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Abstract. The widely used K-means clustering deals with ball-shaped
(spherical Gaussian) clusters. In this paper, we extend the K-means clus-
tering to accommodate extended clusters in subspaces, such as line-
shaped clusters, plane-shaped clusters, and ball-shaped clusters. The
algorithm retains much of the K-means clustering flavors: easy to imple-
ment and fast to converge. A model selection procedure is incorporated
to determine the cluster shape. As a result, our algorithm can recognize
a wide range of subspace clusters studied in various literatures, and also
the global ball-shaped clusters (living in all dimensions). We carry ex-
tensive experiments on both synthetic and real-world datasets, and the
results demonstrate the effectiveness of our algorithm.

1 Introduction

Data clustering is useful to discover patterns in a large dataset by grouping
similar data points into clusters. Traditionally a cluster is viewed as a spherical
(ball-shaped) data distribution and therefore is often modeled with mixture of
Gaussians. For high dimensional data, sometimes an extended cluster may live in
a subspace with much smaller dimension, i.e., it deviates away from a spherical
cluster very significantly (Figures 1-5 in Section 5 illustrate various subspace
clusters). This type of subspace clusters is difficult to discover using traditional
clustering algorithms (e.g., K-means).

Here, we begin with an observation on the key difficulty of subspace clustering.
We believe the main difficulty with subspace clustering is the exact definition of
clusters. If a cluster lives in a subspace, but is not extended significantly, this type
of clusters can be handled by traditional algorithms such as K-means. However,
if a cluster has an extended size in limited dimensions, (e.g., an extended plane
in 5-dimensional space), it becomes a subspace cluster. Thus the difficulty is how
to model an extended cluster.

In this paper, we propose a new clustering algorithm to handle clusters with
extended shapes. Our approach is a distance-minimization based approach, much
like the standard K-means clustering algorithm. This approach can be cast in
the framework of mixture clustering with Expectation and Maximization steps.

In the following, we discuss the related work in Section 2. In section 3 we propose
several distance minimization based models to describe extended cluster objects
and derive the optimal solutions to these cluster models (Sections 3.2-3.5). We
discuss the model selection issue in section 3.6. Extensive illustrative examples
are given in Section 4.
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One strong feature of our K-subspace algorithm is that it also accommodates
ball-shaped clusters which live in all dimensions, in addition to the subspace
clusters. In other words, our K-subspace algorithm is a comprehensive clustering
algorithm, in contrast to many previous subspace clustering algorithms which
are specifically tailored to find subspace clusters.

Clusters come in all shapes and sizes. Consider an elongated ball cluster which
is in-between a line-shaped cluster and a ball-shaped cluster. Our algorithm tries
to model it in both ways and automatically determine the best way to model it.
An algorithm specifically designed for seeking subspace clusters would have to
incorporate certain threshold to define whether it meets the criteria for subspace.
This specific subspace clustering search algorithm goes in contradiction to the
unsupervised nature of clustering.

Our K-subspace algorithm, on the other hand, retains much of the usual unsu-
pervised learning. It is an extension of K-means algorithm for incorporating the
capability to handle subspace clusters. For these reasons, we run our algorithm
on an extensive list of datasets and compare with many existing clustering algo-
rithms. Results are presented in Section 5. The new algorithm outperforms many
existing algorithms, due to its capability to model a larger number of different
cluster shapes. Conclusions are given in Section 6.

2 Related Work

Current study of subspace clustering mainly follows two general approaches [20].:
(1) bottom-up search methods such as Clique [3], enclus [6], mafia [14], cltree [18],
and DOC [21]; and (2) top-down search methods including COSA [I3], Proclus
[1], ORCLUS [2], Findit [25], and d-clusters [27]. The bottom-up approaches use
the monotonicity of density to prune subspaces by selecting those subspaces with
densities above a given threshold, and they often cover clusters in various shapes
and sizes. However, the clustering results are much dependent on the density
threshold parameter, which can be very difficult to set properly. The top-down
approaches integrate clustering and subspace selection by multiple iterations of
selection and feature evaluation. The required iterations of clustering are very
expensive and often cause slow performance. In addition to the poor efficiency,
the top-down approaches are bad at finding hyper-spherical clusters due to the
nature of using cluster centers to represent similar instances. Other recent works
include GPCA [24], Oriented K-windows [23], Weighted K-means [30], adaptive
subspace clustering [17] etc.

