been commonly used with more complex topic models.
Thus, Gibbs sampling appears to be the most straight-forward method for a formulation
of approximate inference for mixture networks.

4.1 Gibbs Sampling

Gibbs sampling [24] is an approximative inference method particularly suited for mod-
els where the marginals of the posterior can be expressed in closed form, in particu-
lar for high-dimensional discrete models. As a Markov-chain Monte Carlo (MCMC)
method, Gibbs sampling uses a Markov chain that upon convergence approximately
generates samples according to the posterior distribution. By sampling one dimension
of the posterior at a time, Gibbs sampling avoids computationally complex Metropolis-
Hastings acceptance calculations. One step in the Gibbs sampling inference approach
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thus corresponds to sampling dependent hidden variables hi for each data token vi from
the full conditional distribution, hi ∼ p(hi|H¬i,V, Θ, A) , where ·¬i refers to the complete
set of tokens except i. Analogously, �ϑk must be sampled in such an approach [25].

With topic models, it has been shown, however, that collapsed approaches to Gibbs
sampling, i.e., those that integrate out parameters Θ [26], lead to particularly good
convergence behaviour [22] (which is attributed to the high independence of the re-
maining hidden variables). Therefore, the posterior considered for Gibbs sampling is
p(H|V, A) =

∫
p(H, Θ|V, A) dΘ. The Markov state of the Gibbs sampler then reduces to

H, and the resulting mixture network inference approach can be considered a form of
stochastic EM algorithm [27] that trains the latent variables H in its E-step and hyper-
parameters A in its M-step.

To sample from posteriors of collapsed MNs, for each independent latent variable
H� (generic variables, complete sequence: upper case) with tokens h�i ∈ H� � {h�i′ }i′∈I�
(tokens: lower case; convention: h�i ≡ h�

i�
unless otherwise noted), a separate full condi-

tional distribution p(h�i |H�¬i,H
¬�,V, A) must be formulated for each token h�i ∈ H� with

·¬� used analogous to ·¬i. Typically, however, several hidden variables are dependent
and need to be drawn as a block. Therefore, with dependency groups denoted by Hd

with H� ⊆ Hd ⊆ H as sequences of groups of dependent tokens hd
i , the full condition-

als sought are: p(hd
i |Hd

¬i,H
¬d,V, A) for each group d and each token i = id. Remember

that subscripts refer to sequence indices and superscripts to levels. Further note that
hd

i is a configuration of hidden variables that corresponds to a unique combination of
components k� and outputs t� of the mixture levels involved.

Derivation. To find the full conditional distributions, we start from the joint likelihood,
Eq. 3, and for a collapsed approach integrate out its parameters via Dirichlet integrals:

p(V,H|A) =
∏

�∈L

⎡
⎢⎢⎢⎢⎢⎣

∫ K∏

k=1

1
Δ(�α j)

T∏

t=1

ϑ
nk,t+α j,t−1
k,t dΘ

⎤
⎥⎥⎥⎥⎥⎦

[�]

=
∏

�∈L

⎡
⎢⎢⎢⎢⎢⎣

K∏

k=1

Δ(�nk + �α j)

Δ(�α j)

⎤
⎥⎥⎥⎥⎥⎦

[�]

(9)

where the level-specific �nk are vectors of co-occurrence counts nk,t.
This equation shows that the joint likelihood of the model variables is a product of

ratios of Dirichlet partition functions for each component on each individual mixture
level in the model. Interestingly, using the identity Γ(a+n) = Γ(a)

∏n−1
c=0(a+ c) with real

a > 0 and integer n ≥ 0, we obtain a ratio of finite product sequences:

Δ(�a + �n)
Δ(�a)

=

∏T
t=1
∏nt−1

c=0 (at + c)
∏[
∑

t nt]−1
c=0 ([

∑T
t=1 at] + c)

, (10)

which for a unit difference in a single element u, Δ(�a+δ(t−u))/Δ(�a), reduces to au/
∑

t at.
Note that with Eq. 10, we can alternatively expand Eq. 9 into products without any
special functions, which comes at the cost of obtaining denominator terms in Eq. 9
specific to components k.

The next step to obtain full conditionals is to determine dependent edges Hd ⊆ H:
Analogous to the “Bayes ball” algorithm in Bayesian networks, in MNs we can identify
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dependent edges by finding subgraphs that extend through nodes (1) whose component
selection function g(↑ xi, i) contain hidden edge values or (2) have hidden outputs. In
the examples given in Sec. 2, ATM, PAM and hPAM models have dependent edges;
LDCC does not because the hidden variables are connected via hyperparameters (as-
sumed given in the full conditional). Further, edges of nodes adjacent to subgraph Hd

but independent of Hd are collected in a set S d ⊂ {V,H} with token sets sd
i . We use

the notation ·¬s to denote the exclusion of Sd. With these definitions, full conditional
distributions can be derived generically by applying the chain rule:

p(hd
i |Hd

¬i,H
¬d,V, A) =

p(hd
i , s

d
i |Hd

¬i, S
d
¬i,H

¬d,¬s,V¬s, A)

p(sd
i |Hd

¬i, S
d
¬i,H

¬d,¬s,V¬s, A)

∝ p(hd
i , s

d
i |Hd

¬i, S
d
¬i,H

¬d,¬s,V¬s, A)

=
p(H,V |A)

p(Hd
¬i, S

d
¬i,H

¬d,¬s,V¬s|A)

=
∏

�∈{Hd ,S d}

⎡
⎢⎢⎢⎢⎢⎣

K∏

k=1

Δ(�nk + �α j)

Δ(�nk,¬id + �α j)

⎤
⎥⎥⎥⎥⎥⎦

[�]

. (11)

Generic full conditionals. In Eq. 11, all terms except those with a count difference
between numerator and denominator cancel out. The remainder of terms can be simpli-
fied by applying Eq. 10 with �a = �n�

k�,¬id
+ �α�j, and the resulting full conditional becomes

a product of the following form if all mixture levels ∈ {Hd, S d} exclude only a single
token with ¬id:

p(hd
i |Hd

¬i,H
¬d,V, A) ∝

∏

�∈{Hd ,S d}

⎡
⎢⎢⎢⎢⎢⎣

nk,t,¬id + α j,t
∑T

t=1 nk,t,¬id + α j,t

⎤
⎥⎥⎥⎥⎥⎦

[�]

. (12)

The factors in Eq. 12 can be interpreted as posterior means of Dirichlet distributions
with hyperparameters �α j and observation counts �nk,¬id ,

〈
Dir(·|�nk,¬id + �α j)

〉
on level �.

Although this form of full conditional factors is prevalent in a majority of topic models,
with the scope of models considered in this paper alternative forms are possible:

– If [g(↑ xi, i)][�] contains no hidden edges, the denominator can be omitted (e.g.,
nodes with m as only component index).

– If one index id at a mixture level input aggregates a whole sequence of i� at its
output, ¬id corresponds to more than one token in the factor denominator in Eq. 11
(e.g., in LDCC, section topics ym,s aggregate word topic sequences {zm,s,n}n), which
yields a factor analogous to Eq. 10:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∏T
t=1
∏nk,t−1

c=0 (c + α j,t)
∏[
∑T

t=1 nk,t]−1
c=0 (c +

∑T
t=1 α j,t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[�]

. (13)

– Finally, mixture levels with observed parameters have components �ϑk as factors. In
this case, few non-zero elements in �ϑk support sparse representations, while sym-
metric non-zero values cancel out.
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4.2 Parameter Estimation

Generally, estimation of parameters and hyperparameters is part an M-step dual to the
Gibbs E-step in a stochastic EM procedure. It can be performed on a per-node basis in
mixture networks.

Hyperparameters. In many topic models, hyperparameters are of decisive importance,
e.g., to couple component groups or to model data dispersion. As there is no closed-form
solution for estimation of Dirichlet parameters from count data, iterative or sampling-
based approaches are commonly employed. Extending results from [28] yields the
following fixed-point iterations for node-specific standard and symmetric Dirichlet dis-
tributions that result in maximum likelihood estimates:

α j,t ← α j,t

(∑
{k: f (k)= j}Ψ(nk,t + α j,t)

)
− KjΨ(α j,t)

[∑
{k: f (k)= j}Ψ(

∑T
t=1 nk,t + α j,t)

]
− KjΨ(

∑T
t=1 α j,t)

, (14)

α← α
(∑K

k=1
∑T

t=1Ψ(nk,t + α)
)
− KTΨ(α)

T
[(∑K

k=1Ψ([
∑T

t=1 nk,t] + Tα)
)
− KΨ(Tα)

] . (15)

whereΨ(x) = d/dx logΓ(x) is the digamma function and level indicators � are omitted.
For the case j � 1 we use f (↑X) = f (k) for notational simplicity. Each α j,t then is
estimated from Kj components for each of the J component groups. Estimators are
initialised with a coarse-grained heuristic or a previous estimate and converge within
few iterations.

Component parameters. Estimation of component parameters Θ is possible directly
from the statistics of the collapsed state H and estimated hyperparameters A. Using the
posterior mean of Dirichlet distributions given obervation counts �nk for each level �,
Dir(�ϑk|�α j + �nk) =

∏
i Mult(xi|�ϑk) · Dir(�ϑk|�α j), leads to the point estimate:

ϑk,t =
nk,t + α j,t

∑T
t=1 nk,t + α j,t

(16)

where α j,t ≡ α for the symmetric case. Usually several samples H(r), r ∈ [1,R] are taken
from the stationary Markov chain with a sampling lag in between to ensure decorrela-
tion. Finally parameters are averaged: �ϑk ≈ R−1∑

r
�ϑ (r)

k .

4.3 Predictive Inference

In many applications, it is necessary to predict the topics of some query data set V ′
given the modelM trained on the observations V . Regarding the information required
to represent the modelM, two different types of node can be distinguished:

– Topic nodes, � ∈ L∗, represent mixtures whose components are not specific to doc-
uments, i.e., g(↑xi, i) ≡ g(↑xi), andM contains their parameters Θ∗ = {Θ�}�∈L∗ ,

– Sequence nodes, � ∈ L′, represent mixtures specific to documents, andM contains
their hyperparameters A′ = {A�}�∈L′ that allow to find parameters Θ′ = {Θ�}�∈L′ .
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Fig. 3. Mixture network Gibbs sampler development workflow

Thus we can defineM � {Θ∗, A′}, and finding the association of unseen data V ′ with a
state H′ can be achieved using Gibbs sampling with a predictive full conditional anal-
ogous to Eq. 11, only that now it is possible (1) to treat parameters of topic nodes Θ∗
as observed and (2) to restrict sampling to the query state H′ without M-step updates,
which both accelerates convergence of H′ compared to H:

p(h′di |H′d¬i,H
′¬d,V ′,M) ∝

∏

�∈{S ∗d ,H∗d}

[
ϑk,t
][�] ·

∏

�∈{S ′d ,H′d}

⎡
⎢⎢⎢⎢⎢⎣

K∏

k=1

Δ(�nk + �α j)

Δ(�nk,¬id + �α j)

⎤
⎥⎥⎥⎥⎥⎦

[�]

. (17)

With this equation, all findings on generic full conditionals that were derived from the
analogous Eq. 11 can be reused, including Eqs. 12 and 13. Parameters can be estimated
again using Eq. 16.

5 Implementation

The coherence of Eqs. 12–17 across models leads to the conclusion that Gibbs sam-
pler implementations can be achieved based on a small number of computation kernels.
Few reusable kernels are desirable when targeting architectures that require high opti-
misation effort. In this section, a proof-of-concept implementation of the MN approach
is outlined that, although it targets a CPU-based architecture, may be a basis for topic
model implementation on massively parallel and FPGA-based architectures.

5.1 Generic Gibbs Samplers

The implementation of MN Gibbs samplers is based on a multi-stage workflow that
allows to construct software modules with increasing levels of optimisation. This is
intended to keep the interface for the researcher simple while retaining flexibility with
respect to target architectures. An overview of the workflow is given in Fig. 3.

The central block in this process is the Java-based mixture network code generator,
which is fed with a simple text script of a given MN (for example that shown in Fig. 4)
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data: # input data

w[m,n] : M * N[m] -> V # word tokens (vocabulary size V)

state: # latent variables (E-step)

x[m,n] : M * N[m] -> X # supertopics (defines dimension X)

y[m,n] : M * N[m] -> Y # subtopic (defines dimension Y)

est: # estimated parameters (M-step)

thetar : M * X # document-supertopic level 1

theta : M * X * Y # supertopic-subtopic level 2

phi : Y * V # subtopic-term level 3

alphar : 1 # level 1 hparam (scalar)

alpha : X * Y # level 2 hparam (with grouping)

beta : 1 # level 3 hparam (scalar)

network: # format: parent_values >>

# param[g(pav,i)] | hparam[f(pav)]

# >> child_edge[sequence] = value

m >> thetar[m] | alphar >> x[m,n] = x

x >> theta[m,x] | alpha[x] >> y[m,n] = k

k >> phi[k] | beta >> w[m,n]

Fig. 4. Commented mixture network script for 4-level PAM

and allows two modes of operation: (a) The generator can create an instance of a Java-
based Gibbs sampling class directly from the model script, e.g., for model validation
purposes, and: (b) Based on a set of code templates, it generates C source code of the
Gibbs sampler kernels that can then be further optimised and integrated with other code
before it is compiled for the native computing platform.

In both cases, the generator applies the results of Sec. 4 to the information parsed
from the script, creating Gibbs sampling algorithms as outlined in Fig. 5. Across dif-
ferent MN models, the design follows a stochastic EM approach that after initialisation
loops over alternating sampling (E) and hyperparameter estimation (M) steps until con-
vergence, after which samples can be drawn from the posterior. Important data struc-
tures in the generated code include the Markov state H, its count statistics as well as the
arrays for multinomial sampling from the full conditional. The main computation ker-
nels are those for full conditionals, Eq. 12 (including filling of the multinomial masses
of p(hd

i |·)), for parameter estimation, Eqs. 14–16, as well as for convergence monitor-
ing, which is described below. Currently, in addition to standard Dirichlet–multinomial
nodes models can include observed nodes and parameters but are restricted to a single
token sequence, which excludes aggregation as in the LDCC example.

Convergence monitoring and model quality. Gibbs sampling and other MCMC meth-
ods pose the general problem to determine when their Markov chain reaches a stationary
state that allows to sample from the posterior distribution. With standard convergence
diagnostics [29] difficult to apply to the high-dimensional discrete problem at hand, an
alternative approach is to use some measure of model quality that reaches an optimum
at convergence. Because of its generalisability and frequent use of similar approaches
in topic model evaluation, the likelihood of test data given the trained model M (as
defined in Sec. 4.3) has been chosen as quality measure, whose generalisation can be
outlined as follows:
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Algorithm mixnetGibbs(V,V ′)
Input: training and test observations V,V ′
Global data: level-specific dimensions KH = {K�}�∈H , T H = {T �}�∈H , selection functions f and g, count

statistics N� = [{�nk}Kk=1]�, N� ∈ N and their sums Σ� = [{∑x nk,t}Kk=1]�, Σ� ∈ Σ for each node
with hidden parameters, memory for full conditional array p(hd

i |·), likelihood L
Output: topic associations H, parameters Θ and hyperparameters A
// initialise
for all nodes � in topological order do

random initialise hidden sequences h�i ∼ Mult(1/T �), update counts N� and Σ�

// Gibbs EM over burn-in period and sampling period
while not (converged and R samples taken) do

// stochastic E step to sample collapsed state

for all dependency groups Hd ⊆ H do
for all joint tokens hd

i ∈ Hd do
decrement counts Nd and sums Σd according to current state hd

i

assemble array for p(hd
i |Hd

¬i,H
¬d,V) acc. to Eq. 12

sample new state hd
i ∼ p(hd

i |Hd
¬i,H

¬d ,V)
increment counts Nd and sums Σd according to changed state hd

i

// M step to estimate parameters
for all nodes � do

update hyperparameters A� acc. to Eqs. 14 and 15

for all nodes � do
find parameters Θ� according to Eq. 16

// monitor convergence using test data likelihood
L ← call testLik(Θ, A,V ′) using Eqs. 16–18
if L converged and L sampling iterations since last read out then

// different parameter read outs are averaged

Θ̄← Θ̄ +Θ
// Complete parameter average

Θ = Θ̄/R

Fig. 5. Generic Gibbs sampling algorithm

– For each sequence node of the network, the hidden state H′ is trained on test data
V ′ = {v′i }i according to Eq. 17, resulting in predictive parameters Θ′ = {Θ′�}�.

– For each test-data token v′i , the likelihood given parameters {Θ′, Θ∗} is calculated:

p(v′i |Θ′, Θ∗) =
∑

h′i

∏

�∈L

[
ϑk,t
][�] (18)

where the sum over h′i refers to marginalisation of all hidden variables. To calculate
Eq. 18 efficiently, the mixture network is traversed level by level according to its
generative process, multiplying the respective level parameters (elements of Θ′� or
Θ∗�) and summing over values of latent variables h′i

� not indexing components k�

of child levels. Further, duplicate v′i have identical likelihood.
– The log likelihood of held-out test documents is accumulated from the token like-

lihoods: L(V ′) =
∑

i log p(v′i |Θ′, Θ∗).
As a variant, the test-set likelihoodL(V ′) can be exponentiated and normalised with the
number of tokens in the test data W′ to obtain the perplexity:P(V ′) = exp(−L(V ′)/W′),
i.e., the inverse geometric mean of the token likelihoods. Both L(V ′) and P(V ′) are
measures of how well a model is able to explain unseen data. Specifically, perplexity
can be intuitively interpreted as the expected size of a vocabulary with uniform word
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distribution that the model would need to generate a token of the test data. A model that
better captures co-occurrences in the data requires fewer possibilities to choose tokens
given their context (document etc.). Due to the stochastic nature of the states H and H′,
values ofL(V ′) andP(V ′) are not strictly monotonic over iterations. Thus, convergence
of their moving-average process is used as indicator of Markov chain stationarity.

5.2 Validation

At this point, the focus of validation was on algorithms generated for a single-processor
PC architecture, providing a basis for future investigation of specific high-performance
architectures. In order to validate the implementation taken, generated and manually de-
veloped mixture network Gibbs samplers have been compared, including the examples
LDA, ATM and PAM from Fig. 2 as well as several other models with two and three
dependent hidden variables that handle labelled texts. Beside verification of the gener-
ated kernels, the code has been tested on the NIPS1-122 and Reuters-215783 data sets
that in addition to text contain label information (authors, categories). Temporal per-
formance achieved with the generated C-based algorithms came close to the respective
manual implementations (Δt< 2.5%). With equal seeds for random number generators,
numerical behaviour turned out to be identical, considering Θ, A and P(V ′). Validation
results are presented in further detail in a technical report [30].

6 Conclusions

We have presented a generic approach to topic models that covers a broad range of
models in the literature. From their general characteristics, we have developed a repre-
sentation of topic models as “mixture networks” along with a domain-specific graphical
representation that complements Bayesian networks. Based on the mixture network rep-
resentation, Gibbs sampling full conditionals were derived, which resulted in a generic
Gibbs sampling algorithm and a “meta-Gibbs sampler” implementation based on code
generation for specific models.

Future work can depart from these results in various directions. Extensions like the
ones listed in Sec. 2 are desirable to widen the scope of the the mixture network ap-
proach, e.g., towards non-discrete observations as in the Corr-LDA model [6] and infi-
nite mixtures with Dirichlet process priors [16]. Furthermore, the generic approach for
Gibbs sampling may be applied analogously to collapsed variational Bayes [20].

The foremost research direction is, however, related to the actual motivation of this
article discussed in the Introduction: to extend the code generation to high-performance
computing architectures to help tackle the scalability issues common with topic mod-
els. The vision of this is a high-level language as a user front-end for implementations
with optimised computing kernels. In addition to targeting computing platforms, im-
provements may be gained from heuristics like the statistically motivated acceleration
of multinomial samplers proposed in [31], especially for the large sampling spaces of
dependent latent variables.

2 http://www.cs.toronto.edu/˜roweis/data.html.
3 http://www.daviddlewis.com/resources/testcollections/reuters21578/ .

http://www.cs.toronto.edu/~roweis/data.html
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Abstract. This paper presents a novel feature selection method for clas-

sification of high dimensional data, such as those produced by microar-

rays. It includes a partial supervision to smoothly favor the selection of

some dimensions (genes) on a new dataset to be classified. The dimen-

sions to be favored are previously selected from similar datasets in large

microarray databases, hence performing inductive transfer learning at

the feature level. This technique relies on a feature selection method em-

bedded within a regularized linear model estimation. A practical approx-

imation of this technique reduces to linear SVM learning with iterative

input rescaling. The scaling factors depend on the selected dimensions

from the related datasets. The final selection may depart from those

whenever necessary to optimize the classification objective. Experiments

on several microarray datasets show that the proposed method both im-

proves the selected gene lists stability, with respect to sampling variation,

as well as the classification performances.

1 Introduction

Classification of microarray data is a challenging problem as it typically relies
on a few tens of samples but several thousand dimensions (genes). The number
of microarray experiments needed to obtain robust models is generally orders of
magnitude higher than the actual size of most datasets [1]. The number of avail-
able datasets is however continuously rising. Large databases like the NCBI’s
Gene Expression Omnibus (GEO) [2] or the EBI’s ArrayExpress [3] offer tens
of thousand microarray samples which are well formatted and documented. The
construction of a large microarray dataset consisting of the simple juxtaposition
of independent smaller datasets would be difficult or irrelevant due to differ-
ences either in terms of biological topics, technical constraints or experimental
protocols.

Transfer learning techniques have been designed to overcome situations where
too few samples for the task at hand are available, but where experience from
slightly different tasks is available [4,5]. Knowledge is extracted from previous
experience (source domains) to help solving the new problem (target domain).

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 533–547, 2009.
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Samples of source and target domains are supposed to be drawn from similar
but different distributions. This setting contrasts with semi-supervised learning
where samples are supposed to be drawn from the same distribution but where
some unlabeled samples are used to build the model [6].

Inductive transfer approaches require labeled data both for the source and
target domains [7]. The target domain examples are unlabeled for transductive
transfer methods [8] while fully unsupervised transfer techniques have been de-
signed as well [9]. The transfer of knowledge between source and target domains
may concern the examples [10,11,12], some model parameters [13,14] or, as in
the present work, the feature space [7,15,16].

In multi-task learning [7] a common feature representation is learned at the
same time for several tasks. Structural correspondence learning [15] uses fea-
tures supposed to be relevant for several domains to generate new features for
the target domain. An alternative method compares learning tasks by measuring
a distance between relevance weights on a set of common features [16]. In con-
trast to those approaches for transferring feature representation, the transferred
knowledge in our method can be automatically partly or fully dropped whenever
it does not help to optimize the classification objective on the target domain. As
a result, the specific choice of source datasets is not too critical. Benefits of trans-
fer learning have been reported mainly as a gain in classification performances
but, as detailed below, the proposed approach also improves the stability of the
selected features.

In the particular context of microarray data, feature selection is commonly
performed, both to increase the interpretability of the predictive model and
possibly to reduce its cost [17,18]. In some cases feature selection has also been
shown to improve classification accuracy [19]. Biomarker selection specifically
refers to the identification of a small set of genes, also called a signature, related
to a pathology or to an observed clinical outcome after a treatment. The lack
of robustness of biomarker selection has been outlined [20]. A good signature
is ideally highly stable with respect to sampling variation. In the context of
biomarker selection from microarray data, high stability means that different
sub-samples of patients lead to very similar sets of biomarkers. This is motivated
by the assumption that the biological process explaining the outcome is mostly
common among different patients.

Support Vector Machines (SVMs) are particularly convenient to classify high
dimensional data with only a few samples. In their simplest form, SVMs simply
reduce to maximal margin hyperplanes in the input space. Such models were
shown to successfully classify microarray data either on the full input space [21]
or combined with feature selection [22,23,24]. The latter approaches are embed-
ded as the selection directly uses the classifier structure.

In the present work we rely on another embedded selection method with linear
models, called l1-AROM [25]. This specific choice is motivated by the possibil-
ity to extend this approach in a simple yet efficient way to perform transfer
learning by biasing the optimization procedure towards certain dimensions. We
proposed recently such a partially supervised (PS) extension [26] but the favored
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dimensions were then defined from prior knowledge. In the context of microarray
data, molecular biologists may indeed sometimes guess that a few genes should
be considered a priori more relevant. In the present work, we do not use such
prior knowledge but rather related datasets, hence performing inductive trans-
fer learning at the feature level. The additional benefits are a fully automated
feature selection procedure and the possibility to choose the number of features
to be transferred independently of some expert knowledge. A practical approx-
imation of this technique reduces to learn linear SVMs with iterative rescaling
of the inputs. The rescaling factors depend here on previously selected features
from existing datasets.

This initial feature selection on source domains is performed using a simple
univariate t-test ranking while the final iterative selection is intrinsically mul-
tivariate. Using an initial univariate selection on the source domains is both
computationally efficient and arguably a relevant starting point before transfer-
ring to a distinct target domain. As shown in our experiments this choice results
in significant stability and classification performance improvements.

The rest of the paper is organized as follows. Section 2 briefly reviews the
l1-AROM and l2-AROM feature selection techniques. Section 3 describes our
partially supervised feature selection technique extending the AROM methods.
Section 4 details how to use this technique to perform transfer learning. Exper-
iments on microarray datasets are reported in section 5. Conclusions and future
perspectives are discussed in section 6.

2 The AROM Methods

Given m examples xi ∈ Rn and the corresponding class labels yi ∈ {±1} with
i = 1, ..., m, a linear model g(x) predicts the class of any point x ∈ Rn as follows.

g(x) = sign(w · x + b) (1)

Feature selection is closely related to a specific form of regularization of this deci-
sion function to enforce sparsity of the weight vector w. Weston et al. [25] study
in particular the zero-norm minimization subject to linear margin constraints:

min
w

||w||0 subject to yi(w · xi + b) ≥ 1 (2)

where ||w||0 = card{wj |wj �= 0} and card is the set cardinality. Since problem (2)
is NP-Hard, a log l1-norm minimization is proposed instead.

min
w

n∑
j=1

ln(|wj |+ ε) subject to yi(w · xi + b) ≥ 1 (3)

where 0 < ε � 1 is added to smooth the objective when some |wj | vanishes. The
natural logarithm in the objective facilitates parameter estimation with a sim-
ple gradient descent procedure. The resulting algorithm l1-AROM1 iteratively
optimizes the l1-norm of w with rescaled inputs.
1 AROM stands for Approximation of the zero-norm minimization.



536 T. Helleputte and P. Dupont

The l2-AROM method further approximates this optimization by replacing
the l1-norm by the l2-norm. Even though such an approximation may result in
a less sparse solution, it is very efficient in practice when m � n. Indeed, a dual
formulation may be used and the final algorithm boils down to a linear SVM
estimation with iterative rescaling of the inputs. A standard SVM solver can be
iteratively called on properly rescaled inputs. A smooth feature selection occurs
during this iterative process since the weight coefficients along some dimensions
progressively drop below the machine precision while other dimensions become
more significant. A final ranking on the absolute values of each dimension can
be used to obtain a fixed number of features.

3 The Partially Supervised AROM Methods

Whenever some knowledge on the relative importance of each feature is available
(either from actual prior knowledge or from a related dataset), the l1-AROM
objective can be modified by adding a prior relevance vector β = [β1, ..., βn]t

defined over the input dimensions. Let βj > 0 denote the relative prior relevance
of the jth feature, the higher its value the more relevant the corresponding feature
is a priori assumed. In practice, only a few dimensions can be assumed more
relevant (e.g. βj > 1) while the vast majority of remaining dimensions are not
favored (e.g. βj = 1). Section 5 further discusses the practical definition of β.
In contrast with semi-supervised learning, this is a form of partial supervision
(PS) on the relevant dimensions rather than the labels.

The optimization problem of PS-l1-AROM is defined to penalize less the di-
mensions which are assumed a priori more relevant:

min
w

n∑
j=1

1
βj

ln(|wj |+ ε) subject to yi(w · xi + b) ≥ 1 (4)

It was recently shown how problem (4) can be reformulated as an iterated l1-
norm optimization with margin constraints on rescaled inputs [26]:

min
w′

n∑
j=1

|w′
j | subject to yi(w′ · (xi ∗wk ∗ β) + b) ≥ 1 (5)

where ∗ denotes the component-wise product and the initial weight vector is
defined as w0 = [1, . . . , 1]t. At iteration k + 1, problem (5) is solved given the
previous weight vector wk and the fixed relevance vector β, and the process is
iterated till convergence.

Similarly to the l2-AROM method presented in section 2, problem (5) can
be approximated by replacing the l1-norm by the l2-norm. This modification
results in PS-l2-AROM, a practical approach which is both easy to implement
and computationally more efficient. The l2-norm formulation indeed reduces to
estimate linear SVMs with iteratively rescaled margin constraints. The original
l2-AROM method is obtained when βj = 1 (∀j), in other words, without prior
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Fig. 1. 2D-representation of the Zero-Norm Approximation by
∑

j
1

βj
ln |wj |. Left:

without prior relevance (β = [1, 1]t). Right: with prior relevance (β = [5, 1]t).

preference between the input features. PS-l2-AROM further uses the relevance
vector β to smoothly favor certain dimensions within the selection process.

Figure 1 illustrates why problem (3) is a good approximation to the zero-norm
minimization. This objective is nearly flat on the whole space of parameters w
except when a specific wj tends towards zero. The objective is there strongly
minimized. It also illustrates what happens if this objective is modified by intro-
ducing prior relevance on dimensions, as in problem (4). The objective function
is again nearly flat everywhere but the gradient is now even smaller along a
dimension corresponding to a larger βj .

4 Transfer Learning with PS-l2-AROM

We discuss here how to use the PS-l2-AROM method for transfer learning. Let
the Target Domain DT be a set of samples xi ∈ Rn, generated according to a
distribution PT (x), and associated class labels yi ∈ {±1} following PT (y|x), i =
1, ..., m. The task is to build a robust classification model gT (x) and to identify
a discriminative signature ST for DT . It is generally possible to find related
datasets, called Source Domains DS , for which PS(y|x) ≈ PT (y|x) but PS(x) �=
PT (x). For example, several microarray datasets are available on GEO [2] for
which the class labels correspond to the same concepts, cancer tissue or normal
tissue, but for which the gene expression distributions differ. There are many
sources of divergence such as the type of biological samples, the RNA extraction
protocol, the normalization steps applied to raw data, etc.

It is possible to use a partially supervised feature selection method as a trans-
fer learning technique. The proposed approach is an inductive transfer learning
technique since the class labels are known both for DS and DT . We assume that
the data from all domains share a sufficiently large set of n features and, without
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loss of generality, that feature index j in DS maps to the same index in DT . The
proposed approach simply uses any convenient feature selection on DS to build
an initial signature SS . A prior relevance vector β ∈ Rn is defined from SS to
favor the actual selection of some dimensions on DT :

βj =
{

B ∀j ∈ SS

1 ∀j /∈ SS
(6)

where B > 1 corresponds to the weight to favor features belonging to SS . The
choice of B is arbitrary but experiments reported in section 5.6 illustrate that
the proposed method is not sensitive to a specific choice for a large range of
possible values. The vector β is used to bias the selection of features on DT via
PS-l2-AROM to obtain a final signature ST . The selection on DT is influenced
by the knowledge extracted from DS , i.e. a set of indexes of relevant features.
Those transferred features are assumed relevant for DS but not necessarily highly
discriminative on DT , since PS(x) �= PT (x). Our modeling assumption is how-
ever that the features extracted from similar tasks provide useful information as
compared to selecting features only from a single domain DT . This assumption
is confirmed by our practical experiments reported in section 5.

Any standard feature selection method can be used for the initial selection
on DS. We recommend in particular the use of a simple univariate technique
such as a t-test ranking. It is computationally efficient and this initial selection
is not meant to be highly accurate on DS but to guide the detailed selection to
be performed eventually on DT .

5 Data and Experiments

This section describes and evaluates several practical ways of transfer learning
based on the partially supervised feature selection implemented in PS-l2-AROM.
Three prostate cancer microarray datasets are presented in section 5.1. We detail
in section 5.2 the metrics used to assess the stability of selected features and clas-
sification performances. Baseline results are obtained with no transfer, that is by
applying the l2-AROM feature selection technique on a given dataset. Improved
stability and classification performances are obtained with a single transfer. This
first protocol uses one related dataset as source domain to guide the selection
on the target domain (section 5.3). Further improvements can be obtained with
multiple transfer which combines several source domains (section 5.4). Experi-
mental results are presented in section 5.5. Finally, the sensitivity to a specific
choice of the prior weight value (the B parameter) is analyzed in section 5.6.

In a nutshell those experimental results show that transfer learning based on
partially supervised feature selection always leads to a gain in stability as well
as a systematic gain in classification performance for signature sizes of interest.

5.1 Microarray Data

Table 1 presents the main characteristics of the three prostate cancer microar-
ray datasets used in this experimental section. For convenience, datasets will
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Table 1. Microarray prostate datasets. Columns respectively show the dataset name,

the number of normal samples, the number of tumor samples, the original number of

features and the type of Affymetrix chips used.

dataset Normal Tumor Features Chip

Singh 50 52 12,625 HGU95Av2

Chandran 18 86 12,625 HGU95Av2

Welsh 9 25 12,626 HGU95A

be named after the first author of the publication along which they were made
available (Singh [27], Chandran [28] and Welsh [29]). In the original publi-
cations, the task is almost the same for the three datasets: binary classification
between tumor and normal tissues. In Chandran, tumor samples are of two
types: primary tumor and metastatic tumor. Tumor samples in Welsh corre-
spond to 24 primary tumors and 1 lymph node metastasis. No precision is made
about the type of tumor tissue in Singh. The microarray technology used to
produce those datasets is the same for Singh and Chandran, but is a bit older
for Welsh (see table 1). Consequently, features (genes) present on each type of
chip differ very slightly. Samples and RNA extraction were also performed ac-
cording to different protocols. The internal normalization to produce one value
for each feature also differ from set to set. All these differences make their simple
combination in a larger dataset irrelevant. The three datasets are here reduced
to the set of 12,600 features they share in common.

5.2 Evaluation Metrics

Stability measures to which extent k sets S of s selected features (gene signa-
tures) share common features. Those sets can typically be produced by selecting
features from different samplings of the data. Kuncheva [30] proposed such a
stability index:

K({S1, . . . ,Sk}) =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

|Si ∩ Sj | − s2

n

s− s2

n

(7)

where n is the total number of features, and Si, Sj are two signatures built from
different subsets of the training samples. The s2

n ratio in this formula corrects
a bias due to the chance of selecting common features among two sets chosen
at random. This correction motivates our use of this particular stability index.
This index satisfies −1 < K ≤ 1 and the greater its value the largest the number
of commonly selected features in the various sets. A negative index for a set of
signatures means that feature sharing is mostly due to chance.

Stability alone cannot characterize the quality of a subset of features. Indeed,
if a large randomly chosen set of features were purely forced in every signature,
the stability would be very high, but the model built on those features would
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likely have a poor classification performance. This performance is assessed here
with the Balanced Classification Rate:

BCR =
1
2

(
TP

P
+

TN

N

)
(8)

where TP (resp. TN) is the number of positive (resp. negative) test samples
correctly predicted as positive (resp. negative) among the P positive (resp. N
negative) test samples. BCR is preferred to accuracy because microarray datasets
often have unequal class priors. BCR is the average between specificity and
sensitivity, two very common measures in the medical domain. BCR can also be
generalized to multi-class problems more easily than ROC analysis.

5.3 Single Transfer

Our first experimental protocol uses (k = 200) random 90%-10% samplings from
the target domain DT . Each 90% fraction forms a training set. These samples
are first normalized to zero median and unit standard deviation. Features are
then selected via PS-l2-AROM and a linear soft-margin SVM is built on the
selected dimensions. Each 10% fraction forms the associated test samples that
are preprocessed according to the training normalization parameters. The vector
β used for PS-l2-AROM is set by selecting a signature SS on DS with a t-test
ranking2. The 50 top ranked features define SS , which is a common default
signature size for biomarker selection. The feature selection is performed on DT

while favoring the genes from SS according to:

βj =
{

10 ∀j ∈ SS

1 ∀j /∈ SS
(9)

Here DS is a single dataset different from DT . Given the three datasets available,
six combinations of DS and DT are tested. Stability over the 200 samplings and
averaged BCR performances are reported. For comparison purposes, the same
protocol is performed with no transferred knowledge, i.e. with βj = 1 , ∀j ∈
1, ..., n.

5.4 Multiple Transfer

When several datasets are available as source domains it may be useful to com-
bine the knowledge extracted from each of them to guide the feature selection
on the target domain DT . Such a multiple transfer protocol is described below
with two source domains. The extension to more than two source domains is
straightforward.

2 This univariate filtering method ranks genes according to
μj+−μj−√

σ2
j+/m++σ2

j−/m−
, where

μj+ (resp. μj−) is the mean expression value of the gene j for the m+ positively

(resp. m+ negatively) labeled samples, and σj+, σj− are the associated standard

deviations.
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A signature SS of 50 features is extracted from the source domains DS1,S2

and applied to DT via PS-l2-AROM. Features are ranked according to a t-test
on each source dataset. The p best ranked features are selected from each source
dataset and the intersection of those two signatures is computed. The parameter
p is chosen such that the size of the intersection is 50. The rationale behind this
choice is to transfer the same amount of knowledge in DT as compared to the
single transfer protocol. The values of p used for the three possible combinations
of the available source datasets are 557 for (Singh

⋂
Chandran), 275 for

(Welsh

⋂
Singh) and 385 for (Welsh

⋂
Chandran). Those differences result

from the fact that some combinations have more top ranked features in common
than others. For example, the number of features needed to build an intersected
signature of 50 genes is about twice as much for Singh and Chandran as
compared to Singh and Welsh. This could explain why using Singh rather
than Chandran as DS for Welsh as DT gives better results in a single transfer
protocol (see section 5.5).

5.5 Results

Figures 2 and 3 respectively show the BCR and the stability results for vari-
ous signature sizes |ST |. For signatures significantly larger than the transferred
knowledge (|SS | = 50) results are equivalent to baseline results (no transfer). In
contrast, for signature sizes of practical interest (a few tens of genes), there is a
large increase both in classification performance and stability.

For example, transferring knowledge from Singh to Welsh (top of fig. 2)
improves the average BCR from 79.6% (resp. 65.7%) for a signature size of 16
(resp. 10) genes up to more than 99.2% (resp. 98.7%). Those differences are
statistically significant according to the corrected resampled t-test3 proposed
in [31]. BCR results on the Chandran and Singh target datasets follow the
same trends.

Multiple transfer may further improve the BCR performances. This is in par-
ticular the case on the Chandran dataset (center of fig. 2) with transferred
knowledge from Welsh

⋂
Singh. For example, the BCR differences are sta-

tistically significant (p-value ≤ 0.025) between a single transfer and a multiple
transfer with a final signature of 10 genes. In general, multiple transfer BCR re-
sults are always equivalent or better than single transfer results. Multiple transfer
thus offers a more robust approach not requiring to carefully select which source
domain need to be considered for a given target domain.

Transfer learning always improves the stability of the selected gene lists as
illustrated in Fig. 3. The maximal stability is often reached around 50 fea-
tures, which comes with no surprise since precisely 50 genes are favored during
the selection on the target domain. However this maximal stability does not
reach 100% which illustrates that the selected genes are not just those belonging
to SS .
3 Such a test corrects for the fact that the various test sets are not independent since

they may overlap. The BCR differences are significant with a (likely conservative)

p-value = 1.9 × 10−2 for 16 genes and a p-value = 2.6 × 10−4 for 10 genes.
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Fig. 2. Classification performances (Balanced Classification Rate) obtained on

Welsh (top), Chandran (center) and Singh (bottom). No Transfer is the baseline

for which features are selected on the target dataset without prior preference. The next

two curves specify which dataset was used in a single transfer setting. The fourth curve

refers to the multiple transfer setting.
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Fig. 3. Signature stability (Kuncheva index) obtained on Welsh (top), Chandran

(center) and Singh (bottom). No Transfer is the baseline for which features are se-

lected on the target dataset without prior preference. The next two curves specify which

dataset was used in a single transfer setting. The fourth curve refers to the multiple

transfer setting.
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5.6 Impact of Prior Relevance Weight

In the experiments described in section 5.5, the value B = 10 was chosen to
favor some dimensions via PS-l2-AROM. The influence of a specific choice of
the B value on stability and classification performances is analyzed in this
section. We detail experiments with multiple transfer since this approach of-
fers the best results so far. Figure 4 displays stability and BCR results for
B = {1, 2, 5, 10, 100, 1000} on Welsh. The curves for B = 1 and B = 10 corre-
spond to the previous settings respectively with no transfer and multiple transfer.
Equivalent trends are observed on the other datasets (results not shown). The
influence of the B value can be summarized as follows.

Results show that the higher the B value the stronger the stability peak
around 50 features. This is a logical consequence of the design of PS-l2-AROM.
The stability is not influenced for signature sizes |ST | significantly larger than
50 features except for a very large B = 1000. For signature sizes smaller than
50 a better stability is obtained with B in the range [10, 100]. BCR results show
a positive effect of the partial supervision as soon as B is greater than 5. The
proposed approach is not highly sensitive to a specific choice of B in the range
[5, 100]. The default value of B = 10 offers a reasonable choice overall. Hence the
proposed approach does not require to carefully optimize the meta-parameter B
in a nested validation loop.
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Fig. 4. Impact of the prior relevance weight on signature stability (Kuncheva index)

and classification performances (Balanced Classification Rate) on Welsh

6 Conclusions and Perspectives

We address in this paper the problem of transfer learning for feature selection
and classification of high dimensional data, such as those produced by microarray
experiments. We propose a feature selection method on a target domain that
can be partially supervised (PS) from features previously extracted from related
source domains. Such knowledge can be acquired from public databases like
GEO [2] or ArrayExpress [3]. The initial feature selection on the source domains
is typically performed with a fast univariate technique. The purpose of this initial
selection is to guide the selection process on the target domain.
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We rely here on our recently proposed PS-l2-AROM method, a feature selec-
tion approach embedded within the estimation of a regularized linear model [26].
This algorithm reduces to linear SVM learning with iterative rescaling of the in-
put features. The scaling factors depend here on the selected dimensions on the
source domains. The proposed optimization procedure smoothly favors the pre-
selected features but the finally selected dimensions may depart from those to
optimize the classification objective under rescaled margin constraints.

Practical experiments on several microarray datasets illustrate that the pro-
posed approach not only increases classification performances, a usual benefit of
a sound transfer learning scheme, but also the stability of the selected dimen-
sions with respect to sampling variation. We also show how a multiple transfer
from various source domains can bring further improvements.

The proposed approach relies on a meta-parameter defining the prior weight of
the favored dimensions during the partially supervised feature selection. We show
experimentally that this method is not sensitive to a specific choice of this parame-
ter for a large range of possible values. Distinct weight values for different features
could also be considered in the future. One could for instance define those weights
as a function of the p-values of the initial t-test. Here the t-test was applied on
the source domain(s) but it could also be interesting to compute the t-test on the
target domain itself, hence without transfer. The combination of a simple feature
ranking method and the partially supervised feature selection could already im-
prove stability and/or classification performances on a given dataset.

We rely on a simple univariate selection on the source domain(s). The purpose
of this initial selection is indeed not to be highly accurate since the final and more
refined selection is performed on a distinct target domain. Our current choice is a
simple t-test ranking for this initial selection. Several alternatives could however
be considered, including a multivariate embedded selection method such as L2-
AROM. More importantly, the size of the initial signature extracted from the
source domain(s) is currently fixed to 50 genes. This is a common default value
for biomarker selection and it offers very good performances. It would however
be interesting to investigate further the influence of this size on the quality
of the final selection. A related issue would be the automatic selection of the
best source domain(s) for a given target domain and the number of features
to be extracted from each of them. Simple similarity measures between various
datasets can probably help in this regard.

Our partially supervised feature selection is a general approach which does
not depend, at least in principle, on how the favored dimensions are initially
selected. The present work relies on other related datasets while our previous
work used real prior knowledge from field experts [26]. A further and natural
extension would combine the transferred knowledge which such prior knowledge
whenever available.
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Abstract. Probabilistic logics have attracted a great deal of attention

during the past few years. While logical languages have taken a central

position in research on knowledge representation and automated rea-

soning, probabilistic graphical models with their probabilistic basis have

taken up a similar position when it comes to reasoning with uncertainty.

The formalism of chain graphs is increasingly seen as a natural proba-

bilistic graphical formalism as it generalises both Bayesian networks and

Markov networks, and has a semantics which allows any Bayesian net-

work to have a unique graphical representation. At the same time, chain

graphs do not support modelling and learning of relational aspects of a

domain. In this paper, a new probabilistic logic, chain logic, is developed

along the lines of probabilistic Horn logic. The chain logic leads to rela-

tional models of domains in which associational and causal knowledge are

relevant and where probabilistic parameters can be learned from data.

1 Introduction

There has been a considerable amount of work in the field of artificial intelli-
gence during the past two decades on integrating logic and probability theory.
This research was motivated by perceived limitations of both formalisms. Logic
has for long acted as the common ground for almost all research on knowledge
representation, reasoning and learning in artificial intelligence; yet, uncertainty
cannot be handled easily in logic. Probabilistic graphical models take probability
theory as their foundation; they have been proposed as formalisms for statistical
learning and for reasoning with uncertainty. Although their associated graphi-
cal representation allows specifying relationship among objects in the domain of
discourse such that it is possible to reason about their statistical dependences
and independences, probabilistic graphical models are essentially propositional
in nature, and they lack the representational richness of logics.

Several researchers have proposed probabilistic logics that merge those two
types of languages in an attempt to redress their individual shortcomings. A va-
riety of such languages is now available, each of them adopting a different view
on the integration. Unfortunately, it appears that all of the available frame-
works are still restricted in one way or the other. In particular, the available

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 548–563, 2009.
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languages either support representing Bayesian-network-like independence in-
formation or Markov-network-like independence information. In this paper, we
describe a probabilistic first-order language that is more expressive than similar
languages developed earlier, in the sense that the probabilistic models that can
be specified and reasoned about have Bayesian and Markov networks as special
cases. This new probabilistic logic is called chain logic. This paper addresses the
representation and reasoning aspects of chain logic as well as parameter learning
of chain logic theories.

The organisation of this paper is as follows. In Section 2 we provide an
overview of the basic notions of Horn clauses and chain graphs. Section 3 con-
tains an introduction to the chain logic language, with details on its syntax and
semantics. In Section 4, we focus on learning the parameters of chain logic the-
ories. In Section 5 the most important related work is introduced and a detailed
comparison to this is provided. Finally, Section 6 presents our conclusions.

2 Preliminaries

The work discussed in this paper builds upon two separate branches of research:
(i) probabilistic graphical models, and (ii) abductive logic. We start by sum-
marising the basic facts about probabilistic graphical models, in particular chain
graph models. This is followed by a review of central notions from abductive
logic. Both frameworks act as the foundation for chain logic as developed in the
remainder of the paper.

2.1 Chain Graphs

A chain graph (CG) is a probabilistic graphical model that consists of labelled
vertices, that stand for random variables, connected by directed and undirected
edges. This representation allows chain graphs to be considered as a framework
that generalises both directed acyclic graph probabilistic models, i.e., Bayesian
networks, and undirected graph probabilistic models, i.e., Markov networks [4].
The definitions with respect to chain graphs given in this paper are in accordance
with [5].

Let G = (V, E) be a hybrid graph, where V denotes the set of vertices and
E the set of edges, where an edge is either an arc (directed edge), or a line
(undirected edge). Let indexed lower case letters, e.g., v1 and v2, indicate vertices
of a chain graph. We denote an arc connecting two vertices by ‘→’ and a line
by ‘−’. Consider two vertices v1 and v2. If v1 → v2 then v1 is a parent of v2. If
v1− v2 then v1 (v2) is a neighbour of v2 (v1). The set of parents and neighbours
of a vertex v are denoted by pa(v) and ne(v), respectively.

A path of length n in a hybrid graph G = (V, E) is a sequence of distinct
vertices v1, . . . , vn+1, such that either vi − vi+1 ∈ E, vi → vi+1 ∈ E, or vi ←
vi+1 ∈ E. A directed path is a path which includes at least one arc, and where all
arcs have the same direction. A cycle is a path where the first and last vertex are
the same. A chain graph is a hybrid graph with the restriction that no directed
cycles exist.
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If there is a line between every pair of vertices in a set of vertices, then this
set is named complete. A clique is a maximally complete subset. Now, consider
the graph obtained from a chain graph by removing all its arcs. What are left
are vertices connected by lines, called chain components ; the set of all chain
components is denoted here by C.

Associated to a chain graph G = (V, E) is a joint probability distribution
P (XV ) that is faithful to the chain graph G, i.e., it includes all the independence
information represented in the graph. This is formally expressed by the following
chain graph Markov property:

P (XV ) =
∏
C∈C

P (XC | Xpa(C)) (1)

with V =
⋃

C∈C C, and where each P (XC | Xpa(C)) factorises according to

P (XC | Xpa(C)) = Z−1(Xpa(C))
∏

M∈M(C)

ϕM (XM ) (2)

given that M(C) is the complete set in the moral graph1 obtained from the
subgraph GC∪pa(C) of G. The functions ϕ are non-negative real functions, called
potentials ; they generalise joint probability distributions in the sense that they
do not need to be normalised. Finally, the normalising factor Z is defined as

Z(Xpa(C)) =
∑
XC

∏
M∈M(C)

ϕM (XM ) (3)

As a Bayesian network is a special case of a chain graph model, Equation (1)
simplifies in that case to:

P (XV ) =
∏
v∈V

P (Xv | Xpa(v)) (4)

which is the well-known factorisation theorem of Bayesian networks [5]. In this
case, the chain components are formed by a family of random variables. There-
fore, for each of those random variables the distribution is defined as the condi-
tional probability function of this variable, given the value of its parents. Note
that according to Equation (1), chain graphs can also be interpreted as a directed
acyclic graph of chain components.

2.2 Abduction Logic

Abduction logic is defined as a special variant of function-free Horn logic, where
the syntax of Horn clauses is slightly modified, and logical implication, ‘←’, is
given a causal interpretation. Abduction clauses have the following form:

D ← B1, . . . , Bn : R1, . . . , Rm

1 Moralisation encompasses: (1) adding lines between unconnected parents of a chain

component, and (2) conversion of arcs into lines by ignoring their directions.
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where the predicates of the atoms D and Bi are at least unary and the atoms
Rj , called templates, express relationships among variables, where at least one
variable appearing in the atoms D and Bi occurs in at least one template Rj . An
example illustrating this representation is shown below (Example 1). Atoms that
do not occur as head of a clause are called assumables. From a logical point of
view, the ‘:’ operator has the meaning of a conjunction; it is only included in the
syntax to allow separating atoms that are templates from non-template atoms.
The basic idea is to use atoms D and Bi to introduce specific variables, later
interpreted as random variables, and the templates Rj to represent relations
among those variables. Other variables can be introduced to define additional,
logical relationships among objects, or to define generic properties.

Let T be a set of abduction clauses, called an abductive theory in this paper.
Then, concluding a formula ψ from the theory is denoted by T � ψ (when using
model theory) and T � ψ (when using deduction or proof theory).

Throughout this paper, we will write Ψ ′ as the set of ground instances of Ψ ,
where Ψ is a set of formulae. For example, A is the set of all assumables and we
use A′ to denote the set of ground instances of A.

For abduction logic a special type of logical reasoning has been proposed,
called abduction, which is defined in terms of model theory or deduction using
so-called explanations : “a entails b” allows inferring a as an explanation of b.
Given a set of atoms O, interpreted as observations, then these observations are
explained in terms of the abductive theory and a set of assumables.

Definition 1. An explanation of a set of atoms O based on the pair 〈T,A〉 is
defined as a set of ground assumables E ⊆ A′ satisfying the following conditions:

– T ∪ E � O, and
– T ∪ E is consistent, i.e., T ∪ E � ⊥.

A minimal explanation E of O is an explanation whose proper subsets are not
explanations of O. The set of all minimal explanations is denoted by ET (O).

Example 1. Suppose that we have the following piece of medical knowledge. In-
fluenza (I) causes coughing (C), where coughing is known as a possible cause for
hoarseness (H). In addition, coughing is known to be associated with dyspnoea
(shortness of breath) (D), although a clear cause-effect relationship is missing.
Dyspnoea restricts the oxygen supply to the blood circulation; the resulting low
oxygen saturation of the blood will turn the skin to colour blue (B), which is a
condition called cyanosis. This qualitative knowledge is represented by the causal
network shown in Fig. 1. The associated abductive theory T is the following:

I(x) ←: rI(x)
C(x) ← I(y) : rC,I(x, y), rC,D(x, z)
D(x) ← I(y) : rC,I(z, y), rC,D(z, x)
H(x) ← C(y) : rH,C(x, y)
B(x) ← D(y) : rB,D(x, y)
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Fig. 1. Causal network model of causal and associational knowledge about influenza

where each of the variables has {f, t} as domain. It now holds that:

T ∪ {rI(t), rH,C(t, t), rC,I(t, t), rC,D(t, t)} � H(t)

and T ∪ {rI(t), rH,C(t, t), rC,I(t, t), rC,D(t, t)} � ⊥.
The intuition behind the syntax of abduction clauses, such as C(x) ← I(y) :

rC,I(x, y), rC,D(x, z), is that C(x) ← I(y) expresses the potential existence of a
causal relation between the referred atoms, here I(y) and C(x). Note that I(y)
also appear in the clause D(x) ← I(y) : rC,I(z, y), rC,D(z, x), following the fact
that I is the parent of the chain component CD. Templates Rj , e.g. rC,I(x, y),
expresses whether the relationship actually does or does not hold. When there
are no atoms to the left of the ‘:’ operator, such as in the clause I(x) ←: rI(x),
the template represents a root node or an association with no parents.

3 Chain Logic

In this section, the chain logic language is formally defined. This paves the way
for the next section where we will focus on learning.

3.1 Language Syntax

The formalism presented in this section is inspired by probabilistic Horn logic
as introduced by Poole in [1]. For the sake of simplicity, we assume here finite
domain specifications (infinite domains are briefly mentioned in Section 6). Fur-
thermore, the unique names assumption holds for the different constants of the
domain.

Chain logic (CL) extends abduction logic as described in Section 2.2 by inter-
preting templates as representing uncertain events. The actual definition of the
uncertainty is done by means of a weight declaration. This is of the form

weight(a1 : w1, . . . , an : wn) (5)

where ai represents an atom and wi ∈ R+
0 . The set of atoms appearing in such

declarations are the assumables A. Here we require that the atoms in a weight
declaration share the same variables. Furthermore, we require that a ground
atom a – which is an instance of one of the assumables – does not appear as an
instance of another assumable in another weight declaration. The weight decla-
ration defines conjunctions of atoms that are mutually exclusive and exhaustive.
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Therefore, together with the above elements, a CL specification also includes
integrity constraint statements, i.e., clauses of the form

⊥ ← ai, aj (6)

for any pair ai and aj appearing in the same weight declaration where i �= j. Such
clauses are implicit in all of our given examples. We also allow the addition of
another set of constraints referring to a pair of assumables appearing in different
weight declarations, as seen in the example below.

Example 2. Consider the description given in Example 1. Uncertainty is defined
by replacing the templates by potential functions. For the abductive theory in
this example:
ϕCI ı ı̄
c 8 2
c̄ 1 10

ϕCD d d̄
c 18 2
c̄ 5 2

ϕHC c c̄
h 0.6 0.1
h̄ 0.4 0.9

ϕBD d d̄
b 0.3 0.001
b̄ 0.7 0.999

ϕI

ı 0.1
ı̄ 0.9

This example can be represented in chain logic using the following abduction
clauses:

I(x) ←: ϕI(x)
C(x) ← I(y) : ϕCI(x, y), ϕCD(x, z)
D(x) ← I(y) : ϕCI(z, y), ϕCD(z, x)
H(x) ← C(y) : ϕHC(x, y)
B(x) ← D(y) : ϕBD(x, y)
⊥ ← ϕCI(x, y), ϕCD(x̄, z)

Furthermore, we can associate weights to the assumables according to the po-
tential functions. For instance,

weight(ϕCD(t, t) : 18, ϕCD(t, f) : 2, ϕCD(f, t) : 5, ϕCD(f, f) : 2)

In order to be able to probabilistically interpret a CL theory T , a number of
assumptions are added to those of abduction logic: (i) the theory is acyclic; (ii)
the rules for every ground non-assumable represented in T ′ are covering, i.e.,
there is always a rule whose assumable holds; (iii) the bodies of the rules in T ′

for an atom are mutually exclusive; (iv) there is a set of ground assumables,
one from every grounded weight declaration, consistent with T . As in Poole’s
probabilistic Horn logic, these assumptions are not intended to be enforced by
the system: it is up to the modeller to comply to these requisites. Under this
condition, we can then guarantee the probabilistic properties of the theory.

3.2 Semantics and Reasoning

The interpretation of chain logic theories T is done in terms of possible world
semantics for the ground case.

Definition 2. Let P be a set of predicates of the language. Then a possible world
is a tuple w = 〈D, ω, p̂〉 where
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– D is a set of ground terms of the language
– ω : A′ → R+

0 is a function which assigns a weight to ground assumables A′

– p̂ : Dn → {true, false} is a valuation function, for each p ∈ P.

Truth of formulae is then inductively defined as usual except that an atom a is
false if there are clauses a ← b1 and a ← b2 in T and both b1 and b2 are true.
Furthermore, we have:

w |= weight(a1 : w1, . . . , an : wn)
iff ∃i w |= ai and ∀j �= i w �|= ajand ∀i ω(ai) = wi

which expresses that exactly one assumable is true in a weight declaration.

As a convenience, for arbitrary theories, we write w |= T , whenever for all
groundings of T , denoted by T ′, we have w |= T ′. The set of all possible worlds
denoted W , for which we define a joint probability distribution.

Definition 3. Let PT be a non-negative real function of W that is defined as
follows:

PT (w) =
{ 1

Z

∏
a∈A′ ω(a) if w |= T

0 otherwise

where Z =
∑

w∈{w|w|=T}
∏

a∈A′ ω(a).

Clearly, the function PT obeys the axioms of probability theory, as each weight is
larger than or equal to 0 and, given that there is a set of consistent assumables
consistent with T , there is at least one possible world for T , thus, it follows
that

∑
w∈W PT (w) = 1. Therefore, it is a joint probability distribution; PT

is sometimes abbreviated to P in the following. A probability for a formula
conjunction ϕ can be derived by marginalising out the other atoms, i.e., P (ϕ) =∑

w|=ϕ P (w).
These definitions provide the means to reason logically, at the same time

assigning probabilities to conjunctive formulae in the language. An alternative
way to look at the reasoning process, however, is in terms of explanations of
observations, as defined above, which will be considered next.

We define a hypothesis as a conjunction of ground instances, one for each
assumable of a grounded weight declaration. The set of all such hypotheses is
denoted byH. The set of consistent hypotheses, with respect to T will be denoted
by CH, i.e., CH = {H ∈ H | T ∪H � ⊥}.

Proposition 1. The joint probability distribution over the set of hypotheses is
as follows:

PT (H) =
{ 1

Z

∏
a∈H ω(a) if H ∈ CH

0 otherwise

where Z =
∑

H∈CH
∏

a∈H ω(a).

Given T , a minimal explanation E of some formula ψ is equivalent to a dis-
junction of hypotheses, i.e., E ≡

∨
i Hi with Hi ∈ H. As all Hi are mutually

exclusive, it follows that:
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PT (E) = PT (
∨
i

Hi) =
∑

i

PT (Hi)

which assigns a probability to minimal explanations. In order to assign a prob-
ability to a formula using explanations, we have the following result.

Theorem 1. Under the assumptions mentioned in Section 3.1, if ET (ψ) is the
set of minimal explanations of the conjunction of atoms ψ from the chain logic
theory T , then:

PT (ψ) =
∑

E∈ET (ψ)

P (E)

Proof. This follows exactly the same line of reasoning of [1, page 53, proof of
Theorem A.13]. ��

This result shows that P is indeed a probability distribution over conjunctions
of formulae if we use the definition of PT above. Other probabilities can be cal-
culated on the basis of these types of formulae, such as conditional probabilities.
Below, we will sometimes refer to the resulting probability distribution by PT in
order to stress that we mean the probability calculated using Definition 3.

Example 3. Reconsider the uncertainty specification concerning influenza as de-
scribed in Example 2. Consider here that we are interested in calculating the
P (B(t)) (i.e., the probability of B being true). Recalling the definitions provided
in Section 2.2, we obtain the minimal explanations for B(t), i.e., ET (B(t)) as the
set with the (8) members such as:

{ϕBD(t, t), ϕCD(t, t), ϕCI(t, t), ϕI(t)}
{ϕBD(t, t), ϕCD(t, t), ϕCI(t, f), ϕI(f)}

...

We can then sum over the hypotheses that are consistent with these explanations.

P (B(t)) =
∑

e∈ET (B(t)) P (e)
= Z−1(0.3 · 18 · 8 · 0.1 + . . .) = 27.7/Z

Similarly, we can find that P (B(f)) = 88.0/Z, so Z = 115.7 and thus P (B(t)) ≈
0.24.

Abductive reasoning establishes the relevant variables for the computation of
a marginal probability, i.e., it selects the portion of the chain graph that is
relevant. Consider once again our running example. By asking if B is true, we
obtain through the rule B(x) ← D(y) : ϕBD(x, y) that D influences B. In terms
of the graph, this means that we walk the arc in reverse direction, i.e., from
effect to explaining cause, from B to D. We now look at the rules which have D
as head, selecting D(x) ← I(y) : ϕCI(z, y)∧ϕCD(z, x). From the potential ϕCD

in this clause, the existence of the association between C and D is established.
From the presence of potential ϕCI we – indirectly – recover and include also
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I

C D

H B

ϕI

ϕC,I

ϕH,C

ϕB,D

ϕC,D

Fig. 2. The direction of reasoning about B is denoted with a dashed line. The nodes

that represent variables that are abduced over and the variables that are relevant

in the explanation are highlighted. Parts of the graph that are not relevant for the

computation of P (B) are not considered.

the influence of I on C. From the presence of predicate I(y) we can proceed
to including also the potential ϕI , which (as seen previously) is also important
for the correct probabilistic computation. This process is graphically depicted in
Fig. 2.

Example 4. Consider that we are interested in the probability of P (I(t) | B(t)).
This probability can be obtained by the having P (I(t)∧B(t)) divided by P (B(t)).
The calculation of P (B(t)) was shown in Example 3. By calculation the minimal
explanations for I(t) ∧ B(t), we obtain that P (I(t) ∧ B(t)) = 4.5/Z ≈ 0.04, so
it follows that P (I(t) | B(t)) ≈ 0.04

0.24 ≈ 0.16. Note that the prior probability for
I(t) is 0.1, so the evidence B(t) has increased the probability for influenza.

3.3 Specification of Chain Graphs

In this section, we present the formal relation between chain graphs with discrete
random variables and chain logic. For the sake of simplicity, we focus on chain
graphs with binary variables, i.e., the set of constants is {t, f}, although the
theory generalises to arbitrary arities. Complementary constants are denoted
with a bar, i.e., t̄ = f and f̄ = t.

The translation from a chain graph G to a chain logic theory T is as follows.
First, introduce for each potential function ϕM a corresponding predicate ϕM

and define a weight declaration containing ϕM (c0, . . . , cn) : w if ϕM (XM =
(c0, . . . , cn)) = w, for all possible instantiations (c0, . . . , cn) of XM . Second, we
model the structure of the chain graph in chain logic. Consider a vertex v in G.
For each component C ∈ C of G, there is a set of potential functions defined
on the moral graph of the sub-graph GC∪pa(C) which contains v or one of the
parents of C. This set of potential functions is denoted by ΦG(C, v). For every
vertex v, we have the following formula in T :

V (x) ←
∧
{V ′(xv′ ) | v′ ∈ pa(C)} :∧
{ϕM (x1, . . . , x, . . . , xn) | ϕM ∈ ΦG(C, v)}

and we ensure that each of the predicates defined for the same random variable
shares that variable in the formula. However, this is not strictly necessary as
different values for the same random variable in a component is also disallowed
by the integrity constraints.
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The integrity constraints are defined as follows. If we have two potential func-
tions, namely an n-ary ϕM (. . . , v, . . .) and an m-ary ϕ′

M (. . . , v, . . .), i.e., which
share a variable v in the same chain component (i.e., not between chain compo-
nents), then we add the following formula to T :

⊥ ← ϕM (x0, . . . , x, . . . , xn), ϕ′
M (x′

0 . . . , x̄, . . . , x′
m)

for each variable that they share. As mentioned earlier, this ensures we do not
generate explanations which have inconsistent assignments to the random vari-
ables within the same chain component.

In the following theorem, we establish that probabilities calculated from the
chain logic theory correspond to the chain graph semantics.

Theorem 2. Suppose v1, . . . , vn are vertices in a chain graph, with T as the
corresponding chain logic theory by the translation described above, then:

P (Xv1 = c1, . . . , Xvn = cn) = PT (V1(c1), . . . , Vn(cn))

Proof. There is only one minimal explanation of V1(c1) ∧ · · · ∧ Vn(cn), namely
ϕM (cM

0 , . . . , cM
m ) for all potential functions in cliques in the moral graphs of chain

components with their parents, such that the constants filled into the potential
functions correspond to the values for each of the random variables.

The explanation describes exactly one hypothesis. Denote this as h. As the
potential functions are related to exactly one component, we have the following
equation: ∏

a∈h

ω(a)

=
∏
C∈C

∏
ϕC

j (cj
0,...,cj

n)∈h

ϕC
j (Xvj

0
= cj

0, . . . , Xvj
n

= cj
n)

=
∏
C∈C

∏
M∈M(C)

ϕM (XM ) (7)

where ϕC are potential functions defined for component C and M(C) are the
complete sets in the moral graph from the sub-graph GC∪pa(C).

Let Z =
∑

H∈CH
∏

a∈H ω(a). Since there are no integrity constraints between
variables in chain components (i.e., combinations of consistent potential func-
tions which are in different chain components are consistent), we have that:

Z =
∑

H∈CH

∏
a∈H

ω(a)

=
∏
C∈C

∑
h∈CH(C)

∏
ϕC

j

ϕC
j (Xvj

0
= cj

0, . . . , Xvj
n

= cj
n)

=
∏
C∈C

Z(Xpa(C)) (8)
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where CH(C) is the set of consistent hypotheses (w.r.t. T ) restricted to the
potential functions in that chain component. Then, the equivalence follows in
the following way:

P (Xv1 = c1, . . . , Xvn = cn)
=(factorisation)

∏
C∈C P (XC | Xpa(C))

=(factorisation)

∏
C∈C Z−1(Xpa(C))

∏
M∈M(C) ϕM (XM )

×
(∏

C∈C Z−1(Xpa(C))
) ∏

C∈C
∏

M∈M(C) ϕM (XM )
=(Eq. 8) Z−1∏

C∈C
∏

M∈M(C) ϕM (XM ))
=(Eq. 7) Z−1∏

a∈w ω(a)
=

(def. PT ) PT (V1(c1), . . . , Vn(cn))

��

As we have shown in Section 3.2 that PT adheres to the axioms of probability
theory, chain graphs and the translated chain logic theory agree on all prob-
abilities. This result shows that chain graphs can be translated to chain logic
specifications. The converse is also true: all chain logic theories, which adhere
to the assumptions of Section 3.1, correspond to a chain graph as a fully con-
nected Markov network models and the associated probability distributions. This
is not a minimal independence map of the underlying probability distribution
in general, although conditional independence statements can be obtained by
comparing explanations between formulae. As we are only able to represent di-
rect causal links and indirect association, we conjecture that we have the same
expressiveness in this logic as in chain graphs.

4 Learning Chain Graph Parameters

While observables and assumables make up the core of chain logic, determin-
ing the probabilistic parameters of assumables using observations stored in a
database D is one of the essential tasks of learning in chain logic. Basically, the
goal is to estimate weights of the assumables in a CL theory related to CGs.
In general, it is not possible to easily estimate the potentials from data as they
might have a complex dependency to the rest of the graph. However, if the in-
dividual components are triangulated, the factorisation can be stated in terms
of marginal probabilities over the variables in a clique.

The proposed algorithm for determining the parameters is inspired by the use
of a junction tree for probabilistic inference. The reason for this is that a junction
tree provides sufficient information about the interactions between assumables,
i.e., when they influence the same observables. Junction trees, with required
properties such as the running intersection property, are only guaranteed to exist
when the graph is triangulated, so we restrict ourselves to this case. Let O be the
set of grounded non-assumables, which are the observations. As a convenience
we write NO with O ⊆ O for the number of tuples of D that contain O. In the
following, we will assume that all o ∈ O are present in database D.
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Algorithm 1. Learn CL parameters
Require: chain logic theory T , assumables A′, observables O, database D

for a ∈ A′ do
Effect(a) ← {o ∈ O | ∃H ∈ CH : T ∪ H |= o and T ∪ (H \ {a}) �|= o}
Rel(a) ← {o ∈ O | ∀H ∈ CH: a ∈ H ∧ T ∪ H |= Effect(a) implies T ∪ H |= o}

end for
V ← A′

E ← {(a, a′) ∈ A′ ×A′ | Rel(a) ∩ Rel(a′) �= ∅}
JG ← (V, E) with separator set Rel(a) ∩ Rel(a′) associated to every edge (a, a′)
let the weight of an edge in JG be the cardinality of its separator set

J ← spanning tree of maximal weight of JG
DJ ← any directed tree of J
for a ∈ A′ do

let S be the union of separators of a with its parents in DJ

ω̂(a) ← NEffect(a)∪S/NS

end for

The learning procedure is described in Algorithm 1. It will first identify ef-
fects of assumables (Effect), which are those observables that are implied by
the assumables, possibly together with other assumables. Then, indirect relation
(Rel) are identified, which are those observables that are always included in the
derivation to the effects from an assumable. The latter can be used to build
up a junction tree, where variables are instantiated for a particular value. From
this structure, weights of the assumables can be learned. The properties of junc-
tion trees ensure that joint distribution corresponds to the relative frequency of
observables, i.e., we have the following, general, result.

Theorem 3. Given a chain logic theory T with associated (moralised, trian-
gulated) chain graph G and database D, then after running Algorithm 1, the
resulting weight declaration described by ω̂ and T will be such that:

PT (O) =
NO

N∅

(9)

for all possible observations O ⊆ O.

Proof (sketch). If the assumable a models the potential function of some clique,
then the set Rel(a) contains the nodes of that clique. Furthermore, JG is iso-
morph to a junction graph of the underlying chain graph G. According to [6,
Theorem 1], then J will be a junction tree of G. Because of the equivalence
between reasoning in chain logic and chain graphs, we have:

P (xV ) =
∏
C

∏
M∈M(C)

ω̂(ϕM )

(see Eq. 7). Since ω̂(ϕM ) = NM/NS where S is some separator, it follows that∏
C

∏
M∈M(C)

ω̂(ϕM ) =

∏
C

∏
M∈M(C) NM

R
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where R amounts to the product of the frequency of separators on the edges.
Then, observe that all separators of the graph are there iff they are in R as each
separator appears exactly once in an edge of a junction tree.

Finally, by application of [7, Lemma 1] and [8, proposition 12.3.2], this fre-
quency coincides exactly with the frequency interpretation of P (XV ), i.e., coin-
cides with the relative frequency of the data. ��

Example 5. Reconsider the chain graph of Fig. 2. By logical reasoning, it can
be shown that: Rel(ϕI(t)) = {I(t)}, Rel(ϕCI(t, t)) = {C(t), I(t)}, etc, which
gives the following graph (here shown with quantified variables to visualise the
similarity to regular junction graphs):

ϕI(x)

ϕCI(y, x)

ϕHC(z, y) ϕCD(y, v)

ϕBD(w, v)

I(x)

C(y) C(y)

C(y)

D(v)

A tree can be obtained from this graph by removing any of the edges from the
loop in the undirected graph. In fact, it does not matter which one to choose as,
if there is a loop, then the separators are all the same set of variables. Equation 9
implies that for chain logic it is irrelevant which one is chosen, but some are more
closely related to the original graph as others. For example, if we take ϕI(x) as
a root, then ϕCI(y, x) is a conditional probability, as in the original graph. If,
on the other hand we take ϕI(x) as a leaf, then its weight will be 1 and thus
ϕCI(y, x) will be the joint probability of C and I, given its parent.

In order to obtain the interpretation of the original graph, we adapt Algo-
rithm 1 by choosing DJ as the maximum weight spanning tree such that there
is an arc from a to a′ iff s(a, a′) ∈ Effect(a) and s(a, a′) �∈ Effect(a′), where
s(a, a′) denotes Rel(a) ∩ Rel(a′), i.e., whenever an assumable a′ does not ex-
plain an observable it is related to, which means it must be conditioned on this
observation. For triangulated chain graphs, it can be proven that such a tree
exists.

Example 6. In the example above, we thus take the tree with arrows between
ϕI and ϕCI , and between ϕCI and ϕCD, giving, e.g., the following tree:
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ϕI(x)

ϕCI(y, x)

ϕHC(z, y) ϕCD(y, v)

ϕBD(w, v)

I(x)

C(y) C(y) D(v)

The learning algorithm will then, e.g., learn that:

ϕCD(x, y) = N{C(x),D(y)}/NC(y)

which corresponds to exactly the relative frequencies associated to variables in
the original chain graph showing the relation between the two formalisms for
learning.

Relational domains can be represented, and thus learned about using the same
machinery, as long as the modeller ensures properties characterised by the class
of triangulated chain graphs.

5 Comparison

Probabilistic Horn logic was originally proposed by Poole in [1]. It offers a frame-
work that was shown to be as powerful as Bayesian networks, yet it has the ad-
vantage that it is a first-order language that integrates probabilistic and logical
reasoning in a seamless fashion. Besides some changes in the terminology (such
as using weight declarations in place of disjoint ones), the main differences in
terms of syntax is the set of integrity constraints allowed and the probabilis-
tic information captured in each formalism. Weights can sum up to any value,
enabling the formalisation of potential functions instead of a (normalised) prob-
ability distribution. Furthermore, in our case, by allowing the use of extra in-
tegrity constraints, we are able to establish dependences among instantiations
of hypotheses.

Those differences extend Poole’s approach and allow us to obtain a more
generic probabilistic model, being crucial for the representation of chain graph
models. The graphical representation associated with a Bayesian network does
not offer a unique way to represent the independence information, which makes
the interpretation of Bayesian networks cumbersome. In contrast, an advantage
of using chain graphs as underlying model is representing associations (e.g.,
coughing and dyspnoea in Example 1), which cannot be defined in Bayesian
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networks. In fact, chain graphs can capture the class of equivalent Bayesian
networks. By using potential functions we can represent the quantitative influ-
ence between variables in a clique. The additional integrity constraints guarantee
that instantiations of those potentials functions appear consistently in each ex-
planation. Despite such differences, we still share with Poole’s approaches some
assumptions and similar results, for instance, with respect to the probability
densities defined over the theory.

Bayesian logic programs [2] have similar limitations as probabilistic Horn logic;
in addition, they are only proposed as formalisms to specify Bayesian networks in
a logical way and reasoning is done in the generated Bayesian networks. Further-
more, the framework of Markov logic networks [3] has been proposed as a power-
ful language based on first-order logic to specify Markov networks. Yet, Markov
networks are seen by researchers in probabilistic graphical models as the weakest
type of such models, as much of the subtleties of representing conditional inde-
pendence cannot be handled by Markov networks. In fact, formulae in Markov
logic can only model associations between literals, whereas causal knowledge
cannot be represented, for instance, between coughing and hoarseness. Further-
more, despite its expressive power, Markov logic is a generative language, i.e.,
specifications are translated into the corresponding graphical model on which
reasoning is then performed in a standard fashion. The aim of the presented re-
search was to design an expressive probabilistic logic that supports probabilistic
reasoning and learning guided by the structure of the logic.

6 Final Considerations

In this paper we presented a simple, yet powerful, language for representing,
reasoning with and learning generic chain graph models. Besides being able
to incorporate both Bayesian and Markov network models as special cases, we
maintain a strong relation between logical and probabilistic reasoning.

Our language still presents some restrictions. First, we use finite set of con-
stants, which prohibits the use of continuous variables. For Markov logic net-
works, it has been shown that special cases of such networks can be extended
to infinite domains by defining a Gibbs measure over sets of interpretations
for logical formulae [9]. A similar approach could be taken here by defining
a measure over the set of consistent states. Another limitation is the acyclicity
assumption, which restricts the explicit representation of undirected graphs com-
ponents. Even though we require certain assumptions for a sound probabilistic
interpretation, weakening acyclicity seems feasible [10].

While we have shown in this paper that chain logic is powerful enough to de-
fine, reason, and learn about chain graphs, we have no strong reason to suspect
that chain logic is restricted to this class of probabilistic graphical models. Al-
though chain graphs form a fairly general class of probabilistic graphs, it might
be the case that the language is applicable to a broader set of graphs. Also, mod-
elling the independence implied in chain logic theories into a graphical model is
an open question that will be investigated further.
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With respect to learning, we have presented in this paper parameter learning
of chain graph theories. Learning the structure of such graphs will be a subject
of further research, but techniques from the inductive logic programming have
been successful for learning Bayesian logic programs [11]. We believe similar
ideas can be applied for learning chain logic theories.
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Abstract. Markov logic networks (MLNs) are an expressive represen-

tation for statistical relational learning that generalizes both first-order

logic and graphical models. Existing discriminative weight learning meth-

ods for MLNs all try to learn weights that optimize the Conditional Log

Likelihood (CLL) of the training examples. In this work, we present a new

discriminative weight learning method for MLNs based on a max-margin

framework. This results in a new model, Max-Margin Markov Logic Net-

works (M3LNs), that combines the expressiveness of MLNs with the pre-

dictive accuracy of structural Support Vector Machines (SVMs). To train

the proposed model, we design a new approximation algorithm for loss-

augmented inference in MLNs based on Linear Programming (LP). The

experimental result shows that the proposed approach generally achieves

higher F1 scores than the current best discriminative weight learner for

MLNs.

1 Introduction

Statistical relational learning (SRL) concerns the induction of probabilistic
knowledge that supports accurate prediction for multi-relational structured data
[1]. Markov Logic Networks (MLNs) are a recently developed SRL model that
generalizes both full first-order logic and Markov networks [2]. An MLN consists
of a set of weighted clauses in first-order logic. Rather than completely ruling
out situations that violate these logical constraints, possible worlds simply be-
come exponentially less likely as the total weight of violated clauses increases.
MLNs have been successfully applied to a variety of real-world problems rang-
ing from collective classification of web pages [3] to extraction of bibliographic
information from scientific papers [4].

Existing discriminative training algorithms for learning MLN weights attempt
to maximize the conditional log likelihood (CLL) of a set of target predicates
given evidence provided by a set of background predicates [5,3,6]. If the goal is to
predict accurate target-predicate probabilities, this approach is well motivated.
However, in many applications, the actual goal is to maximize an alternative per-
formance metric such as classification accuracy or F-measure. Max-margin meth-
ods are a competing approach to discriminative training that are well-founded
in computational learning theory and have demonstrated empirical success in

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 564–579, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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many applications [7]. They also have the advantage that they can be adapted
to maximize a variety of performance metrics in addition to classification ac-
curacy [8]. Max-margin methods have been successfully applied to structured
prediction problems, such as in Max-Margin Markov Networks (M3Ns) [9] and
structural SVMs [10]; however, until now, they have not been applied to an SRL
model that generalizes first-order logic such as MLNs.

In this paper, we develop Max-Margin MLNs (M3LNs) by instantiating an ex-
isting general framework for max-margin training of structured models [11]. This
requires developing a new algorithm for approximating the “loss-augmented” in-
ference in MLNs. Extensive experiments in the two real-world MLN applications
referenced above demonstrate that M3LNs generally produce improved results
when the goal involves maximizing predictive accuracy metrics other than CLL.

The remainder of the paper is organized as follows. Section 2 provides some
background on MLNs and structural SVMs. Section 3 presents the max-margin
approach for weight learning in MLNs. Section 4 shows the experimental eval-
uation of the proposed approach. Section 5 and 6 discuss the related work and
future work. Section 7 concludes the paper.

2 Background

2.1 MLNs and Alchemy

An MLN consists of a set of weighted first-order clauses. It provides a way
of softening first-order logic by making situations in which not all clauses are
satisfied less likely but not impossible [2]. More formally, let X be the set of all
propositions describing a world (i.e. the set of all ground atoms), F be the set of
all clauses in the MLN, wi be the weight associated with clause fi ∈ F, Gfi be the
set of all possible groundings of clause fi, and Z be the normalization constant.
Then the probability of a particular truth assignment x to the variables in X is
defined as [2]:

P (X = x) =
1
Z

exp

⎛⎝∑
fi∈F

wi

∑
g∈Gfi

g(x)

⎞⎠
=

1
Z

exp

⎛⎝∑
fi∈F

wini(x)

⎞⎠ (1)

where g(x) is 1 if g is satisfied and 0 otherwise, and ni(x) =
∑

g∈Gfi
g(x) is the

number of groundings of fi that are satisfied given the current truth assignment
to the variables in X .

There are two inference tasks in MLNs. The first one is to infer the Most
Probable Explanation (MPE) or the most probable truth values for a set of
unknown literals y given a set of known literals x, provided as evidence (also
called MAP inference). This task is formally defined as follows:
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arg max
y

P (y|x) = arg max
y

1
Zx

exp

(∑
i

wini(x,y)

)
= arg max

y

∑
i

wini(x,y) (2)

where Zx is the normalization constant over all possible worlds consistent with
x, and ni(x,y) is the number of true groundings of clause fi given the truth
assignment (x,y). MPE inference in MLNs is therefore equivalent to finding the
truth assignment that maximizes the sum of the weights of satisfied clauses, a
Weighted MAX-SAT problem. This is an NP-hard problem for which a number
of approximate solvers exist, of which the most commonly used is MaxWalkSAT
[12]. Recently, Riedel [13] proposed a more efficient and accurate MPE inference
algorithm for MLNs called Cutting Plane Inference (CPI), which does not require
grounding the whole MLN. However, the CPI method only works well for some
classes of MLNs where the separation step of the CPI method returns a small
set of constraints. In the worst case, it also constructs the whole ground MLN.

The second inference task in MLNs is computing the conditional probabilities
of some unknown literals, y, given some evidence x. Computing these probabil-
ities is also intractable, but there are good approximation algorithms such as
MC-SAT [14] and lifted belief propagation [15].

Learning an MLN consists of two tasks: structure learning and weight learning.
The weight learner can learn weights for clauses written by a human expert or au-
tomatically induced by a structure learner. There are two approaches to weight
learning in MLNs: generative and discriminative. In discriminative learning, we
know a priori which predicates will be used to supply evidence and which ones
will be queried, and the goal is to correctly predict the latter given the former.
Several discriminative weight learning methods have been proposed, all of which
try to find weights that maximize the CLL (equivalently, minimize the negative
CLL). In MLNs, the derivative of the negative CLL with respect to a weight wi is
the difference of the expected number of true groundingsEw[ni] of the correspond-
ing clause fi and the actual number according to the data ni. However, computing
the expected count Ew[ni] is intractable. The first discriminative weight learner
[5] uses the voted perceptron algorithm [16] where it approximates the intractable
expected counts by the counts in the MPE state computed by the MaxWalkSAT.
Later, Lowd and Domingos [3] presented a number of first-order and second-order
methods for optimizing the CLL. These methods use samples from MC-SAT to ap-
proximate the expected counts used to compute the gradient and Hessian of the
CLL. Among them, the best performing is preconditioner scaled conjugate gradient
(PSCG) [3]. This method uses the inverse diagonal Hessian as the preconditioner.
Recently, Huynh and Mooney [6] proposed an efficient and accurate discriminative
weight learner for MLNs when all clauses are non-recursive (A non-recursive clause
is a clause that contains only one non-evidence literal). For information about pre-
vious work on structure learning see [17].

Alchemy [18] is an open source software package for MLNs. It includes im-
plementations for all of the major existing algorithms for structure learning,
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generative weight learning, discriminative weight learning, and inference. Our
proposed algorithm is implemented using Alchemy.

2.2 Structural Support Vector Machines

In this section, we briefly review the structural SVM problem and an algorithmic
schema for solving it efficiently. For more detail, see [11]. In structured output
prediction, we want to learn a function h : X → Y, where X is the space of
inputs and Y is the space of multivariate and structured outputs Y, from a set
of training examples S:

S = ((x1, y1), ..., (xn, yn)) ∈ (X × Y)n

The goal is to find a function h that has low prediction error. This can be
accomplished by learning a discriminant function f : X×Y → R, then maximizing
f over all y ∈ Y for a given input x to get the prediction.

hw(x) = arg max
y∈Y

fw(x, y)

The discriminant function fw(x, y) takes the form of a linear function:

fw(x, y) = wT Ψ(x, y)

where w ∈ RN is a parameter vector and Ψ(x, y) is a feature vector relating an
input x and output y. The features need to be designed for a given problem so
that they capture the dependency structure of y and x and the relations among
the outputs y . Then, the goal is to find a weight vector w that maximizes the
margin:

γ(xi, yi; w) = wT Ψ(xi, yi)− max
y′

i∈Y\yi

wT Ψ(xi, y
′
i)

To find such a weight vector, Joachims et al. [11] proposed to solve the following
optimization problem, called the “1-slack” structural SVM problem:

Optimization Problem 1 (OP1): 1-Slack Structural SVMs [11]

min
w,ξ≥0

1
2
wTw + Cξ

s.t. ∀(ȳ1, ..., ȳn) ∈ Yn :
1
n
wT

n∑
i=1

δΨ(ȳi) ≥
1
n

n∑
i=1

Δ(yi, ȳi)− ξ

where δΨ(ȳi) = Ψ(xi, yi) − Ψ(xi, ȳi), and Δ(yi, ȳi) is the loss function. This
optimization problem has an exponential number of constraints |Y|n, one for each
possible combination of labels (ȳ1, ..., ȳn) ∈ Yn, but it can be solved efficiently
(provably linear runtime in the number of training examples) by Algorithm 1.

In each iteration, this algorithm solves a Quadratic Programming (QP) prob-
lem (line 4) to find the optimal weights corresponding to the current set of
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Algorithm 1. Cutting-plane method for solving the “1-slack structural SVMs”
[11]
1: Input: S = ((x1, y1), ..., (xn, yn)), C, ε
2: W ← ∅
3: repeat
4:

(w, ξ)← min
w,ξ≥0

1

2
wT w+Cξ

s.t. ∀(ȳ1, ..., ȳn)∈W :
1

n
wT

n∑
i=1

[Ψ(xi, yi)−Ψ(xi, ȳi)]≥ 1

n

n∑
i=1

Δ(yi, ȳi)−ξ

5: for i = 1 to n do
6: ŷi ← arg maxŷ∈Y{Δ(yi, ŷ) + wT Ψ(xi, ŷ)}
7: end for
8: W ← W ∪ {(ŷ1, ..., ŷn)}
9: until 1

n

n∑
i=1

Δ(yi, ŷi) − 1
n
wT

n∑
i=1

[Ψ(xi, yi) − Ψ(xi, ŷi)] ≤ ξ + ε

10: return (w, ξ)

constraints W and a loss-augmented inference problem (line 6), also called a sep-
aration oracle, to find the most violated constraint to add to W. Since the QP
problem does not depend on the structure of a particular problem (the Ψ(x, y)
and Δ(y, ȳ)), it can be solved by any QP solver. In contrast, for each specific
problem, one needs to come up with an efficient way to solve the loss-augmented
inference problem.

In summary, to apply structural SVMs to a new problem, one needs to design
a new feature vector function Ψ(x, y), choose a loss function Δ(y, ȳ), and solve
two argmax problems:

Prediction: arg maxy∈Y wT Ψ(x, y)
Separation Oracle: argmaxȳ∈Y{Δ(y, ȳ) + wT Ψ(x, ȳ)}

3 Max-Margin Weight Learning for MLNs

3.1 Max-Margin Formulation

All of the current discriminative weight learners for MLNs try to find a weight
vector w that optimizes the conditional log-likelihood P (y|x) of the query atoms
y given the evidence x. However, an alternative approach is to learn a weight
vector w that maximizes the ratio:

P (y|x,w)
P (ŷ|x,w)

between the probability of the correct truth assignment y and the closest com-
peting incorrect truth assignment ŷ = arg maxȳ∈Y\y P (ȳ|x). Applying equation
1 and taking the log, this problem translates to maximizing the margin:
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γ(x,y;w) = wT n(x,y) −wT n(x, ŷ)

= wT n(x,y) − max
ȳ∈Y\y

wT n(x, ȳ)

Note that, this translation holds for all log-linear models. For example, if we ap-
ply it to a CRF [19] then the result model is an M3N [9]. In fact, this translation
is the connection between log-linear models and linear classifiers [20].

In turn, the max-margin problem above can be formulated as a “1-slack”
structural SVM as follows:

Optimization Problem 2 (OP2): Max-Margin Markov Logic Networks

min
w,ξ≥0

1
2
wTw + Cξ

s.t. ∀ȳ ∈ Y : wT [n(x,y) − n(x, ȳ)] ≥ Δ(y, ȳ)− ξ

So for MLNs, the number of true groundings of the clauses n(x,y) plays the role
of the feature vector function Ψ(x, y) in the general structural SVM problem. In
other words, each clause in an MLN can be viewed as a feature representing a
dependency between a subset of inputs and outputs or a relation among several
outputs.

As mentioned, in order to apply Algorithm 1 to MLNs, we need algorithms
for solving the following two problems:

Prediction: arg maxy∈Y wT n(x,y)
Separation Oracle: argmaxȳ∈Y {Δ(y, ȳ) + wT n(x, ȳ)}

The prediction problem is just the (intractable) MPE inference problem dis-
cussed in section 2.1. We can use MaxWalkSAT to get an approximate solu-
tion, but we have found that models trained with MaxWalkSAT have very low
predictive accuracy. On the other hand, recent work [21] has found that fully-
connected pairwise Markov random fields, a special class of structural SVMs,
trained with overgenerating approximate inference methods (such as relaxation)
preserves the theoretical guarantees of structural SVMs trained with exact infer-
ence, and exhibits good empirical performance. Based on this result, we sought
a relaxation-based approximation for MPE inference. We first present an LP-
relaxation algorithm for MPE inference, then show how to modify it to solve the
separation oracle problem for some specific loss functions.

3.2 Approximate MPE Inference for MLNs

MPE inference in MLNs is equivalent to the Weighted MAX-SAT problem, and
there has been significant work on approximating this NP-hard problem us-
ing LP-relaxation [22,23]. The existing algorithms first relax and convert the
Weighted MAX-SAT problem into a linear or semidefinite programming prob-
lem, then solve it and apply a randomized rounding method to obtain an ap-
proximate integral solution. These methods cannot be directly applied to MLNs,
since they require the weights to be positive while MLN weights can be negative
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or infinite. So we modified the conversion used in these approaches to handle the
case of negative and infinite weights.

Based on the evidence and the closed world assumption, a ground MLN con-
tains only ground clauses (in clausal form) of the unknown ground atoms after
removing all trivially satisfied and unsatisfied clauses. The following procedure
translates the MPE inference in a ground MLN into an Integer Linear Program-
ming (ILP) problem.

1. Assign a binary variable yi to each unknown ground atom. yi is 1 if the
corresponding ground atom is TRUE and 0 if the ground atom is FALSE.

2. For each ground clause Cj with infinite weight, add the following linear
constraint to the ILP problem:∑

i∈I+
j

yi +
∑
i∈I−

j

(1 − yi) ≥ 1

where I+
j , I−j are the sets of positive and negative ground literals in clause

Cj respectively.
3. For each ground clause Cj with positive weight wj , introduce a new auxiliary

binary variable zj , add the term wjzj to the objective function, and add the
following linear constraint to the ILP problem:∑

i∈I+
j

yi +
∑
i∈I−

j

(1− yi) ≥ zj

zj is 1 if the corresponding ground clause is satisfied.
4. For each ground clause Cj with k ground literals and negative weight wj ,

introduce a new auxiliary boolean variable zj , add the term −wjzj to the
objective function and add the following k linear constrains to the ILP prob-
lem:

1− yi ≥ zj , i ∈ I+
j

yi ≥ zj , i ∈ I−j
The final ILP has the following form:
Optimization Problem 3:

max
yi,zi

∑
Cj∈C+

wjzj +
∑

Cj∈C−
−wjzj

s.t.
∑
i∈I+

j

yi +
∑
i∈I−

j

(1 − yi) ≥ 1 ∀ Cj where wj = ∞

∑
i∈I+

j

yi +
∑
i∈I−

j

(1 − yi) ≥ zj ∀Cj ∈ C+

1− yi ≥ zj ∀ i ∈ I+
j and Cj ∈ C−

yi ≥ zj ∀ i ∈ I−j and Cj ∈ C−

yi, zj ∈ {0, 1}
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Algorithm 2. The modified ROUNDUP procedure
1: Input: The LP solution y = {y1, ..., yn}
2: F ← ∅
3: for i = 1 to n do
4: if yi is integral then
5: Remove all the ground clauses satisfied by assigning the value of yi to the

corresponding ground atom

6: else
7: add yi to F

8: end if
9: end for

10: repeat
11: Remove the last item yi in F
12: Compute the sum w+ of the unsatisfied clauses where yi appears as a positive

literal

13: Compute the sum w− of the unsatisfied clauses where yi appears as a negative

literal

14: if w+ > w− then
15: yi ← 1

16: else
17: yi ← 0

18: end if
19: Remove all the ground clauses satisfied by assigning the value of yi to the cor-

responding ground atom

20: until F is empty

21: return y

where C+ and C− are the set of clauses with positive and negative weights
respectively. This ILP problem can be simplified by not introducing an auxiliary
variable zj for unit clauses, where we can use the variable yi directly. This
reduces the problem considerably, since ground MLNs typically contain many
unit clauses (Alchemy combines all the non-recursive clauses containing the
query atom into a unit clause whose weight is the sum of all the clauses’ weights).
Note that our mapping from a ground MLN to an ILP problem is a bit different
from the one presented in [13] which generates two sets of constraints for every
ground clause: one when the clause is satisfied and one when it is not. For a clause
with positive weight, our mapping only generates a constraint when the clause
is satisfied; and for a clause with negative weight, the mapping only imposes
constraints when the clause is unsatisfied. The final ILP problem has the same
solution with the one in [13], but it has fewer constraints since our mapping
does not generate unnecessary constraints. We then relax the integer constraints
yi, zj ∈ {0, 1} to linear constraints yi, zj ∈ [0, 1] to obtain an LP-relaxation of
the MPE problem.

This LP problem can be solved by any general LP solver. If the LP solver
returns an integral solution, then it is also the optimal solution to the original
ILP problem. In our case, the original ILP problem is an NP-hard problem, so
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the LP solver usually returns non-integral solutions. Therefore, the LP solution
needs to be rounded to give an approximate ILP solution. We first tried some
of the randomized rounding methods in [23] but they gave poor results since
the LP solution has a lot of fractional components with value 0.5. We then
adapted a rounding procedure called ROUNDUP [24], a procedure for producing
an upper-bound binary solution for a pseudo-Boolean function, to the case of
pseudo-Boolean functions with linear constraints, which we found to work well.
In each step, this procedure picks one fractional component and rounds it to 1
or 0. Hence, this process terminates in at most n steps, where n is the number
of query atoms. Note that due to the dependencies between yi’s and zj’s (the
linear constraints of the LP problem), this modified ROUNDUP procedure does
not guarantee an improvement in the value of the objective function in each step
like the original ROUNDUP procedure where all the variables are independent.

3.3 Approximation Algorithm for the Separation Oracle

The separation oracle adds an additional term, the loss term, to the objective
function. So, if we can represent the loss as a linear function of the yi variables
of the LP-relaxation, then we can use the above approximation algorithm to also
approximate the separation oracle. In this work, we consider two loss functions.
The first one is the 0/1 loss function, Δ0/1(yT,y) where yT is the true assign-
ment and y is some predicted assignment. For this loss function, the separation
oracle is the same as the MPE inference problem since the loss function only
adds a constant 1 to the objective function. Hence, in this case, to find the most
violated constraint, we can use the LP-relaxation algorithm above or any other
MPE inference algorithm. This 0/1 loss makes the separation oracle problem
easier but it does not scale the margin by how different yT and y are. It only
requires a unit margin for all assignments y different from the true assignment
yT. To take into account this problem, we consider the second loss function that
is the number of misclassified atoms or the Hamming loss:

ΔHamming(yT,y) =
n∑
i

[yT
i �= yi]

=
n∑
i

[(yT
i = 0 ∧ yi = 1) ∨ (yT

i = 1 ∧ yi = 0)]

From the definition, this loss can be represented as a function of the yi’s:

ΔHamming(yT,y) =
∑

i:yT
i =0

yi +
∑

i:yT
i =1

(1− yi)

which is equivalent to adding 1 to the coefficient of yi if the true value of yi is
0 and subtracting 1 from the coefficient of yi if the true value of yi is 1. So we
can use the LP-relaxation algorithm above to approximate the separation oracle
with this Hamming loss function. Another possible loss function is (1−F1) loss.
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Unfortunately, this loss is a non-linear function, so we cannot use the above
approach to optimize it. Developing algorithms for optimizing or approximating
this loss function is an area for future work.

4 Experimental Evaluation

This section presents experiments comparing M3LNs to the current best dis-
criminative weight learner for MLNs with recursive clauses, PSCG.

4.1 Datasets

We ran experiments on two large, real-world MLN datasets: WebKB for collective
web-page classification, and CiteSeer for bibliographic citation segmentation. All
the datasets and MLNs can be found at the Alchemy website1.

The WebKB dataset consists of labeled web pages from the computer science
departments of four universities. Different versions of this data have been used in
previous work. To make a fair comparison, we used the version from [3], which
contains 4,165 web pages and 10,935 web links. Each page is labeled with a subset
of the categories: course, department, faculty, person, professor, research project,
and student. The goal is to predict these categories from the words and links on
the web pages. We used the same simple MLN from [3], which only has clauses
relating words to page classes, and page classes to the classes of linked pages.

Has(+word, page) → PageClass(+class,page)
¬Has(+word, page) → PageClass(+class,page)
PageClass(+c1, p1) ∧ Linked(p1, p2) → PageClass(+c2, p2)

The plus notation creates a separate clause for each pair of word and page class,
and for each pair of classes. The final MLN consists of 10,891 clauses, and a
weight must be learned for each one. After grounding, each department results
in an MLN with more than 100,000 ground clauses and 5,000 query atoms in a
complex network. This also results in a large LP-relaxation problem for MPE
inference.

For CiteSeer, we used the dataset and MLN used in [4]. The dataset has
1,563 citations and each of them is segmented into three fields: Author, Title
and Venue. The dataset has four disconnected segments corresponding to four
different research topics. We used the simplest MLN in [4], which is the isolated
segmentation model. Despite its simplicity, after grounding, this model results in
a large network with more than 30,000 query atoms and 110,000 ground clauses.

4.2 Metrics

We used F1, the harmonic mean of recall and precision, to measure the per-
formance of each algorithm. This is the standard evaluation metric in multi-
class text categorization and information extraction. For systems that compute
marginal probabilities rather than MPEs, we predict that an atom is true iff its
probability is at least 0.5.
1 http://alchemy.cs.washington.edu
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Table 1. F1 scores on WebKB

Cornell Texas Washington Wisconsin Average

PSCG-MCSAT 0.418 0.298 0.577 0.568 0.465

PSCG-LPRelax 0.420 0.310 0.588 0.575 0.474

MM-Δ0/1-MaxWalkSAT 0.150 0.162 0.122 0.122 0.139

MM-Δ0/1-LPRelax 0.282 0.372 0.675 0.521 0.462

MM-ΔHamming-LPRelax 0.580 0.451 0.715 0.659 0.601

Table 2. F1 scores of different inference algorithms on WebKB

Cornell Texas Washington Wisconsin Average

PSCG-MCSAT 0.418 0.298 0.577 0.568 0.465

PSCG-MaxWalkSAT 0.161 0.140 0.119 0.129 0.137

PSCG-LPRelax 0.420 0.310 0.588 0.575 0.474

MM-ΔHamming-MCSAT 0.470 0.370 0.573 0.481 0.473

MM-ΔHamming-MaxWalkSAT 0.185 0.184 0.150 0.154 0.168

MM-ΔHamming-LPRelax 0.580 0.451 0.715 0.659 0.601

4.3 Methodology

We ran four-fold cross-validation (i.e. leave one university/topic out) on both
datasets. For the max-margin weight learner, we used a simple process for se-
lecting the value of the C parameter. For each train/test split, we trained the al-
gorithm with five different values of C: 1, 10, 100, 1000, and 10000, then selected
the one which gave the highest average F1 score on training. The ε parameter
was set to 0.001 as suggested in [11]. To solve the QP problems in Algorithm
1 and LP problems in the LP-relaxation MPE inference, we used the Mosek

2

solver. The PSCG algorithm was carefully tuned by its author. For MC-SAT
and MaxWalkSAT, we used the default setting in Alchemy.

4.4 Results and Discussion

Table 1 and 3 present the performance of different systems on the WebKB and
Citeseer datasets. Each system is named by the weight learner used, the loss
function used in training, and the inference algorithm used in testing. For max-
margin (MM) learner with margin rescaling, the inference used in training is the
loss-augmented version of the one used in testing. For example, MM-ΔHamming-
LPRelax is the max-margin weight learner using the loss-augmented (Hamming
loss) LP-relaxation MPE inference algorithm in training and the LP-relaxation
MPE inference algorithm in testing.

Table 1 shows that the model trained by MaxWalkSAT has very low predictive
accuracy. This result is consistent with the result presented in [13] which also
found that the MPE solution found by MaxWalkSAT is not very accurate. Using
the proposed LP-relaxation MPE inference improves the F1 score from 0.139
2 http://www.mosek.com/
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Table 3. F1 scores on CiteSeer

Constraint Face Reasoning Reinforcement Average

PSCG-MCSAT 0.937 0.914 0.931 0.975 0.939

MM-ΔHamming-LPRelax 0.933 0.922 0.924 0.958 0.934

Table 4. F1 scores on CiteSeer with different parameter values

Constraint Face Reasoning Reinforcement Average

PSCG-MCSAT-5 0.852 0.844 0.836 0.923 0.864

PSCG-MCSAT-10 0.937 0.914 0.931 0.973 0.939

PSCG-MCSAT-15 0.878 0.896 0.780 0.891 0.861

PSCG-MCSAT-20 0.850 0.859 0.710 0.784 0.801

PSCG-MCSAT-100 0.658 0.697 0.600 0.668 0.656

MM-ΔHamming-LPRelax-1 0.933 0.922 0.924 0.955 0.934

MM-ΔHamming-LPRelax-10 0.926 0.922 0.925 0.955 0.932

MM-ΔHamming-LPRelax-100 0.926 0.922 0.925 0.954 0.932

MM-ΔHamming-LPRelax-1000 0.931 0.918 0.925 0.958 0.933

MM-ΔHamming-LPRelax-10000 0.932 0.922 0.919 0.968 0.935

to 0.462, the MM-Δ0/1-LPRelax system. Then the best system is obtained by
rescaling the margin and training with our loss-augmented LP-relaxation MPE
inference, which is the only difference between MM-ΔHamming-LPRelax and
MM-Δ0/1-LPRelax. The MM-ΔHamming-LPRelax achieves the best F1 score
(0.601), which is much higher than the 0.465 F1 score obtained by the current
best discriminative weight learner for MLNs, PSCG-MCSAT.

Table 2 compares the performance of the proposed LP-relaxation MPE infer-
ence algorithm against MCSAT and MaxWalkSAT on the best trained models by
PSCG and MM on the WebKB dataset. In both cases, the LP-relaxation MPE
inference achieves much better F1 scores than those of MCSAT and MaxWalk-
SAT. This demonstrates that the approximate MPE solution found by the LP-
relaxation algorithm is much more accurate than the one found by the MaxWalk-
SAT algorithm. The fact that the performance of the LP-relaxation is higher
than that of MCSAT shows that in collective classification it is better to use the
MPE solution as the prediction than the marginal prediction.

For the WebKB dataset, there are other results reported in previous work,
such as those in [9], but those results cannot be directly compared to our results
since we use a different version of the dataset and test on a more complicated
task (a page can have multiple labels not just one).

On the Citeseer results presented in Table 3, the performance of max-margin
methods are very close to those of PSCG. However, its performance is much
more stable. Table 4 shows the performance of MM weight learners and PSCG
with different parameter values by varying the C value for MM and the number
of iterations for PSCG. The best number of iterations for PSCG is 9 or 10.
In principle, we should run PSCG until it converges to get the optimal weight
vector. However, in this case, the performance of PSCG drops drastically on
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both training and testing after a certain number of iterations. For example,
from Table 4 we can see that at 10 iterations PSCG achieves the best F1 score
of 0.939, but after 15 iterations, its F1 score drops to 0.861 which is much worse
than those of the max-margin weight learners. Moreover, if we let it run until 100
iterations, then its F1 score is only 0.656. On the other hand, the performance of
MM only varies a little bit with different values of C and we don’t need to tune
the number of iterations of MM. On this dataset, [4] achieved a F1 score of 0.944
with the same MLN by using a version of the voted perceptron algorithm called
Contrastive Divergence (CD) [25] to learn the weights. However, the performance
of the CD algorithm is very sensitive to the learning rate [3], which requires a
very careful tuning process to learn a good model.

Regarding training time, on both of the datasets, the max-margin weight
learner is comparable to PSCG. It usually took about 200 iterations on the
WebKB and less than 50 iterations on Citeseer to find the optimal weights,
which resulted in a few hours of training for WebKB and less than an hour for
Citeseer.

5 Related Work

Our work is related to various previous projects. Among them, M3N [9] is prob-
ably the most related. It is a special case of structural SVMs where the feature
function Ψ(x, y) is represented by a Markov network. When the Markov net-
work can be triangulated and the loss function can be linearly decomposed, the
original exponentially-sized QP can be reformulated as a polynomially-sized QP
[9]. Then, the polynomially-sized QP can be solved by general QP solvers [26],
decomposition methods [9], extragradient methods [27], or exponentiated gra-
dient methods [28]. As mentioned in [9], these methods can also be used when
the graph cannot be triangulated, but the algorithms only yield approximate so-
lutions like our approach. However, these algorithms are restricted to the cases
where a polynomially-sized reformulation exists [11]. That’s why in this work
we used the general cutting plane algorithm which imposes no restrictions on
the representation. The ground MLN can be any kind of graph. On the other
hand, since an MLN is a template for constructing Markov networks [2], the
proposed model, M3LN, can also be seen as a template for constructing M3Ns.
Hence, when the ground MLN can be triangulated and the loss is a linearly
decomposable function, the algorithms developed for M3Ns can be applied. Our
work is also closely related to the Relational Markov Networks (RMNs) [29].
However, by using MLNs, M3LNs are more powerful than RMNs in term of rep-
resentation [2]. Besides, the objectives of M3LNs and RMNs are different. One
tries to maximize the margin between the true assignment and other competing
assignments, and one tries to maximize the conditional likelihood of the true
assignment. Another related system is Rumble [30], a margin-based approach
to first-order rule learning. In that work, the goal is to find a set of weighted
rules that maximizes a quantity called margin minus variance. However, unlike
M3LNs, Rumble only applies to independent binary classification problems and
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is unable to perform structured prediction or collective classification. In terms
of applying the general structural SVM framework to a specific representation,
our work is related to the work in [31] which used CRFs as the representation
and graph cuts as the inference algorithm. In the context of discriminative learn-
ing, our work is related to previous work on discriminative training for MLNs
[5,3,6,32]. We have mentioned some of them [5,3,6] in previous sections. The
main difference between the work in [32] and ours is that we assume the struc-
ture is given and apply max-margin framework to learn the weights while [32]
tries to learn a structure that maximizes the conditional likelihood of the data.
Extending the max-margin framework to structure learning is an area for future
work.

6 Future Work

Currently, our loss-augmented LP-relaxation MPE inference algorithm requires
grounding the entire network first. It would be useful to develop new loss-
augmented MPE inference algorithms which do not require grounding the full
network. On the other hand, the max-margin framework allows optimizing differ-
ent kinds of loss functions. Therefore, it would also be interesting to extend the
current algorithm to optimize other loss functions. Besides, we also want to ap-
ply M3LNs to other structured prediction tasks and compare to other structured
prediction models.

7 Conclusions

We have presented a max-margin weight learning method for MLNs based on
the framework of structural SVMs. It resulted in a new model, M3LN, that
has the representational expressiveness of MLNs and the predictive performance
of SVMs. M3LNs can be trained to optimize different performance measures
depending on the needs of the application. To train the proposed model, we
developed a new approximation algorithm for loss-augmented MPE inference
in MLNs based on LP-relaxation. The experimental results showed that the
new max-margin learner generally has better or equally good but more stable
predictive accuracy (as measured by F1) than the current best discriminative
MLN weight learner.
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Abstract. Clustering high-dimensional data is challenging. Classic met-

rics fail in identifying real similarities between objects. Moreover, the

huge number of features makes the cluster interpretation hard. To tackle

these problems, several co-clustering approaches have been proposed

which try to compute a partition of objects and a partition of features

simultaneously. Unfortunately, these approaches identify only a prede-

fined number of flat co-clusters. Instead, it is useful if the clusters are ar-

ranged in a hierarchical fashion because the hierarchy provides insides on

the clusters. In this paper we propose a novel hierarchical co-clustering,

which builds two coupled hierarchies, one on the objects and one on

features thus providing insights on both them. Our approach does not

require a pre-specified number of clusters, and produces compact hier-

archies because it makes n−ary splits, where n is automatically deter-

mined. We validate our approach on several high-dimensional datasets

with state of the art competitors.

1 Introduction

Clustering is a popular data mining technique that enables to partition data into
groups (clusters) in such a way that objects inside a group are similar to each
other, and objects belonging to different groups are dissimilar [1]. When data
are represented in a high-dimensional space, traditional clustering algorithms
fail in finding an optimal partitioning because of the problem known as curse of
dimensionality. Even though some distance metrics have been proposed to deal
with high-dimensional data (e.g., cosine similarity) and feature selection tries to
solve the problem by a reduction in the number of features, novel approaches
emerged in the last years. One of the most appealing approach is co-clustering
[2,3,4] whose solution provides contemporaneously a clustering of the objects and
a clustering of the features. Furthermore, co-clustering algorithms are powerful
because they exploit similarity measures on the clusters in one dimension of the
problem in order to cluster the other dimension: that is, clusters of objects are
evaluated by means of the clusters on the features and vice versa.

One of the classical aims of clustering is to provide a description of the data
by means of an abstraction process. In many applications, the end-user is used to

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 580–595, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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study natural phenomena by the relative proximity relationships existing among
the analyzed objects. For instance, he/she compares animals by means of the rel-
ative similarity in terms of the common features w.r.t. a same referential exam-
ple. Many hierarchical algorithms have the advantage that are able to produce a
dendrogram which stores the history of the merge operations (or split) between
clusters. As a result they produce a hierarchy of clusters and the relative position
of clusters in this hierarchy is meaningful because it implicitly tells the user about
the relative similarity between the cluster elements. This hierarchy is often im-
mediately understandable: it constitutes a helpful conceptual tool to understand
the inner, existing relationships among objects in the domain; it provides a visual
representation of the clustering result and explains it. Furthermore, it provides a
ready to use tool to organize the conceptual domain, to browse and search objects,
discover their common features or differences, etc. It is a conceptual tool especially
advisable if one cluster hierarchy - built on one dimension of the problem, the ob-
jects - gives insights to study the other dimension of the problem - the features -
and gives information to produce the feature hierarchy. In this paper we propose a
co-clustering algorithm that simultaneously produces a hierarchical organization
in both the problem dimensions: the objects and the features. In many applica-
tions both hierarchies are extremely useful and are searched for: in text mining,
for instance, documents are organized in categories grouping related documents.
The resulting object hierarchy is useful because it gives a meaningful structure to
the collection of documents. On the other side, keywords are organized in groups
of synonyms or words with related meaning and this hierarchy provides a semantic
network with meaningful insights on the relationships between keywords. In bioin-
formatics and in other applications, a similar discussion applies: genes or proteins
are grouped in groups sharing a similar behavior while biological experiments by
their related, involved functionalities. The key contributions of this paper are the
following. We present a novel co-clustering algorithm, HiCC, that simultaneously
produces two hierarchies of clusters: one on the objects and the other one on the
features. As we will see with the aid of the experimental section, these hierarchies
are meaningful to the end-user and are valid also under the viewpoint of several
objective measures. Our algorithm is able to produce compact hierarchies because
it produces n−ary splits in the hierarchy instead of the usual binary splits. This
compactness improves the readability of the hierarchy. The third contribution is
the adoption of an unusual cluster associationmeasure in co-clustering:Goodman-
Kruskal τ . It has been considered as a good choice in a comparative study on sev-
eral evaluation function for co-clustering [5,6]. The last novelty is that our algo-
rithm is parameter-less and it does not require the user to set a number of clusters
for the two dimensions, which usually require a pre-processing stage and is not
easy to set.

2 An Introductory Example to Co-clustering

Goodman-Kruskal τ [7] has been originally proposed as a measure of association
between two categorical variables: it is a measure of proportional reduction in
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F1 F2 F3

O1 d11 d12 d13

O2 d21 d22 d23

O3 d31 d32 d33

O4 d41 d42 d43

(a)

CF1 CF2

CO1 t11 t12 TO1

CO2 t21 t22 TO2

TF1 TF2 T

(b)

Fig. 1. An example dataset (a) and a related co-clustering (b)

the prediction error of a dependent variable given information on an independent
variable. We intend to use τ as measure of validation of a co-clustering solution
that produces an association between two clusterings: the former on the values
of the independent variable, the latter on the values of the dependent one.

We start our discussion by presenting a dataset example and one co-clustering
on it. In Figure 1(a) we show a matrix whose rows represent the objects and
the columns represent the features describing the objects themselves. dxy is the
frequency of the y-th feature in the x-th object.

Now consider table in Figure 1(b): it is the contingency table representing a
co-clustering of the dataset of Figure 1(a). Symbol COi represents i-th cluster on
objects while CFj represents j-th cluster on features. TOi is the total counting for
cluster COi, TFj is the total counting for cluster CFj , and T is the global total.
In this example we suppose CO1 has aggregated objects O1 and O2 while CO2
has aggregated objects O3 and O4. Similarly, CF1 has aggregated features F1
and F2 while CF2 contains only feature F3. Co-cluster (COi, CFj) is represented
by the value tij stored in the cell at the intersection of the i-th object cluster and
the j-th feature cluster. It has been computed by application of an aggregating
function on features and on objects. The aggregation that produces co-cluster
(COi, CFj) is the following:

tij =
∑

Ox∈COk

∑
Fy∈CFl

dxy

In order to review the meaning of τ for the evaluation of a co-clustering consider
the table in Figure 1(b) whose cells at the intersection of the row COi with the
column CFj contain the frequencies of objects in cluster COi having the features
in cluster CFj .

τCO|CF determines the predictive power of the partitioning on features, CF,
considered as an independent variable, for the prediction of the partitioning on
objects, CO, considered as a dependent variable. The prediction power of CF is
computed as a function of the error in the classification of CO.