Adaptive dimension reduction, which attempts to adaptively find the subspace
where clusters are most well-separated or well-defined, has also been proposed.
Recent work in [IT] combines linear discriminant analysis (LDA) and K-means
clustering in a coherent way where K-means is used to generate cluster labels
and LDA is used to select subspaces. Thus the adaptive subspace selection is
integrated with the clustering process. Spectral clustering (e.g., Normalized Cut
algorithm) and nonnegative matrix factorization (NMF) are also able to discover
arbitrarily shaped clusters. It has been shown that spectral clustering can be
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viewed as a weighted version of Kernel K-means, and NMF is proved to be
equivalent to spectral clustering [10].

In our work, we extend K-means algorithm to K-subspace algorithm, which
handles not only clusters living in all dimensions but also subspace clusters,
while retaining the simple and fast implementation of K-means clustering.

3 K-Subspace Clustering Model

3.1 The Distance Minimization Clustering Model

The distance minimization clustering model can be represented as:

min { min _Dist(x;, Ck) (1)
H,0 < [1<k<K

where H is the cluster indicator matrix, 6 is a parameter in the optimization,
X; is a data point, Cf is the k — th cluster, and

Dist(x;,Cx) = —logProb(x;; Ci).

Note Prob(x;;C) < 1 and a common choice of the individual probability is the
full Gaussian distribution using Mahalanobis distance.
This minimization can be equivalently written as

K
min J =Y Y Dist(x;, Cy) 2)
{Ck} k=1i€Cy,
Clearly for K-means clustering,
Dist(xi, Cr) = ||x: — cx||” (3)

The K-subspace clustering model utilizes the distance minimization model. In
this paper we consider only linear subspaces: 1D line-shaped (rod-like) subspace,
2D plane-shaped (slab-like) subspace, etc. The model also accommodates the
ball-shaped clusters. Our main contribution here is to show that these subspace
cluster models can be rigorously defined and efficiently computed. To our knowl-
edge, this approach is novel and this type of analysis and results have not been
previously investigated and obtained.

3.2 Line-Shaped Clusters

How to represent a line-shaped cluster Cy? A line is defined by a point in space
and a unit direction. Let the point be ¢ and the unit direction be a;. A data
point x can be decomposed as a parallel component

xI = ay [af(x —cg)]
and a perpendicular component

xt = (x —cx) —xl
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We define the distance between the data point x and cluster C} as the perpen-
dicular distance between the point and the line:

Dist(x,Cx) = |Ix || = [|x — cx — aay||” (4)

where
a=(x—cp) a. (5)

Computing model parameters. Given a set of data points in the cluster, and
assuming they are described by a line, how do we compute the model parameters

(Ck, ak)?
We minimize the total distance (dispersion) of the cluster:

min Z Dist(x;,Ck) = Z [|xi — ¢k — aakH2 (6)

OBk O, ieCy
It turns out that the model parameters can be computed in a surprisingly simple
way':

Theorem 1. Let

X =[x %Y, x()] (7)
be the data points in Ck. Compute the principal component analysis (PCA) of
them, and let uy be the first principal direction. Let the centroid of C be

OB .
X\ = Chl Z X;i. (8)

ieCy,

Then the global optimal solution to the minimization problem of Eq.(d) is
given by
c=x" a=u. 9)

Proof. We wish to minimize Eq.(@]) which is

min J; = Z [|(I — arai )(xi — ci)||? (10)

Ok Bk ieC
k

by substituting Eq. () into Eq.(@).
Using ||A||? = Tr(AT A), we have

Jp=Tr Z [(xi — )" (I — agay )" (I — axay, ) (xi — cx)] (11)

i€Cy
Because (I — agal )T (I —agal) = M is a semi-positive definite matrix, .J; is a
convex function of ci. Its global minima is given by the zero- gradient condition:

_AA

0
8ck

Z Z(Mck — MX-L')

i

Thus Mc, = Mx™®. Clearly,c, = x* is the solution. In general, M is non-
deficient andc; = x* is the unique solution. When M is deficient, ¢, = % is
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still a correct solution, but it is not the unique solution. Because aj, is a unit
vector,(I — azal)T (I — aga} ) = (I — azaf). Thus

Ji = Tr(I — azay) )X,

where

E=1) (i —er)(xi —cx)’]

i€C)
is the sample covariance matrix. Now minimization for a; becomes

min J; = Tr (I — aay, )X = const — a;. Yay, (12)
ag

This is equivalent to maxa, aj Yay, whose solution is the first principle direction,
because X' is the covariance matrix. O

3.3 Plane-Shaped Clusters

A 2D plane is defined by a point in space and two unit directions. Let ci be the
point, and a, by be the two unit directions. A data point x can be decomposed
as a parallel component (lying inside the plane)

x!l = ap[af (x — ck)] + bi[b} (x — cx)]

assuming the two unit directions are orthogonal: af b, = 0. And the perpendic-

ular component

xt = (x—cp) —x.

We define the distance between the data point x and cluster C}, as the perpen-
dicular distance between the point and the plane:

Dist(x,Cr) = HXLHQ =||x—cr —car — Bka2 (13)

where
a=x—-ci)ay, f=(x—ci) b (14)

Clearly, we can extend this to 3D and higher dimensional subspace clusters.

Computing model parameters. Given a set of data points in the cluster. As-
suming they are described by a plane, how do we compute the model parameters
(Ck, ag, bk)?
We minimize the dispersion (total distance) of the cluster:
min Z Dist(x;,Cy) = Z ||xi — cx — cay — byl (15)

cp,ay,b
koBkoBk e, i€C),

As one might have expected, the solution is given by PCA.

Theorem 2. Compute the (PCA) of X*) of Eq.(@) to obtain the first two
principal directions (uj,u;). Compute the centroid as in Eq.(®). The optimal
solution to Eq.(TH) is given by

(k)

c=x", a=ui, b=us. (16)
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Proof. We outline the proof here by pointing out the main difference from the

proof for Theorem 1.
We wish to minimize Eq.(I3]) which is

min J; = Y ||(I —azai —bybi)(x; —cx)|” (17)

ok 2k i€Cy,
by substituting Eq.(@) into Eq.([IT). J> can be written as

5= Y (G )" B B ) (18)

where
B = ([ — akaf — bkbz)

Because BT B is a semi-positive definite matrix, Jy is a convex function of cy.
Its global minima is given bycy = x*).

Now focusing on (ak,bg). Since we restrict ajby = 0,and B'B = B =
(I —aral —byb{), the minimization over (ay, bg) becomes

min Jo = Tr (I — azaj, —ayb} )% = const — aj Yay, — bi Tby, (19)

ay,by

The solution for ay is given by the first principal direction u;. Since aiby = 0,
the solution for by, is given by the second principal direction us. O

3.4 3D and Higher Dimensional Planes

Clearly, we can model a subspace cluster using 3D and higher dimensional planes.
The same definitions using the perpendicular distances can be adopted and the
same computational algorithms using PCA can be easily generalized from 1D
and 2D cases.

We can use this in the reverse direction. Suppose we are given a set of data
points, and the question is which dimensions of the subspace cluster we should
choose?

According to Theorem 1 and Theorem 2, we compute PCA of the dispersion
and obtain eigenvalues and eigenvectors. If there is only one significant eigen-
value, this implies that the cluster is a 1D (line-shaped) subspace cluster, then
we set ap = uj. If there are only two significant eigenvalues, it implies that
the cluster is a 2D (plane-shaped) subspace cluster, then we set a = u; and
b;c = U3.

In general, if there are k significant eigenvalues, then the cluster is likely a
k-dimensional (kD plane) subspace cluster. For this cluster, we need k vectors
(kp parameters, where p = dimension of data space) to describe it.

However, to keep the simplicity of cluster modeling to prevent overfitting
with too many parameters, we restrict the cluster dimensions to 2. For higher
dimensions, we use a spherical cluster to describe the cluster, instead of using
the high-dimensional planes which have much more parameters.
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3.5 Spherical Clusters

Although Gaussian mixtures using the EM algorithm can describe more com-
plicated clusters, in practice very often the much simpler K-means clustering
algorithm provides results as good as the mixture models.