The prediction error is first computed when we do not have any knowledge
on the partitioning CF. ECO denotes this error here. The reduction of this error
allowed by CF is obtained by subtraction from ECO of the error in the prediction
of cluster in CO that we make when we have the knowledge of the cluster in
CF (the independent variable) in any database example. ECO|CF denotes this
latter error. The proportional reduction in prediction error of CO given CF, here
called τCO|CF , is computed by:
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τCO|CF =
ECO − ECO|CF

ECO

ECO and ECO|CF are computed by a predictor which uses information from
the cross-classification frequencies and tries to reduce as much as possible the
prediction error. In the prediction, it also preserves the dependent variable distri-
bution (relative frequencies of the predicted categories CO) in the following way:
when no knowledge is given on CF , COi is predicted by the relative frequency
TOi/T ; otherwise, when CFj is known for an example, COi is predicted with the
relative frequency tij/TFj. Therefore, ECO and ECO|CF are determined by:

ECO =
∑

i

(
T − TOi

T
· TOi

)
; ECO|CF =

∑
i

∑
j

(
TFj − tij

TFj
· tij
)

Analyzing the properties of τ , we can see that it satisfies many desirable prop-
erties for a measure of association between clusters. For instance, it is invariant
by rows and columns permutation. Secondarily, it takes values between (0,1) (it
is 0 iff there is independence between the object and feature clusters). Finally,
it has an operational meaning: given an example, it is the relative reduction in
the prediction error of the example’s cluster in one of the problem dimensions,
given the knowledge on the example’s cluster in the other dimension, in a way
that preserves the class distribution.

3 Original Algorithm

Before introducing our approach, we specify the notation used in this paper. Let
X = {x1, . . . , xm} denote a set of m objects (rows) and Y = {y1, . . . , yn} denote
a set of n features (columns). Let D denote a m×n data matrix built over X and
Y , each element of D representing a frequency or a count. Let R = {r1, . . . , rI}
denote a partition of rows of D and C = {c1, . . . , cJ} denote a partition of
columns of D. Given R and C, a contingency table is denoted by T , i.e., a I × J
matrix such that each element tij ∈ T (i ∈ 1 . . . I and j ∈ 1 . . . J) is computed
as specified in Section 2.

We build our algorithm on the basis of τCoClust [6], whose goal is to find a
partition of rows R and a partition of columns C such that Goodman-Kruskal’s
τC|R and τR|C are optimized [5,8]. τCoClust is shown as algorithm 1.

In [8], the authors propose a heuristic to locally optimize the two coefficients.
Given two co-clusterings matrices, T and T ′, the differential τ between T and
T ′ is given by:

ΔτC|R = τC|R(T )− τC|R(T ′)

The local optimization strategy is sketched in Algorithm 2. For sake of brevity,
we only present the optimization of the row partition. The optimization strategy
of the column partition works in a similar way.

This algorithm is a stochastic optimization technique and it allows to ob-
tain, starting from a given set of row clusters, another set of row clusters that
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optimizes the objective function. As first step, the algorithm chooses a cluster
rb randomly from the set of the initial row clusters R. Then it randomly picks
an object x belonging to rb. The original features of x are projected onto the
current column clusters assignment. Then, the function tries to move x from
the original cluster rb to another cluster re s.t. re �= rb and re ∈ {R ∪ ∅}.
Using function ΔτR|C (x, rb, re, C), it verifies if there is an increment in the ob-
jective function as a result of this change. Then, it chooses cluster remin s.t.
remin = argmin

re

ΔτR|C (x, rb, re, C). Finally, the function updates the contingency

table T and the row cluster partition (line 11). To perform this step, it first moves
the object x from the cluster rb to cluster remin . Then it performs one or more
of the following three actions:

1. if cluster rb is empty after removing x, it deletes cluster rb and updates the
contingency table T consequently;

2. if cluster remin is the empty cluster, it adds a new cluster to the row partition
and updates the contingency table T consequently;

3. if the two above mentioned cases do not apply, it simply updates the content
of T in a consequent way.

Thanks to this strategy, the number of clusters may grow or decrease at each
step, and their number only depends on the effective optimization of τR|C . This
makes this approach substantially different from the one described in [4] and in
other state-of-the-art co-clustering approaches, where the number of co-clusters
is fixed as a user-defined parameter. For a deep view on the efficient version of
this algorithm see [8].

Algorithm 1. τCoClust(D, Niter)
1: Initialize R, C
2: T ← ContingencyTable(R,C, D)

3: while (t ≤ Niter) do
4: optimizeRowCluster(R,C, T )

5: optimizeColumnCluster(R,C, T )

6: t ← t + 1

7: end while
8: return (R,C)

4 Hierarchical Co-clustering

In this section we present our method, named HiCC (Hierarchical Co-Clustering
by n-ary split). Let us introduce the notation.

4.1 Notations

Given the above described matrix D defined on the set of objects X={x1, . . . , xm}
and on the set of features Y = {y1, . . . , yn}, the goal of our hierarchical
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Algorithm 2. optimizeRowCluster(R, C, T )
1: minΔτR|C = 0

2: Randomly choose a cluster rb ∈ R
3: Randomly choose an object x ∈ rb

4: for all re ∈ {R ∪ ∅}s.t.rb �= re do
5: if (ΔτR|C (x, rb, re, C) < minΔτR|C ) then
6: emin = e
7: minΔτR|C = ΔτR|C (x, rb, re, C)

8: end if
9: end for

10: if minΔτR|C �= 0 then
11: Update R using (x,rb,remin ) and modify T consequently

12: end if

Algorithm 3. HiCC(D, Niter)
1: k ← 0, l ← 0, R ← ∅, C ← ∅
2: (Rk, Cl) ← τCoClust(D, Niter)

3: R ← R∪ Rk, C ← C ∪ Cl

4: while (TERMINATION) do
5: Rk+1 ← ∅
6: for all rki ∈ Rk do
7: R′

i ← RandomSplit(rki)

8: t ← 0

9: Tki ← ContingencyTable(R′
i, Cl, D)

10: while (t ≤ Niter) do
11: optimizeRowCluster(R′

i, Cl, Tki)

12: t ← t + 1

13: end while
14: Rk+1 ← Rk+1 ∪ R′

i

15: end for
16: R ← R∪ Rk+1

17: k ← k + 1

18: Cl+1 ← ∅
19: for all clj ∈ Cl do
20: C′

j ← RandomSplit(clj)

21: t ← 0

22: Tlj ← ContingencyTable(Rk, C′
j , D)

23: while (t ≤ Niter) do
24: optimizeColumnCluster(Rk, C′

j , Tlj)

25: t ← t + 1

26: end while
27: Cl+1 ← Cl+1 ∪ C′

j

28: end for
29: C ← C ∪ Cl+1

30: l ← l + 1

31: end while
32: return (R, C)
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co-clustering algorithm is to find a hierarchy of row clustersR over X , and a hier-
archy of column clusters C over Y . Supposing thatR has K levels, and that C has L
levels,R and C are defined asR = {R1, . . . , RK} and C = {C1, . . . , CL} (where R1
and C1 are the clustering at the roots of the respective hierarchy). Each Rk ∈ R is
a set of clusters denoted by Rk = {rk1, . . . , rk|Rk|} where |Rk| is the total number
of clusters in Rk, rki ⊆ X ,

⋃
i rki = X and ∀i, j s.t. i �= j rki ∩ rkj = ∅. Similarly,

Cl = {cl1, . . . , cl|Cl|}, and the other conditions hold for Cl too. Since R defines a
hierarchy, each Rk must also satisfy the following conditions:

1. ∀Rk1 , Rk2 s.t. k1 < k2, |Rk1 | ≤ |Rk2 | ;
2. ∀Rk (k > 1), ∀rki ∈ Rk, ∀Rk0 (k0 < k), ∃!rk0j∈Rk0

s.t. rki ⊆ rk0j ;

Two similar conditions must hold for C too.
Our approach first computes the first level of the hierarchy (R1 and C1) using

Algorithm 1. Then, it builds R2 by fixing C1 by optimization of τR2|C1 . In general,
given a generic hierarchy level h, Algorithm 3 alternates the optimization of
τRh|Ch−1 and τCh|Rh

, finding the appropriate row cluster Rh and column cluster
Ch, constrained by the two above mentioned conditions. We present now the
details of our algorithm.

4.2 Algorithm Description

The whole procedure is presented in Algorithm 3. HiCC adopts a divisive strat-
egy. At line 1 it initializes all our indices and structures. Using function τCoClust
(see Algorithm 1) it builds the first level of both hierarchies.

From line 4 to line 31 it builds the levels of the two hierarchies. From line 6 to
line 13, for each row cluster rki ∈ Rk, the algorithm splits it into a new set of row
clusters R′

i using RandomSplit function. This function first sets the cardinality
R′

i randomly; then it randomly assigns each row in rki to a cluster of R′
i. Sub-

sequently, it initializes a new contingency table Tki related to the set R′
i of row

clusters and to the set Cl of column clusters (we consider all the column clusters
found at previous level). Without changing columns partition, the algorithm tries
to optimize τR′

i|Cl
using the optimizeRowCluster function (see Algorithm 2). It

returns a new and optimized R′
i. After all rki have been processed, the algorithm

adds the new level of the row hierarchy to R (line 16). Column clusters are then
processed in the same way, using the row cluster assignment returned at the end
of previous steps. In this way the two hierarchies grow until a TERMINATION
condition is reached. The TERMINATION condition is satisfied when all leaves
of the two hierarchies contain only one element. Obviously, some cluster may
be split into singletons at higher levels than others. At the end, our algorithm
returns both the hierarchies over rows (R) and columns (C).

As shown in [8,6], the local search strategy employed to update partitions,
sometimes leads to some degradation of τR|C or τC|R. This is due to the fact
that an improvement on one partition may decrease the quality of the other one.
The authors, however, showed that there is always a compensation effect such
that, after an adequate number of iterations, the two coefficients become stable.
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In our approach, a single cluster is partitioned while keeping the other partition
fixed. This ensure that the corresponding coefficient increases at each iteration.

4.3 Complexity Discussion

HiCC complexity is influenced by three factors. The first one is the number of
iterations. It influences the convergence of the algorithm. A deep study of the
number of iterations is presented in [6]. The second factor is the number of
row/column clusters in optimizeRowCluster and in optimizeColCluster func-
tions. This number of clusters influences the swap step which tries to optimize
the internal objective function moving one object from a cluster b to another
cluster e. The number of possible different values that e can assume influences
the speed of the algorithm, but this number varies during the optimization. The
third factor is the depth of the two hierarchies, in particular the deeper one. This
value influences the number of times the main loop from lines 4-31 of algorithm
3 is repeated. If we denote by N the number of iterations, by c̃ the mean number
of row/column clusters inside the optimization procedure, and by v the mean
branching factor, we observe that the complexity of a split of rki and clj is equal
as average to O(N × c̃). Each split is performed for each node of the two hierar-
chies except for the bottom level. The number of nodes in a tree with branching
factor v is

∑levels
i=0 vi where levels is the number of levels of the tree. We can

expand this summation and we obtain 1−v1+levels

1−v . From the previous consider-

ation we estimate the complexity of our approach O
(
N × c̃× 1−vlevels

1−v

)
. The

worst case is verified when any split is binary and at each level c̃ = n, where n is
the number of rows/columns. In this case, the complexity is O(N × (n− 1)×n),
(n−1) being the number of internal nodes in the hierarchy. In conclusion, in the
worst case, the overall complexity is O(Nn2). In the experimental section, we
show that our algorithm often splits into more than two clusters, thus reducing
the number of internal nodes. Moreover, assumption c̃ = n is very pessimistic.
In general our algorithm runs in linear time with the number of iterations, and
in subquadratic time with the number of objects/features. Notice also that in
this work, the number of iterations is constant, but it could be adapted to the
size of the set of objects, and then reduced at each split.

5 Experimental Validation

In this section we report on several experiments performed on real, high-
dimensional, multi-class datasets. We compare our approach with Information-
Theoretic Co-Clustering (ITCC) [4], a well-known co-clustering algorithm which
minimizes the loss in mutual information. To evaluate our results, we use sev-
eral objective performance parameters that measure the quality of clustering.
Besides the precision of the hierarchical co-clustering we analyze also the hi-
erarchies returned by our approach for both rows and columns. This analysis
allows to emphasize the utility of the hierarchical structure w.r.t. standard flat
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Table 1. Datasets characteristics

Dataset n. instances n. attributes n. of classes

oh0 1003 3182 10

oh15 913 3100 10

tr11 414 6429 9

tr21 336 7902 6

re0 1504 2886 13

re1 1657 3758 25

co-clustering approaches. All experiments are performed on PC with a 2.6GHz
Opteron processor, 4GB RAM, running Linux.

5.1 Datasets for Evaluation

To evaluate our results we use some of the datasets described in [9]. In particular
we use:

– oh0, oh15: two samples from OHSUMED dataset. OHSUMED is a clinically-
oriented MEDLINE subset of abstracts or titles from 270 medical journals over
five-year period (1987-1991).

– tr11, tr21: two samples from TREC dataset. These data come from the
Text REtrieval Conference archive.

– re0, re1: two samples from Reuters-21578 dataset. This dataset is widely
used as test collection for text categorization research.

All datasets have more than five classes, which usually is a hard context for text
categorization. The characteristics of datasets are shown in Table 1.

5.2 External Evaluation Measures

We evaluate the algorithm performance using three external validation indices.
We denote by C = {C1 . . . CJ} the partition built by the clustering algorithm
on objects at a particular level, and by P = {P1 . . . PI} the partition inferred by
the original classification. J and I are respectively the number of clusters |C|
and the number of classes |P|. We denote by n the total number of objects.

The first index is Normalized Mutual Information (NMI). NMI provides an
information that is impartial with respect to the number of clusters [10]. It
measures how clustering results share the information with the true class assign-
ment. NMI is computed as the average mutual information between every pair
of clusters and classes:

NMI =

∑I
i=1
∑J

j=1 xij log nxij

xixj√∑I
i=1 xi log xi

n

∑J
j=1 xj log xj

n

where xij is the cardinality of the set of objects that occur both in cluster Cj

and in class Pi; xj is the number of objects in cluster Cj ; xi is the number of
objects in class Pi. Its values range between 0 and 1.
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The second measure is purity. In order to compute purity each cluster is
assigned to the majority class of the objects in the cluster. Then, the accuracy
of this assignment is measured by counting the number of correctly assigned
objects divided by the total number of objects n.

Purity(C,P) =
1
n

∑
j

maxi|Cj ∩ Pi|

The third measure is the adjusted Rand index [11]. Let a be the number of
object pairs belonging to the same cluster in C and to the same class in P. This
metric captures the deviation of a from its expected value corresponding to the
hypothetic value of a obtained when C and P are two random, independent
partitions. The expected value of a denoted by E[a] is computed as follows:

E[a] =
π(C) · π(P )
n(n− 1)/2

where π(C) and π(P ) denote respectively the number of object pairs from the
same clusters in C and from the same class in P. The maximum value for a is
defined as:

max(a) =
1
2

(π(C) + π(P ))

The agreement between C and P can be estimated by the adjusted rand index
as follows:

AR(C,P) =
a− E[a]

max(a)− E[a]

Notice that this index can take negative values, and when AR(C,P) = 1, we
have identical partitions.

5.3 Comparison Results

In this section we evaluate HiCC performance w.r.t ITCC [4]. HiCC is not deter-
ministic like other well-known clustering algorithms such as K-means or ITCC
itself. At each run we can obtain similar, but not equal, hierarchies. For this
reason we run HiCC 30 times over each dataset (setting the number of iterations
to 50,000). From these row/column co-hierarchies we choose the run that better
optimizes an internal evaluation function.

To obtain a measure of quality of HiCC, for each level i of the hierarchy on the
rows we select the corresponding level of the hierarchy on the columns. These
levels define a pair of partitions: the first partition comes from the row cluster
hierarchy, and the second one from the columns cluster hierarchy. On the pair
of partitions from level i, an evaluation function EFi is computed on the basis
of Goodman-Kruskal τS [12], which is a symmetrical version of τ [7]. In order
to compute an overall measure for the co-clustering we compute the following
weighted mean:

Goodness =
∑

i=1 αi ∗ EFi∑
i=1 αi

(1)



590 D. Ienco, R.G. Pensa, and R. Meo

Table 2. Average values of External Indices

Dataset NMI Purity Adjusted Rand Index

Avg. std. dev. Avg. std. dev. Avg. std. dev.

oh0 0.5176 ±0.0134 0.7768 ±0.0250 0.1150 ±0.0129

oh15 0.4223 ±0.0103 0.6653 ±0.0207 0.0790 ±0.0080

tr11 0.4606 ±0.0087 0.7510 ±0.0145 0.1091 ±0.0119

tr21 0.2387 ±0.0120 0.8103 ±0.0122 0.0323 ±0.0045

re0 0.3588 ±0.0273 0.7317 ±0.0235 0.0381 ±0.0140

re1 0.5005 ±0.0267 0.7616 ±0.0397 0.0714 ±0.017

where αi is the weight associated to i-th level of the hierarchy, and allows to
specify the significance assigned to the i-th level w.r.t. to the other levels of the
hierarchy.

(1) is a general formula for the evaluation the goodness of a run of our method.
In this work we set αi = 1/i. Indeed, we give a heavy weight to the top level
and the lowest weight to the last level. This choice is motivated by observation
that in a hierarchical solution the clusters on a level depend on the clusters at
previous level. If we start with a good clustering, then next levels are more likely
to produce good results too.

To compare each level of our hierarchies with ITCC results, we need to fix a
number of row/column clusters to set ITCC parameters. We recall that ITCC is
flat and does not produce hierarchies. For this reason we plan our experiments in
the following way. Since HiCC is not deterministic, each run may produce parti-
tions of different cardinality at each level. For this reason, we need to select one
specific run of HiCC. Using Goodness function with τS as evaluation function, we
choose the best hierarchies from HiCC for each dataset. From these hierarchies, we
obtain a set of pairs (#numberRowCluster,#numberColCluster), where each pair
specifies the number of clusters in a level of the hierarchies. For each of these combi-
nations, we run ITCC 50 times with (#numberRowCluster,#numberColCluster)
as parameters, and average for each level the obtained results.

In Table 3 we show the experimental results. To obtain a single index value
for each dataset we compute the previously proposed Goodness function for
each of the three external validation indices. We can see that our approach is
competitive w.r.t. ITCC. Notice however that, for a given number of desired
co-clusters, ITCC tries to optimize globally its objective function, and each time
it starts from scratch. On the contrary, our algorithm is constrained by previous
level which helps to speed-up its execution.

We can notice that ITCC is not more accurate than our algorithm. To clarify
this point we report the complete behavior of the two algorithms in an example. In
Table 4 we report the value of the three indices for each level of the hierarchy ob-
tained by HiCC for re1. In the same table we show the values obtained by ITCC us-
ing the same number of clusters (#numberRowCluster,#numberColCluster) dis-
covered by HiCC. We also report the standard deviation for ITCC, since for each
pair of cluster numbers, we run it 50 times. We can see that HiCC outperforms
ITCC, especially at the higher levels (first, second and third) of the row hierarchy.
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Table 3. Comparison between ITCC and HiCC with the same number of cluster for

each level

Dataset ITCC HiCC

NMI Purity Adj. Rand Index NMI Purity Adj. Rand Index

oh0 0.4311 0.5705 0.1890 0.4607 0.5748 0.1558

oh15 0.3238 0.4628 0.1397 0.3337 0.4710 0.1297

tr11 0.3861 0.5959 0.1526 0.3949 0.6028 0.1325

tr21 0.1526 0.7291 0.0245 0.1277 0.7332 0.0426

re0 0.2820 0.5695 0.0913 0.2175 0.5388 0.0472

re1 0.3252 0.4957 0.0832 0.3849 0.5513 0.1261

Table 4. Complete view of performance parameters for re1

ITCC HiCC
RowClust ColClust NMI Purity Adj. Rand NMI Purity Adj. Rand

3 3 0.1807±0.0519 0.3282±0.0448 0.1028±0.0466 0.3290 0.4255 0.2055
6 6 0.2790±0.0462 0.3991±0.0393 0.1723±0.0530 0.2914 0.4255 0.1828
15 257 0.2969±0.0178 0.4357±0.0226 0.1358±0.0183 0.3098 0.4472 0.1555
330 1291 0.3499±0.0028 0.4013±0.0059 0.0021±0.0003 0.3950 0.51 0.0291
812 2455 0.4857±0.0019 0.5930±0.0056 0.0013±0.0002 0.4810 0.6530 0.0031
1293 3270 0.5525±0.0013 0.8284±0.0041 0.0008±0.0001 0.5517 0.8461 0.0009
1575 3629 0.5864±0.0006 0.9602±0.0020 0.0005±0 0.5854 0.9638 0.0001
1646 3745 0.5944±0.0002 0.9926±0.0008 0.0004±0 0.5940 0.9952 0
1657 3757 0.5951±0 1±0 0±0 0.5952 1 0
1657 3758 0.5951±0 1±0 0±0 0.5952 1 0

We notice also that purity index in HiCC always increases monotonically. This ex-
periment shows that, when we explore deeper levels of the hierarchy, the confusion
inside each cluster decreases. For sake of brevity we can only show one example,
but in all the other experiments we observe the same trend.

In Table 5 we report the average Goodness of τS for each dataset, and the
related standard deviation. We observe that standard deviation is very low w.r.t.
the average Goodness. From this empirical evaluation we can conclude that the
algorithm is quite stable.

In Table 2 we show the average values of the three external indices for each
dataset. To perform this analysis we first compute the average of NMI, Purity
and Adjusted Rand Index between all levels of the row hierarchy and for each
run of the algorithm. Then we compute the average and the standard deviation
over all 30 runs.

Finally, we report in Table 5 the average time needed to generate the two
hierarchies for each dataset. The largest dataset is re1, and for this dataset
HiCC takes about 4 hours to complete a run. In the same table we show the
mean depth of the row hierarchy and of the column hierarchy for each dataset.
We observe that the standard deviation is low. This points out that our algo-
rithm is stable also from this point of view. Notice that HiCC has the ability
to generate hierarchies which are not deep. Shorter hierarchies are preferable
to hierarchies obtained only by binary splits, since they allow to identify the
natural partitioning of the data, and improve the exploration of the results.
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Table 5. Average τS , mean depth of hierarchies and mean time

Dataset Goodness Row Hier. Depth Col. Hier. Depth Avg. Time

oh0 0.2680±0.0063 9.37±0.71 9.83±0.64 6647.99 sec

oh15 0.2783±0.0012 10.63±0.71 11.23±0.62 5866.92 sec

tr11 0.2294±0.0032 10.27±0.63 15.63±1.99 5472.37 sec

tr21 0.3003±0.0012 10.87±0.67 14.4±0.99 5493.98 sec

re0 0.2350±0.0166 10.7±0.74 10.6±0.88 9359.04 sec

re1 0.1697±0.0112 8.8±0.65 9.2±0.65 14887.18 sec

Table 6. Row hierarchy of oh15

Enzyme-Activation
Enzyme-Activation Enzyme-Activation

Enzyme-Activation

Cell-Movement Cell-Movement
Adenosine-Diphosphate

Staphylococcal-Infections
Uremia Uremia

Staphylococcal-Infections

Staphylococcal-Infections Staphylococcal-Infections
Memory

Table 7. Column hierarchy of re1

oil, compani, opec, gold, ga,
barrel, strike, mine, lt, explor

tonne, wheate, sugar, corn,
mln, crop, grain, agricultur,
usda, soybean

coffee, buffer, cocoa, deleg, con-
sum, ico, stock, quota, icco,
produc

oil, opec,
tax, price,
dlr, crude,
bank, industri,
energi, saudi

compani, gold,
mine, barrel,
strike, ga, lt,
ounce, ship,
explor

tonne, wheate,
sugar, corn,
grain, crop,
agricultur,
usda, soybean,
soviet

mln, export,
farm, ec, im-
port, market,
total, sale,
trader, trade

quota, stock,
produc, meet,
intern, talk,
bag, agreem,
negoti, brazil

coffee, deleg,
buffer, cocoa,
consum, ico,
icco, pact,
council, rubber

5.4 Inspecting Hierarchies

In this section we analyze in a qualitative way two hierarchies built by our
algorithm. In particular we analyze the row hierarchy for oh0 data and the
column hierarchy from re1 data. In Table 6 we report the first three levels of
the row hierarchy produced by HiCC. To obtain this hierarchy we assigned at
each cluster a label. We chose the label of the majority class in the cluster. Each
column represents a level of the hierarchy and each cell of the table represents a
single cluster. Cluster Enzyme-Activation at first level is split in two clusters: the
first one has the same label, the second is Cell-movement, a topic more related to
Enzyme-Activation than Staphylococcal-Infections. Then Cell-movement is split
into two clusters. One of these is Adenosine-Diphosphate, which is known to be
correlated with the topic Cell-movement. In the other branch of the hierarchy we
notice that Uremia cluster is a child of Staphylococcal-Infections(a renal failure
with bacterial infection as one of its causes). In Table 7 we report the first two
levels of the column hierarchy produced by HiCC. For each cluster, we computed
the mutual information for each word, and ranked the set of words, as described
in [13]. Then we selected the 10-top words w.r.t. the mutual information for each
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cluster. At the first level each of the three clusters is about a well distinct topic:
the first one is about mineral, the second one is on agriculture and the third
one is on coffee and cocoa. From mineral cluster, two clusters are produced: oil,
and gold mineral. Cluster on agriculture is split into two clusters: agricultural
products and buying and selling in agriculture. Finally, we observe that coffee
and cocoa cluster is split in a similar way.

6 Related Work

One of the earliest co-clustering formulations was introduced by Hartigan [2].
This algorithm begins with the entire data in a single block and then at each
stage finds the row or column split of every block into two pieces, choosing the one
that produces largest reduction in the total within block variance. The splitting
is continued till the reduction of within block variance due to further splitting is
less than a given threshold. This approach is clearly hierarchical, but it does not
build any cluster hierarchy. Moreover, it does not optimize any global objective
function. Kluger et al. [3] propose a spectral co-clustering method. First, they
perform an adequate normalization of the data set to accentuate co-clusters if
they exist. Then, they consider that the correlation between two columns is bet-
ter estimated by the expression level mean of each column w.r.t. a partition of
the rows. The bipartition is computed by the algebraic eigenvalue decomposition
of the normalized matrix. Their algorithm critically depends on the normaliza-
tion procedure. Dhillon et al. [4] and Robardet et al. [8] have considered the two
searched partitions as discrete random variables whose association must be max-
imized. Different measures can be used. Whereas Cocluster [4] uses the loss
in mutual information, Bi-Clust [8] uses Goodman-Kruskal’s τ coefficient to
evaluate the link strength between the two variables. In both algorithms, a local
optimization method is used to optimize the measure by alternatively changing
a partition when the other one is fixed. The main difference between these two
approaches is that the τ measure is independent of the number of co-clusters and
thus Bi-Clust can automatically determine the number of co-clusters. Another
co-clustering formulation was presented in [14]. Authors propose two different
residue measure, and introduce their co-clustering algorithm which optimizes the
sum-squared residues function. Recently, Banerjee et al. have proposed in [15] a
co-clustering setting based on matrix approximation. The approximation error is
measured using a large class of loss functions called Bregman divergences. They
introduce a meta-algorithm whose special cases include the algorithms from [4]
and [14]. Another recent and significant theoretical result has been presented
in [16]. The authors show that the co-clustering problem is NP-hard, and pro-
pose a constant-factor approximation algorithm for any norm-based objective
functions.

To the best of our knowledge, our approach is the first one that performs
a simultaneous hierarchical co-clustering on both dimensions, and that returns
two coupled hierarchies. However, in recent literature, several approaches have
been proposed that could be related to our work, even though they do not
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produce the same type of results. In [17] a hierarchical co-clustering for queries
and URLs of a search engine log is introduced. This method first constructs a
bipartite graph for queries and visited URLs, and then all queries and related
URLs are projected in a reduced dimensional space by applying singular value
decomposition. Finally, all connected components are iteratively clustered using
k-means for constructing hierarchical categorization. In [18], the authors propose
a hierarchical, model-based co-clustering framework that views a binary dataset
as a joint probability distribution over row and column variables. Their approach
starts by clustering tuples in a dataset, where each cluster is characterized by a
different probability distribution. Then, the conditional distribution of attributes
over tuples is exploited to discover natural co-clusters in the data. This method
does not construct any coupled hierarchy, moreover, co-cluster are identified in a
separate step, only after the set of tuple has been partitioned. In [19], a method
is proposed that construct two hierarchies on gene expression data, but they are
not generated simultaneously. In our approach, levels of the two hierarchies are
alternately generated, so that each level of both hierarchies identifies a strongly
related set of co-clusters of the matrix.

7 Conclusion

Quality of flat clustering solutions in high-dimensional data results often de-
graded. In this paper we have proposed a co-clustering approach. HiCC is a
novel hierarchical algorithm, which builds two coupled hierarchies, one on the
objects and one on features thus providing insights on both them. Hierarchies
are high quality. We have validated them by objectives functions like NMI, Pu-
rity and Adjusted Rand Index on many high-dimensional datasets. In addition,
HiCC has other benefits: it is parameter-less; it does not require a pre-specified
number of clusters, produces compact hierarchies because it makes n−ary splits,
with n automatically determined.
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Abstract. We consider mining unusual patterns from text T . Unlike existing
methods which assume probabilistic models and use simple estimation methods,
we employ a set B of background text in addition to T and compositions w = xy
of x and y as patterns. A string w is peculiar if there exist x and y such that
w = xy, each of x and y is more frequent in B than in T , and conversely w = xy
is more frequent in T . The frequency of xy in T is very small since x and y are
infrequent in T , but xy is relatively abundant in T compared to xy in B. Despite
these complex conditions for peculiar compositions, we develop a fast algorithm
to find peculiar compositions using the suffix tree. Experiments using DNA se-
quences show scalability of our algorithm due to our pruning techniques and the
superiority of the concept of the peculiar composition.

1 Introduction

As text data, such as Web documents and genome sequences, are becoming abundant in
various areas, it is becoming more important to analyze text data and to extract useful
knowledge from it. Hence, an increasing attention has been paid to text mining.

Exceptionality has attracted attention of researchers in various areas as an essential
property of discovered knowledge, since a discovery is often inspired by unusual events
which can not be explained by the current theory. In the field of data mining, the term
“unexpected” has been included as a mandatory property of the target patterns [1] from
the beginning of the field and various methods have been proposed for finding excep-
tions, such as outliers [2], rules [3], and other types of patterns [4]. Unusualness for
time series data has been also studied [5,6]. For text data, finding unusual text patterns
have been studied extensively, especially in bioinformatics [7,8,9,10].

For the definition of being unusual, it is natural to define usual states and to measure
unusualness by deviation from the states. In the z-score, which is a popular measure for
unusual patterns in text data [8,9,10], the popularity of a usual state for a pattern w is
an estimated expectation for w based on a given probability model. More formally, the
z-score z(w) for w is defined

z(w) =
f (w) − E(w)

N(w)
,

where f (w) > 0 denotes the observed frequency, E(w) its expectation and N(w) a nor-
malization factor. Given a threshold α, w is unusual if z(w) > α or z(w) < −α. In other
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words, an unusual pattern based on the z-score is a pattern whose frequency deviates
far from its estimate under the given probability model.

However, scores to measure unusualness borrowed from statistical testing, such as
the z-score, have the following problems: (1) they require an appropriate probabilis-
tic model in advance, (2) discovered unusual patterns lack of clear interpretations and
(3) an estimation based on the probabilistic model is inappropriate for sparse text data.

Firstly, such a score requires an appropriate probabilistic model. A simple model
is easy to compute the corresponding score but it can not describe details of given
data, while a sophisticated model well describes the given data but it is computationally
costly to obtain parameters for the model. When we assume the Bernoulli model, which
is a simple model, we obtain the ζ-score as a variant of the z-score [7,8], where the
expectation p̂(w) for a pattern w is given by p̂(w) =

∏
p(a), which is the product of

all probabilities p(a) for letters a in w. In this model, each letter is supposed to occur
independently. The Markov model is also considered for the probabilistic model of the
z-score [10]: the probability of the ith letter ai depends on the probability of the previous
k letters and therefore p̂(w) is estimated by a conditional probability p(ai|ai−1 · · · ai−k+1).
However, the value of k is fixed and must be given in advance, and it is difficult to decide
an appropriate value for k automatically.

Secondly, it is difficult for us to understand the meaning of patterns obtained by a
score based on statistical testing. Such a pattern is evaluated from only the view point
of the statistics. Therefore, we only know that the frequency of the pattern is rare or
abundant against its expectation but the frequency does not tell us about its meaning.

Finally, the estimation based on simple probabilistic models is inappropriate to find
unusual patterns from sparse text data because the models use short sub-patterns to esti-
mate longer patterns’ probabilities. Estimating probabilities for long patterns is critical
to find unusual patterns since unusual patterns must be long from the definition of being
unusual. However, the simple probabilistic models provide inaccurate estimates to all
long patterns as many long patterns do not appear in practical sparse data. Thus, we
need a better estimation method for sparse text data.

To overcome these problems, first, we introduce a background set in addition to a
target set of text data. From the background set, we find sub-patterns which compose
unusual patterns. In this sense, the background set is used as a mother population. In
practical usage, it is natural to compare a given data with other data, instead of com-
paring with the population. For example, to examine DNA sequences of a species, the
same or similar subsequences of other, well-known species can be a good hint.

Next, we introduce a new form of a pattern, called a composition, which is defined
as the concatenation of two frequent substrings x and y. The lengths of x and y are not
restricted and hence they can be long. Thus, we can expect x and y help us to understand
implications of xy because x and y are enough long and frequent. For example, three
nucleotides in genome sequences compose a codon and thus we might try to understand
a sequence of nucleotides using the codon table in a bottom up manner.

Finally, we define a composition to be peculiar using two ratios of frequencies for
both target and background sets. That is, w = xy is peculiar if both x and y are more
frequent in B than in T and conversely their composition xy is more frequent in T than
in B. Therefore, the frequency of w is small in the target set since both x and y are
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infrequent in T , and the frequency of w is larger than its expectation of f (x) f (y) in B. In
this sense, peculiar compositions are unusual. Hence, we only need to provide simple
parameters to a data mining algorithm instead of a complicated probabilistic model.

Our problem definition raises a new challenging problem: we have to find frequent
components as well as infrequent unusual patterns. Therefore, it is computationally
hard to find peculiar compositions, compared to just finding substrings. We develop
an algorithm, FPCS (Finding Peculiar Compositions), which exploits the generalized
suffix tree and find peculiar compositions in O(N2) time, where N is the total length of
input strings. The generalized suffix tree enables FPCS to find simultaneous discovery
of a peculiar composition xy, its prefix x, and suffix y.

This paper is organized as follows: related work is surveyed in section 2. We de-
fine the problem in section 3 and then propose our main algorithm FPCS in section 4.
Section 5 is devoted for experimental evaluation. Section 6 concludes.

2 Related Work

The z-score has attracted attention of bioinformatics researchers as a measure to find
unusual patterns in strings. For a threshold α, if z(w) > α (resp. z(w) < −α) then w
is said to be overrepresented (resp. underrepresented). In [7,8], the Bernoulli model is
assumed as a probabilistic model in estimating the expectations and the Markov model
or the so called n-gram model is considered in [10]. The χ2-score is also used to measure
interestingness [9].

Many supervised learning algorithms, e.g., those for formal languages, and text min-
ing algorithms [11,12,13,14] also use another set of text data in addition to a target set.
However, they discover a pattern which satisfies many examples in a set but few in the
other set. Therefore, patterns output by them are usual.

Indexing scores in information retrieval also consider a background set. For example,
TF/IDF marks a high score to a word which appears frequently in a document but not
in the background set. This criteria is similar to our notion of being peculiar. However,
indexing scores are not for compositions of words but for single words, and the target
set for TF/IDF is a single document not a set of documents like in our setting.

x=v x=v’

Y

Z

Fig. 1. Venn diagram of a discovered
pattern in the simultaneous discovery of
exception rules

The concept of the peculiar composition bor-
rows its essential idea from the simultaneous dis-
covery of exceptional rules [15,16,17,18]. It tries
to discover a set of rule pairs each of which cor-
responds to Y → x = v and YZ → x = v′, where
each of Y and Z represents a conjunction of “at-
tribute = value”s, x is an attribute, v and v′ are
different values, and YZ is the conjunction of Y
and Z. [15,16,18] assume that Z → x = v′ does
not hold and in this case a rule pair corresponds
to a situation that an ensemble of two conditions
result in an atypical result as shown in Fig. 1. Dis-
covered rule pairs are shown to be valid, useful,
novel, and unexpected in a medical application [18]. Our work can be considered as a
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text mining version of the simultaneous discovery of exception rules. It is difficult for
algorithms in [15,16,17,18] to discover long patterns because the algorithms generate
candidate patterns and then check their frequencies. One of our contributions lies in
FPCS which exploits the generalized suffix tree in a sophisticated manner and hence
the time complexity of FPCS does not depend on the lengths of x and y in discovered
patterns.

3 Peculiar Composition Discovery Problem

We first define mandatory notions for dealing string data, introduce the peculiar com-
position, and its discovery problem.

Let Σ be a finite set of characters. We call Σ an alphabet. The set of all the finite
sequences of zero or more characters is denoted by Σ∗. An element of Σ∗ is called a
string. We denote the length of a string x by |x|. The empty string, which is a string of
zero character, is denoted by ε. The set of sequences each of which is composed of at
least one character is denoted by Σ+ i.e. Σ+ = Σ∗ − {ε}.

For strings x, y ∈ Σ+, the concatenation of x and y is denoted by xy. We call xy
the composition of x and y. For instance, if x = “every” and y = “thing” then xy =
“everything”. Conversely, a pair of two strings (x, y) is called a division of w if w = xy.

For a string x = a1 · · · an (ai ∈ Σ), if there exist u, v,w ∈ Σ∗ such that x = uvw then
u (resp. v and w) is a prefix (resp. substring and suffix) of x.1 For instance, if uvw =
“amazingly” then u=“amaz” is a prefix, v=“ing” is a substring, and w=“ly” is a suffix.
The notion of suffix will be crucial in introducing data structures in section 4.2. An
occurrence of v in x is a positive integer i such that ai · · · ai+|v|−1 = v. The occurrence
of “ing” in “amazingly” is 5, and “a” has two occurrences: 1 and 3. The frequency of v
in x is the number of occurrences of v in x.

For x, y ∈ Σ∗, we consider that the frequency of x in y represents a kind of popularity
of x in y. To treat this notion for a set D of strings, we use f(x|D) to denote the add-sum
of the frequencies of x in all strings in D. Since the frequency is affected by the absolute
size for D, we use relative frequencies or empirical probabilities P(x|D) = f(x|D)/#D,
where #D is the add-sum of frequencies of all substrings in D. For examplle, since AG
appears 4 times in D = {CT AGAG,CT AGCT AG} and #D = 6 · 7/2 + 8 · 9/2 = 57,
f(AG|D) = 4 and P(AG|D) = 4/57.

We assume two sets T and B of strings, and we call T the target set and B the back-
ground set. Given a threshold θ > 1, x is contrastive w.r.t. θ in target (resp. background)
if P(x|T ) > θP(x|B) (resp. P(x|B) > θP(x|T )). θ represents the minimum ratio of the
probability of x in one document set to that in the other set.2 If it is clear from the con-
text, we omit the threshold and simply say that x is contrastive in target or background.
For instance, if T and B represent the sets of e-mails of A and B, respectively, and only
A lives in Kyushu then “Kyushu” is likely to be contrastive w.r.t a relatively large θ.

Let x, y ∈ Σ+. Given θT and θB, a composition xy is said to be peculiar in T against B
if xy is contrastive in target w.r.t θT , and both x and y are contrastive in background

1 A prefix or suffix is a substring because u or w can be the empty string.
2 An appropriate value of θ in practice is decided by a trial and error process.
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w.r.t θB. If it is clear from the context, we omit the string sets and simply call xy a
peculiar composition.

In addition to the notion of being contrastive defined by the proportion of the rela-
tive frequencies, we also use the minimum support which is a minimum threshold for
frequencies. For a set D of strings, we denote the minimum support by ηD, and we say
that a string x is ηD-frequent in D if x appears more than ηD times in D. ηD represents
the minimum support for the frequency of peculiar compositions.

If “Kyushu University” is a peculiar composition then its prefixes, such as “Kyushu
Universi”, are likely to be peculiar. These prefixes increase the number of patterns dis-
covered by mining algorithms, but can be considered as irrelevant. Several pattern dis-
covery algorithms discover only closed patterns which are maximal among equivalent
patterns [19,20]. We define that two composition xy and x′y′ (|xy| > |x′y′|) are equiv-
alent if x = x′, y′ is a prefix of y, and f(y|D) = f(y′|D) (D = T, B). We say that xy is
maximal of equivalent compositions if xy is longest in the equivalent compositions.

The peculiar composition discovery problem is formally defined as follows:

Definition 1. The peculiar composition discovery problem is, given two sets T and B
of strings and threshold values θT , θB and ηT , to find all maximal, ηT -frequent, peculiar
compositions in T against B.

Example 1. Let B = {CT AGAG,CT AGCT AG} and T = {AGCT, AGCT, AAAAAAA}.
While AG and CT are popular but AGCT is rare in B, AGCT is popular in T . Thus
AGCT is a peculiar composition of AG and CT for θT = 1.2, θB = 2.3 and ηT = 2
because #T = 48, #B = 57, f(AGCT |T ) = 2 and f(AG|B) = f(CT |B) = 3.

It is easy to solve the problem if we neglect time-efficiency or if we limit the maximal
length of the strings in the discovered patterns to a trivially-small number. A straightfor-
ward solution would be to count substrings and check if x, y and xy are contrastive. The
number of possible substrings is O(N2), where N is the total length of input strings.
For a substring of the form xy, we have to check O(|xy|) compositions since there
exist O(|xy|) divisions. For each string w (or composition), O(|w|) time is required to
check if a string is contrastive. Thus the time complexity of this naive algorithm is
O(N2 × N × N) = O(N4). Certainly this solution is prohibitive for real problems.

The suffix tree [21,22], which is a popular data structure for text data, reduces this
time complexity. Although there exist O(N2) possible substrings, we only need to check
O(N) substrings which correspond to nodes in a suffix tree, and it is done in constant
time to check if a string is contrastive by storing frequencies on nodes of the tree. Thus,
the time complexity is reduced to O(N2).

However, this is larger than the time complexity to compute z-score, which is calcu-
lated in O(N) time [7]. The main difficulty arises from the fact that being contrastive
does not satisfy anti-monotonicity because our problem is defined over two string sets
instead of a single set. For a string w, there exist O(|w|) divisions (xi, yi), where w = xiyi.
Even if xi, yi and xiyi are contrastive for some division (xi, yi), we do not conclude that,
for another division (x′i , y

′
i), x′i , y′i and x′i y

′
i are contrastive. Thus we need to check all

divisions.
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4 Our Algorithm FPCS

In this section, we present our main algorithm FPCS (Finding Peculiar Compositions).

4.1 Overview of FPCS

FPCS exploits the generalized suffix tree, which is a well-known data structure for text
data. First FPCS constructs the generalized suffix tree for all input strings. A node of
the tree corresponds to a substring, called a branching string, of the given strings. Then
FPCS counts the frequencies for branching strings in both background and target sets
simultaneously. As the result, the algorithm finds all nodes such that their branching
strings are contrastive in target and, for such a node, there exists an ancestor node
whose branching string is contrastive in background. Such a branching string xy is a
candidate for a peculiar composition because xy is contrastive in target and x is con-
trastive in background. Finally FPCS checks if y is contrastive in background for all
possible divisions (x, y) of xy efficiently using suffix links, which are pointers to nodes
of the generalized suffix tree.

4.2 Generalized Suffix Tree

In this section, we briefly explain the generalized suffix tree used in FPCS. The gener-
alized suffix tree is a suffix tree for a set of strings. The tree can be used to count all the
frequencies of substrings in O(N), where N is the total length of input strings. First we
explain the suffix tree [21,22] for a single string and then extend it to the generalized
suffix tree [23].

Let $ be a special character such that $ � Σ. For a string x ∈ Σ∗, A = x$ and an
integer p (1 ≤ p ≤ |A|), Ap denotes A’s suffix starting at the pth character of A. The
special character $ is used to guarantee any suffix of x is not a prefix of another suffix,
and hence Ap is uniquely identified.

A trie for strings is the tree in which there is one node for every common prefix. A
suffix trie for x is the trie for Ap1 , Ap2 , . . . , Apn , where Ap1 , Ap2 , . . . , Apn are all suffixes
of A in lexicographic order. The suffix tree for x is the compact trie for Ap1 , Ap2 , . . . , Apn ,
where all nodes with one child are merged with their parents. The number of nodes in a
suffix tree is O(N), since the number of internal nodes is O(N) due to the compactness
of the tree and the number of leaves is exactly N.

For each node v of the tree, BS(v) denotes the string obtained by concatenating all
strings labeled on the edges on the path from the root to v. We call BS(v) a branching
string.

Example 2. Fig. 2 is the suffix tree for “mississippi$”. For nodes u and v, we have
BS(u) = issi and BS(v) = i.

A suffix tree is often used with suffix links to speed up related procedures. A suffix link
is a pointer from a node u to another node w, where |BS(w)| + 1 = |BS(u)| and BS(w)
is a suffix of BS(u). In other words, BS(w) is obtained by deleting the first character of
BS(u). Suffix links are generated simultaneously during the construction of the suffix
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Fig. 2. The suffix tree for “mississippi$”. A dotted line denotes a suffix link.

tree. In the above example, we have a suffix link from u to w because BS(u) = issi and
BS(w) = ssi.

For a node of the suffix tree of a string x, its branching string appears in x as many
times as the number of leaves below the node. Node v of Fig. 2 has four leaves below,
and so we find that BS(v) = i appears four times in mississippi.

Let u be a child node of v. Then BS(v) is a proper prefix of BS(u) from the definition
of the branching string. In Fig. 2, BS(v) = i is a proper prefix of BS(u) = issi. Moreover,
for a prefix s of BS(u) which includes BS(v) as a prefix, the frequency of s is the same
as that of BS(u). For example, BS(u) = issi appears twice, and so do two of its prefixes
is and iss. Therefore, when we count substring frequencies, all we have to do is to
count only branching strings, i.e., to count leaves bellow nodes. Thus counting substring
frequencies is completed in O(N) time.

Now we introduce the generalized suffix tree to deal with a set D of strings instead
of a single string. Let D = {x1, x2, . . . , xm}. The generalized suffix tree is the suffix tree
for a string x1$1x2$2 . . . xm$m.

For a generalized suffix tree, we assume that a node v of the tree stores a pair of the
frequencies for BS(v) in background and target sets. Formally, this is defined recursively
as follows: a leaf node v has (1, 0) (resp. (0, 1)) if BS(v) ∈ B (resp. T ), and an internal
node v has ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑

u∈C(v)

f(BS(u)|B),
∑

u∈C(v)

f(BS(u)|T )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where C(v) is the set of the children of v. Note that BS(v) appears only once in the input
strings for a leaf node v due to $.

4.3 Details of FPCS

Now we explain the details of FPCS using Algorithm 1 and Algorithm 2. Algorithm 1 is
the main procedure which finds candidates for peculiar compositions, and Algorithm 2,
which is called from the main procedure, checks the conditions to be peculiar for each
of the candidates.

Given two string sets, first FPCS constructs the generalized suffix tree and stores a
pair (f(BS(v)|T ), f(BS(v)|B)) of the frequencies for BS(v) in background and target sets
on a node during a postorder traversal (see Algorithm 1).
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Algorithm 1. FPCS for discovery of all maximal, frequent peculiar compositions.
Input: T, B, θT , θB and ηT

Output: all maximal peculiar compositions in T against B
construct the generalized suffix tree ST for all strings in T, B
for v in postorder traversal of ST do

store (f(BS(v)|T ), f(BS(v)|B)) to v
end for
for v in postorder traversal of ST do

if BS(v) is contrastive in target and f(BS(v)|T ) ≥ ηT then
for an ancestor u of v do

if BS(u) is contrastive in background then
isContrast(S T,u, v, θB) {find appropriate divisions for xy}

end if
end for

end if
end for

Next FPCS performs a postorder traversal again, and calls isContrast() (see Al-
gorithm 2) for nodes whose branching strings are candidates for peculiar compositions.
The branching string BS(v) is a candidate for a peculiar composition xy = BS(v). The
subroutine isContrast() checks if y is contrastive in background or not for all divi-
sions (x, y) of xy. If so, it outputs xy as a peculiar composition. To check these combi-
nations, the suffix link plays an important role in isContrast().

Theorem 1. FPCS finds all maximal peculiar compositions in T against B.

Proof. FPCS traverses all nodes of the suffix tree constructed from T and B in postorder
(the outer for loop in Algorithm 1) and then checks if the branching string is peculiar
or not. We do not need to check a substring w which is not a branching string of the
suffix tree since there exists a branching string w′ such that it is peculiar and its prefix
is w and we have to find only maximal if the substring is peculiar. Let v be a node in
the traversal. BS(v) is a candidate for a peculiar composition if it is contrastive in target
and BS(v) ≥ ηT .

Next we check if there exists a division (x, y) of BS(v) such that both x and y are
contrastive in background (isContrast()). We do not have to check all |BS(v)| − 1
divisions. Let u be an ancestor of v such that BS(u) is contrastive in background (see
Fig. 3). In this case, we have to check for (x, y) = (a, bcdefgh), (ab, cdefgh), because a
longer prefix of BS(v), such as abc, is not contrastive in background.3 Now we know
that BS(u) is contrastive in background and so the next problem is bcdefgh or cdefgh is
contrastive in background or not.

Consider that FPCS visits a node w in Fig. 3 after some suffix link traversal. If BS(w)
is contrastive in background then FPCS outputs BS(u)BS(w) as a peculiar composi-
tion. If not, then FPCS visits nodes above w because branching strings of these nodes
might be contrastive in background, and if FPCS finds such a node w′ then outputs
BS(u)BS(w′) as a peculiar composition.

3 However, we have to check for (x, y) = (abcde, fgh), (abcdef , gh) when u = parent(v).
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Algorithm 2. The subroutine isContrast()
Input: ST: generalized suffix tree, u, v: node, θB: ratio
Output: true or false

if v = root(T ) then return end if {root(T ) returns the root of ST}
x := BS(u) {we know that x (resp. xy) is contrastive in background (resp. target)}
y := edge(u, v) {edge(u, v) returns the string label between u and v}
w := v {w is the start node of suffix link traversal}
for l := 1 to |BS(u)| do

w := node pointed by the suffix link of w;
if BS(w) is contrastive in background then

print BS(u)BS(w) {Found!}
else

w′ := w {w′ is the start node of upword traversal}
for k := 1 to |edge(v, u)| do

k := k + |edge(parent(w′),w′)| {parent(u) returns the parent node of u}
w′ := parent(w′)
if k > |edge(v, u)| then break end if
if w′ is contrastive in background then

print BS(u)BS(w′) {Found!}
break {since upword nodes are not maximal}

end if
end for

end if
end for

This procedure corresponds to the check for y = cdefgh, and then FPCS visits the
next node followed by the suffix link and check for y = bcdefgh. Thus all possible
divisions are checked. 	

The time complexity of the proposed algorithm is given in the following theorem.

ab

cd

v

u

gh

ef w

w

w′

Fig. 3. Dotted arrows are suffix
links and black nodes contain
branching strings which are con-
trastive in target

Theorem 2. The time complexity of FPCS is O(N2).

Proof. Construction and traversal of the suffix tree
are done in linear time with respect to the total length
of input strings [21,22].

To find appropriate divisions, we need to check u
which is an ancestor of v (see Fig. 3). u corresponds
to x of a peculiar composition. In addition to u, FPCS
visits other nodes w and w′. These three nodes are
different. Therefore, for each node v, FPCS visits at
most O(N) nodes.

At each node, FPCS tests if the corresponding
branching string is contrastive or not if it is ηT -
frequent. This tests can be done in constant time, using (f(v|B), f(v|T )) stored at all
nodes. Thus the time complexity of the algorithm is O(N2). 	
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5 Experiments

We have implemented FPCS in C and conducted experiments on DNA sequences. All
experiments were conducted on PowerMacG5 (OS: Mac OS X 10.5, CPU: 4×2.5GHz
PowerPC G5, Memory: 8GB, and Compiler: gcc 4.0.1 with -O3, -arch ppc64 and -fast
flags).

As input strings, we use DNA sequences. In particular, we often use the entire DNA
nucleotide sequence of Escherichia coli K-12 (RefSeq NC 00096, GI:50812173) and
Bacillus subtilis (RefSeq NC 00096, GI:50812173). In addition to a sequence of Gen-
Bank, we add the complementary strand of the sequence into an input set for FPCS.
For example, the input set of the entire DNA sequence of E. coli K-12 consists of two
strings, one is the original sequence and the other is its complementary strand. The sizes
of these sets are 9279350bp (E. coli K-12) and 8429260bp (B. subtilis). Other sequences
we used will be described at the corresponding experiments.

We first study the performance of FPCS with different data sizes or parameters in sec-
tion 5.1 and then examine peculiar compositions output by FPCS from DNA sequences
in section 5.2.

5.1 Performance Study

Firstly, we conduct two types of perfomance studies: one examines the relationship be-
tween the execution times and the number of peculiar compositions output by FPCS
with different parameters, such as ηT or θB, and the other the execution times with dif-
ferent data sizes. For all experiments in this subsection, the background and target sets
are fixed to the entire DNA sequence of E. coli K-12 and one of B. subtilis, respectively.

Performance on Different Parameters. We examine the execution times and the num-
ber of peculiar compositions with different parameters, such as ηT or θB, for FPCS.
Fig. 4 shows execution times of FPCS in second as ηT increase from 2 to 15, where
θT = 5 or 10 and θB = 1.5, 2.0, 2.5 or 3.0. For any pair of parameters in Fig. 4, an
execution time decreases as ηT increases. When θT or θB is large, the execution time
seems not to decrease even if ηT increases. In such a case, however, the execution time
does decrease drastically (see Fig. 5). Thus, pruning by ηT works effectively.

A decreasing rate becomes bigger as θT and θB decrease. These decreasing rates
basically depend on θB but not on θT . In fact, we see every two lines for two values
of θT with the same value of θB are close to each other.4 Although θT and θB are not
directly used to stop a traversal of FPCS, they can reduce the number of the candidates
of xy, x or y. However, since there does not exist so many candidates of xy, θT does not
decrease execution times effectively. On the other hand, we have many candidates for x
and y, and thus θB can reduce the number of these candidates and execution times.

From these observations, we have the assumption that the execution time is closely
related with the number of outputs. Two graphs in Fig. 5 show both the execution time
(y-axis at the left-hand side) and the number of peculiar compositions output by FPCS
(y-axis at the right-hand side), where θB = 1.5 or 2.5.

4 Exceptionally execution times are quite different when θB = 2.0 and 1 ≤ ηT ≤ 5.
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Fig. 4. Execution times of FPCS in second as ηT increases for various values of (θT , θB)

From these two graphs, we find that execution times are proportional to the number
of peculiar compositions and the differences between θT = 5 and 10 for a fixed ηT are
negligible.

Scalability on Input Size. We examine the execution times with different data sizes.
All execution times we show in this section are the average execution times of 5 trials
on the same input.

As we increase the data size, we measure execution times of FPCS. To change the
data size, we automatically generate m sequences with the same length n from se-
quences of E. coli K-12 and B. subtilis, given m and n.

The graph on the left-hand side in Fig. 6 shows execution times of FPCS as n in-
creases from 100 to 5000, where m is fixed to 1000, while execution times when m
increases from 100 to 10000 in case n = 500 are given on the right-hand side.
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The execution times with 6 different sets of parameters, (θT , θB, ηT ) = (2, 1.5, 5),
(2, 1.5, 10), (2, 2, 5), (5, 2, 10), (2, 3, 5), and (2, 3, 10) are given. For any set of param-
eters, execution times in both graphs typically scale linearly with respect to the input
size, except for (θT , θB, ηT ) = (2, 1.5, 5), although the time complexity of FPCS is O(N2)
(see Section 4).

The increasing rate of the execution times in the right-hand side graph is larger than
those in the left-hand side. This fact indicates that the execution time depends heavily
on the depth of the suffix tree because the depth increases as the length n of the strings
increases.

5.2 Properties of Peculiar Compositions

Secondly, we examine peculiar compositions from the entire DNA sequence of E. coli
K-12 or B. subtilis, as a target set using different background sets.

Peculiar Compositions in B. Subtilis against E. Coli K-12. We examine peculiar
compositions in B. subtilis against E. coli K-12 with different parameters. First, we set
(θT , θB, ηT ) = (1.1, 5, 10) (see Table 1) and then (10, 2, 15) (see Table 2), where one of
θT or θB is small and the other is large.

Table 1 shows found peculiar compositions and related values, such as their frequen-
cies, in case (θT , θB, ηT ) = (1.1, 5, 10). The z-score for each composition is also given.

Table 1. Peculiar compositions in B. subtilis against E. coli K-12 with (θT , θB, ηT ) = (1.1, 5, 10).
From left to right, prefix x and suffix y of compositions of the form xy, their lengths, the frequen-
cies of xy, x, y in T and B, and z-scores are given. Probabilities of letters are computed over the
whole sequences of the target set to compute the z-score.

(x, y) length (f(xy|T ), f(xy|B)) (f(x|T ), f(y|B)) (f(y|T ), f(y|B)) z-score
(CGGCGTGG,ACT ACCAG) (8, 8) (10, 7) (66, 450) (19, 154)) 3.572e+02
(CTGGT AGT,CCACGCCG) (8, 8) (10, 7) (19, 154) (66, 450) 3.572e+02
(GCGTGG,ACT ACCAG) (6, 8) (10, 7) (529, 3845) (19, 154) 7.759e+01
(GGCGTGG,ACT ACCAG) (7, 8) (10, 7) (161, 1407) (19, 154) 1.666e+02
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Table 2. Peculiar compositions in B. subtilis against E. coli K-12 with (θT , θB, ηT ) = (10, 2, 15)

(x, y) length (f(xy|T ), f(xy|B)) (f(x|T ), f(y|B)) (f(y|T ), f(y|B)) z-score
(CAGCG,GCGCC) (5, 5) (17, 0)) (9816, 24161) (6759, 17014) 8.924
(GGCGC,CGCTG) (5, 5) (17, 0) (6759, 17014) (9816, 24161) 8.924
(CGCG,GCGCC) (4, 5) (16, 1) (16950, 56436) (6759, 17014) 2.235
(GGCGC,CGCG) (5, 4) (16, 1) (6759, 17014) (16950, 56436) 2.235

To compute the score, we use the Bernoulli model where probabilities of individual let-
ters, A, C, G, and T , are computed from the whole sequences of the target set and we
have p(A) = p(T ) = 0.282 and p(C) = p(G) = 0.218.

Four compositions are found as peculiar compositions and first two compositions are
complementary each other. The lengths of the compositions are about 15. All of them
appear 10 times in the target set while 7 times in the background set. These frequencies
in the two sets are close since the given value for θT is nearly 1. However the peculiar
compositions are unusual since frequencies of x and y in the background set are much
larger than those in the target set.

The z-score is a normalized score whose average value is zero and variance is one [9].
Therefore, z-scores in Table 1 seem to be quite large and these composition are also
unusual from the viewpoint of the z-score.

Next, we set (θT , θB, ηT ) = (10, 2, 15) for the same data sets. We have two pairs of
two peculiar compositions which are complementary each other (see Table 2). All of
found compositions appear 16 or 17 times in the target set while at most once in the
background set.

Compared to those in Table 1, frequencies of x or y are quite large in Table 2 since
we set a large value for θT and a small one for θB in Table 2 conversely. Compared to
those in Table 1, the absolute values of the z-scores of found peculiar compositions are
small. This means that, when we use the z-score to measure unusualness, it is difficult
to find these compositions as unusual patterns because of the following reason. Since
the z-score is a normalized score, we can calculate, for a positive number a, the number
of substrings such that the absolute values of their z-scores are greater than a = aσ,
where σ = 1. For example, in case a = 3, that number is 0.3% of the all substrings
in given input data. Lengths of sequences used in the previous experiments, except for
the performance study, are at least N = 106 and then we can estimate the number of
all substrings by O(N2) = 1012. Hence, there exist a huge number of substrings whose
z-scores are greater than a = 2.235.

Peculiar Compositions against Saccharomyces Cerevisiae. Now we examine com-
positions from the same data, B. subtilis, as a target set but against a set of sequences of
Saccharomyces Cerevisiae, where we use sequences of Saccharomyces cerevisiae chro-
mosome I–XVI (complete sequences) and Saccharomyces cerevisiae mitochondrion
(complete genome) with their complementary strands. The total size of these sequences
is about 24Mbp. The values of the parameters are set as (θT , θB, ηT ) = (20, 5, 20). 34
peculiar compositions are found from the target set and their lengths are about 14,
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ranging from 12 to 16. The z-scores for them are in the order of 101 or 102. We have
many compositions with different divisions among 34 compositions. For example, we
have three divisions, (x, y)=(AAAACT AA, ACAAGACA), (AAAACT AAA, CAAGACA)
and (AAAACT AAAC, AAGACA) for xy = AAAACT AAACAAGACA.

Next we try to find peculiar compositions from E. coli K-12 against the same back-
ground set. 26 peculiar compositions are found, their lengths are about 13, the shortest
one is 12 and the longest one is 16, and the z-scores are also in the order of 101 or 102.
No composition of them is included in above 36 compositions.

Distribution of Lengths of Peculiar Compositions. In the previous experiments under
many parameter settings, found peculiar compositions have similar lengths for some
fixed parameter setting. Now we examine a distribution of their lengths.

Fig. 7 shows three probability distributions for lengths of found peculiar composi-
tions under (θT , θB, ηT )=(10, 2, 10), (10, 2, 2) and (5, 2, 4). Here, the probability means
the relative frequency. We see that these distributions form bell shaped curves.

When we consider the z-score to measure unusualness, there exist many substrings
whose lengths are quite small, such as 4 or 5. On the other hand, there are no short pecu-
liar compositions of them. In fact, 9 is the shortest length of the peculiar compositions
in Fig. 7. Moreover, this fact also holds when we found the small number of peculiar
compositions while we have many short substrings according to the z-score even if we
found the small number of substrings given a large threshold for the score. In fact, the
number of found peculiar compositions is small and their lengths are not short in the
previous experiments.

We think that FPCS collaterally discovers an appropriate model in which frequent
substrings have similar lengths for a set of fixed parameters. This model is similar to
the Markov model in which the estimation is calculated by substrings with length k.
However, it is required to decide k in advance in the Markov model. On the other hand,
FPCS simultaneously decides appropriate lengths in addition to finding peculiar com-
positions and their frequent components. Moreover, in our setting, substrings of peculiar
compositions are not strictly restricted to have the same length k.
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6 Conclusion

We have defined the peculiar composition discovery problem and then developed our
algorithm, called FPCS, which runs in O(N2) time. Despite of its quadratic complexity,
we have shown that FPCS typically runs linearly for many sets of parameters. We have
also conducted experiments using DNA sequences and found, without assuming a prob-
abilistic model, peculiar compositions which seem to be difficult to be found according
to the z-score.

It is an important future work to apply our algorithm to other real data and to eval-
uate found peculiar compositions by domain experts. It is a challenging future work to
consider more sophisticated patterns instead of compositions since a composition is de-
fined by concatenation of only two strings without overlaps and hence we assume these
strings occur independently. We think the MO method, introduced in [24], is promising
for such a pattern. Using this method, we can estimate a probability of a given word w
as follows: p(w) = p(w1)p(w2|w′1) · · · p(wk |w′k−1), where w′i is a suffix of wi. Note that
the length of w′i is variable. In [25], a linear time algorithm is presented to construct the
model and to estimate probabilities for all given documents.
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Abstract. Constraint-based search methods, which are a major ap-

proach to learning Bayesian networks, are expected to be effective in

causal discovery tasks. However, such methods often suffer from imprac-

ticality of classical hypothesis testing for conditional independence when

the sample size is insufficiently large. We propose a new conditional in-

dependence (CI) testing method that is effective for small samples. Our

method uses the minimum free energy principle, which originates from

thermodynamics, with the “Data Temperature” assumption recently pro-

posed for relating probabilistic fluctuation to virtual thermal fluctuation.

We define free energy using Kullback–Leibler divergence in a manner

corresponding to an information-geometric perspective. This CI method

incorporates the maximum entropy principle and converges to classical

hypothesis tests in asymptotic regions. We provide a simulation study,

the results of which show that our method improves the learning perfor-

mance of the well known PC algorithm in some respects.

Keywords: Bayesian networks, Structure learning, Conditional inde-

pendence test, Minimum free energy principle.

1 Introduction

Bayesian networks (BNs) [1] are graphical models and compact representations
of joint probability distributions. This combination is suitable for modeling the
uncertainty surrounding random variables. Actually, BNs are widely studied
for various applications, such as expert systems, human modeling, autonomous
agents, natural language processing, and computational biology. The network
structure expresses conditional dependence–independence relations among ran-
dom variables. A wide range of applications is considered. Therefore, structure
discovery of BNs from observational data has become an attractive problem
tackled by many researchers over the past decade.

The many proposed methods of structure learning can be categorized into
two major approaches: score-and-search based methods (e.g. [2]) and constraint-
based methods (e.g. [3]). Score-and-search based methods describe the fitness of

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 612–627, 2009.
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each possible structure to the observed data while retaining appropriate complex-
ity of models, for which scores such as AIC, BIC, MDL, and BDeu are typically
used (e.g. [2]). Constraint-based methods are designed to estimate properties of
conditional independence among the variables in the data. Both methods present
distinct advantages and disadvantages. Constraint-based methods are computa-
tionally efficient and expected to find causal models and latent common causes
under certain conditions [3].

However, in contrast to recent development of score-and-search based meth-
ods, disadvantages of constraint-based methods have increasingly achieved promi-
nence [4]. Instances of conditional independence are often decided using classical
hypothesis tests with χ2 or G2 test [3,4]. One disadvantage of the classical tests
is their impracticality for use with small samples because of their use of asymp-
totic approximation of the statistic to the χ2 distribution, which is justified for a
sufficiently large sample size.

As described in this paper, we propose an alternative conditional indepen-
dence testing method that presents an advantage of effectiveness for small sam-
ples and which has connectivity with the classical hypothesis tests. To realize
this, we use the minimum free energy principle, which originated from ther-
modynamics (e.g. [5]). In fact, the minimum free energy (MFE) principle and
similar ideas have recently attracted the attention of researchers in some do-
mains of computer science such as clustering [6] and learning [7,8]. In thermal
physics, free energy consists of an internal energy, an entropy, and temperature.
All of these are expected to play important roles. Nevertheless, many studies
that have applied free energy to statistical science have treated temperature as
a fixed parameter or a free parameter, apparently because of its lack of clarity
of the meaning in data science. Consequently, we consider that the potentials of
free energies have not been well extracted.

We remain acutely aware that an advantage of using free energies in statis-
tical science is their capability of expressing a tradeoff between the maximum
likelihood (ML) [9] and the maximum entropy (ME) [10] principles, which are
best used, respectively, for sufficiently large datasets and small datasets. As de-
scribed in this paper, for solving this problem, we use a metaphor of the tradeoff
between minimizing internal energies, which are dominant for low temperatures,
and maximizing entropies, which are dominant for high temperatures in the
MFE principle on thermodynamics. We can regard the temperature in free en-
ergies as a tradeoff parameter that determines the component fraction of the
ML and ME concepts. Therefore, if we pursue the program, it is reasonable to
relate temperature with the available data size. Consequently, we recently pro-
posed the “Data Temperature” assumption by which the inverted temperature
is a monotonic increasing function of the available data size. We demonstrated
its effectiveness in parameter learning of BNs [11].

For this work, we adopt this assumption for learning structure BNs. However,
a new manner of definition of free energies must be developed for constraint-
based learning. These new definitions are related to a fact described in infor-
mation geometry [12]. As a result, we obtain a new unified manner between
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the constraint-based structure and parameter learning of BNs using the MFE
principle with the “Data Temperature” assumption, in which we use only one
hyperparameter introduced in our previous work.

Advantages of the proposed method are the following.

– Improving accuracy in some respects for constraint-based learning methods
on BNs, especially for small samples, and having connectivity with the classi-
cal hypothesis tests for asymptotic regions by introducing the minimum free
energy principle, which can treat the tradeoff of the maximum likelihood
and maximum entropy principles explicitly.

– Developing a novel theoretical framework of unifying structure and parame-
ter learning methods of BNs, which corresponds to an information-
geometrical perspective.

Furthermore, we demonstrated the performance of our methods incorporated
with the PC algorithm [3], which is a typical benchmark constraint-based algo-
rithm. Our robust independence testing method turns out to be more effective
on one level than the standard hypothesis tests for small or medium data sizes.

2 Background

2.1 Bayesian Networks

A Bayesian network (BN) is a set B = 〈G, P 〉. Actually, G = 〈V,E〉 denotes a
directed acyclic graph (DAG) with nodes representing random variables V. In
addition, P is a joint probability distribution on V. Furthermore, G and P must
satisfy the Markov condition: all variables X ∈ V are independent of any subset
of its non-descendant variables conditioned on the set of its parents [1]. The set
of the parents of a variable Xi is in the graph G as Πi. For a distribution P of n
variables V = {X1, . . . , Xn}, a BN B can be factorized as conditional probability
distributions

P (X1, . . . , Xn) =
n∏

i=1

P (Xi |Πi) , (1)

as proved easily using the Markov condition.
The graph of a BN presents some instances of entailed independence of the

probability distribution. The d -separation [1] is a concept in DAGs, which char-
acterizes entailed conditional independence in the graph. Two nodes X and
Y are d -separated by Z in graph G, denoted as DsepG(X ;Y |Z). In addition,
Ind (X ;Y |Z) is denoted as the conditional independence of X and Y given Z
in P . It is known that DsepG(X ;Y |Z) ⇒ Ind (X ;Y |Z) for a BN B = 〈G, P 〉.

A BN B = 〈G, P 〉 satisfies the faithfulness condition if the Markov condi-
tion entails all and only the instances of conditional independence in P [3]. In a
faithful BN B = 〈G, P 〉, DsepG(X ;Y |Z) ⇔ Ind (X ;Y |Z) [1]. This equivalence
relation enables us to infer structures of BNs from conditional independence re-
lations. We assume for this discussion that BNs satisfy the faithfulness condition.

We describe some other assumptions used to conduct DAG structure inference
in this paper, further to i.i.d., as follows.
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– Discrete Variables: each variable in V has a finite, discrete number of possible
values.

– No Missing Values: let D be a database set with sample size N such that
each sample has no missing values for all variables in set V.

– No Latent Variables: we consider DAGs without latent variables.

2.2 Constraint-Based Learning on BNs

Here we state a basic concept of the constraint-based structure learning methods
using the preceding notation. For a BN that satisfies the faithfulness condition,
the basic concepts are the following [13].

– Search for a set Z for each pair of variables X and Y in V such that
Ind (X ;Y |Z) holds in P . Therefore, X and Y are conditionally indepen-
dent given a set Z in P . Construct an undirected graph such that nodes X
and Y are connected with an undirected edge if and only if no set Z can be
found.

– For each pair of nonadjacent variables X and Y with a common neighbor
W , check if W ∈ Z. If not, then add arrowheads pointing at W (i.e., X →
W ← Y ), the type of which is called a v-structure.

– Orient as many of the undirected edges as possible subject to two condi-
tions: (i) the orientation should not create a new v-structure; and (ii) the
orientation should not create a directed cycle graph.

For checking conditional independence, we describe classical hypothesis test-
ing, which is frequently used within BN learning algorithm under a faithfulness
assumption [3,4]; we also use it afterwards. Statistics such as χ2 or G2 are ex-
pressed here as S2. If S2 can be approximated to a χ2 distribution with degrees
of freedom df : χ2

df and S2 < χ2
α,df , where χ2

α,df is a threshold value such that
P (χ2

df ≥ χ2
α,df) = α, in which α is a fixed confidence level, then we do not reject

the null hypothesis of (conditional) independence between two selected variables
given selected conditional sets; otherwise we reject it. The validity of approxima-
tion of statistics such as χ2 or G2 is proved in asymptotic regions [14]. However,
for a small sample size, it is not justified. Spirtes et al. [3] have used, in their
PC algorithm, a criterion for the validity: the algorithm does not perform an
independence test if the sample size is less than 10 times the number of different
possible joint patterns of the two variables and conditional sets, which means
the variables are assumed to be conditionally dependent. This impracticality is
a weak point of the constraint-based learning methods of BNs because learning
BNs often process insufficient data.

3 Conditional Independence Testing Using the MFE
Principle

In this section, we describe a new conditional independence testing method that
is designed to be especially effective for small data size, and which is designed
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to be connected asymptotically with classical hypothesis testing. We take an
approach from the metaphor of thermodynamics, where entropy, energy, and
temperature play important roles.

3.1 Why Is the MFE Principle Needed?

Many studies of learning BNs have often used mutual information (e.g., [15])
for measuring dependence, which often means minimizing entropy, as described
below. For asymptotic regions, for which sufficiently large samples are available,
the guiding principle in statistics is the maximum likelihood (ML) principle [9].
Friedman et al. [15] derived that, for a BN G, given a dataset D with N data
size for n random variables, maximizing the log likelihood LL(G|D) is equiva-
lent to maximizing empirical mutual information between a node and its par-
ent nodes (represented as Πi for a node Xi): LL(G|D) = N(

∑n
i=1 Î(Xi;Πi) −∑n

i=1 Ĥ(Xi)), where Î and Ĥ denotes empirical mutual information and Shan-
non entropy [10], and the second term of the right-hand-side of the equation
has nothing to do with the learning structure. Therefore, from the definition of
mutual information, it is readily derived that

LL(G|D) = −N
n∑

i=1

Ĥ(Xi |Πi) = −N Ĥ(X1, . . . , Xn) . (2)

The last equation is derived from the definition of BNs described in (1). This
equation means that maximizing the log likelihood is equivalent to minimizing
the entropy of BNs. This equation also implies that maximizing the log likeli-
hood for constructing the DAG structures engenders complete DAG because the
following inequality is justified: −N

∑
i Ĥ(Xi |Πi) ≥ −N

∑
i Ĥ(Xi), because

0 ≤ H(X |Y ) ≤ H(X) [10].
In contrast, when we obtain insufficient data, it is reasonable to use the max-

imum entropy (ME) principle [10], which states that the most preferable prob-
abilistic model should maximize its entropies under some constraint related to
available data. Consequently, with no constraint, maximizing entropies of BNs
engenders the DAG with no edges, which means that a BN is a collection of
complete independent distributions: P (X) =

∏
i P (Xi).

A tradeoff exists between maximum likelihood and maximum entropy for
obtaining the valid structures. In the asymptotic region, the ML principle is
expected to be dominant; in an insufficient sample region, the ME principle is
expected to be dominant. Therefore, we can set a problem of how to decide the
tradeoff between the ML and ME principles according to an arbitrarily given
sample size. We regard the situation as a metaphor of thermodynamics. The
tradeoff between minimizing internal energy and maximizing entropy in ther-
modynamics seems to correspond to the tradeoff between maximizing likelihood
and entropy in statistics, and temperature can be regarded as a parameter that
brings harmony of the two amounts. These amounts can be treated in a unified
manner as a free energy that is well known in thermal physics. Furthermore, this
tradeoff can be determined using the minimum free energy (MFE) principle.
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During recent decades, many researchers investigated Bayesian methods, which
can avoid overfitting derived from using the ML with insufficient data. This can be
regarded as the same problem setting described in this paper. For example, Dash et
al. proposed a robust conditional independence testing procedure using Bayesian
Dirichlet smoothing [16]. However, the Bayesian method presents the difficulty of
deciding optimal hyperparameters simultaneously in both theoretical (e.g. [17])
and practical [18] perspectives, when no prior knowledge exists.

Similarly, temperature is an unknown parameter in the MFE principle. How-
ever, we recently presented a model of inverted temperature that is a monotonic
increasing function of available data size, which we call the “Data Temperature”
assumption [11]. Using this approach, we give the meaning of temperature of
free energy in data/statistical science by regarding the probability fluctuation
as a virtual thermal fluctuation. Furthermore, we showed that the approach is
effective for parameter learning of BNs, and that the effect is not sensitive for
selecting a hyperparameter. We consider that the approach can also be useful in
structure learning BNs for estimating optimal entropies of the network structure.
To realize this, we regard that remaining problems are how to define amounts
corresponding to energies, entropies, and temperature.

3.2 Minimum Free Energy Principle

The (Helmholtz) free energies were introduced originally into the field of thermo-
dynamics. The energies are defined such that a maximum thermodynamical work
is the difference between values of free energies in two distinct states, [5] where
the maximum work is obtained using an isothermal quasistatic operation from a
closed system under the condition of a constant temperature. Therefore, the free
energy can be regarded as an amount, in a constant temperature, correspond-
ing to a potential energy in dynamics (e.g., gravitational and electro-magnetic
potential energy). In this meaning, the free energy is viewed as an amount that
is extracted freely from a thermodynamical system.

We regard the free energy in information systems as an amount that has a
similar effect in thermodynamical systems: it is extracted freely from a data
system under a given data size (corresponding to inverted temperature). This
property is apparently preferred for various tasks such as inference, learning, and
estimation under a finite available data size because we wish to obtain maximum
effective information from limited exploitable data.

We use a principle of minimum free energy (MFE) for statistical testing of
conditional independence. A free energy F is defined by an internal energy U ,
an entropy H , and inverted temperature β0 ( = 1/temperature) as

F := U − H

β0
, (3)

where (inverted) temperature β0, which is a parameter, balances the respective
contributions to F of U and H . According to the principle of MFE, given some
temperature β0, the stable state of the system is realized to minimize F [5],
where minimizing U and maximizing H are balanced.
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3.3 Representation of Free Energy in Probabilistic Models

Different from usual application of the MFE principle in data science, we start
with description of the free energy definitely as a function of internal energy,
entropy, and temperature to recognize clearly important properties of tempera-
ture and use effectively free energies. Fortunately, entropy was introduced into
information theory by Shannon. It has since become a fundamental concept in
computer science and statistical science [10]. Therefore, we define the entropy of a
random variableX as Shannon entropy. We hope that the entropy serves to avoid
overfitting for small samples. We adopt the Kullback–Leibler (KL) divergence
between two probabilistic distributions, which are an empirical distribution and
a true distribution. Here, we follow the “Data Temperature” assumption [11],
which makes the MFE principle express a harmony between the ML and ME
principle according to available data size: temperature is defined as a monotonic
function of the available data size such that temperature β0 → ∞ if data size
N →∞, and β0 → 0 if N → 0.

3.4 An MFE Representation of Hypothesis Testing on BNs

We represent the conditional independence tests using the MFE principle. To do
so, as in the usual manner [3,4], we represent the null hypothesis as conditional
independent relations, and the opposite hypothesis as conditional dependent
relations between two variables X and Y given conditional sets Z.

We define the internal energies for each hypothesis. First, we represent the
internal energy U such that the relative entropy (KL divergence) between the
graphs expressing the null hypothesis (expressed as H1, corresponding distribu-
tions as P̂1) and the true graphs (as H0, corresponding as P0), where P̂1 of the
null hypothesis is defined as a maximum likelihood distribution. Therefore, we
can define an internal energy U1 which expresses the null hypothesis such as

U1(X,Y,Z) : = −D( P̂1(X,Y,Z) ||P0(X,Y,Z) )

=
∑
x,y,z

P̂ (x, y, z) log
P (x, y | z)

P̂ (x | z)P̂ (y | z)
, (4)

where P̂ is a maximum likelihood distribution and P is a distribution that will
be estimated using the MFE principle with a “Data Temperature” model. In
turn, the internal energy U2 expresses the opposite hypothesis, which expresses
a dependent relation as

U2(X,Y,Z) : = −D( P̂2(X,Y,Z) ||P0(X,Y,Z) )

=
∑
x,y,z

P̂ (x, y, z) log
P (x, y | z)
P̂ (x, y | z)

. (5)

In the next step, we define the entropy term with respect to each hypothesis.
Probability distributions which constitute the entropy are estimated under given
available samples. We describe the entropy of the null hypothesis as
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H1(X,Y,Z) := −
∑
x,y,z

P (x, y, z) log(P (x | z)P (y | z)P (z)) . (6)

The other entropy, that of the opposite hypothesis, is

H2(X,Y,Z) := −
∑
x,y,z

P (x, y, z) log(P (x, y | z)P (z)) . (7)

Now we are almost prepared to express the free energy of each hypothesis. We
regard the temperature in each hypothesis (β1 and β2) as a global temperature
over related variables. According to the “Data Temperature” assumption, we
can consider that β1 = β2 = β0, which means the same sample size. Therefore,
the difference of the free energy of each hypothesis is

F1(X,Y,Z)− F2(X,Y,Z) = Î(X ;Y |Z)− 1
β0

I(X ;Y |Z) , (8)

where

Î(X ;Y |Z) =
∑
x,y,z

P̂ (x, y, z) log
P̂ (x, y | z)

P̂ (x | z)P̂ (y | z)
, (9)

and

I(X ;Y |Z) =
∑
x,y,z

P (x, y, z) log
P (x, y | z)

P (x | z)P (y | z)
. (10)

According to the notation used in our previous work, we define a new parameter
β, which we call “Data Temperature” hereinafter as

β := β0/(β0 + 1) , (11)

where if β0 → 0, then β → 0 (high temperature limit); if β0 → ∞, then β → 1
(low temperature limit).

For estimating the non-empirical conditional mutual information I(X,Y |Z),
as described above, we follow our previous work associated with parameter learn-
ing method, for which a different definition of internal energies U is needed [11].
Let P (X) and P̂ (X) respectively represent probability distributions of joint
random variables X to be estimated from the MFE principle and ML principle.
Internal energies U(X) are defined for parameter learning as

U(X) = D(P (X) || P̂ (X) ) =
∑

x

P (x) log
P (x)
P̂ (x)

. (12)

Then, using Lagrange multipliers corresponding to minimizing the free energy
with a constraint as

∑
X=x P (X = x) = 1, the estimated probability Pβ(x) is

expressed in Boltzmann’s formula, as shown below [11].

Pβ(x) =
exp(−β(− log P̂ (x)))∑
x′ exp(−β(− log P̂ (x′)))

=
[P̂ (x)]β∑
x′ [P̂ (x′)]β

(13)
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Therein, P̂ is a relative frequency: the ML estimator.
Finally, we obtain the condition of conditional independence as

Î(X ;Y |Z) <
1− β

β
Iβ(X ;Y |Z) , (14)

where Iβ is defined as

Iβ(X ;Y |Z) =
∑
x,y,z

Pβ(x, y, z) log
Pβ(x, y | z)

Pβ(x | z)Pβ(y | z)

=
∑
x,y,z

Pβ(x, y, z) log
Pβ(x, y, z)Pβ(z)
Pβ(x, z)Pβ(y, z)

. (15)

Therein, β plays only the role of a symbolic index; it does not represent a sole
parameter. In each estimator, β should be calculated using the explicit model
of “Data Temperature,” as described in the next subsection. Therefore, β in
(15) represents local temperature. In (14), the left-hand-side corresponds to the
likelihood term, which is dominant for a large data size (large β), and the right-
hand-side corresponds to the entropy term, which is dominant for a small data
size (small β). We designate g2

β and represent the conditional independence (CI)
condition with it as

g2
β = Î(X ;Y |Z)− 1− β

β
Iβ(X ;Y |Z) < 0 . (16)

This is useful for combination with the classical hypothesis tests.
In these formulations, it might seem strange that two distinct definitions of

internal energies exist between hypothesis tests and parameter estimation. We
express internal energies in the hypothesis tests as D( P̂ ||Q), where P̂ is an
ML distribution. That differs from our formula in parameter learning, where we
expressed the internal energies as D(P || Q̂), where Q̂ is an ML distribution.
This difference is pointed out from the perspective of information geometry [12].
From an information theoretical viewpoint, hypothesis testing is related to the
large deviation theorem via Sanov’s theorem [10], and then, from an information
geometrical perspective, it can be interpreted as a ∇(e)-projection, whereas the
ML estimation can be interpreted as ∇(m)-projection [12]. In other words, the
hypothesis testing and ML estimation are then different concepts in view of
information theory. Consequently, in the definitions for learning structures and
parameters, the difference is reasonable from this perspective.

3.5 “Data Temperature” Model

In searching for the values of β, we use our simple model of temperature, which
is proposed as a function of data size N [11]. The model function of β is defined
as

β := 1− exp
(
− N

γNc

)
,

γ := |X| − 1 ,

(17)
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where γ is defined as the degrees of freedom of related random variables X, and
where Nc is a decoupling constant, which can be regarded as a hyperparameter
for β. We use Nc as only one common hyperparameter in learning of both param-
eter and structure. This explicit model shows good performance and robustness
against selected hyperparameters Nc in classification tasks using Bayesian net-
work classifiers with structure learning [11].

3.6 Asymptotic Theoretical Analysis

We hope that the proposed method has consistency with the classical hypothesis
test for an asymptotic region because it is theoretically justified. However, our
conditional independence conditions using the inequality (14) cannot be used
straightforwardly for large data sizes because g2

β ≥ 0 always for sufficiently large
data size. That is true because Î(X ;Y |Z) ≥ 0 and [(1−β)/β] Iβ(X ;Y |Z) → 0 as
β goes to 1 (asN becomes sufficiently large), which means that our method would
produce an overly dense graph for sufficiently large data size. In such regions,
the effect of enlarging the entropy term has vanished and the likelihood term
has become dominant. However, different from parameter learning, hypothesis
testing for BNs means that extra edges should be removed even for a large
sample size, based on Occam’s razor [13]. This connecting problem is solved as
described below.

For a large sample size region, we wish to use the G2 statistic for conditional
independence testing, which is often used [3,4]. The G2 test is used to identify
Ind (X,Y |Z), by which the null hypothesis of conditional independence is repre-
sented. Let Nxyz represent the number of times in the data where X = x, Y = y
and Z = z. We define Nxz, Nyz, and Nz similarly. Consequently, the G2 statistic
is defined as follows:

G2 = 2
∑
x,y,z

Nxyz log
NxyzNz

NxzNyz
. (18)

The degrees of freedom df are defined as

df = (|X | − 1)(|Y | − 1)
∏

Z∈Z

|Z| , (19)

where we designate |X | as the number of states in X . It is noteworthy that the
G2 statistics have a relation with the empirical mutual information with data
size N [14] as

G2 = 2N Î(X ;Y |Z) . (20)

The statistic is proven to be approximated asymptotically to a χ2 distribution
with degrees of freedom df [14]. Therefore, in a large sample size region, we should
set the condition in which the null hypothesis (i.e., conditional independence) is
not rejected, as

G2 < χ2
α,df , (21)
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where α is a significance level such as 0.05, and where df are the degrees of
freedom, as defined in (19).

Here, we intend to connect the classical condition with the MFE condition.
We define a formal correspondence amount G2

β to G2, using (16) and (20) as

G2
β := 2Ng2

β = G2 − 2N
1− β

β
Iβ(X ;Y |Z) . (22)

Using the explicit model of β expressed in (17), in an asymptotic region,

G2
β = G2 − 2N

exp(−N/γNc)
1− exp(−N/γNc)

Iβ(X ;Y |Z) → G2 . (23)

Then, we can treat the MFE and the classical condition uniformly because a
condition G2

β < χ2
α,df can include the CI condition (16) and the classical condi-

tion (21). Even when the data size is small and G2
β ≥ 0, we conduct the classical

hypothesis tests because our method was shown to generate pseudo-samples sim-
ilarly to the Bayesian methods [19]. Consequently, we can conduct conditional
independence tests on variables X and Y given Z using the MFE principle and
G2 tests as described below.

– If G2
β < 0, because of MFE principle, then we set X ⊥⊥ Y |Z (conditional

independence),
– else if 0 ≤ G2

β < χ2
α,df , because of the classical test, then we set X ⊥⊥ Y |Z,

– else, we set X /⊥⊥ Y |Z (conditional dependence).

We designate this conditional independence method as MFE-CI.

4 Experiments

We next demonstrate the performances of our approach compared with tradi-
tional statistical testing methods. Some experiments of learning BNs can be
done using the PC algorithm [3], which is a well known benchmark algorithm
of constraint-based methods, embedding our conditional independence tests or
classical independence tests using χ2 distributions with fixed significant level
α = 0.05 for each hypothesis test of conditional independence. We implemented
the PC algorithm for embedding the MFE-CI method using C++ programming
language. The PC algorithm, which constructs partial DAGs (PDAGs), is the
following [20]:

The PC algorithm
1. Assume a non-negative integer m = 0.
2. Let G be a complete undirected graph.
3. Repeat:
(a) For all pairs of variables (X,Y ), check Ind (X,Y |Z) for all subsets Z
such that |Z| = m and Z ⊂ Adj(X) or Z ⊂ Adj(Y ).
If there exists a Z such as Ind (X,Y |Z),
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then remove the edge X − Y from G, and add Z to SepSet(XY ).
(b) Set m = m+ 1.
Until no variable has more than m adjacencies,
or a stopping condition is satisfied.
4. Orientation rules are performed.
5. Return the partially directed acyclic graph G.

Therein, |X| denotes the size of members in X; Adj(X) is a set of adjacent
nodes to X . The orientation rules [21], described in step 4 of the algorithm, are
as follows:

4-1. If U /∈ SepSet(XY ), orient X − U − Y as X → U ← Y (v-structure)
for each uncoupled set of X and Y such as X − U − Y .
4-2. Repeat this step while more edges can be oriented.
4-2-1. Orient U − Y as U → Y for each uncoupled set of X and Y such as
X → U − Y .
4-2-2. Orient X − Y as X → Y for each set of X and Y such that a path exists
from X to Y .
4-2-3. Orient U −W as U →W for each uncoupled set of X and Y such as
X − U − Y , X →W , Y →W , and U −W .

The completeness of the rules was proved by Meek [22].
The PC algorithm is performed under the faithfulness assumption described

in section 2. Consequently, the algorithm can infer correct graph structures by
finding conditional independence for probability distributions. However, if the
assumption is violated, even though the true graph means Ind (X,Y |Z) for X
and Y and a conditional set Z, the algorithm might find another false conditional
set Z′ for the test between X and Y , and then add Z′ to SepSet(XY). This false
detection has no influence on removing the edge between X and Y correctly.
However, the algorithm decides the wrong direction of edges using the orientation
rules described above. In this situation, finding correctly conditional sets has a
large influence on the directionality of edges in BNs.

We conducted the simulation study with various quantities of variables: {10,
20, 40, 80}, where each variable has all four possible states, and with networks
of two types, i.e. the sparser and denser graphs, where sparser cases have the
same number of edges as variables; the denser cases have twice. For each such
graph, a random structure network was constructed with conditional probability
tables (CPTs) of five types that were set by random numbers. The available
sample size is varied in a range of {500, 1000, 2500, 5000, 10000}. When the
number of conditional sets |Z| is large, the number of CI tests is intractably
large because of a combinatorial explosion. Therefore, we did not perform CI
tests and assume conditional dependence when |Z| ≥ 5. We selected a value of
the hyperparameter Nc for β in (17) as 2.0, which shows good performance in
preliminary experiments.
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We set the performance criterion as counting added edges, removed edges,
and reversed edges. Counting added edges expresses the consequence where two
variables X and Y are not adjacent in original BNs but where an edge exists
between them in reconstructed BNs. On the other hand, counting removed edges
mean the opposite. Counting reversed edges means that if X → Y in the original,
then Y → X in the output. The results are presented in Table 1 for sample sizes
of 500, 1000, and 2500, and in Table 2 for sample sizes of 5000 and 10000. The
values in the tables are averaged values of simulations for five different randomly
set CPTs. We designate the PC algorithm with a standard G2 test as Std-
PC or Std, and the PC embedded with the MFE-IC as MFE-PC. These tables
show that the counted quantities of extra added edges were very small, even
for a small sample size such as 500 and even for denser structures. In contrast,
quantities of removed edges are very large in both Std-PC and MFE-PC. The
MFE-PC removed true edges more than Std-PC. In reversed checks, many errors
were found in Std-PC. These characteristics were noticeable in large and denser
networks. We discuss these results later. A key is apparently the faithfulness
condition for understanding the results.

The MFE-PC seemed to underscore the effectiveness for deciding the direction
of edges. It might be unfair, however, to conclude that because the MFE-PC re-
moved more edges than Std-PC. Therefore, we defined reversed ratio as (number
of reversed edges)/((true number of edges) – (number of removed)). Results of
reversed ratio for denser networks are portrayed in Fig. 1, where the horizontal
axis expresses the true number of edges, the vertical axis expresses the reversed
ratio, and G2 and MFE respectively signify Std-PC and MFE-PC. These figures
show that the MFE-PC outperforms Std-PC in deciding the direction of edges,
especially for denser networks, even using samples such as 5000, which are not
small.

We discuss these comparative results. As designed using the MFE principle,
MFE-PC is expected to remove edges more than PC does for two reasons. The
first is that MFE-PC performs CI tests in more cases than Std-PC, which does
the test only for sufficiently large data size. For example, even when the data

Table 1. Results for the simulation using data sizes of 500, 1000, and 2500

500 1000 2500
Sparser Denser Sparser Denser Sparser Denser

Type Nodes Std MFE Std MFE Std MFE Std MFE Std MFE Std MFE
Added 10 0 0 0.6 0.2 0.4 0 1.8 0 0 0 0 0

20 0 0 0.4 0.4 0.2 0 1.2 0 0 0 0.2 0
40 0.2 0 0.4 0 0.6 0.4 0.8 0 0 0 0 0
80 0.6 0.4 1.4 0.8 0.4 0.2 2.2 0.2 0.2 0.2 0 0

Removed 10 3.0 3.4 9.0 14.0 2.4 2.8 3.6 11.6 1.8 1.8 4.4 8.6
20 4.2 7.6 19.0 26.2 3.0 5.8 11.4 22.0 2.0 2.8 12.8 18.6
40 11.2 15.8 41.6 53.6 6.4 12.0 25.0 46.6 6.0 7.2 26.0 37.2
80 21.4 32.0 81.2 109 11.0 21.2 48.6 93.8 9.0 12.0 54.4 73.8

Reversed 10 1.8 1.4 7.4 2.2 0.8 0.8 12.2 4.2 0.6 0.6 9.2 5.2
20 5.4 2.0 14.6 6.4 5.2 2.6 22.2 7.6 2.8 2.4 13.2 7.6
40 10.6 5.2 26.6 11.8 10.2 4.0 42.6 16.8 6.6 6.4 31.8 19.4
80 18.8 10.6 54.2 26.6 21.0 11.2 86.4 26.0 11.6 10.8 56.6 38.8
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Table 2. Results for simulations using data sizes 5000 and 10000

5000 10000
Sparser Denser Sparser Denser

Type Nodes Std MFE Std MFE Std MFE Std MFE
Added 10 0 0 1.2 0.2 0 0 0 0

20 0 0 0.4 0.0 0 0 0 0
40 0.4 0.4 0.0 0.0 0 0 0.2 0.2
80 0.4 0.4 0.0 0.0 0.4 0.4 0 0

Removed 10 1.0 1.0 1.8 6.4 0.6 0.6 2.6 4.6
20 0.4 1.4 6.2 14.6 0.6 0.6 8.6 10.4
40 2.6 4.6 16.0 30.0 1.8 2.0 20.2 24.4
80 4.6 7.2 24.2 59.2 4.4 4.6 40.0 48.0

Reversed 10 0.6 0.6 7.2 4.4 4.0 4.0 4.2 3.6
20 2.6 2.4 20.8 9.6 6.2 6.2 12.0 11.4
40 5.0 3.8 36.6 20.8 14.0 14.2 21.0 19.0
80 8.4 7.8 78.0 38.0 24.0 24.2 48.5 44.3
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(a) Sample size = 500. (b) Sample size = 1000. (c) Sample size = 2500.
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Fig. 1. Ratio of reversed edges in the resultant graphs with denser BNs from use of a

standard PC and PC embedded with the MFE-IC method

size N = 5000, Std-PC was unable to perform CI tests for |Z| ≥ 3 in this
simulation, which implies that Std-PC might sometimes correctly happen to
maintain some existing edges. The second is that, when confidence of existing
edges is small because the data size is insufficiently large, the null hypothesis
is not rejected because of the effect of maximum entropy. Therefore, MFE-IC
method seemingly tends to prefer sparser graphs. These mean that MFE-IC
method does draw edges only when high confidence for dependence is obtained.
Additionally, we can comment on the fact that Std-PC incorrectly decided the
direction of edges more than MFE-PC. This fact means that Std-PC detected
conditional independence for invalid conditional sets Z. In this case, wrong
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v-structures, divergence connections such as X ← U → Y , and serial connec-
tions such as X → U → Y were generated. This suggests that the simulation
had difficulty realizing the faithfulness assumption. In other words, unfortu-
nately, Ind (X ;Y |Z) ⇒ DsepG(X ;Y |Z) was often violated in this simulation.
This situation was also reported by Ramsey et al. for linear Gaussian mod-
els of DAGs [23]. However, we found the large difference of the reversed ratio,
which shows that MFE-PC correctly found the conditional sets more than Std-
PC. According to the discussion, we regard that MFE-IC method is especially
preferable for causal discovery, where existing edges are expected to represent
definite direct dependence between variables, and where direction has impor-
tant meanings. In contrast, MFE-IC seems to be unsuitable for finding BNs in
view of the predictive sense, for which the edges are allowed to be reversed for
maintaining adequate parametric space size.

5 Conclusion

We proposed a method for improvement of conditional independence (CI) testing
in small samples, which is a weak point of constraint-based learning Bayesian
networks using the classical hypothesis tests. To do this, we introduced the
minimum free energy principle with a “Data Temperature” assumption that re-
lates probabilistic fluctuation to virtual thermal fluctuation. We defined a free
energy using Kullback–Leibler divergence, which corresponds to an information-
geometric view. This CI method incorporates the maximum entropy and max-
imum likelihood principles and converges to the classical hypothesis tests in
asymptotic regions.

We also demonstrated the effectiveness of our method by embedding it in the
well known PC algorithm. The results show that our method correctly identified
the direction of the edges better than the standard tests did, which is expected
to be effective for causal discovery where the orientation of edges is significant.
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Abstract. Kernel-based Copula Processes (KCPs), a new versatile tool

for analyzing multiple time-series, are proposed here as a unifying frame-

work to model the interdependency across multiple time-series and the

long-range dependency within an individual time-series. KCPs build on

the celebrated theory of copula which allows for the modeling of complex

interdependence structure, while leveraging the power of kernel methods

for efficient learning and parsimonious model specification. Specifically,

KCPs can be viewed as a generalization of the Gaussian processes en-

abling non-Gaussian predictions to be made. Such non-Gaussian features

are extremely important in a variety of application areas. As one appli-

cation, we consider temperature series from weather stations across the

US. Not only are KCPs found to have modeled the heteroskedasticity

of the individual temperature changes well, the KCPs also successfully

discovered the interdependencies among different stations. Such results

are beneficial for weather derivatives trading and risk management, for

example.

Keywords: Copula, Kernel Methods, Gaussian Processes, Time-Series

Analysis, Heteroskedasticity, Maximum Likelihood Estimation, Financial

Derivatives, Risk Management.

1 Introduction

Gaussian processes (GPs) [3] have enjoyed wide acceptance in many machine
learning applications as a non-linear regression and classification tool. GPs clev-
erly exploited the closure property of Gaussian random variables, under marginal-
ization and conditioning, for efficient learning and inference. Model selection can
be handled naturally under a Bayesian framework, and missing data can be treated
effortlessly. The same closure property also limits the GPs to make predictions
with Gaussian distributions. However, the world is an inherently non-Gaussian
place. The Gaussian prior assumption is simply not valid in many real-world appli-
cations such as the modeling of financial data[12], wind-speeds and temperatures,
and catastrophic damages (e.g. floods, earth-quakes and forest fires[6] [8]) where
it has been shown that risk-management based on Gaussian assumptions severely
under-estimates the real-risks and greatly inflates the social and economical costs.
The ability to accommodate non-Gaussian features is therefore crucial.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 628–643, 2009.
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Copula theory [13] on the other hand has been proven to be an effective way
to model complex dependencies and distributional behavior by decomposing the
joint-distribution into the dependency structure and the individual marginal
distributions. However, the applications of copula functions are mostly static
while its dynamic extensions are either limited to first-order Markov processes
[16] or simply using copula functions as a way to combine multiple time-series
[5] [11] [14] [15].

This work proposes a novel time-series analysis model dubbed Kernel-based
Copula Processes (KCPs), and offers a way to better address the non-Gaussian
features of real-world data. KCPs are a powerful union of GP and copula func-
tions. Unlike GPs where a time-series is modeled as a high-dimensional Gaussian
distribtuion, KCPs use a copula function to separate the specification of depen-
dency structure and the behavior in the marginal distributions; thus allowing
for complex non-Gaussian behavior, while retaining most of the attractiveness
of GPs such as efficient learning, inference, and natural missing data handling.
For example, in the univariate setting, a high-dimensional elliptical copula func-
tion is used to capture any long-range temporal dependencies, while an arbitrary
non-Gaussian distribution is used to match the non-Gaussian behavior in the
marginal distribution. A kernel function is used along with the elliptical copula
to keep the model parsimonious. As will be shown in this work, heteroskedastic
processes can also be captured with KCPs through proper design of this kernel
function.

Under this proposed framework, we further propose a natural extension for
multi-variate time-series which allows multiple time-series with drastically dif-
ferent characteristics to be described under a single model. Further, the modular
formulation of multivariate KCPs lends itself naturally to a multi-core/processor
environment for parallel computation.

Section 2 presents the details of the KCPs framework in both univariate and
multivariate settings. Section 3 presents a synthetic univariate example to il-
lustrate the modeling power enjoyed by the non-Gaussian features of KCPs.
Finally, section 4 presents a real-life example of modeling multiple temperature
series from weather stations across the United States. A new kernel function is
derived especially to accomodate the heteroskedastic nature of the temperature
data. The performance of different flavors of KCPs are compared with GPs and
GARCH [2].

2 Kernel-Based Copula Processes (KCPs)

This section introduces the basic formulation of copula processes for time-series
analysis. Section 2.1 provides the formulation for the univariate time-series case
which shows how kernel methods can bring a sense of time or parametric ordering
to a high-dimensional copula, thus allowing the modeling of random processes
instead of just a collection of random variables. This approach is reminiscent of
the formulation of Gaussian processes (GP) as will be discussed in this section.
Section 2.2 extends the basic formulation to the multiple time-series case. Section
2.3 presents the estimation methods for KCPs.
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2.1 Univariate Time-Series

Consider a one-dimensional function g(x) with a set of noisy observations y =
{y1, ..., yN}T = g(x) + εn at x = {x1, ..., xN}T . In performing tasks such as
regression or forecasting, the objective is to predict the values of the function,
y∗ = {y∗1 , ..., y∗N}T , at x∗ = {x∗1, ..., x∗M}T where x

⋂
x∗ = ∅. Under the KCP

assumption, the joint distribution of the observed and predicted values is given
by:

�(Y ≤ y,Y∗ ≤ y∗|x,x∗) = C({Fi(yi)}N
i=1, {Fj(y∗j )}M

j=1|x,x∗) (1)

= C({ui}N
i=1, {u∗j}M

j=1|x,x∗) (2)

where C(·) is the copula function1 of the process, Fi(·) are the marginal cumula-
tive distribution functions (CDFs), and ui is the transformed yi via the CDFs,
i.e. ui

.= Fi(yi).
The joint density of (y,y∗) can be obtained by differentiating with respect to

{y,y∗}:

�(y,y∗|x,x∗) = c({Fi(yi)}N
i=1, {Fj(y∗j )}M

j=1|x,x∗)
N∏

i=1

fi(yi)
M∏

j=1

fj(y∗j ) (3)

where fi(·) are the marginal PDFs and c(·) is the so-called copula density function
given by the derivative of the copula function with respect to its parameters:

c({ui}N
i=1) =

∂NC

∂u1∂u2 . . . ∂uN
(4)

In this formulation, all the marginal distributions are constrained to have the
same parametric form. The role of the copula function C is to capture the entire
dependency structure of {y,y∗}. There exists a vast array of parametric or em-
pirical copula functions which allow the specification of complex and heavy-tail
dependencies. Nelson [13] provides a wide collection of examples. However, when
attention is focused on the elliptical class of copula functions, the dependency
structure in the copula function can be specified by a kernel function to achieve
parsimonious model specification.

For example, consider a copula process with a Gaussian copula function as
follows:

CΛ({Fi(yi)}N
i=1) = ΦΛ({Φ−1(Fi(yi))}N

i=1) (5)

1 The copula function is a joint distribution function of uniform random variables.

Sklar’s theorem [13] states that given any joint distribution H(y1, · · · , yN ) of random

variables {yi} and margins {Fi(yi)}. There exists a copula function C such that for

all yi in the respective domain, H(y1, · · · , yN) = C (F1(y1), · · · , FN (yN )). If {Fi(yi)}
are continuous, then C is unique. The converse is also true.
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where the Φ(·) and ΦΛ(·) are the standardized univariate normal CDF and the
zero-mean multi-variate CDF (with covariance matrix Λ) respectively. The co-
variance matrix Λ can be defined with the Gram matrix:

Λ =

⎡⎢⎣k(x1, x1) . . . k(x1, xN )
...

. . .
...

k(xN , x1) . . . k(xN , xN )

⎤⎥⎦+ σ2
nI (6)

where σ2
n is the noise variance and k(xi, xj) is a kernel function describing the

covariance2 between the pairs of random variables yi and yj . The radial basis
function (RBF),

kRBF (xi, xj) = exp
(
− 1

2h
(xi − xj)

2
)

(7)

and the Ornstein-Uhlenbeck functions,

kOU (xi, xj) = exp
∣∣∣∣− 1

h
(xi − xj)

∣∣∣∣ (8)

are examples of commonly used and versatile kernel functions. More examples of
kernel functions can be found in [3]. In the Appendix, we show how to construct
a nonstationary kernel function from a stochastic differential equation (SDE)
based on the understanding of the dynamics of the temperature data studied in
Section 4.

Notice that if the copula is Gaussian and the marginal distributions are as-
sumed to be normal, then the copula process reduces to the familiar GPs.

2.2 Multivariate Time-Series

In practical problems, random processes rarely exist in logical isolation but
rather typically form an intricate web of dependencies. Thus practitioners are
often faced with the challenge of analyzing not a univariate time-series, but
multiple codependent time-series. To this end, we propose a multivariate KCP
framework to capture such complex interdependencies.

In the cases where the daily values from each series are highly related and yet
there exists no ordering among them, one natural parametrization of the joint
distribution is as follows:

�(Y(1) ≤ y(1), . . . ,Y(M) ≤ y(M)) =

Cb

[
C1

(
{F (1)

i (y(1)
i )}N1

i=1

)
, . . . ,CM

(
{F (M)

i (y(M)
i )}NM

i=1

)]
(9)

where Cb(·) is the binding copula function connecting M individual time-series
together. The individual time-series are modeled as in the single KCP case

2 For non-Gaussian random variables, the kernel function is not the covariance itself,

but rather it dictates the behavior of the covariance.
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Fig. 1. A schematic illustration of a binding copula linking multiple KCPs. In this case,

there are four time-series, each with five time samples. The temporal dependencies of

each time-series are first described by the individual KCPs {Ci}4
i=1. The inter-time-

series dependency is then described by a binding copula Cb.

(Section 2.1), while the dependent structure resides with the binding copula.
Figure 2.2 provides a schematic depiction of a binding copula joining multiple
copula processes together. The advantage of this configuration is that time-series
with greatly different individual dynamics can be captured by the individual
copula processes, before they are joined together by the binding copula. For
example, one time-series can be the changes in the LIBOR3 rate while others
could be the returns of any stocks that are sensitive to interest-rates, such as
utilities companies or companies with high debt load. In such cases, the stock
returns would have much higher volatility but shorter term correlation than the
changes in the LIBOR rate.

2.3 Learning

The learning of KCPs can be performed by maximizing likelihood. The likelihood
function of a generic KCP is given by:

L(θ) = �(y|x, θ) = c({Fi(yi)}N
i=1)

N∏
i=1

fi(yi) (10)

3 The London Interbank Offered rate (LIBOR) is a daily reference rate based on the

interest rates at which banks offer to lend to other banks [10].
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where y is the set of training data and θ is the set of hyper-parameters of the
copula process.

For instance, assuming the choice of Gaussian copula and margins are Stu-
dent’s t -distributed, then the negative log-likelihood function is given as

− log(L(θ)) =
1
2

log |Λ|+ 1
2
zTΛz− 1

2
zT z−

N∑
i=1

log(t(yi, υ)) (11)

where zT = {z1 = Φ−1(Tυ(y1)), . . . , zN = Φ−1(Tυ(yN ))} is the transformed
random vector zi ∼ N (0, 1), and Tυ(yi) and ti(yi, υ) are the univariate Student’s
t -distribution and density functions (with degree of freedom υ) respectively; and
θ are the hyper-parameters of the kernel function. Here, without loss of generality
the time-series samples are assumed to be standardized.

The likelihood function for multivariate KCPs can be derived by taking the
N ·M − th order derivative of Eq. (9) with respect to y

(j)
i :

L(θ) = �(y(1), . . . ,y(M))

=
∂MCb

∂C1 . . . ∂CM
·

⎡⎣ ∂N1C1

∂u
(1)
1 . . . ∂u

(1)
N1

N1∏
j=1

f
(1)
j (y)

⎤⎦ · . . .
·

⎡⎣ ∂NM CM

∂u
(M)
1 . . . ∂u

(M)
NM

NM∏
j=1

f
(M)
j (y)

⎤⎦
.= cb · L1(θ1) · . . . · LM (θM ) (12)

The overall likelihood function factorizes into the product of the binding copula
density, cb, and the likelihood functions of the copula processes of the individ-
ual time-series, Li(θi). This modular property allows for two ways to learn the
model parameters: (i) all the parameters are learnt at the same time; or (ii) the
parameters for each time-series are learnt separately and are fixed while learning
the parameters of the binding copula. The latter approach is particular conve-
nient for equity portfolio analysis where individual names are often added and
removed as portfolio compositions change.

2.4 Inference

One of the strengths for KCPs (which is also enjoyed by GPs) is that the entire
predictive distribution is available during inference, thus predictions are not lim-
ited to point prediction, which allows for much more accurate risk management.

The predictive distribution of a univariate KCP is given by:

�(y∗|y) =
CΛ̃({Fi(yi)}N

i=1, {Fi(y∗j )}M
j=1)

CΛ({Fi(yi)}N
i=1)

(13)
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where Λ and Λ̃ are the Gram matrices of the observations and the combined ob-
servations and targets respectively as defined in Eq. 6. The dependency on x and
x∗ is implicit and it is dropped from the notation for clarity of
presentation.

The maximum a-posterior (MAP) estimator could be used to provide a point
estimate of the target values:

ȳ∗ = max
y∗ �(y∗|y) (14)

When the choice of copula functions and marginal distributions result in a sym-
metric predictive distribution, the MAP estimate will coincide with the mean-
squared estimator �|�(y∗|y)[y].

2.5 Model Selection and Performance Metrics

A model selection method is required to select the best of parametric func-
tions for both the copula and marginal component in KCPs. Given the mod-
ularity of multivariate KCPs, model selection can be performed in a modular
fashion as well. That is, the best univariate KCP is selected for the individ-
ual time series and the associated results are subsequently used to learn the
best binding copula. Furthermore, in regression and out-of-sample prediction of
stochastic processes, attention must be focused on obtaining an accurate pre-
dictive distribution. Point-predictions are meaningless since the realized value
from a stochastic process will almost always differ from the prediction. Know-
ing the entire predictive distribution on the other hand yields a much more
complete picture. To this end, conventional performance metrics such as least-
square errors between the point prediction and a set of realized values is of
little use.

In this study, in addition to the maximized likelihood, the probability-integral-
transform (PIT) [7] is employed as a complementary criteria for model selec-
tion. The maximized likelihood relates to the predicted density having mini-
mum variance about the observations[4], while PIT measures how well the the
predictive distribution corresponds to the true underlying distribution. Diebold
et al. [7] evaluate PIT graphically, but it can also be evaluated quantitatively
with the Anderson-Darling criterion4 [1]. We will use log-likelihood and like-
lihood ratios to rank the competing models, while using the PIT with the
Anderson-Darling criterion to evaluate the validity of the model on a standalone
basis.

In evaluating the goodness-of-fit in the multiple time-series level, a visual
comparison of the Gram and pair-wise Pearson’s correlation matrices will also
be given.

4 The Anderson-Darling criterion has the added advantage that it produces a score

that focuses goodness-of-fit at the tail regions of the distributions.
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Fig. 2. A synthetic data set generated by a AR(2) process with skew-normal innova-

tions is shown on the left panel. The posterior distribution of the process at t = 5 and

the corresponding predictive distributions given by GP and GCTM KCP are shown on

the right panel.

3 Synthetic Example

In this section a synthetic data set is used to illustrate the KCP in action in
its simplest form. Here, a sample path is drawn from an AR(2) process with
skew-normal5 innovations:

yt = 0.1yt−1 + 0.05yt−1 + 1 + εt (16)

where εt is a standardized skew-normal with skewness of 0.5.
One hundred samples were taken at regular intervals within the range of x =

[−5, 5]. Every fifth sample is taken as the test set (i.e. the regression / prediction
targets), while the rest of the samples are used as the training set. Then two
KCPs: Gaussian copula with Gaussian marginal distribution (GCGM) (or simply
a Gaussian process (GP)) and Gaussian copula with t -marginal (GCTM), are
learnt using MLE. The Ornstein-Uhlenbeck kernel (8) is used in both cases due
to its auto-regressive nature.
5 The skew-normal distribution can be obtained by taking the limit of the skew-

t distribution by Hansen[9] as the degree of freedom η approaches infinity. The

full formulation of the standardized skew-t distribution is reproduced here for

reference:

g(z|η, λ) =

⎧⎪⎪⎨⎪⎪⎩
bc

(
1 + 1

η−2

(
bz+a
1−λ

)2
)−(η+1)/2

z < − a
b

bc

(
1 + 1

η−2

(
bz+a
1+λ

)2
)−(η+1)/2

z ≥ − a
b

(15)

where 2 < η < ∞, and |λ| < 1. The constants a, b, and c are given by a = 4λc
(

η−2
η−1

)
,

b2 = 1 + 3λ2 − a2, and c =
Γ( η+1

2 )√
π(η−2)Γ( η

2 )
.
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To illustrate the superior modeling power of KCPs over GPs, we consider
the predictive distribution generated by a GP and a GCTM KCP in Fig. 2.
This experiment is a simple example to illustrate the power and flexibility of
copula processes simply by changing the marginal distributions from Gaussian
to Student’s t. Recall a GP is a special case of the GCTM KCP as the degree
of freedom parameter υ →∞. The two particular types of KCPs were chosen to
illustrate what a slight departure from GPs framework can achieve.

As depicted, the predictive distribution produced by GCTM KCP is much
closer to the true posterior distribution of the AR(2) process than that produced
by GP. GP, restricted by its symmetric nature, must over shift its mean to the
positive side to compensate for the excess probability mass in that region. This
would introduce even greater prediction errors if point predictions are considered.
GCTM KCP on the other hand is able to produce an asymmetric predictive
distribution based on observed data to much better match the true distribution.

4 Real-Life Application

4.1 Data

To showcase the modeling power of KCPs with multiple time-series, we consider
the daily maximum temperatures recorded by the United States Historical Cli-
matology Network (HCN) [?]. Data from as far back as the early 1800s from a
network of 1219 weather stations are freely downloadable from the Network’s
website. This study will consider the data from a few arbitrary three-year pe-
riods from 156 stations of various states. Missing data is commonplace in such
data as equipment is moved and maintained; however, KCPs handle missing
data naturally.

The latitude/longtitude and elevation coordinates for each weather station
are also known. We will later use this information to help learn the dependency
structure.

To focus on the stochastic nature of the data, we first subtract a sinusoidal
seasonal trend from that data. A customized sinusoidal function is used for
each weather station based on the least-square error criteria. An example of the
temperature data with the fitted sinusoidal trend is given in Fig. 3a with the
detrended version in Fig. 3b.