This implies two fundamental facts in statistics: (S1) complex functions do
not necessarily perform better (mainly due to overfitting) and (S2) most clusters
are reasonably modeled by the spherical cluster model. In fact, clusters of any
shape can be modeled as spherical clusters if they are reasonably separated.

From (S1), we should not use too many parameters in describing a cluster.
From (S2), we should make use of spherical clusters as much as possible. These
two facts motivate us to consider spherical clusters more carefully, rather than
using 3D or higher dimensional plane-shaped clusters.

A spherical (ball-shaped) data cluster is a global cluster in the sense that it
exists in all dimensions. We adopt it as our K-subspace clustering because not
all clusters in a dataset are subspace clusters.

Then a natural question is: what is the distance between a data point and a
spherical cluster? We could use the distance to the cluster centroid

Dist(xi, Cx) = ||xi — c&l|® (20)

as in K-means clustering. If all clusters in the dataset are spherical clusters, the
problem is reduced to the usual K-means clustering.

However, we wish to measure the distance between a data point to the cluster,
not to the cluster center. In the case of the line-shaped cluster, the point-cluster
distance is the perpendicular distance, i.e., data point x to the closest data points
on the line. In the case of the plane-shaped cluster, the point-cluster distance is
the perpendicular distance, i.e., data point x to the closest data points on the
plane.

For these reasons, we define the point-cluster distance for spherical clusters to
be the distance between the data point and the closest data point on the sphere.
For this we introduce

Dist(xi, Cx) = max (0, |[x; — cx|[* = no?) (21)

where 77 > 0 is an input parameter. This distance assumes that the data points
inside the cluster are located in the spherical surface of radius /noy. Thus
Dist(x;,C) is the distance of a outside data point to this spherical surface.
Setting = 1, assuming Gaussian distribution, there will be about 69% data
points inside this surface. Setting n = 0, the distance metric is reduced to the
distance to the cluster center. In practice, we set n ~ 0.2 ~ 0.5.

Computing model parameters. To compute the model parameter ci, we
optimize the dispersion of Cj

min Z max (0, [|xi — CkH2 - 7701%) (22)
°k {cCy
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which, by substituting the variance, is
min 37 max [ 0,[x —exl* 1 3 [ - el (23)
k 1€C JECEL

The max(-) is not differentiable and thus difficult to handle analytically. We use
the following continuous function to handle it:

1
max(u,v) = . lim log(e™ +¢e™") (24)
Thus we minimize )
J3(ck) = Z lim logf(7, %3, Ck) (25)
: T T—00
1€Cy
where
o) =1 R il 26
f(r,xi,e) = 1+exp | 7l[xi — cxl| T"]; |1x; — cxl| (26)
k

Taking the derivative w.r.t. cg, we have

8J3 (Ck) 26f

. n
= lim ch—xi— | > (ek—x,) (27)
el f
e ieCy, l+e ereh
Note 0
. 2e . n
dim o =200 —cil* > n Z 1% — el |? (28)
JECK
2670 . n
dim o =0 [ - cil|* < n Z 1% — el |? (29)
JECK
Thus we obtain
8J3(Ck) n
aCk = Z Cr —X; — n Z (Ck — X]') (30)
xi> JECEL

where x; denotes the points outside the sphere, i.e., they satisfy Eq.(28). Let
the center for averaging outside points be

L= x / o1 (31)

The final solution to the optimization problem is

_k _k
%8 —-nx
— 32
Ci 1y (32)
where x* is the centroid of Cj. Clearly, as n — 0, X% — x*. Thus this result is
consistent.



514 D. Wang, C. Ding, and T. Li

3.6 Model Selection and Computation

In our distance-minimization based clustering model, because we allow each
cluster to be modeled by different models, there is a model selection issue. Given
the data points in Cj as in Eq.([T), which model describes the data best?

We define the model dispersion as

Dispersion(ball) Z max (0, ||x; — CkH2 - T]UZ)»
1€Cy

Dispersion(line) Z ||xi —cr — azakH
i€C,

Dispersion(plane) = Z ||xi — ¢k — czar — ﬂikaZ,
i€C
a; = (x5 — Ck)Tak,Bi = (x; — Ck)Tbk;
We choose the model with the smallest dispersion.