4.2 Model

Since there exists no natural ordering among the weather stations, we will take
advantage of the modularity of the KCPs and first learn a univariate KCP for
each weather station and connect them with a binding copula.

Upon closer examination of the detrended data, some notable features are
observed which helped narrow down the modeling choices.

First, the second moment autocorrelation function (ACF), i.e. the ACF of the
square of the data, experiences an annual cycle as illustrated in Fig. 3c. This im-
plies the rate of fluctuation, or volatility, of maximum temperature goes through
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Fig. 3. Weather station TX410120 of Texas. Panel (a) depicts the raw maximum tem-

perature data and the sinusoidal trend; Panel (b) shows the detrended data; Panel (c)

shows the auto-correlation function of the first four moments of the detrended data;

Panel (d) shows the empirical density and the estimated skew-normal distribution. The

second moment ACF in (c) and the detrended temperature in (b) clearly shows the

periodic volatility of the residuals.

an annual cycle. On the other hand, the first moment ACF drops off relatively
quickly (in a few days time), but this also implies recent temperature trends
tend to persist. This provides an important hint in designing or selecting the
type of kernel function that would be appropriate for the analysis. In this case,
we designed a heteroskedastic kernel function that satisfies the above features:

k(t1, t2) = σ2 · e−κΔt

[
1
2κ

+
α

4κ2 + T−2

(
2κ · sin

(
min(t1, t2)

T
+ φ

)
− 1
T

cos
(

min(t1, t2)
T

+ φ

))]
(17)

where σ is roughly the average volatility, κ is the inverse of length scale of
dependency in days, T is the period (= 1 year) and φ is the phase of volatility.
Please see the Appendix for the derivation. Note the kernel function is non-
stationary as the volatility of maximum temperature depends on the day of the
year.
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Another helpful observed feature in the detrended data, is that a skewed-normal
fits the empirical histogram well. Figure 3d shows a sample empirical histogram
and the best-fit skew-normaldistribution. Although the histograms are not strictly
valid6, it helps us narrow down the choice of marginal distributions.

It is important to note that the above analysis is not necessary for using
KCPs. However, it is a simple way to incorporate additional domain knowledge
by providing the initial values of the parameters7 for MLE and as a basis for
forming the prior distribution for Bayesian learning.

For this study, five competing models for the univariate time-series were in-
vestigated. These are (i) GP, (ii) Gaussian copula with skew-normal marginal
(GCSM) KCP, (iii) t -copula with Gaussian marginal (TCGM) KCP, (iv) t -
copula with skew-normal marginal (TCSM) KCP, and (v) GARCH(1,1) (with
t -innovations) model. The GARCH(1,1) model is included here because it is one
of the best-known models for heteroskedastic processes [2][10]. All KCPs above
use the heteroskedastic kernel function (17).

The Gaussian- and t -copula are used as a binding copula to describe the
interdependencies among the temperature series. In this case the Gaussian RBF
kernel (7) is used, with the weighted distance metric:

d(i, j)2 = d2
lat + d2

long + w · d2
elev (18)

where d(i, j) is the weighted distance between weather station i and j, dx are
distances along latitude, longitude, and elevation, and w is the weight on the
distance along elevation.

4.3 Results

First we examine the results from the univariate KCPs. Figure 4 provides a sample
comparison of the detrended data from weather station MD181750 of Maryland.
The first column of panels from left to right show the time series, the correspond-
ing ACF of the second moment, the histograms, and the q-q plots. The first row
shows the plots of the detrended data while the subsequent rows show the samples
generated from the corresponding models after learning on the same set of the de-
trended data. All KCP models work relatively well in the sense that the annual
periodic change in volatilities was recovered as evident in both the time-domain
plots and the ACF plots. The GARCH(1,1) model picked up some periodicity in

6 Histograms are conventionally used to visually evaluate the probability density of a

random variables. A random process on the other hand is a collection of random vari-

ables. Thus a sample path of a time-series (which is a random process), represents a

series of draws from a potentially different distribution. Therefore, collapsing all the

samples from a time-series to form a histogram is axiomatically incorrect.
7 The skewness parameter can be obtained by the maximum likelihood fit of his-

tograms of the residuals as depicted in 3d and the length scale parameter κ in the

kernel function (17) can be estimated by κ̂ = − log(ρ|τ=1) where ρ(τ ) denotes the

ACF for the first moment at lag τ .
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Fig. 4. Comparing stylized facts of the detrended data and sample paths generated by

models with MLE parameters based on the weather station MD181750 of Maryland

Fig. 5. Univariate model selection results. The left panel shows the fraction of model

acceptance/rejection based on the Anderson-Darling criterion; the middle and right

panels show the fractions of each models ranked to be the most and the least appropri-

ate model for the univariate temperature series according to the achieved log-likelihood.

volatility as well, but the period was incorrect. Examining the histograms and the
q-q plots visually, the TCSM KCP seems the best match with the data.

More generally, using the data from 156 weather stations across the US, the
Anderson-Darling test rejects the hypothesis that GP and TCGM KCP are suf-
ficiently good models (with 95% confidence level) in ∼43% and ∼42% of the
cases; whereas, the TCSM KCP was shown to be the best model as it was re-
jected in only ∼7.5% of the cases. The acceptance and rejection frequencies for
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Table 1. Medians of pair-wise likelihood ratios among different models and the corre-

sponding critical values for the likelihood ratio tests at 95% confidence level. Note that

only the upper triangular part of this table is shown as the table is anti-symmetric.

pGP pGCSM pTCGM pTCSM pGARCH

qGP - 5.41 (3.84) dB 0.0 (3.84) dB 6.05 (5.99) dB 4.6 (5.99) dB

qGCSM - - -5.6 (0.00) dB 0.0 (3.84) dB -4.6 (3.84) dB

qTCGM - - - 5.8 (3.84) dB 5.1 (3.84) dB

qTCSM - - - - -5.0 (0.00) dB

qGARCH - - - - -

all models are shown in the left panel of Fig. 5. The middle and the right panels
of Fig. 5 show the frequency of each model being the best and the worst model
for each data set as ranked by the maximized likelihoods. The GCSM and TCSM
KCPs clearly dominate the GP and TCGM KCP, demonstrating that most of
the modeling power (for this data set) comes from the skewness of the marginal
distributions while the extra tail-dependency from the t -copula provides an in-
cremental gain. The performance of the GARCH(1,1) model with t -innovations
seems to be hit-and-miss with this data set, yet it is quite impressive that it ranks
first in about 22% of the time, even though the KCPs use a kernel function that
is custom designed for this data set. However, it is important to note that only
the maximized likelihoods are used to rank models here. Model complexity (i.e.
number of parameters in each model) is not considered. The likelihood ratio
test that follows will address this issue by using a significance threshold which
depends on the number of model parameters.

Table 1 lists the median pair-wise likelihood ratios computed across the data
from 156 weather stations for each model-pair, where px

qy
denotes the likelihood

ratios of model x over model y. The corresponding critical values for the likeli-
hood ratio tests at a 95% confidence level are also listed in parentheses. Note, if
a particular pair-wise likelihood ratio px

qy
is greater than the corresponding crit-

ical value, then model x is preferred over model y with statistical significance.
The number of parameters used in each model is also taken into account when
computing the critical values, thus balancing the desire for performance and the
aversion to model complexity. Here, the likelihood ratios again show the supe-
riority of KCPs over GPs and GARCH(1,1) by allowing different combinations
of copulas and marginal distributions for the specific applications. In particular,
both GCSM and TCSM are better than GP, TCGM, and GARCH(1,1) with
statistical significance. Further, the likelihood ratios for pT CGM

qGP
and pT CSM

qGCSM
con-

firm that the t -copula provides statistically insignificant performance gain over
the Gaussian copula for this data set. Thus, on average, the GCSM KCP is the
most powerful and yet parsimonious model for this application.

Now we shift our attention to the effectiveness of the binding copula in captur-
ing the dependencies of multiple time-series for weather stations located in the
same state. Figure 6 shows the Gram matrices of binding copulas and pair-wise
correlation matrices of the detrended data after transforming by the distribution
induced by the univariate KCPs that was ranked to be the best earlier. Recall
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Fig. 6. Sample multivariate KCP results from a few states. The Gram matrix (left) of

the binding copula, pairwise correlation (middle), and the difference of the two matrices

(right). The IDs of the weather stations are labeled on the vertical axes while only the

last two digits of the IDs are shown on the horizontal axes.



642 S. Jaimungal and E.K.H. Ng

that for non-Gaussian random variables, the Gram matrix is not identical to the
covariance matrix, but rather it dictates the behavior of the covariance. Nev-
ertheless, the simple t -copula with only geographical distance information was
able to recover a substantial amount of interdependency on a visual basis.

5 Conclusion and Future Work

This paper introduced the kernel-based copula processes (KCPs), a novel time-
series analysis tool, which inherits features from both the theory of copula and
Gaussian processes. The KCPs allows the modeling of non-Gaussian processes
in a concise and parsimonious manner by separating the specification of the
dependency structure and the margins.

An extension to multivariate time-series was also presented. A binding cop-
ula was used to encapsulate the interdependency among time series. This mod-
ular approach not only lends itself naturally to implementation on a multi-core
/ -processor for computational efficiency, it also allows time-series with different
lengths and sampling frequencies to be described seamlessly under a single model.

Further research directions include possible sampling or variational methods
to accommodate very large data set; the incorporation of a latent process for
the kernel hyper-parameters to model processes with stochastic variances; and
the application of KCPs in classification problems in similar capacity as GPs.
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Appendix: Heteroskedastic Kernel Function

To derive the heteroskedastic kernel function, consider a random process (or
time-series) Xt decomposed into a deterministic trend gt and a stochastic com-
ponent with heteroskedastic variance, i.e. Xt = gt + yt. Assume yt follows a
common Vasicek mean-reverting process:

dyt = −κ · (θ − yt) · dt + σt · dWt (19)

where κ is the rate of mean-reversion, θ is the mean-reversion level, σu is the
variance process of yt, and Wt is a Wiener process in a usual SDE setup. This
generalized Vasicek process has solution:

yt = y0 · e−κt + θ · (1− e−κt) +
∫ t

0
σue

−κ(t−u)dWu (20)

Thus the auto-covariance of Xt is given by

Cov[Xt1 , Xt2 ] = E

[(∫ t1

0
σue

−κ(t1−u)dWu

)(∫ t2

0
σue

−κ(t2−u)dWu

)]
= e−κ(t1+t2)

∫ min(t1,t2)

0
σ2

ue
−2κudu (21)

Notably, that this kernel function is not a function of the difference between
t1 and t2 and is therefore non-stationary. Now we must specify the form of the
variance process. For the detrended temperature data, the variance process is
periodic, consequently, we assume it takes on the following form

σ2
t = σ2 ·

(
α · sin

(
t

T
+ φ

))
(22)

where σ, α, T , and φ are all constants. Substituting (22) into (21), simplifying
gives the final form of the kernel function found in (17).
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Abstract. Innovations such as optimistic exploration, function approx-

imation, and hierarchical decomposition have helped scale reinforcement

learning to more complex environments, but these three ideas have rarely

been studied together. This paper develops a unified framework that for-

malizes these algorithmic contributions as operators on learned models

of the environment. Our formalism reveals some synergies among these

innovations, and it suggests a straightforward way to compose them. The

resulting algorithm, Fitted R-MAXQ, is the first to combine the function

approximation of fitted algorithms, the efficient model-based exploration

of R-MAX, and the hierarchical decompostion of MAXQ.

1 Introduction

Research into reinforcement learning (RL) has yielded diverse techniques for
more efficiently converging to rewarding behaviors in initially unknown environ-
ments, but too often these techniques are studied in isolation. Without assem-
bling these ideas into a single algorithm, we cannot fully understand how they
synergize or even conflict. In this paper, we develop a compositional framework
that allows us easily to integrate three of the most important advances in RL.

The first of these advances is model-based RL. Early work in this direction
demonstrated that summarizing an agent’s experience into a model facilitates
the efficient reuse of data [1]. Later work investigated how the uncertainty in
the model can guide exploration, yielding the first (probabilistic) finite bounds
on the amount of data required to learn near-optimal behaviors [2,3]. Still, these
guarantees require that the agent exhaustively explore every state. Particularly
in large domains, this exploration can be impractical.

Second, function approximation allows RL to cope with large or even infinite
state spaces by introducing generalization. It allows an algorithm to approxi-
mate the long-term value of every action in every state using only a relatively
small set of parameters. Many state-of-the-art approaches employ model-free
algorithms and representations that attempt to estimate these values directly
from data [4,5], but they often still rely on random exploration to acquire this
data.
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Third, hierarchical decomposition is perhaps the most intuitively appealing
extension of the standard approach, since we would like to imbue our learn-
ing algorithms with the same awareness of structure that seems to allow us to
cope with the extraordinary complexity of the real world. Hierarchical RL has
been explored via work on temporal abstraction, in which temporally extended
abstract actions allow agents to reason above the level of primitive actions [6].
However, we still do not have a complete understanding of how hierarchy benefits
learning and therefore how to design or discover hierarchies.

One main contribution of this work is a formulation of important algorithms
from all of these branches of RL into a concise, unified notation that makes their
synergies apparent. We introduce our notation in Sect. 2 and use it to review
fitted function approximation, the model-based R-MAX algorithm, and the hi-
erarchical MAXQ framework. In Sect. 3, this powerful reformulation allows us
easily to define the first algorithm for model-based, continuous-state, hierarchi-
cal RL. This algorithm, which we call Fitted R-MAXQ, constitutes our second
main contribution, and we evaluate it empirically in Sect. 4. Finally, we discuss
future and related work in Sect. 5 before concluding in Sect. 6.

2 Model Components

A Markov decision process (MDP) 〈S,A,R, P 〉 comprises a finite set of states
S, a finite set of actions A, a |S||A| × 1 reward vector R, and a |S||A| × |S|
transition matrix P . Executing action a in state s earns reward R[sa] on average
and transitions to state s′ with probability P [sa, s′]. We define a policy π as a
|S|× |S||A| matrix,1 where π[s, sa] gives the probability of executing a in s, and
where π[s1, s2a] = 0 for s1 �= s2. The |S| × 1 value function V π maps each state
s to the expected discounted reward V π[s] of following π from that state. The
value function satisfies the Bellman equation

V π = π (R+ γPV π) , (1)

where γ ∈ [0, 1] is a discount factor.
Given R and P , which comprise a model, a planning algorithm computes a

policy π that maximizes each entry of V π. The standard policy iteration and
value iteration algorithms [7] both simply alternate between updating V π and
improving π greedily. Policy iteration updates V π by solving (1) for a fixed π,
while value iteration updates V π by evaluating the right-hand side of (1) using
the fixed previous value of V π. Both algorithms converge to the optimal value
function if γ < 1.

In the RL setting, the model is not given, but model-based algorithms estimate
R and P from data. We define an instance i = 〈si, ai, ri, s

′
i〉 as a record containing

a state si, the action ai executed from si, the one-step reward ri earned, and the
successor state s′i. Let D be a list of instances, and define Da = {i ∈ D | ai = a}.
1 The policy may thus be interpreted as a matrix transitioning states to state-action

pairs.
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Then the maximum-likelihood reward model R̄ and transition model P̄ are ma-
trices defined as follows:

R̄[sa] =

∑
i∈Da

δ(s, si)ri

n(s,Da)
(2)

P̄ [sa, s′] =

∑
i∈Da

δ(s, si)δ(s′, s′i)
n(s,Da)

, (3)

where n(s,Da) =
∑

i∈Da
δ(s, si), and δ is the Kronecker delta.

A complete RL algorithm must specify an exploration policy that guides an
agent to acquire the data used to estimate the model. The R-MAX algorithm [3]
maintains a set U of state-action pairs where insufficient data exists to esti-
mate the model accurately. For state-action pairs in U , the algorithm uses an
optimistic model in which the action terminates the trajectory after earning im-
mediate reward V max, an upper bound on the value function. In this manner,
the “unknown” state-action pairs are seen as optimal, encouraging the agent to
visit them and gather data. Otherwise, the maximum-likelihood estimate of the
state-action’s effects is used. We can express this exploration mechanism in our
matrix notation for V π as follows:

V π = π
(
UV max + (I − U)(R̄+ γP̄V π)

)
, (4)

where U is represented as a |S||A|×|S||A| diagonal binary matrix where U [sa, sa]
= 1 iff sa ∈ U . R-MAX has some appealing theoretical properties, such as a
probabilistic polynomial bound on the number of times it departs from a near-
optimal policy [8]. However, in practice, its thorough exploration behavior is
impractical, and it only directly applies to finite MDPs where it is reasonable to
gather ample data for every reachable state-action pair.

2.1 Function Approximation

Function approximation scales RL to environments where exhaustive exploration
is infeasible or impossible (such as any domain with a continuous or otherwise
infinite state space) by introducing the idea of generalization. A function approx-
imator defines a family of value functions with some finite parameterization. In
this paper, we focus on averagers, which approximate the value of a given state
as a weighted average of the values of a finite subset X ⊂ S. In particular, it ap-
proximates V π[s] as a weighted average

∑
x∈X Φ[s, x]V π[x], for a given |S| × |S|

matrix Φ. Fitted Value Iteration [9] uses this approach by performing value it-
eration using the following approximation of V π:

V π = π (R+ γPΦV π) . (5)

Some recent algorithms have also applied function approximation to the estimated
reward and transition models. The instance-based Kernel-Based Reinforcement
Learning algorithm [10] estimates a value function using the equations:

V π = π
(
R̂+ γP̂V π

)
(6)
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R̂[sa] =

∑
i∈Da

δ̂(s, si)ri

n̂(s,Da)
(7)

P̂ [sa, s′] =

∑
i∈Da

δ̂(s, si)δ(s′, s′i)
n̂(s,Da)

, (8)

where n̂(s,Da) =
∑

i∈Da
δ̂(s, si) tallies the weights given by the kernel function

δ̂ : S × S → [0, 1]. The kernel function determines the degree δ̂(s, si) to which
data at state si generalizes to the model at state s. The experiments in this
paper use a Gaussian kernel, as specified in Sect. 4.1. Note that the kernel-based
approximate model in (7) and (8) modify the maximum-likelihood model in (2)
and (3) only by substituting weights δ̂(s, si) ∈ [0, 1] in place of the exact binary
indicator function δ(s, si) ∈ {0, 1}.

2.2 Hierarchy

Given the structure we perceive in the real world, it seems natural to apply hier-
archy to reinforcement learning. The MAXQ decomposition [11] and options [12]
are the two most popular frameworks for hierarchical RL, which defines tem-
porally abstract actions that represent sequences of primitive actions. MAXQ
decomposes an overall learning problem using a given task hierarchy, where each
abstract action is a task that induces its own individual learning problem. In
contrast, the options framework formalizes an abstract action as a partial pol-
icy, which can be construed as a solution to a task. We will find it convenient to
interpret an abstract action o in both ways, depending on context.

A task o =
〈
T o, Ao, R̃o

〉
comprises a set of terminal states T o ⊂ S, a set of

child actions or tasks Ao, and a “pseudoreward” (goal) function R̃o : T o → IR.
It imposes an objective onto the system defined by the state space S and the
child actions Ao, which may include both other tasks and primitive actions such
as those assumed by the preceding sections.2 The task terminates upon reaching
a state s ∈ T o and then awards itself an artificial goal value R̃o[s], where R̃o is
a |S| × 1 vector. We can also represent T o as a |S| × |S| diagonal binary matrix
such that T o[s, s] = 1 iff o terminates upon entering s.

The optimal policy πo for task o maximizes

Ṽ o = T oR̃o + (I − T o)πo
(
Ro + γP oṼ o

)
, (9)

where Ro and P o are the (abstract) reward and transition matrices, respectively,
for the actions in Ao. This policy πo chooses children c ∈ Ao in a way that
maximizes a combination of one-step rewards during execution and goal values
upon termination. The task value function Ṽ o captures this combined value, but
it’s also possible to compute the value function V o that only includes the one-
step rewards (and is not “contaminated” with the goal rewards). In particular,
V o is given by solving
2 We will index the child actions Ao using c instead of a to emphasize that c ∈ Ao

may be either a task/option or a primitive action.
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V o = πo (Ro + γP o(I − T o)V o) . (10)

A key insight of MAXQ is that V o can be interpreted as the reward model for
the option3 o = 〈T o, Ao, πo〉 that, when initiated in a state s /∈ T o, simply selects
actions according to πo until reaching a state s′ ∈ T o. Suppose that o ∈ Ap for
some parent task p. Then we can capture the insight of MAXQ as Rp[so] = V o[s].
In other words, we can use V o to construct part of the reward vector for any
MDP learning task p that includes o as an executable action.

The same recursive approach can also apply to the transition function. Just
as the abstract reward function for an option specifies the expected (discounted)
sum of one-step rewards earned before reaching a terminal state, the abstract
transition function for an option should specify the expected (discounted) prob-
ability of terminating in each terminal state. To this end, we define the |S| × |S|
terminal-state matrix Ωo for an option o with the following Bellman-like equa-
tion:

Ωo = πo (P oT o + γP o(I − T o)Ωo) . (11)

Note intuitively that each column of Ωo can be interpreted as a value function
for a task which gives a reward of 1 upon terminating in the state corresponding
to that column. As a result, Ωo can be computed using standard MDP planning
algorithms. Finally, we observe that if o ∈ Ap for some parent task p, then
P p[so, s′] = Ωo[s, s′]. Here, P p is a multi-time model [12], so its rows may not
sum to 1, reflecting the effect of the discount factor over time. This representation
thus folds the duration of actions (typically represented explicitly in the standard
SMDP formalism) into the discounted transition probabilities.

Our hierarchical decomposition thus specifies how to construct the reward
and transition matrices for a task p recursively given the value functions and
terminal-state matrices of the options o ∈ Ap. To complete this recursive spec-
ification, we need only give the base case. For a primitive action a, the value
function V a and terminal-state matrix Ωa correspond exactly to the reward and
transition models for that action.

3 Compositional Algorithms

The algorithms described in Sect. 2 generate exploration policies by solving mod-
ified forms of the standard Bellman equation (1). However, each of the modified
equations (4), (5), and (9) share the same general form of (1): we can construe
the right-hand side as π multiplied by the sum of a |S| × 1 vector (that doesn’t
depend on V π) and a |S| × |S| matrix multiplied by V π. These equations are
therefore equivalent to the standard Bellman equations for a modified version of
the original Markov decision process.4

3 It is straightforward to support the stochasic termination of the standard options

framework by defining the diagonal entries of T as the termination probabilities.
4 Equation (9) can be rewritten into this form by handling termination after applying

the policy, but the representation of T o and R̃o is then less intuitive.
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We formalize such modifications as follows. For a given set of states S and
primitive actions A, let D be the space of all possible lists of instances, R be the
space of all possible |S| × 1 reward vectors, and P be the space of all possible
|S| × |S| transition matrices. The |S||A| × 1 reward vector for a given learning
task o is then obtained by composing the reward vectors for each child action
c ∈ Ao in the appropriate way. Similarly, the |S||A| × |S| task transition matrix
is composed from the |S| × |S| action transition matrices. We now define a
model generator G : D → R × P as a mapping from a list of instances to a
reward and transition model for a given primitive action, and a model operator
M : R × P → R × P as a mapping from one reward and transition model to
another.

We can formalize the maximum-likelihood model as a family of model gener-
ators mlea for each primitive action a:

mlea(D) =
(
V̄ a, Ω̄a

)
, (12)

where V̄ a[s] and Ω̄a[s, s′] are given by the right-hand sides of (2) and (3), re-
spectively. The R-MAX algorithm then generates an exploration policy by using
a standard planning algorithm on the learning task composed with the action
models r-maxa(MLEa(D)), where

r-maxa(R,P ) = (UaV
max + (I − Ua)R, (I − Ua)P ) , (13)

where Ua is the |S|× |S| submatrix of U such that Ua[s, s] = 1 iff sa is unknown.
Note that the R-MAX operator is defined as a function of the data D, which are
required to define U .

The Fitted R-MAX algorithm, which extends R-MAX using the model ap-
proximation of KBRL and fitted planning [13], can now be seen as planning with
the action models fvi(r-maxa(kbrla(D))), where

fvi(R,P ) = (R,PΦ) (14)

encapsulates Fitted Value Iteration for a given Φ, and

kbrla(D) =
(
V̂ a, Ω̂a

)
, (15)

where V̂ a[s] and Ω̂a[s, s′] are given by the right-hand sides of (7) and (8), re-
spectively.

R-MAXQ, another recent extension to R-MAX, incorporates the MAXQ-
based model decomposition described in Sect. 2.2 [14]. For a given task o, the
computation of the option policy πo requires planning with modified action mod-
els maxq

o(V c, Ωc) for each child c ∈ Ao, where

maxq
o(R,P ) =

(
T oR̃o + (I − T o)R, (I − T o)P

)
. (16)

Given the option policy πo, as well as policies for each descendent of o, the
MAXQ decomposition also defines a model (V o, Ωo) of o. In this sense, each
task o defines a model generator (since each option policy is a function of D).
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Algorithm 1. Model(c)
if c is a (primitive) action then

a ← c
(V a, Ωa) ← Ga(D)

Return (V a, Ωa)

else {c is a (composite) task/option}
o ← c
(πo, Ro, P o) ← Plan(o)
V o ← solution to V o = πo(Ro + γP o(I − T o)V o)

Ωo ← solution to Ωo = πo(P oT o + γP o(I − T o)Ωo)

Return (V o, Ωo)

end if

Algorithm 1 precisely defines this model generator. Note that Algorithms 1
and 2 are mutually recursive, and they assume the following global parameters:
a set of instances D, model generators Ga for each primitive action a, and model
operators Mo for each task o. Algorithm 2 constrains the planning algorithm to
only execute an option in states not in the option’s termination set. In other
words, for all options o and parent tasks p, pip[s, so] > 0 implies s /∈ T o. (The
option’s initiation set is the complement of its set of terminal states.)

Algorithm 2. Plan(o)
for all children c ∈ Ao do

(V c, Ωc) ← Mo(Model(c))
end for
Ro ← choose so that Ro[sc] = V c[s]
P o ← choose so that P o[sc, s′] = Ωc[s, s′]

πo ← optimize Ṽ o = πo
(
Ro + γP oṼ o

)
{subject to initiation constraints}

Return (πo, Ro, P o)

Given these subroutines, Algorithm 3 describes a broad family of model-based
RL algorithms parameterized by a task hierarchy, model generators attached to
each primitive action, and model operators attached to each task. For example,
suppose that for a given task hierarchy we define Ga = r-maxa ◦mlea for each
primitive action a and Mo = maxq, for each task o. Then running Execute on
the root task of this hierarchy is exactly equivalent to R-MAXQ. Note that this
algorithm uses the same model (Ro, P o) to compute both the “contaminated”
value function Ṽ o and the real value function V o. It can use this model for
both purposes, since the additional goal-reward values only affect the reward
vector at terminal states. Equation (10) disregards values of terminal states,
and Algorithm 2 prevents the execution of the option at terminal states.

These procedures can also implement non-hierarchical algorithms by using a
“flat” hierarchy. Let A be the set of available primitive actions and define the
task Root such that ARoot = A and T Root = 0. If we define Ga = r-maxa ◦mlea
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and M Root = i, the identity operator, then Execute(Root) is exactly equivalent
to the original R-MAX algorithm. If we instead define Ga = r-maxa ◦ kbrla

and M Root = fvi, then we obtain the Fitted R-MAX algorithm.

Algorithm 3. Execute(c)
if c is a (primitive) action then

a ← c
Execute action a in the environment

r ← reward

s′ ← successor state

D ← D ∪ {〈s, a, r, s′〉}
else {c is a (composite) task/option}

o ← c
repeat

s ← current state

(πo, V o, Ωo) ← Plan(o) {V o and Ωo ignored}
c ← choose child action/option according to πo

Execute(c)
until T c[s′, s′] = 1

end if

3.1 Fitted R-MAXQ

Our compositional approach to model-based RL immediately suggests a novel
algorithm, obtained by applying all of our available model operators. We define
Ga = r-maxa ◦ kbrla, to obtain the optimistic exploration of R-MAX and the
instance-based generalization of primitive action models of Kernel-Based Rein-
forcement Learning. We define Mo = maxq◦fvi to obtain the subtask decompo-
sition of MAXQ and the value function approximation of Fitted Value Iteration.
In keeping with prior algorithms extending R-MAX, we refer to this novel al-
gorithm as Fitted R-MAXQ. For concreteness, we specify Fitted R-MAXQ in
Algorithm 4, which also optimizes the computation of Algorithms 1–3 by using
dynamic programming to unroll the mutual recursion. Note that Algorithm 4
assumes a continuing task, but the modifications for episodic tasks are straight-
forward.5

To our knowledge, Fitted R-MAXQ is the first model-based RL algorithm to
combine function approximation and hierarchical decomposition. Interestingly,
a close inspection reveals notable structural similarities among the operators
that comprise Fitted R-MAXQ, which creates opportunities for synergies. For
example, consider the r-max and maxq operators, (13) and (16). Both modify
a model by changing the rewards at a subset of the states, which also become
terminal. In the case of r-max, this subset is the set of unknown states Ua;
for maxq, it is the set of terminal states T o. Entering this set terminates the
5 The T Root matrix should remain zero even in episodic tasks, since it is the environ-

ment and not the agent terminating.
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trajectory (by assigning zero probability to every successor) but earns a final
reward given by the upper bound V max or the pseudoreward function R̃o. The
net effect of these operators is to bias the exploration policy of the algorithm,
towards leaving the known set and towards manually specified subgoal states,
respectively. This characterization leads us to conjecture that one important role
of hierarchy is to focus the otherwise too thorough exploration of R-MAX by
requiring the optimistic value of exploration to overcome the perceived subgoal
rewards.

Algorithm 4. Fitted-R-maxq(Root)
Initialize stack to [Root]

loop
s ← current state

c ← top of stack
while c is a task, not a primitive action do

o ← c
c ← choose child in Ao using πo

Push c onto stack
end while
a ← c
Execute action a
r ← one-step reward

s′ ← successor state

D ← D ∪ {〈s, a, r, s′〉}
V a ← UaV max + (I − Ua)V̂ a {V̂ a[s] equals right-hand side of (7)}
Ωa ← (I − Ua)Ω̂a {Ω̂a[s, s′] equals right-hand side of (8)}
for all tasks o do {bottom-up}

Ro ← construct so that Ro[sc] = V c[s]
P o ← construct so that P o[sc, s′] = Ωc[s, s′]
πo ← optimize Ṽ o = T oR̃o + (I − T o)πo(Ro + γP oΦV o)

V o ← solve V o = πo(Ro + γP o(I − T o)V o)

Ωo ← solve Ωo = πo(P oT o + γP o(I − T o)Ωo)

end for
repeat {stack begins with a primitive on top}

Pop stack
o ← top of stack

until T o[s′, s′] = 0 {s′ not terminal}
end loop

We have already seen that some model operators modify the transition ma-
trix by forcing some states to be terminal, but the fvi operator (14) instead
“redirects” transitions into a relatively small subset X ⊂ S. By construction, at
most |X | of the columns of Φ are nonzero. Since this matrix is multiplied to the
right of the original transition matrix, at most |X | of the rows of V π affect the
Bellman equation. Even when S is infinite, this property permits our implemen-
tation to employ a sparse representation of the matrices involved. In general, in
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any one time step, the algorithm must store only |X |+ 1 rows of each matrix,
one for the current state and the rest for X .

Interestingly, the MAXQ decomposition can have a similar effect on planning
efficiency. Note that (11) defines the abstract transition matrix for an option o
in such a way that the nonzero columns correspond to the terminal states in
T o. Since many tasks achieve subgoal states that comprise a small fraction of
the state space, planning at the abstract level of tasks may permit a compact
representation of the value function which compounds with any reductions due
to fitted function approximation.

4 Experiments

In order to exercise the full capabilities of Fitted R-MAXQ, we introduce a new
domain modeled after the RL benchmark environment Puddle World. Puddle
World already has a continuous state space, and no modifications are necessary
to enable model-based reasoning (which is purely an algorithmic issue), but we
introduce a task hierarchy that enables hierarchical reasoning. We intend our
extensions to give the overall task more structure of the sort found in real-world
tasks.

First, we describe the original Puddle World environment, depicted in Fig. 1.
The agent must navigate the unit square to reach a goal state in the upper-right
corner, which terminates each episode. Four primitive actions move the agent
0.05 in each of the four cardinal directions, with some Gaussian noise (σ = 0.01)
added to each of the two state variables after every action. Each action incurs a
−1 penalty until reaching the goal, but each time step spent in a puddle incurs
an additional penalty between 0 and −40, depending on the proximity to the
middle of the puddle.

We modify this environment by removing the goal state in the corner and
instead giving the agent a set of four different resources it must harvest in each
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Fig. 1. A trajectory in the original Puddle World environment
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Fig. 2. A trajectory in the modified Puddle World environment. The agent gathers

resources D, B, A, then C, but any order is permissible.

episode, as shown in Fig. 2. Each resource can only be collected in the neighbor-
hood (within distance 0.1) of a specific spot in the unit square, which is initially
unknown. For each resource, a binary state variable tracks whether the resource
has been collected, and a distinct primitive action allows the agent to search the
current location for the resource and harvest it if present. In each episode, the
agent begins in a random location, so over time it must learn the locations of
the resources, the locations of the costly puddles, and how to harvest all four
resources as cheaply as possible. This environment has six state variables, two
continuous and four binary, and eight primitive actions, four movement actions
and the four collection actions.

We ran each algorithm tested for 50 independent trials, using for each algo-
rithm the same set of 50 configurations of resource locations, generated uniformly
at random but with no location inside of a puddle. For each configuration, we
generated a fixed sequence of 500 start states, again uniformly at random. Each
trial lasted for 500 episodes, and we limited each episode to 1000 time steps.

4.1 Algorithm Configurations

We compare several different instantiations of our compositional framework for
model-based RL. In this section, we describe the precise configuration of each
model generator and model operator used. We use value iteration with prioritized
sweeping [1] both to compute the optimal policy πo given a model (Ro, P o) and
also to evaluate πo to obtain the abstract model (V o, Ωo). We used a discount
factor of γ = 1, since the task is episodic.

The maximum-likelihood model generator mle has no parameters, but to
apply finite algorithms in PuddleWorld we used a discretization of the unit
square into a 16× 16 grid. This discretization seems quite coarse, but finer grids
only lead to more excessive exploration without a concomitant increase in policy
quality.
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For the instance-based model approximation of kbrl, we adopted a Gaussian
kernel function:

δ̂(s1, s2) = e−(d(s1,s2)/b)2 , (17)

where d(s1, s2) is the Euclidean distance between s1 and s2, and b = 1
16 is a

bandwidth parameter that controls the breadth of generalization, chosen using
coarse optimization. To compute δ̂ efficiently, we stored the instances in a cover
tree [15] and rounded down to zero any value of δ̂(s1, s2) < 0.01. Finally, we
adopt the “relative transition model” of [13], which modifies (8) by using the
vector displacement observed at instance i instead of the absolute successor state
observed:

P̂ [sa, s′] =

∑
i∈Da

δ̂(s, si)δ(s′, s+ (s′i − si))
n̂(s,Da)

. (18)

All of the algorithms we tested rely on the R-MAX approach to exploration. We
set V max = 0, since all the immediate rewards in Puddle World are negative.
When used with mle, we defined Ua = {s ∈ S | n(s,Da) < 2}. Since the stochas-
ticity in Puddle World is relatively benign, gathering more data for each state-
action didn’t improve the final policy quality but resulted in much more expen-
sive exploration. When used with kbrl, we defined Ua = {s ∈ S | n̂(s,Da) < 1}.
This low threshold seemed adequate since KBRL must typically generalize from
several instances to reach a kernel weight of 1.

For fvi, we defined the averager Φ using linear interpolation over a uniformly
spaced grid, with a resolution of 1

16 . This function approximation scheme there-
fore approximates the value of a point in the unit square (for a particular setting
of the binary state variables) as an interpolation between the four surrounding
points. Again, increasing the resolution did not improve the quality of the learned
policy, but it did increase the computational burden of planning.

For the hierarchical algorithms, we defined a simple task hierarchy for our
modified Puddle World that corresponds to the prior knowledge that the four
resource collection actions are independent of one another.6 For each resource,
we define a task o such that the children actions Ao include the four movement
primitives and the action that collects that resource. The terminal set T o includes
all states where the resource’s boolean flag is set, and R̃o = 0. The root of the
hierarchy has these four tasks as children; it cannot execute any primitive actions
directly.

Finally, all the algorithms benefitted from state abstraction. The four primi-
tive movement actions neither depend on nor affect the boolean state variables
for the four activities. Similarly, each activity only depends on the coordinates
and only affects the corresponding boolean state variable. Due to limitations on
space, we omit the details of these state abstractions, which were implemented
in the obvious way.

6 This hierarchy therefore imparts less domain knowledge than the hierarchy Diet-

terich provided for learning in the Taxi domain [11], where the possible passenger

coordinates were all known a priori.
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4.2 Results

Figure 3 shows learning curves for four algorithms: R-MAX, R-MAXQ, Fitted
R-MAX, and our combination of these algorithms, Fitted R-MAXQ. All four
algorithms converge to statistically the same policy quality after only 25-30
episodes, but they incur very different exploration costs before getting there.

Figure 4 integrates under the curves in Fig. 3 to show the total learning costs.
Note that both figures only show the first several episodes, to focus on the period
of learning when the algorithms’ performance differs. Note that the benefit of
adding both hierarchical decomposition and function approximation to R-MAX
is greater than the sum of the benefits for adding each innovation by itself!

An inspection of the behavior of Fitted R-MAXQ reveals that it outperforms
the other algorithms largely by avoiding excessive exploration in the puddles.
Consider a state in the middle of a puddle that is in the set of unknown states
Ua for some primitive action a. The R-MAX operator will assign this state the
optimistic value V max, but this value does not guarantee that the agent will
attempt to reach this state. If the predicted cost of completing the current task
is smaller than the predicted cost of wading through the puddle to the unknown
state, the agent will choose to ignore the unknown state and instead exploit
a path through known states. In the non-hierarchical case, the current task is
always to complete all the remaining activities, which may have a rather high
cost. In the hierarchical case, the current task is to complete a particular one

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0  5  10  15  20  25  30  35  40

R
ew

ar
d 

pe
r 

ep
is

od
e

Episode

Fitted R-MAXQ
Fitted R-MAX

R-MAXQ
R-MAX

Fig. 3. Reward per episode for variations of R-MAX with and without function ap-

proximation and hierarchical decomposition



Compositional Models for Reinforcement Learning 657

-30000

-25000

-20000

-15000

-10000

-5000

 0

 0  20  40  60  80  100

C
um

ul
at

iv
e 

re
w

ar
d

Episode

Fitted R-MAXQ
Fitted R-MAX

R-MAXQ
R-MAX

Fig. 4. Cumulative reward for variations of R-MAX with and without function ap-

proximation and hierarchical decomposition

of the activities, which is more likely to have a lower cost than wading into the
puddle. In a sense, the hierarchical decomposition limits the optimism applied to
unknown states, which R-MAXQ models as terminating only the current task,
not the entire episode. Meanwhile, discretization interferes with the accurate
prediction of the costs of exploring versus exploiting. The coarse discretization
we used is very effective in most of the state space, where the dynamics are the
same, but not near the puddles, where the immediate reward varies quickly as
a function of the coordinates.

5 Discussion

In this paper, we cast certain existing algorithms into a unified framework with
an eye towards defining a new algorithm that combined all the desired existing
features. The generality of our framework leaves open the possibility that still
more algorithms can be formalized in terms of model generators and model
operators. Investigating combinations of these algorithms can only help us to
develop deeper understandings of their individual contributions in context.

One important direction for future work is to derive general properties of the
class of algorithms defined by our compositional framework. Each algorithm in
this class behaves strictly according to the optimal policy for an MDP derived
in some way from data. An understanding of the expressivity and limitations of



658 N.K. Jong and P. Stone

such algorithms might either inspire the creation of new operators within this
framework or of new algorithms that meaningfully break out of it. For example,
hierarchical RL requires the ability to work with a derived MDP that has a
different action space than the original MDP. We observe that the problem of
optimal exploration in RL can be reduced to a planning problem in a derived
MDP, where the state space is augmented with beliefs concerning the underlying
MDP [16]. In what ways can model operations productively change the state and
action spaces of the underlying MDP? Finally, integration with the ongoing work
on MDP homomorphisms [17] may allow our framework to deal more explicitly
with state abstraction.

6 Conclusion

This paper developed two main contributions to the literature on scaling rein-
forcement learning to increasingly complex environments. First, it introduced
a novel, unifying notation and formulation of three previously disjoint ideas in
RL: model-based exploration, function approximation, and hierarchy. This for-
mulation construed existing algorithms as essentially the application of a stan-
dard planning algorithm to a transformed reward and transition model. Second,
the paper leveraged this new notation to unify these three ideas into Fitted
R-MAXQ, the first algorithm for hierarchical, model-based RL in continuous
domains. Fitted R-MAXQ is fully implemented and evaluated in a hierarchical
Puddle World, significantly outperforming algorithms that utilize only a subset
of its components.
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Abstract. Feature selection in reinforcement learning (RL), i.e. choos-

ing basis functions such that useful approximations of the unkown value

function can be obtained, is one of the main challenges in scaling RL

to real-world applications. Here we consider the Gaussian process based

framework GPTD for approximate policy evaluation, and propose fea-

ture selection through marginal likelihood optimization of the associated

hyperparameters. Our approach has two appealing benefits: (1) given

just sample transitions, we can solve the policy evaluation problem fully

automatically (without looking at the learning task, and, in theory, inde-

pendent of the dimensionality of the state space), and (2) model selection

allows us to consider more sophisticated kernels, which in turn enable

us to identify relevant subspaces and eliminate irrelevant state variables

such that we can achieve substantial computational savings and improved

prediction performance.

1 Introduction

In this paper, we address the problem of approximating the value function under
a stationary policy π for a continuous state space X ⊂ �D,

V π(x) = �x′|x,π(x) {R(x, π(x),x′) + γV π(x′)} (1)

using a linear approximation of the form Ṽ (· ;w) =
∑m

i=1 wiφi(x) to represent
V π. Here x denotes the state, R the scalar reward and γ the discount factor.
Given a trajectory of states x1, . . . ,xn and rewards r1, . . . , rn−1 sampled under
π, the goal is to determine weights wi (and basis functions φi) such that Ṽ is a
good approximation of V π. This is the fundamental problem arising in the policy
iteration framework of infinite-horizon dynamic programming and reinforcement
learning (RL), e.g. see [21,3]. Unfortunately, this problem is also a very difficult
problem that, at present, has no completely satisfying solution. In particular,
deciding which features (basis functions φi) to use is rather challenging, and
in general, needs to be done manually: thus it is tedious, prone to errors, and
most important of all, requires considerable insight into the domain. Hence, it
would be far more desirable if a learning system could automatically choose its
own representation. In particular, considering efficiency, we want to adapt to the
actual difficulties faced, without wasting resources: often, there are many factors

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 660–675, 2009.
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that can make a particular problem easier than it initially appears to be, for
example, when only a few of the inputs are relevant, or when the input data lies
on a low-dimensional submanifold of the input space.

Recent work in applying nonparametric function approximation to RL, such as
Gaussian processes (GP) [6,16,18,5], or equivalently, regularization networks [8],
is a very promising step in this direction. Instead of having to explicitly specify
individual basis functions, we only have to specify a more general kernel that just
depends on a very small number of hyperparameters. The key contribution of this
paper is to demonstrate that feature selection in RL from sample transitions can
be automated, using any of several possible model selection methods for these
hyperparameters, such as marginal likelihood optimization in a Bayesian setting,
or leave-one-out (LOO) error minimization in a frequentist setting. Here, we will
focus on the Bayesian setting, and adapt marginal likelihood optimization for
the GP-based approximate policy evaluation method GPTD, introduced without
model selection in [6]. Overall, this will have the following benefits: First, only by
automatic model selection (as opposed to a grid-based search or manual tweaking
of kernel parameters) will we be able to use more sophisticated kernels, which
will allow us to uncover the ”hidden” properties of given problem. For example,
by choosing an RBF kernel with independent lengthscales for the individual
dimensions of the state space, model selection will automatically drive those
components to zero that correspond to state variables irrelevant (or redundant)
to the task. This will allow us to concentrate our computational efforts on the
parts of the input space that really matter and will improve computational
efficiency. Second, because it is generally easier to learn in ”smaller” spaces, it
may also benefit generalization and thus help us to reduce sample complexity.

Despite its many promises, previous work with GPs in RL rarely explores the
benefits of model selection: in [18], a variant of stochastic search was used to de-
termine hyperparameters of the covariance for GPTD using as score function the
online performance of an agent. In [16], standard GPs with marginal likelihood
based model selection were employed; however, since their approach was based
on fitted value iteration, the task of value function approximation was reduced
to ordinary regression. The remaining paper is structured as follows: Section 2-3
contain background information and summarize the GPTD framework. As one
of the benefits of model selection is the reduction of computational complex-
ity, Section 4 describes how GPTD can be solved for large-scale problems using
SR-approximation. Section 5 introduces model selection for GPTD and derives
in detail the associated gradient computation. Finally, Section 6 illustrates our
approach by providing experimental results.

2 Related Work

The overall goal of learning representations and feature selection for linearly pa-
rameterized Ṽ is not new within the context of RL. Roughly, past methods can
be categorized along two dimensions: how the basis functions are represented
(e.g. either by parameterized and predefined basis functions such as RBF, or
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by nonparameterized basis functions directly derived from the data) and what
quantity/target function is considered to guide their construction process (e.g.
either supervised methods that consider the Bellman error and depend on the
particular reward/goal, or unsupervised graph-based methods that consider con-
nectivity properties of the state space). Conceptually closely related to our work
is the approach described in [12], which adapts the hyperparameters of RBF-
basis functions (both their location and lengthscales) using either gradient de-
scent or the cross-entropy method on the Bellman error. However, because basis
functions are adapted individually (and their number is chosen in advance), the
method is prone to overfitting: e.g. by placing basis functions with very small
width near discontinuities. The problem is compounded when only few data
points are available. In contrast, using a Bayesian approach, we can automati-
cally trade-off model fit and model complexity with the number of data points,
choosing always the best complexity: e.g. for small data sets we will prefer larger
lengthscales (less complex), for larger data sets we can afford smaller lengthscales
(more complex).

Other alternative approaches do not rely on predefined basis functions: The
method in [9] is an incremental approach that uses dimensionality reduction
and state aggregation to create new basis functions such that for every step
the remaining Bellman error for a trajectory of states is successively reduced. A
related approach is given in [14] which incrementally constructs an orthogonal
basis for the Bellman error. A graph-based unsupervised approach is presented in
[11], which derives basis functions from the eigenvectors of the graph Laplacian
induced from the underlying MDP.

3 Background: GPs for Policy Evaluation

In this section we briefly summarize how GPs [17] can be used for approximate
policy evaluation; here we will follow the GPTD formulation of [6].

Suppose we have observed the sequence of states x1,x2, . . . ,xn and rewards
r1, . . . , rn−1, where xi ∼ p(· |xi−1, π(xi−1)) and ri = R(xi, π(xi),xi+1). In prac-
tice, MDPs considered in RL will often be of an episodic nature with absorbing
terminal states. Therefore we have to transform the problem such that the re-
sulting Markov chain is still ergodic: this is done by introducing a zero reward
transition from the terminal state of one episode to the start state of the next
episode. In addition to the sequence of states and rewards our training data
thus also includes a sequence γ1, . . . , γn−1, where γi = γ (the discount factor in
Eq. (1)) if xi+1 was a non-terminal state, and γi = 0 if xi was a terminal state
(in which case xi+1 is the start state of the next episode).

Assume that the function values V (x) of the unknown value function V :
X ⊂ �D → R from Eq. (1) form a zero-mean Gaussian process with covariance
function k(x,x′) for x,x′ ∈ X ; in short V ∼ GP(0, k(x,x′)). In consequence, the
function values for the n observed states, v :=

(
V (x1), . . . , V (xn)

)T, will have a
Gaussian distribution

v |X,θ ∼ N (0,K), (2)
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where X := [x1, . . . ,xn] and K is the n × n covariance matrix with entries
[K]ij = k(xi,xj). Note that the covariance k(·, ·) alone fully specifies the GP;
here we will assume that it is a simple (positive definite) function parameterized
by a number of scalar parameters collected in vector θ (see Section 4).

However, unlike in ordinary regression, in RL we cannot observe samples from
the target function V directly. Instead, the values can only be observed indirectly:
from Eq. (1) we have that the value of one state is recursively defined through
the value of the successor state(s) and the immediate reward. To this end, Engel
et al. propose the following generative model:1

R(xi,xi+1) = V (xi)− γiV (xi+1) + ηi, (3)

where ηi is a noise term that may depend on the inputs.2 Plugging in the observed
training data, and defining r :=

(
r1, . . . , rn−1

)T, we obtain

r = Hv + η, (4)

where the (n− 1)× n matrix H is given by

H :=

⎡⎢⎣1 −γ1
. . . . . .

1 −γn−1

⎤⎥⎦ (5)

and noise η :=
(
η1, . . . , ηn−1

)T has distribution η ∼ N (0,Σ). One first choice
for the noise covariance Σ would be Σ = σ2

0I, where σ2
0 is an unknown hyperpa-

rameter (see Section 4). However, this model does not capture stochastic state
transitions and hence would only be applicable for deterministic MDPs. If the
environment is stochastic, the noise model Σ = σ2

0HHT is more appropriate,
see [6] for more detailed explanations. For the remainder we will solely consider
the latter choice, i.e. Σ = σ2

0HHT.
Let D := {X, γ1, . . . , γn−1} be an abbreviation for the training inputs. Using

Eq. (4), it can be shown that the joint distribution of the observed rewards r
given inputs D is again a Gaussian,

r | D,θ ∼ N (0,Q), (6)

where the (n− 1)× (n− 1) covariance matrix Q is given by

Q =
(
HKHT + σ2

0HHT
)
. (7)

To predict the function value V (x∗) at a new state x∗, we consider the joint
distribution of r and V (x∗)[

r
V (x∗)

]
| D,x∗,θ ∼ N

([
0
0

]
,

[
Q Hk(x∗)

[Hk(x∗)]T k∗

])
1 Note that this model is just a linearly transformed version of the standard model in

GP regression, i.e. yi = f(xi) + εi.
2 Formally, in GPTD noise is modeled by a second zero-mean GP that is independent

from the value GP. See [6] for details.
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where n × 1 vector k(x∗) is given by k(x∗) :=
(
k(x∗,x1), . . . , k(x∗,xn)

)T and
scalar k∗ by k∗ := k(x∗,x∗). Conditioning on r, we then obtain

V (x∗) | D, r,x∗,θ ∼ N (μ(x∗), σ2(x∗)) (8)

where

μ(x∗) := k(x∗)THTQ−1r (9)

σ2(x∗) := k∗ − k(x∗)THTQ−1Hk(x∗). (10)

Thus, for any given single state x∗, GPTD produces the distribution p(V (x∗)|
D, r,x∗,θ) in Eq. (8) over function values.

4 Computational Considerations

Regarding its implementation, GPTD for policy evaluation shares the same
weakness that GPs have in traditional machine learning tasks: solving Eq. (8)
requires the inversion3 of a dense (n − 1) × (n − 1) matrix, which when done
exactly would require O(n3) operations and is hence infeasible for anything but
small-scale problems (say, anything with n < 5000).

4.1 Subset of Regressors

In the subset of regressors (SR) approach initially proposed for regularization
networks [15,10], one chooses a subset {x̃}m

i=1 of the data, with m � n, and
approximates the covariance for arbitrary x,x′ by taking

k̃(x,x′) = km(x)TK−1
mmkm(x′). (11)

Here km(·) denotes km(·) :=
(
k(x̃1, ·), . . . , k(x̃m, ·)

)T
, and Kmm is the submatrix

[Kmm]ij = k(x̃i, x̃j) of K. The approximation in Eq. (11) can be motivated for
example from the Nyström approximation [22]. Let Knm denote the submatrix
[Knm]ij = k(xi, x̃j) corresponding to the m columns of the data points in the
subset. We then have the rank-reduced approximation K ≈ K̃ = KnmK−1

mmKT
nm

and k(x) ≈ k̃(x) = KnmK−1
mmkm(x). Plugging these into Eq. (8), we obtain for

the mean

μ(x∗) ≈ k̃(x∗)THT
(
HK̃HT + σ2

0HHT
)−1

r

= km(x∗)T
(
GTWG + σ2

0Kmm

)−1
GTWr, (12)

where we have defined G := HKnm, W := (HHT)−1 and applied the SMW
identity4 to show that

K−1
mmGT

(
GK−1

mmGT + σ2
0W

−1)−1 =
(
GTWG + σ2

0Kmm

)−1
GTW. (13)

3 For numerical reasons we implement this step using the Cholesky decomposition,

which has the same computational complexity.
4 (A + BD−1C)−1BD−1 = A−1B(D + CA−1B)−1.
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Similarly, we obtain for the predictive variance

σ(x∗) ≈ k̃(x∗,x∗)− k̃(x∗)THT
(
HK̃HT + σ2

0HHT
)−1

Hk̃(x∗)

= σ2
0km(x∗)T

(
GTWG + σ2

0Kmm

)−1
km(x∗). (14)

Doing this means a huge gain in computational savings: solving the reduced
problem in Eq. (12) costs O(m2n) for initialization, requires O(m2) storage and
every prediction costs O(m) (or O(m2) if we additionally evaluate the variance).
This has to be compared with the complexity of the full problem: O(n3) ini-
tialization, O(n2) storage, and O(n) prediction. Thus computational complexity
now only depends linearly on n (for constant m).

Note that the SR-approximation produces a degenerate GP. As a consequence,
the predictive variance in Eq. (14) will underestimate the true variance. In par-
ticular, it will be near zero when x is far from the subset {x̃}m

i=1 (which is
exactly the opposite of what we want, as the predictive variance should be high
for novel inputs). The situation can be remedied by considering the projected
process approximation [4,19], which results in the same expression for the mean
in Eq. (12), but adds the term

k(x∗,x∗)− km(x∗)TK−1
mmkm(x∗) (15)

to the variance in Eq. (14)

4.2 Selecting the Subset (Unsupervised)

Selecting the best subset is a combinatorial problem that cannot be solved effe-
ciently. Instead, we try to find a compact subset that summarizes the relevant
information by incremental forward selection. In every step of the procedure,
we add that element from the set of remaining unselected elements to the ac-
tive set that performs best with respect to a given specific criterion. In general,
we distinguish between supervised and unsupervised approaches, i.e. those that
consider the target variable we regress on, and those that do not. Here we focus
on the incomplete Cholesky decomposition (ICD) as an unsupervised approach
[7,1,2].

ICD aims at reducing at each step the error incurred from approximating the
covariance matrix:

∥∥∥K− K̃
∥∥∥

F
. Note that the ICD of K is the dual equivalent of

performing partial Gram-Schmidt on the Mercer-induced feature representation:
in every step, we add that element to the active set whose distance from the span
of the currently selected elements is largest (in feature space). The procedure is
stopped when the residual of remaining (unselected) elements falls below a given
threshold, or a given maximum number of allowed elements is exceeded. In [4,8,6]
online variants thereof are considered (where instead of repeatedly inspecting all
remaining elements only one pass over the dataset is made and every element is
examined only once). In general, the number of elements selected by ICD will
depend on the effective rank of K (and thus its eigenspectrum).
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5 Model Selection for GPTD

The major advantage of using GP-based function approximation (in contrast
to, say, neural networks or tree-based approaches) is that both ’learning’ of
the weight vector and specification of the architecture/hyperparameters/basis
functions can be handled in a principled and essentially automated way.

5.1 Optimizing the Marginal Likelihood

To determine hyperparameters for GPTD, we consider the marginal likelihood
of the process, i.e. the probability of generating the rewards we have observed
given the sequence of states and a particular setting of the hyperparameter θ. We
then maximize this function (its logarithm) with respect to θ. From Eq. (6) we
see that for GPTD we have p(r|D,θ) = N (0,Q). Thus plugging in the definition
for a multivariate Gaussian and taking the logarithm, we obtain

L(θ) = −1
2

log detQ− 1
2
rTQ−1r− n

2
log 2π. (16)

Optimizing this function with respect to θ is a nonconvex problem and we have
to resort to iterative gradient-based solvers (such as scaled conjugate gradients,
e.g. see [13]). To do this we need to be able to evaluate the gradient of L. The
partial derivatives of L with respect to each individual hyperparameter θi can
be obtained in closed form as

∂L
∂θi

= −1
2
tr
(
Q−1 ∂Q

∂θi

)
+

1
2
rTQ−1 ∂Q

∂θi
Q−1r. (17)

Note that L automatically incorporates the trade-off between model fit (train-
ing error) and model complexity and can thus be regarded as an indicator for
generalization capabilities, i.e. how well GPTD will predict the values of states
not in its training set. The first term in Eq. (16) measures the complexity of the
model, and will be large for ’flexible’ and small for ’rigid’ models.5 The second
term measures the model fit and can shown to be the value of the error function
for a penalized least-squares that would (in a frequentist setting) correspond to
GPTD.

5 A property that manifests itself in the eigenvalues of K (since the determinant equals

the sum of the eigenvalues). In general, flexible models are achieved by smaller

bandwidths in the covariance, meaning that K’s effective rank will be large and

its eigenvalues will fall off more slowly. On the other hand, more rigid models are

achieved by larger bandwidths, meaning that K’s effective rank will be low and

its eigenvalues will fall off more quickly. Note that the effective rank of K is also

important for the SR-approximation (see Section 3), since the effectiveness of SR

depends on building a low-rank approximation of K spending as few resources as

possible.
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5.2 Choosing the Covariance

A common choice for k(·, ·) is to consider a (positive definite) function parame-
terized by a small number of scalar parameters, such as the stationary isotropic
Gaussian (or squared exponential), which is parameterized by the lengthscale
(bandwidth h). In the following we will consider three variants of the form [13,17]:

k(x,x′) = v0 exp
{
−1

2
(x− x′)TΩ(x− x′)

}
+ b (18)

where hyperparameter v0 > 0 denotes the vertical lengthscale, b > 0 the bias,
and symmetric positive semidefinite matrix Ω is given by

– Variant 1 (isotropic): Ω = hI
with hyperparameter h > 0.