Then we minimize the total distance via the fundamental EM algorithmic
approach. The two steps are the Cluster Assignment step (E-step) and Model
Estimation step (M-step). The Cluster Assignment step is estimating the poste-
rior probability for all data points belonging to different clusters. In our distance
minimization model, for every x;, we assign x; to the closest cluster Cj:

k = arg min Dist(x;, Ck) (33)
1<k<K
With new assignments of {x;} to each cluster, in the model estimation step we

re-estimate the model parameters using the computational procedure described
in §2.1, §2.2 and §2.4.

4 Illustrative Examples

To demonstrate the effectiveness of the K-subspace clustering in extended clus-
ters, we give the following examples. In the following figures, points with different
colors belong to different clusters.

Two lines in 3-D space: 50 points along two straight lines are generated
randomly in 3-D space as shown in Figure 1(a).

A line and a 2-D plane in 3-D space: 50 points along a straight line and
300 points in a 2-D plane are generated randomly in the 3-D space as shown in
Figure 2(a).

Two 2-D planes in 3-D space: 300 points in each 2-D plane are generated
randomly in the 3-D space as shown in Figure 3(a).

A Line, a 2-D plane and a sphere in 3-D space: 50 points along a
straight line, 300 points in a 2-D plane, and 400 points in the surface of a sphere
are generated randomly in the 3-D space as shown in Figure 4a.

Four clusters in 3-D space: Points with four clusters, each of which exists
in just two dimensions with the third dimension being noise [20]. Points from two
clusters can be very close together, which confuses many traditional clustering
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(a) Original Data (b) K-means Results (C) K-subspace Results

Fig. 1. Example (I): Two Lines in 3-D Space

(a) Original Data (b) K-means Results (C) K-subspace Results

Fig. 2. Example (II): Line-Plane in 3-D Space

(a) Original Data (b) K-means Results (C) K-subspace Results

Fig. 3. Example (III): Plane-Plane in 3-D Space

(b) K-means Results (C) K-subspace Results

Example (IV): Line-Plane-Ball in 3-D Space

(a) Original Data (b) K-means Results (C) K-subspace Results

Fig. 5. Example (V): Four clusters in 3-D Space

515
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algorithms. The first two clusters exist in dimensions x and y. The data forms a
normal distribution with means 0.6 and -0.6 in dimension x and 0.5 in dimension
y, and standard deviations of 0.1. In dimension z, these clusters have y = 0 and
o = 1. The second two clusters are in dimensions y and z and are generated in
the same manner. The data is illustrated in Figure 5a.

As you can observe from these figures, K-means algorithm has difficulties in
dealing with subspace clusters. However, our K-subspace algorithm is a com-
prehensive clustering algorithm, which can recognize a wide range of subspace
clusters and is also able to discover the global sphere clusters.

5 Experimental Results

In this section, we conduct comprehensive experiments to evaluate the effective-
ness of the K-subspace clustering method. We use both synthetic datasets and
real-world datasets. The purpose of using synthetic data is that the detailed
cluster structures are known, hence we can evaluate K-subspace with different
factors such as cluster structures and sizes systematically. And we believe that
those cluster structures do exist in real world applications. We use accuracy [12]
and normalized mutual information (NMI) [22] as performance measures.

5.1 Experiments on Synthetic Datasets

Dataset Generation. Synthetic datasets are generated by using the algorithm
proposed by Milligan [I5]. The clusters are non-overlapping and truncated mul-
tivariate normal mixtures. Subspace structures are embedded in the synthetic
datasets. Basically the dimension with clustering structures (called cluster di-
mensions) is created based on a cluster length chosen from a uniform distribu-
tion. The mean and standard deviation of the cluster on this dimension can be
derived from this cluster length. The dimension without clustering structures
(called noise dimensions) is created from a uniform distribution in some gener-
ated range. Thus cluster dimensions and noise dimensions are independent from
each other. The data points are assigned to the cluster if they are within 1.5
standard deviation of every cluster dimension of this cluster. The number of
points that are assigned to each cluster are determined as following: From the
range [a, a+d] where a,d > 0, we choose k numbers { Py, - - -, P, } uniformly, and
k is the number of clusters. Then, the number of points belonging to the cluster
118 nzlj "Pj, where n is the total number of data points.

Results on Synthetic Datasets. Three sets of experiments are conducted
on synthetic datasets: (1) We fix the number of data points and dimensional-
ity and investigate the clustering performance of k-subspace as a function of the
number clusters. (2) We fix the number of clusters and dimensionality and inves-
tigate the clustering performance of K-subspace as a function of the number of
points. (3) We fix the number of clusters and points and investigate the clustering
performance of K-subspace as a function of the number of dimensionality.
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“w 0 20 40 50

30
uuuuuuuuuu s Number of Clusters

(a) Accuracy (b) NMI

Fig. 6. Clustering performance comparison on synthetic dataset (I). Remark: the num-
ber of data points is 1000; the dimensionality of the data is 500; and the number of
clusters changes from 10 to 50.

1000 1250 1500
Number of Clusters

(a) Accuracy (b) NMI

Fig. 7. Clustering performance comparison on synthetic dataset (IT). Remark: the num-
ber of clusters is 30; the dimensionality of the data is 1000; and the number of data
points changes from 500 to 1500.

750 o 1250 500 500 750 1000 1250 1500
"""""" lusters

(a) Accuracy (b) NMI

Fig. 8. Clustering performance comparison on synthetic dataset (III). Remark: the
number of clusters is 30; the number of data points is 1000; and the dimensionality of
the data changes from 500 to 1500.

We compare the K-subspace clustering algorithm with three other algorithms:
(1) Standard K-means algorithm; (2) LDA-Km algorithm [I1]: an adaptive sub-
space clustering algorithm by integrating linear discriminant analysis (LDA) and
K-means clustering into a coherent process. (3) PCA+K-means clustering algo-
rithm: PCA is firstly applied to reduce the data dimension followed by K-means
clustering. The results are shown in Figure[6] Figure[d and Figure[8 respectively.
We observe that: (1) LDA-Km outperforms K-means and PCA+K-means since
it integrates adaptive subspace selection with clustering process. (2) K-subspace
outperforms LDA-Km and achieves the best results among all the methods. This
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is due to the fact that K-subspace clustering can recognize a wide range of sub-
space clusters and also global spherical clusters (living in all dimensions). (3) The
clustering performance of K-subspace clustering decreases gradually as the num-
ber of clusters increases (as in Figure[d]), and its performance does not vary much
as the number of points and dimensions increase (shown in Figure[fland Figure[g)).

5.2 Experiments on Real-World Datasets

Dataset Description. We use a wide range of real-world datasets in our ex-
periments as summarized in Table [ The number of classes ranges from 4 to
20, the number of samples ranges from 47 to 7494, and the number of dimen-
sions ranges from 9 to 1000. These datasets represent applications from different
domains such as information retrieval, gene expression data and pattern recog-
nition. The summary of the datasets is as follows: (1) Five datasets including
Digits, Glass, Protein, Soybean, and Zoo are from UCI data repository [B]. (2)
Five datasets including CSTR, Log, Reuters, WebACE, and WebKB are stan-
dard text datasets that have been frequently used in document clustering. The
documents are represented as the term vectors using vector space model. These
document datasets are pre-processed (removing the stop words and unnecessary
tags and headers) using rainbow package [19]. The dataset descriptions can be
found in [12].

Table 1. Dataset Descriptions

Datasets # Samples # Dimensions # Class

CSTR 475 1000 4
Digits 7494 16 10
Glass 214 9 7
Protein 116 20 6
Log 1367 200 8
Reuters 2900 1000 10
Soybean 47 35 4
WebACE 2340 1000 20
WebKB 4199 1000 4
Zoo 101 18 7