– Variant 2 (axis-aligned ARD): Ω = diag(a1, . . . , aD)
with hyperparameters a1, . . . , aD > 0.

– Variant 3(factor analysis): Ω = MkMT
k + diag(a1, . . . , aD)

where D × k matrix Mk is given by Mk := [m1, . . . ,mk], k < D, and both
the entries of Mk, i.e. m11, . . . ,m1D, . . . ,mk1, . . . ,mkD and a1, . . . , aD > 0
are adjustable hyperparameters.6

The first variant (see Figure 1) assumes that every coordinate of the input (i.e.
state-vector) is equally important for predicting its value. However, in particular
for high-dimensional state vectors, this might be too simple: along some dimen-
sions this will produce too much resolution where it will be wasted, along other di-
mensions this will produce too little resolution where it would otherwise be needed.
The second variant is more powerful and includes a different parameter for every
coordinate of the state vector, thus assigning a different scale to every state vari-
able. This covariance implements automatic relevance determination (ARD): since
the individual scaling factors are automatically adapted fromthe data viamarginal
likelihood optimization, they inform us about how relevant each state variable is
for predicting the value. A large value of ai means that the i-th state variable is im-
portant and even small variations along this coordinate are relevant. A small value
of aj means that the j-th state variable is less important and only large variations
along this coordinate will impact the prediction (if at all). A value close to zero
means that the corresponding coordinate is irrelevant and could be left out (i.e.
the value function does not rely on that particular state variable). The benefit of
removing irrelevant coordinates is that the complexity of the model will decrease
while the fit of the model stays the same: thus likelihood will increase. The third
variant first identifies relevant directions in the input space (linear combinations of
state variables) and performs a rotation of the coordinate system (the number of
relevant directions is specified in advance by k). As in the second variant, different
scaling factors are then applied along the rotated axes.
6 The number of directions k is also determined from model selection: we systemati-

cally try different values of k, find the corresponding remaining hyperparameters via

scg-based likelihood optimization and compare the final scores (likelihood) of the

resulting models.



668 T. Jung and P. Stone

h

a1

a2
s1s2

u1

u2

Fig. 1. Three variants of the stationary squared exponential covariance. The direc-

tions/scaling factors in the third case are derived from the eigendecomposition of Ω,

i.e. USUT = MkM
T
k + diag(a1, . . . , aD).

5.3 Example: Gradient for ARD

As an example, we will now show how the gradient ∇θL of Eq. (16) is calculated
for the ARD covariance. Note that since all hyperparameters in this model, i.e.
{v0, b, σ2

0 , a1, . . . , aD}, must be positive, it is more convenient to consider the hy-
perparameter vector θ in log space: θ =

(
log v0, log b, logσ2

0 , log a1, . . . , log aD

)
.

We start by establishing some useful identities: for any n× n matrix A we have

[HAHT]ij = aij − γiai+1,j − γjai,j+1 + γiγjai+1,j+1.

Furthermore, we have

[HHT]ij =

⎧⎪⎨⎪⎩
1 + γ2

i , i = j

−γi , i = j − 1 or i = j + 1
0 , otherwise

Now write K as K=v0C+b�n,n, where [C]ij =exp
{
−0.5

∑D
d=1 ad

(
x

(i)
d − x

(j)
d

)2}
and �n,n is the n× n matrix of all ones. Computing the partial derivative of K,
we then obtain

∂K
∂v0

= C,
∂K
∂b

= �n,n[
∂K
∂aν

]
ij

= −1
2
v0cij

(
x(i)

ν − x(j)
ν

)2
, ν = 1 . . .D

Next, we will compute the partial derivatives of Q = (HKHT +σ2
0HHT), giving

for b:
∂Q

∂ log b
= b

∂Q
∂b

= bH
[
∂K
∂b

]
HT = bH�n,nHT

⇒
[

∂Q
∂ log b

]
ij

= b(1− γi − γj + γiγj).

For v0 we have

∂Q
∂ log v0

= v0
∂Q
∂v0

= v0H
[
∂K
∂v0

]
HT = v0HCHT

⇒
[

∂Q
∂ log v0

]
ij

= v0(cij − γici+1,j − γjci,j+1 + γiγjci+1,j+1).
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For σ2
0 we have

∂Q
∂ log σ2

0
= σ2

0
∂Q
∂σ2

0
= σ2

0
∂

∂σ2
0
[σ2

0HHT] = σ2
0HHT

⇒
[

∂Q
∂ log σ2

0

]
ij

=

⎧⎪⎨⎪⎩
σ2

0(1 + γ2
i ) , i = j

−σ2
0γi , i = j − 1 or i = j + 1

0 , otherwise

Finally, for each of the aν , ν = 1, . . . , D we get

∂Q
∂ log aν

= aν
∂Q
∂aν

= aνH
[
∂K
∂aν

]
HT

⇒
[

∂Q
∂ log aν

]
ij

= −1
2
aνv0(cijdν

ij − γici+1,jd
ν
i+1,j

− γjci,j+1d
ν
i,j+1 + γiγjci+1,j+1d

ν
i+1,j+1)

where we have defined dν
ij :=

(
x

(i)
ν − x

(j)
ν

)2. Thus, with w := Q−1r we have for
Eq. (17)

tr
(
Q−1 ∂Q

∂θν

)
=

n−1∑
i=1

n−1∑
j=1

[
Q−1]

ij

[
∂Q
∂θν

]
ji

wT ∂Q
∂θν

w =
n−1∑
i=1

n−1∑
j=1

[w]i[w]j

[
∂Q
∂θν

]
ij

which can be used to calculate the partial derivates with computational com-
plexity O(n2) each (except for σ2

0 , where the matrix of derivatives is tridiagonal).

6 Experiments

This section demonstrates that our proposed model selection can be used to
solve the approximate policy evaluation problem in a completely automated
way – without any manual tweaking of hyperparameters. We will also show
some of the additional benefits of model selection, which are improved accuracy
and reduced complexity: because we automatically set the hyperparameters we
can use more sophisticated covariance functions (see Section 5.2) that depend
on a larger number7 of hyperparameters, thus better fit the regularities of a
particular dataset, and therefore do not waste unnecessary resources on irrel-
evant aspects of the state-vector. The latter aspect is particularly interesting
for computational reasons (see Section 4) and becomes important in large-scale
applications.

7 Setting these hyperparameters by hand would require even more trial and error;

therefore, these covariances are seldom employed without model selection.



670 T. Jung and P. Stone

6.1 Pendulum Swing-Up Task
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Fig. 2. Optimal value function for the pen-

dulum domain, computed with fitted value

iteration over a discretized state space

(400 × 400 grid)

First, we consider the pendulum
swing-up task, a common benchmark
in RL. The goal is to swing up an un-
derpowered pendulum and balance it
around the inverted upright position
(here formulated as an episodic task).
More details and the equations of mo-
tion can be found in e.g. [5]. Since
GPTD only solves (approximate) pol-
icy evaluation, to test our model se-
lection approach we chose to generate
a sample trajectory under the optimal
policy (obtained from fitted value it-
eration). We generated a sequence of
1000 state-transitions under this pol-
icy (which corresponds to about 25
completed episodes) and applied GPTD for the three choices of covariance:
isotropic (I), axis-aligned ARD (II), and factor analyis (III). In each case, the
best setting of hyperparameters was found from running8 scaled conjugate gra-
dients on Eq. (16), giving

I: v0 = 18.19 σ2
0 = 0.05 b = 0.11 h = 7.48

II: v0 = 15.95 σ2
0 = 0.05 b = 0.10 a1 = 3.62 a2 = 6.63

III: v0 = 10.82 σ2
0 = 0.08 b = 0.10 s1 = 13.91 s2 = 0.36 u1 =

[
0.58 0.81

]
u2 =

[−0.81 0.58
]

(the last ones given in terms of the eigendecomposition of Ω). Figure 3 shows the
results: all three produce an adequate representation of the true value function
shown in Figure 2 in and near the states visited in the trajectory (MSE in states
of the sample trajectory: (I) 0.27, (II) 0.24, and (III) 0.26), but differ once they
start predicting values of states not in the training data (MSE for states on
a 50 × 50 grid: (I) 46.36, (II) 48.89, and (III) 12.24). Despite having a slightly
higher error on the known training data, (III) substantially outperforms the other
models when it comes to predicting the values of new states. With respect to
model selection, (III) also has the highest likelihood. Note that (III) chooses one
dominant direction (u1 =

[
0.58 0.81

]
) to which it assigns high relevance (s1 =

13.91); the remainder (u2 =
[
−0.81 0.58

]
) has only little impact (s2 = 0.36).

Taking a closer look at Figure 2, we see that indeed the value function varies
more strongly along the diagonal direction lower left to upper right, whereas it
varies only slowly along the opposite diagonal upper left to lower right. For (II),
relevance can only be assigned along the ϕ and ϕ̇ coordinates (state-variables),
which in this case gives us no particular benefit; and (I) is not at all able to
assign different importance to different state variables.

8 We used the full data set for model selection, to avoid the complexities involved with

subset-based likelihood approximation, e.g. see [20]. In our implementation, model

selection for all 1000 data points took about 15-30 secs on a 1.5GHz PC.
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Fig. 3. From top to bottom: GPTD approximation of the value function from Figure 2

for the covariances (I),(II),(III), where in each case the hyperparameters were obtained

from marginal likelihood optimization for the GPTD process in Eq. (16). Right: Asso-

ciated predictive variance. Black indicates low variance, white indicates high variance

and red circles indicate the location of the states in the training set (which was the

same for all three experiments).
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Fig. 4. Properties of K for different choices of k(·, ·). Left: Eigenspectrum. Center:

Number of elements incomplete Cholesky selects for a given threshold. Right: Approx-

imation error
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∥∥∥

F
, given the size of the subset.

Additional insight is gained by looking at the eigenspectrum of K. Figure 4
(left) shows that (I)’s eigenvalues decrease the slowest, whereas (III)’s decrease
the fastest. This has two consequences. First, the eigenspectrum is intimately
related with complexity and generalization capabilities (see Eq. (16)) and thus
helps explain why (III) delivers better prediction performance. Second, the eigen-
spectrum also indicates the effective rank of K and strongly impacts our ability to
build an efficient low-rank approximation of K using as small a subset as possible
(see Section 4). A small subset in turn is important for computational efficiency
because its size is the dominant factor when we employ the SR-approximation:
both for batch and online learning the operation count depends quadratically on
the size of the subset (and only linear on the number of datapoints). Keeping
this size as small as possible without losing predictive performance is essential.
Figure 4 (center and right) shows that in this regard (III) performs best and (I)
worst: for example, if we were to approximate K using SR-approximation with
ICD selection at a tolerance level of 10−1, out of our 1000 samples (I) would
choose ∼ 175, (II) would chose ∼ 140, and (III) would choose ∼ 80 elements.

6.2 A 2D Gridworld with 1 Latent Dimension

To illustrate in more detail how our approach handles irrelevant state variables,
we use a specifically designed 2D gridworld with 11×11 states. Every step entails
a reward of −1 except when being in a state with x = 6, which starts a new
episode (teleports to a new random state with zero reward). We consider the
policy that moves left when x > 6 and right when x < 6. In addition, every time
we move left or right we will also move randomly up or down (with 50% each).
The corresponding value function is shown in Figure 5 (left). We generated 500
transitions and applied GPTD with covariance (I) and (II) with automatic model
selection resulting in9

9 Here we do not include results for (III) which operates on linear combinations of

states and in this scenario would have to find a direction that is perfectly aligned

with the x-axis (which is more difficult).
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Hyperparameters θ Complexity Data fit L (smaller is better)

(I) h = 2.89 -2378.2 54.78 -2323.4

(II) a1 = 3.53 a2 = 10−5 -2772.7 13.84 -2758.8

(II) without y a1 = 3.53 a2 = 0 -2790.7 13.84 -2776.8

As can be seen from Figure 5 (center and right), both obtain a very reasonable
approximation. However, (II) automatically detects that the y-coordinate of the
state is irrelevant and thus assigns a very small weight to it (a2 < 10−5). With
a uniform lengthscale, (I) is unable to do that and has to put equal weight on
both state variables. As a consequence, its estimate is less exact and more wiggly
(MSE: (I) 0.030, and (II) 0.019). Additional insight can be gained by looking
at the likelihood L of the models (cf. Eq. (16)). Here we see that (II) has lower
complexity (cf. eigenspectrum of Q in Figure 6), fits the data better and thus
has a higher combined likelihood (note that the values in the table show the
negative log likelihood which we minimize). Moreover, if we completely remove
the y state variable (setting a2 := 0), the eigenspectrum of Q decreases more
rapidly; thus (II) without y has an even lower complexity while still having the
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same fit. This indicates that state component y can be safely ignored in this
task/domain. In addition, as was mentioned before, the lower effective rank of
K will also allow us to make more efficient use of SR-based approximations.

7 Future Work

It should be noted that the proposed framework for automatic feature generation
and model selection should primarily be thought of as a practical tool: despite
offering a principled solution to an important problem in RL, ultimately it does
not come with any theoretical guarantees (due to some modeling assumptions
from GPTD and the way the hyperparameters are obtained). For most practical
applications this might be less of an issue, but in general care has to be taken.

The framework can be easily extended to perform policy evaluation over the
joint state-action space to learn the model-free Q-function (instead of the V-
function): we just have to choose a different covariance function, taking for
example the product k([x, a], [x′, a′]) = k(x,x′)k(a, a′) with k(a, a′) = δa,a′

for problems with a small number of discrete actions [8]. This opens the way
for model-free policy improvement and thus optimal control via approximate
policy iteration. Our next step then is to apply this approach to real-world high-
dimensional control tasks, both in batch settings and hybrid batch/online set-
tings; in the latter case exploiting the gain in computational efficiency obtained
through model selection to improve [6].
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Abstract. Gaussian processes have successfully been used to learn pref-

erences among entities as they provide nonparametric Bayesian

approaches for model selection and probabilistic inference. For many en-

tities encountered in real-world applications, however, there are complex

relations between them. In this paper, we present a preference model

which incorporates information on relations among entities. Specifically,

we propose a probabilistic relational kernel model for preference learning

based on Silva et al.’s mixed graph Gaussian processes: a new prior dis-

tribution, enhanced with relational graph kernels, is proposed to capture

the correlations between preferences. Empirical analysis on the LETOR

datasets demonstrates that relational information can improve the per-

formance of preference learning.

1 Introduction

Largely motivated by applications in search engines, information retrieval, and
collaborative filtering, preference learning has recently received a lot of atten-
tion in the machine learning and information retrieval communities, see e.g.
[8,2,1,3,12]. In a typical formulation, the goal of preference learning is to com-
pare two entities such as documents, webpages, products, songs etc., and to
decide which one is better or preferred e.g. by a costumer according to some
application-specific criteria.

Consider a typical interaction between an information retrieval system and
a user. When a user submits a query to the system, the search engine returns
a list of document hyperlinks to the user, along with a title and query-related
snippet extracted from the document. The user reads the list, and based on
titles, snippet, and probably abstracts, decides whether a document in the list
is more relevant to the query than another ones. Hence, in contrast to standard
supervised learning problems such as regression and classification, preference
learning is characterized by the fact that the training set consists of pairwise
rankings between entities, instead of explicit entity-wise values. For example, we
may only know that a webpage ei is more relevant than another one ej , denoted
as ei & ej , or that a user prefers an item to another, but we do not know the
exact degrees of relevance of webpages or preferences of users.

Because of their flexible nonparametric nature and good performance on re-
gression/classification problems, Gaussian process (GP) models have recently

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 676–691, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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been explored for learning to rank [4,5,10]. Basically, GP based preference learn-
ing models introduce for each entity a latent variable, which is a function value
f(xi) (shortened as fi in the rest of the paper) of entity attributes xi. We can
intuitively view the latent function values as preference/relevance degrees (called
preference degrees later) of entities. Then entities are ranked according to the
latent values. Namely if an entity ei is ranked above another one ej , i.e., ei & ej ,
then the latent function value fi of the entity is larger than that fj of another
one, i.e., fi > fj .

Existing GP ranking models, however, only exploit the available information
about entity attributes and typically ignore any relations among the entities.
Intuitively, however, we would like to use our information about one entity to help
us reach conclusions about other, related entities. Reconsider our information
retrieval example. Here, we should be able to propagate our preference relation
among two documents to documents that the two documents have links to and
to documents that link to the two documents.

The main contribution of the present paper is the first nonparametric Bayesian
approach to learn preferences from relational data based on Gaussian processes.
Specifically, we employ the concept of hidden common causes to incorporate
relational information. Hidden common causes were first introduced by Silva et
al. [21] within the mixed graph Gaussian process framework (XPGs) and have
been demonstrated to be quite successful for classification problems. The key
insight for preference learning is that some hidden, but existing common causes
lurk in relational graphs, and the hidden common causes are important factors
to influence the preference degrees of entities. The overall preference degree of
an entity is a comprehensive result of both the entity attributes and the hidden
common causes. Technically, under the GP framework, we introduce for each
entity an additional latent function value g(ri) (shortened as gi) for the relations
ri the entity participate. This latent function value encodes the preference causes
hidden in the relation. Then, we model the entity preference degree ξi as a linear
combination of related function values, i.e., fi and gi. In turn, each preference
ei & ej is modeled as a random variable conditioned on an indicator that is a
function of the preference degrees ξi and ξj of the involved entities. In other
words, our relational GP framework for preference learning, which we call mixed
graph preference Gaussian process (XPGP), ranks entities taking all available
information into account, attributes and relations. As shown in our experimental
results on real-world LETOR datasets, a significant improvement on preference
prediction quality can be achieved when employing relational information.

Our second contribution is an active exploration scheme to relational pref-
erence learning. Providing preference labels is typically quite costly as the user
has e.g. to read and understand abstracts of documents. Fortunately, the un-
certainty model provided by the XPGP framework, offers predictive uncertainty
estimates for preferences, and therefore naturally – in contrast to other ker-
nel approaches such as SVMs – allows us to develop an active exploration
scheme that guides the user by asking actively for her preferences among enti-
ties so as to provide more useful observations. As our experimental analysis on a



678 K. Kersting and Z. Xu

real-world LETOR dataset showed, this improves the prediction quality faster
than collecting preferences naively.

The rest of the paper is organized as follows. We start off by touching upon
related work. Then, in Sec. 3, we will introduce XPGPs. Sec. 4 will develop
approximate inference and learning methods, and Sec. 5 the active exploration
scheme. Before concluding, we will present our experimental analysis and discuss
extensions of XPGPs to domains with multiple types of relations.

2 Related Work

The present work joins two lines of research within the Gaussian process com-
munity, namely preference and relational learning.

In the first stream, Chu and Ghahramani [4] introduced a probabilistic kernel
approach to ordinal regression based on Gaussian process models. In contrast
to the setting discussed in this paper, the work focused on scenarios where la-
bels of entities are ordered. Chu and Ghahramani presented a threshold model
to encode the label-wise ordinal information. The work was later extended by
Chu and Ghahramani to entity ranking problem (i.e. the setting discussed here)
by introducing a novel likelihood function to express the entity-wise ordinal
information [5]. Guiver and Snelson [10] recently presented a sparse Gaussian
process model for soft ranking problem for large-scale datasets. All these models
are reported to provide good performance on real-world datasets but they do
not consider relational information.

The second line of research aims at incorporating relations into probabilis-
tic kernel models. There are essentially two strategies to accomplish this. One
is encoding relations in the covariance matrixes [25,21]. The other is encod-
ing relations as random variables conditioned on the latent function values of
entities involved in relations [6,24]. Recently Xu et al. [23] introduced a combina-
tion of both approach for multi-relational learning with Gaussian processes. The
approach of representing relational information as hidden common causes devel-
oped by Silva et al. [21] is a straightforward way to encode relations, which was
successfully applied on entity classification problems. So far, however, preference
learning has not been considered for any of them.

Outside the Gaussian process community, several ranking and preference
learning approaches have been proposed, see e.g. [12] for a nice classification
of the existing approaches. Relational approaches have also been developed. For
instance, Geerts et al. [9] provide a general ranking framework for relational
databases. Agarwal [1] introduced a kernel-based approach with graph tech-
niques (spectral relaxation), where entities and relations are respectively viewed
as vertexes and edges in graphs. So the task of ranking entities is transformed to
ranking vertices. It is not clear how to exploit attributes and relations simulta-
neously and how to distinguish different types of relations. The work closest to
our is that of Qin et al. [18]. They proposed a kernel-based but not probabilistic
method to rank relational entities. Their method enhanced attribute-based rank-
ing function with the regularized Laplacian of the relational graph, then applied
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Fig. 1. Graphical representation of the XPGP model. Both entity attributes and re-

lations are taken into account for predicting preferences ei � ej . Specifically, the fis

are latent function values of entity attributes following a Gaussian process (GP) prior.

Respectively, the gis are a latent function values of relations following another GP

prior. The ξis are the overall preference degree of entities. They are weighted sums of

the corresponding fi and gi.

SVM techniques to solve the learning, i.e., optimization task. All of these ap-
proaches do not provide natural probabilistic models so that active exploration
is more complicated than in our model, see e.g. [19].

3 The Model

In this section, we will introduce the XPGP model for learning preferences.
Assume that there are (1) a set of n entities E = {e1, . . . , en} with attributes
X = {xi : xi ∈ RD, i = 1, . . . , n}, (2) relations R = {ri,j : i, j ∈ 1, . . . , n} among
the entities, and (3) a set of m observed pairwise preferences (a.k.a. ordinal
relations/ranks) among entities, O = {eis & ejs : s = 1, . . . ,m; is, js ∈ 1, . . . , n}
(is and js are entities involved in s-th observed preference). With ri, we will
denote all relations in which entity ei participates.

The XPGP model is graphically summarized in Fig. 1. Essentially, we intro-
duce for each entity two latent function values f(xi) and g(ri) (shortened as fi,
gi) such that f(·) and g(·) are functions of attributes and relations, respectively.
Now, we form the linear combination of both values, i.e., ξi = ω1fi + ω2gi. The
value ξi represents the preference degree of the entity ei taking both attribute-
and relation-wise factors into account. Finally, a preference ei & ej is viewed as
a random variable conditioned on the corresponding indicators of the involved
entities with a likelihood distribution P (ei & ej |ξi, ξj). In the following subsec-
tions, we will provide more details.

3.1 Prior Distributions

Let us start with defining the prior distributions. We essentially define priors for
the attribute-wise and for the relation-wise latent function values separately and
combine them using a linear model. Specifically, we assume an infinite number of
latent function values {f1, f2, . . .} that follow a Gaussian process prior with mean
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function ma(xi) and covariance function ka(xi, xj). Here we used the subscript
a to emphasize that they are attribute-wise. In turn, any finite set of function
values {fi : i = 1, . . . , n} has a multivariate Gaussian distribution with mean
and covariance matrix defined in terms of the mean and covariance functions of
the GP [20]. Without loss of generality, we assume zero mean so that the GP
is completely specified by the covariance function only. A typical choice is the
squared exponential covariance function with isotropic distance measure:

ka(xi, xj) = κ2 exp(−ρ2

2

∑D

d
(xi,d − xj,d)2), (1)

where κ and ρ are parameters of the covariance function, and xi,d denotes the
d-th dimension of the attribute vector xi.

Similarly, we place a zero-mean GP over {g1, g2, . . .}. Again, {gi : i = 1, . . . , n}
follow a multivariate Gaussian distribution. In contrast to the attribute-wise
GPs, however, the covariance function kr(ri, rj) should represent correlation of
i and j on relations. There are essentially two strategies to define such kernel
functions. The simplest way is to represent the known relations of entity i as a
vector. The kernel function kr(ri, rj) can then be any Mercer kernel function, and
the computations are essentially the same as for the attributes. Alternatively,
we notice that entities and relations form a graph, and we can naturally employ
graph-based kernels to obtain the covariances, see e.g. [22,25,21]. The simplest
graph kernel might be the regularized Laplacian

Kr = [β(Δ+ I/ι2)]−1, (2)

where β and ι are two parameters of the graph kernel. Δ denotes the combi-
natorial Laplacian, which is computed as Δ = D −W , where W denotes the
adjacency matrix of a weighted, undirected graph, i.e., Wi,j is taken to be the
weight associated with the edge between i and j encoding for examples the ex-
tent of interactions between two genes or the communication frequency between
two persons. D is a diagonal matrix with entries di,i =

∑
j wi,j .

Finally, the prior distributions of f and g are combined as follows:

P (f, g|X ,R) =
1

(2π)n|Ka|
1
2 |Kr|

1
2

exp
(
−fTK−1

a f + gTK−1
r g

2

)
,

where f and g denote {f1, . . . , fn} and {g1, . . . , gn}. Ka (resp. Kr) denotes the
n× n covariance matrix whose ij-th entry is computed with the corresponding
covariance function.

3.2 Preference Likelihood

What is left is the definition of the preference likelihood. We essentially ex-
tend Chu and Ghahramani’s likelihood function to the relational case [5]. Recall
that, in the relational case, the preference degree of an entity consists of two
components: the attribute-wise factor and the relation-wise factor, respectively
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represented as the latent function values fi and gi. To combine both we represent
the overall preference degree of the entity as the weighted sum of both latent
functions, i.e.,

ξi = ω1fi + ω2gi.

In the ideal, noise-free case it is natural to assume that if ei is preferred to
ej, then the preference degree of ei is larger than that of ej . Denoting the non-
contaminated preference degrees as ξ̃i and ξ̃j , we have

P ( ei & ej | ξ̃i − ξ̃j ) =
{

1 if ξ̃i − ξ̃j ≥ 0
0 otherwise.

For real-world situations, however, it is more realistic to consider latent func-
tion values corrupted by Gaussian noise, i.e., ξi = ξ̃i + ε, ε ∼ N(0, σ2) and
P (ξ̃i − ξ̃j |ξi − ξj) = N(·|ξi − ξj , 2σ2). Now, we can define the preference likeli-
hood function P (ei & ej|ξi − ξj) as follows

∫
P (ei � ej |ξ̃i − ξ̃j)P (ξ̃i − ξ̃j |ξi − ξj)d(ξ̃i − ξ̃j) =

∫ ξi−ξj√
2σ

−∞
N(t|0, 1)dt ≡ Φ(

ξi − ξj√
2σ

).

This encodes the natural assumption:

The larger the difference between the preference degrees of ei and ej, the
more likely is it that ei is preferred to ej.

Finally, the marginal likelihood P (O |ξ) of m observed ordinal relations given
preference degrees ξ = {ξ1, . . . , ξn} can be found to be∏m

s
P (eis & ejs |ξis , ξjs) =

∏m

s
Φ(

ξis − ξjs√
2σ

).

4 EMEP-Based Approximate Inference and Learning

So far we have described the XPGP model. In this section, we will present ap-
proximate algorithms for inferring posterior distributions, for making preference
predictions, and for estimating the hyperparameters.

4.1 Posterior Inference

The key inference problem is computing the posterior distribution of the latent
function values given attributes X , relations R, and preferences O , i.e.,

P (f, g|X ,R,O) ∝ P (f, g|X ,R)
m∏
s

P (eis & ejs |fis , gis , fjs , gjs). (3)

Unfortunately, computing the posterior distribution is intractable for two rea-
sons: (1) P (eis & ejs |fis , gis , fjs , gjs) is not conjugated to the Gaussian prior



682 K. Kersting and Z. Xu

distribution and (2) the attribute-wise GP and the relation-wise GP are coupled
together according to the overall preference degrees that are weighted sums of
attribute-wise and relation-wise latent function values. Therefore, we stick to
the expectation propagation (EP) algorithm [17] to approximate the posterior
distribution, which we will now derive.

First, to counterattack the computation complexity due to (2), i.e., due to the
coupling of the different GPs, we introduce a new variable

ξ̂i =
ω1√
2σ

fi +
ω2√
2σ

gi. (4)

Since f = {f1, . . . , fn} and g = {g1, . . . , gn} respectively follow two independent
multivariate Gaussian distributions with mean zero and covariance matrixes Ka

and Kr, we have that ξ̂ = {ξ̂1, . . . , ξ̂n} also follows a multivariate Gaussian
distribution with mean zero and covariance matrix:

K =
ω2

1

2σ2Ka +
ω2

2

2σ2Kr. (5)

Now, we convert the computation of the posterior distribution of f and g in
Eq. (3) to the computation of the posterior distribution of ξ̂:

P (ξ̂|X ,R,O) ∝ P (ξ̂|X ,R)
m∏

s=1

P (eis & ejs |ξ̂is , ξ̂js), (6)

where the prior is a Gaussian distribution with covariance matrix as defined
in Eq. (5). The likelihood function is Φ(ξ̂is − ξ̂js), where Φ(·) is the cumula-
tive Gaussian distribution. Without loss of generality, we assume its mean and
variance are zero and one respectively.

Now, we tackle the computational complexity due to (1), i.e., due to the non-
conjugation of the likelihood and the prior distributions. In the EP framework,
we use unnormalized Gaussian distributions

ts(ξ̂is , ξ̂js |μ̃s, Σ̃s, Z̃s) ≡ Z̃s N (ξ̂is , ξ̂js |μ̃s, Σ̃s) (7)

to approximate the real likelihood distributions Φ(ξ̂is − ξ̂js) where Z̃s is a real-
valued scale, the unnormalized term. Since each ts is a Gaussian distribution,
the approximate posterior q(ξ̂) = N (ξ̂|μ,Σ) ≈ P (ξ̂|X ,R,O) is also a Gaussian
distribution, whose mean μ and covariance matrix Σ can be found to be

Σ = (K−1 + Σ̃−1
1 + . . .+ Σ̃−1

m )−1

and μ = Σ(Σ̃−1
1 μ̃1 + . . .+ Σ̃−1

m μ̃m). (8)

Note that the ts are two-dimensional, but Σ and μ are n× n and n dimensions,
thus we need to extend Σ̃−1

s to a n×n matrix and μ̃s to a n-dimensional column
vector by adding zeros in the corresponding positions in the computation.

The approximate distributions are sequentially updated until convergence.
Specifically, the approximate distribution ts is updated at iteration t+1 so that
it satisfies:
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Q−s × P (eis & ejs |ξ̂is , ξ̂js) ← Q−s × ts(ξ̂is , ξ̂js |μ̃(t+1)
s , Σ̃(t+1)

s , Z̃(t+1)
s ),

where Q−s =
N (ξ̂is , ξ̂js |μ

(t)
s , Σ

(t)
s )

ts(ξ̂is , ξ̂js |μ̃
(t)
s , Σ̃

(t)
s , Z̃

(t)
s )

. (9)

Both sides of Eq. (9) are the approximate marginal distributions of ξ̂is and ξ̂js .
They are the integrals of the approximations to Eq. (6): the left side replaces
all actual likelihood distributions with approximations from the t-th iteration
except for the likelihood of the preference pair currently being updated; the
right side also replaces all actual likelihood distributions with approximations,
but the approximation to the likelihood of the preference pair being updated is
a new one, i.e., the mean, covariance matrix and unnormalized term need to be
updated now. To satisfy Eq. (9), we only need to match their first and second
moments [20]. This can be found to yield the following equations for computing
μ̃

(t+1)
s , Σ̃(t+1)

s and Z̃
(t+1)
s :

Σ−s = (Σ−1
s − Σ̃−1

s )
−1

; μ−s = Σ−s(Σ
−1
s μs − Σ̃−1

s μ̃s). (10)

z =
�T μ−s√

1 + �T Σ−s�
; Z =Φ(z); S =

1√
2π

exp(−z2

2
); �T

= [1,−1];

μ̂s = μ−s +
ysSΣ−s�

Z
√

1 + �T Σ−s�
; Σ̂s = Σ−s − zSZ + S2

Z2(1 + �T Σ−s�)
Σ−s��T Σ−s (11)

Σ̃(t+1)
s = (Σ̂−1

s − Σ−1
−s )

−1
; μ̃(t+1)

s = Σ̃(t+1)
s (Σ̂−1

s μ̂s − Σ−1
−sμ−s); Z̃(t+1)

s = CZ;

C = (2π)
−1|Σ−s + Σ̃s| 12 exp(

1

2
(μ−s − μ̃s)

T
(Σ−s + Σ̃s)

−1
(μ−s − μ̃s)) (12)

Eq. (10) is computing mean and covariance matrix of Q−s. μ̃s and Σ̃s are the
mean and covariance matrix of the approximate distribution ts, optimized in the
last iteration t. To avoid a cluttering of notation, we do not use the superscript
(t) to highlight the iteration. μs and Σs are the mean and the covariance matrix
of the approximate posterior distribution of ξ̂is and ξ̂js that is the marginalized
q(ξ̂). Eq. (11) is computing the mean and the covariance matrix of the distri-
bution at the left side of Eq. (9), which is derived by moment matching [20].
Finally, ys is one if eis is preferred to ejs , i.e. eis & ejs ; −1 otherwise.

At convergence, we obtain the optimized EP parameters that can be used to
compute the approximate posterior distribution of ξ̂ using Eq. (8).

4.2 Transductive Preference Prediction

The key prediction problem in preference learning is to predict preferences of
new pairs of entities. Here, we consider the predictive inference in a transductive
setting, i.e. there is no new entity introduced in prediction. Once the procedure
of posterior inference reaches stationarity, we obtain the optimized distribution
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on ξ̂ = {ξ̂1, . . . , ξ̂n} with the EP parameters {μ̃s, Σ̃s, Z̃s}m
s=1. It can be used to

approximate the predictive distribution of the preference pair s′ on entities i′
and j′ as follows

P (ei′ � ej′ |X ,R,O) =

∫
P (ei′ � ej′ |ξ̂i′ , ξ̂j′)P (ξ̂i′ , ξ̂j′ |X ,R,O) dξ̂i′ dξ̂j′

≈
∫

Φ(ξ̂i′ − ξ̂j′)N (ξ̂i′ , ξ̂j′ |μs′ , Σs′)dξ̂i′ dξ̂j′ ,

= Φ(
�T μs′√

1 + �T Σs′�
),

where N (ξ̂i′ , ξ̂j′ |μs′ , Σs′) is the marginalized q(ξ̂). It is the approximation to the
real marginal posterior distribution P (ξ̂i′ , ξ̂j′ |X ,R,O). Since q(ξ̂) is Gaussian,
so the approximation is still Gaussian, and its mean μs′ and covariance matrix
Σs′ are the corresponding entries of μ and Σ (Eq. 8). The preference relation
ei′ & ej′ is conditioned on their difference on preference degree, i.e. ξ̂i′−ξ̂j′ . Since
both ξ̂i′ and ξ̂j′ are Gaussian random variables, their difference is Gaussian, too,
with mean and variance �Tμs′ respectively �TΣs′�, where � denotes a column
vector [1,−1]T . Thus we have ξ̂i′ − ξ̂j′ ∼ N (·|�Tμs′ , �TΣs′�), where

�T μs′ (13)

is just the difference of the means of the two preference degrees (ξ̂i′ and ξ̂j′).
The variance �TΣs′� just equals

Var(ξ̂i′) + Var(ξ̂j′) − 2Cov(ξ̂i′ , ξ̂j′) . (14)

The larger the variance, the more uncertain we are about the preference relation.

4.3 Hyperparameter Estimation

Finally, we will describe how to estimate the hyperparameters under the em-
pirical Bayesian framework. The hyperparameters of the XPGP model consists
of the parameters of the kernel functions as well as the mixing weights of the
attribute-wise and the relation-wise GPs. Note, however, that the mixing weights
are just scaling the latent function values. Therefore, we can directly integrate
them into the covariance functions. In other words, estimating the hyperparam-
eters of the XPGP model can be reduced to estimating the hyperparameters of
the covariance functions.

Let us denote all hyperparameters as θ. We now need to seek θ∗ that maxi-
mizes the log-likelihood of the data, i.e.

θ∗ = arg max
θ

logP (O |θ,X ,R) = argmax
θ

log
∫

P (ξ̂|θ,X ,R)P (O |ξ̂) dξ̂,

where the prior P (ξ̂|θ,X ,R) is a Gaussian distribution. Unfortunately, the like-
lihood P (O |ξ̂) is not Gaussian, thus the integral is analytically intractable.
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To solve the problem, we follow an approximate Expectation Maximization
(EM) approach [14]. The algorithm alternates the following steps until conver-
gence. In the E-step, given the hyperparameters, the EP parameters (μ̃s, Σ̃s,
Z̃s) are optimized to approximate the posterior distribution of the latent function
variables with the current values of hyperparameters. In the M-step, given the
density of the preference degrees, the hyperparameters are selected to maximize
a lower bound of the marginal likelihood:∫

q(ξ̂) log
P (O |ξ̂)P (ξ̂|θ, X ,R)

q(ξ̂)
dξ̂ =∫

q(ξ̂) log P (ξ̂|θ,X ,R)dξ̂ +

∫
q(ξ̂) log P (O |ξ̂)dξ̂ −

∫
q(ξ̂) log q(ξ̂)dξ̂. (15)

Note that the last two terms on the right-hand side are independent of the
hyperparameters θ, thus we only need to optimize the first term, i.e., L :=∫

q(ξ̂) log P (ξ̂|θ,X ,R)dξ̂ = −1

2
log |2πK| − 1

2
Eq[ξ̂]

T K−1Eq [ξ̂] − 1

2
tr(K−1Σ),

where K is the covariance matrix of the prior of ξ̂ as defined in Eq. (5), and
Eq[ξ̂] is the expectation of ξ̂ on the approximate posterior q(ξ̂), i.e. the mean μ

of q(ξ̂) as defined in Eq. (8). Differentiating L with respect to θ, the gradient
can be found to be:

∂L
∂θ

= −1

2
tr(K−1 ∂K

∂θ
) +

1

2
αT ∂K

∂θ
α +

1

2
tr(K−1 ∂K

∂θ
K−1Σ), (16)

where α denotes K−1μ. It is possible to use any gradient-based optimizer to find
the hyperparameters. In the experiments, we used a scaled conjugate gradient.

5 Active Preference Exploration

So far, we have assumed that observed preferences are provided in a batch, i.e.,
they are collected in a rather naive way. Preference prediction, however, could
be made more efficient if we can actively select uncertain preferences. Consider a
typical interaction between a search engine and a user. A user executes a query
and considers the results presented. The system now requests the user to provide
a set of preference relations in the result with the goal to improve the preference
prediction being shown to the user.

Typically, however, the user pays attention to only a few entities in the result.
Note that providing preference labels can be quite costly as the user has e.g. to
read and understand abstracts of research papers. In turn, important entities
may never be considered by the user and no preference feedback is provided. This
is likely to lead to suboptimal preference predictions. To avoid this presentation
effect [19], we guide the user by asking actively for her preferences among entities
so as to provide more useful observations. Usually, we are limited to deploying
a small number of preferences only, and thus must carefully choose them.

Being probabilistic models, XPGPs are extremely powerful for active explo-
ration. If we observe a set of preferences corresponding to a finite subset A ⊂ R
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of all possibly observable preferences, we can easily predict the uncertainty about
any other preference r ∈ R\A conditioned on these observed ones using P (r|A).
An approximation of this marginal distribution can be found using the EP
method discussed above. It is a Gaussian whose conditional mean μr|A and
variance σ2

ei�ej |A are given by Eqs. (13) and (14) replacing i′ with i and j′ with

j. The values ξ̂i and ξ̂j are the overall preference degrees as defined in Eq. (4) of
the entities ei and ej . Their variances and covariance can be directly obtained
from the covariance matrix in Eq. (8) of the approximate posterior distribution
q(ξ̂).

To solve the active exploration problem, we follow the commonly used greedy
approach [15]. That is, we start from an empty set of preferences, A = ∅, and
greedily add preferences until |A| = k. At each iteration, the greedy rule used is
to add the preference r ∈ R\A that has the highest ratio of variance and squared
difference in mean, i.e., the preference with closest latent preference values that
we are most uncertain about given the preferences observed so far. Other scores
such as mutual information could also be used [15] but they are out of scope of
the present paper.

6 Experimental Analysis

We evaluated the XPGP model for relevance feedback on two real-world datasets,
namely OHSUMED and TREC in the LETOR repository [16]. Relevance feed-
back is an important task in information retrieval: the original answer to user
queries are refined based on user feedback (e.g. click or not, browsing time, etc).
Thus, the “personalized” ranking list is presented to the user. We used XPGP
models to predict preferences on articles (resp. webpages) based on some known
preferences. This corresponds to a transductive preference learning. We com-
pared the XPGP model with standard GP [5] and SVM models [13], denoted
as PGP and SVM in the experiments. For the GP-based approaches, we used
Gaussian kernels, Eq.(1), to compute the covariances on entity attributes and
two different graph kernels to obtain correlations on relations: (1) the regularized
Laplacian Eq.(2); and (2) Silva et al.’s kernel from [21]. For the SVM approach,
the radial basis function (RBF) was chosen to compute the kernels. We report
on the prediction error rate (ERR) and the area under ROC curve (AUC).

OHSUMED Dataset: The dataset was originally collected by Hersh et al [11],
and was processed by Liu et al. [16] as a benchmark data for learning to rank
in information retrieval. As a subset of MEDLINE medical database, the doc-
ument collection contains 348,566 publications from 270 journals during 1937-
1991. Each document consists of title, abstract, MeSH indexing terms, author,
source, and publication type. In the dataset, there are 106 queries, each of which
are associated with some relevant documents evaluated by humans. The rele-
vance degree has three levels: definitely relevant, partially relevant and not rele-
vant. In total, there are 16,140 query-document pairs. Due to practicality, Liu et
al. sampled some “possible” relevant documents from the large scale document
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Fig. 2. OHSUMED: Experimental results averaged over 10 queries with 20 random

reruns each on predicting preference pairs given different numbers of given preference

pairs.(Left) Prediction error rate; the lower, the better. (Right) AUC values; the

larger, the better.

collection and got on average about 152 documents per query. They extracted
25-dimensional feature vectors for each query-document pair. We refer to [16]
for more details. The relations between documents are based on similarities,
i.e. there is a weighted complete graph between documents; the weight of each
edge is the cosine similarity between the contents (keywords) of two documents.

Given a query, each document was originally associated with a relevance de-
gree. Based on this degree we obtained preference pairs of the form ei & ej. This
is not only due to XPGPs modeling assumption but more importantly this infor-
mation is also more realistic for real-world applications [13]. In the experiments,
we randomly selected 100 (150, 200) preference pairs for each query as evidence.
Then, the task was to predict the remaining ones. For each setting (100, 150,
200), the selection was repeated 20 times. Note that generating preference pairs
was not costly, e.g. one evaluation on relevance provides n− 1 preference pairs
if there are n documents in a collection.

Fig. 2 shows the experimental results averaged over 10 randomly selected
queries. Note that the output of [13] is not “soft” preference pairs, so we report
the prediction error rates only. As one can see, in all cases (different number
of known preferences), the XPGP model outperforms non-relational GP and
SVM models. The significance is demonstrated with Wilcoxon rank sum test
(p-value 0.01). The XPGP model performs well, especially when the number of
known preference pairs is small. Overall, XPGPs reduced the mean error rates
between 12% and 40%. To summarize, modeling relations among entities allows
for information to be shared between entities and, in turn, to improve prediction
quality. Which graph kernel to use seems to be less important: the two different
graph kernels we used performed similarly well. To further verify both results,
we compared XPGPs and PGPs on another dataset.
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Fig. 3. TREC: Experimental results averaged over 10 queries with 20 reruns each on

predicting preference pairs with different numbers of known preference pairs. (Left)
Prediction error rate; the lower, the better. (Right) AUC values; the larger, the better.

TREC Dataset: The TREC dataset was originally collected for a special track
on web information retrieval at TREC 2004. The goal of the track was to ex-
plore the performance of retrieval methods on large-scale data with hyperlinked
structure such as the World Wide Web. The data was crawled from .gov domain
in January, 2002. In total, there are 1,053,110 html documents with 11,164,829
hyperlinks. To each query, documents were assigned labels by human experts.
Each document has two possible states: relevant/irrelevant. The unlabeled doc-
uments are viewed as irrelevant ones. Liu et al. [16] processed the TREC dataset
and turned it into a benchmark for information retrieval. There were totally 75
queries left. For each query, they ranked the documents with the BM25 scores,
and only kept (1) the first 1000 documents and (2) the documents labeled to be
relevant. Since the original labels were entity-wise, we converted them into pair-
wise ones as follows: we set ei & ej if ei is relevant but ej is irrelevant, ei ≺ ej

otherwise. Again, the processing was not only because of the XPGP setting but
because it is more realistic.

In the experiments, we randomly selected 10 queries. On average, there were
about 1000 documents associated with each query, which are linked with about
2387 hyperlinks. About 16 of the documents were labeled as relevant. We notice
that the hyperlinks are directed, i.e. the two webpages involved in a hyperlink
play different roles: one is source, the other is target. We convert the directed
relations to undirected ones by introducing a relation between two documents,
which are linked by the same webpages [21]. For each query, 5 (10, 15, 20)
preference pairs were chosen randomly as the known ones. The task was to
predict the remaining ones. For each query, the random selection was repeated
20 times, and the mean and the standard deviation of AUC and error rate
were computed to measure the prediction performance. Fig. 3 summarizes the
experimental results averaged over the 10 queries. As one can see, in all settings
(different number of known preferences), the XPGP provides better predictions
than the non-relational GP method. A p-value threshold of 0.01 in Wilcoxon
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Fig. 4. Actively selecting 10 known preference pairs for 10 TREC queries. The

prediction error rate (left) and AUC (right) values for the naive (means and std. taken

from the previous experiment) and for the active selection (red squares) are shown. In

9 out of 10 cases, the active scheme is better than the (mean of the) naive one.

rank sum test showed that the difference is indeed significant. Overall, XPGPs
reduced the mean error rates between 30% and 50%.

Active Preference Exploration: So far, the experiments were performed with
randomly selected known preferences. In the final experiment, we evaluated the
active exploration scheme by automatically selecting 10 known preferences on
the TREC dataset. Fig. 4 summarizes the results. As one can see, active selection
can indeed improve the prediction quality with higher efficiency than collecting
preferences naively.

7 Extensions: Directed, Bipartite and Multiple Relations

Real-world domains typically show multiple relations of different types such as
bipartite and directed relations. We will finally show that this situation can
easily tackled using XPGPs.

We use distinct latent function values to represent preference factors driven
by different types of relations, i.e., we introduce for each entity multiple rela-
tional function values, one for each type of relations: {gr1

i , gr2
i , . . .}. The overall

preference degree is now the weighted sum of all latent function values associ-
ated with the entity: ξi = ω1fi + ω2g

r1
i + ω3g

r2
i + . . .+ εi. We now assume that

the latent function values of the same type of relations, e.g. {gr1
1 , . . . , gr1

n }, are
realizations of random variables in a Gaussian process, i.e., they follow a multi-
variate Gaussian distribution with mean zero and covariance matrix Kr1, which
can be specified with graph kernel as discussed before.

In a directed relation, the two involved entities play different roles. Consider
e.g. links of webpages link: webpage × webpage. The entities typically serve as
the linking and linked webpages. It is reasonable to introduce for each webpage
two latent function values representing preference factors for linking and linked
“roles” of the entity. The overall preference degree of a webpage is again a weight
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sum: ξi = ω1fi + ω2g
linking
i + ω3g

linked
i + εi. Alternatively, we can use random-

walk-based methods to generate kernels on directed graphs [7].
There is only one difficulty when encoding bipartite relations: different types

of entities are involved. In turn, graph kernels for univariate relations cannot
be used. We address this problem by projecting bipartite relations to univariate
ones. Specifically, we add a relation between entities i and j iff. both entities
link to the same (heterogeneous) entity. All entities linking to the same (het-
erogeneous) entity form a clique. Then we can compute the graph kernels on
the projected graphs. For example, we can convert a bipartite relation Direct:
movie × person to a undirected one Co-Directed: movie × movie.

8 Conclusion

In this paper we have proposed the first nonparametric Bayesian approach to
learn preferences from relational data using Gaussian processes. Modeling rela-
tions among entities allows for information to be shared between entities and,
in turn, to improve prediction quality. The uncertainty model provided by the
Gaussian process framework offers predictive uncertainty estimates for prefer-
ences, and naturally allowed us to develop an active exploration scheme in which
preferences are optimally selected for interactive labeling. Our empirical results
showed a significant improvement of preference prediction quality when employ-
ing relational information. Furthermore, active preference exploration improved
the quality faster than collecting preferences naively.

A natural extension of this work is the adaption of sparse Gaussian processes
to the relational case to tackle large-scale datasets. Furthermore, (non)myopic
analysis of active preference exploration is interesting as it potentially yields
provable bounds on the quality of the estimates. It is likely that other criteria
than variance such as mutual information will show better performance.

We believe that this work is an interesting step towards increasing the quality
of search engines and information retrieval systems as well as towards well-
founded active learning algorithms for relational (preference) learning.
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Abstract. A frequent problem in density level-set estimation is the

choice of the right features that give rise to compact and concise rep-

resentations of the observed data. We present an efficient feature selec-

tion method for density level-set estimation where optimal kernel mixing

coefficients and model parameters are determined simultaneously. Our

approach generalizes one-class support vector machines and can be equiv-

alently expressed as a semi-infinite linear program that can be solved

with interleaved cutting plane algorithms. The experimental evaluation

of the new method on network intrusion detection and object recognition

tasks demonstrate that our approach not only attains competitive per-

formance but also spares practitioners from a priori decisions on feature

sets to be used.

1 Introduction

The set of points on which a function f exceeds a certain value ρ, e.g., Dρ = {x :
f(x) ≥ ρ}, is called a level-set Dρ. Boundaries of such sets typically constitute
submanifolds in feature space whereas level-set approaches are frequently used
for function estimation and denoising.

For anomaly and outlier detection tasks, level-set methods are often observed
to outperform probability density estimators which have to be thresholded ac-
cordingly to act as detectors for unlikely and rare events. Statistical approaches
frequently focus on high density regions to capture the underlying probability
distribution. By contrast, density level-set estimators are specially tailored to
work well in low density regions which is a crucial property for detecting anoma-
lous events.

In this paper, we focus on level-set estimation for anomaly and outlier de-
tection [9,4], where a model of normality is devised from available observations.
Anomality of new objects is measured by their distance (in some metric space)
from the learned model of normality. Apart from theoretical observations, in
practice the effectiveness of density level-set estimation crucially depends on the
representation of the observations and thus on the choice of features.

However, characteristic traits of particular learning problems are often spread
across multiple features that capture various properties of data, giving rise to a
set of kernel matrices K1, . . . ,Km that have to be combined appropriately. As

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 692–704, 2009.
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a motivating example, consider network intrusion detection where various sets
of features have been deployed, including raw values of IP and TCP protocol
headers [15,16], time and connection windows [13], byte histograms and n-grams
[29,28], and “bag-of-tokens” language models [21,22]. While packet header based
features have been shown to be effective against probes and scans, other kinds of
attacks, e.g. remote buffer overflows, require more advanced payload processing
techniques. The right kind of features for a particular application has always
been considered as the matter of a judicious choice (or trial and error).

But what if this decision is really difficult to make? Given the choice of several
kinds of features, a poor a priori decision would lead to an inappropriate model
of normality being learned. A better strategy is to have a learning algorithm
itself decide which set of features is the best. The reason for that is that learning
algorithms find models with optimal generalization properties, i.e. the ones that
are valid not only for observed data but also for the data to be dealt with in the
future. The a priori choice of features may bias the learning process and lead to
worse detection performance. By leaving this choice to the learning algorithm,
the possibility of such bias is eliminated.

A natural way to address the kernel fusion problem is to learn a linear com-
bination K =

∑m
j=1 θj Kj with mixing coefficients θ together with model pa-

rameters, so as to maximize the generalization ability. To promote sparse so-
lutions in terms of the linear kernel mixture, one frequently employs 1-norm
simplex constraints on the mixing coefficients. This framework, known as multi-
ple kernel learning (MKL), was first introduced for binary classification by [12].
Recently, efficient optimization strategies have been proposed for semi-infinite
linear programming [25], second order approaches [3], and gradient-based opti-
mization [20]. Other variants of two-class MKL have been proposed in subsequent
work addressing practical algorithms for multi-class [19,32] and multi-label [8]
problems.

We translate the multiple kernel learning framework to density level-set esti-
mation to find a linear combination of features that realizes a minimal-volume
description of the data. Furthermore, we generalize the MKL simplex constraint
on the mixing coefficients to allow for arbitrary p-norms regularizations, where
p ≥ 1, hence leading to non-sparse kernel mixtures. Our approach also gener-
alizes the one-class support vector machine [23] that is obtained as a special
case for learning with only a single kernel. The optimization problem of our new
method is efficiently solved by interleaved column generation and semi-infinite
programming. Empirically, we evaluate our approach on network intrusion de-
tection and object recognition tasks and compare its performance for different
norms with unweighted-sum kernel mixtures. We observe our approach to attain
higher predictive performances than baseline approaches.

The remainder of this paper is structured as follows. Section 2 briefly reviews
the one-class support vector machine and presents our main contribution to
density level-set estimation with multiple kernels. Section 3 reports on empirical
results and Section 4 concludes.
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2 Multiple Kernel Learning for Density Level-Sets

2.1 Density Level-Sets

In this paper, we focus on one-class classification problems. That is, we are given
n data points x1, . . . ,xn, where xi lies in some input space X . The goal is to find
a model f : X → R and a density level-set Dρ = {x : f(x) ≥ ρ} that generalizes
well on new and unseen data such that the level-set encloses the normal data,
i.e., x ∈ Dρ, while for outliers x′ /∈ Dρ holds. A common approach is to employ
linear models of the form

f(x) = w′ψ(x) (1)

together with a (possibly non-linear) feature mapping ψ : X → H. A max-
margin approach leads to the (primal) one-class SVM optimization problem [23]
for ν ∈]0, 1],

min
w,ρ,ξ

1
2
w′w +

1
νn
‖ξ‖1 − ρ

s.t. ∀i : w′ψ(xi) ≥ ρ− ξi, ∀i : ξi ≥ 0. (2)

Once optimal parameters w∗ and ρ∗ are found, these are plugged into Equation
(1), and new instances x̃ are classified according to sign(f(x̃)− ρ∗).

2.2 Density Level-Set Estimation with Multiple Kernels

When learning with multiple kernels, we are given m different feature mappings
ψ1, . . . , ψm in addition to the data points x1, . . . ,xn. Every mapping ψj : X →
Hj gives rise to a reproducing kernel kj of Hj such that

kj(x, x̃) = 〈ψj(x), ψj(x̃)〉Hj .

The goal of one-class multiple kernel learning is to find a linear combination∑m
j=1 θjKj of kernels and parameters w, ξ, and ρ simultaneously, such that the

resulting hypothesis f leads to a minimum-volume description of the normal
data. We incorporate the kernel mixture into the model in Equation (1) and
arrive at

f(x) =
m∑

k=1

θj w′
jψj(x) = w′

θψθ(x),

where the weight vector and the feature mapping have a block structure

wθ = (
√
θjwj)j=1,...,m, ψθ(xi) = (

√
θjψj(xi))j=1,...,m, (3)

with mixing coefficients θj ≥ 0.
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Incorporating (3) into (2) and imposing a general p-norm constraint ‖θ‖p = 1
for p ≥ 1 on the mixing coefficients leads to the following primal optimization
problem for ν ∈]0, 1], and p ≥ 1.

min
θ,w,ρ,ξ

1
2
w′

θwθ +
1
νn
‖ξ‖1 − ρ (3a)

s.t. ∀i : w′
θψθ(xi) ≥ ρ− ξi; ξ ≥ 0 ; θ ≥ 0 ; ‖θ‖p = 1. (3b)

The above optimization problem is non-convex because (i) the products θjwj are
non-convex which, however, can be easily removed by a change of variables vj :=
θjwj (e.g. see [2]), and (ii) the set {θ : ‖θ‖p = 1} is not convex. As a remedy to
(ii), we relax the constraint on θ to become an inequality constraint, i.e., ‖θ‖p ≤
1. Treating the above optimization problem as interleaved minimization – over
θ and w, ξ, and ρ – it is easily verified that the optimal θ∗ in the θ-step always
fulfills ‖θ∗‖p = 1 for all p ≥ 1; essentially, we solve minθ

∑
j cj/θj s.t. ‖θ‖p ≤ 1

which induces solutions θ∗ at the border ‖θ∗‖p = 1. We thus arrive at the
following equivalent optimization problem, which now is convex.

min
θ,v,ξ,ρ

1
2

m∑
j=1

v′
jvj

θj
+

1
νn
‖ξ‖1 − ρ (4a)

s.t. ∀i :
m∑

j=1

v′
jψj(xi) ≥ ρ− ξi; ξ ≥ 0 ; θ ≥ 0 ; ‖θ‖p ≤ 1. (4b)

Several previous algorithms for two-class multiple kernel learning utilized a two-
step structure by alternating full SVM steps with θ steps of different flavor
[32,20,30]. In contrast, we follow [25] and propose to alternate θ steps with
minor iterations of SVM optimizers without running them to completion. We
chose SVMlight [10] as a basic solver, since its underlying chunking idea em-
ploys efficient α minimization steps, making it well-suited for an interleaved
α,θ minimization. To solve the p-norm one-class MKL problem, we now devise
a semi-infinite programming (SIP) approach similar to [25].

The underlying idea is to interleave the optimization of the upper bound on
the objective of the SVM step and the θ step. Fixing θ ∈ Θ, where Θ = {θ ∈
Rn | θ ≥ 0 , ‖θ‖p ≤ 1}, we build the partial Lagrangian with respect to
v, ξ, and ρ by introducing componentwise non-negative Lagrange multipliers
α,γ ∈ Rn, δ ∈ R. The partial Lagrangian is given by

L =
1
2

m∑
j=1

v′
jvj

θj
+

1
νn

n∑
i=1

ξi −
n∑

i=1

γiξi −
n∑

i=1

αi

( m∑
j=1

v′
jψj(xi)− ρ+ ξi

)
− δρ.

Setting the partial derivatives with respect to the primal variables to zero yields
the relations 0 ≤ αi ≤ 1

νn ,
∑

i αi = 1, and vj =
∑

i αiθjψj(xi) for 1 ≤ i ≤ n
and 1 ≤ j ≤ p. The KKT conditions trivially hold and re-substitution into the
Lagrangian gives rise to the min-max formulation for ν ∈]0, 1] and p ≥ 1,
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min
θ

max
α

− 1
2

n∑
i,l=1

αiαl

m∑
j=1

θjkj(xi,xl) (5a)

s.t. 0 ≤ α ≤ 1
νn

1; 1′α = 1; θ ≥ 0; ‖θ‖p ≤ 1. (5b)

The above optimization problem can be solved directly by gradient-based tech-
niques exploiting the smoothness of the objective [1]. Alternatively, we can trans-
late it into an equivalent semi-infinite program (SIP) as follows. Suppose α∗ is
optimal, then denoting the value of the target function by t(α,θ), we have
t(α∗,θ) ≥ t(α,θ) for all α and θ. Hence we can equivalently minimize an up-
per bound λ on the optimal value. We thus arrive at the following optimization
problem,

min
λ,θ

λ s.t. λ ≥ −1
2
α′

m∑
j=1

θjKjα (6)

for all α ∈ Rn with 0 ≤ α ≤ 1
νn1, 1′α = 1, and α ≥ 0, as well as ‖θ‖p ≤ 1 and

θ ≥ 0. The optimization problem in Equation (6) generalizes the idea of [25] to
the case p ≥ 1. Analogously, it can be optimized with interleaving cutting plane
algorithms, that is, the solution of a quadratic program (here a one-class SVM)
generates the most strongly violated constraint for the actual mixture θ. The
optimal (θ∗, λ) however depends on the value of p. We differentiate between two
cases, p = 1 and p > 1.

Optimizing θ for p = 1: for p = 1 is then identified by solving a linear
program with respect to set of active constraints.

Optimizing θ for p > 1: For the general case p > 1, a non-linearity is intro-
duced by requiring ‖θ‖p ≤ 1. Such constraint is rather uncommon in standard
optimization toolboxes that often handle only linear and quadratic constraints.
As a remedy we propose to solve a sequence of quadratically constrained sub-
problems. To this end, we substitute the p-norm constraint by sequential second-
order Taylor approximations of the form

||θ||pp ≈ 1 + p(θp−1
k )′(θ − θold)

+
p(p− 1)

2
(θ − θold)′diag((θold)p−2)(θ − θold)

= 1− p(3− p)
2

−
∑

j

p(p− 2)(θold
j )p−1 θj

+
p(p− 1)

2

∑
j

(θold
j )p−2 θ2

j ,

where θp is defined element-wise, that is θp := (θp
1 , ..., θ

p
m). We use θold = p

√
1
m1 as

a starting point. Note that the quadratic term in the approximation is diagonal. As
a result the quadratically constrained problem can be solved very efficiently. For
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Algorithm 1. p-Norm MKL chunking-based training algorithm. It simultane-
ously optimizes α and the kernel weighting θ. The accuracy parameter ε and
the subproblem size Q are assumed to be given to the algorithm. For simplicity,
a few speed-up tricks are not shown: the removal of inactive constraints and
hot-starts.
1: gj,i = 0, ĝi = 0, αi = 0, θj = p

√
1/m for j = 1, . . . , m and i = 1, . . . , n

2: for t = 1, 2, . . . and while SVM and MKL optimality conditions are not satisfied

do
3: Select Q suboptimal variables αi1 , . . . , αiQ based on the gradient ĝ and α; store

αold = α
4: Solve SVM dual with respect to the selected variables and update α

5: Update gradient gj,i ← gj,i +
∑Q

q=1(αiq − αold
iq

)kj(xiq , xi) for all j = 1, . . . , m
and i = 1, . . . , n

6: for j = 1, . . . , m do
7: St

j = 1
2

∑
i gj,iαi

8: end for
9: St =

∑
j θjS

t
j

10: if |1 − St

λ
| ≥ ε

11: for k = 1, 2, . . . and while MKL optimality conditions are not satisfied do
12: θold = θ
13: (θ, λ) ← argmax λ
14: w.r.t. θ ∈ Rm, λ ∈ R
15: s.t. 0 ≤ θ ≤ 1,

∑
j θjS

r
j ≥ λ for r = 1, . . . , t

16:
p(p−1)

2

∑
j(θ

old
j )p−2 θ2

j −∑j p(p − 2)(θold
j )p−1 θj ≤ p(3−p)

2

17: θ ← θ/||θ||p
18: end for
19: end if
20: ĝi =

∑
j θjgj,i for all i = 1, . . . , n

21: end for

the special case p = 2, the Taylor approximation is tight and hence the sequence
of quadratically constrained sub-problems converges after one iteration.

Optimization Algorithm. Algorithm 1 outlines the interleaved α,θ MKL
training algorithm. Lines 3-5 are standard in chunking based SVM solvers and
carried out by SVMlight. Lines 6-9 compute (parts of) SVM-objective values
for each kernel independently. Finally lines 11 to 18 solve a sequence of semi-
infinite programs with the p-norm constraint being approximated as a sequence
of second-order constraints. The algorithm terminates if the maximum KKT
violation (see [10]) falls below a predetermined precision εsvm and for MKL if
the normalized maximal constraint violation |1− St

λ | < εmkl.

3 Empirical Results

In this section we study p-norm multiple kernel learning for density level-sets in
terms of efficiency and accuracy. We experiment on network intrusion detection
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and object recognition tasks and compare our approach to baseline one-class
SVMs with unweighted-sum kernels K =

∑m
j=1 Kj wich we refer to as ∞-norm

MKL. We choose this baseline because for two-class multiple kernel learning
approaches, unweighted-sum kernel mixtures have frequently been observed to
outperform sparse kernel mixtures in practical applications.

3.1 Network Intrusion Detection

For the intrusion detection experiments we use HTTP traffic recorded at Fraun-
hofer Institute FIRST Berlin. The unsanitized data contains 2500 normal HTTP
requests drawn randomly from incoming traffic recorded over two months. Ma-
licious traffic is generated using the Metasploit framework [18]. We generate 30
instances of 10 real attack classes from recent exploits, including buffer overflows
and PHP vulnerabilities. Every attack is recorded in different variants using vir-
tual network environments and decoy HTTP servers.

The malicious data are normalized to match frequent attributes of the normal
HTTP requests such that the payload provides the only indicator for separating
normal from attack data. We deploy 10 spectrum kernels [14,24] for 1, 2, . . . , 10-
gram feature representations. All kernels are normalized according to Equation
(7) to avoid dependencies on the HTTP request length.

K(x, x̃) (−→ K(x, x̃)√
K(x,x)K(x̃, x̃)

, (7)

We randomly split the normal data into 1000 training, 500 validation and 1000
test examples. The training partition is used as it is since centroid-based learners
assume uncorrupted training data. The validation and test partitions are mixed
with 15 attack instances that are randomly chosen from the malicious pool. We
make sure that attacks of the same class occur either in the holdout or in the test
data but not in both, hence reflecting the goal of anomaly detection to recognize
previously unknown attacks. We report on average areas under the ROC curve in
the false-positive interval [0, 0.01] (AUC[0,0.01]) over 100 repetitions with distinct
training, holdout, and test sets.

Table 1 shows the results for one-class multiple kernel learning with p ∈
{∞, 1, 4

3 , 2, 4}. Depending on the actual value of p, the performances are quite
different. The unweighted-sum kernel (∞-norm MKL) outperforms most of the
one-class MKL approaches. However, employing a 2-norm constraint on the mix-
ing coefficients leads to better results than the ∞-norm mixture. Notice that the
2-norm mixture is about 10% better than its sparse 1-norm counterpart.

Figure 1 reports on the optimal kernel mixture coefficients θ for p ∈
{1, 4

3 , 2, 4}-norm MKL and the unweighted-sum kernel. The sparse 1-norm solu-
tion places all the weight into 1-grams that – although leading to concise repre-
sentations because of the low dimensional feature space – result in inappropriate
performances (see Table 1). The higher the value of p, the less weight is placed on
the 1-gram kernel but spread across higher n-gram kernels. The 4-norm mixture
is similar to the trivial ∞-norm solution. The best solution (2-norm) still places
weight to 1-grams but incorporates all other n-gram kernels to some extend.
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Table 1. Results for intrusion detection

MKL AUC0.01

∞-norm 89.4 ± 0.7

1-norm 79.4 ± 0.9
4
3
-norm 85.7 ± 0.8

2-norm 90.7 ± 0.8
4-norm 88.9 ± 0.9
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Fig. 1. Mixing coefficients for the intrusion detection task

3.2 Multi-label Image Categorization

Besides anomaly and outlier detection, one-class learning techniques are fre-
quently applied to multi-class classification problems with temporally varying
numbers of categories such as event detection and object recognition tasks. Their
advantage lies in training a single model for every (new) category in contrast
to maintaining expensive multi-class classifiers that have to be re-trained once
a new category is included in the task.

To study one-class multiple kernel learning in this alternative scenario, we
apply our approach to the multi-label classification task of the VOC 2008 chal-
lenge [7]. The data set contains 8780 images, divided into 2113 training, 2227
validation, and 4340 test images. Images are annotated with a subset of 20 class
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labels such as aeroplane, bicycle, and bird. Since the ground-truth of the test set
is not yet disclosed by the challenge organizers, we focus on the training and
validation splits. From these two original sets, we draw 2111 training, 1111 val-
idation, and 1110 test images at random and report on average precisions (AP)
for all recall values over 10 runs with distinct training, holdout, and test sets.

We employ two sets of kernels inspired from the VOC 2007 winner (K12) [17]
and the VOC 2008 winner (K30) [26]. For both approaches, all basic features
are combined with the respective pyramid levels and translated into a χ2 kernel
[31], where the widths of the χ2 kernels are chosen according to a heuristic [11].
The sets of kernels are obtained as follows.

K12. We extract 12 kernels based on four basic features: histograms of visual
words [5] in the grey (HOW-G) and in the hue color channel (HOW-H),
histogram of oriented gradient (HOG) [6], and histograms of the hue color
channel (HOCOL) [17]. These representations are combined with a pyrami-
dal representation of level 2 to capture spatial dependencies, i.e., each image
is tiled into 1, 4, and 16 parts.

K30. We extract 30 kernels based on histograms of visual words with 2 different
sampling methods (dense and interest points), 5 different sets of colors (grey,
opponent color, normalized opponent color, normalized RG, and RGB) [27]
and 3 different tilings (level-0 and level-1 of the pyramid, and 1×3 tiling)
[26].

We compare the performance of the unweighted-sum kernel ∞, and 1- and 2-
norm MKL with the optimal p-norm MKL that maximizes the average precision
on the validation set for each class. For the latter approach, model selection is
not only performed for trade-off parameter ν but extended to the MKL norm
p. Table 2 shows the mean average precisions over 20 categories for the test
data. Bold faces indicate significant results, that is, the best method and ones
that are not comparably different from the best result according to a Wilcoxon
signed-ranks test using a 5% confidence-level.

For the K12 set of kernels, 1-norm MKL outperforms both, the unweighted-
sum kernel ∞-norm and a non-sparse 2-norm MKL, which perform equally well.
However, model selection over p for each class leads to comparable results as 1-
norm MKL. We do not display the optimal p∗ values for all 20 classes, however,
the respective mixtures are non-sparse (see also Figure 2) so that the sparse
1-norm approach denotes the best solution for K12 in terms of accuracy and
interpretability.

For the K30 set of kernels, the outcome is different. Here, the 1-norm MKL
performs significantly worse compared to its non-sparse counterparts. Although
model selection over p leads to the highest average precisions, the results are
not significantly different to 2-norm MKL and unweighted-sum kernel mixtures.
Our experiments show that the right choice of the value p depends highly on
the employed kernels. Vice versa, once a set of kernels is fixed, it is necessary
to include the norm parameter p in the model selection to find the best kernel
mixture.
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Table 2. Results for the VOC 2008 data set

1-norm p∗-norm 2-norm ∞-norm

mean AP (K12) 17.6±0.8 17.8±1.0 17.1±0.8 17.0±0.6

mean AP (K30) 16.3±0.5 17.1±0.9 17.1±0.6 17.0±0.7
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Fig. 2. Mixing coefficients for the multi-label image categorization experiment

Figure 2 shows the optimal mixing coefficients for the K12 task, averaged
over 10 repetitions. The 1-norm solution picks a sparse combination resulting in a
minimum volume description of the data. While a 2-norm solution distributes the
weights almost uniformly on the 12 kernels, the p-norm solution lies in between
and considers all kernels with non-zero mixing coefficients in the solution.

3.3 Execution Time

We show the efficiency of one-class MKL and compare the execution times for our
approach with p ∈ {1, 1.333, 2, 3, 4,∞} to one-class SVMs using the unweighted
sum-kernel as implemented in [10]. To show different aspects of our approach, we
draw a sample of size n from a 10-dimensional Gaussian distribution for various
values of n. Kernel matrices are computed using RBF-kernels with different
bandwidth parameters. We optimize the duality gap for all methods up to a
precision of 10−3.

Figure 3 (left) displays the results for varying sample sizes in a log-log plot;
errorbars indicate standard error over 5 repetitions. Unsurprisingly, the baseline
one-class SVM using the sum-kernel is the fastest method. The execution time of
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Fig. 3. Execution times for one-class MKL. Left: results for varying sample sizes. Right:

execution times for varying numbers of kernels.

non-sparse MKL depends on the value p. We observe longer computation times
for large values of p. However, all approaches scale similarly.

Figure 3 (right) shows execution times for varying numbers of kernels and fixed
sample size n = 100. Again, the baseline one-class SVM with the unweighted-
sum kernel is the fastest method. All one-class MKL approaches show reasonable
run-times and converge quickly for 128 kernels.

4 Conclusion

We presented an efficient and accurate approach to multiple kernel learning for
density level-set estimation. Our approach generalizes the standard setting of
multiple kernel learning by allowing for arbitrary norms for the kernel mixture.
This enabled us to study sparse and non-sparse kernel mixtures. Our method
contains the one-class SVM as a special case for training with only a single kernel.
Our optimization strategy is based on interleaved semi-infinite programming
and chunking based SVM training. Empirical results proved the efficiency and
accuracy of our methods compared to baseline approaches. We observed one-
class MKL to be robust in situations where unweighted-sum kernels are prone
to fail.
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Abstract. Local search algorithms for global optimization often suffer

from getting trapped in a local optimum. The common solution for this

problem is to restart the algorithm when no progress is observed. Al-

ternatively, one can start multiple instances of a local search algorithm,

and allocate computational resources (in particular, processing time) to

the instances depending on their behavior. Hence, a multi-start strat-

egy has to decide (dynamically) when to allocate additional resources

to a particular instance and when to start new instances. In this paper

we propose a consistent multi-start strategy that assumes a convergence

rate of the local search algorithm up to an unknown constant, and in

every phase gives preference to those instances that could converge to

the best value for a particular range of the constant. Combined with

the local search algorithm SPSA (Simultaneous Perturbation Stochastic

Approximation), the strategy performs remarkably well in practice, both

on synthetic tasks and on tuning the parameters of learning algorithms.

1 Introduction

Local search algorithms for global optimization often suffer from getting trapped
in a local optimum. Moreover, local search algorithms that are guaranteed to con-
verge to a global optimum under some conditions (such as Simulated Annealing
or SPSA) usually converge at a very slow pace in order to provide consistency.
On the other hand, if the algorithms are employed with more aggressive settings,
much faster convergence to local optima is achievable, but with no guarantee to
find the global optimum. The common solution to escape from a local optimum
is to restart the algorithm when no progress is observed. Alternatively, one can
start multiple instances of the local search algorithm, and allocate computational
resources, in particular, processing time, to the instances depending on their be-
havior. The moment of starting an instance can vary in time, and so the number
of instances can also grow over time depending on the allocation strategy.
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Running several instances of an algorithm or several algorithms in parallel
and selecting among the algorithms have been intensively studied in the area of
meta-learning [22]. The main problem here is to allocate time slices to particular
algorithms with the aim of maximizing the best result returned. This allocation
may depend on the intermediate performance of the algorithms.

A simplified version of this problem is the so called Maximum K-Armed Ban-
dit [6], where at each time instance exactly one algorithm (called arm in this
framework) can be run, and it is assumed that the intermediate results returned
by an instance of the algorithm are drawn independently from a particular dis-
tribution. Note, however, that this assumption is quite unrealistic, and usually
leads to oversimplification, as local search algorithms steadily improve their per-
formance, and thus the distribution from which the next value is drawn differs
significantly from the ones from which the values in the previous several itera-
tions were drawn.

Nevertheless, the Maximum K-Armed Bandit problem provides a convenient
framework, and is often used for the analysis of multi-start search strategies
[6,7,20]. A generic algorithm for this problem is provided in [1], where the, so
called, reservation price of an instance is introduced. If an instance achieves its
reservation price, it is useless to select it again. The computation of the reser-
vation price depends on a model of the algorithm that can be learned under
some specific constraints. Several algorithms [6,7,20] are based on the (general-
ized) extreme value theory: these algorithms are similar to standard multi-armed
bandit algorithms (see, e.g., [3]) except that the upper confidence bounds are
derived from different distributions (e.g., from Gumbel distribution). In [21]
a distribution free approach is proposed that combines a multi-armed bandit
exploration strategy with a heuristic selection among the available arms. The
resulting algorithm (called ThresholdAscent) appeared to have attractive prac-
tical performance compared to the ones based on extreme value theory. Finally,
a natural strategy is to probe the algorithm instances for a while, estimate their
future performance based on the results of this trial phase, and then use the
most promising algorithm for the time remaining. Simple rules were suggested
in [4] to predict the future performance of each algorithm, while [5] employs
Bayesian prediction.

Another related problem is the following. Several algorithm instances are
available that all produce the correct answer to a certain question if run for
a sufficiently long time. The time needed for an algorithm instance to find the
answer is a random quantity, and the goal is to combine the given algorithms
to minimize the expected running time until the answer is found. When the
distribution of the running time is known, an optimal time allocation strategy
to minimize the expected running time is to perform a sequence of runs with
a certain cut-off time that depends on the distribution [17]. If the distribution
is unknown, a particular running time sequence can be chosen that results in
an expected total running time that is only a logarithmic factor larger than the
optimum achievable if the distribution is known. We note that this strategy is
among the few that provide a schedule that increases the number of algorithm
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instances. For the same set-up, an allocation strategy is proposed in [16] based on
updating dynamically the belief over the run-time distribution. Finally, when a
set of time allocation strategies are available and the optimization problem is to
be solved several times, one can use the standard multi-armed bandit framework
as in [9,10,11].

In this paper, we propose a new multi-start strategy, MetaMax, that assumes
a convergence rate of the local search known up to an unknown constant. In
every phase those instances are selected that may converge to the best value
for a particular range of the constant. The selection mechanism is analogous
to the DIRECT algorithm [15,8,14] for optimizing Lipschitz-functions with an
unknown constant, where preference is given to rectangles that may contain the
global optimum. The optimum within each rectangle is estimated in an optimistic
way, and the estimate depends on the size of the rectangle. In our algorithm we
use the function describing the convergence rate of the local search algorithms
in a similar way as the size of the rectangles are used in the DIRECT algorithm.

The rest of the paper is organized as follows. Basic definitions and assump-
tions are given in Section 2. The new multi-start local search strategies of this
paper, MetaMax(K) and MetaMax, are described and analyzed in Section 3:
in Section 3.1 we deal with a selection mechanism among a fixed number of
instances of the local search algorithm, while, in addition, a simple schedule for
starting new instances is also considered in Section 3.2. Simulation results on real
and synthetic data are provided in Section 4. Conclusions and possible further
work are described in Section 5.

2 Preliminaries

Assume we wish to maximize a nonnegative real valued function f on the d-
dimensional unit hypercube [0, 1]d, that is, the goal is to find a maximizer
x∗ ∈ [0, 1]d such that f(x∗) = maxx∈[0,1]d f(x). Without loss of generality, we
assume that f is non-negative, and suppose, for simplicity, that f is continuous
on [0, 1]d.1 The continuity of f implies the existence of x∗, and, in particular,
that f is bounded.

If the form of f is not known explicitly, search algorithms usually sample
f at several locations and return an estimate of x∗ and f(x∗) based on these
observations. There is an obvious trade-off between the number of samples used
and the quality of the estimate, and the performance of any search strategy may
be measured by the accuracy it achieves in estimating f(x∗) under a constraint
on the cost measured by the number of samples used.

Given a relatively good local search algorithm A, a general strategy for find-
ing a good approximation of the optimum x∗ is to run several instances of A
initialized at different starting points and approximate f(x∗) with the maximum
f value observed. We concentrate on local search algorithms A defined formally
by a sequence of possibly randomized sampling functions sn : [0, 1]d·n → [0, 1]d,
1 The results can easily be extended to (arbitrary valued) bounded piecewise contin-

uous functions with finitely many continuous components.
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n = 1, 2, . . .: A samples f at locations X1, X2, . . . where Xi+1 = si(X1, . . . , Xi)
for i ≥ 1, and the starting point X1 = s0 is chosen uniformly at random from
[0, 1]d; after n observationsA returns the estimate of x∗ and the maximum f(x∗),
respectively, by

X̂n = argmax
1≤k≤n−1

f(Xk) and f(X̂n).

It is clear that if the starting points are sampled uniformly from [0, 1]d and each
algorithm is evaluated at its starting point then this strategy is asymptotically
consistent as the number of instances tend to infinity (as in the worst case we
perform a random search that is known to converge to the maximum almost
surely). On the other hand, if algorithm A has some favorable properties then
it is possible to design multi-start strategies that still keep the random search
based consistency, but provide much faster convergence to the optimum in terms
of the number of evaluations of f .

In particular, we assume the following on the local behavior of the search
algorithms:

Assumption 1. The search algorithm A converges to a local maximum at a
guaranteed rate, that is,

(i) the limit limt→∞ X̂t exists and it is a deterministic function of the starting
point X1 for almost all values of X1 with respect to the Lebesgue measure;

(ii) for any 0 < δ < 1, there exists a function gδ(n) such that

P
(

lim
t→∞ f(X̂t)− f(X̂n) ≤ cgδ(n)

∣∣X1

)
≥ 1− δ (1)

where gδ(n) is a positive, monotone decreasing function of n that converges
to 0 for any 0 < δ < 1, that is, limn→∞ gδ(n) = 0, and c is a positive
constant that depends on f and gδ.

In certain cases gδ(n) = O(e−αn) or gδ(n) = O(n−α) for some α > 0, see, e.g.,
[12]. The constant c depends on certain characteristics of f , e.g., on the maximum
local steepness, or, if f is a random function, on the variance of f (note, however,
that in this paper we consider only deterministic functions). The above assumed
property of the local search algorithms will be utilized in the next section to
derive efficient multi-start search strategies.

3 Multi-start Search Strategies

Standard multi-start search strategies run an instance of A until it seems to
converge to a location where there is no hope to beat the current best approxi-
mation of f(x∗). An alternative way of using multiple instances of local search
algorithms is to run all algorithms parallel, and in each round we decide which
algorithms can take an extra step. This approach may be based on estimating
the potential performance of a local search algorithm A based on Assumption 1.
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Note that if c were known, an obvious way would be to run each instance as long
as their possible performances become separated with high probability. Then we
could just pick the best instance and run it until the end of our computational
budget (this would be a simple adaptation of the idea of choosing the best al-
gorithm based on a trial phase as in [4,5]). However, if c is unknown, we cannot
make such separation. On the other hand, using ideas from the general method-
ology for Lipschitz optimization with unknown constant [15], we can get around
this problem and estimate, in a certain optimistic way, the potential performance
of each algorithm instance, and in each round we can step the most promising
ones.

The main idea of the resulting strategy can be summarized as follows. Assume
we have K instances of an algorithm A, denoted by A1, . . . , AK satisfying As-
sumption 1. Let Xi,n, i = 1, . . . ,K denote the location at which f is sampled by
Ai at the nth time it can take a sample, where Xi,1 is the starting point of Ai.
The estimate of the location of the maximum by algorithm Ai after n samples
is

X̂i,n = argmax
1≤t≤n

f(Xi,t)

and the maximum value of the function is estimated by f̂i,n = f(X̂i,n). Now if
Ai observes ni,r samples by the end of the rth round, by Assumption 1 we have,
with probability at least 1− δ,

f(X̄i)− f̂i,ni,r ≤ cgδ(ni,r)

where X̄i = limn→∞ X̂i,n is the point where Ai converges. Thus, an optimistic
estimate of the maximum of f for a constant ĉ, based on Ai, is

f̂i,ni,r + ĉgδ(ni,r).

Then it is reasonable to choose, in each round, those algorithms to take another
step that provide the largest estimate for some values of ĉ (in this way we can
get around the fact that we do not know c).

3.1 Constant Number of Instances

The above idea can be translated to the algorithm MetaMax(K) shown in
Figure 1. Here we consider the case when we have a fixed number of instances,
and our goal is to perform (almost) as well as the best of them (in hindsight),
while using the minimum number of evaluations of f . Note the slight abuse of
notation that in the MetaMax(K) algorithm X̂r and f̂r denote the estimates
of the algorithm after r rounds (and not r samples).

In each round, the strategy MetaMax(K) selects the local search algorithms
Ai for which the point (gδ(ni,r−1), f̂i,ni,r−1) lies on the upper convex hull of the
set

Pr = {(gδ(nj,r−1), f̂j,nj,r−1) : j = 1, . . . ,K} ∪ {(0, max
1≤j≤K

f̂j,nj,r−1)}. (3)
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MetaMax(K): A multi-start strategy with K algorithm

instances.

Parameters: K > 0, 0 < δ < 1, gδ(n).

Initialization: For each i = 1, . . . , K, let ni,0 = 0, f̂i,0 = 0.

For each round r = 1, 2, . . .

(a) For i = 1, . . . , K select algorithm Ai if there exists a ĉ > 0 such

that

f̂i,ni,r−1 + ĉgδ(ni,r−1) > f̂j,nj,r−1 + ĉgδ(nj,r−1) (2)

for all j �= i such that ni �= nj . If there are several values of i
selected that have the same sample number ni,r−1 then keep only

one of these selected uniformly at random.

(b) Step each selected Ai, and update variables. That is, set ni,r =

ni,r−1 +1 if Ai is selected, and ni,r = ni,r−1 otherwise. For each se-

lected Ai sample f(Xi,ni,r ) and compute the new estimates X̂i,ni,r

and f̂i,ni,r .

(c) Let Ir = argmaxi=1,...,K f̂i,ni,r denote the index of the algorithm

with the currently largest estimate of f(x∗), and estimate the

location of the maximum with X̂rX̂Ir ,nIr,r and its value with

f̂r = f̂Ir ,nIr,r .

Fig. 1. The MetaMax(K) algorithm

Note that it is guaranteed that in each round we sample at least two algorithms,
one with the largest estimate f̂ni,r−1 , and one with the smallest sample size
ni,r−1. Thus, at most half of the total number of samples can be used by any
optimal local search algorithm.

The randomization in step (a) that precludes sampling multiple instances with
the same sample size is motivated by the following example. Assume that A1 con-
verges to the correct estimate, while all the other algorithms A2, . . . , AK produce
the same estimate in each round, independently of their samples, that is inferior
to the estimates of A1. If we use the randomization, half of the calls to compute
f will be made by A1, but without the randomization this would drop down to
1/K as in each round we would sample each algorithm. The randomization is
used to exclude such pathological cases.

The following proposition shows that the algorithm is consistent.

Proposition 1. Assume that gδ(n) is positive and monotone decreases to 0 as
n→∞. Then the MetaMax(K) algorithm is consistent in the sense that f̂r ≤
f(x∗) for all r, and

f(x∗)− lim
r→∞ f̂r = min

i=1,...,K

{
f(x∗)− lim

n→∞ f̂i,n

}
.

Proof. The proof follows trivially from the fact that each algorithm is selected
infinitely often, that is, limr→∞ ni,r = ∞. To see the latter, we show that in
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every K rounds the number of samples received by the least used algorithm,
that is, mini=1,...,K ni,r, is guaranteed to increase by one. That is, for all k ≥ 0,

min
i=1,...,K

ni,kK ≥ k. (4)

As described above, in each round we select exactly one of the algorithms with
minimal sample size. Thus, if there are k such algorithms, the minimal sample
size will increase in k steps, which completes the proof. ��

Let f̂∗
i = limr→∞ f̂i,ni,r be the asymptotic estimate of algorithm Ai for f(x∗),

and let f̂∗ = max1≤i≤K f̂∗
i denote the best estimate achievable using algorithms

A1, . . . , AK . Let O ⊂ {1, . . . ,K} be the set of optimal algorithms that converge
to the best estimate f̂∗ (for these algorithms), and let |O| denote the cardinality
of O (i.e., the number of optimal algorithm instances). The next lemma shows
that if i �∈ O, then Ai is not sampled at a round r if it has been sampled too
often so far.

Lemma 1. Suppose Assumption 1 holds, and let

Δ = f̂∗ −max
i
∈O

f̂∗
i

denote the margin between the estimates of the best and the second best algo-
rithms. Then there is an R(δ) > 0 such that Ai is not sampled by MetaMax(K)

at a round r+ 1 > R(δ) with probability at least 1−Kδ given the starting points
Xi,1, i = 1, . . . ,K, if

ni,r > g−1
δ

(
gδ(min

j
nj,r)

(
1− f̂∗

i +Δ/2
f̂∗

))
(5)

simultaneously for all i �∈ O.

Proof. For each i = 1, . . . ,K, the conditions of Assumption 1 and (4) imply that
there exists an R

(δ)
i > 0 such that for all r > R

(δ)
i

P
(
f̂∗

i − f̂i,ni,r ≤ Δ/2
∣∣ Xi,1

)
≥ 1− δ.

Note that the above inequality holds simultaneously for all r > R
(δ)
i since the

difference f̂∗
i − f̂i,ni,r is a non-increasing sequence in r. By the union bound, for

any r > R(δ) = max{R(δ)
1 , . . . , R

(δ)
K }

P
(
f̂∗

i − f̂i,ni,r ≤ Δ/2 for all i = 1, . . . ,K|X1,1, . . . , XK,1

)
≥ 1−Kδ. (6)

This implies that after R(δ) rounds the algorithm will pick, with high probability,
the estimate of one of the best algorithms. It is easy to see that, given the starting
points Xi,1, i = 1, . . . ,K, if (6) holds then an algorithm Ai with i �∈ O cannot be
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sampled at round r+ 1 if ni,r ≥ nIr,r (that is, if it has been sampled more than
an algorithm with a better maximum estimate). Furthermore, if ni,r < nIr,r, it
is easy to see that Ai is not sampled at a round r + 1 if

f̂r − f̂i,r

gδ(ni,r)− gδ(nIr ,r)
>

f̂r − 0
gδ(minj nj,r)− gδ(nIr ,r)

since the line connecting (gδ(minj nj,r), 0) and (gδ(nIr ,r), f̂Ir ,nIr,r ) is a lower
bound to the upper convex hull of Pr+1 (defined by (3)). Since f̂r − f̂i,r ≥
f̂∗ − f̂∗

i −Δ/2 and f̂∗ ≥ f̂r, given the starting points Xi,1, Ai is not selected at
round r + 1 simultaneously for all i, with probability at least 1−Kδ, if

f̂∗ − f̂∗
i −Δ/2

gδ(ni,r)− gδ(nIr ,r)
>

f̂∗

gδ(minj nj,r)− gδ(nIr ,r)
. (7)

The latter is equivalent to the upper bound

gδ(ni,r) < gδ(min
j

nj,r)

(
1− f̂∗

i +Δ/2
f̂∗

)
+ gδ(nIr ,r)

f̂∗
i +Δ/2
f̂∗ .

Taking into account that gδ is non-increasing and positive, this is surely satisfied
if (5) holds. ��

A simple corollary of the above lemma is that if the local search algorithm
converges fast enough (exponentially with a problem dependent rate, or faster
than exponential) then half of the samples taken from f correspond to optimal
algorithm instances.

Corollary 1. Assume that the performance of the algorithms Ai, i = 1, . . . ,K
are not all the same, that is, |O| < K, and that the conditions of Assumption 1
hold. Furthermore, suppose that

lim sup
n→∞

gδ(n + 1)
gδ(n)

< min
i
∈O

{
1− f̂∗

i +Δ/2

f̂∗

}
. (8)

Then asymptotically at least half of the sampling of f in MetaMax(K) corre-
sponds to an optimal algorithm. That is,

P

(
lim inf
r→∞

∑
i∈O ni,r∑K
i=1 ni,r

≥ 1
2

∣∣∣∣ X1,1, . . . , XK,1

)
≥ 1−Kδ.

Proof. We show that Ai is not chosen for large enough r if ni,r > minj nj,r. By
Lemma 1, it is sufficient to prove that, for large enough r,

min
j

nj,r + 1 > g−1
δ

(
gδ(min

j
nj,r)

(
1− f̂∗

i +Δ/2

f̂∗

))
.

The latter is clearly satisfied by (8) as limr→∞ minj nj,r = ∞ by (4). This fact
finishes the proof. ��
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MetaMax: A multi-start strategy with infinitely many

algorithm instances.

Parameters: 0 < δ < 1, gδ(n).

Initialization: Set K = 0. For each round r = 1, 2, . . .

(a) Increase the value of K by 1. Initialize algorithm AK by setting

nK,r−1 = 0, f̂K,0 = 0.

(b) For i = 1, . . . , K select algorithm Ai if there exists a ĉ > 0 such

that

fi,ni,r−1 + ĉgδ(ni,r−1) > fj,nj,r−1 + ĉgδ(nj,r−1) (9)

for all j �= i such that ni,r−1 �= nj,r−1. If there are several values

of i selected that have the same sample number ni,r−1 then keep

only one of these selected uniformly at random.

(c) Step each selected Ai, and update variables. That is, set ni,r =

ni,r−1 +1 if Ai is selected, and ni,r = ni,r−1 otherwise. For each se-

lected Ai sample f(Xi,ni,r ) and compute the new estimates X̂i,ni,r

and f̂i,ni,r .

(d) Let Ir = argmaxi=1,...,K f̂i,ni,r denote the index of the algorithm

with the currently largest estimate of f(x∗), and estimate the lo-

cation of the maximum with X̂r = X̂Ir ,nIr,r and its value with

f̂r = f̂Ir ,nIr,r .

Fig. 2. The MetaMax algorithm

The above corollary immediately yields the following result on the rate of con-
vergence of the MetaMax(K) algorithm.

Corollary 2. Assume the conditions of Corollary 1 hold. Then for any δ > 0
and ε > 0 there exists a threshold Tδ,ε > 0 depending on the starting points
X1,1, . . . , X1,K such that if the MetaMax(K) algorithm is run for r rounds
such that the total number of samples T =

∑K
i=1 ni,r satisfies T > Tδ,ε, then,

with probability at least (1− (K + |O|)δ),

f̂∗ − f̂r ≤ cgδ

(
T

(2 + ε)|O|

)
.

3.2 Unbounded Number of Instances

It is clear that if the local search algorithms are not consistent, then, despite its
favorable properties, the MetaMax(K) strategy is inconsistent, too. However, if
we increase the number of algorithms in each round, then we get the consistency
from random search, while still keeping the reasonably fast convergence rate
from MetaMax(K). This results in the multi-start strategy MetaMax, shown
in Figure 2.
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Since the MetaMax strategy includes a random search (the number of algo-
rithms tends to infinity as the length of each round is finite), the algorithm is
consistent:

Proposition 2. The strategy MetaMax is consistent. That is,

lim
r→∞ f̂r = f(x∗).

Under Assumption 1 we can prove, similarly to Lemma 1, that any suboptimal
algorithm is selected only finitely many times.

Lemma 2. Suppose Assumptions 1 holds, and assume that an instance Ai is
suboptimal, that is, f̂∗

i = limr→∞ f̂i,ni,r < f(x∗). Let

Δi = f(x∗)− f̂∗
i .

Then, for sufficiently large r, Ai is not sampled at a round r+1, with probability
at least 1− 2δ, if

ni,r > max

{
g−1

δ

(
gδ(0)

(
1− f̂∗

i +Δi/2
f(x∗)

))
, g−1

δ

(
Δi

2c

)}
.

Proof. By the assumptions of the lemma there exists a positive integer R > 0
such that f(x∗)− f̂R < Δi/2 with probability at least 1−δ. (A crude estimate of
R can be obtained by considering the probabilities that Xr,1 falls in a sufficiently
small neighborhood of x∗. Better values of R can be calculated by considering the
probability of choosing a starting point such that the corresponding algorithm
converges to a global optimum, and then considering the rate of convergence of
this local search algorithm.) By Assumption 1, f̂∗

i − f̂i,n < Δi/2 with probability
at least 1−δ for all n > ni = g−1

δ

(
Δi

2c

)
. Thus, by the union bound, for any round

r + 1 > R such that ni,r > g−1
δ

(
Δi

2c

)
, we have, with probability at least 1− 2δ,

simultaneously

f(x∗)− f̂r < Δi/2 and f̂∗
i − f̂i,ni,r < Δi/2. (10)

Now a similar argument as in Lemma 1 finishes the proof. Note that compared
to (5) we replaced mini ni,r with 0 since a new algorithm is started in every
round with nr+1,r = 0. ��

Experimental results in Section 4 show that K, the number of algorithm in-
stances, increases sublinearly: in all simulations K was of the order T/ ln(T )
with K < 2T/ lnT . It is interesting to note that this is roughly the same as
the number of algorithm instances introduced by the algorithm Luby [17] (see
Section 4 for more details). If Assumption 1 is satisfied with δ = 0 and there are
only finitely many local maxima of f , this fact gives rise to the following heuris-
tic derivation for the convergence rate of MetaMax. Let p be the probability
that a random starting point is chosen such that the resulting algorithm con-
verges to a global optimum. Then, for T large enough, there are approximately



Efficient Multi-start Strategies for Local Search Algorithms 715

(1− p)T/ lnT suboptimal algorithms, and, after some initial phase with S sam-
ples, each of them can be sampled at most N times for some integer N . Then the
pT/ lnT optimal algorithms are sampled at least T −N(1−p)T/ lnT −S times,
so one of them is sampled at least (T−N(1−p)T/ lnT−S)/(pT/ lnT ) = O(ln T )
times, resulting in a convergence rate of cg0(κ lnT ) for some κ > 0.

4 Experiments

In the experiments we compared the two versions of the MetaMax algorithm
with four algorithms including two with fixed (K), and two with variable number
of algorithm instances (arms). We used the SPSA ([18], Simultaneous Perturba-
tion Stochastic Approximation) as the base local search algorithm in all cases.
SPSA is a local search algorithm with a sampling function that uses gradient
descent with a stochastic approximation of the derivative: at the actual location
Xt = (Xt,1, . . . , Xt,d), SPSA estimates the derivative of f by

f̃t,l(Xt,l) =
f(Xt + φtBt)− f(Xt − φtBt)

2φtBt,l
,

where the Bt,l are i.i.d. Bernoulli random variables that are the components of
the vector Bt, and then uses the sampling function st(Xt) = Xt + atf̃t(Xt) to
choose the next point to be sampled, that is,

Xt+1,l = Xt,l + atf̃t,l(Xt,l)

for l = 1, . . . , d.
In the implementation of the algorithm we have followed the guidelines pro-

vided in [19], with the gain sequence at = a/(A + t + 1)α, and perturbation
size φt = φ/(t + 1)γ , where A = 60, α = 0.602 and γ = 0.101. The values of a
and φ vary in the different experiments. Next to the two evaluations required
at the perturbed points, we also evaluate the function at the current point Xt.
The starting point is chosen randomly, and the function is evaluated first at this
point.

The four reference algorithms the MetaMax(K) and MetaMax algorithms
are compared to are the following:

Unif: This algorithm selects from a constant number of instances of SPSA uni-
formly. In our implementation the instance It = t mod K is selected at time t,
where K denotes the number of instances.
ThrAsc: The ThresholdAscent algorithm of [21]. The algorithm begins with
selecting each of a fixed number of instances once. After this phase at each
time step t ThrAsc selects the best s estimates produced so far by all algo-
rithm instances Ai, i = 1, . . . ,K in all the previous time steps, and for each
Ai it counts how many of these estimates were produced by Ai. Denoting the
latter value by Si,t, at time t the algorithm selects the instance with index
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It = argmaxi U(Si,t/ni,t, ni,t), where ni,t is the number of times the ith instance
has been selected up to time t,

U(μ, n) = μ+
α+

√
2nμα+ α2

n

and α = ln(2TK/δ). s and δ are the parameters of the algorithm, and in the
experiments the best value for s appeared to be 100, while δ was set to 0.01.
Rand: The random search algorithm. It can be seen as running a sequence of
SPSA algorithms such that each instance is used for exactly one step, which is
the evaluation of the random starting point of the SPSA algorithm.
Luby: The algorithm based on [17]. This method runs several instances of SPSA
sequentially after each other, where the ith instance is run for ti steps, with ti
defined by

ti =
{

2k−1, if i = 2k − 1
ti−2k−1+1, if 2k−1 ≤ i < 2k − 1

The above definition produces a scheduling such that from the first 2k − 1 algo-
rithm instances one is run for 2k−1 steps, two for 2k−2 steps, four for 2k−3 steps,
and so on.

Both versions of the MetaMax algorithm were tested. Motivated by the fact
that SPSA is known to converge to a global optimum exponentially fast if f
satisfies some restrictive conditions [12], we chose a gδ(n) that decays expo-
nentially fast (recall that this is the rate of convergence to a local minimum).
Furthermore, to control the exploration of the so far suboptimal algorithm in-
stances heuristically, we allowed gδ(n) to be a time-varying function, that is, it
changes with t, the total number of samples seen so far. Thus, at round r we
used gδ(n) = e−n/

√
tr , where tr =

∑
i ni,r−1.

For the algorithms with a fixed number of arms (MetaMax(K), Unif, and
ThrAsc), the number of arms K was set to 100 in the simulations, which turned
out to be a good choice overall.

The multi-start algorithms were tested using two versions of a synthetic func-
tion, and by tuning the parameters of a learning algorithm on two standard data
sets.

The synthetic function was a slightly modified2 version of the Griewank func-
tion [13]:

f(x) =
d∑

l=1

4π2x2
l

100
−

d∏
l=1

cos
2πxl√

l
+ 1

where x = (x1, . . . , xl) and the xi were constrained to the interval [−1, 1]. We
show the results for the two-dimensional and the ten-dimensional cases.

The parameters of SPSA were a = 0.05 and φ = 0.1 for the two-dimensional
case, and a = 0.5 and φ = 0.1 for the ten-dimensional case. The performance

2 The modification was made in order to have more significant differences between the

values of the function at the global maximum and at other local maxima.
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Fig. 3. The average error for the multi-start strategies on the two-dimensional (left)

and ten-dimensional (right) modified Griewank function
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Fig. 4. The average error for the multi-start strategies on tuning the parameters of

MultilayerPerceptron for the vehicle data set (left) and the letter data set (right)

of the search algorithms were measured by the error defined as the difference
between the maximum value of the function (in this case 1) and the best result
obtained by the search algorithm in a given number of steps. The results for the
above multi-start strategies for the two- and the ten-dimensional test functions
are shown in Figure 3. Each error curve is averaged over 10,000 runs, and each
strategy was run for 100,000 steps (or iterations). One may observe that in both
cases the two versions of the MetaMax algorithm converge the fastest. ThrAsc

is better then Unif, while Luby seems fairly competitive with these two. The
random search seems an option only for the low-dimensional function. Similar
results were obtained for dimensions between 2 and 10.

For tuning the parameters of a learning algorithm, we have used two standard
data sets from the UCI Machine Learning Repository [2]: vehicle and letter, and
the MultilayerPerceptron learning algorithm of Weka [23]. Two parameters were
tuned: the learning rate and the momentum, both in the range of [0, 1]. The
size of the hidden layer for the MultilayerPerceptron was set to 8, while the
number of epochs to 100. The parameters of the SPSA algorithm were a = 0.5
and φ = 0.1. The rate of correctly classified items on the test set for vehicle
using MultilayerPerceptron with varying values of the two parameters is shown
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Fig. 5. Classification rate on the vehicle data set. The rates are plotted by subtracting

them from 0.911112 and thus global optima are at the scattered black spots corre-

sponding to a value equal to 0.001.

Fig. 6. Classification rate on the letter data set. The rates are plotted by subtracting

them from .7515 and thus global optima are at the scattered black spots corresponding

to a value equal to 0.001.

in Figure 5, with the highest rate being 0.910112. Similarly, the classification
rate for letter is shown in Figure 6, with the highest rate being 0.7505.

The error rates of the optimized MultilayerPerceptron on the data sets vehicle
and letter are shown in Figure 4, when the parameters of the learning algorithm
were tuned by the multi-start strategies above. The error in these cases is the
difference between the best classification rate that can be obtained (0.910112 and
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0.7505, respectively) and the best classification rate obtained by the multi-start
strategies in a given number of steps. The results shown are averages over 1,000
runs. We observe that the MetaMax algorithm (with an increasing number of
arms) converged the fastest in average, the three strategies with a fixed number
of arms had nearly identical results, Luby was slightly worse than these, and
the random search was the slowest, although it did not perform as bad as for
the synthetic functions.

In summary, the MetaMax algorithm (with an increasing number of arms)
provided far the best performance in all tests, usually requiring an order of
magnitude less steps to find the optimum than the other algorithms. E.g., for
the letter data set only the MetaMax algorithm found the global optimum in
all runs in 100,000 time steps. We can conclude that MetaMax converged faster
than the other multi-start strategies investigated in all four test cases, with a
notable advantage on the difficult surfaces induced by the classification tasks.

5 Conclusions

We provided a multi-start strategy for local search algorithms. The method
assumes a convergence rate of the local search algorithm up to an unknown
constant, and in every phase it gives preference to those local search algorithm
instances that could converge to the best value for a particular range of the con-
stant. Two versions of the algorithm were presented, one that is able to follow the
performance of the best of a fixed number of local search algorithm instances, and
one that, with gradually increasing the number of the local search algorithms,
achieves global consistency. Some theoretical properties of the algorithms were
explored, although the methods used do not seem to fully explain the superior
behavior of the strategy in experiments, requiring further study of the problem.
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Abstract. The Factored Markov Decision Process (FMDP) framework is a stan-
dard representation for sequential decision problems under uncertainty where the
state is represented as a collection of random variables. Factored Reinforcement
Learning (FRL) is an Model-based Reinforcement Learning approach to FMDPs
where the transition and reward functions of the problem are learned. In this pa-
per, we show how to model in a theoretically well-founded way the problems
where some combinations of state variable values may not occur, giving rise to
impossible states. Furthermore, we propose a new heuristics that considers as im-
possible the states that have not been seen so far. We derive an algorithm whose
improvement in performance with respect to the standard approach is illustrated
through benchmark experiments.

1 Introduction

Based on the Markov Decision Process (MDP) framework (Sutton & Barto, 1998),
the Factored Markov Decision Process (FMDP) framework (Boutilier et al., 1995) is
the standard representation of sequential decision problems under uncertainty when
the state of the problem can be decomposed as a set of random variables. In this
framework, the state space of a sequential decision problem is represented as a col-
lection of random variables X = {X1, . . . , Xn}. A state is then defined by a vector
x = (x1, . . . , xn) with ∀i, xi ∈ Dom(Xi). FMDPs exploit the structure of the dependen-
cies between variables to represent large MDPs compactly. For each action a, the transi-
tion model is defined by a separate Dynamic Bayesian Network (DBN) model (Dean &

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 721–735, 2009.
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Kanazawa, 1989). The model Ga is a two-layer directed acyclic graph whose nodes are
{X1, . . . , Xn, X

′
1, . . . , X

′
n} with Xi a variable at time t and X ′

i the same variable at
time t+1. The parents of X ′

i are noted Parentsa(X ′
i). The transition model is quantified

by Conditional Probability Distributions (CPDs), noted P a(X ′
i|Parentsa(X ′

i)), associ-
ated to each node X ′

i ∈ Ga.
The authors of (Boutilier et al., 2000) propose two structured Dynamic Programming

(SDP) algorithms, namely Structured Value Iteration (SVI) and Structured Policy Itera-
tion (SPI). These algorithms and later extensions like SPUDD (Hoey et al., 1999) deal
with the case where there are no synchronic arcs in the DBNs, i.e. ∀i, Parentsa(X ′

i) ⊆
{X1, . . . , Xn} and Parentsa(Xi) = ∅. Thus, in such a model, the X ′

i are independent of
each other conditionally to {X1, . . . , Xn}. The independence assumption results in the
opportunity to compute the joint probability of a collection of variables as a product:
P (X ′|X) = ΠiP (X ′

i|Parentsa(X ′
i)).

In this paper, we focus on the case where the structure and parameters of the FMDP

are learnt from experience, and we address a wider class of problems where particular
combinations of values of variables may not occur. We argue that this situation often
happens in practice and we show through benchmark experiments that modifying stan-
dard algorithms to deal with such “impossible states” is more efficient than just ignoring
this phenomenon. Finally, we show that considering as impossible a state that has never
been seen so far is an efficient heuristic to learn quickly in FMDPs.

The paper is organized as follows. In the next section, we give a brief overview of
SDP algorithms, insisting on the steps where the independence assumption is used and
we give a brief overview of an algorithm that learns the structure of the FMDP while
solving it. Then we show in section 3 how the presence of impossible states can be
modeled and how the algorithms must be modified as a consequence. In section 4, we
examine through benchmark experiments the benefits that can result from our method
when impossible states are present. In section 5, we discuss these benefits depending on
the rate of impossible states, before concluding on the possibility to extend this work in
different directions.

2 Factored Reinforcement Learning

In this section we briefly present structured dynamic programming algorithms and then
SPITI, a model-based reinforcement learning approach dedicated to FMDPs.

2.1 Structured Dynamic Programming

Standard SDP algorithms such as SVI and SPI use decision trees as factored represen-
tation. In the rest of the paper, a function F represented as a decision tree is noted
Tree(F ). SVI and SPI can be seen as an efficient way to perform the Bellman-backup
operation on trees, expressed as follows:

Tree(QV
a )(x) = Tree(R(x, a)) + γT ree(

∑
x′

P (x′|x, a)V (x′)). (1)
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(a) (b) (c)
Reward P (x′

1|X1, X2, a0) P (x′
2|X1, X2, a0)

Fig. 1. A toy example: the tree representation of a reward function and of the transition functions
of binary variables X1 and X2 given an unique action a0. Notations are similar to the ones in
(Boutilier et al., 2000), but in the boolean case we note xi for Xi = true and x̄i for Xi = false.

Fig. 2. P (X ′|X, a0) computed by the PRegress operator from the example of Fig. 1

In SVI and SPI, the Regress(Tree(V ), a) algorithm performs Bellman-backup op-
erations. Inside Regress, PRegress computes Tree(

∑
x′ P (x′|x, a)V (x′)) using the

structure of Tree(P ) and Tree(V ).
Consider the toy example whose reward and transition functions for an unique action

a0 are given in Fig. 1.
From the transition trees, PRegress first computes the Tree(P (X ′|X, a0)) shown

in Fig. 2. This tree represents the individual probabilities of each variable value at t+ 1
given the variable values at t. For instance, the rightmost branch of the tree reads as
follows: if X1 and X2 were false, the probability that X ′

1 and X ′
2 are true are 80% and

0% respectively. Note that the probability of one of the values can be omitted in the
representation and inferred from the other probabilities. Furthermore, PRegress only
computes the combinations of values that are necessary to perform regression from the
current value function (see (Boutilier et al., 2000) for details).

Given the tree represented in Fig. 2 and considering that the variables at t + 1 are
independent conditionally to those at t, PRegress computes the joint probabilities as a
product, as shown in Table 1. Note that the table representation is not computed explicitly
in the algorithm: in the more general case with any number of variables and enumerated
values, this calculation is implemented by expanding a tree of all variable values combi-
nations and computing probabilities at the leaves as a product on individual probabilities.

The last step ofPRegress computes
∑

x′ P (x′|x, a)V (x′) using the structure shown
in Fig. 3. Then Regress computes Tree(QV

a ) according to equation (1) by performing
the product with γ and the sum with Tree(R(X, a)).
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Table 1. Probabilities for joint variables, resulting from Fig. 2

P (X ′|X, a0) x′
1x

′
2 x′

1x̄2
′ x̄1

′x′
2 x̄1

′x̄2
′

x1x2 100% 0% 0% 0%

x1x̄2 30% 30% 20% 20%

x̄1x2 80% 0% 20% 0%

x̄1x̄2 0% 80% 0% 20%

Fig. 3. Regression with structured representations using the values computed in Table 1. We con-
sider the first iteration where Tree(V ) = Tree(R). Notice that transitions to x̄1x2 and x̄1x̄2 are
summed to x̄1.

On top of Regress, SVI and SPI behave differently. In SVI, the value function
Tree(V ) is computed by merging the set of action-value functions Tree(QV

a ) using
maximization as combination function. It is shown in (Boutilier et al., 2000) that,
given a perfect knowledge of the transition and reward functions and starting with
Tree(V0) = Tree(R), Tree(V ) converges in a finite number of time steps to the opti-
mal value function Tree(V ∗). Then one can extract Tree(π∗) from Tree(V ∗) using a
simple tree-based greedy operator.

In SPI, the process is slightly more complex. Policies Tree(π) and value functions
Tree(V π) are computed iteratively until convergence, making profit of the structure
of Tree(π) to optimize the computation of Tree(V π). We do not detail the algorithm
since ours is based on SVI, but transferring the approach described in section 3 to SPI is
straightforward.

2.2 SPITI

Reinforcement Learning in FMDPs is generally about the case where the structure of the
DBNs are given, but the parameters of the CPDs are learnt from experience. By contrast,
we call Factored Reinforcement Learning (FRL) the case where the structure of the
DBNs itself is learnt.

An implementation of FRL is expressed in the SDYNA framework (Degris et al.,
2006a; Degris et al., 2006b) as a structured version of the DYNA architecture (Sutton,
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1991). In SDYNA, the model of transitions and of the reward are learned from experience
under a compact form. The inner loop of SDYNA is decomposed into three phases:

– Acting: choosing an action according to the current policy, including some explo-
ration;

– Learning: updating the model of the transition and reward functions of the FMDP

from 〈X, a,X ′, R〉 observations;
– Planning: updating the value function Tree(V ) and policy Tree(π) using one

sweep of SDP algorithms.

SPITI is a particular instance of SDYNA using ε-greedy as exploration method, the In-
cremental Tree Induction (ITI) algorithm (Utgoff, 1989) to learn the model of transitions
and reward functions as a collection of decision trees, and the inner loop of SVI as plan-
ning method. An algorithmic description is given in (Degris et al., 2006b).

3 Dealing with Impossible States

The techniques presented so far address the case where there are no synchronic arcs
in the DBNs that represent the structure of FMDPs. On the other extreme, the authors
of (Boutilier et al., 2000) propose to model the case where the variables are not inde-
pendent by adding synchronic arcs between variables at t + 1 and recording the joint
probabilities of all groups of variables that are connected by such synchronic arcs. This
results in more complex, slower and more memory-intensive algorithms, but that can
deal with a much wider class of problems. A more detailed study of that case is pre-
sented in (Boutilier, 1997).

In this paper, we address a class of problems that is intermediate between the “no
synchronic arcs” and the “any synchronic arcs” classes. It corresponds to problems
where the variables at t+1 behave as if they were independent, but some combinations
of values for some variables do not occur in practice, which contradicts the indepen-
dence assumption. We show below how such a situation can be modeled without using
the general class of problems with synchronic arcs in the DBNs.

3.1 Modeling Impossible States

The class of problems we want to address can be modeled with the kind of DBNs shown
in Fig. 4, given that there is one such DBN for each action. In this representation, there
are no synchronic arcs between variables at t + 1, but there are some constraints K on
whether some combinations of variable values are possible or not. K (resp. K ′) stands
for the knowledge of impossible states x (resp. x′). The values of K and K ′ are either
true or false depending on the possibility of the corresponding states.

As we illustrate in the experimental section, without using such constraints, the
Tree(V ) and Tree(QV

a ) structures may represent many states that do not occur in
practice. Dealing with the constraints explicitly is a way to avoid the computational and
memory overhead resulting from this useless information by filtering out all impossible
states in the data structures.

We show below that this filtering can be performed safely just by discarding the
impossible states and normalizing again the probabilities when it is necessary.
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Fig. 4. DBN representation for problems with independent variables and impossible states. K
and K′ stand for constraints stating if a particular combination of values is possible. Variables in
gray are observed. K′ and relevant Xj are used to predict X ′

i for all i. K′ does not necessarily
depend on all X ′

i .

3.2 Impact on Regression

Let us show that the values computed by PRegress taking the constraints into account,
i.e. Σx′P (X ′|x, a, k′).V (x′), are equal to the values one would obtain without taking
these constraints into account, just leaving the impossible states away and normalizing
again the probabilities.

First, with the representation above, the probability distribution of X ′ for a par-
ticular action a can be computed given the values of the variables xi and the value
k′ of the common constraint K ′. Indeed, the distribution of X ′ can be expressed as
P (X ′|x, k′)∝P (k′|X ′, x)P (X ′|x). Furthermore we have P (K ′|X ′, X)=P (K ′|X ′),
since K ′⊥⊥X |X ′. Thus, we have:

P (X ′|x, k′) ∝ P (k′|X ′)P (X ′|x) (2)

and P (k′|X ′) = 0 or 1 depending on the constraint.
If the variables are independent, we have P (X ′|x, a, k′) =

∏
i P (X ′

i|x, a) =∏
i P (X ′

i|parent(X ′
i), a), thus we are in the standard context where the proof of con-

vergence given in (Boutilier et al., 2000) applies.
Now, if we consider impossible states, from (2) we have∑

x′
P (X ′|x, a, k′) =

∑
x′

Nx,aP (k′|X ′)P (X ′|X, a) (3)

where Nx,a is a normalization factor such that

∀x, ∀a,
∑
x′

Nx,aP (k′|X ′)P (X ′|X, a) = 1.