Results on Real Datasets. On the five datasets from UCI data repository, we
compare the K-subspace clustering algorithm with standard K-means algorithm,
LDA-Km algorithm, PCA+K-means clustering algorithm, and Spectral Cluster-
ing with Normalized Cuts (Ncut) [28]. We use normalized cut since it has been
shown that weighted Kernel K-means is equivalent to the normalized cut [§]. The
implementation of Ncut is based on [28] and the variance of the Gaussian similar-
ity is determined using local scaling as in [29]. The results are shown in Figure
9(a) and Figure 9(b). On the text datasets, besides the above three alterna-
tive clustering methods, we also compare K-subspace algorithm with the follow-
ing algorithms: (i) Non-negative Matrix Factorization (NMF) method [I6]; (ii)
Tri-Factorization Method (TNMF) [12]; (iii) Euclidean co-clustering (ECC) and
minimum squared residue co-clustering (MSRC) algorithms [7]. Note that NMF
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Table 2. Clustering accuracy comparison on text datasets

K-means PCA+K-means LDA-Km K-Subspace ECC MSRC NMF TNMF Ncut

WebACE 0.4081 0.4432 0.4774 0.5158 0.4081 0.5021 0.4803 0.4996 0.4513
Log 0.6979 0.6562 0.7198 0.7696  0.7228 0.5655 0.7608 0.7527 0.7574
Reuters 0.436 0.3925 0.5142 0.6426  0.4968 0.4516 0.4047 0.4682 0.4890
CSTR 0.5210 0.5630 0.5630 0.6555 0.5945 0.6513 0.5945 0.6008 0.5435
WebKB  0.5951 0.6354 0.6468 0.8583 0.5210 0.5165 0.4568 0.6094 0.6040
| : m m m I-H
UG Datasets Uei Datasets

(a) Accuracy (b) NMI

Fig. 9. Clustering comparison on UCI data

has been shown to be effective in document clustering [260] and Tri-Factorization
(TNMF) is an extension of NMF [12]. Both ECC and MSRC are document co-
clustering algorithms that are able to find blocks in a rectangle document-term
matrix. Co-clustering algorithms generally perform implicit dimension reduction
during clustering process [9]. The comparison results on text datasets are shown
in Table 2

From the comparisons, we observe that: (1) On most datasets, PCA+K-
means outperforms K-means due to the pre-processing by PCA. (2) Co-clustering
algorithms (ECC and MSRC) generally outperform K-means since they are per-
forming implicit dimension reduction during the clustering process. (3) NMF
outperforms K-means on most datasets since NMF can model widely varying
data distributions due to the flexibility of matrix factorization as compared to the
rigid spherical clusters that the K-means clustering objective function attempts
to capture [I0]. When the data distribution is far from a spherical clustering,
NMF has advantages over K-means. (4) TNMF provides a good framework for
simultaneously clustering the rows and columns of the input documents. Hence
TNMF generally outperforms NMF on text datasets. (5) The results of spectral
clustering (Ncut) is better than K-means. Note that spectral clustering can be
viewed as a weighted version of Kernel K-means and hence it is able to discover
arbitrarily shaped clusters. The experimental results of Ncut is similar to those
of NMF and TNMF. Note that it has also been shown that NMF is equivalent to
spectral clustering [10]. (6) K-subspace clustering outperforms the other meth-
ods on all datasets. The improvements on Soybean dataset, Reuters dataset, and
WebKB dataset are evident. The comparisons demonstrate the effectiveness of
K-subspace algorithm in modeling different subspaces in real-life datasets.

Besides the above experimental comparisons, we also test the sensitivity of the
parameter 7 introduced in Eq.(21]). Figure [0 shows the clustering performance
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Fig. 10. Effects of n on glass dataset

as a function of n on glass dataset. Unlike many existing subspace clustering
methods as discussed in Section Bl whose performance largely depends on the
parameter tuning, and proper parameters setting in which sometimes are par-
ticularly difficult, we observe that the clustering performance of our K-subspace
algorithm is not very sensitive to the choice of the parameters.

6 Conclusion

We extend the K-means clustering algorithm to accommodate subspace clusters
in addition to the usual ball-shaped clusters. The optimal solutions to subspace
models can be efficiently computed using PCA. We demonstrate that the model
can capture most (if not all) of subspace clusters investigated so far. Running
on synthetic datasets and 10 real life datasets, the K-subspace algorithm out-
performs existing methods due to its increased capability of modeling clusters
of different shapes.
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