In (3), there are two categories of terms. IfX ′ corresponds to impossible states, we have
P (k′|X ′) = 0 and the corresponding term is removed. Otherwise, the state variables in
X ′ are independent thus P (X ′|x, a, k′) =

∏
i P (X ′

i|parent(X ′
i), a) and P (k′|X ′) =

1. Thus (3) can be simplified as



Considering Unseen States as Impossible in Factored Reinforcement Learning 727

Table 2. Transition probabilities for joint variables resulting from Fig. 2, given that x̄1
′x′

2 is
impossible

P (X ′|X, a0, k
′) x′

1x
′
2 x′

1x̄2
′ x̄1

′x̄2
′

x1x2 100% 0% 0%

x1x̄2 37.5% 37.5% 25%

x̄1x̄2 0% 0% 100%

∑
x′

Nx,aP (k′|X ′)
∏

i

P (X ′
i|parent(X ′

i), a))

where only the existing states remain. We are back to the situation where we consider
only possible states with independent variables and the proof from (Boutilier et al.,
2000) applies again.

From the result above, it turns out that, if we take the constraints into account, the
values can be computed in PRegress as in the case without dependencies, just discard-
ing the impossible states and normalizing again so that the sum of probabilities over all
remaining states is 1.

Note that this way to remove impossible states in the computation of PRegress is
the only one which results in the possibility to renormalize. Otherwise, if, for instance,
we remove the leaves corresponding to impossible states in Tree(QV

a ) or Tree(V ),
we cannot perform the normalization since the probability information is lost in these
trees. Furthermore, in addition to being theoretically well-founded, this way of filtering
out impossible states at the heart of the PRegress operator is much more efficient
than filtering later on, since this other solution would result in expanding the number of
leaves in the value tree before reducing it, which is exactly what we want to prevent.

To illustrate our approach, let us consider again the example given in the previous
section. Now, assume that we have some information that the state x̄1x2 is impossible.
As a consequence, P (x̄1

′x′2) is null and the probability of any state at t+ 1 given x̄1x2
is pointless. Thus, the corresponding probabilities in Table 1 must be filtered out and
the remaining values must be renormalized as shown in Table 2. Here again, Table 2
is not computed explicitly, it is represented as a tree as in the standard case, adding in
the algorithm the filtering out of the branches corresponding to impossible states and
finally normalizing again the values at the leaves.

3.3 Impact on Other Tree Operations

After modifying PRegress as presented above, the trees corresponding to (3) are free
from impossible states for all actions.

But then, performing a Bellman-backup according to equation (1) and the other oper-
ations required to run SVI or SPI implies some operations over the resulting trees. As ex-
emplified in Fig. 5, despite the filtering performed in PRegress, simple operations on
several value-related trees (Tree(R), Tree(V ), Tree(QV

a )) can generate leaves repre-
senting impossible states if these trees do not share the same structure. Indeed, whereas
generalization over identical values can “hide” the expression of impossible states in
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Fig. 5. Combining two trees can generate leaves about impossible states (here, x̄1x2 is impossi-
ble)

the source trees, the operations can make these states appear in the resulting trees. As a
result, we must filter impossible states out in such operations.

3.4 IMPSPITI

So far, we have described modifications that apply to SDP algorithms. To evaluate the
impact of these considerations in the context of FRL, we design a new system inspired
from SPITI, called IMPSPITI, that incorporates the following modifications in its Plan-
ning phase:

– in PRegress, when computing the joint probabilities over variable values, the
branches in the tree corresponding to impossible states are discarded and the prob-
abilities are normalized again;

– in the sum Tree(R(x, a)) + γ
∑

x′ Tree(P (x′|X, a))Tree(V (x′)) and the maxi-
mization Tree(V ) = argmaxa Tree(Q

V
a ), the branches of the resulting tree cor-

responding to impossible states are discarded;

The model of transition and reward functions being learnt from experience, they can-
not contain impossible states, thus the Learning phase does not need to be modified.
Algorithm 1 schematically describes the planning phase if IMPSPITI.

Finally, we need a function to decide that a state is impossible. Since this function is
called at three places in each step of the central iteration, it may result in a significant
time overhead.

Algorithm 1. IMPSPITI- Planning phase
Input : FMDP F [Tree(P (x′|x, a))], Tree(Vt−1);
1. Tree(Qt

a) = addTrees[Tree(R(x,a), γ.PRegress[Tree(Vt), a, Nx,a]] for each action
a ∈ A discarding impossible states in addTrees()
2. Tree(Vt) = MaxMergea[Tree(Qt

a)] discarding impossible states in MaxMerge().
3. Return : Tree(Vt) and {Tree(Qt

a),∀a ∈ A}.

In the experimental section, we will compare two approaches. One consists in using
problem specific expert rules. The second is more general, it consists in building a tree
where the states already visited by the agent are stored as possible. Thus we consider all
states that have not been visited yet as impossible. In the worst case, this representation
would boil down to the complete enumeration of states, but this is also true for the trees
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manipulated in standard SDP algorithms (see (Boutilier et al., 2000) for a discussion). In
most cases of interest, however, this representation will benefit from factorization over
states.

4 Experimental Study

To illustrate the benefits of our approach, we perform experiments on two benchmarks:
MAZE6 and BLOCKS WORLD. The algorithms are coded in C# and run on Intel
Core2Duo 1.80GHz processor with 2Go RAM. All results presented below are averaged
over 50 runs where each run performs 50 episodes limited to 50 steps. The ε-greedy
exploration policy uses ε = 0.1.

4.1 Maze6

Maze environments are standard benchmark problems in the Learning Classifier Sys-
tems (LCSs) literature, LCSs being a heuristic approach to FRL (see (Sigaud & Wilson,
2007)). Mazes are represented by a two-dimensional grid. Each cell can be occupied by
an obstacle, denoted as variable value by a ‘1’, a reward, denoted by a ‘R’, or can
be empty, denoted by a ‘0’. The agent perceives the eight adjacent cells starting with
the cell to the north and coding clockwise. Fig. 6 shows MAZE6, one of such mazes,
designed so that Markov property holds.

For example, an agent located in the cell below the reward perceives ‘R1110011’
whereas an agent located as shown in Fig. 6 perceives ‘00110101’. Although there
are only 37 actual states within the problem, the combinatorial representation results in
38 = 6561 states. The agent can perform eight actions, the movements to adjacent cells.
If a movement leads to a cell containing an obstacle, the action has no effect and there is
no penalty. In the stochastic case, the chosen action may result in a move corresponding
to an immediately adjacent action, with probability 10%. Once the reward position is
reached, the environment provides a reward of 1000 and the episode ends. In that case,
the agent starts again in a randomly chosen empty cell.

Fig. 6. Maze6
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4.2 Blocks World

In the BLOCKS WORLD problem, introduced in (Butz et al., 2002) (see Fig. 7), b blocks
are distributed over a given number s of stacks. At the beginning of each episode, blocks
are distributed randomly. The agent can manipulate the stacks by the means of a gripper
that can either grip or release a block on a certain stack. Additionally, the problem
contains a goal state, which consists in putting a particular number y ≤ b of blocks on
the left hand stack. The stacks are not limited in height. Fig. 7(d) shows the goal in the
problem with b = 4, s = 3, y = 3.

The complexity of BLOCKS WORLD highly depends on the representation chosen to
encode the states. We developed three such representations.

The first is the one used in (Butz et al., 2002). We call it Binary representation.
The agent perceives the current blocks distribution coding each stack with b variables.
One additional variable indicates if the gripper is currently holding a block. In this
representation, many arbitrary combinations of variable values correspond to states that

(a) (b) (c) (d)

Fig. 7. A BLOCKS WORLD scenario, from a random initial position (a) to the goal position (d)

Table 3. BLOCKS WORLD representations of the situation given in Fig. 7 (G stands for gripper)

(a) (b) (c) (d)

BINARY

0000,0000,1110,1 1000,0000,1110,0 1000,0000,1100,1 1110,0000,0000,1

STACKS

STACK1=0 STACK1=1 STACK1=1 STACK1=3
STACK2=0 STACK2=0 STACK2=0 STACK2=0
STACK3=3 STACK3=3 STACK3=2 STACK3=0
G =TRUE G =FALSE G =TRUE G =TRUE

BLOCKS

BLOCK1=S3 BLOCK1=S3 BLOCK1=S3 BLOCK1=G
BLOCK2=S3 BLOCK2=S3 BLOCK2=S3 BLOCK2=S1

BLOCK3=S3 BLOCK3=S3 BLOCK3=G BLOCK3=S1

BLOCK4=G BLOCK4=S1 BLOCK4=S1 BLOCK4=S1



Considering Unseen States as Impossible in Factored Reinforcement Learning 731

do not occur in practice. Indeed, all states where a block is lying neither on top of
another block nor on the table are impossible. The more empty cells in the problem, the
more such impossible states.

In the second representation (called Stacks), there is one variable per stack giving
the number of blocks it contains, and one additional variable indicating if the gripper is
holding a block. The impossible states are the states where the total number of blocks is
not b. Thus, in that case, an ad hoc way to decide if a state is possible consists in simply
summing the represented blocks and comparing to b.

Finally, the third representation (called Blocks), there are b variables whose values
are given by the gripper or stack where the corresponding block is currently placed. The
only impossible states are the ones where several blocks are in the gripper, which gives
a straightforward ad hoc rule to decide if a state is possible. The major drawback of
this representation is that, blocks being identical, there are many ways to represent the
same state of the problem. For instance, {block1=s1, block2=s2, . . .} and {block1=s2,
block2=s1, . . .} represent the same configuration and there are 12 different ways to
represent Fig. 7(c). This results in a greater number of possible states than necessary,
thus in more complex value and policy trees structures.

Table 3 shows an example of these three representations with b = 4, s = 3, y = 3.

4.3 Empirical Results

Table 4 recaps the performance on MAZE6 of SPITI and IMPSPITI and Fig. 8 shows
their convergence speed in number of episodes considering the number of steps needed
to perform each episode.

IMPSPITI clearly outperforms SPITI both in the deterministic and in the stochastic
case: it converges faster in time and in number of learning episodes, but also requires
less memory to represent value and policy functions. More precisely, IMPSPITI only
considers the 37 states that are actually possible (the variance in value and policy size
comes from cases where the run ended before all states were explored).

Fig. 9 shows on different BLOCKS WORLD problems the value function size, com-
puted as the number of leaves in Tree(V ) after 50 episodes.

Table 5 gives the rate of impossible states derived from the number of states shown
in labels in Fig. 9 and the time required to perform one learning step by SPITI and
IMPSPITI respectively. IMPSPITI uses trees to represent impossible states (the time with
the ad hoc rules described in section 4.2 is indicated between parentheses).

Fig. 10 shows the convergence speed in number of episodes for the BLOCKS WORLD

of size 4-3-4, that is a representative middle size problem. IMPSPITI takes less episodes

Table 4. MAZE6 performance (cost in memory and time)

Value size Policy size Time/step(sec)

SPITI det 214 ± 10 241 ± 4 1.7 ± 0.8
SPITI stoc 252 ± 14 240 ± 12 3.7 ± 1.2
IMPSPITI det 35 ± 2 35 ± 2 0.1 ± 0.08
IMPSPITI stoc 35 ± 2 35 ± 2 0.24 ± 0.1
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Fig. 8. Convergence over episodes on MAZE6

(A) BINARY (B) STACKS (C) BLOCKS

Fig. 9. BLOCKS WORLD: value function size as a function of the size of the problem. Labels on
points indicate this value / the total number of states considered. Note the log scale for Binary.

(A) BINARY (B) STACKS (C) BLOCKS

Fig. 10. BLOCKS WORLD performance along episodes (size 4-3-4). We run 70 episodes with
Blocks to wait for convergence.

than SPITI to reach the optimal policy with all representations. This result is explained
by the fact that IMPSPITI uses smaller trees with a simpler structure, therefore it takes
less steps to propagate values over the trees. But note that, as expected, the difference
is smaller when the rate of impossible states is smaller. Note also that, even when there
are very few impossible states as is the case with the Blocks representation, the policy
improves faster with IMPSPITI.

Now, comparing the performance in time on a single step from Table 5, in Bi-
nary representation, where the rate of impossible states grows very fast, IMPSPITI
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Table 5. BLOCKS WORLD: rate of impossible states and time to perform one step (in seconds).
A “-” indicates that the value could not be obtained after three days of computation.

BINARY STACKS BLOCKS

B-S-Y SPITI IMPSPITI SPITI IMPSPITI SPITI IMPSPITI

3-3-3
% IMP. 98.5% 87.5% 15.6%
TIME 0.28 ±0.03 0.04 ± 0.01 0.05 ±0.02 0.01 (0.01) 0.04 0.03 (0.03)

4-3-4
% IMP. 99.7% 90% 26.1%
TIME 2.9 ± 0.4 0.08 ± 0.01 0.06 ±0.02 0.01 (0.01) 0.17 ± 0.02 0.18 ± 0.01 (0.13 ± 0.01)

4-4-3
% IMP. >99.99% 95.6% 18%
TIME 34 ± 7 1.2 ± 0.2 0.13 ± 0.06 0.02 (0.02) 0.34 ± 0.2 0.9± 0.07 ( 0.5 ± 0.03)

5-4-4
% IMP. >99.99% 96.5% 26.3%
TIME - 2.6 ± 0.3 0.2 ± 0.09 0.05 (0.04) 2.6 ± 0.3 6.5 ± 0.9 (3.1 ± 0.2)

unquestionably outperforms SPITI in time and memory use. With the Stacks represen-
tation, both the size of the problem and the rate of impossible states grows slower, thus
the time difference between SPITI and IMPSPITI keeps small. Finally, the rate of im-
possible states is much smaller in the Blocks representation, therefore both algorithms
perform similarly for small BLOCKS WORLDs and SPITI takes less time per step than
IMPSPITI as the problem size grows, due to the time overhead required to check for the
existence of states. This is also true using ad hoc rules to detect impossible states, even
if the overhead is smaller in that case.

5 Discussion

The first message of this paper is that, although using a factored representation in re-
inforcement learning results in the possibility to address larger problems, designing
a factored representation so that it does not artificially increase the number of con-
sidered states may be very difficult. Consider the MAZE6 problem, where there are
only 37 states, but a somewhat standard factored representation may result in 6561 po-
tential states. This problem is an idealization of a standard robot navigation problem
where, given usual robot sensors, one could not say in advance which sensory values
cannot occur simultaneously. Similarly, if we take the BLOCKS WORLD problem, it
proved difficult to design a representation that would fit the number of actual states.
The Blocks representation results in fewer impossible states, but at the price of some
redundancy that makes it very inefficient for larger problems (for instance, with a size
6-5-5 problem, we have 34375 possible states represented whereas there are only 334
actual states). We have shown that IMPSPITI was able to stick to the number of possible
states of the problem given a representation, resulting in the possibility to address a
much wider class of FMDPs than standard SDP methods.

Our second message is about the time overhead resulting from the necessity to check
whether a state is possible. Considering the computation time per step and the number
of steps required to converge, IMPSPITI always performs faster if there are enough im-
possible states. More precisely, as illustrated with the Blocks representation, the larger
the problem, the larger the necessary rate of impossible states, since the tree of possible
states will grow larger, resulting in a large overhead. However, using domain specific
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rules to detect impossible states generally results in a further gain in speed, but it is at
the price of generality.

Finally, the fact that the policy improves faster with IMPSPITI than with SPITI even
when there are very few impossible states, as is the case with the Blocks representation,
tends to indicate that considering states as impossible until they are seen is an effi-
cient heuristics even in the absence of actually impossible states. This heuristics itself
will deserve further analyses. In particular, it would be of much interest to study the
potential interactions between this pessimistic heuristics and using efficient optimistic
exploration strategies such as “Optimism in the Face of Uncertainty” (Szita & Lőrincz,
2008) that drives the agent towards unseen states. At first glance, these heuristics are
contradictory, since in the former we do not want to represent impossible states which
we do not distinguish from unseen states, whereas in the latter we want to attribute a
large value to unseen states, thus we need to represent them.

6 Conclusion

We have shown that there exists a practically relevant class of FMDPs between the “no
synchronic arcs” and the “any synchronic arcs” classes that corresponds to problems
where some combinations of state variable values do not occur. Though standard SDP

algorithms such as SVI and their derivatives such as SPITI can be applied to this class of
problems, we have shown that modifying the algorithm to take the presence of impos-
sible states into account can result in significant performance improvements. Moreover,
we have shown that, in the context where an agent has to explore its environment to
learn its structure, considering as impossible the states that have not yet been encoun-
tered is also beneficial to the performance.

Note that the approach described in section 3 can be applied to other standard SDP

algorithms. Here, we focused on one particular FRL method, namely SPITI, but the im-
pact on other instances of SDYNA using SPUDD or Guestrin’s linear programming ap-
proach (Guestrin et al., 2003) remains to be studied. Furthermore, we want to compare
IMPSPITI with XACS (Butz et al., 2002), an Anticipatory Learning Classifier System
endowed with most FRL systems properties, but which uses genetic algorithm heuris-
tics instead of SDP and incremental tree induction methods. A previous comparison
between XACS and SPITI (Sigaud et al., 2009) has shown that XACS can deal efficiently
with impossible states, but a closer comparison between the mechanisms of IMPSPITI

presented here and those of XACS remains to be performed.
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Abstract. Probabilistic relational models are an efficient way to learn

and represent the dynamics in realistic environments consisting of many

objects. Autonomous intelligent agents that ground this representation

for all objects need to plan in exponentially large state spaces and large

sets of stochastic actions. A key insight for computational efficiency is

that successful planning typically involves only a small subset of relevant

objects. In this paper, we introduce a probabilistic model to represent

planning with subsets of objects and provide a definition of object rele-

vance. Our definition is sufficient to prove consistency between repeated

planning in partially grounded models restricted to relevant objects and

planning in the fully grounded model. We propose an algorithm that ex-

ploits object relevance to plan efficiently in complex domains. Empirical

results in a simulated 3D blocksworld with an articulated manipulator

and realistic physics prove the effectiveness of our approach.

1 Introduction

Artificial Intelligence investigates systems that act autonomously in complex en-
vironments. Such systems need to be able to reason under time pressure about
their world in order to derive plans of actions and achieve their goals. This re-
quires probabilistic relational knowledge representations that can deal with the
stochasticity of actions, cope with noise and generalize over object instances.
Complex environments typically contain very many objects. Consider for exam-
ple a household robot, that has to represent all kinds of furnitures, dishes, house
inventary etc. together with their properties and relationships. Such realistic do-
mains comprise state spaces that are exponential in the number of represented
objects and large sets of stochastic actions. Research in A.I. over the last years
has led to world models that describe the action effects and state transitions
compactly in terms of abstract logical formulae and can be learned from expe-
rience. However, how to exploit this model compactness for planning remains a
major challenge. Planning in the fully grounded representation is often a hopeless
undertaking as the state space quickly grows for all but the smallest problems.
This problem is often simply ignored by designing the domain carefully to only
contain those domain aspects which are relevant for successful planning. For
truly autonomous agents operating continuously with changing tasks, however,
we require principled ways to make planning in complex environments tractable.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part I, LNAI 5781, pp. 736–751, 2009.
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Models of human cognition provide an inspiring idea of how one may plan in
a highly complex world. Humans are often assumed to possess declarative world
knowledge about the types of objects they encounter in daily life [1] which is
presumably stored in the long-term memory. For instance, they know that piling
dishes succeeds the better the more exactly aligned these dishes are. This ab-
stract knowledge is independent of any concrete dish instances or other unrelated
objects (such as lamps and cars) and is akin to the abstract probabilistic rela-
tional models in A.I.. When planning, human beings may reason about objects
according to their abstract world knowledge [3], i.e., they ground their abstract
world model with respect to these objects. Such reasoning is often assumed to
take place in the working memory, a cognitive system functioning as a work-space
in which recently acquired sensory information and information from long-term
memory are processed for further action such as decision-making [2] [16]. This
system has limited capacity and humans can only take some selected objects into
account – those they deem relevant for the problem at hand. For example, when
planning to prepare a cup of tea, they do not consider the frying pan in the
shelf or a soccer ball in the garage. One can view this as grounding the abstract
world knowledge only with respect to these relevant objects, thereby enabling
tractable planning.

In this paper, we take up this idea and exploit the great advantage of abstract
relational world models to be applicable to arbitrary subsets of objects. First,
we define object relevance in terms of a graphical model. This allows us then
to prove consistency between repeated planning in partially grounded models
restricted to relevant objects and planning in the fully grounded model. Thereby,
we reformulate the original intractable problem into tractable versions where we
can apply any efficient planning method to solve our problem at hand, enabling
real-time planning and planning with quickly changing goals. Empirical results in
an extended simulated 3D blocksworld with realistic physics and an articulated
manipulator using a learned world model show the effectiveness of our approach.

The remainder of this paper is organized as follows. In the next section, we
present relational world models and discuss the difficulties of planning in the fully
grounded representation. In Section 3, we introduce our approach of Relevance
Grounding. In Section 4, we present our empirical results. In Section 5, we discuss
related work before we conclude.

2 Background

2.1 Compact World Models

A relational domain is represented by a relational logic language L: the set of
logical predicates P and the set of logical functions F contain the relationships
and properties that can hold for domain objects. The set of logical predicates A
comprises the possible actions in the domain.

A concrete instantiation of a relational domain is made up of a finite set of
objects O. If the arguments of a predicate or function are all concrete, i.e. taken
from O, we call it grounded. A concrete world state s is fully described by all
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grounded predicates and functions. Concrete actions a are described by positive
grounded predicates from A.

The arguments of predicates and functions can also be abstract logical vari-
ables which can represent any object. If a predicate or function has only abstract
arguments, we call it abstract. We will speak of grounding an abstract formula
ψ if we apply a substitution σ that maps all of the variables appearing in ψ to
objects in O.

A relational model T of the transition dynamics specifies P (s′|a, s), the prob-
ability of a successor state s′ if action a is performed in state s. T is usually
defined compactly in terms of abstract predicates and functions. This enables
abstraction from object identities and concrete domain instantiations. For in-
stance, the effects of trying to grab a cup may be defined by a single abstract
model for all concrete cups. To apply T in a given world state, one needs to
ground T with respect to some of the objects in the domain.

Examples of abstract transition models include relational probability trees for
predicates and functions based on abstract logical formulae [6] and probabilistic
relational rules, e.g. in the form of STRIPS-operators. An example of the latter
are the noisy indeterministic deictic (NID) rules [15] which will be our running
example in this paper and which we briefly review here. A NID rule r is given
as follows

ar(X ) : Φr(X ) →

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pr,1 : Ωr,1(X )

...
pr,mr : Ωr,mr (X )
pr,0 : Ωr,0

, (1)

where X is a set of logic variables in the rule (which represent a (sub-)set of
abstract objects). The rule r consists of preconditions, namely that action ar

is applied on X and that the state context Φr is fulfilled, and mr +1 different
outcomes with associated probabilities pr,i > 0,

∑
i=0 pr,i = 1. Each outcome

Ωr,i(X ) describes which predicates and functions change when the rule is applied.
The context Φr(X ) and outcomes Ωr,i(X ) are conjunctions of literals constructed
from the predicates in P as well as equality statements comparing functions from
F to constant values. The so-called noise outcome Ωr,0 subsumes all possible
action outcomes which are not explicitly specified by one of the other Ωr,i. The
arguments of the action a(Xa) may be a true subset Xa⊂X of the variables X
of the rule. The remaining variables are called deictic references DR = X \ Xa

and denote objects relative to the agent or action being performed.
As above, let σ denote a substitution that maps variables to constant objects,

σ : X → O. Applying σ to an abstract rule r(X ) yields a grounded rule r(σ(X )).
We say a grounded rule r covers a state s and a ground action a if s |= Φr and
a = ar. By grounding NID rules, we can predict successor states for a given
state. NID rules can be learned from experience triples (s, a, s′) using a batch
algorithm that trades off the likelihood of these triples with the complexity of
the learned rule-set. For more details, we refer the reader to Pasula et al. [15].
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2.2 Planning in Ground Representations

Our goal is to plan in the ground relational domain: find a “satisficing” ac-
tion sequence that will lead with high probability to states with large rewards.
While a relational transition model T provides a very compact description of
the dynamics of the world, this compactness does not carry over to planning.
Grounding the relational representation language L w.r.t. all domain objects O
results in a state space that is exponential in |O|. Thus, evaluating an action se-
quence is exponential in |O|. Furthermore, the set of ground actions and thus the
search space of plans scales with the number of objects. (Planning is even further
complicated due to the stochasticity of actions.) Planning is only tractable in
case |O| is very small. In most realistic scenarios, |O| is rather large, however.
Fortunately, it often suffices to take only the objects that are relevant for the
planning problem into account. In the next section, we will introduce Relevance
Grounding which formalizes this idea in a systematic way. To plan in grounded
models, we use the PRADA algorithm [14] in this paper. PRADA converts NID
rules into dynamic Bayesian networks, predicts the effects of action sequences
on states and rewards by means of approximate inference and samples action
sequences in an informed way. PRADA has the crucial advantage to evaluate an
action sequence very efficiently, in particular in time linear in its length.

3 Relevance Grounding

In the following, we introduce a probabilistic model which expresses the coupling
between state sequences, action sequences, objects and rewards. This model will
help to formalize what planning with subsets of objects implies. In particular,
we will be able to derive results on planning with subsets of objects – which
corresponds to conditioning on object-sets o.

Assume our domain contains objects O. By M we denote the model grounded
for all objects, including the complete state and action space (all ground predi-
cates and functions w.r.t.O), which defines the state transition dynamics accord-
ing to some given relational transition model T . Let a = (a1, . . . , aT ) denote a
plan, i.e., a sequence of actions. Let s = (s1, . . . , sT ) denote a sequence of encoun-
tered states. We assume that in a given trial (s, a) certain objects are relevant
while others are not. For example, an object o is relevant if it is an argument
of one of the actions in a. We give a concrete definition of object relevance
in Sec. 3.1. For now, we only assume that, in general, object relevance can be
expressed by a conditional probability P (o|s, a) where o is a random variable
referring to a subset of O. Let R denote the event of achieving a reward at the
end of a trial1. We assume the following joint distribution over these random
variables:

P (R,o, s,a;M) = P (R | s, a;M)P (o | s, a;M)P (s | a;M)P (a;M) (2)
1 When we assume a geometric prior on the trial length, the expected reward is equiv-

alent to the sum of discounted rewards when rewards are given in each time-step –

see Toussaint et al. [18] for details.
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Note that all conditional distributions depend on the model M . In absence of
goals or rewards, we assume a uniform prior over plans P (a;M), discounted by
their length T by a discount factor 0<γ< 1 (see footnote 1). In the following,
we will eliminate s, i.e., we consider

P (R,o,a;M) =
∑
s

P (R,o, s,a;M) = P (R | o,a;M)P (o | a;M)P (a;M) ,

(3)
where R now conditionally depends on o.

Generally, planning requires finding the maximizing argument a∗ of the fol-
lowing distribution:

P (a | R;M) ∝ P (R | a ; M)P (a;M) . (4)

Finding plans with high P (a | R;M) is a difficult task for the following rea-
sons: (i) the search space of a scales with the number of objects; (ii) evaluating
P (R | a;M) is difficult as M ’s state space is exponential in the number of objects
O. To overcome this problem, we observe that we can decompose

P (a | R;M) =
∑

o P (a | o, R;M)P (o | R;M) (5)

where P (o | R;M) is defined as

P (o | R ; M) ∝
∑
a

P (R | o, a ; M)P (o | a;M)P (a;M) . (6)

P (o | R;M) is a measure for the relevance of object-sets with respect to the
reward. Note that this posterior favors small object-sets due to the prior over
plan lengths in P (a;M). If every successful plan makes use of object o, then for
each o with P (o | R ; M) > 0 we have o ∈ o . In this case, we call o necessary for
R. Using this formalization of the relevance of object-sets, Eq. (5) provides us
a way to decompose the above planning problem into two stages: (i) sampling
of object-sets using P (o | R;M); (ii) finding plans with high P (a | o, R;M)
corresponding to planning conditioned on a set of relevant objects. The key idea
is that the conditioning on o in stage (ii) may significantly reduce the cost of
planning, as we will discuss below.

3.1 A Sufficient Definition of Relevance

We will now provide a definition of P (o|s, a) which we have neglected thus far.
For a given pair (s,a), we define the set Ω of relevant object-sets as

Ω(s,a) = {o ⊆ O | ∀t, 0≤ t<T : P (st+1 | st, at;M) = P (st+1 | st, at;Mo)
∧ ∀o′⊂o,o′ �=o ∃t, 0≤ t<T : P (st+1 | st, at;M) �= P (st+1 | st, at;Mo′)} (7)

where Mo is the reduced model including only the objects o with their groundings
of predicates and functions. P (st+1|st, at;Mo) is defined such that all predicates
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and functions with at least one argument o �∈o persist from st and are ignored
while calculating transition probabilities, and we define the action prior in the
reduced model as P (a;Mo) = P (a|o;M). Ω(s, a) comprises minimal object-sets
that are required to predict the state transitions correctly for a specific trial
(s,a). Note that |Ω(s,a)| ≥ 1 for all (s, a). We define P (o|s, a) as

P (o | s, a) =
I(o ∈ Ω(s, a))
|Ω(s, a)| . (8)

Intuitively, relevant object-sets are those that are taken into account to calculate
the transition probabilities in s for a given a. Clearly, they include the objects
which are manipulated, i.e., whose properties or relationships change. We call
these actively relevant. There are also passively relevant objects which are taken
into account by the world dynamics model T . For instance, imagine the task to
go to the kitchen and prepare a cup of tea. The tea bag, the cup and the water
heater are actively relevant objects. If the kitchen has two doors and one of them
is locked, then the latter is passively relevant: we cannot manipulate, i.e. open,
it, but it plays a role in planning as its being locked determines the other door
to be necessary. A more technical example of object relevance is given below.

In general, there might be alternative interesting definitions of object rele-
vance, e.g. where the transition probabilities in Eq.(7) only hold approximately.
We chose the above definition because it is sufficient to a certain consistency for
planning in reduced models:
Lemma 1. When conditioning on a subset o of relevant objects, the following
probabilities in the reduced model Mo are the same as in the full model M :
(a) State sequences: P (s | o,a;M) = P (s | a;Mo)
(b) Rewards: P (R | o,a;M) = P (R | a;Mo)
(c) Action sequences: P (a | o, R;M) = P (a | R;Mo)

Proof. If o ∈ Ω(s,a), we have:

P (s|o,a;M)=
T−1∏
t=0

P (st+1|o, st, at;M)=
T−1∏
t=0

P (st+1|st, at;Mo)=P (s|a;Mo) .(9)

If o �∈ Ω(s, a), we have P (s | o, a;M) = 0. Similarly, s cannot be predicted in
Mo as only the irrelevant object-set o is available, so we get P (s | a;Mo) = 0.
Furthermore, we have:

P (R | o,a;M) =
∑
s

P (R, s | o,a;M) =
∑
s

P (R|s,o, a;M)P (s|o, a;M)(10)

=
∑
s

P (R | s, a;M)P (s | a;Mo) I(o ∈ Ω(s, a)) (11)

=
∑

s:o∈Ω(s,a)

P (R | s, a;M)P (s | a;Mo) = P (R | a;Mo) (12)

Finally, we have:

P (a | o, R;M) ∝ P (R | o, a;M) P (a | o;M) (13)
= P (R | a;Mo) P (a;Mo) ∝ P (a | R;Mo) �� (14)
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Table 1. Example of active and passive object relevance. Objects B and C are actively

relevant as their properties are changed. A is passively relevant as it determines rule

2 to model the transition dynamics. If it was ignored, rule 1 would be used instead

yielding wrong state transition probabilities.

Action: grab(B)

Rule 1:

grab(X) : on(X, Y ),¬on(Z, Y )

→ 1.0 : inhand(X), ¬on(X, Y )

Rule 2:

grab(X) : on(X, Y ), on(Z, Y )

→ 0.8 : inhand(X), ¬on(X, Y )

0.2 : ¬on(X, Y )

From Lemma 1 and Eq. (5) the following proposition follows directly:

Proposition 1. Given the joint in Eq. (2) and the definition of P (o | s, a) in
Eq. (8), it holds:

P (a | R;M) =
∑
o

P (a | R;Mo) P (o | R;M) (15)

An illustrative example of object relevance. The scenario in Table 1 illus-
trates active and passive object relevance. Two small blocks A and B are on top
of a big block C. Our goal is to hold B inhand. This can be achieved by means
of a plan consisting of a single action grab(B). Our transition dynamics model
contains two NID rules to model the grab-action. Rule 1 applies if the target
block is the only block on top, in which case grab always succeeds. Rule 2 applies
if the target block is not the only block on top. In this case, grab only succeeds
with probability 0.8; otherwise with probability 0.2, grabbing fails due to lack
of space and the target block is pushed off the big block instead. Clearly, in our
situation we have to use rule 2. Blocks B and C are manipulated and thus are
actively relevant, whereas A is passively relevant as it determines rule 2 to ap-
ply. If A was ignored, we would use rule 1 – yielding an erroneous higher success
probability. Similar scenarios are typical in physical worlds: the probabilities of
successful planning change when objects (e.g. potential obstacles) are added to
or removed from the scene even when they are not actively manipulated.

3.2 Planning with Relevant Objects

Our definition of object relevance and the subsequent discussion led to a crucial
observation: to find plans with high P (a | R;M), it is not necessary to use the
full model M including all objects O. As Proposition 1 shows, an alternative is
to find plans in the reduced models P (a | R;Mo) for object-sets o with high
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Algorithm 1. Relevance Grounding
Input: objects O, goal τ , relational transition model T , relevance distribution q(·),
number of relevance groundings Nrel, number of verifications Nver

Output: action sequence a

for i = 1 to Nrel do � Relevance grounding

Sample object-set oi ⊂ O according to q
Build reduced model Moi

ai = plan(τ ;Moi , T ) � Plan in reduced model

ψ(ai) = P (R | ai; Moi , T ) � Value in reduced model

end for
for i = 1 to Nver do � Verifying in original model

Let a denote plan with i-th largest ψ
Calculate Ψ(a) = P (R | a; M, T ) � Value in original model

end for
return argmaxaΨ(a)

relevance P (o | R;M). This makes planning more efficient due to the reduced
state and action spaces in Mo.

Obviously, we do not know P (o | R;M). If we knew the reward likelihoods
for all plans, i.e., if we had already planned, we could calculate this quantity
according to Eq. (6). However, planning is just the problem we are trying to
solve. Thus, we have to estimate this quantity by some distribution q(·) over
object-sets resulting in the approximate distribution Q(·) over plans defined as

Q(a;R,M) =
∑

o P (a | R;Mo) q(o;R,M) ≈ P (a | R;M) . (16)

The quality of Q(·) depends on the quality of the approximate relevance distri-
bution q(·). If q(·) is not exact, then a plan found in Mo may have lower success
probability when planning in M instead (cf. Table 1). Therefore, it is a good
idea to verify the quality of the proposed plan in the original model M or in a
less reduced model Mo′ with o ⊂ o′. This requires algorithms that can exploit
the transition dynamics T to efficiently calculate P (R |a) also in large models.

Algorithm 1 presents our complete Relevance Grounding method. Given an
estimator for object-set relevance q(·), we can find plans with approximately
high P (a | R;M) as follows: (i) we take samples o from q(·); (ii) we plan in
the reduced models Mo; (iii) we verify the resulting plans in the original or a
less reduced model; (iv) we return the plan with the best verified value. In this
paper, we employ NID rules as transition dynamics model T and use the PRADA
algorithm for planning which is in particular appropriate for verification as it
evaluates an action sequence in time linear in its length.

3.3 Learning Object Relevance

A crucial part in our proposed method is the relevance estimator of object-sets.
Learning such an estimator is a novel and interesting machine learning problem.



744 T. Lang and M. Toussaint

As we are using relational representations, we can generalize over object identi-
ties in our planning goals and transfer the knowledge gained in previous planning
trials to new, but similar problems. For a given goal τ , we can use our world
dynamics model to create training instances (σ0, τ,o, P (o | R)). This enables
us to learn object relevance based on nothing more than internal simulation (in
contrast to “real” experiences) – akin to human reflection about a problem. σ0 is
a description of the start state s0 and may involve all types of information, such
as discrete, relational and continuous features. We can employ any regressor that
can make use of the chosen features to learn a function q(o; s0, τ) → IR. A full
approach to learning object relevance is beyond the scope of this paper, but in
our first experiment (cf. Section 4.1) we will present an example of how to learn
object relevance in a straightforward way, based purely on internal simulation.

4 Experiments

We test our Relevance Grounding approach in an extended simulated blocks
world where a robot manipulates blocks and also balls scattered on a table. We
use a 3D rigid-body dynamics simulator (ODE) that enables a realistic behavior
of the objects. For instance, piles of objects may topple over or objects may
even fall off the table (in which case they become out of reach for the robot).
Object classes show different characteristics. For example, it is almost impossible
to successfully put an object on top of a ball, and building piles with small
objects is more difficult. The robot can grab objects and try to put them on
top of other objects or on the table. Its actions are affected by noise so that
resulting object piles are not straight-aligned. We assume full observability of
triples (s, a, s′) that specify how the world changed when an action was executed
in a certain state. We represent the data with predicates block(X), ball(X),
table(X), on(X,Y ), out(X), inhand(X), upright(X), clear(X) ≡ ∀Y.¬on(Y,X)
and functions size(X), color(X) for state descriptions and puton(X), grab(X)
and doNothing() for actions. If there are o objects and f different object sizes
and colors, the action space contains 2o+1 actions while the state space is
huge with f2o2o2+6o different states (not excluding states one would classify as
impossible given some intuition about real world physics).

We use NID rules described in Sec. 2.1 to model the state transitions. We
employ the rule learning algorithm of Pasula et al. [15] with the same parameter
settings to learn three different sets of fully abstract NID rules from independent
training sets of 500 experience triples each. Training data to learn rules are
generated in a world of ten objects (six blocks, four balls) of two different sizes
by performing random actions with a slight bias to build high piles. The resulting
rule-sets contain 11, 12 and 12 rules respectively. We use the PRADA algorithm
[14] for planning. We test our approach in worlds with varying numbers of blocks
and balls of two different sizes. Thus, we transfer the knowledge gained in the
training world to different, but similar worlds by using abstract NID rules. In
each experiment, for each object number we create five start situations with
different objects. Per rule-set and start situation, we perform three independent
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runs with different random seeds. In all scenarios, we make the assumption
that relevant object-sets contain 5 objects. We investigate different estimators to
determine these 5 objects. To evaluate each approach, we compute the planning
times and the mean performance over the fixed (but randomly generated) set of
45 test scenarios (3 learned rule-sets, 5 situations, 3 seeds).

4.1 Building High Piles

In our first experiment, we repeat the experiment of Pasula et al. which investi-
gates building high piles. Our starting situations are chosen such that all objects
have height 0 (are on the table) and our reward is the total change in object
heights. We let the algorithm run for 10 time-steps. We set PRADA’s planning
horizon to d = 6 and use a discount factor of γ = 0.95. If the world was deter-
ministic and objects could be stacked perfectly (such that objects could also be
stacked on balls), the optimal discounted total reward would be 37.04.

We investigate three different relevance estimators to determine the sets of
relevant objects. The random estimator samples objects randomly and indepen-
dently. The hand-made heuristic assigns high probability to big blocks (since
these are best to build with) and to objects that are either part of a high pile
or on the table (in order to build higher piles). Once it has sampled an object,
it assigns high probability to objects within the same pile as these might be
required for deictic referencing in the NID rules (passive object relevance).

Furthermore, we investigate a simple learned estimator of object relevance
from which we sample objects independently. We use linear regression to learn
from discrete and logical object features, namely object size, type, color, height
and clearedness. Training data are generated solely by internal simulation with
the PRADA algorithm (in contrast to using the “real” ODE simulator) as follows:
for a given situation, we randomly sample 5 objects and derive a plan in the
partially grounded network; this plan is then evaluated in the full network and
the resulting value is used as relevance estimate for these 5 objects. Note that
this procedure does not require real experiences as it is fully based on internal
reasoning about which features make an object relevant according to the learned
world model (the NID rules in our case). The resulting learned estimator ignores
object color as expected, but takes all other features into account, favoring clear
big blocks at high heights. We compare these three relevance estimators to the
full-grounding baseline which plans in the fully grounded model.

Table 2 presents our results. The mean performance of the heuristic is compa-
rable to the full-grounding baseline. The performance of the learned estimator is
comparable or only slightly worse than the heuristic, depending on the number
of objects and the number Nrel of partially grounded models, but always sig-
nificantly better than the random estimator. The performance of all estimators
improves with increasing Nrel, but this effect diminishes if Nrel is large. Plan-
ning in the fully grounded model is hopelessly inefficient, in particular for large
worlds. The same performance levels can be achieved by means of Relevance
Grounding in only tiny fractions of this planning time, which is independent of
the object number and thus constant over all investigated domain sizes.
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Table 2. Building high piles problem: (a) Mean rewards (changes in tower heights),

(b) planning times, (c) details over 45 runs (3 rule-sets, 5 start situations, 3 seeds).

Error bars for the rewards give the std. dev. of the mean estimator. Nrel denotes the

number of relevant reduced models (cf. Algorithm 1). Performing no actions gives a

reward of 0.
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10

random Nrel =1 7.85 ± 0.70 0.37 ± 0.03

random Nrel =5 10.94 ± 0.73 1.84 ± 0.18
random Nrel =10 14.59 ± 1.20 3.63 ± 0.26
heuristic Nrel =1 16.42 ± 1.10 0.38 ± 0.02
heuristic Nrel =5 20.43 ± 1.47 1.89 ± 0.11
heuristic Nrel =10 20.83 ± 1.32 3.78 ± 0.23
learned Nrel =1 16.07 ± 0.85 0.39 ± 0.02
learned Nrel =5 19.07 ± 1.23 1.91 ± 0.11
learned Nrel =10 18.63 ± 1.12 3.76 ± 0.29
full-grounding 19.26 ± 1.38 59.51 ± 10.72

20

random Nrel =1 9.20 ± 0.62 0.39 ± 0.03
random Nrel =5 12.38 ± 0.69 1.87 ± 0.15
random Nrel =10 14.93 ± 0.74 3.78 ± 0.21
heuristic Nrel =1 17.77 ± 0.99 0.39 ± 0.02

heuristic Nrel =5 20.34 ± 0.91 1.93 ± 0.11
heuristic Nrel =10 20.69 ± 1.16 3.85 ± 0.15
learned Nrel =1 14.53 ± 0.77 0.42 ± 0.03
learned Nrel =5 18.26 ± 0.94 1.90 ± 0.13
learned Nrel =10 18.34 ± 0.82 3.81 ± 0.11
full-grounding 21.12 ± 1.21 561.78 ± 186.76

30

random Nrel =1 9.16 ± 0.76 0.38 ± 0.03

random Nrel =5 11.90 ± 0.64 1.93 ± 0.12
random Nrel =10 14.00 ± 0.69 3.84 ± 0.25
heuristic Nrel =1 16.23 ± 1.05 0.39 ± 0.02
heuristic Nrel =5 21.08 ± 1.03 2.01 ± 0.13
heuristic Nrel =10 20.21 ± 1.10 3.84 ± 0.16
learned Nrel =1 16.45 ± 0.77 0.42 ± 0.04
learned Nrel =5 17.72 ± 0.88 1.99 ± 0.04
learned Nrel =10 18.44 ± 0.75 3.78 ± 0.24
full-grounding 19.99 ± 1.11 1770.55 ± 916.44

(b) (c)

4.2 Desktop Clearance

The goal in our second experiment is to clear up the desktop (see Fig. 1). Objects
are lying splattered all over the desktop. An object is cleared if it is part of a
pile containing all other objects of the same class, which can be defined as

cleared(X) ≡ ∀Y : sameClass(X,Y ) → samePile(X,Y ) . (17)

A class is defined in terms of color and size, but not type so that a class contains
both blocks and balls. In our experiments, classes are made up of 2-4 objects
with at most 1 ball (in order to enable successful piling). Our starting situations
contain some piles, but only with objects of different classes. We let the algo-
rithm run for 30 time-steps. For planning, we set PRADA’s planning horizon
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Fig. 1. Clearance task. The robot has to clear up the desktop by piling objects of the

same size and color.

to d = 20 and use a discount factor of γ = 0.95. If the world was determinis-
tic and objects could be stacked perfectly, the optimal values would be 86.91
for worlds with 10 objects and 110.85 for worlds with 20 and 30 objects. We
investigate two relevance estimators. The random estimator samples randomly
and independently among all objects. The heuristic estimator chooses randomly
among the objects which are not cleared yet and then takes all other objects of
the same class into account. Nearest neighbors are used to fill up the object-set.
While this heuristic is hand-made, its idea can be derived from the logical re-
ward description in Eq. (17) which states the importance of classes in relevant
object-sets on the left side of the implication. How this can be done in principled
ways is a major direction of future work.

Table 3 presents our results. The random estimator performs poorly since its
reduced models contain mostly only single instances of a class. This is disad-
vantageous as planning requires at least a second object of the same class and
singleton instances are always cleared within reduced models which are thus a
bad approximation of the full model. The mean performance of the heuristic
estimator is significantly better than the full-grounding baseline, in particular in
worlds with many objects. Note that the full-grounding baseline cannot find an
optimal solution due to the huge search space. In contrast to planning in the fully
ground model, the relevance grounding planning approaches are independent of
the number of objects and thus several orders of magnitude faster.

We also investigate the use of verification of the plans found in the reduced
models (cf. Algorithm 1). We evaluate the Nver = 3 best reduced-model plans
in a less reduced model containing 10 objects where the missing 5 slots are
filled in by nearest neighbors. Thereby, information about objects within the
same piles may be taken into account. Our results show that this improves the
mean performance for both relevance estimators significantly at only a small
increase in computational cost. In particular, this greatly increases the perfor-
mance of the random estimator in worlds with 10 objects. In larger worlds, the
random estimator almost never finds good plans in which case verification cannot
help.
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Table 3. Clearance problem: (a) Mean rewards, (b) planning times, (c) details over

45 runs (3 rule-sets, 5 start situations, 3 seeds). Error bars for the rewards give the

std. dev. of the mean estimator. Nr denotes the number of relevant reduced models

Nrel, Nv the number of partial plans Nver that are verified in a less reduced model

(cf. Algorithm 1). Performing no actions gives a reward of 0.
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Obj. Config Reward Time

10

random Nr=1 9.33 ± 1.67 15.26 ± 0.21
rand. Nr=5 4.59 ± 0.78 75.73 ± 1.53
rand. Nr=10 2.58 ± 0.73 153.86 ± 3.37
rand. Nr=5, Nv=3 17.54 ± 1.92 84.63 ± 2.42
rand. Nr=10, Nv=3 14.76 ± 1.85 162.25 ± 7.60
heuristic Nr=1 34.50 ± 2.44 15.31 ± 0.27
heur. Nr=5 41.88 ± 3.08 75.02 ± 1.64
heur. Nr=10 38.48 ± 2.67 151.92 ± 2.94
heur. Nr=5, Nv=3 46.46 ± 3.12 84.98 ± 1.83
heur. Nr=10, Nvr=3 49.15 ± 2.81 161.79 ± 3.63
full-grounding 29.77 ± 2.02 153.93 ± 13.51

20

random Nr=1 4.68 ± 1.07 16.24 ± 0.44
rand. Nr=5 0.88 ± 0.45 78.92 ± 1.08
rand. Nr=10 0.16 ± 0.11 163.21 ± 4.93
rand. Nr=5, Nv=3 2.62 ± 0.90 90.25 ± 1.74
rand. Nr=10, Nv=3 0.72 ± 0.58 168.91 ± 3.31
heuristic Nr=1 42.77 ± 3.19 15.89 ± 0.48
heur. Nr=5 47.72 ± 2.96 80.24 ± 1.38
heur. Nr=10 43.34 ± 2.60 158.53 ± 2.06
heur. Nr=5, Nv=3 51.03 ± 3.12 88.94 ± 1.99
heur. Nr=10, Nv=3 56.76 ± 2.68 172.27 ± 5.01
full-grounding 29.19 ± 1.98 1537.37 ± 225.96

30

random Nr=1 3.09 ± 1.09 16.06 ± 0.41
rand. Nr=5 0.52 ± 0.26 80.11 ± 1.47
rand. Nr=10 0.02 ± 0.02 162.17 ± 6.34
rand. Nr=5, Nv=3 1.16 ± 0.51 92.17 ± 2.52
rand. Nr=10, Nv=3 0.16 ± 0.10 178.96 ± 3.56
heuristic Nr=1 42.31 ± 3.06 16.47 ± 0.43
heur. Nr=5 59.79 ± 3.33 81.34 ± 3.87
heur. Nr=10 53.29 ± 3.50 159.01 ± 3.39
heur. Nr=5, Nv=3 55.00 ± 3.54 90.26 ± 3.46
heur. Nr=10, Nv=3 58.01 ± 3.42 168.51 ± 5.16
full-grounding 22.42 ± 2.14 5893.81 ± 1006.56

(b) (c)

5 Related Work

The problem of planning in stochastic relational domains has been approached
in quite different ways. The field of Relational Reinforcement Learning (RRL)
[19] investigates value functions and Q-functions that are defined over all pos-
sible ground states and actions of a relational domain. The idea is to describe
important world features in terms of abstract logical formulas enabling general-
ization over objects and situations. Examples of model-free approaches employ
relational regression trees [8] or instance-based regression using distance metrices
between relational states such as graph kernels [7] to learn Q-functions. Model-
free approaches have the disadvantage to be inflexible as they enable planning
only for the specific problem type used in the training examples. In contrast,
model-based RRL approaches first learn a relational world model from the state
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transition experiences, for example in form of relational probability trees for in-
dividual state properties [6] or SVMs using graph kernels [12]. One way to make
use of the resulting model is to sample look-ahead trees of state transitions in
Q-learning, i.e., to work with ground states. All approaches discussed thus far
make use of ground states and actions and may well profit from our relevance
grounding approach. Consider for example the instance-based approaches where
relevance grounding will lead to tractable instance representations.

A promising alternative is to compute abstract value functions by working in
the “lifted” abstract representation without grounding or referring to particular
problem instances. This requires the learned (or prespecified) model to be com-
plete. Symbolic Dynamic Programming [5] investigates exact solution methods
for relational MDPs. The idea is to construct minimal logical partitions of the
state space required to make all necessary value function distinctions. For ex-
ample, Kersting et al. [13] present an exact value iteration for relational MDPs.
Sanner et al. [17] exploit factored transition models of first-order MPDs to ap-
proximate the value function based on linear combinations of abstract first-order
value functions. Their work shows that under certain assumptions (such as ad-
ditive rewards), it is possible to derive efficient solution techniques. Nonetheless,
this promising line of research is only in its beginnings and is confronted with
serious technical challenges. It requires complex theorem proving to keep the
logical formulas that represent sets of underlying states manageable.

All of the above approaches compute full policies over complete state and
action spaces. Instead, one may restrict oneself to deriving plans for a given
start state. When grounding the full model, one might in principle use any of
the traditional A.I. planning methods used for propositional representations, see
[20] and [4]. An interesting strategy to work in a grounded model in a principled
way is to consider only a small relevant subset of the state space which is derived
from the start state and the planning goal. In contrast to our approach, the
resulting subspace still represents all objects, thus the action space size is not
decreased. A straight-forward way to create such a subspace are look-ahead trees
for the start state that estimate the value of an action by taking samples of the
corresponding successor state distribution [15]. Another idea is to maintain an
envelope of states, a high-utility subset of the state space [9] which can be used
to define a relational MDP. This envelope can be further refined by incorporating
nearby states in order to improve planning quality. A crucial part of this approach
is the initialization of the envelope which is based on an initial straight-line
path from the start state to a goal state using a heuristic forward planner (e.g.,
by making this planning problem deterministic by only considering the most-
probable successor state of an action). The envelope-based approach depends
strongly on the efficiency and quality of this initial planner which is still faced
with the complexity of the action space and its dependence on the number of
objects, thus being applicable only for rather small planning horizons.

Action space complexity can be decreased by noting that if the identities of
objects do not matter but only their relationships, then different equivalent ac-
tions may lead to equivalent successor states [10]. These are states where the
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same relationships hold, but not necessarily with the same objects. Relevance
grounding accounts for this idea by defining different object subsets to be rel-
evant for the planning problem at hand. Action equivalence can be exploited
during planning by only considering one sampled action per action equivalence
class which significantly reduces the search space. If identity matters for a large
number of objects, however, then this approach does not yield significant im-
provements. Another way to reduce the state space complexity is to look only at
a subset of the logical vocabulary, i.e., ignore certain predicates and functions
[11]. This helps when combined with the action equivalence approach as state
descriptions become shorter and more approximate and the number of state
equivalences increases. All these methods just discussed are complementary to
our approach and when applied in a reduced grounded model within the rele-
vance grounding framework might yield a strong way to plan efficiently in highly
complex domains.

6 Discussion and Conclusions

In this paper, we have presented an approach for efficient planning in stochastic
relational worlds based on exploiting object relevance. We define object relevance
in terms of a graphical model. We have derived a systematic framework to plan in
partially grounded models which we have proven to be consistent with planning
in the fully grounded model. Empirical results show our approach to be effective
in complex relational environments. Also, we have argued that our approach
has interesting analogies to human cognition. Our framework is independent of
the concrete planning algorithm used within the reduced models. In particular,
it can well be combined with other approaches to increase planning efficiency
in stochastic relational domains that have recently been introduced, such as
envelope-based methods [9].

A key part for our framework and our major direction of future research is
the estimator of object relevance. We have provided a successful example of
how relevance can be learned from object features by means of nothing more
than internal simulation, but this is clearly only preliminary. In our point of
view, learning to estimate the relevance of objects is a formidable problem for
machine learning, as a huge variety of methods using discrete, continuous, and
logical features can be applied. Clearly, this is a difficult problem, bearing in
mind that human beings often take a long time until they master certain types
of planning problems. However, estimating object relevance appears to us to be
a crucial prerequisite to be able to plan in the highly complex real world.
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7. Driessens, K., Ramon, J., Gärtner, T.: Graph kernels and Gaussian processes for

relational reinforcement learning. Machine Learning (2006)

8. Dzeroski, S., de Raedt, L., Driessens, K.: Relational reinforcement learning. Ma-

chine Learning 43, 7–52 (2001)

9. Gardiol, N.H., Kaelbling, L.P.: Envelope-based planning in relational MDPs. In:

Proc. of the Conf. on Neural Information Processing Systems, NIPS (2003)

10. Gardiol, N.H., Kaelbling, L.P.: Action-space partitioning for planning. In: Proc.

of the National Conference on Artificial Intelligence (AAAI), Vancouver, Canada

(2007)

11. Gardiol, N.H., Kaelbling, L.P.: Adaptive envelope MDPs for relational equivalence-

based planning. Technical Report MIT-CSAIL-TR-2008-050, MIT CS & AI Lab,

Cambridge, MA (2008)

12. Halbritter, F., Geibel, P.: Learning models of relational MDPs using graph kernels.

In: Proc. of the Mexican Conference on Artificial Intelligence (2007)

13. Kersting, K., Otterlo, M.V., de Raedt, L.: Bellman goes relational. In: Proc. of the

Int. Conf. on Machine Learning, ICML (2004)

14. Lang, T., Toussaint, M.: Approximate inference for planning in stochastic relational

worlds. In: Proc. of the Int. Conf. on Machine Learning, ICML (2009)

15. Pasula, H.M., Zettlemoyer, L.S., Kaelbling, L.P.: Learning symbolic models of

stochastic domains. Artificial Intelligence Research 29 (2007)

16. Ruchkin, D.S., Grafman, J., Cameron, K., Berndt, R.S.: Working memory retention

systems: a state of activated long-term memory. Behavioral and Brain Sciences 26,

709–777 (2003)

17. Sanner, S., Boutilier, C.: Approximate solution techniques for factored first-order

MDPs. In: Proc. of the Int. Conf. on Automated Planning and Scheduling, ICAPS

(2007)

18. Toussaint, M., Storkey, A.: Probabilistic inference for solving discrete and con-

tinuous state Markov decision processes. In: Proc. of the Int. Conf. on Machine

Learning, ICML (2006)

19. van Otterlo, M.: The Logic of Adaptive Behavior. IOS Press, Amsterdam (2009)

20. Weld, D.S.: Recent advances in AI planning. AI Magazine 20(2), 93–123 (1999)



Author Index

Abudawood, Tarek I-35

Aharon, Michal I-227

Akoglu, Leman I-13
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Dai, Guang II-632

Dali, Lorand II-718

Daud, Ali I-244

De Bie, Tijl I-344, II-746

de Gemmis, Marco II-710

de la Cruz, Jesus M. I-131

del Coz, Juan José I-302
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Gavaldà, Ricard I-147

Gentle, James I-67

Ghosh, Joydeep I-10

Gionis, Aristides I-29, I-115

Giordani, Alessandra I-391

Gopalkrishnan, Vivekanand I-83,

II-160, II-398

Görnitz, Nico I-407



754 Author Index

Grcar, Miha II-726, II-730

Greaves, Mark I-3

Greene, Derek I-423

Grosskreutz, Henrik I-30, I-179

Gu, Quanquan I-439

Guerrero-Curieses, Alicia I-12

Gulgezen, Gokhan I-455

Gunopulos, Dimitrios I-485

György, András I-705

Hachiya, Hirotaka I-469

Hakkoymaz, Huseyin I-485

Han, Chao II-755

Han, Jiawei II-79

Han, Yanjun I-501

Harpale, Abhay II-554

He, Jiangfeng II-238

He, Qinming II-238

Heinrich, Gregor I-517

Helleputte, Thibault I-533

Hilario, Melanie I-315, I-330

Hoi, Steven I-83

Holmes, Geoff II-254

Hommersom, Arjen I-548

Hou, Xinwen II-586

Hu, Bao-Gang II-538
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